
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Culminating Experience Projects Graduate Research and Creative Practice

12-15-2022

Full-Text Search Using Elasticsearch Full-Text Search Using Elasticsearch

Akash Shrestha
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/gradprojects

 Part of the Databases and Information Systems Commons

ScholarWorks Citation ScholarWorks Citation
Shrestha, Akash, "Full-Text Search Using Elasticsearch" (2022). Culminating Experience Projects. 231.
https://scholarworks.gvsu.edu/gradprojects/231

This Project is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Culminating Experience Projects by an authorized
administrator of ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/gradprojects
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/gradprojects?utm_source=scholarworks.gvsu.edu%2Fgradprojects%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.gvsu.edu%2Fgradprojects%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/gradprojects/231?utm_source=scholarworks.gvsu.edu%2Fgradprojects%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Full-Text Search Using Elasticsearch

Akash Shrestha

A Project Submitted to

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Applied Computer Science

School of Computing and Information Systems

December 2022

2

The signatures of the individuals below indicate that they have read and approved the project of

Akash Shrestha in partial fulfillment of the requirements for the degree of Master of Science in

Applied Computer Science.

____ __________12/20/22_______

Dr. Jagadeesh Nandigam, Project Advisor Date

__

Dr. Robert Adams, Graduate Program Director Date

__

 Dr. Paul Leidig, Unit head Date

3

Abstract

Search engines have changed the way we use the internet. They can search or filter out

relevant and valuable content of interest to the users. But many of the applications we use today

lack search or are just poor. So how can we leverage the same power of search engines in our

applications? This project aims to look at “Full-Text Search” which allows us to do a text-based

search in text-intensive data. The search will be performed by matching any, or all words of the

query exactly or with some relevancy against the indexes created by the searching tool. The

traditional approach to searching is performing a query on the database itself which usually returns

the exact match. Searching directly on the database is not desirable because it’s not efficient for

full-text search as it involves a large amount of textual data. In this project, I’ve used a search

engine tool called Elasticsearch and integrated it with an existing marketplace application that is

just a simple website where users would be able to post classified ads to sell their products. I have

used Elasticsearch to perform searches on two domains of the application. The first one is the

search feature of the website itself. This will be used by the users to search for relevant postings.

The second one is the search for the application metrics. This will be used by the administrators.

These metrics will contain analytics for the user-posted data, and also infrastructure-related data

such as logs, all of which would be generated by performing full-text search and extraction of

required data. Also, I’ve used Logstash to ingest data into Elasticsearch from my application, and

Kibana for index browsing and data visualization, making use of the whole ELK stack.

Elasticsearch is very rich and supports vast use cases. This project looks at the fundamental

concepts of Elasticsearch and the features required for my application’s use cases only.

4

Introduction

In this project, I have created a search engine for an existing marketplace application. When

I say search engine, it’s not only a search feature in my application but also searching through all

kinds of data our application has, for example, logs, metrics, etc. We know how search engines

work on the internet and how they can search the whole internet. But the same capability is missing

in many applications. This project aims to look at how this can be achieved, and I’ve used a Full-

Text Search for it.

Full-Text Search is simply searching for words inside textual data. The textual data to

search is usually extensive but works with texts as small as a word or sentences too. Some

applications already have a very limited capability full-text search feature, for example, ‘find’ in

word processing software, or selection queries in a database. This traditional search mostly looks

for the substring of a given word or phrase in a document. But full-text search looks at the meaning

and context as well, giving relevant results to a given search query. It performs searches with

ranking, normalization, and linguistics, all with good performance. That’s why I chose full-text

search for this project.

I’ve used Elasticsearch for performing a full-text search which is based on the Apache

Lucene search engine library. Elasticsearch provides a great interface over Lucene and is easier to

implement in an application. It has real-time and scalable indexing of documents with one or more

fields which can be configured using its mappings and text analyzers. It has its Query DSL to make

very powerful search queries. My application has its database. So, I’ve used Logstash to ingest

data from the database to Elasticsearch in real time. I’ve used Kibana to perform raw queries and

visualize data from it. So, I’m making use of the whole ELK stack.

5

Project Management

The project work was carried out with a set of linear and sequential tasks, like the waterfall

model. It was planned using the Gantt chart shown below which includes the tasks that were carried

out. Most of the tasks not only involved technical work, but also some research activities. I used

my local machine to setup the ELK stack. Since most of the work was done in the Elasticsearch

domain, I spent the majority of time creating scripts and dashboards in the ELK stack, rather than

coding in the Java application that I had.

Figure: Gantt Chart for the project

6

Organization

The organization of my project’s components is shown below. I already have a Java

application using MySQL that needs to implement a search feature. I’ve used Logstash to ingest

data from MySQL and log files into Elasticsearch. Within Elasticsearch, I’ve created indices using

the mappings. These mappings use text analyzers to perform indexing and searching. I’ve also set

up runtime fields for creating queries and performing the aggregation tasks, which are visualized

using Kibana.

7

Elasticsearch Mappings

Mappings define how a document and its fields are stored and indexed. This document in my

project is in JSON format. A mapping consists of properties and their datatypes, analyzers,

additional fields, and other configurations. My application is a marketplace application that has

posts containing fields such as titles and descriptions. I’ve used mappings for only these fields and

since it’s a text field, I must use an analyzer for them, which I’ve created custom as well.

Mapping configuration for ‘title’ field of above document:

{

“id”: “123”,

“title”: “Those Across The River, Horror Novel by

Christopher Buehlman”

“description”: “Failed academic Frank Nichols and his

wife, Eudora, have arrived in the sleepy

Georgia town of Whitbrow...”

“field1”: “value1”,

“field2”: “value2”,

....

}

Document

PUT /my_index

{

"mappings": {

"properties": {

"title": {

 "type": "text",

 "fielddata": true,

 "analyzer": "my_text_analyzer",

 "fields": {

 "keyword": {

 "type": "keyword",

 "ignore_above": 256

 },

 "terms": {

 "analyzer": "terms_analyzer",

 "type": "text",

 "fielddata":true

 }

 }

},

...

}

}

}

‘text’ type must

have ‘analyzer’

a ‘field’ in an index can in turn

have multiple fields to represent

the data of that field, which can

have different types and analyzers.

8

Text Analyzer

In Elasticsearch, for a text field, a text analyzer is a must. This text analyzer converts raw or

unstructured text to a structured format that is optimized for search. It normalizes the data before

indexing and also the query string that is provided while searching the indices. Search results are

mostly based on this text analyzer’s output giving the relevancy. It constitute of three parts:

Character Filter, Tokenizer, and Token Filter.

1. Character Filter

Receives the string as a stream of characters and modifies each character.

2. Tokenizer

Breaks up String into individual words (tokens) to index them separately.

3. Token Filter

Takes a stream of tokens to modify, delete, or add tokens (normalization).

9

Input vs. Output

Elasticsearch configuration for analyzer

<p>Ŧhe quick ƀrỏwn fǫ́x jumps ǫ́ver the Làzy Dog</p>

Input

fast

brown

fox leap

lazi

dog

quick

over

jump

Output

ID Term Document

1 brown 1, 2

2 dog 1

3 fast 1, 3

4 fox 1, 3

5 jump 1, 3, 4

6 lazi 1, 4

7 leap 1, 2

8 over 1

9 quick 1, 2, 4

Input

Analyzer

Index

PUT /my_index

{

 "settings": {

 "analysis": {

 "analyzer": {

 "my_text_analyzer": {

 "tokenizer": "standard",

 "filter": [

 "lowercase",

 "stop",

 "my_stemmer",

 "my_synonym"

]

 },

 "my_terms_analyzer": {

 "tokenizer": "standard",

 "filter": [

 "lowercase",

 "stop",

 "my_stemmer"]

 }

 }

 }

 }

}

PUT /my_index

{

 "settings": {

 "analysis": {

 "filter": {

 "my_stemmer": {

 "type": "stemmer",

 "language": "english"

 },

 "my_synonym": {

 "type": "synonym_graph",

 "synonyms": [

 "car, automobile, auto",

 "romance, love, passion",

 "thriller, mystery, shocker",

 "horror, scary",

 "fantasy, fancy, illusion"

]

 }

 }

 }

 }

}

10

Searching Unstructured Text with Runtime Fields

When we want to search or perform some analysis on large texts such as logs where there is no

association with linguistics or some structure, then we can use runtime fields to extract text. The

runtime fields are the fields that are added in the runtime while performing the query. This means

the fields are not added to the index. We can use a script to extract the data from the string. I’ve

used a Grok pattern to extract some specific data as fields for my log messages. Then I performed

some queries on those runtime fields to generate a visualization in Kibana.

 "{type=http_metrics, status=400, method=POST, uri=/api/post, timeTaken=723}"

{type=%{WORD:logtype}, status=%{NUMBER:status:long}, method=%{WORD:method},

uri=%{URIPATHPARAM:request}, timeTaken=%{NUMBER:duration}}

{

 "duration": "723",

 "request": "/api/post",

 "logtype": "http_metrics",

 "method": "POST",

 "status": 400

}

"message":"{type=http_metrics, status=400, method= ... }"

"http.method":"POST"

"http.status":"400"

"http.url":"/api/post"

"http.timetaken":"723"

Matched with Grok Pattern

Converted to structured data

New runtime fields added

Unstructured data (Logs)

11

Reflection

This project was very different from the projects that I’ve done previously. Mainly because

this project didn’t have a typical software development roadmap. Most of my time was spent on

configuring the ELK stack from data ingestion, and indexing to searching. I didn’t have to spend

much time integrating it with my existing web application, which is why I have focused on

Elasticsearch rather than integration with applications in this document as well as my presentation.

There wasn’t much coding involved because the Java API for Elasticsearch was simple to use once

I got an understanding of how Query DSL worked. The linear approach to project management

worked well for me, as the previous tasks were dependent on the next ones.

The result of the project turned out to be good, even when I had only implemented a simple

use case with just a few token filters in the text analyzers for my search. But I got an understanding

of how it could be expanded for complicated use cases in enterprise applications. The only reading

resource that I used was the official documentation. I found the documentation to be very good

and its examples to be self-explanatory. This is what led my project progress to be very effective

and efficient as well. Elasticsearch has evolved and still is. So it may be difficult to keep track of

version compatibilities for the mappings and queries we use.

12

Conclusions

The topic of my project was completely new to me and I learned a lot about the field of

full-text search. The goal of this project was met with good results. Although my project was based

on a particular technology called Elasticsearch, the fundamentals of full-text search it has are

relevant to other search engine tools as well. For future work, a more complicated text analyzer

could be built for the search feature of my application. We could also generate useful business

analytics using the same indices in the future. We could expand the infrastructure monitoring

beyond the logs analysis and make it insightful. Elasticsearch is a very performant system that

could be distributed with multi-tenant capabilities. This feature could be explored by deploying it

in remote servers ourselves, or we could use a managed service called Elastic Cloud, which offers

SaaS-based services.

13

Appendices

1. Elastic documentation:

https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html

2. Logstash documentation: https://www.elastic.co/guide/en/logstash/current/introduction.html

3. Kibana documentation: https://www.elastic.co/guide/en/kibana/current/introduction.html

4. Full Text Search, PostgreSQL documentation:

https://www.postgresql.org/docs/current/textsearch-intro.html

5. What is Full-Text Search and How Does it Work?, MongoDB Documentation:

https://www.mongodb.com/basics/full-text-search

https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/logstash/current/introduction.html
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.postgresql.org/docs/current/textsearch-intro.html
https://www.mongodb.com/basics/full-text-search

	Full-Text Search Using Elasticsearch
	ScholarWorks Citation

	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9
	OLE_LINK34
	OLE_LINK17
	OLE_LINK18
	OLE_LINK19
	OLE_LINK20
	OLE_LINK21
	OLE_LINK35
	OLE_LINK36
	OLE_LINK37
	OLE_LINK12
	OLE_LINK13
	OLE_LINK16
	OLE_LINK22
	OLE_LINK23
	OLE_LINK27
	OLE_LINK24
	OLE_LINK25
	OLE_LINK26
	OLE_LINK28
	OLE_LINK29
	OLE_LINK30
	OLE_LINK31
	OLE_LINK38
	OLE_LINK39

