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Abstrakt a přínos práce

V posledních letech je závratná exploze dat a informací výsledkem sociálních sítí s miliony
až miliardami uživatelů, jako jsou Facebook, YouTube, Twitter a LinkedIn. Uživatelé mohou
využívat online sociální sítě (OSNs) k rychlému obchodování s informacemi, komunikaci s
ostatními uživateli a udržování jejich informací v aktuálním stavu. Výzva šíření informací
na sociálních sítích, která se v praxi objevuje, vyžaduje efektivní řešení správy informací,
jako je šíření užitečných informací, maximalizace vlivu přenosu informací a zabránění šíření
dezinformací, fám a virů. Motivováni výše uvedenými problémy zkoumáme problém šíření
informací na OSN. Tento problém studujeme na základě dvou modelů, Independent Cascade
(IC) a Linear Threshold (LT) a klasické Influence Maximization (IM) v online sociálních sítích.
Kromě toho zkoumáme různé aspekty problémů s rychlým zasíláním zpráv, jako jsou změny
rozpočtu, témata zájmu, více konkurentů a další. Kromě toho také zkoumáme a aplikujeme
teorii kombinatorických optimalizačních problémů k vyřešení jednoho ze současných problémů
v sociálních sítích, maximalizujeme vliv na skupiny a témata v sociálních sítích.

Obecně lze říci, že hlavní cíle Ph.D. návrh diplomové práce je následující.

1. Zkoumáme problém Multi-Threshold pro IM, což je varianta problému IM s prahovými
omezeními. Navrhujeme účinný algoritmus, který IM pro více prahů v sociální síti.
Zejména vyvíjíme nový algoritmický rámec, který může použít řešení pro menší práh k
nalezení prahu většího.

2. Studujeme problém maximalizace vlivu skupiny a zavádíme účinný algoritmus maxima-
lizace vlivu skupiny s více výhodami, než je vliv každého uzlu v sítích, pomocí nové
vzorkovací techniky k odhadu funkce skupiny epsilon. Navrhujeme také aproximační
algoritmus pro odhad více kandidátních řešení s teoretickou zárukou.

3. Zkoumáme přístup pro maximalizaci vlivu s k-téma pod omezeními v rozsáhlé síti.
Konkrétněji budeme studovat novou metriku, která kombinuje optimalizační algoritmus
pro zlepšení aproximačního algoritmu z hlediska kvality řešení a doby běhu na základě
kliky a komunity v komplexních sítích.

Klíčová slova

Online sociální sítě, maximalizace vlivu, virální marketing, aproximační algoritmy, šíření in-
formací.



Abstract and Contributions

In recent years, the dizzying explosion of data and information results from social networks
with millions to billions of users, such as Facebook, YouTube, Twitter, and LinkedIn. Users
can use online social networks (OSNs) to quickly trade information, communicate with other
users, and keep their information up-to-date. The challenge of spreading information on social
networks that arises in practice requires effective information management solutions, such as
disseminating useful information, maximizing the influence of information transmission, and
preventing disinformation, rumors, and viruses from being disseminated. Motivated by the
above issues, we investigate the problem of information diffusion on OSNs. We study this
problem based on two models, Independent Cascade (IC) and Linear Threshold (LT), and
classical Influence Maximization (IM) in online social networks. In addition, we investigate
various aspects of IM problems, such as budget variations, topics of interest, multiple com-
petitors, and others. Moreover, we also investigate and apply the theory of combinatorial
optimization problems to solve one of the current concerns in social networks, maximizing the
influence on the groups and topics in social networks.

In general, the main goals of the Ph.D thesis proposal are as follows.

1. We investigate the Multi-Threshold problem for IM, which is a variant of the IM problem
with threshold constraints. We propose an efficient algorithm that IM for multiple
thresholds in the social network. In particular, we develop a novel algorithmic framework
that can use the solution to a smaller threshold to find that of larger ones.

2. We study the Group Influence Maximization problem and introduce an efficient group
influence maximization algorithm with more advantages than each node’s influence in
networks, using a novel sampling technique to estimate the epsilon group function. We
also devised an approximation algorithm to estimate multiple candidate solutions with
theoretical guarantee.

3. We investigate an approach for Influence Maximization problem with k-topic under
constraints in social network. More specifically, we also study a streaming algorithm
that combines an optimization algorithm to improve the approximation algorithm and
theoretical guarantee in terms of solution quality and running time.

Keywords

Online Social Networks, Influence Maximization, Viral Marketing, Approximation Algorithms,
Information Diffusion.
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Chapter 1

Introduction

This chapter of the thesis discusses the Influence Maximization problem in social networks.
The first section shows the motivation and goals of this work. On the basis of motivation,
the purpose of this thesis is also introduced in the next section. In addition, the last section
presents in more detail the structure of the thesis.

1.1 Motivation and goals

Nowadays, social networks with billions of users have become an essential platform for commu-
nication and knowledge sharing. For example, many users of Online Social Networks (OSNs)
can exchange information with each other quickly and smoothly. Many businesses have used
the word-of-mouth effect to advertise and introduce their products to many potential cus-
tomers. The authors of the scientific articles used to connect through the same research fields
in the citation network. In that context, one of the most exciting research directions has been
the information diffusion problem in OSNs recently. Many researchers have introduced infor-
mation diffusion models and variations used in studying these problems, generally divided into
two categories such as influence maximization and influence block. How to select seeds set in
a social network, through which the spread of influence under some certain diffusion models
can reach the maximum, is a major issue considered in social network analysis. This problem
is known as the Influence Maximization problem. The influence maximization problem is a
primary problem in viral marketing, which is to find a set of seeds of k individuals/nodes in a
social network that could maximize the spread of influence. Due to its #NP-hard, designing
a good algorithm for the Influence Maximization problem is a very challenging task.

In addition, the problem of information diffusion has been studied in various fields in prac-
tice, but now there are exciting trends such as group influence, community characteristics,
social welfare, misinformation, rumor control, k-topic, and others. For instance, the problem
arises of how to influence maximization on multiple thresholds instead of a single threshold,
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as in previous works. The first aim of our study is to solve the problem of influence
maximization for the multi-threshold case in the social network. Furthermore, a
matter of great concern today is whether group decisions affect many groups on social net-
works or whether a group of people implements organizational policies in certain situations.
Group influence can therefore play a significant role in an organization. So influencing a
group with a minimal budget is a difficult task. Therefore, our second aim is to study
the problem of group influence maximization with budget constraints in terms of
minimum cost and benefit in large networks. On the other hand, how to influence the
maximization of k topics in OSNs has been attracting a lot of attention from researchers in
recent times. Hence, our third aim in this study focuses on influence maximization
on k independent topics with many types of constraints under information prop-
agation models in social networks. Therefore, solving these issues using approximate
approaches is a challenging task in the literature.

More specifically, combinatorial optimization problems have been studied in various prac-
tical scenarios such as data summarization, influence maximization with k topics, monitor
placement, and feature selection, which has received more attention in the literature. Since
then, solving these issues using approximation algorithms under more constraints has been a
challenge on social networks.

1.2 Purpose of the research

The main objective of this doctoral thesis is to study the following issues.

• Proposing an efficient algorithm in terms of multi-threshold Influence Maximization
problem for practical application which has previously extensively greedy algorithms
and heuristic algorithms.

– An efficient technique with theoretical guarantee named Efficeint Sampling for
Selecting Multiple Seed Sets (ESSM) for Multiple Benefit Thresholds (MBT prob-
lem).

– A novel algorithmic framework that can use a solution to a smaller threshold to
find that of larger threshold.

– The sampling technique with martingale theory to estimate benefit function, named
Benefit Sample (BS).

– Conduct some experiments on MBT problem.

• Developing new efficient algorithms and models for group influence maximization that
focus on the design of improved optimal solutions and algorithmic complexity.

14



– Two efficient algorithms for Groups Influence Maximization with approximation
guarantees, named Threshold Benefit for Groups Influence (TGI problem) and
Groups Influence with Minimum Cost (GIM problem).

– A novel group reachable reverse sample concept that helps to estimate the group
influence function.

– A framework algorithmic to find good candidate solutions with provable guarantees.

– A bi-criteria approximation algorithm, named Groups Influence Approximation
(GIA) and Exact Influence Groups (EGI), for generating multiple candidate solu-
tions with theoretical bounds.

– Extensive experiments conduct on some real social large networks.

• Proposing an approximation approach for influence maximization with k-topic under
more constraint in large-scale network.

– Submodular maximization and k-submodular function maximization.

– An efficient streaming maximizing k-submodular function subject to multiple topics
with bi-criteria approximation guarantee.

– Implement the proposed algorithm to evaluate the performance of kSC problem in
applying Influence Maximization with k topics.

• Experiment and evaluation of the proposed method on a variety of real-world datasets
with large networks.

1.3 Thesis structure

The following is the structure of the research proposal:

• Chapter 1 provides an overview of motivation and goals of this work, purpose of research
and structure of Ph.D thesis.

• Chapter 2 presents an overview information diffusion models, influence maximization
approach and relate works.

• Chapter 3 provides an overview of the proposed study’s main objectives, Multi-Threshold
Benefit for Influence Maximization, including research motivation, issue definition for
Multiple Benefit Thresholds, and discuss the result of our proposed algorithm.

• Chapter 4 discusses the aim of Groups Influence Maximization in Large Networks, which
mentions two problems, Threshold Benefit for Groups Influence in OSNs and Groups
Influence with Minimum Cost in OSNs in terms of benefit and cost.
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• We study Influence Maximization with the k kind of topic shown in Chapter 5, focusing
on the k-submodular function maximization problem.

• Finally, in Chapter 6, the conclusion and our contribution are presented. In the final
section, we present a list of our published works and references.
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Chapter 2

State-of-the-art

This chapter shows the related work of influence maximization in OSNs that supports the
study of the specific IM problem. In particular, the background of Influence Maximization
problems show that in the first section such as information propagation models, and the
approach of IM. The last section describes in more detail related work in this field.

2.1 Preliminaries

In this section, we introduce the network model in a social network as a graph for informa-
tion diffusion models. Information diffusion models are the solid background for studying
information propagation problems. Kempe et al. [1] first introduced Influence Maximization
as a discrete optimization problem with two well-known models named Independent Cascade
(IC) and Linear Threshold (LT). In these models, they formulated Influence Maximization
(IM) problem which aims to select k nodes so that the expected number of influenced users
in information diffusion is maximized and proposed 1− 1/e approximation algorithm for this
problem. Due to the commercial values of IM, it has attracted much attention recently and
then several works focused on IM problem in the following aspects: proposing scalability and
efficiency algorithms [2, 3, 4, 5] and studying variants of IM problems [6, 7, 8, 9, 10, 11].

2.1.1 Information propagation process

First, we describe the information propagation process as the process of propagation between
vertices in a directed graph G = (V, E), where V is the set of vertices of the graph with the
number of vertices n = |V | and E is the set of associated edges connect the vertices of the
graph with the number of edges m = |E|.

The propagated information is derived from the seed set S ⊆ V . The propagated infor-
mation is derived from the seed set S ⊆ V . When the propagating information reaches each
vertex v ∈ V , the activation state of vertex v is changed from inactive to active. The process
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of spreading the active state between these vertexes is the information propagation process.
The set of vertices St ⊆ V is the set of vertices activated at time t with t = 0, 1, . . . , the
propagation process between t and t + 1 is St+1 = f(F, St, t). Until at the time t + 1 no more
vertices are activated, the propagation stops at the time t: St = St+1. Finally, the Influence
Function σ(S) is the number of vertices active after information diffusion from the seed set
S.

2.1.2 Information propagation under Independent Cascade model

Given a social network is considered a directed graph G = (V, E) where V is the set of nodes
representing individuals and E is the set of edges representing relationships. We also denote
n = |V | and m = |E|. Let Nin(v) and Nout(v) as two sets of in-neighbors and out-neighbors
of a node v, respectively.

In this model, each edge e = (u, v) ∈ E has a probability p(u, v) ∈ (0, 1) that represents
the influence propagation from u to v. The diffusion process from a seed set S ⊂ V happens
in following steps.

• At step t = 0, all nodes in S is activated.

• At step t ≥ 1, for an activated node u in previous steps, it has a single chance to
activate each inactive neighbour v with the successful probability p(u, v). An activated
node remains active till the end of the diffusion process.

• The propagation process ends at step t if there is no new activated node in this step.

2.1.3 Information propagation under Linear Threshold model

In this model, each directed edge (u, v) ∈ E is associated with an influence weight w(u, v) ∈
[0, 1] satisfying ∑︂

u∈Nin(v)
w(u, v) ≤ 1

Given a set of seed nodes S ⊆ V . In LT model, each node v ∈ V has two possible states, active
and inactive and the influence cascades in G as follows. Firstly, every node v ∈ V uniformly
chooses a threshold θv ∈ [0, 1], which represents the weighted fraction of v’s neighbors that
must be active to activate v. Next the influence propagation happens in round t = 0, 1, 2, . . .

as follow:

• At round 0, we activate nodes in S, and set all other nodes inactive.
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• At round t ≥ 1, an inactive node v is activated if weighted number of its activated
neighbors are greater than or equal to its threshold, i.e.,

∑︂
in-activated neighbors v

w(u, v) ≥ θv

• Once a node becomes activated, its status remains in the process of spreading. The
influence propagation ends when no more nodes can be activated.

2.1.4 Information propagation under Live-edge model

The authors in [1] showed IC model is equivalent to the reachability in a random graph g,
called live-edge or sample graph. We generate a sample graph g with the set of nodes be Vg

and the set of edges be Eg by: (1) setting Vg ← V , and (2) selecting e = (u, v) ∈ E into
Eg with probability p(e) = p(u, v). The selected edges are called live and all other edges are
called blocked.

The live-edge model first generates a sample graph g = (Vg, Eg) by selecting e = (u, v) ∈
E into with probability p(e) = p(u, v) and not selecting e = (u, v) ∈ E with probability
1− p(u, v). The sample graph g is generated with probability:

Pr[g ∼ G] =
∏︂

e∈Eg

p(e) ·
∏︂

e∈E\Eg

(1− p(e)) (2.1)

The live-edge propagation under the LT model is calculated with the probability of gen-
erating a sample graph g from G as follows:

Pr[g ∼ G] =
∏︂

u∈V

p(u, g, G) (2.2)

In which, p(u, g, G) is the probability of choosing the edge corresponding to the vertex u:

p(u, g, G) =
{︄

w(u, v), if(u, v) ∈ g

1−
∑︁

u∈(u,v) w(u, v), if(u, v) /∈ g

}︄
(2.3)

2.2 The approach of Influence Maximization

There are two main approaches to finding algorithms for IM problems: Approximation al-
gorithms that guarantee the theoretical solution quality or Heuristic algorithms that do not
guarantee the optimal ratio.
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2.2.1 Greedy approach

Based on the increased monotony and submodularity, Kempe first proposed the greedy al-
gorithm for the IM problem, which gives an approximate ratio of 1 − 1/e. For the optimal
problem of finding the greatest value, called S

′ is the set of solutions given by the greedy
algorithm, S∗ is the optimal solution, and the optimal ratio p ∈ (0, 1], is defined as follows:

σ(S,)
σ(S∗) ≤ p (2.4)

This ratio ensures that, in the worst case, the proposed algorithm gives a solution of p

times the quality of the optimal solution. The greedy algorithm works in a simple step-by-step
sequence.

δ(S, u) = σ(S + {u})− σ(S) (2.5)

In each step, we select the vertex with the incremental influence reaching the maximum
value until the number of vertices is k. Although this algorithm gives an approximation of
1− 1/e, it fails in practice because it is #P-hard to compute the objective function σ(S).

Then, let R be the number of Monte-Carlo simulations to estimate the objective func-
tion. The complexity in this case is O(knR(m + n)). To let the greedy algorithm achieve
an approximate ratio of 1 − 1/e − ϵ, with ϵ being any given parameter, the complexity is
O(ϵ−2k3n2m log n) [12]. This is a fairly large complexity and is difficult to apply to medium
or large-sized networks.

Leskovec et al. [13] proposed the Lazy Greedy algorithm based on the submodular property
of the objective function. Based on this property, the algorithm does not evaluate the vertices
with low σ(S, u) in the next step in the greedy algorithm. Experimental results show that
this method gives nearly the same results as the greedy algorithm, but the running time is
up to 700 times faster.

2.2.2 Heuristic method

The most serious difficulty in coming up with approximation algorithms for IM is the need for
a good solution selection strategy and proof of the algorithm’s approximation ratio. While it
is possible to use simple, intuitive tools that also give good enough results in a short time.
Based on the properties of each algorithm, the author divides them into groups as follows: (1)
group of algorithms based on measure, (2) group of algorithms based on path, and (3) group
of algorithms based on structure community architecture.

One of the simplest ideas in using heuristic information to select seed vertices is to select by
measures in the input graph structure [14] [15]. Commonly used degrees are degree, closeness,
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and betweenness centrality (BC). In the IM problem, the authors often use these algorithms
as the base algorithm [16] [17] [18] [18]

Chen et al. based on the Maximum Influence Path to propose some algorithms for the
IM problem on both LT and IC models [16] [17] [18]. Based on this idea, they construct
directed acyclic graphs (DAGs), then approximate the effect of a vertex on the newly con-
structed graph. Two proposed algorithms for IC and LT models are PMIA and LDAG [17]
[18]. Experimental results show that these algorithms give solution quality close to greedy
algorithms but have better running time. Moreover, it can be applied to large networks of
millions of vertices.

Goyal et al. [18] have shown that calculating the influence in LDAG can be solved by
finding the edge vertices and then enumerating all single paths to it. They proposed the
SIMPATH algorithm based on this idea, and experimental results show that SIMPATH is
better than LDAG. Kim et al. [19] proposed another algorithm based on the independent
influence curve named IPA (Independent Path Algorithm). This algorithm has the advantage
of being parallelizable.

Path-based algorithms balance efficiency and running time and metric and greedy algo-
rithms. However, the above algorithms also reveal some disadvantages, such as not guaran-
teeing the optimal ratio to the optimal solution. In empirical research, path-based algorithms
give pretty bad results on some datasets compared to greedy algorithms. On the other hand,
there are many paths in a graph, so these algorithms also consume a lot of memory to store
them.

Another approach to the IM problem is to use the community property to select the seed
set. The general idea of this approach is: vertices belonging to different communities have
a low probability of influencing each other. Thus, instead of searching for seeds in a large
network, we can search for seeds in individual communities and combine them. The typical
studies for this method are [20] [21] [22]. In general, the algorithm group can be divided into
three phases: (1) community detection, (2) generation of candidate nodes, and (3) finding seed
nodes. Community-based influence maximization algorithms are often faster than traditional
greedy algorithms. Furthermore, since it is generally assumed that the different communities
are independent, these algorithms can support parallelism.

In addition to the above studies, some authors use metaheuristic techniques for IM prob-
lems, such as swarm optimization (PSO) [23], metallurgical simulation (SA) [24], and genetic
algorithms [25] [26]. However, the limitation of these algorithms is the scalability of large
networks because the computation time is relatively high due to the fact that the objective
function calculation is not well solved.
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2.2.3 Reverse influence sampling method

Borg et al. [2] provide another technique for approximating the problem of information prop-
agation maximization. They developed a random sampling algorithm called Reverse Influence
Sampling (RIS) using an inference approach based on the notion of Reverse Reachable set
and its randomized variant. The foundation of this approach is cause-and-effect inference,
which is used to determine who is the most likely cause of the node activated in the input
graph by moving backward in the effect propagation.

Definition 1 (Random Reverse Reachable Set) Let v denote a vertex in G and g denote
a graph obtained by removing each edge e in G with a probability of 1−p(e). Then, the reverse
reachable set for v in g, denoted by RRg(v), is given by:

RRg(v) = {u|∃eu→v ∈ g} (2.6)

When a vertex u appears in the Rv, it has the chance of influencing v. In other words,
the more random Reverse Reachable sets appear the vertex u, the more probability it is that
it will influence propagation in the initial graph. RIS requires θ, the number of Random
Reverse Reachable sets (R), and then solves the Maximum Coverage problem on the R set of
Reverse Reachable sets to discover the set of k seed nodes. The RIS algorithm is a randomized
algorithm with an approximation guarantee of 1− 1/e− ϵ.

2.3 Related works

With the rise in popularity of social networks as a result of technological advancements, social
networks have progressively become a common requirement for people, with one of the most
pressing issues being the need to keep up with the latest news in a timely manner. Users can
quickly contact each other on the social networking platform, building a massive information
and communication network. Users of a social network construct communities with shared
interests, habits, trends, or goals, resulting in the creation of a unified body of information
that is disseminated within the community. Users will be reached more easily by communities
with similar interests. OSNs are an extremely effective communication channel for quickly
sharing information, promoting, and marketing to a large audience and quickly reaching the
right fields. The fields of promotion and marketing are spread by taking advantage of the
word-of-mouth effect, which has the advantage of connecting users easily.

Firstly, we introduce related works to the classical influence maximization problem and
variants of the IM problem. As the first authors to publish on the IM problem [1], the authors
proposed the combinatorial optimization problem and two classical models for the IM problem,
the LT model and the IC model for the dissemination purposes of the IM problem affect.
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Inheriting Kempe’s work, many variations on the IM problem have been introduced because
of its important role in many practical applications, such as viral marketing [10, 27], profit
maximization [28, 29, 30], social recommendations, healthcare, rumor control, etc. Kempe’s
conclusion demonstrated that the IM problem is #NP-hard and that a greedy algorithm has
an approximate scale of 1− 1/ϵ due to the objective function’s submodularity.

Due to the widespread use of IM in commerce, several efficient algorithms have been
proposed to solve the problem in large-scale networks, including the approximation algorithm
[10, 5, 2, 31], and heuristic methods without guarantee theory [3, 27, 32]. Borg et al. [2]
introduce RIS, a reverse sampling method that lays the groundwork for developing linear-time
algorithms with approximate solutions. The main idea behind Borg’s algorithm is that they
proposed a sampling technique, known as the Reverse Reachable (RR) set, for estimating the
number of affected nodes in random information propagation models, as well as an algorithmic
framework for finding solutions on generated samples within theoretical bounds.

In reality, many issues have arisen in order to maximize the potential of social networks, as
well as to find effective solutions for controlling and disseminating beneficial information based
on demand. The aim of the IM problem is to search for seed users so that the information
can reach as many people as possible and provide the best benefits according to demand [17,
33]. In addition, a number of other criteria have formed variations such as the lowest total
cost, choosing the right number of k users, what is the best benefit, the threshold to spread
influence.

Another problem that is widely studied and applied today is link prediction [34, 35]. Link
prediction is the problem of predicting the existence of a link between two entities in the
network. The applications of link prediction today such as predicting co-authors in citation
networks, predicting economic fluctuations, predicting product marketing trends to users, etc.,
all these predictions are researched and given methods to optimize accuracy and efficiency.

In addition, the problem of detecting community structure in social networks has also re-
ceived more attention recently in OSNs research [32, 36, 37, 38, 39]. Detecting the community
structure in social networks helps to identify trends and groups of similar interests, allowing
businesses to better target and reach potential customers who are more interested in their
products.

Fake news has recently gained in popularity and caused significant damage in a variety of
fields, including the economy, politics, and so on. With the advantage of quickly disseminating
information, online social media platforms have become an ideal environment for the spread of
fake news, which will affect user’s access to this fake news if not promptly prevented. The goal
of the problem of preventing misinformation is to find the original source of news distribution,
as well as solutions to stop information from spreading quickly [40, 41, 42, 43].

Previously, Leskovec et al. [44] published the CELF algorithm in their study on Cost-
effective Outbreak Detection in Networks. To optimize the #NP-hard effect propagation
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problem, CELF is based on optimization of the “lazy-forward” method, which is an algorithm
to improve the performance of greedy and prioritizing algorithms for large networks. Soon
after, Goyal et al. [45] proposed an improved algorithm CELF++ to increase the time cost
by 35-55% compared to CELF.

Tang et al. [5] proposed an improved effect maximization algorithm for the state-of-the-art
algorithm with the worst case, resulting in significantly better experimental performance. The
IMM algorithm [46], which is based on martingales-based estimation techniques, produces
accurate results at a low cost and supports a larger information propagation model than
previous methods.

Popular methodologies like TIM+ or IMM take a long time to research in billion-scale
social networks. Nguyen et al. [31] offer a stop-and-stare (SSA) technique and its dynamic
D-SSA algorithm, demonstrating that the running time of this method is faster than that of
other state-of-the-art IMM Methods. The memory overhead of this method is rather high,
especially in billion-scale networks, which is a restriction.

We refer to the problem that is close to our study, the Influence Threshold (IT) problem,
which searches for the seed set S with the smallest size such that the propagation of the effect
information reached the threshold T . Goyal et al. [33] first studied this IT problem under
IC model, by using the monotone submodular property of the influence function, and then
proposed a greedy algorithm combined with a Monte Carlo simulation method to estimate
influence spread. Tang et al. [4] proposed a near-optimal time complexity algorithm with
novel heuristics to improve empirical efficiency. Borodin et al. [47] evidence that the original
greedy approach should be upgraded and a natural model that is compatible with the greedy
approach proposed.

Another project related to our issue, Nguyen and et al. launched a research problem called
Cost-aware Targeted Viral Marketing (CTVM) [10] , which studied how to find the most cost-
effective user seed set. This CTVM problem proved to be an #NP-Hard problem, so they
came up with an approximation algorithm called BCT to solve this problem in a billion-scale
network. It is the first method to approach dense networks with the fastest processing time
when compared to other state-of-the-art algorithms. The author of this paper considers the
benefits of each node with the goal of determining the seed set within the budget limit that
maximizes the total benefit. They use a new sampling method and 1−1/

√︁
(e)−e to estimate

the total benefit. We also provide a problem-solving algorithm based on this sampling method;
however, CTVM cannot just be directly tuned to solve our problem.

Soon after, Nguyen et al. [48] introduced a new sampling method, named SKIS. SKIS
improves estimation quality while reducing processing time and memory costs, according
to born with RIS and SKIM. Furthermore, using SKIS to execute an effect maximization
search enhances the quality of the answer much more than using greedy algorithms. When
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comparing the fastest DSSA algorithm based on RIS with the SKIS-based method, the SKIS-
based approach is 10 times faster and decreases memory by 4 times.

Tip-Top algorithm [49] is proposed to solve large social networks such as Twitter, in which
Tip-Top focuses on reducing the number of randomly generated samples as much as possible,
providing a solution for CTVM. more exactly. Tip-Top provides the first (almost) exact
solution to the microfinance problem with an approximate rate of (1 − ϵ), with experiments
showing a slight improvement rate of up to 98% for microfinance solutions.

Moreover, the Influence Maximization problem based on the community structure has
been concerned [50, 51, 52]. The INCIM algorithm [53] estimates each node’s propagation
value as a combination of its local and global influences in order to measure each node’s
influence in its community as well as the influence of each community in the input graph.

Beni et al. [54] propose TI-SC, a survey-based community discovery method. The TI-SC
algorithm chooses influential nodes by examining the relationships between core nodes and
the scoring ability of other nodes. The score is updated after selecting each seed node to
reduce overlap in seed node selection.

Recently, Xuanhao Chen [32] proposed a community-based Influence Maximization model
to study the influence maximization problem in LBSN, taking both the community structure
and users’ space-time behavior into the user. Their work introduces two algorithms: one for
detecting communities in LBSNs based on user mobility and another for determining the most
influential individuals based on the community.

Secondly, we introduce related works to the variants of the IM problem based on group
influence. Besides the problem of maximum influence based on the node, many authors/re-
searchers have been interested in the problem of maximum influence on the group in recent
years. As we all know, each user on a social network frequently joins a specific group that
shares characteristics such as similar interests, locations, or interests in specific topics. J. Zhu
[55] proposed a framework for selecting k seed users that combined the benefits of activated
groups with the propagation costs of influence in order to maximize the expected return. They
used the IC model to train an information diffusion model. Furthermore, they expressed their
description as an optimization problem, proving that it is #NP-hard and that the objective
function is neither submodular nor supermodular.

Yuting Zhong et al. [56] recently proposed the Maximizing Group Coverage algorithm,
which greedily chooses the best node based on evaluating node contributions to groups, en-
suring success in estimating the maximum number of activated groups. The experimental
results show that the MGC algorithm outperforms the base algorithm, Maximum Coverage,
in terms of the number of activated group averages.

Recently, many works have proposed an approach to the influence maximization problem
with k-submodular. More specifically, Li et al. [57] propose a new problem, named Keyword-
Based Targeted Influence Maximization (KB-TIM), to find a seed set that maximizes the
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expected influence on users relevant to a given advertisement. They introduce a sampling
technique based on a weighted reverse influence set and achieve an approximation ratio of
(1−1/ϵ− ϵ). However, this method adopts online sampling, so it cannot respond to real-time
processing requirements.

In particular, Chen et al. [58] have studied online topic-aware influence maximization
(TIM). They find k seeds from a social network such that the topic-aware influence spread
of the k seeds is maximized with a theoretical guarantee. Their work utilizes a Maximum
Influence Arborescence (MIA) model to approximate the computation of influence spread.
Specifically, they proposed a best-effort algorithm with a (1−1/ϵ)-approximation ratio, which
estimates an upper bound of the topic-aware influence of each user and utilizes the bound
to prune large numbers of users with a slight influence that devise effective techniques to
estimate tighter upper bounds. They then propose a faster topic sample-based algorithm
with ϵ · (1 − 1/e) approximation ratio for any ϵ ∈ (0, 1], which materializes the influence
spread of some topic-distribution samples the materialized information to avoid computing
the actual influence of users with minor influences.

Huber and Kolmogorov [59] first introduced the k-submodular function problem, which
naturally generalizes submodular and bi-submodular functions as exceptional cases k = 1 and
k = 2, respectively. Their work also proves a Min-Max-Theorem for k-submodular functions
and gives a greedy algorithm in polynomial time. Note that, when k = 1 this problem of
k-submodular is call submodularity. And k = 2, this notation is same as bisubmodularity.
On this issue, Tang et al. [60] introduced on k-submodular functions in the case with k = 2,
named bisubmodularity maximization, which gives richer value-of-information and constant-
factor approximation algorithms in two applications, such as sensor placement and feature
selection. For bisubmodularity with k = 2, there are two types of k-submodular function
optimization which consist of minimizing [61] [62] [63] [64] and maximization problem [60]
[65] [66] [67]. For instance, Thapper et al. [68] used a polynomial time algorithm in the
k-submodular function minimizing valued constraint satisfaction problems. However, the
problem of k-submodular function maximization needs to be considered more challenging
because this kind of problem is #NP-hard.

Moreover, a wide range of maximizing k-submodular functions has been introduced un-
der more constraints in real-world applications. For k-submodular function with size con-
straints, Ohsaka et al. [69] proposed approximations algorithms for maximizing monotone k-
submodular functions with size constraint under two different cases, i.e, total size constraint
and individual size constraint. For the first case, they used to a simple greedy algorithm
and random sampling technique to output 1

2 -approximation algorithms with complexity in
O(kn log(B)log(B

δ ) for the total size constraint. For the second case, they also used to greedy
algorithm to show 1

3 -approximation algorithms with complexity in O(knB) with B =
∑︁k

i=1 Bi

for the individual size constraint. However, their work only considers general monotone for
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maximizing k-submodular functions problems under size constraints and does not consider the
non-monotone case for maximizing k-submodular functions in optimization problems. There-
after, Shinsaku Sakaue [70] proposed a greedy algorithm to achieve a 1

2 -approximate ratio for
non negative monotone k-submodular maximization with a matroid constraint. Later, the
authors in [71] proposed a multiobjective evolutionary optimization approach for the problem
of k-submodular function maximization subject to total size constraint. Their work achieved
a 1

2 -approximation ratio guarantee in polynomial time for the general case which reaches the
asysmptotically tight bound nearly optimal solution. Recently, many works [72] [73] have
considered k-submodular function maximization under noise because the cost to find function
f may be expensive and cause some errors. The author [73] proposed two novel streaming
algorithms, briefly namded DSTREAM and RSTREAM, which have an approximation ratio
of O((1−ϵ)−2ϵB) when f is monotone and O((1−ϵ)−3ϵB) when f is non-monotone, respec-
tively. Lately, Zheng et al. [74] presents the problem of approximately k-submodular function
maximization subject to size constraint by a simple greedy algorithm with approximation
guarantees for different types of size constraints.

For k-submodular function with unconstraint setting, the authors Ward and Zivny [75]
considered the problem of maximizing bisubmodular and k-submodular functions in the
value oracle model which provided 1/3-approximation ratio by a greedy algorithm. Sub-
sequently, Iwata et al. [76] introduced an improved the approximation ratio which achieve
1
2 -approximation algorithm for maximizing non-monotone case and k

(2k−1) for maximizing
monotone k-submodular function case, respectively. And later, the author Hiroki Ohsima
[77] improved the approximation ratio to k

(2k−1) - approximation algorithm for monotone k-
submodular functions and k

(3k−2) -approximation for non-monotone. Basically, their algorithm
based on a variety of greedy algorithm and a different probability distribution.

For k-submodular function with matroid constraint, Chkrabarti and Kale [78] proposed
the problem of finding a maximum matching in a graph given including submodular max-
imization on hypermatchings and intersection of matroids. Their algorithm provided 7.75-
approximation solution for one-pass semi-streaming and (3+ϵ)-approximation ratio for multi-
pass semi-streaming algorithm. Moreover, Sakaue [70] presented a greedy algorithm outputs a
1
2 -approximate solution for nonnegative monotone k-submodular maximization with a matroid
constraint which is improved the 1

2 -approximation ratio by Iwata et al. [76]. In recent times,
the authors in [72] introduced the problem of maximizing monotone submodular functions
subject to matroid constraints under framework of differential privacy. Their work proposed
two streaming algorithms which has an asymptotically tight approximation ratio.

For k-submodular function with knapsack constraint, [79] considered the problem of max-
imizing a monotone submodular function subject to a knapsack constraint with streaming
setting. They proposed a (0.363 − ϵ)-approximation algorithm for a single pass through the
data and (0.4−ϵ)-approximation algorithm for a constant number of passes through the data.
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Similarity, authors in [80] presented a new framework for k-submodular maximization prob-
lems. By using multilinear extension technique, they proposed 1

2 -approximation algorithm
for the total size constraint and knapsack constraint. Newly, [81] proposed the problem of
a non-negative monotone k-submodular function maximization. Their algorithm provided a
deterministic (1

2 −
1
2e)-approximation ratio which is improved by [82] and gave O(n4k3) query

complexity.
For k-submodular function with cardinality constraint, Badanidiyuru et al. [83] proposed

an efficient streaming algorithm for this issue. Their algorithm provided a constant factor
(1

2 − ϵ)-approximation ratio guarantee to the optimal solution and requires only a single pass.
By using streaming algorithm approach, the authors in [84] developed an algorithm for the
streaming submodular maximization with cardinality constraint under two kinds of noises
and has an approximation ratio goes to 2

k if ϵ→ 0 for both multiplicative and additive noises.
Recently, the authors Alina Ene and Huy L.Nguyen introduced a new streaming algorithm
for maximizing a monotone k-submodular function subject to a per-coordinate cardinality
constraint [85]. Their approximation ratio has been improved at least 1

4 and running time of
this proposed algorithm is optimal.

In the reality, there are many application of the problem of k-submodular function max-
imization are related to budget constraint. The authors in [86] first proposed the prolem of
maximizing k-submodular function under budget constraint with feasible for k type of topics
which is a 1

5(1 − 1
e )-approximation solution with query complexity O(kn2). The work of au-

thors [87] gave a streaming algorithm with an approximation guarantee of 0.3178 that holds
regardless of the minimum budget. The recent work [88] extends the algorithm of (Nguyen
and Thai, 2020) to the maximizing k-submodular functions under budget settings by using
cost and limit budget of each element in social network. Their work proposed two single pass
streaming algorithms with approximation guarantees which provided the approximation ratio
of O(kn/ϵ) query complexity for the special case and O(kn/ϵ log n) query complexity for the
general case.

Finally, we also propose related works to the maximizing k-submodular influence maxi-
mization problem for the k topic and variants of the IM problem. In addition, Ohsaka et
al. [69] proposed k-submodular maximization with a size constraint. Their work considers
a k-submodular function as a submodular function that consists of k disjoint subsets of the
domain. Their work introduces the characterization of k-submodular functions with the con-
dition that the two elements Orthant Submodular and pairwise monotone are satisfied. They
give constant-factor approximation algorithms, which use a greedy algorithm with lazy eval-
uations, to maximize monotone k- submodular functions subject to total size and individual
size constraints. The experimental results show that their algorithm runs almost linear and
achieves approximately 1

2 for the total size and 1
3 for the individual size constraint. In another

study, Iwata et al. [76] show that for monotone k-submodular functions with a polynomial-
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time k
(2k−1) -approximation algorithm while for any ϵ > 0 a ( (k+1)

2k +ϵ)-approximation algorithm
for maximizing monotone k-submodular functions, but there is no require constraint.

In the other study, Nguyen et al. [73] propose two novel streaming algorithms to max-
imize a noisy k-submodular function subject to size constraints. Their work introduced a
k-submodular function with size constraints that still ensures approximation ratios, memory,
and query complexity. In particular, their first algorithm is a streaming algorithm taking only
one single pass over a vertices set, which works in greedy by putting e into a set i that guar-
antees that the ϵ-estimate of f is maximized and large enough in comparison with the optimal
solution. On the other hand, their second algorithm is also a streaming algorithm that works
randomly selected with a probability proportional to its upper bound on the marginal gain.

However, the study of maximizing k-submodular function with size constraint has not been
much investigated in the literature and there are more challenges to resolve for the community
in the future.

Moreover, the amount of data increases rapidly in the case of online applications in social
networks. In some practical cases, the data has increased very quickly that the memory
computer cannot store an amount of data in time. Reducing data storage memory and
providing guarantee solutions need to be considered. The streaming algorithm is one of the
efficient methods used to solve submodular and k-submodular function maximization. To
our best knowledge, Ashwinkumar et al. [83] are the first to introduce an efficient streaming
algorithm with a constant coefficient (1

2 − ϵ)- approximation guarantee. Similarly, the authors
in [73] [84] [89] also introduced the streaming algorithm for submodular function maximization
subject to various constraints, i.e., under noise models. Motivated by the above-mentioned
results, we develop an efficient streaming algorithm for the k-submodular cover problem with
a bi-criteria approximation ratio. Our algorithm desires only a single pass or a few passes
over all the data in real-world datasets. It provides theoretical guarantee solutions regarding
a number of query complexity, memory usage, and approximation ratio.

2.4 Discussion

In this chapter, we present an overview of the background of IM problem such as Information
diffusion models, the approach of IM, and sampling technique. We also introduce relate
works for this work in many fields. Based on the background of IM, this dissertation focuses
on improving IM algorithms, which guarantee solutions with theoretical bounds in a large
social network. These issues will be discussed in the next chapter.
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Chapter 3

Multi-Threshold benefit for Influence Max-
imization

This chapter begins with the definition and motivation of the problem presented in the first
section. The second section then shows the sampling technique and the main algorithm, named
ESSM. The core of this section is a novel algorithmic framework that can use a solution to
a smaller threshold to find a larger threshold. The last section discusses the result of the
experiment of the proposed algorithm.

3.1 Motivation

In recent years, there has been a rapid development of the global economy thanks to the
contribution of the OSNs, based on the provision of a powerful platform for communication
and information dissemination in the field of marketing, media, and advertising, particularly
in social networks with billions of users. The strong underpinnings of problems of social
influences in OSNs are information diffusion models. The authors in [1] first introduced LT
and IC classic models to formulated the IM problem, which aims to select k nodes that may
impact the largest number of users a social network. This work has inspired many studies on
social influence [4] [5] [10] [12], viral marketing [3] [17] [90] [91] [92], misinformation detection
[93] [40], rumors control [94] [95] [96].

In the context of viral marketing for product promotion, hosts (companies) often devise
a marketing campaign including the distribution of product samples to selected users and
expect that they persuade their friends, friends of friends, etc. The number of people who
have been impacted reaches a certain level. IT was inspired by this phenomenon and a slew
of research backed it up; it looks for a node set with the smallest size possible so that the
number of impacted nodes reaches or surpasses a predetermined threshold γ [97, 90, 98].
The value of γ can determine the scale of of the viral marketing. However, in some realistic
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scenarios, there is a distinct cost to persuade a user who promotes a sample product [10, 28].
Besides, each influenced user often offers a different benefit when one is influenced after the
marketing process. Customers with significant financial resources, for example, will be able
to purchase more things than others. As a result, the existing algorithms for IT problem
may offer an inaccurate solution of a marketing purpose. Moreover, the marketing strategies
are often adjusted since the market can vary in a short time. Consequently, a particular
solution for a benefit is insufficient to be the overall effective solution. This can be overcome
by finding solutions for multiple thresholds and selecting the best one that suits their budget
and current market.

For instance, assume that a company wants to come up with a strategy that can influence
customers on an OSN. Nonetheless, or due to budget fluctuations or the instability of the
market, they may consider strategies of spreading with the different number of influenced
customers such as 1000, 2000, 3000, 5000, etc. In this case, the company wants to find
solutions, where the benefit function of each is above the corresponding threshold and then
that company can select a solution with a reasonable cost so as to execute its marketing plan
well.

Our goal in this study is to develop an answer to a novel MBT problem, which is ex-
pressed as follows. For a social network G = (V, E) given a set of k benefit thresholds
T = {T1, T2, . . . , Tk}, each user u has a distinct cost price c(u) > 0. The issue is to seek for
the various seed sets {S1, S2, . . . , Sk}, in which each Si has the cheapest total cost c(Si) by
a result of each seed set’s earned benefit Si, characterized by B(Si), and is at least Ti for
i = 1 . . . , k. There are two main challenges for solving MBT problem. First ones are to find
MBT as #NP-Hard and to calculate the benefit function #P-Hard. Secondly, finding numer-
ous seed sets for multiple thresholds needs more time and memory than other information
propagation challenges, as well as the IT problem. It is necessary to run the existing algo-
rithms for a single threshold k times to prove it is costly and, hence, not applicable to large
networks. To overcome the challenges, in this thesis, we propose a highly efficient algorithm
to solve the problem. This not only guarantees a solution but also produces good results in
practice. This work revised and extended the our work [99] by providing all the proofs more
detail and experiment evaluation.

3.2 Problem definition

We formally introduce our studied the MBT problem, as follows:

Definition 2 (MBT) Given a graph G = (V, E) under the IC model and the set of benefit
thresholds T = {T1, T2, . . . , Tk}. For each Ti ∈ T , the problem is required to find Si ∈ V with
smallest cost c(Si) so that B(Si) ≥ Ti.
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In the case when b(u) = 1,∀u ∈ V , the benefit function B(·) becomes the influence spread
function [1]. Ref. [17] showed that it was #P-hard to compute the number of influence nodes
(influence spread function) exactly, so calculating B(·) was also #P-hard. Besides, the IT
problem [90, 45, 98], a special case of MBT problem with b(u) = c(u) = 1, ∀u ∈ V and k = 1,
is NP-hard, which implies that MBT is also #NP-hard.

3.3 Multi-threshold for Influence Maximization problem

In this section, the Efficient Sampling for Selecting Multiple seed sets (ESSM), an efficient
algorithm for MBT problem with theoretical guarantee, is introduced. Our novel technique
is to develop a method that combines two following ideas: (1) finds the candidate seed set
for each threshold via the benefit sampling; (2) uses the seed set with a smaller threshold for
finding the seed sets with bigger ones, which can improve the running time as well as memory
usage. Moreover, the sampling technique with martingale theory is in use to estimate the
benefit function effectively.

3.3.1 Benefit Sampling

We first recap the concept of Benefit Sample (BS) in [10] to estimate the B(·).

Definition 3 (Benefit Sample) A BS is generated from G = (V, E) under the IC model by
following steps: (1) Choose a source node u with probability b(u)

Γ , (2) create a sample graph g

from G, and (3) return Rj as the set of nodes that can reach node u in g.

The Algorithm 1 in [10] can be used to generate a BS for IC model.

Algorithm 1: An algorithm for generating a BS under the IC model
Input: Graph G = (V, E) under IC model
Output: A BS set Rj

1: Choose a source node u with probability b(u)
Γ

2: Initialize a queue Q = {u} and Rj = {u}
3: while Q is not empty do
4: v ← Q.pop()
5: for u ∈ Nin(v) \ (Rj ∪Q) do
6: With probability p(u, v) do: Q.push(u), Rj ← Rj ∪ {u};
7: end for
8: end while
9: return Rj
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Given R is a collection of BSes, a seed set S, we define a random variable Xj(S) as follows:

Xj(S) =

⎧⎨⎩1, If Rj ∩ S ̸= ∅

0, Otherwise
(3.1)

We can estimate the benefit function B(S) by the following Lemma in [10].

Lemma 1 (Lemma 2, [10]) For any set of nodes S ⊆ V , we have: B(S) = Γ · E[Xj(S)]

The function B(·) is monotone and submodular [10], i.e., for any S ⊆ T ⊆ V , and v /∈ T ,
we have

B(T ) ≥ B(S) (3.2)

B(S + {v})− B(S) ≥ B(T + {v})− B(T ) (3.3)

We can calculate an estimation B̂(S) of B(S) via a collection R of BSes as follows:

B̂(S) = Γ
|R|

∑︂
Rj∈R

Xj(S) (3.4)

It can be seen that Xj(S) ∈ [0, 1]. We define a random variable Yi =
∑︁i

j=1(Xj(S)−µ), ∀i ≥
1, where µ = E[Xj ] and a sequence random variables Y1, Y2, . . . , Yk, we have

E[Yi|Y1, . . . , Yj−1] = E[Yi−1] + E[Yi(S)− µ] = E[Yi−1]

Therefore, Y1, Y2, . . . , Yk are a form of martingale [100]. Thus, we have the following
Lemma [100].

Lemma 2 ([100]) Given a collection R with T = |R| and λ > 0, we have

Pr
[︂ T∑︂

j=1
Xj(S)− T · µ ≥ λ

]︂
≤ exp

{︄
− λ2

2λ2
3 + µT

}︄
(3.5)

Pr
[︂ T∑︂

j=1
Xj(S)− T · µ ≤ −λ

]︂
≤ exp

{︄
− λ2

2µT

}︄
(3.6)
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Let λ = ϵTµ in Lemma 2, we obtain

Pr[B̂(S) ≥ (1 + ϵ)B(S)] ≤ exp
{︄
− ϵ2µT

2 + 2
3ϵ

}︄
(3.7)

Pr[B̂(S) ≤ (1− ϵ)B(S)] ≤ exp
{︄
−ϵ2µT

2

}︄
(3.8)

If the number of BSs is at least T ≥ (2 + 2
3) 1

µ
1
ϵ2 ln(1

δ ) for δ ∈ (0, 1), B̂R(S) is an (ϵ, δ)-
approximation of B(S), i.e.,

Pr[(1− ϵ)B(S) ≤ B̂(S) ≤ (1 + ϵ)B(S)] ≥ 1− δ (3.9)

The characteristics of the martingale sequence play an important role in devising our
algorithm in the next subsection.

3.3.2 ESSM Algorithm

Our proposed algorithm is now described. On a high level, our algorithm combines two
methods: (1) We provide a (δ, ϵ)-approximation of the benefit function via martingale theory.
(2) In each iteration, we propose the algorithmic framework that finds some candidate seed
sets for a threshold and then choose the final seed set, which guarantees the solution quality
by checking static evidence. (3) We reuse the seed set for smaller threshold for finding the
seed sets with the larger threshold. Our proposed algorithm is presented in Algorithm 2.

At the beginning of the algorithm, it generates collection R0 that contains
(2+ 2

3 ϵ)Γ
ϵ2(Ti−ϵTi)(ln n + ln(1/δ)) BSs by using Algorithm 1 and initiates a seed set S1 as empty.

At each iteration i of first loop (line 3–18), it finds the seed set with respect to threshold
Ti. Denote f(Si) = min(B̂(Si), Ti−ϵTi−ϵ). At each iteration of the second loop (line 7–18),
the algorithm finds a seed Si, by iteratively selecting a node u with maximum marginal of
the estimation function f as per its cost, i.e., (f(Si∪{u})−f(Si))

c(v) and (2) checking the condition
of the number of samples (line 12). If the number of samples is sufficient to give an (δ, ϵ)-
approximation (by Lemma 3), the algorithm moves into next iterations and keeps current
seed set Si; otherwise, the algorithm generates more samples (line 13) so that the number of
samples is N(i, j) and adds them into Ri. In this case, the seed set Si is suitable for new
collection Ri. The second loop terminates when it satisfies the condition B̂(Si) ≥ Ti− ϵTi− ϵ.
Next, the algorithm reuses the current samples and seed set to find the seed set for larger
threshold (lines 4–5) by using similar steps with previous iteration.

The theoretical bounds of the algorithm are now analyzed. Firstly, the satisfactory number
of BSes is provided to estimate B(·) is shown in Lemma 3.
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Algorithm 2: ESSM algorithm
Input: A graph G = (V, E), T = {T1, . . . , Tk}, ϵ, δ ∈ (0, 1)
Output: S1, S2, . . . , Sk

1: Generate R0 containing (2+ 2
3 ϵ)Γ

ϵ2(Ti−ϵTi)(ln n + ln(1/δ)) BSs by using Algorithm 1
2: S0 ← ∅
3: for i = 1 to k do
4: Ri ← Ri−1
5: Si ← Si−1
6: Calculate B̂(Si) by eq. (3.4)
7: while B̂(Si) < Ti − ϵTi − ϵ do
8: u← arg maxv∈V \Si

min(B̂(Si∪v),Ti−ϵTi−ϵ)−B̂(Si)
c(v)

9: Si ← Si ∪ {u}
10: j ← |Si|
11: N(i, j)← (2+ 2

3 ϵ)Γ
ϵ2(Ti−ϵTi) ln(

(︁n
j

)︁
/δ)

12: if |Ri| < N(i, j) then
13: Generate more N(i, j)− |Ri| BSs and add them into Ri

14: N ← N(i, j)
15: Si ← ∅
16: end if
17: end while
18: end for
19: return S1, S2, . . . , Sk

Lemma 3 If |R| ≥ (2+ 2
3 ϵ)Γ

ϵ2(Ti−ϵTi)(ln n + ln 1
δ ) then Pr[B̂(S∗

i ) ≥ Ti − Tiϵ] ≥ 1− δ

Proof Denote µ = B(S∗
i )/Γ, µ̂ = B̂(S∗

i )/Γ, we have

Pr[B̂(S∗
i ) ≤ Ti − Tiϵ] ≤ Pr[B̂(S∗

i ) ≤ (1− ϵ)B(S∗
i )]

= Pr[µ̂ ≤ (1− ϵ)µ] (By applying (3.8) )

≤ exp
(︄
−ϵ2|R|µ

2

)︄

≤ exp
(︄
−ϵ2|R|µ̂
2(1− ϵ)

)︄
(Due to µ ≥ µ̂/(1− ϵ))

≤ exp
(︄
−

(2 + 2
3ϵ)B̂(S∗

i )
2(1− ϵ)(Ti − ϵTi)

ln 1
δ

)︄
≤ δ

which implies the proof.

The theoretical guarantee of Algorithm 2 is stated as follows.

Theorem 1 For any inputs ϵ, δ ∈ (0, 1), the Algorithm 2 returns a set of seed sets S =
{S1, S2, . . . , Sk} satisfying
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(a) Pr[c(Si) ≤ (1 + ln Ti−ϵTi
ϵ )c(S∗

i )] ≥ 1− δ/n.

(b) Pr
(︂
B(Si) ≥ Ti · 1−ϵ

1+ϵ − ϵ
)︂
≥ 1− δ.

Proof At any i-th iterator of the first loop (line 3 to 19) in Algorithm 2, denote Si =
St

i = {s1
i , s2

i , . . . , st
i} as the solution of algorithm with respect to the threshold Ti, and Pi =

{vi
1, vi

2, . . . , vi
l} as a set of nodes with minimum cost satisfying B̂(Pi) ≥ Ti−ϵTi and Ci = c(Pi).

Due to the checking condition in line 12, the number of BSes at the end of iteration i obtains
at least

N i
min =

(2 + 2
3ϵ)Γ

ϵ2(Ti − ϵTi)
ln(
(︄

n

|Si|

)︄
/δ) (3.10)

and obtains at most,

N i
max = max

j:1...|Si|

(2 + 2
3ϵ)Γ

ϵ2(Ti − ϵTi)
ln(
(︄

n

j

)︄
/δ) (3.11)

Prove (a) As B̂(·) is submodular, we have

Ti − ϵTi − B̂(St−1
i )) ≤ B̂(Pi)− B̂(St−1

i ))

≤ B̂(Pi ∪ St−1
i )− B̂(St−1

i ))

≤
∑︂

v∈Pi\St−1
i

(B̂(St−1
i ∪ {v})− B̂(St−1

i ))

≤ Ci

c(St−1
i )

∑︂
v∈Pi\St−1

i

(B̂(St−1
i ∪ {v})− B̂(St−1

i ))

For any positive numbers a1, . . . al and b1, . . . , bl. According to [101], we have

min
i=1...l

ai

bi
≤
∑︁l

i=1 ai∑︁l
i=1 bi

≤ max
i=1...l

ai

bi
(3.12)

Applying the above inequality, we obtain

Ti − ϵTi − B̂(St
i ) ≤

Ci

c(st
i)

(B̂(St
i )− B̂(St−1

i )) (3.13)

≤ (1− c(st
i)

Ci
)(Ti − ϵTi − B̂(St−1

i )) (3.14)

≤ e
−

c(st
i

)
Ci (Ti − ϵTi − B̂(St−1

i )) (3.15)
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The (3.15) condition must satisfy x + 1 ≤ ex, for any x > 0. Therefore,

Ti − ϵTi − B̂(St
i ) ≤ e

− 1
Ci

∑︁t

j=1 c(st
i)(Ti − ϵTi) (3.16)

= e
− 1

Ci
c(St

i )(Ti − ϵTi) (3.17)

By the definition of St
i and because Si satisfies the condition in line 7, we have B̂(St−1

i ) <

Ti − ϵTi − ϵ and B̂(St
i ) ≥ Ti − ϵTi − ϵ. Combining with (3.17), we have

(Ti − ϵTi)e
− 1

Ci
c(St−1

i ) ≥ Ti − ϵTi − B̂(St−1
i )

> Ti − ϵTi − (Ti − ϵTi − ϵ) = ϵ

implying that c(St−1
i ) < Ci ln Ti−ϵTi

ϵ . On the other hand, from (3.15), we obtain

c(st
i) ≤ Ci ln Ti − ϵTi − B̂(St−1

i )
Ti − ϵTi − B̂(St

i )
≤ 1 (3.18)

Thus, c(St
i ) = c(St−1

i ) + c(st
i) ≤ Ci(1 + ln(Ti−ϵTi

ϵ )), where Si is the candidate solution
for threshold Ti. After i-th iteration of the first loop, |Ri| = N(i, j) = (2+ 2

3 ϵ)Γ
ϵ2(Ti−ϵTi) ln(

(︁n
j

)︁
/δ).

By applying Lemma 3, after iterator i, we have Pr[B(S∗
i ) ≥ Ti − ϵTi] ≥ 1− δ/

(︁n
j

)︁
. Combining

with the definition of Pi, the following events happen with a probability of at least 1−δ/
(︁n

t

)︁
≥

1− δ/n:

c(Si) ≤ Ci(1 + ln(Ti − ϵTi

ϵ
)) (3.19)

≤ c(S∗
i )(1 + ln(Ti − ϵTi

ϵ
)) (3.20)

Prove (b) The i-th iteration of the first loop ends when B̂(Si) ≥ Ti − Tiϵ− ϵ, we obtain

Pr
(︃
B(Si) ≤ Ti

1− ϵ

1 + ϵ
− ϵ

)︃
≤ Pr

(︃
B(Si) ≤

Ti − Tiϵ− ϵ

1 + ϵ

)︃
≤ Pr

(︄
B(Si) ≤

B̂(Si)
1 + ϵ

)︄

≤ e
−ϵ2|Ri|B̂(Si)

2Γ(1+ϵ) (By applying (3.8))

≤ e
− ln((n

j)/δ)
1+ϵ

≤ 1− δ/

(︄
n

j

)︄

Since |Si| = j there are at most
(︁n

j

)︁
possible solutions Si. By applying the union
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bound of the probability of events, we have Pr
(︂
∀Si,B(Si) ≤ Ti · 1−ϵ

1+ϵ − ϵ
)︂
≤ δ. Hence,

Pr
(︂
B(Si) ≥ Ti · 1−ϵ

1+ϵ − ϵ
)︂
≥ 1− δ. The proof is completed.

Theorem 2 (Number of required BSes) For any ϵ, δ ∈ (0, 1), the sample complexity of
ESSM is O(ϵ−2n ln(

(︁ n
imax

)︁
/δ)), where imax = arg maxi=1...|Sk| ln(

(︁n
i

)︁
).

Proof The number of BSes for finding seed set Si is at most N i
max. The algorithm reuses the

set of BSes for current seed set for next iteration, so the number of BSes generated by the
algorithm is at most Nk

max. On the other hand, Γ =
∑︁

u∈V b(u) ≤ bmaxn = O(n). Therefore,
the number of samples used in the algorithm is

(2 + 2
3ϵ)Γ

ϵ2(T1 − ϵT1) ln(
(︄

n

imax

)︄
/δ) = O(ϵ−2n ln(

(︄
n

imax

)︄
/δ))

which completes the proof.

Denote M, (M ≤ n) is the expected running time for generating one BS, and jmax is the
largest number of iterations of selecting a seed set. The time complexity of the algorithm is
O(ϵ−2nkjmaxM ln(

(︁ n
Nk

max

)︁
/δ)).

3.4 Experiment

For computing the transmission probability in IC model, the conventional computation as
in [1, 4, 5, 10] is followed and the transmission probability is calculated as p(u, v) = 1

|Nin(v)| .
We set c(u) = n.Nout(u)∑︁

v∈V
Nout(v) and randomly choose 20% of nodes in each network and set the

benefit to 1, the rest assign to 0 as in [10]. Finally, ϵ = 0.1 and δ = 1/n are set as a default
setting [10, 4, 5] in all the experiments. We utilize a Linux computer with 2 × Intel(R)
Xeon(R) CPU E5-2630 v4 processors running at 2.20 GHz and used 64 GB DDR4 RAM
performing at 2400 MHz. Our algorithms are developed in C/C++ using the g++11 compiler.

For a comprehensive experiment, six networks are selected for information propagation
problems [1, 10, 12, 31, 4, 5] of different sizes. The description of used datasets is presented
in Table 3.1.

• Gnutella [102] represents Gnutella peer-to-peer file sharing network in August 2002.
In this network, 20,777 edges among 6301 nodes show connections among hosts in the
Gnutella network topology.

• Email-Enron [103] network covers all the email communication within a dataset of
around half a million emails. These originally public data were posted on the web,
by the Federal Energy Regulatory Commission during its investigation. Nodes of the
network are email addresses and if an address i has sent at least one email to address
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j, the graph contains an undirected edge. Note that non-Enron email addresses act as
sinks and sources in the network as their communication with the Enron email addresses
is only under observation. The Enron email data were originally released by William
Cohen at CMU.

• Net-Hept [104] and Net-Phy [12] are collaborative networks from the “high-energy
physics theory” section and “physics” section, in which the nodes represent the authors
and undirected edges represent papers written by the same authors.

• Amazon [105] was collected in 2 March 2003 by crawling the Amazon website. It is based
on customers who bought an item and also bought features of the Amazon website. If a
product i is frequently copurchased with product j, the graph contains a directed edge
from i to j.

• DBLP computer science bibliography [106] provides a comprehensive list of research
papers in computer science. If two authors publish at least one publication together,
they establish a co-authorship network.

Since IT [33] and CTVM [10] are the problems most closely related to MBT problem,
ESSM is compared with their algorithms with some modifications in our experiment. In ad-
dition, the DEGREE algorithm, a popular baseline algorithm for information propagation
problems [1, 4, 17, 12], is in use. Compared algorithms are listed below.

• BCT is an algorithm for CTVM problem [10]. BCT is used by comparison due to the
similarity between the BCT and CTVM problem by considering the costs and benefits of
the nodes. However, due to the differences between MBT and CTVM, BCT is adapted
with some modifications as follows: For each threshold Ti, we use a binary search on
the cost from range [0,

∑︁
u c(u)] until the reached benefit function falls in [Ti(1− ϵ), Ti],

where ϵ = 0.1 and returns the seed set with minimum cost.

• IT is a greedy algorithm for the Influence Threshold problem in [33]. In order to adapt
IT algorithm for MBT problem, the Monte Carlo simulation is used to estimate benefit
function with 10,000 time simulations as in [1, 12].

• DEGREE is one of common baseline algorithms for influence problem [10, 27, 1], which
select the highest degree of nodes until the benefit of the selection set
exceeds thresholds.

The ESSM algorithm was experimented and compared other algorithms BCT, DEGREE,
and IT on the datasets Net-Hept 15K nodes and Net-Phy 37K nodes, and the results are
shown below (Figure 3.1).
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Table 3.1: MBT experimental datasets

Dataset #Nodes #Edges Avg. Degree Source
Gnutella 6301 20,777 3.3 [102]
Enron 36,692 183,831 5.0 [103]
Net-Hept 15,233 58,891 5.5 [104]
Net-Phy 37,154 231,584 13.4 [12]
Amazon 262,111 1,234,877 9.4 [105]
DBLP 317,080 1,049,866 6.6 [106]

Figure 3.1 showed the costs of seed sets returned by algorithms in which the smaller one
was better. Our algorithm ESSM outperformed other algorithms by a large gap in most
datasets except the Gnutella network. Particularly, ESSM returned the seed sets whose costs
are 1875 to 116,000 times less than that of other algorithms. The results also confirmed
that our framework algorithm was more efficient than the others. The IT algorithm only
produced good results on the Gnutella dataset and produced worse results than ESSM did
on the rest. However, it delivered better results than the rest algorithms did, because the
algorithm always finds important seed nodes with low and rational cost as our algorithm do.
With large datasets (Amazon and DBLP), IT did not finish within the time limit. This showed
that the Monte Carlo method was not suitable for large networks due to its high complexity.
DEGREE algorithm selected the highest out-degree of nodes to prioritize as seed nodes, so the
highest degree value affected the cost of computing formula, leading to considerable increase
in cost, even when the variety of found seed nodes were small. Especially in the Email-Enron
dataset, at the first threshold Ti, where a seed node was loaded with the highest out-degree,
the DEGREE algorithm resulted in the high cost value, even higher than that of the BCT
algorithm; although, BCT was also based on the use of BS samples but produced worse results
because it used binary search, which could give much larger results than the optimal solution.

The running times of algorithms were demonstrated in Figure 3.2. ESSM was significantly
faster than the others on all datasets. ESSM algorithm was 6900 to 127,710 times faster and
39 to 2120 times faster than IT and BCT, respectively. The running time of IT was the longest
and could not finish within time limit for Amazon and DBLP networks. This was caused by
the long time IT spent on accessing Monte Carlo simulation to estimate the benefit function.
The running times of algorithms are shown in Figure 3.2. ESSM was significantly faster than
the others on all datasets. ESSM algorithm is 6900 to 127,710 times faster and 39 to 2120
times faster than IT and BCT, respectively. The running time of IT was the longest and it
could not finish within time limit for Amazon and DBLP networks. This resulted from IT
spending a long time on calling Monte Carlo simulation to estimate benefit function. BCT
was significantly faster than IT even though it used many loops for binary search for the
reason that the BCT used BS samples to estimate the benefit function instead of Monte
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Figure 3.1: Comparison about the Costs of seed sets between ESSM and other algorithms
within threshold Ti from 300 to 9,000
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Carlo simulation method. However, BCT was significantly slower than our algorithm because
it did not have a mechanism for reusing the seed set in finding other seed sets with a larger
benefit threshold. The larger number of vertices of the datasets, the more time it took BCT to
find a solution. The above results were consistent with our assessment that the seed selection
strategy in the reuse of solution could shorten the running time of the algorithm. The above
results were consistent with our assessment that the seed selection strategy with the reuse seed
sets in our algorithm could shorten the time to find the solution. DEGREE algorithm was
also based on the use of a Monte-Carlo-like IT algorithm. Nevertheless, choosing seed nodes
was easily dependent on the existing seed set without predicting the next seed nodes. As a
consequence, DEGREE ran for a few seconds and was 4 to 54 times faster than our algorithm.

The memory usage of algorithms are illustrated in Table 3.2. The memory of our ESSM
algorithm was not the lowest in small and medium datasets, depending on the characteristics
of the data, but the difference was not fairly significant. In the remaining medium and large
datasets, the ESSM algorithm clearly offered its advantages with a reduction in memory
usage of more than 20,000 times compared with the BCT algorithm in the DBLP dataset.
The ESSM algorithm will be more likely to be used on larger datasets while the BCT and
IT algorithms will be less likely. The BCT algorithm does not inherit the sample set across
multiple thresholds, such as regenerating independent time-consumption and memory usage
for sample sets at each threshold. With a lower threshold, the formula for calculation requires
the large number of samples. Whereas the threshold increases, the total required sample
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Figure 3.2: Comparison of Running time between ESSM and other algorithms within threshold
Ti from 300 to 9,000

BCT IT DEGREE ESSM
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(d) Net-Phy (e) Amazon (f) DBLP

set decreases. As a result, the memory usage must decrease and the threshold value must
increase. Moreover, the BCT’s sampling algorithm does not guarantee the consistency of the
number of samples at a certain threshold, leading to an unusual variation in memory usage
among these closing thresholds Ti, which was clearly displayed in small datasets using the
close thresholds in the experiments as Gnutella, Net-Hept. During the experiment, the IT
algorithm always consumed the highest running time among the algorithms, caused by the use
of the classical Monte Carlo sampling algorithm, which consumed the memory usage as well
as the run-times. Two large datasets as Amazon and DBLP could not experiment with the IT
algorithm partly because during the sampling process, the algorithm overloaded the memory
usage. This exhibited the disadvantage of IT algorithm compared with other algorithms.
On the contrary, IT used less memory than BCT and ESSM did in some cases because of its
no need of storing BS samples such as the other two mentioned algorithms. Finally, similar to
IT, DEGREE used the least amount of memory because of its simplicity with no inheritance
in building solutions.

In comparison to the preceding solutions’ optimized inheritance loops, the ESSM method
is expected to have a Running duration nearly 100 to 20000 times lower than the BCT
algorithm, which is at more optimal intervals than the AT algorithm. In terms of total cost,
the ESSM algorithm gives a much better solution than the other algorithms.
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3.5 Discussion

In this chapter, we study an efficient algorithm for Multiple Benefit Threshold, named MBT
problem. We also introduce the sampling technique, which can find larger solutions based
on small solutions. In addition, we point out good performance by our proposed algorithm
compared to the others in extensive experiments with social networks.
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Table 3.2: Memory usage of compared algorithms ESSM and other algorithms within thresh-
old Ti from 300 to 9,000(MB)

(a)

Dataset Threshold
Algorithm

BCT IT DEGREE ESSM

Gnutella

Ti = 300 0.758 0.77 0.855 1.02
Ti = 540 0.805 0.75 0.852 1.02
Ti = 780 0.805 0.758 0.719 1.02
Ti = 1020 0.758 0.789 0.75 1.02
Ti = 1260 0.758 0.789 0.723 1.02
Ti = 1500 0.809 0.816 0.723 1.02
Ti = 1740 0.824 0.855 0.785 1.02
Ti = 1980 0.824 0.813 0.746 1.02

Email-Enron

Ti = 3300 4859.98 1.051 0.746 0.813
Ti = 3350 4874.96 1.051 0.855 0.809
Ti = 3400 4841.89 1.051 0.77 0.715
Ti = 3450 4863.27 1.051 0.75 0.855
Ti = 3500 4839.59 2.328 0.809 0.75
Ti = 3550 4856.99 2.582 0.711 0.816
Ti = 3600 4858.67 2.582 0.746 0.7
Ti = 3650 4835.6 2.582 0.855 0.715

Net-Hept

Ti = 2800 0.723 0.711 0.711 0.77
Ti = 2850 0.723 0.742 0.855 0.77
Ti = 2900 0.723 0.75 0.754 0.77
Ti = 2950 0.77 0.75 0.855 0.77
Ti = 3000 0.805 0.77 0.754 0.77
Ti = 3050 0.746 0.809 0.809 0.77
Ti = 3100 0.75 0.715 0.75 0.77
Ti = 3150 0.75 0.754 0.809 0.77

(b)

Dataset Threshold
Algorithm

BCT IT DEGREE ESSM

Net-Phy

Ti = 1700 2,800.25 0.805 20.66 1.117
Ti = 1900 1,444.21 0.723 20.66 1.117
Ti = 2100 1,446.43 0.82 20.66 1.117
Ti = 2300 1,442.56 0.82 20.66 1.117
Ti = 2500 1,434.55 0.867 20.66 1.117
Ti = 2700 1,429.17 0.75 20.66 1.117
Ti = 2900 1,426.53 0.758 20.66 1.117
Ti = 3100 1,437.99 0.793 20.66 1.117

Amazon

Ti = 600 0.195 N/A 0.723 12.453
Ti = 1800 0.742 N/A 0.789 12.453
Ti = 3000 0.742 N/A 0.809 12.512
Ti = 4200 0.746 N/A 0.719 12.512
Ti = 5400 0.715 N/A 0.813 12.512
Ti = 6600 0.715 N/A 0.746 12.512
Ti = 7800 0.805 N/A 0.758 12.512
Ti = 9000 0.715 N/A 0.742 12.512

DBLP

Ti = 1280 26,316.8 N/A 0.711 19.121
Ti = 1400 41,369.6 N/A 0.715 19.227
Ti = 1520 26,009.6 N/A 0.813 19.227
Ti = 1640 24,883.2 N/A 0.816 19.227
Ti = 1760 24,883.2 N/A 0.719 19.227
Ti = 1880 24,883.2 N/A 0.711 19.227
Ti = 2000 24,883.2 N/A 0.711 19.227
Ti = 2120 24,883.2 N/A 0.754 19.227
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Chapter 4

Groups Influence Maximization in Large
Network

This chapter starts with the definition and motivation of the Influence Maximization of groups
or communities problem presented in the first section. The second section then shows two
main algorithms, named Threshold Benefit for Groups Influence (TGI problem) and Groups
Influence Maximization with Minimum Cost (GIM problem). Then, problem definitions show
in the next section. Next, the main of this section is a novel algorithmic framework and group
sampling technique for Group Influence Maximization under constraint setting such as benefit
and cost. Finally, the last section discusses the result of the experiment of the two proposed
algorithms.

4.1 Motivation

4.1.1 Threshold Benefit for Groups Influence in OSNs

IM is a popular concern in recent times, especially in social networks with millions of users
such as Youtube, Facebook, Twitter, or the other OSNs like LinkedIn, Tumblr, etc. Users
participating in social networks can connect with others easily, not only they are not only
exchange and share information, but also update information quickly. Companies, organiza-
tions, and businesses have used to OSNs as a communication channel to advertise products,
such as new products, online shopping, online training, spreading opinions or supply of human
resources, etc. OSNs has become an important platform in the field of marketing and adver-
tising by leveraging the effectiveness of word-of-mouth. The primary aim of the IM problem
is to discover the seed set of K users that the number of users in the OSNs will be affected the
most. Each user in the social network has two states: active and inactive, with the activation
process switching the user’s stable based on the influence of the seed set nodes.
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The method inherits from Kempe’s work [1], many variations on the IM problem have
been introduced because of its important role in many practical applications, such as viral
marketing [17] [10] , profit/revenue maximization [28] [29], social recommendation, health-
care, rumor control, etc. However, the majority of the aforementioned existing works only
focus solely on maximizing influence based on individual user nodes, ignoring the diffusion
of influence to groups of individuals and communities. It can be shown that a small number
of users who play a significant role in a group or community impact every user’s behavior or
choice in that group or community. Hence, the problem of maximum influence on a group or
society can produce more beneficial results than the problem of maximum influence on an in-
dividual. As a result of the above practical significance, there have been several recent studies
on groups influence by choosing a seed set with at least k users, such as groups influence [52],
competitive groups influence, groups influence via network embedding [50]. In this article,
we propose a method for optimizing the influence of groups instead of individuals in OSNs:
assuming there is a social network under the information propagation model with G = (V, E),
where the set of groups Ci is the target group. To evaluate the role and importance of each
node in the propagation process, we provide each node a cost c(u) to pay for activating a
node in the network, a benefit b(u) if that node has influenced. Then, a fixed threshold ti is
assigned to each group Ci and for each node in group Ci, a fixed score s(u) is assigned. As a
result, our contents are presented in our work as follows:

- Firstly, we present widely known information propagation models such as IC and LT.
Our algorithm is effectively implemented for the IC model in this thesis, but it can be easily
extended to other similar propagation models.

- Secondly, we propose a groups influence maximization algorithm that has more advan-
tages than the influence of each node in the network, with a threshold ti for each group.

- Thirdly, we present a group-based sampling (GBS) technique inherited from the RIS
sampling method to estimate the epsilon group effect function.

- Finally, we conduct extensive experimentation of our proposed algorithm on real data
social networks. The results show that our algorithm is efficient, providing quality solutions
compared to other methods in terms of running time, memory usage, and total seed set cost.

4.1.2 Groups Influence with Minimum Cost in OSNs

Information diffusion in OSNs has been a hot research topic recently due to its tremendous
commercial value. By leveraging the “word of mouth” effect, companies and organizations
have used social networks as effective communication to product promotion, spread opinion
and renovation, persuade voters, etc.

In a seminal work [1] published almost twenty years ago, Kempe et al. [1] introduced
the IM problem, which aimed to find a set of k users (called seed set) in a social network
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to initiate a propagation process that could possibly influence to the largest number of users
under some predefined propagation model. Since then, this problem and its notable variants
have demonstrated theirs significant role in various real-world problems, not only in viral
marketing [10, 57], but also in other fields such as politics epidemics control [107, 94, 108, 43],
social network monitoring [95, 109], recommendation system [110].

In many realistic scenarios, the user’s decision and behavior tend to be dependent on her
group and most of important decisions or works, which would affect many individuals, are
done by a group of key persons. Therefore, creating an impact on groups or communities is
able to bring more benefits than that on individuals and deserves special consideration.

A significant example is the US President election where any candidate who gets an
absolute majority of electoral votes (not the popular votes) will be chosen as the winner of
the presidency. In reality, she often focuses on swing States to win in the end. Each State
is allocated a fixed number of electoral votes that can be owned by a candidate if she wins
the most popular votes in the State. To do this, her election campaigns might leverage social
networks in order to persuade the most voters in the State to vote for her. As the budget of
the campaign is limited, the candidate would not be able to convince all of the voters in the
State, and she should target on most influenced voters in the Sate.

Motivated by the aforementioned examples, recent studies have been carried out on a
general version of IM, whose objective is to maximize the number of influenced groups of
users instead of the number of influenced individuals, by choosing some seed sets of at most
k users (see, e.g., [111, 112, 55, 113]). Also, one can consider a dual problem of this problem
by asking for the minimum number of seed nodes to influence a given number of groups. In
line with this research, we investigate in this thesis a slightly general problem named Groups
Influence with Minimum cost (GIM), which aims to find a seed set with minimum cost to
influence all the target groups in the network.

Different from existing works, we consider the role of each user in a group by assigning a
score to her, and each group admits a threshold representing how difficult it is to influence a
group. Specifically, a group is influenced if the total score of influenced members reaches its
threshold. One can easily see that GIM subsumes IM and its dual version as special cases and
thus, it is #NP-hard to solve, not only by the combinatorial structure of the problem, but
also by the #P-hardness of the calculation of the group influence function (denoted by σ(·)).
Another challenge is that σ(·) is neither a submodular nor suppermodular, implying that the
classical greedy algorithms when being applied to GIM may not result in any approximation
guarantee.

In this work, we address all above challenges and our contributions can be summarized as
follows. Assume that G = (V, E) is a social network, C = {C1, C2, . . . , CK} is a set of target
groups, each group Ci has a threshold ti, and each node u has a cost c(u) and a score b(u).
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4.2 Problem definition

4.2.1 Threshold Benefit for Groups Influence in OSNs

Next, we investigate Threshold Benefit for Groups Influence problem (TGI) in OSNs as fol-
lows:

Given a social network G = (V, E) under the IC model and a collection of K disjoint
groups C = {C1, C2, . . . , CK} (called target groups), where Ci ⊆ V, Ci∩Cj = ∅, for every pair
of nodes (i, j) with i ̸= j.

Definition 4 (TGI problem) An instance of TGI is given by (G, C, T ), where G = (V, E)
is a social network under the IC model, and C is a collection of disjoint target groups
{C1, C2, . . . , CK}, Ci ∩ C(j) = ∅. The objective is to find a seed set S ⊆ V of minimum
total cost that the benefit function is at least T , i.e, S = arg minS′⊆V,σ(S)≥V c(S′).

To determine a group is influenced or not, we extend the influence group model in [111]
by scoring each node in the group based on the fact that each user has a different role in their
group. Thus, each node u ∈ V has a cost c(u) and a score s(u). The weight c(u) measures the
cost or the price of the node u that has to pay if u is chosen as a seed node. The node score
s(u) > 0 metrics the role of node u in the group C(u). Each group Ci assigns a threshold ti

(ti > 0), which reflects the minimum total score that we must reach if we want to influence
group Ci, and a benefit value bi is when Ci was influenced. We say that the group Ci is
influenced if the total score of the influenced nodes in Ci is at least ti.

We define a cost function c : 2V → R+ for Definition 4. For a given seed set S ⊆ V , the
total cost of S is c(S) =

∑︁
u∈S c(u). Therefore, a groups influence function σ : 2V → R+

denotes as follows:
Denote the total score of nodes which influence by S in Ci that

σi(S) =
∑︂

v∈Ci

I(S, v)s(v) (4.1)

Then, σ(S) is (expected) the number of groups in C are influenced by the seed set S when
the diffusion process ends, that is,

σ(S) =
∑︂

Ci∈C:σi(S)≥ti

b(v) (4.2)

In the special case where each group Ci has only one node the groups influence function
σ(·) above becomes the influence spread function I(·) of the IM problem. As a consequence,
computing σ(·) is #P-hard. On the other hand, one can easily verify that the function σ(·)
is neither submodular nor supermodular. The function σ(·) is submodular if for every pair of
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subsets A, B ⊆ V it holds that σ(A) + σ(B) ≥ σ(A ∪ B) + σ(A ∩ B). If the inequality holds
in the reverse direction, we call σ(·) a supermodular function.

We first introduce the Group Benefit Sample (GBS) concept, by modifying Reachable
Reverse (RR) sample, to estimate σi(S)

Definition 5 (GBS sample) Given a graph G and group Ci, a GBS sample is generated by
the following steps:

1. Randomly select a node u with probability s(u)
Γ (call u a source node), where γi =∑︁

u∈Ci
s(u)

2. Generate a sample graph g according to the live-edge model under IC model.

3. Return a node set Ri that is reachable from u in g. We call u a source node.

Denote a random variable Xi(S) as follows

Xi(S) =

⎧⎨⎩1, if S ∩Ri = ∅

0, otherwise
(4.3)

We have the following lemma

Lemma 4 Given a set node S, we have σi(S) = γi · E[Xg(S)]

Given a set of GBSes R, we have an estimation of σî(S) of σi(S) as follows

σî(S) = γi

|R|
∑︂

Ri∈R
Xi(S) (4.4)

We introduce an estimation of σ(S)

σ̂(S) =
∑︂

i∈[K]
σî(S) (4.5)

Threshold Benefit for Groups Influence in Online Social Networks (TGI prob-
lem): we studied a novel TGI problem defined as follows a given a social network G, a set of
K target group C = C1, C2, dots, CK and a threshold T > 0, TGI asks us to find a seed set S
in G with the mininum cost so that the benefit gained from the influence of the groups in C

is at least T . We propose a group influence maximization algorithm that has then advantages
the influence of each node in the network with a threshold ti for each group. Furthermore,
we also present a group-based sampling (GBS) technique inherited from the RIS sampling
method to estimate the epsilon group effect function.

49



4.2.2 Groups Influence with Minimum Cost in OSNs

Third, we now formally define the problem Groups Influence with minimal Cost (GIM).

Definition 6 (GIM problem) An instance of GIM is given by (G, C), where G = (V, E)
is a social network under the IC model, and C is a collection of disjoint target groups
{C1, C2, . . . , CK}, Ci ∩ Cj = ∅. The objective is to find a seed set S ⊆ V of minimum
total cost that influences all groups in C, i.e, the problem asks to find

S = arg min
S′⊆V,σ(S)=K

c(S′)

We call an algorithm a (γ, σ)-bicriteria approximation for GIM problem if it returns a
solution S satisfying σ(S) ≥ γ· and c(S) ≤ σ · OPT, for γ, σ > 0.

The most of current research focuses only on IM based on individual users on OSNs.
However, we have recently studied the problem of the maximum spread of influence based
on groups and communities. In fact, if that one or several users in the network can archive
a large spread of influence based on their popularity, then, for a group or community where
the users joined in have the same interest issues, specifying one or several factors that have
a great impact on the behavior or choice of trends of the others is a good option. The
issue of concern in advertising today is that product information or advertisement will reach
the right potential customers, thereby reducing unnecessary advertising costs and increasing
the chances of generating beneficial results. By search for group influence, not only quickly
approaching when narrowing the search space, but also more accurately when the users are
potential candidates in the community. Besides, approaching dense networks, which is typical
of the reality OSNs such as Facebook, Twitter, etc., there is a high possibility of overlapping
communities, and users can belong to multiple communities. The group influence problem for
IM can be applied to spread information between groups and communities, in which this IM
variant focuses on finding seed users who have the most influence in their communities and
spreading that influence to other communities. We are now ready to introduce two problems
as follows.

Groups Influence with Minimum Cost in Social Network (GIM problem): we
studied a novel GIM problem which aims to find a seed set with smallest cost that can
influence all target groups, where each user is associated with a cost and a group is influenced
if the total score of the influenced users belong to the group is at least a certain threshold.
To address this challenge, we propose a bi-criteria polynomial-time approximation algorithm
with high certainty.
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4.3 Proposed algorithms

4.3.1 Threshold Benefit for Groups Influence in OSNs

Among this subsection, we present our efficient algorithm for the TGI problem with input
parameters, require a social network graph G = (V, E), an influence threshold T, and a set
of discrete groups C (Ci ∈ C, Ci ⊆ V ), in which each Ci has a specific influence threshold ti.
The output of the algorithm is a set of seeds S provided that its influence estimate exceeds the
influence threshold T so that resulting in the lowest total cost. We cover two search solutions
in this algorithm.

Algorithm 3: Generating a GBS for Group Ci

Input: Graph G = (V, E), Ci, γi

Output: A GBS Rj

1: Pick a source node u ∈ Ci with probability s(u)
γi

2: Initialize a queue Q = {u} and Rj = u
3: while Q is not empty do
4: v ← Q.pop()
5: for x ∈ Nin(v) \ (Rj ∪Q) do
6: With probability p(x, v): Q.push(x) and Rj ← Rj ∪ {u}
7: end for
8: end while
9: return Rj

We follow the method in [31] that uses the martingale theory for generating a sufficient
number of samples to make a good approximation of the objective function. If the number
of samples is at least T ≥ (2 + 2

3ϵ) 1
µ

1
ϵ2 ln(1

δ ) for δ ∈ (0, 1), σ̂i(S) is an (ϵ, δ)-approximation of
σ(S), i.e,

Pr[(1− ϵ)σi(S) ≤ σî(S) ≤ (1 + ϵ)σi(S)] ≥ 1− δ (4.6)

In the first solution, we first search for the seed set Si (Si ⊆ V ) that has the best effect on
each group of Ci, so that the influence estimate of Si exceeds ti (as determined by the formula
(4.4)) , which is considered to have affected the entire Ci group, with the search condition
mentioned in line 8 of the algorithm 4. In this process, we use the GBS sample generation
model (mentioned in algorithm 3) to estimate the effect for each target group Ci, with the
number of samples to be calculated as Ni (mentioned in line 3 algorithm 4), we assign these
parameters ϵ = 0.1 and δ = 1/n as a default setting. After joining the sets Si together, we
consider the seed set S to perform non-optimal seed elimination. In here, we are searching
for seeds that, if the influence estimate after eliminating them (by formula (4.5)) still exceeds
the threshold T , should be discarded, with the highest cost seeds being preferred, in order to
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Algorithm 4: RIS-based Heuristic Algorithm
Input: Graph G = (V, E), set of group C = {C1, C2, . . . , CK}, ϵ, δ
Output: A seed set S

1: U ← V
2: Si ← ∅,∀i ∈ [K]
3: Ni = (2 + 2

3ϵ)|Ci| 1
ϵ2 ln(1

δ )
/* Find the first candidate solution S1 */

4: S1 ← ∅
5: for i = 1 to K do
6: Gennerate a set of Ri containning Ni GBSs for group Ci by using Algorithm 3
7: while σî(Si) < ti do
8: u← arg maxv∈U\Si

σî(Si∪{v})−σî(Si)
c(v)

9: Si ← Si ∪ {u}
10: U ← U \ {u}
11: end while
12: end for
13: S0 ←

⋃︁
Si

14: S1 = S0
15: for i = 1 to K do
16: while S1 ̸= ∅ do
17: u← arg maxv∈S1 c(v)
18: if σ̂(S1 \ {u}) ≥ T then
19: S1 ← S1 \ {u}
20: end if
21: S1 ← S1 \ {u}
22: end while
23: end for

/* Find the second candidate solution S2 */
24: S2 ← ∅
25: for i = 1 to K do
26: Gennerate a set of Ri containts N ′

i GBSs Ri by using Algorithm 3
27: end for
28: while σ̂(S2) < T do
29: u← arg maxv∈V \S2

σ̂(S2∪{v})−σ̂(S2)
c(v)

30: S2 ← S2 ∪ {u}
31: end while
32: S ← arg minS′∈{S1,S2} c(S′)
33: return S

obtain the seed set with the lowest total cost.
Besides, the second solution ensures IM search by the conventional method, allowing both
solutions to be compared to find the best seed set. First, as solution 1, we generate GBS

samples with the amount of Ni for the target groups Ci. Then, we perform a sequential
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search for seeds in the vertex set V of the G graph until we reach threshold T then stopped,
so that the influence of this seed set is the largest, satisfying the search condition in line 29 of
algorithm 4. Finally, we compare the two solutions and choose the seed set with the lowest
total cost.

4.3.2 Groups Influence with Minimum Cost in OSNs

In this section, we first introduce the concept of Group Reverse Reachable (GRR) sample,
based on extending existing reverse reachable [2], and Reverse Influenceable Community (RIC)
[111] samples, to estimate the influence group function σ(·).

Definition 7 (GRR sample) Given an instance of GIM problem (G, C), a GRR sample is
generated by the following four steps:

1. Randomly select a group Ci with probability 1
K (call Ci a source group).

2. Generate a sample graph g according to the live-edge model under IC model.

3. For each node u ∈ Ci, return a node set Rg(u) that is reachable from u in g. We call u

a source node.

4. Return a GRR sample Rg = {Rg(u)|∀u ∈ Ci}, we also refer to C(Rg) as the source
group of Rg and t(Rg) as the threshold of C(Rg).

Our GRR sample is a nature extended version of the RR sample [1] by combining RR
samples with the source node belongs to the source group. Moreover, our GRR sample is
also an extended version of Reverse Influence Community (RIC) [111] which uses to estimate
the group influence with the score of each node is equal to 1. The main differences between
ours and RIC are: (1) the definition of GRR sample specifically determines whether or not a
group is influenced via the total score of influenced nodes but this is not well defined in the
RIC even when the score is equal to 1, (2) storing the reachable influence set for each node
in GRR sample can help us exploit some important properties that are used for analyzing
approximation ratio of proposed algorithms in the next sections.

For a set S ⊆ V and a GRR sample Rg, and for Rg(u) ∈ Rg, if Rg(u)∩S ̸= ∅, we say that
S covers node u, define:

cover-score(S, Rg(u)) = b(u) ·min{|S ∩Rg(u)|, 1} (4.7)

is score of source node u covered by S in Rg, we denote the following random variable:

Xg(S) =

⎧⎨⎩1, if
∑︁

Rg(u)∈Rg
cover-score(S, Rg) ≥ ti

0, otherwise
(4.8)
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The variable Xg(S) indicates that the total score of nodes covered by S is greater than
the threshold ti or not? When Xg(S) = 1, Ci is influenced by S in the sample graph g. It’s
also said that a sample Rg is influenced by S. The probability of generating a sample Rg is:

Pr[Rg] = 1
K

∑︂
g∼G:reach(u,g)=Rg(u),∀u∈C(Rg)

Pr[g ∼ G] (4.9)

where reach(u, g) is the set of nodes that can reach to u in g. We now show that we can
estimate the value of σ(S) by the expectation of Xg(S) which is a key property of GRR sample
that helps us devise the algorithms with theoretical bounds.

Lemma 5 For any set S ⊆ V , we have σ(S, C) = K ·E[Xg(S)] where the expectation is taken
over the randomness of g.

Proof We have

σ(S) =
∑︂

Ci∈C

∑︂
g∼G

Pr[g ∼ G]Xg(S, Ci) (4.10)

= K
∑︂

Ci∈C

1
K

∑︂
g∼G

Pr[g ∼ G]Xg(S, Ci) (4.11)

=
∑︂

Ci∈C

∑︂
g∼G

Pr[Ci is a source group] Pr[g ∼ G]Xg(S, Ci) (4.12)

= K · E[Xg(S)], (4.13)

where Xg(S, Ci) is the variable Xg(S) with source group Ci. The eq. (4.10) is due to the
definition of σ(S), and the eq. (4.12) follows from the fact that the probability of selecting
the source node is 1/K.

We introduce Algorithm 5 to generate a GRR sample. It first randomly chooses a source
group Ci in C (line 1). For each source node u in Ci, it generates a reverse reachable (RR)
set Rg(u) similar to that in the RIS model [4, 31, 5, 114].

Specifically, for each node u, the algorithm maintains a queue Q containing nodes that can
be reached from u on a random sample graph. To do this, it first adds u into Q and selects
the last node v in Q (line 4). It then randomly visits and adds its incoming neighbors into
Q and Rg(u) with probabilities equal to their edge probabilities. If incoming neighbors were
visited the algorithm adds them into Rg(u). This process continues until Q becomes empty.

From Lemma 5, we have an estimation of group influence function over a collection of
GRR sets R is:

σ̂(S) = K

|R|
·
∑︂

Rg∈R
Xg(S) (4.14)
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Algorithm 5: Generating a GRR sample
Input: Social network G = (V, E), set of groups C = {C1, C2, . . . , CK}
Output: A GRR sample Rg

Randomly pick a source group Ci among C
1: for each node u ∈ Ci do
2: Initialize a queue Q = {u} and Rg(u) = {u}
3: while Q is not empty do
4: v ← Q.pop()
5: for each node u ∈ Nin(v) \ (Rj ∪Q) do
6: if (u, v) was visited then
7: Q.push(u)
8: Rj ← Rj ∪ {u}
9: else

10: With probability p(u, v):
11: mark (u, v) is visited
12: Q.push(u)
13: Rj ← Rj ∪ {u}
14: end if
15: end for
16: end while
17: end for
18: return Rg = {Rg(u)|u ∈ Ci}

We observe that Xg(S) ∈ [0, 1]. Let random variable Mi =
∑︁i

j=1(Xg(S) − µX),∀i ≥ 1,
where µ = E[Xg(S)]. For a sequence of random variables M1, M2, . . . we have:

E[Mi|M1, . . . , Mj−1] = E[Mi−1] + E[Xi(A)− µ] (4.15)

= E[Mi−1] (4.16)

Therefore, M1, M2, . . . is a form of the martingale [100]. We utilize the following Lemma,
which is trivially derived from the martingale theory in [100]:

Lemma 6 ([100]) Given a set of MRR samples R with T = |R| and λ > 0, we have:

Pr
[︂ T∑︂

j=1
Xj(S)− T · µ ≥ λ

]︂
≤ e

− λ2

λ 2
3 +2µT (4.17)

Pr
[︂ T∑︂

j=1
Zj(S)− T · µ ≤ −λ

]︂
≤ e

− λ2
2µT (4.18)

55



In the Lemma 6, by replacing λ = ϵTµ with note that σ(S) = Kµ, we have:

Pr[σ̂(S) ≥ (1 + ϵ)σ(S)] ≤ e
− ϵ2µT

2+ 2
3 ϵ (4.19)

Pr[σ̂(S) ≤ (1− ϵ)σ(S)] ≤ e− ϵ2µT
2 (4.20)

Therefore, if the number of samples is at least T ≥ (2 + 2
3) 1

µ
1
ϵ2 ln(1

δ ) for δ ∈ (0, 1), σ̂R(S)
is an (ϵ, δ)-approximation of σ(S), i.e,

Pr[(1− ϵ)σ(S) ≤ σ̂R(S) ≤ (1 + ϵ)σ(S)] ≥ 1− δ (4.21)

In the following part, we are going to use this observation for devising algorithm that
guarantees the estimation of group influence function of the solution. We introduce two of
our proposed algorithms for GIM problem. From the analysis in Section 4.3.2, we can use
σ̂(S) to closely estimate σ(S) if the number of samples |R| is sufficiently large. Therefore,
instead of solving GIM directly, we find the solution of the following problem:

Definition 8 (Samples Influence with Minimal Cost (SIM) problem) Given a set of
GRR samples R. The problem asks to find a seed set S ⊆ V with minimal total cost so that
σ̂(S) = K, i.e, find S = arg minS′⊆V :σ̂(S)=K c(S′).

The idea behind of our algorithms is that we propose algorithms for solving SIM problem
and use them as a core in our framework, which creates multiple candidate solutions and selects
a final solution. We prove the approximation guarantees by utilizing martingale theory [100].

4.3.2.1 A bi-criteria approximation algorithm

We first propose the Modified Greedy (MoGreedy), a (1 + ln(|R|tmax)) bmax
bmin

-approximation
algorithm for SIM and then use it as the core of our bicriteria approximation algorithm.

An approximation algorithm for SIM.
First of all, it is not hard to see that SIM problem also is NP-hard and σ̂R(·) is non

submodular and non suppermodular. Therefore, similar to GIM, it does not admit a naive
greedy algorithm with any approximation ratio. We handle the challenges via introducing a
lower bound function F of σ̂R(·) and exploiting its properties.

Define f(S, Rg) be the total score of all source nodes in Rg which are influenced by set S

in sample graph g:

f(S, Rg) =
∑︂

u∈C(Rg)
cover-score(S, Rg(u)) (4.22)
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We can see that f(S, Rg) is a non negative and monotonic set function respect to S ⊆ V .
Denote ∆T f(S, Rg) = f(S ∪T, Rg)− f(S, Rg). We discover an important property of f(·, Rg)
in the following.

Lemma 7 For all S ⊆ T ⊆ V and v /∈ T , we have:

∆vf(S, Rg) ≥ bmin

bmax
·∆vf(T, Rg) (4.23)

where bmin = minv∈V b(v), bmax = maxv∈V b(v).

Define a set function g(S, Rg) = min
{︂

1,
f(S,Rg)

t(Rg)

}︂
, we also have following Lemma.

Lemma 8 For all S ⊆ T ⊆ V and v /∈ T , we have:

∆vg(S, Rg) ≥ bmin

bmax
·∆vg(T, Rg) (4.24)

Proof We consider following cases:
Case 1. t(Rg) ≥ f(S ∪ {v}, Rg) ≥ f(S, Rg), we have:

∆vg(S, Rg) =

= min
{︄

1,
f(S ∪ {v}, Rg)

t(Rg)

}︄
−min

{︄
1,

f(S, Rg)
t(Rg)

}︄

= f(S ∪ {v}, Rg)− f(S, Rg)
t(Rg)

In this case, we consider following three sub-cases:

• If t(Rg) ≥ f(T ∪ {v}, Rg) ≥ f(T, Rg) then g(T ∪ {v}, Rg) = f(T ∪{v},Rg)
t(Rg) , and g(T, Rg) =

f(T,Rg)
t(Rg) .

• If f(T ∪ {v}, Rg) ≥ t(Rg) ≥ f(T, Rg), then g(T ∪ {v}, Rg) = 1, and g(T, Rg) = f(T,Rg)
t(Rg) .

• If f(T ∪ {v}, Rg) ≥ f(T, Rg) ≥ t(Rg), g(T ∪ {u}, Rg) = g(T, Rg) = 1.

In three cases above, we also have:

∆vg(T, Rg) = g(T ∪ {v}, Rg)− g(T, Rg)

≤ f(T ∪ {v}, Rg)− f(T, Rg)
t(Rg)

≤ bmax

bmin

f(S ∪ {v}, Rg)− f(S, Rg)
t(Rg) (Lemma 7)
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Case 2. f(S ∪ {v}, Rg) ≥ t(Rg) ≥ f(S, Rg). In this case, we have f(T ∪ {v}, Rg) ≥ f(S ∪
{v}, Rg) ≥ t(Rg), and g(S, Rg) = f(S,Rg)

t(Rg) ≤ g(T, Rg) ≤ 1. Therefore g(T ∪ {v}, Rg) =
g(S ∪ {v}, Rg) = 1, and

∆vg(S, Rg) = 1− g(S, Rg) = g(T ∪ {v}, Rg)− g(S, Rg)

≥ g(T ∪ {v}, Rg)− g(T, Rg)

≥ bmin

bmax
· (g(T ∪ {v}, Rg)− g(T, Rg))

Case 3. f(S ∪ {v}, Rg) ≥ f(S, Rg) ≥ t(Rg). We obtain

min
{︄

1,
f(S ∪ {v}, Rg)

t(Rg)

}︄
= min

{︄
1,

f(S, Rg)
t(Rg)

}︄
= 1

min
{︄

1,
f(T ∪ {v}, Rg)

t(Rg)

}︄
= min

{︄
1,

f(T, Rg)
t(Rg)

}︄
= 1

Therefore, ∆vg(S, Rg) = bmin
bmax

∆vg(T, Rg) = 0. The proof is proved.

In order to influence all samples inR, it’s necessary to find S such that g(S, Rg) = 1, ∀Rg ∈
R. Therefore, we find S with minimal total cost such that

F (S,R) = K

T

∑︂
Rg∈R

g(S, Rg) = σ̂(S) = K (4.25)

Proof It is easy to see that ∆uF ′(S) ≥ bmin
bmax
·∆uF ′(T ), for S ⊆ T ⊆ V and u ∈ V \T . Denote

S′ = S0 \ Si = {s′
1, s′

2, . . . , s′
t}, S′

j = {s′
1, s′

2, . . . , s′
j}, j ≤ t, and S′

0 = ∅, we have:

K − F ′(Si) = F (S0)− F ′(Si) ≤ F ′(S0 ∪ Si)− F ′(Si)

= F ′(Si ∪ S′)− F ′(Si)

=
t∑︂

j=1
(F ′(Si ∪ S′

j)− F ′(Si ∪ S′
j−1))

≤
t∑︂

j=1

bmax

bmin
(F ′(Si ∪ s′

j)− F ′(Si))

≤ bmax

bmin
opt · 1

c(S′)

t∑︂
j=1

(F ′(Si ∪ s′
j)− F ′(Si))

(due to c(S′) ≤ opt)

= bmax

bmin
opt ·

∑︁t
j=1(F ′(Si ∪ s′

j)− F ′(Si))∑︁t
j=1 c(s′

j)
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For any positive numbers a1, . . . al and b1, . . . , bl. According to [101], we have:

min
i=1...l

ai

bi
≤
∑︁l

i=1 ai∑︁l
i=1 bi

≤ max
i=1...l

ai

bi
(4.26)

Apply above inequality, we obtain:

K − F ′(Si) ≤
bmax

bmin
opt · max

s′
j∈S′

F ′(Si ∪ s′
j)− F ′(Si)

c(s′
j)

≤ bmax

bmin
opt · F ′(Si ∪ si+1)− F ′(Si)

c(s′
j)

≤ bmax

bmin
opt · F ′(Si+1)− F ′(Si)

c(si+1)

By rearranging the terms we complete the proof.

Theorem 3 Algorithm 6 provides a bmax
bmin

(1 + ln(|R|tmax))-approximation solution for SIM
problem.

Proof Denote by Si = {s1, s2, . . . , si} the solution of algorithm after iterations i of main loop.
From Lemma 9, we have:

K − F ′(Si+1) ≤
(︃

1− bmin

bmax

c(si+1)
opt

)︃
(K − F ′(Si))

≤ e
− bmin

bmax

c(si+1)
opt · (K − F ′(Si))

≤ e
− bmin

bmax

∑︁i+1
j=1 c(si+1)

opt ·K

It follows that

K − F ′(Sl−1) ≤ e
− bmin

bmax

∑︁l−1
j=1 c(sj )

opt ·K = e
− bmin

bmax

c(Sl−1)
opt ·K

=⇒ c(Sl−1) ≤ bmax

bmin
opt · ln K

K − F ′(Sl−1)

≤ bmax

bmin
opt · ln(|R|tmax)

The last inequality is due to K − F ′(Sl−1) ≥ K − F (Sl−1) ≥ K
|R|

1
tmax

. Also, from Lemma
9 we imply that c(sl) ≤ bmax

bmin
opt. Therefore:

c(S) = c(Sl−1) + c(sl) ≤ (1 + ln(|R|tmax))bmax

bmin
opt

We complete the Proof.
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Theorem 4 (Complexity of MoGreedy) At each iteration, MoGreedy scans at most n nodes
and calculates the marginal gain value of F ′. Therefore, it takes O(|S|n) time complexity.

Bi-criteria approximation algorithm for GIM
Base on above theoretical analysis, we propose Modified Greedy (MoGreedy) (Algorithm

6) algorithm which utilizes the above characteristic of F (·,R). The general idea is that: we
iteratively add a node v into the current solution S, which maximizes the marginal gain per
its cost ∆v(S)/c(v) = min{K,F (S∪{v},R)}−F (S,R)

c(v) until the value of F (S) achieves K.

Algorithm 6: MoGreedy(R, C)
Input: A set of GRR samples R, set of groups C = {C1, C2, . . . , CK}
Output: Seed set S

1: S ← ∅
2: while F (S,R) < K do
3: vmax ← arg maxv∈V \S

min{K,F (S∪{v},R)}−F (S,R)
c(v)

4: S ← S ∪ {vmax}
5: end while
6: return S;

Denote by Si = {s1, s2, . . . , si} the solution after i iterations in Algorithm 6, S0 =
{s0

1, s0
2, . . . , s0

k} is an optimal solution of SIM problem and let opt = c(S0), we obtain the
following Lemma.

Lemma 9 For each iteration i in the MoGreedy algorithm, we have:

K − F ′(Si) ≤ opt · bmax

bmin
· F ′(Si+1)− F ′(Si)

c(si+1) (4.27)

where F ′(S) = min{K, F (S,R)}

We now present Groups Influence Approximation (GIA) algorithm, a (1 − ϵ, O(ln K +
ln ln n))-bi criteria approximation algorithm w.h.p for GIM problem. Our algorithm is in-
spired by the idea of Stop-and-Stare framework for IM problem [31], which devises a stopping
condition to check the quality of candidate solutions.

Due to the different between GIM and IM, we have to give another stopping condition to
check the candidate solutions and establish the number of required samples that ensure the
theoretical bounds of the final solution

GIA algorithm operates in multiple iterations and finds a candidate solution at each iter-
ation by leveraging MoGreedy algorithm and checks the quality of these solutions based on
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Algorithm 7: GIA algorithm
Input: Graph G = (V, E), set of groups C = {C1, C2, . . . , CK}, ϵ, δ ∈ (0, 1).
Output: A seed set S

1: Nmax = (2 + 2
3ϵ)K

ϵ2 ln
(︃

2( n
kmax

)
δ

)︃
,

2: N1 ← (2 + 2
3ϵ) 1

ϵ2 ln(1
δ )

3: imax ← ⌈log2(Nmax/N1)⌉, δ1 ← δ
2imax

4: Generate set of N1 samples R1
5: for i = 1 to imax do
6: Si ← MoGreedy(Ri, C)
7: Calculate Fl(S,Ri, ϵ, δ1) by Lemma 10
8: if Fl(S,Ri, ϵ, δ1) ≥ K − ϵK or i = imax then
9: break

10: else
11: Double size of Ri by generating |Ri| samples and adding them into Ri

12: Ri+1 ← Ri

13: end if
14: end for
15: return S

static evidences. Denote kmax = arg maxk=1...n

(︁n
k

)︁
, the algorithm needs at most

Nmax = (2 + 2
3ϵ)K

ϵ2 ln(2
(︄

n

kmax

)︄
/δ)

samples and operates in at most imax = ⌈log2(Nmax/N1)⌉ iterations, where N1 = (2 +
2
3ϵ) 1

ϵ2 ln(n
δ ). We then show that Nmax is the number of samples required that can ensure

the approximation ratio by Theorem 5.
At iteration i, the algorithm generates a set of (2 + 2

3ϵ) 1
ϵ2 ln(1

δ )2i−1 samples Ri and finds
a candidate solution Si by utilizing MoGreedy algorithm (line 5). We devise an stopping
condition and check the quality of Si in line 7. Note that, we do not reuse the stopping
condition in [31], which is used in a recent work [111].

Our stopping condition is based on a lower bound of function Fl(S,R, ϵ, δ) of f , defined
in Lemma 10.

We show that Fl gives a lower bound value of f w.h.p in Lemma 10. The algorithm then
checks the termination condition in line 7. This condition also helps us prove the approxima-
tion ratio more succinctly than Stop and Stare. If the condition is true, the algorithm returns
Si as a final solution. Otherwise, it doubles size of Ri and moves to the next iteration. The
details of the algorithm described in Algorithm 7.

Theoretical Analysis. The approximation analysis is based on martingale theory [100].
Apply Lemma 6, we can show that Fl(S,R, ϵ, δ) is an lower bound function of σ(S) with high
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probability.

Lemma 10 Given ϵ, δ ∈ (0, 1) and a any set S ⊆ V and a set of samples R. Denote
c = ln(1/δ), T = |R| and Fl(S,R, ϵ, δ) = min{σ̂R(S)−Kc

3T , σ̂R(S)+K
T (2c

3 −
√︂

4c2

9 + 2Tc σ̂R(S)
K )}.

We have Pr[σ(S) ≥ Fl(S,R, ϵ, δ)] ≥ 1− δ

Proof Denote µ = σ(S)
K , µ̂ = σ̂(S)

K and c = ln(1/δ). Apply (??) in Lemma 6 with λ =
c
3 +

√︂
c2

9 + 2cµT , we have:

Pr
[︂ T∑︂

j=1
Xj(S)− T · µ ≥ λ

]︂
≤ δ (4.28)

Therefore, the following event happen with probability at least 1− δ:

T∑︂
j=1

Xj(S)− T · µ ≤ λ (4.29)

⇐⇒ T µ̂− Tµ− c

3 ≤

√︄
c2

9 + 2cµT (4.30)

Solve the above inequality for µ, we have:

µ ≥ min

⎧⎨⎩µ̂− c

3T
, µ̂ + 1

T

⎛⎝2c

3 −

√︄
4c2

9 + 2Tcµ̂

⎞⎠⎫⎬⎭ (4.31)

Replace µ = σ(S)
K , µ̂ = σ̂(S)

K into above inequality we obtain the proof.

Lemma 11 shows an interesting property of the optimal solution of GIM problem, which
helps us find a connection between the our solution and the optimal solution.

Lemma 11 For any set of GRR samples R, we have: σ̂R(S∗) = K

Proof We prove this Lemma by contradiction. Assume that there is exist a set of GRR
sample R that σ̂R(S∗) < K, then there is exist a set R1 ⊆ R so that

∑︁
Rg∈R1 Xg(S∗) = 0.

Denote Ω is the space of GRR samples with probability of generating a sample defined in eq.
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(4.9), we have:

σ(S∗) = KE[Xg(S∗)] = K
∑︂

Rg∈Ω
Pr[Rg]Xg(S∗)

= K
∑︂

Rg∈R1

Pr[Rg]Xg(S∗) + K
∑︂

Rg∈Ω\R1

Pr[Rg]Xg(S∗)

= K
∑︂

Rg∈Ω\R1

Pr[Rg]Xg(S∗)

= K
∑︂

Rg∈Ω\R1

Pr[Rg] < K

This contracts with the fact that S∗ is an optimal solution of GIM problem. Therefore,
σ̂R(S∗) = K.

We formally claim the performance ratio of GIA algorithm in Theorem 5.

Theorem 5 For any input parameters ϵ, δ ∈ (0, 1), GIA algorithm returns a solution S

satisfying Pr[σ(S) ≥ K − ϵK] ≥ 1 − δ and c(S) ≤ bmax
bmin

(1 + ln
(︂
(2 + 2

3ϵ)ϵ−2
)︂

+ ln K +
ln(ntmax ln(n/δ)))OPT.

Proof Denote µ = σ(S)
K , µ̂ = σ̂(S)

K = 1 and c = ln(
(︁ n

kmax

)︁
/δ). In Algorithm ??, we consider

following bad events Bi : σ(Si) < K − ϵK, for each iteration i = 1, . . . , imax. We consider two
following cases:
Case 1. If the algorithm terminates at some iterations i = 1, . . . , imax − 1, apply Lemma ??
we have:

Pr(Bi) = Pr[σ(Si) < K −Kϵ]

≤ Pr[σ(Si) < Fl(Si,Ri, ϵ, δ1)] ≤ δ1.

Case 2. If the algorithm stops at iteration imax, applying Lemma ?? with a notice that
T = |R| = (2 + 2

3ϵ)K
ϵ2 ln

(︃
2( n

kmax
)

δ

)︃
≥ 2c/ϵ2 and µ̂ = 1, the following event happens with a
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probability of at least: 1− δ
2( n

kmax
) :

µ ≥ min

⎧⎨⎩µ̂− c

3T
, µ̂ + 1

T

⎛⎝2c

3 −

√︄
4c2

9 + 2Tcµ̂

⎞⎠⎫⎬⎭
= min

{︃
1− c

3T
, 1 + 1

T

(︃2c

3 −
(︃2c

3 +
√

2Tc

)︃)︃}︃
(Since a2 + b2 ≤ (a + b)2, a, b > 0)

≥ min
{︄

1− ϵ2

6 , 1−
√︃

2c

T

}︄

≥ min
{︄

1− ϵ2

6 , 1− ϵ

}︄
≥ 1− ϵ

Hence, Pr[Bimax ] = Pr[µ < 1 − ϵ] ≤ δ
2( n

kmax
) . Assume that |S| = k, there are at most

(︁n
k

)︁
possible solution, so we have:

Pr[∀Simax : Bimax ] ≤
(︄

n

k

)︄
δ

2
(︁ n

kmax

)︁ ≤ δ

2

By the union bound of the probabilities, none of the events Bi , i = 1, . . . , imax happens with
a probability at least 1− (imaxδ1 + δ

2) ≥ 1− δ, so we have:

Pr[σ(S) ≥ K − ϵK] ≥ 1− δ

Denote S0
i = arg minS:σRi

(S)=K c(S) and opti = c(S0
i ), where σRi(S) is an estimation of

σ(S) over Ri. From Lemma 11, we have σRi(S∗) = K, therefore opti ≤ c(S∗). From Theorem
5, we have:

c(Si) ≤
bmax

bmin
· (1 + ln(Nitmax)) opti

≤ bmax

bmin
· (1 + ln(Nmaxtmax)) opti

≤ bmax

bmin
(1 + ln

(︃
(2 + 2

3ϵ)ϵ−2
)︃

+ ln K+

+ ln(ntmax ln(n/δ))))OPT

which completes the proof.
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Theorem 6 (Complexity) GIA algorithm has

O

(︃
(n ln n + ln(1

δ
)ϵ−2)|C|η + n2) log n

)︃
time complexity, where ρ = |

⋃︁
i Ci| and η is the expectation of influence spread of a node.

Proof The algorithm spends its running time on generating GRR samples and MoGreedy
algorithm. Let I(S, v) denote the probability that a node set S influences v, and I(S) is
influence spread of node set S, we obtain:

E[|Rg|] = 1
K

∑︂
Ci∈C

∑︂
v∈Ci

∑︂
u∈V

I({u}, v)

= 1
K

∑︂
v∈C

∑︂
u∈V

I({u}, v)

= |C|
K

1
|C|

∑︂
u∈C

∑︂
v∈V

I({u}, v)

= |C|
K

1
|C|

∑︂
u∈C

I({u})

= |C|
K

η

Therefore generating samples takes O(Nmax
|C|η
K ) and the running time at any iteration i is

at most:

(kmax ln n + ln(1
δ

)ϵ−2)|C|η + |Si|n

= O

(︃
(n ln n + ln(1

δ
)ϵ−2)|C|η + n2

)︃
In addition,

imax = O(log Nmax

N1
) = O(log(Kn log n)

= O(log K + log n + log log n)

= O(log n) (Since K ≤ n)

This implies the time complexity of the algorithm.
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4.3.2.2 Exact Groups Influence Algorithm

We further propose Exact Groups Influence (EGI) algorithm, an (almost) exact solution for
with high probability for GIM by using integer programming for solving SIM problem instead
of MoGreedy algorithm and reusing the algorithmic framework of Algorithm 7.

Given a set of samples R, we formulate the integer linear programming for solving SIM
problem for an instance (R,C) of SIM problem, denoted by IP(R, C), as follows:

min:
∑︂
v∈v

xvc(v) (4.32)

s.t:
∑︂

u∈Rg

min

⎧⎨⎩ ∑︂
v∈Rg(u)

xv, 1

⎫⎬⎭ b(u) ≥ t(Rg), ∀Rg ∈ R (4.33)

xv ∈ {0, 1}, ∀v ∈ V (4.34)

where

xv =

⎧⎨⎩1, if v is selected in the solution S

0, otherwise
(4.35)

The objective of the IP is to select a seed set with minimal total cost. The constraints
(4.33), (4.34) ensure all target groups be influenced by S.

Algorithm 8: EGI algorithm
Input: Graph G = (V, E), set of K target groups C = {C1, C2, . . . , CK}, ϵ, δ ∈ (0, 1).
Output: Seed set S

1: Nmax = (2 + 2
3ϵ)K

ϵ2 ln
(︃

2( n
kmax

)
δ

)︃
, N1 ← 1

ϵ2 ln(1
δ )

2: imax ← ⌈log2(Nmax/N1)⌉, δ1 ← δ
2(imax−1)

3: Generate set of N1 samples R1
4: for i = 1 to imax do
5: Si ← a solution by solving IP(Ri, C).
6: Calculate Fl(Si,Ri, ϵ, δ1) by Lemma 10
7: Double size of Ri by generating |Ri| samples and add them into Ri

8: Ri+1 ← Ri

9: if Fl(Si,Ri+1, ϵ, δ1) ≥ (1− ϵ)Kor i = imax then
10: return Si

11: end if
12: end for
13: return Si

The details of EGI is presented in Algorithm 8. We only replace MoGreedy in GIA by solving
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IP(Ri, C) (line 7), the rest of this algorithm is the same as EGI. By very similar reasoning
with that in Theorem 5, we can also prove the approximation ratio of EGI as follows.

Theorem 7 For any ϵ, δ ∈ (0, 1), the Algorithm 8 returns a solution S satisfying σ(S) ≥
K − ϵK and c(S) ≤ OPT with probability at least 1− δ.

4.4 Experiment

In this section, we conduct our algorithm with many real datasets in large social networks.
To provide a comprehensive performance experiment, we separate the experiment into two
parts: one is for the TGI problem, and another is for the GIM problem.

4.4.1 Threshold Benefit for Groups Influence in OSNs

4.4.1.1 Experimental Settings

Datasets. In the experiment with the TGI algorithm, we experiment with 6 datasets for the
problem of information propagation with different sizes. The datasets are described in Table
4.1 below. In which, the small and medium datasets calculated by the TGI algorithm are
divided into several groups with a maximum of K = 100 groups (excluding discrete vertices),
each group has from 1 to 10 vertices.

Table 4.1: TGI experimental datasets

Dataset #Nodes #Edges Avg.Deg Directed #K Source
Email-Eu-core 1,005 20,777 3.3 Directed 30 [115]
Gnutella 6,301 20,777 3.3 Directed 100 [102]
Wiki-vote 6,301 20,777 3.3 Directed 100 [116]
Net-Hept 15,233 58,891 5.5 Undirected 100 [104]
Net-Phy 37,154 231,584 13.4 Undirected 100 [12]
Email-Enron 36,692 183,831 5.0 Undirected 100 [103]

Parameters setting. All experiments are propagated under the IC information propa-
gation model with the given edge probability p(u) = p(u, v) = 1/|Nin(v)|.

In the formula to calculate the number of GBS samples (line number 3 in algorithm 2), the
parameters ϵ = 0.1 and δ = 1/n are the default assignment values. And the Degree algorithm
with the number of Monte Carlo iterations t = 100, 000 times. The entire generating of GBS
live-edge samples and the Monte Carlo propagation simulation iteration is time-optimized up
to 4 threads.

For the TGI algorithm that aims to propagate the effect across groups, ∀u ∈ Ci the score of
u is assigned s(u) = 1 , and the threshold of group Ci ti =

∑︁
u∈Ci

s(u)/2 for i = 1 . . . K Each
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node has its cost c(u) = 1/|Nout(v)| with the support (0, 1] and its benefit assigned b(u) = 1
if has entry degree, and vice versa.

We experimented all dataset with a Linux machine with a 2 x Intel(R) Xeon(R) CPU
E5-2630 v4 @2.20GHz, 64GB RAM DDR4 @ 2400MHz. The TGI algorithm and the High
Degree algorithm are written in Python 3 language.

4.4.1.2 Experiment results

In the experimental comparison between algorithms, we give the advantages and disadvantages
of the TGI algorithm.

Comparision of the total cost for seed set. Regarding the seed set cost comparison,
the datasets are compared in (Fig. 4.1), we evaluate the High Degree algorithm better in
most of the experiments. The total cost at High Degree thresholds is more optimal as the
thresholds are larger. To explain this reason, we notice that there is an inconsistency between
the given number of K groups and the size of the dataset, as well as the magnitude of the
cluster peaks belonging to the group. On this point, we will improve in future experiments
with more stable group quality.

Figure 4.1: Total cost compared between TGI and DEGREE algorithms within threshold Ti

from 25 to 800

25 50 75 100 125 150 175 200 225 250

0.01

0.1

1

10
DEGREE

TGI

Email-Eu-core

Threshold T

Co
st

100 200 300 400 500 600 700 800

0.1

1

10

100

DEGREE

TGI

Gnutella

Threshold T

Co
st

50 100 150 200 250 300 350 400 450

0.1

1

10

100
DEGREE

TGI

Wiki-vote

Threshold T

Co
st

(a) Email-Eu-core (b) Gnutella (c) Wiki-Vote

150 200 250 300 350 400 450 500 550 600

0.1

1

10

100
DEGREE

TGI

Net-Hept

Threshold T

Co
st

100 125 150 175 200 225 250 275 300

0.1

1

10

100
DEGREE

TGI

Net-Phy

Threshold T

Co
st

25 50 75 100 125 150 175 200

0.01

0.1

1

10

100

1000

10,000 DEGREE

TGI

Email-Enron

Threshold T

Co
st

(d) Net-Hept (e) Net-Phy (f) Email-Enron

Comparision of running time. Regarding the running time comparison (Fig. 4.2),
the running time of TGI will be better than the High Degree algorithm if the threshold T

is predicted in the range that best fits the dataset. In general, the High Degree algorithm
is a simple heuristic algorithm, using Monte Carlo simulation to propagate information, the
algorithm will stop when the benefit estimate exceeds the threshold T , so when comparing
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the time running, High Degree really dominated. We have ensured that the Monte Carlo
computation time of High Degree is roughly equivalent to the generation time of the proposed
GBS samples with an iteration of 1000 times. However, the TGI algorithm uses the method of
removing unnecessary seeds to ensure that the propagation estimate is closest to the threshold
T , in order to obtain the lowest cost. Since then, the propagation estimation value of TGI
not only stops when it exceeds T but also considers the search and elimination time, the time
that takes up almost the majority of the time in the experiment with the TGI algorithm. We
observe that this is inevitable when traversing the thresholds T to find the best seed set.

Figure 4.2: Running time compared between TGI and DEGREE algorithms within threshold
Ti from 25 to 800
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Comparision of memory usage. In terms of memory usage comparison, when com-
paring the two algorithms, the memory usage for the TGI algorithm is higher than High
Degree but not significantly (Table. 4.2). However, both algorithms have a rather high cost
of memory usage.

4.4.2 Groups Influence with Minimum Cost in OSNs

4.4.3 Experimental Settings

Dataset. We use public OSN datasets in the experiments, which are shown in Table 4.3.
These data sets are widely used in the related work [dataset, 111].

Parameters setting. All experiments are under the IC model with edge probabilities set
to p(u, v) = 1/|Nin(v)|. This weight setting is adopted from prior works [1, 4, 5, 31, 114, 10,
111]. We set parameters ϵ = 0.1, δ = 1/n and the limited time is 6 hours. For the purpose of
providing a comprehensive experiment, we divide the experiment in following two cases.
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Table 4.2: Memory usage compared between TGI and DEGREE algorithms within threshold
Ti from 25 to 800

(a)

Dataset Threshold Algorithm
DEGREE TGI

EmailEu-core

Ti = 25 359,940 430,740
Ti = 50 360,040 435,748
Ti = 75 360,296 430,228
Ti = 100 360,296 428,948
Ti = 125 360,312 431,508
Ti = 150 360,632 437,540
Ti = 175 360,924 430,228
Ti = 200 361,032 430,228
Ti = 225 360,568 428,692
Ti = 250 361,364 434,292

Gnutella

Ti = 100 371,736 476,388
Ti = 200 371,172 487,524
Ti = 300 371,572 494,948
Ti = 400 371,784 487,268
Ti = 500 372,400 507,620
Ti = 600 372,904 487,332
Ti = 700 374,668 507,940
Ti = 800 375,164 469,348

Wiki-Vote

Ti = 50 387,644 470,492
Ti = 100 388,884 464,484
Ti = 150 389,016 456,416
Ti = 200 389,104 485,468
Ti = 250 389,292 475,776
Ti = 300 389,400 487,928
Ti = 350 388,644 456,424
Ti = 400 388,772 480,944
Ti = 450 390,248 461,668

(b)

Dataset Threshold Algorithm
DEGREE TGI

Net-Hept

Ti = 150 387,632 488,976
Ti = 200 396,464 486,160
Ti = 250 394,032 476,380
Ti = 300 398,480 488,272
Ti = 350 398,540 486,160
Ti = 400 398,920 453,192
Ti = 450 398,924 459,920
Ti = 500 398,968 457,872
Ti = 550 394,596 484,112
Ti = 600 399,320 473,052

Net-Phy

Ti = 100 455,364 545,824
Ti = 125 460,308 556,680
Ti = 150 463,116 556,000
Ti = 175 467,540 543,264
Ti = 200 469,600 544,032
Ti = 225 472,404 553,444
Ti = 250 475,424 549,412
Ti = 275 479,536 528,048
Ti = 300 481,404 528,576

Email-Enron

Ti = 25 454,092 558,012
Ti = 50 445,024 572,864
Ti = 75 459,980 533,628
Ti = 100 465,308 539,912
Ti = 125 458,180 571,372
Ti = 150 469,012 547,356
Ti = 175 463,532 573,584
Ti = 200 476,108 543,588

• Case 1. Uniform Cost (UC). In this case, s(u) = 1,∀u ∈ U , and the thresholds
ti =

∑︁
u∈Ci

s(u)/2 for i = 1 . . . K according to the setting in [111] and the cost c(u) =
1, ∀u ∈ V .

• Case 2. General Cost (GC). Each node has its cost calculated under Normalized
Linear model with the support (0, 1] according to recent works [120, 121, 49] and s(u) =
1, ∀u ∈ V , and the thresholds ti =

∑︁
u∈Ci

s(u)/2 for i = 1 . . . K according to the setting
in [111].

Algorithms compared. To our knowledge, there is no existing algorithm can be adopted
to solve the GIM problem directly. Therefore, we compare our GIA and EGI algorithms with
the state-of-the-art algorithms for the closest problem: Influence Maximization at Commu-
nity level (IMC) [111]. Also, we adapt High Degree, a common baseline algorithm for related
problem on information diffusion [1, 27, 12]. These algorithms are described in detail as fol-
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Table 4.3: GIM experimental datasets

Dataset #Nodes #Edges Avg.Deg Directed Source
Facebook 747 60.05K 81 Directed [117]
Wiki 7.1K 103.6K 15 Directed [116]
Epinions 76K 508.8K 7 Directed [118]
DBLP 317K 1.05M 4 Directed [106]
Pokec 1.6M 30.6M 20 Directed [119]

lows.

• UBG (Upper Bound Greedy) [111]. This is the best performance algorithm for the
Influence Maximization at Community level (IMC) problem, which finds a set seed of k

nodes that can influence to the largest number of groups while GIM problem requires to
find the set of nodes with minimal cost that can influence all target groups. Therefore,
we adapt UBG algorithm with some modifications as follows. We first initialize an
empty candidate solution S. We then sequentially use UBG with k from 1 to n to find
the best influence node then add it into S until the estimation σ̂(S) in each algorithm
is at least (1− ϵ)K.

• MAF [111]. This is also an algorithm for IMC problem. We also modify it as the
workflow in UBG to adapt for GIM problem.

• High Degree (HD). We repetitively select a node with highest degree until the current
solution influence all target groups.

For all above algorithms, we use the Monte-Carlo method in [122] to obtain an (ϵ, δ)-
approximation for estimating influence group function. We implement GIA in C++ using
CPLEX to solve the IP.
For each algorithm, we run 5 times to get the average results.

4.4.4 Experiment results

We first compare the performance of algorithms under UC case (Figure 4.3, 4.4 and 4.5).
For the solution quality, measured by the size of seed set, GIA and EGI outperform other
algorithms by a large gap. Specifically, they are up to 2.5 times better than UBG and MAF.
EGI provides the best solution. It returns the solution with total cost up to 1.2 times lower
than that of GIA.

Although UBG can give better results than MAF and HD in general but it does not
give any approximation ratio for GIM problem. The selection of a fixed-size seed set in each
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Figure 4.3: Size of seed set returned by GIA, EGI and other algorithms under the UC setting
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Figure 4.4: Ratio of number of influenced groups over K of GIA, EGI and other algorithms
under the UC setting
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iteration of binary search makes UBG to select many seed nodes unnecessary. The same
happens with MAF. HD returns the poor results sine it is a simple heuristic and only consider
degree of nodes instead of influencing to groups. We further report the ratio of number of
influenced groups over K of algorithms in Fig. 4.4. It can be seen that GIA EGI can output
ratios that are above (1 − ϵ) in most cases and outperforms MAF and UBG. This is due to:
(1) our algorithms always make sure all GRRs influenced and (2) stopping conditions in our
algorithms ensure that σ(S) ≥ (1 − ϵ)K with high certain. These results confirm that the
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Figure 4.5: Running time of GIA, EGI and other algorithms under the UC setting
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proposed algorithm is more efficient than the other algorithms. They not only ensure the
approximation guarantee but also return the smaller-size set of nodes in practice.

Fig 4.5 shows the running time of algorithms. We do not report the running time of
HD because it a simple heuristic algorithm and can finish within some seconds. GIA is the
fastest algorithm. It is up to approximately 840 and 646 times faster than MAF and UBG,
respectively. This is because the mechanisms of MAF and UBG consist of many iterations
to find the seed set that can reach to the terminal condition. In contrast, GIA follows the
mechanism of our framework which can finds the final solution after a few loops and it finish
with the largest network within only a few seconds. EGI has the longest running time since it
uses IP solver to find the candidate solution instead of modified greedy. Although EGI gives
the best quality of the solutions, it cannot be completed for the Pokec network when K is
large within limited time. Interestingly, when K increases, the runtime of our algorithms does
not decrease in some cases. This could be explained by: the larger the value of K, the earlier
the terminal condition is satisfied, making our algorithms can finish within less iterations.

We next conduct the experiments under GC case. The results are showed in Figure 4.6,
4.7 and 4.8. We first compare the quality solution, measured by the total cost of seed set.
Similar to the previous case, our algorithms outperform the others in term of solution quality
and EGI also provides the best solution. The reason is that MAF and UBG only consider the
candidate seed sets with fixed-size and they do not consider the cost of nodes. Again, our
algorithms give ratios that are above (1 − ϵ) in most cases. MAF and UBG give lower and
unstable ratios. We also show the running time of algorithms in Figure 4.8. GIA is fastest
algorithm in all cases and EGI has the longest running time. These results are consistent with
the previous case.
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Figure 4.6: Size of seed set returned by GIA, EGI and other algorithms under the GC setting
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Figure 4.7: Ratio of number of influenced groups over K of GIA, EGI and other algorithms
under the GC setting
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4.5 Discussion

In this chapter, we introduce two efficient algorithms for Groups Influence Maximization,
named TGI problem and GIM problem. Next, we also present a framework algorithmic for
find good candidate solutions with provable guarantee and a nove group reachable reverse
sample technique. Finally, we extensive experiments to conduct on some real datasets in
large network.
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Figure 4.8: Running time of GIA, EGI and other algorithms under the GC setting
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Chapter 5

Influence Maximization with k-topic in
Social Network

This chapter proposes an overview of Submodular Maximization and k-Submodular Maxi-
mization problem in the first section. The second section then shows the problem definition
and the main algorithm as the k-submodular cover, named kSC. Next, the last section dis-
cusses the result of the experiment of the proposed algorithm on real-world datasets.

5.1 Introduction

Submodular Maximization problems have recently received attention in many computer sci-
ences and economics, such as machine learning, game theory, and combinatorial optimization.
The Submodular Maximization problem can be defined as follows [123]:

Given a utility function f : 2V ↦→ R+ that measures the quality of a given subset S ⊆ V

where V − {e1, . . . , em} is the ground set, f is the monotone submodular if for any S ⊆ T ⊆
V, f(S) ≥ f(T ) and for any x /∈ T , we have:

f(S ∪ {x})− f(S) ≤ f(T ∪ {x})− f(T ) (5.1)

Basically, k-submodular function is a natural generalization of submodular function to
k dimension. The k-submodular optimization problems have attracted a lot of attention
because of their important role various domains such as influence maximization [69, 124,
125, 73], sensor placement [69, 124, 125], feature selection [60] and information coverage
maximization [125]. Given a finite ground set V and an integer k, we define [k] = {1, 2, . . . , k}
and (k + 1)V = {(X1, X2, . . . , Xk)|Xi ⊆ V,∀i ∈ [k], Xi ∩ Xj = ∅, ∀i ̸= j} be a family of k

disjoint sets. A function f : (k + 1)V ↦→ R+ is k-submodular iff for any x = (X1, X2, . . . , Xk)
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and y = (Y1, Y2, . . . , Yk) ∈ (k + 1)V , we have:

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) (5.2)

where
x ⊓ y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x ⊔ y =

⎛⎝X1 ∪ Y1 \ (
⋃︂
i ̸=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃︂
i ̸=k

Xi ∪ Yi)

⎞⎠
The problem of maximizing a k-submodular function has recently pad a lot of attentions
due to its application in various domains. The problem is NP-hard in general. Singh et
al. first studied on maximizing a k-submodular function with k = 2, i.e, bisubmodular
[60]. For the problem of maximizing an unconstrained k-submodular function, Ward et al.
[75] proposed a deterministic greedy algorithm with an approximation ratio of 1/3. The
author in [76] improved the approximation ratio to k

2k−1 in expectation by introducing a
probability distribution to select any larger marginal element that has a higher probability.
[77] derandomized the algorithm in [76] while remain the approximation ratio. However, the
number of queries of their algorithm increased to O(n2k2).

The size constraint or cardinality constrant is an important constraint in studying the
k-submodular function maximization problem. Under this constraint, Oshaka et al. [69] first
proposed a greedy approach that returns an approximation ratio of 1/2 and this approach
can give an approximation ratio of 1/2 for the matroid contraint [70]. The authors in [125]
proposed multi-objective evolutionary algorithms that provided 1/2-approximation ratio un-
der the size constraint but took O(kn log2 B) queries in expectation. Recently, Nguyen [124]
et al. proposed efficient streaming algorithms with performance guarantees.

Besides the size constraint, the problem of k-submodular maximization has studied under
richer constraints, such as knapsack, budget, matroid, etc. Under a matroid constraint, the
work [70] showed a Greedy algorithm can provide approximation ratio of 1/2. [124] proved
that the differentially private continuous Greedy method can provide the same approximation
ratio. Recently, Tang et al. [81] first investigated the problem under knapsack constraint
and devised a (1/2 − 1/(2e))-approximation algorithm within O(n4k3) queries inspired by
the Greedy algorithm in [82]. Pham et al. [88] considered the problem under the budget
constraint, a general of knapsack constraint and proposed two deterministic and random
streaming algorithms.

Although there have been many attempts to solve the problem of maximizing a k-submodular
function under various constraints, however, the problem cannot reflect some practical ap-
plications where one needs to find the a set with smallest size so that the objective function
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Table 5.1: Table of the usually used notations

Notation Description
G a graph.
n the number of nodes in the graph G.
V the set of nodes in the graph G. |V | = n.
2V the subset family of V .
E the set of edges in the graph G.
m the number of edges in the graph. |E| = m.
S a seed set S

f, h the submodular functions
f(S) the number of influenced nodes/users by the seed set S

T the threshold of f(S)
Si S at the i-th step where i = 0, 1, 2, ...

v an arbitrary node in V .
u a neighbor node of v in V .
w the set of weighted values of all edges in the graph G.
p(u, v) the weighted value of the edge (u, v)
k an upper bounded of |S|.
g a sample graph in G.

r
the number of sample graph generated from the original graph G =
(V, E).

Gi = (V, Ei)
the i-th sample graph generated from the original graph G = (V, E),
where i = 1, 2, ..., r

greater than or equal to a certain threshold. Let’s consider the following application:

Influence Threshold with k topics. Given a social network under an information
diffusion model and k topics. Each user has a cost to start the influence under a topic which
manifests how hard it is to initially influence to a respective person. Given a threshold T ,
we consider the problem of finding a set of users (seed set) with minimal size in which each
user initially adopts a topic so that the expected number influenced users (who are eventually
activated by at least one topic) is at least threshold T . In this application, the expected
number of influenced users (objective) function is k-submodular where each user corresponds
to each element in the set V [69, 124, 73].

Furthermore, streaming algorithms for submodular maximization have been extensively
studied in many prior works because they produce solutions quickly and avoid excessive mem-
ory storage. In particular, the amount of data increases rapidly in the case of the online appli-
cations in social networks. In some practical applications, the data has increased very quickly
that the memory computer cannot store an amount of data in time. Reducing data storage
memory and providing guarantee solutions need to be considered. The streaming algorithm
is one efficient approach to solving the submodular and k-submodular function maximization
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problem. To our best knowledge, Badanidiyuru et al. [83] is the first to introduce an efficient
streaming algorithm with a constant coefficient (1/2− ϵ)-approximation guarantee. In addi-
tion, the author in [126] [127] [128] also investigated the submodular maximization problem in
scenarios with many kinds of constraints by streaming algorithms. After that, Lan Nguyen et
al. [73] also proposed two novel streaming algorithms for k-submodular maximization named
DStream and RStream that used O(nk

γ log( (1+ϵ)(1+γ)
1−ϵ BM)) and O(nkη

γ log( ((1+ϵ)2+4Bϵ)(1+γ)
(1−ϵ)2 ))

query complexity when f was monotone and f was non-monotone. Similarly, [84] [89] also
introduced the streaming algorithm for submodular function maximization under noise mod-
els. These methods, however, are only applied to the k-submodular function maximization
issue; they are not suitable to the k-submodular cover problem. Due to the distinctions be-
tween the submodularity and k-submodularity settings, it cannot be directly applied to our
kSC problems. Motivated by the abovementioned results,we develop an efficient streaming
algorithm for the k-submodular cover problem with a bi-criteria approximation ratio. Our
algorithm desires only a single pass or a few passes over all the data in real datasets. It
provides theoretical guarantee solutions regarding several query complexity, memory usage,
and approximation ratio setting.

5.2 Problem definition

Motivated by that observation, in this work, we study a novel problem named k-submodular
cover (kSC), defined as follows:

Definition 9 (kSC problem) Given a finite set V , a monotone k-submodular function f :
(k + 1)V ↦→ R+, and a threshold T ≤ maxx∈(k+1)V f(x). The problem asks to find a solution
s = (S1, S2, . . . , Sk) with the size supp(s) =

∑︁k
i=1 |Si| is minimal so that the function f(s) ≥

T .

We use following notations throughout the Ph.D thesis as the follows:
Given a finite set V and an integer k, we denote [k] as the set {1, 2, . . . , k}. For x =

(X1, X2, . . . , Xk), y = (Y1, Y2, . . . , Yk) ∈ (k + 1)V , we set if e ∈ Xi then x(e) = i and i is
called the position of e, otherwise x(e) = 0. Adding an element e /∈ supp(x) into Xi can
be represented by a tuple x ⊔ (e, i). When Xi = {e}, and Xj = ∅,∀j ̸= i, x is denoted by
(e, i). For any x, y ∈ (1 + k)V , x ⊑ y iff Xi ⊆ Yi ∀i ∈ [k]. Finally, we define suppi(x) = Xi,
supp(x) = ∪i∈[k]Xi and an empty k-set 0 = (∅, . . . , ∅).

A function f : (k+1)V → R+ is monotone if for any x ⊑ y, f(x) ≤ f(y) and f : (k+1)V →
R+ is k-submodular if for any x and y:

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) (5.3)
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where x⊓y = (X1 ∩Y1, X2 ∩Y2, . . . , Xk ∩Yk) and x⊔y = (X1 ∪Y1 \ (
⋃︁

i ̸=1 X1 ∪Y1), . . . , Xk ∪
Yk \ (

⋃︁
i ̸=k Xi ∪ Yi)).

The function f : (k + 1)V ↦→ R+ is k-submodular iff for any x = (X1, X2, . . . , Xk) and
y = (Y1, Y2, . . . , Yk) ∈ (k + 1)V , we have:

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) (5.4)

where
x ⊓ y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and
x ⊔ y = (Z1, . . . , Zk), where Zi = Xi ∪ Yi \ (

⋃︂
j ̸=i

Xj ∪ Yj)

In this work, we consider f is monotone, i.e, for any x ∈ (k + 1)V , e /∈ supp(x) and i ∈ [k], we
have:

∆(e,i)f(x) =f(X1, . . . , Xi−1, Xi ∪ {e}, Xi+1, . . . , Xk)

− f(X1, . . . , Xk) ≥ 0

From Ohsaka [69], the k-submodularity of f implies the orthant submodularity, i.e,

∆(e,i)f(x) ≥ ∆(e,i)f(y) (5.5)

for any x, y ∈ (k + 1)V , e /∈ supp(x), x ⊑ y and i ∈ [k]; and the pairwise monotonicity, i.e, for
any i, j ∈ [k], i ̸= j:

∆(e,i)f(x) + ∆(e,j)f(x) ≥ 0 (5.6)

In this thesis, we assume that function f is normalized, f(∅) = 0 and each element e was
a positive cost ci(e) and we only consider k ≥ 2 because if k = 1, the k-submodular function
becomes the submodular function.

5.3 Proposed algorithm

Theorem 8 Algorithm 9 is an (1 + log(1/λ), 1−λ
2 )-bi criteria approximation algorithm, i.e,

it returns a solution s so that supp(s) ≤ (1 + log(1/λ)) · opt and f(s) ≥ T (1− λ)/2.

Proof It is easy to see that there exist a positive i ∈ [∆] so that opt
1+ϵ ≤ v = (1 + ϵ)i ≤ opt.

We consider following cases:
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Algorithm 9: k-Threshold Greedy
Input: a k-submodular function f : (k + 1)V → R+, an integer threshold T ,

accuracy parameters ϵ, λ
Output: A solution s

1: for i = 0 to ⌈log(n)/ϵ⌉ do
2: v ← (1 + ϵ)i

3: si ← 0
4: j ← 0
5: while j ≤ log(1/λ)/ϵ do
6: θ ← 1−ϵ

v (T − 2f(si))
7: for each node e ∈ V do
8: ie ← arg maxi∈[k] ∆(e,ie)(si)
9: if ∆(e,ie)f(si) ≥ θ then

10: si ← si ⊔ (e, ie)
11: end if
12: if f(si) ≥ T (1− λ)/2 then
13: break;
14: end if
15: end for
16: j ← j + 1
17: end while
18: end for
19: return arg min,j∈[l],f(sj)≥T (1−λ)/2 |Supp(sj)|

Case 1: The main loop meets the condition in line 13 and it terminates before j < log(1/λ)ϵ.
We have f(s) ≥ (1− λ)/2

Lemma 12 At the end of the outer loop of the algorithm 10, we have:

T ≤ 2f(sj) + opt · θj (5.7)

Proof To prove the lemma, for the candidate solution sj we first define following notations:

• (el, il) as the l-th element added into sj .

• sl
j the solution when adding l elements.

• ol = (o ⊔ sl
j) ⊔ sl

j .

• ol−1/2 = (o ⊔ sl
j) ⊔ sl−1

j .
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Algorithm 10: Streaming Algorithm
Input: an evaluation oracle of a k-submodular function f : (k + 1)V ↦→ R+, threshold

T > 0, ϵ.
Output: A solution s

1: l← ⌈log(n)/ϵ⌉
2: s1, . . . , sl ← 0
3: for each node e ∈ V do
4: for j = 0 to l do
5: θj ← ϵT/(1 + ϵ)j

6: ie ← arg maxi∈[k] ∆(e,i)(sj)
7: if ∆(e,ie)(sj) ≥ θj then
8: sj ← sj ⊔ (e, ie)
9: end if

10: if supp(sj) = (1− ϵ)(1 + ϵ)j/(2ϵ) then
11: break;
12: end if
13: end for
14: end for
15: s← arg minsj ,j∈[l],f(sj)≥T (1−ϵ)/2 supp(sj)
16: return s

• sl−1/2
j : If el ∈ supp(o), then sl−1/2

j = sl−1
j ⊔ (el, o(el)). If el /∈ supp(o), sl−1/2

j = sl−1
j .

• ut = {(u1, i1), (u2, i2), . . . , (ur, ir)}: a set of elements that are in ot but not in st
j ,

r = |supp(ut)|.

• ut
q = sj ⊔ {(u1, i1), (u2, i2), . . . , (uq, iq)},∀1 ≤ q ≤ r and ut

0 = sj .

By the monotoncity of and the k-submodular property of f and note that T ≤ f(o) = f(o0).
For t = |supp(sj)| we obtain:

f(o)− f(ot) =
t∑︂

i=0
(f(oi−1)− f(oi))

≤
t∑︂

l=0
(f(ol−1)− f(ol−1/2)) (due to the monotoncity of f )

≤
t∑︂

l=0
(f(sl−1/2

j )− f(sl−1
j )) (due to the k-submodularity)

≤
t∑︂

l=0
(f(sl

j)− f(sl−1
j )) (due to the selection of algorithm)

≤ f(sj)
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Therefore,

T − f(sj) ≤ f(o)− f(ot) + f(ot)− f(sj) (5.8)

≤ f(sj) +
|supp(ut)|∑︂

l=1
(f(ut

l)− f(ut
l−1)) (5.9)

≤ f(sj) +
|supp(ut)|∑︂

l=1
(f(sj ⊔ (ul, il))− f(sj)) (5.10)

≤ f(sj) + opt · θj (5.11)

which implies the proof.

Theorem 9 Algorithm 10 is an ( (1−ϵ)(1+ϵ)
2ϵ , 1−ϵ

2 )-bi criteria approximation algorithm, i.e, it
returns a solution s so that supp(s) ≤ (1− ϵ2)/(2ϵ) · opt and f(s) ≥ T (1− ϵ)/2.

Proof Since there exist x ∈ V (k+1) so that f(x) ≥ T , opt ≤ n. Therefore, there exits an
integer j ∈ {0, 1, . . . , ⌈log(n)/ϵ⌉} so that v

1+ϵ ≤ opt ≤ v where v = (1 + ϵ)j . The inner loop of
the algorithm terminates when meets the condition in line 9, or scans over the ground set V

one time. So we consider two following cases:
Case 1. If the terminal condition in line 9 is meet, we have supp(sj) = (1−ϵ)(1+ϵ)j

2ϵ = 1−ϵ
2ϵ opt,

then

f(sj) ≥ supp(sj) · θj = (1− ϵ)(1 + ϵ)j

2ϵ

ϵT

(1 + ϵ)j
= T (1− ϵ)

2 (5.12)

Case 2. If the terminal condition in line 9 is not meet, we have supp(sj) < (1−ϵ)(1+ϵ)j

2ϵ ≤
1−ϵ
2ϵ opt. By Lemma 12, we have:

T ≤ f(o) ≤ 2f(sj) + supp(o) · θj (5.13)

= 2f(sj) + v · ϵT

v
= 2f(sj) + ϵT (5.14)

which implies that f(sj) ≥ T (1−ϵ)
2 . By the selection of the final solution, we have f(s) ≥

T (1−ϵ)
2 and supp(s) ≤ supp(sj) ≤ 1−ϵ

2ϵ opt. The proof is completed.
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5.4 Experiment

5.4.1 Datasets

We chose a few graph data sets suitable for the problem of maximizing influence in the
experimental section, including small datasets such as Facebook, Wiki-Vote, and Epinions;
medium and large datasets such as Stanford and DBLP. These datasets are frequently used to
assess algorithmic results for cutting-edge algorithms. Furthermore, we studied the practical
application of the algorithm based on the research experiment [joco], using the data set
"Sensor" [cite paper sensor]. The data powders are described in turn below.

Table 5.2: kSC experimental datasets

Dataset #Nodes #Edges Avg. Degree Source
Facebook 4,039 88,234 [129]
Wiki-Vote 7,115 103,689 15 [116]
Epinions 75,879 508,837 7 [118]

Stanford 281,903 2,312,497 [103]
DBLP 655,312 4,156,343 6.1 [103]

5.4.2 Algorithms Compared

In our study, we run experiments on data sets using the algorithms mentioned in the previous
sections. Furthermore, we employ two algorithms, the Greedy and the RandomChoose for
experimental comparison, which describe by following:

• Greedy: While the threshold T is unaffected, continue searching (e, ie) until the Delta
function of solution s reaches its maximum.

• RandomChoose: If the threshold T is not reached, will search for a random vertex e

outside the seed node set and select the seed set ie so that (e, ie) will obtain the function
∆(s) reaching max.

The results of each algorithm will be compared to one another and to the experimental results
of [88] on the time, number of queries, number of seed nodes, and memory usage goals.

5.4.3 Parameters Setting

Information propagation under LT model with probability p(u, v) = 1
|Nin(v)| (weight). More-

over, the probability of vertex activation by the i-th topic is assigned to i
2k , where i belong

to range [1..K]. We use the RIS propagation model under the LT model to generate sample
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Algorithm 11: Greedy Algorithms
Input: an evaluation oracle of a k-submodular function f : (k + 1)V ↦→ R+, threshold

T > 0.
Output: A solution s

1: s← 0
2: while f(s) ≤ T do
3: (e, ie)← arg maxi∈[k],e∈V \Supp(s) ∆(e,i)(s)
4: s← s ⊔ (e, ie)
5: end while
6: return s

Algorithm 12: RandomChoose Algorithms
Input: an evaluation oracle of a k-submodular function f : (k + 1)V ↦→ R+, threshold

T > 0.
Output: A solution s

1: s← 0
2: while f(s) ≤ T do
3: e← rande∈V \Supp(s)
4: (e, ie)← arg maxi∈[k] ∆(e,i)(s)
5: s← s ⊔ (e, ie)
6: end while
7: return s
8:

sets with a fixed number of n = 1000 for each topic in order to measure its topic influence.
Epsilon e = 0.1, lambda λ = 0.1,... are the default parameters. We measure the number of
topics K = 3 for each threshold from 100 to 1000 in these experiments.

5.4.4 Experiment result

Figure 5.1(a) shows the number of seed nodes found when experimenting with the algorithms.
We rate the RandomChoose algorithm 11 lower than the remaining methods with seed nodes
that are 15 to 3000 times higher. When selecting a small number of very influential seed
nodes that reach the threshold T, algorithms 9 and 10 are beneficial. Also, the Greedy
method promotes the benefit of a regular increase in the number of seed nodes while keeping
the number of seed nodes low for small data sets.

In general, the cost of memory usage differs minimally amongst algorithms. Only the
difference in the size of the datasets influences the search strategy because resources are used
to construct the RIS sample set size and to search (Figure 5.1(b)).

We compare the total running time of the algorithms (Figure 5.1(c)) and decide excepted
that algorithms 9 and 10 take longer than algorithms 11 and 12 because it is related to the
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(b) Memory usage comparison
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(c) Total running time comparison
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(d) Algorithms calculated time comparison
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Figure 5.1: Performance of algorithms in experiment of small datasets with threshold T from
100 to 1000

two proposed algorithms’ methods of multiple search solutions, with the number of solutions
described in Table 5.3. Figure 5.1(d) illustrates the algorithm’s search time for independent
solutions, from which the time effect can be shown with the reduction of RIS sample generation
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Table 5.3: Num of Solution for each algorithm based-on dataset num nodes

Dataset KThresholdGreedy Streaming Greedy RandomChoose
Facebook 37 37 1 1
Wiki-Vote 39 39 1 1
Epinions 49 49 1 1

Stanford 55 55 1 1
DBLP 58 58 1 1

time with the same number of four methods. Searching on several solutions, algorithms 9 and
10, would be many times more expensive than searching on a single solution of algorithms 11
and 12. Also, algorithm 9 employs a greedy strategy, which causes the algorithm to execute
more slowly than other algorithms.

Figure 5.2 show the experimental result using the medium size node datasets, which are
the Stanford 282K and DBLP 655K. While comparing our two algorithms with the oth-
ers, we conclude there is not too big a difference between experiment results using small and
medium datasets, where the KThresholdGreedy and the Streaming algorithms keep the small-
est seed num while the RandomChoose is too high. On the other hand, their memory usage is
more minor when compared with the Greedy Algorithm. Finally, the num of seed node that
KThresholdGreedy return is usually lower than Streaming, while most of the running time
and the method calculation time is higher than the Streaming.

5.4.5 Overview experimental results

Algorithms 9 and 10 outperform the other two analyzed algorithms regarding seed-cost search
efficiency. With the approach combined with greedy, the KThresholdGreedy algorithm has a
longer running time than Streaming algorithm, but the number of seed nodes found is often
smaller than the number found by algorithm 10. The main algorithm 10 has been optimized
with the goal of improving the search time that algorithm 9 has not, with the search time
being reduced 2 to 40 times more effectively than algorithm 9 without taking the time cost
of RIS prototyping and being 1.2 to 5 times more efficient when comparing total run times.
Algorithms 9 and 10 propose a solution to help determine the distribution of seeds on K

topics more effectively than Greedy and Random Choose algorithms based on experiments.
Given the appropriate number of RIS samples and the threshold T within the searchable
range, the running times of algorithms 9 and 10 are not significantly different from the other
two compared algorithms.
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(d) Algorithms calculated time comparison
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Figure 5.2: Performance of algorithms in experiment of medium datasets with threshold T
from 100 to 1000
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5.5 Discussion

In this chapter, we introduce an overview submodular and k-submodular function problem.
Next, we investigate an efficient streaming k-submodular function maximization, named kSC,
in which applied on Influence Maximization with k topics. Finally, we extensive experiments
to conduct on some datasets in social network that show that the performance of our proposed
algorithm with the other.
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Chapter 6

Conclusion and Future work

This section summarizes the main goals and contributions of the dissertation in section 6.1.
Moreover, the last section presents the IM problem in section 6.2, which focuses on future
research with more challenges.

6.1 Summary of results

Information diffusion in social networks has been studied with much attention from many
researchers in the last decade. In particular, Influence Maximization plays an essential role in
the field of viral marketing such as e-Commerce, co-authors networks, social recommendation,
rumor control, misinformation, and others.

The main goals of this dissertation are to study the Influence Maximization problems
in social networks. In this Ph.D. thesis, we propose a variety of influence maximization in
OSNs, which include three major categories as Influence Maximization for Multiple-threshold,
Influence Maximization for Group influence, and Influence Maximization for k-topic in the
complex networks, as follows:

– Firstly, the classical IM with constraint cost, time, and threshold is developed. In
addition, we propose an effective method for multiple threshold in social network based
on approximation algorithms. We then carry out extensive experiments using real-world
network datasets to demonstrate the effectiveness of our algorithm with other in terms
of running time, complexity and memory used.

– Secondly, we present the structure of characteristics that influence the spread to group
nodes on the IC and LT models. Based on that, we will propose approximation algo-
rithms to solve group influence with theoretical guarantee in both the general case and
minimum cost.
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– Finally, we show the Influence Maximization with the k-topic in social networks consid-
ering constraints setting. In addition, we will propose an efficient method for maximizing
the k-submodular function with constraints in which running time is low. Complexity
and variants of all topics are considered challenging tasks. Moreover, we propose a
streaming algorithm combined with an efficient method to improve the solution quality,
running time, and performance algorithm in social networks.

6.2 Future work

To summarize, the progress research results in this Ph.D. thesis are fulfilled and we continue
to study these issues with better results. Motivated by pratical applications, we will study and
expand the problem with highly applicable variants of Influence Maximization to bring better
results than the start-of-the-art methods. Specifically, we have been developing efficient IM
algorithms that provide the provable approximate guarantee and apply a new novel metric to
improve the quality of solutions more effectively. In addition, effective algorithms based on
clique, a community for complex networks, will be considered.

Although the dissertation achieved the proposed results, there are still future research
challenges in the literature. We are going to continue to focus on many issues as follows.

• Developing an efficient algorithm to evaluate the Influence Maximization problem in
dynamic social networks with theoretical guarantees. [130] [131]

• Studying the characteristics and attributes of the Context-aware Influence Maximization
problem, such as topic, time and location in various contexts. [132] [133] [134]

• Investigating the structures and features of Dynamic Influence Maximization subject
to a diffusion model, which considers modeling the dynamic as a sequence of snapshot
graphs in a social network. [135] [136]
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