
Approximation Algorithms For Submodular
Optimization And Applications

Aproximační Algoritmy Pro Submodulární Optimalizaci A Aplikace

Thi Bich Ngan Nguyen

PhD Thesis

Supervisor: prof. RNDr. Václav Snášel, CSc.

Ostrava, 2022

Thesis Assignment

This is a sample assignment for a bachelor’s thesis, master’s thesis or dissertation. You can download
the genuine assignment from the Edison system.

Here is the end of a very long assignment over two pages.

Abstrakt a přínos práce

No Czech or Slovak abstract is given

Klíčová slova

No Czech or Slovak keywords are given

Abstract and Contributions

This study proposes approximation algorithms by using several strategies such as streaming,
improved-greedy, stop-and-stare, and reverse influence sampling (RIS) to solve three variants
of the submodular optimization problem, and perform experiments of these algorithms on
the well-known application problems of submodular optimization such as Influence Threshold
(IT) and Influence Maximization (IM). Specifically, in the first problem, we propose the two
single-pass streaming algorithms (Str-SCN-A and Str-SCN-M) for minimizing the cost of the
submodular cover problem under the multiplicative and additive noise models. Str-SCN-A
and Str-SCN-M provide bicriteria approximation solutions. These algorithms effectively in-
crease performance computing the objective function, reduce complexity, and apply to big
data. For the second problem, we focus on maximizing a submodular function on fairness
constraints. This problem is also known as the problem of fairness budget distribution for
influence maximization. We design three algorithms (FBIM1, FBIM2, and FBIM3) by combin-
ing several strategies such as the threshold greedy algorithm, dynamic stop-and-stare tech-
nique, generating samplings by reverse influence sampling framework, and seeds selection to
ensure max coverage. FBIM1, FBIM2, and FBIM3 perform effectively on big data, provide
(1/2 − ϵ)-approximation to the optimum solutions, and require complexities of the compari-
son algorithms. Finally, we devise two effective streaming algorithm (StrDRS1 and StrDRS2)
to maximize the Diminishing Returns submodular (DR-submodular) function with a cardi-
nality constraint on the integer lattice for the third problem. StrDRS1 and StrDRS2 provide
(1/2 − ϵ)-approximation ratio and (1 − 1/e − ϵ)-approximation ratio, respectively. Simulta-
neously, compared with the state-of-the-art, these two algorithms have reduced complexity,
superior runtime performance, and negligible difference in objective function values. In each
problem, we further investigate the performance of our proposed algorithms by conducting
many experiments. The experimental results have indicated that our approximation algo-
rithms provide high-efficiency solutions, outperform the-state-of-art algorithms in complexity,
runtime, and satisfy the specified constraints. Some of the results have been confirmed through
five publications at the Scopus international conferences (RIVF 2021, ICABDE 2021) and the
SCIE journals (Computer Standards & Interfaces (Elsevier) and Mathematics (MDPI)).

Keywords

Approximation Algorithm; DR-Submodular function; Fairness Constraint; Integer Lattice;
Submodular Optimization; Submodular Cover; Noises; Submodular Function; Submodular
Maximization; Streaming Algorithm; Greedy Algorithm; Threshold Greedy Algorithm.

Acknowledgement

First and foremost, I would like to express my thanks to my supervisor, prof. RNDr. Václav
Snášel, CSc. for his invaluable advice and continuous support; his immense knowledge and
plentiful experience have encouraged me in my academic research life, especially the learning
process to complete this Ph.D. program.

Secondly, I would like to express my thanks to doc. Ing. Pavel Krömer, Ph.D.; prof.
Ing. Jan Platoš, Ph.D; prof. Ing. Ivan Zelinka, Ph.D.; prof. Ing. Michal Krátký, Ph.D.;
doc. Mgr. Jiří Dvorský, Ph.D.; and doc. Mgr. Miloš Kudělka, Ph.D. of FEI VŠB-TUO,
and the professors are the opponents and committees for reviewing my study. The professors
have been kind and willing to comment, suggest and discuss research ideas. Those comments
encouraged me to finish some of the most rewarding results of this dissertation.

Thirdly, I would also like to express my thanks to Canh Van Pham, Ph.D. (ORLab,
Faculty of Computer Science, Phenikaa University, Hanoi, Vietnam) for enthusiastic support
to me during my studies and for offering valuable remarks, feedback, and insights regarding
my research.

Personally, I thank God for giving me this opportunity to study what I love and have won-
derful experiences. I would like to express my gratitude to my husband (the most wonderful
husband), my parent, my parent-in-law, friends, colleagues, and relatives for their support
and encouragement because this work would not have happened without them.

Finally, I want to thank VŠB - Technical University of Ostrava for giving me a wonderful
place to study and improve my skills during my work. I also want to thank Ho Chi Minh
City University of Food Industry (HUFI) and European Cooperation Center, Ton Duc Thang
University for their support and help throughout my studies.

Contents

List of symbols and abbreviations 9

List of Figures 11

List of Tables 12

1 Introduction 13
1.1 Motivation . 13
1.2 Main Goals and Contributions . 14
1.3 Outline of the Thesis . 16

2 Background 17
2.1 Submodular function optimization . 17
2.2 Influence propagation - an application of submodular optimization 20
2.3 Concluding remarks . 23

3 Problem 1. Minimizing cost submodular cover under noises 24
3.1 Introduction . 25
3.2 Related work . 26
3.3 Problem definition . 27
3.4 Proposed algorithms . 28
3.5 Experiment and Result evaluation . 34
3.6 Concluding remarks . 40

4 Problem 2. Fairness budget distribution for Influence Maximization 41
4.1 Introduction . 41
4.2 Related work . 44
4.3 Problem definition . 47
4.4 Proposed algorithms . 50
4.5 Experiment and Result Evaluation . 60

7

4.6 Concluding remarks . 67

5 Problem 3. Maximizing DR-submodular function on the integer lattice 73
5.1 Introduction . 73
5.2 Related work . 77
5.3 Problem definition . 78
5.4 Proposed algorithms . 79
5.5 Experiment and Result Evaluation . 88
5.6 Concluding remarks . 91

6 Conclusions 92
6.1 Summary . 92
6.2 Future directions . 93

Bibliography 94

8

List of symbols and abbreviations

CaDRS – Cadinality constraint/Diminishing Returns Submodular
CELF/CELF++ – Cost-Effective Lazy Forward selection
DR-submodular – Diminishing Returns submodular
D-SSA – Dynamic Stop-and-Stare Algorithm
FBIM – Fairness Budget Influence Maximization
FBIM1 – Fairness Budget Influence Maximization 1
FBIM2 – Fairness Budget Influence Maximization 2
FBIM3 – Fairness Budget Influence Maximization 3
FMC – Fairness-Max-Coverage
FIM – Fair Infuence Maximization
FSM – Fair Submodular Maximization
KONECT – Koblenz Network Collection
IC – Independent Cascade model
IMM – Influence Maximization via Martingales
IM – Influence Maximization
IT – Influence Threshold model
LT – Linear Threshold model
MDRSCa – Maximization of monotone Diminishing Returns Submodular

function under Cardinality constraint on the integer lattice
NIPS – Neural Information Processing Systems
NP-hard – Non-deterministic polynomial-time hard
OPT – Optimal (solution)
OPIM – Online Processing Influence Maximization
OPIMC – OPIM-based method for conventional influence maximization
OSNs – Online social networks
P-hard – Polynomial-time hard
RIS – Reverse Influence Sampling
RR – Reachable Reverse

9

SC – Submodular Cover
SCN – Submodular Cover under Noise
SCSC – Submodular Cost Submodular Cover
SieveStr++ – Sieve Streaming ++
SMM – Submodular Maximization under a Matroid constraint
SNAP – Stanford Network Analysis Project
SSA – Stop-and-Stare Algorithm
Str-SCN-A – Streaming algorithm for SCN under additive noise
Str-SCN-M – Streaming algorithm for SCN under multiplicative noise
StrDRS1 – Streaming Diminishing Returns Submodular 1
StrDRS2 – Streaming Diminishing Returns Submodular 2
StrOpt – Streaming Optimal
TIM/TIM+ – Two-phase Influence Maximization
Str-SCN-A – Streaming algorithm for SCN under additive noise
Str-SCN-A – Streaming algorithm for SCN under additive noise
UBLF – Upper Bound based Lazy Forward

10

List of Figures

2.1 An example of Independent Cascade model . 22
2.2 An example of Linear Threshold model . 23

3.1 The runtime and number of queries to F of Str-SCN-M, Str-SCN-A and Greedy
on three datasets . 37

3.2 The size of seed set S and the F
T (1+ϵ) (multiplicative noise), F

T +ϵ (additive
noise) ratios of three algorithms on datasets. 38

3.3 Memory usage (GB) of Str-SCN-M, Str-SCN-A and Greedy on three datasets. . 40

4.1 Influence, memory usage and runtime of the Experiment A1 under the LT model. 63
4.2 Running time, influence, and Coverage ratio of the Experiment A2 under the

LT model. 64
4.3 Running time, memory usage and influence of the Experiment B1 under the

LT model. 68
4.4 Running time, memory usage and influence of the Experiment B1 under the IC

model. 69
4.5 Running time, influence, and Coverage ratio of the Experiment B2 under the

LT model. 70
4.6 Running time, influence, and Coverage ratio of the Experiment B2 under the

IC model. 71

5.1 The results of the experimental comparison of algorithms on the datasets. . . . 90

11

List of Tables

2.1 Table of the usually used notations in Chapter 2. 18

3.1 Table of the usually used notations in the Submodular cover under noise problem. 24
3.2 Statistic of Datasets and r is the number of sample graphs, which are generated

from the original graph G = (V, E) to compute the function F 35

4.1 Table of the usually used notations in Chapter 4 42
4.2 Statistics of datasets. 60
4.3 Statistical comparison of experimental results of FBIM1 and DSSA 65
4.4 Statistical comparison of experimental results of FBIMs’ algorithms and OPIMC 67

5.1 Table of the usually used notations in Chapter 5. 74
5.2 State-of-the-art algorithms for MDRSCa problem in terms of the number of

scans, approximation ratio, and complexity. 77
5.3 Statistics of datasets. All datasets have type of bipartite, and undirected. . . . 89
5.4 Statistics of the number of queries . 91

12

Chapter 1

Introduction

Studying combinatorial optimization problems with submodular objective functions has re-
cently received much attention from research communities. It is motivated by the principles
of economies of scale, prevalent in real-world applications. At the same time, the submodular
function is also widely utilized in optimization problems of machine learning and algorithmic
game theory. Submodularity is a fundamental phenomenon of combinatorial optimization.
Submodularity is not an artificial mathematical concept, but it naturally arises in many ap-
plications, either as a structural characteristic of combinatorial problems or as a presumption
on particular valuation functions [1]. Submodular functions can be utilized in a variety of
combinatorial scenarios, including: economic and social problems such as viral marketing [2,
3], welfare maximization [4, 5], leader-selection problem in multi-agent systems [6], monitor
placement [7], maximum cut [8]; and problems in computer science such as machine learning
[9, 10, 11], data mining [11, 12], data summarization [13, 14], social network analysis [15, 16,
17, 18], game theory [19, 20], and many more.

In mathematics, a submodular function (also known as a submodular set function) is a
set function whose value has the following feature: as the size of the input set rises, the dif-
ference in the incremental value of the function that a single element makes when added to
the set decreases [21]. From a theoretical viewpoint, submodular function and submodular
optimization are crucial in graph theory, combinatorics, and combinatorial optimization. In-
spired by the usefulness and importance of submodular functions, this dissertation studies
some approximation algorithms for submodular optimization and their applications.

1.1 Motivation

As mentioned above, the submodular function is crucial in optimization problems. In a
submodular optimization problem, the objective is to select a set that either maximizes or
minimizes a submodular function dependent on specific constraints of the problem on the

13

allowed sets. The submodular optimization problems have many variants when they are
placed in different contexts. According to Iyer et al. [11], most of these problems fall into the
following two main categories: minimizing cost submodular cover and maximizing submodular
function under a budget constraint.

Although there exists a vast literature for submodular optimization problems, in different
contexts and with the expansion of data, these problems still face some challenges as follows.

1. How to compute near-exactly the submodular objective function for exten-
sive data under noises?

2. How to find good (near-optimal) solutions for these problems under certain
constraints (such as cardinality, time, fairness, matroid, and more) when
placing them in different contexts?

3. How to design viable and efficient algorithms with reasonable computational
costs (linear time) for these problems whose data is becoming more extensive
or diverse properties (such as set, multiset)?

Motivated by the above challenges, we study and propose efficient approximation algorithms
for some variants of the submodular optimization problem. The main goal of this thesis briefly
introduces our proposed algorithms, and their detailed description is presented in the rest of
the thesis.

1.2 Main Goals and Contributions

The main research goals of this doctoral thesis are to study and propose efficient approx-
imation algorithms for the following three submodular optimization problems and
conduct experiments to investigate the performance and efficient of the proposed
algorithms. The results obtained contribute to solving the challenges mentioned above. The
main contributions of the thesis can be summarized as follows.

• Problem 1. Minimizing cost submodular cover under noises.

– Study the problem of minimizing a submodular function subject to a submodu-
lar lower bound constraint (also known as the submodular cover [11]) under the
multiplicative and additive noise models.

– Propose two single-pass streaming algorithms (Streaming algorithm under multi-
plicative noise (Str-SCN-M) and Streaming algorithm under additive noise (Str-SCN-A))
to solve this problem.

14

– Conduct experiments on these algorithms to solve the Influence Threshold (IT)
problem and evaluate their effectiveness. IT is an instance of the submodular cover
problem [22]. The experimental results indicate that Str-SCN-M and Str-SCN-A
not only provide the solution with a high value of the objective function, but also
outperform the state-of-the-art algorithm in terms of both the number of queries
and the running time.

– Publish two papers, one in the RIVF2021 conference (Scopus) [Publication 1] and
one in the Computer Standards & Interfaces journal (Elsevier, SCIE) [Publication
8].

• Problem 2. Fairness budget distribution for Influence maximization.

– Study the Influence Maximization (IM) under budget threshold constraints, which
set an upper and lower bounded budgets to choose seeds in each input community
to guarantee the fairness constraint (FBIM problem in short). IM is an instance
of the submodular function maximization problem [23].

– Propose three algorithms (called FBIM1, FBIM2, and FBIM3), which use a com-
bination of many methods, including selecting the seed set so that ensuring the
fairness constraint, a threshold greedy algorithm, generating sampling by the Re-
verse Influence Sampling (RIS) framework [24] with the dynamic stop-and-stare
algorithm [2], and the online processing influence maximization method [25].

– Conduct experiments for these algorithms on diverse datasets. Compared to state-
of-the-art methods, our approximation algorithms achieve (1/2− ϵ) and (1/2− 2ϵ)
optimal solutions, guarantee a high ratio for the fairness constraint, and work
efficiently in big data.

– Publish two papers, one at the ICABDE2021 conference (Scopus) [Publication 2]
and one at the Mathematics journal (MDPI, SCIE) [Publication 9].

• Problem 3. Maximizing DR-submodular function on the integer lattice

– Study the problem of maximizing a monotone diminishing return submodular (DR-
submodular) function under cardinality constraint on the integer lattice. It is called
MDRSCa problem shortly.

– Propose two streaming algorithms for solving the MDRSCa problem, including
an one-pass streaming algorithm and a multi-pass streaming algorithm (called
StrDRS1 and StrDRS2, respectively).

– Conduct experiments on these algorithms. The results indicate that our approx-
imation algorithms provide solutions with a theoretically guaranteed value of the
objective function (achieving (1/2 − ϵ) and (1 − 1/e − ϵ) optimal solutions) and

15

outperform the state-of-the-art algorithms in both the number of queries and the
runtime.

– Publish one paper in the Mathematics journal (MDPI, SCIE) [Publication 10].

1.3 Outline of the Thesis

The rest of the thesis is organized into the following sections. Chapter 2 introduces an overview
of the submodular function, two categories of optimization problems of submodular functions
(minimizing submodular cover and maximizing a submodular function under a certain con-
straint), and some definitions related to the problems studied in this thesis. Chapters 3, 4, and
5 present Problems 1,2, and 3, respectively. Each chapter includes the definitions related to
its problem, the related work, the proposed algorithms, the experiment, and the evaluation of
the result. Chapter 7 summarizes the thesis and suggests future research directions. Finally,
it is the list of our publication activities.

16

Chapter 2

Background

This section introduces the principles of submodular function, two main problem types of the
submodular function optimization, and the instances of the influence propagation problem,
which is an application of submodular function optimization problem. Table 2.1 summarizes
the usually used notations in Chapter 2.

2.1 Submodular function optimization

2.1.1 Submodularity

Submodularity has long been known in economic problems but under other names, such as
decreasing marginal values, diminishing returns, etc. Over the years, submodularity has re-
emerged strongly in the domain of combinatorial optimization [1]. Submodularity is a property
of set functions, i.e., a submodular function f : 2V → R determined on a finite set of items V .
V is commonly called the ground set. The natural explanation of f(S) is the value of a subset
of items S. As we previously said, the economic interpretation of the submodularity feature
states that as the size of the set we own increases, the value of additional items decreases.
Formally, the definition of a submodular function is as follows [21].

Definition 1 (Submodular function) A set function f : 2V → R, where V is a finite
ground set, is said to be submodular if and only if for all subsets A, B ⊆ V , it holds that

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (2.1)

By Definition 1, “uncrossing” two sets reduces their total function value. Besides, if
we founded on the diminishing return property of a submodular function, the submodular
function has an alternative definition as Definition 2 [21].

17

Table 2.1: Table of the usually used notations in Chapter 2.

Notation Description
G a graph.
n the number of nodes in the graph G.
V the set of nodes in the graph G. |V | = n.
e an arbitrary node/element in V

e1, . . . , en all nodes in V

2V the subset family of V .
E the set of edges in the graph G.
m the number of edges in the graph. |E| = m.
A, B the subsets of V

S a seed set S

f, h the submodular functions

f(S) the number of influenced nodes/users by the seed set S after the
information diffusion process is done.

T the threshold of f(S)
Si S at the i-th step where i = 0, 1, 2, ...

v an arbitrary node in V .
u a neighbor node of v in V .
w the set of weighted values of all edges in the graph G.
p(u, v) the weighted value of the edge (u, v)
k an upper bounded of |S|.
g a sample graph in G.

r
the number of sample graph generated from the original graph G =
(V, E).

Gi = (V, Ei)
the i-th sample graph generated from the original graph G = (V, E),
where i = 1, 2, ..., r

a, b, c, d, e nodes in the graph G.

Λv
the threshold Λv of node v, which is the weighted proportion of v’s
neighbors that must become active to influence v becoming active.

α a cover parameter
β a budget

18

Definition 2 (Submodular function) A set function f : 2V → R, where V is a finite
ground set, is said to be submodular if and only if for all subsets A ⊆ B ⊆ V , and e ∈ V \B,

f(A ∪ {e})− f(A)⏞ ⏟⏟ ⏞
Gain of adding an element e to a small solution

≥ f(B ∪ {e})− f(B)⏞ ⏟⏟ ⏞
Gain of adding an element e to a large solution

(2.2)

By Definition 2, the marginal value of an additional element exhibits diminishing marginal
returns. This means that the incremental value, cost, or gain of e decreases (diminishes) as
the context in which e is considered grows from A to B.

Moreover, a submodular function is a set function, so it also has other possibly useful
properties that a set function may have. Given a submodular set function f : 2V → R , f has
the following properties [21].

• Normalized: f(∅) = 0.

• Non-negative: f(S) ≥ 0 for all S ⊆ V .

• Monotone: if A ⊆ B ⊆ V , then f(A) ≤ f(B).

• Symmetric: f(S) = f(V \ S) for all S ⊆ V .

2.1.2 Submodular optimization

Over the years, submodular optimization has attracted extraordinary interest in both theory
and practice. Because there are many problems in machine learning, auction theory, and
combinatorial optimization that have submodular structures. In practice, these problems
often relate to large amounts of data and must be solved in a distributed method [26]. A
large body of literature is a testament to the important role of submodular optimization in
many fields such as economics [27, 28], social welfare [29], and combinatorial optimization [21,
30]. In computer science, it has recently been identified and utilized in domains that include
machine learning [9, 31], viral marketing [23], image segmentation [32], feature selection [33],
document summarization [34] and speeding up satisfiability solvers [35].

As mentioned in the Introduction, the submodular optimization problem has many vari-
ations under different constraints when placed in separate contexts. These variations usually
fall into two main types: minimizing cost submodular cover and maximizing submodular func-
tion under a budget constraint [11].

Definition 3 (Submodular function optimization) Given f and h are monotone non-
decreasing submodular functions and where α and β refer to cover parameters and budget,
respectively. The problem asks to find a subset S, S ⊆ V so that

19

• Minimizing Cost Submodular Cover: arg min{h(S)|f(S) ≥ α}

• Maximizing submodular function under budget constraint: arg max{f(S)|h(S) ≤ β}

The submodular optimization problems that we study in this thesis also belong to these two
problems.

2.2 Influence propagation - an application of submodular optimiza-
tion

The influence propagation problem is one of the important applications of submodular op-
timization, and information diffusion in online social networks is an instance of influence
propagation. Many studies have been published that focus on influence propagation as well
as information diffusion, such as blocking misinformation on online social networks [36, 37,
38], viral marketing [2, 25, 39], influence maximization [40, 41, 42, 43, 44], influence threshold
in information diffusion [22, 45].

In the experiment progress of this thesis, we have applied our proposed methods to the
celebrated problems of information diffusion, submodular cover minimization, and influence
maximization on the online social networks. Specifically, we applied our algorithms to two
famous problems, Influence Threshold and Influence Maximization. The Influence Threshold
problem is an instance of the submodular cover problem [22], and the Influence Maximization
problem is an instance of maximizing the submodular function [23].

Definition 4 (Influence Threshold problem - IT) Let G = (V, E) be a social network
where the vertices V represent users and the edges E represent social connections. Assume
that G1 = (V, E1), G2 = (V, E2), ..., Gr = (V, Er), where Ei ⊆ E, represent r instances of
communities of social connections. In each instance, influenced users on the social network
start from an initial seed set and then propagate across edges. Denote f : 2V → R+ as
the influence spread function of a seed set S, i.e., the number of users influenced after the
information diffusion process. For S ⊆ V, f(S) is the average number of reachable vertices
from S over r instances, and f is a monotone and submodular function, given threshold
T ≤ f(V), the IT problem is to find the seed set S with minimal size so that f(S) ≥ T , i.e.,
find

S ← arg min
S⊆V,f(S)≥T

|S| (2.3)

The influence maximization (IM) problem has received great attention from researchers in
the field of network diffusion. Although Kemp et al. first introduced this problem under

20

the name influence maximization in 2003 [23], Richardson et al. was the first to study the
problem in 2002 as the problem of maximizing the profit of an advertiser on a social network.
The IM is crucial in a wide variety of applications, including viral marketing [2, 46], social
network analysis [23, 47, 48], social problems such as financial inclusion [49], HIV prevention
for homeless youth [50], propagation of information for disease spread [51] and more. In
the IM problem, nodes and edges of a social network, respectively, represent individuals and
connections. The classical definition of IM is the diffusion to reach the maximum number of
nodes, while only disseminating the information to a few initial individuals, also called seeds
[23]. Formally, IM can be described as follows:

Definition 5 (Influence Maximization problem - IM) Given a ground set V , which is
the set of users in a social network. S ⊆ V and |S| ≤ k, is the set of key users that need to
be identified, and f(S) is the influence function that measures the expected number of users
in V , which can be influenced by members in S according to an information diffusion model.
The problem asks to find

S ← arg max
S⊆V,|S|≤k

f(S) (2.4)

The IM problem operates on a certain information diffusion. There are two well-known in-
formation diffusion that are commonly used in studies of spreading information and influence.
These are the independent cascade (IC) model and the linear threshold (LT) model. These
models were formalized by Kemp et al. in 2003 [23]. In their study, they also formulated the
IM problem as a combinatorial optimization problem. Besides, they proved that this problem
is NP-hard by reducing from the NP-complete Set Cover problem and f(S) is a monotone
submodular function under both the IC model and LT model. Furthermore, the calculation
of influence spread f(S) given a seed set S has been proved to be P-hard [46].

The following are definitions describing operating principles and illustrations of the models
IC and LT in Definition 6, Figure 2.1 and Definition 7, Figure 2.2, respectively.

Definition 6 (Independent Cascade model - IC) Given a directed graph G = (V, E, w),
V is the set of nodes, and |V | = n, E is the set of edges and |E| = m, and w is the set
of weighted values of all edges in E. At first, the nodes of the seed set S are active, while
all the remaining nodes are inactive. The process spreads according to the following rule. At
step t, if node v first becomes active, it has only a chance to activate each neighbor u. The
probability of success is p(v, u), p(v, u) ∈ w. If u has multiple active neighbors, their diffusion
is sequenced in random order. As soon as v succeeds, u will become active in step t + 1. But
whether v succeeds or not, it cannot make any further attempts to activate u in subsequent
rounds. In this way, the process works until no more activation is feasible.

21

a

b

d

c

e

0.7

0.2

0.3

0.4

0.4
0.3

Figure 2.1: An example of Independent Cascade model

Figure 2.1 shows an example of the information propagation process on the IC model. The
seed set is S = a, and at each edge there is a corresponding influence probability. The process
of information transmission takes place as follows:

• At step t = 0, S0 = S = {a}.

• At step t = 1, vertex a activates b and c with the probability of success 0.7 and 0.4.
Assume that the vertex b is successfully activated. We have S1 = {a, b}.

• At step t = 2, similarly, vertex b activates vertices d and c with success probability 0.3
and 0.4. Vertex a is not activated c because it was done the last time. Assume that in
this case, c is active. We have S2 = {a, b, c}.

• At step t = 3, similarly, b and c activate d with probabilities 0.3 and 0.2. In this case,
if d is not activated, then the propagation stops.

Definition 7 (Linear Threshold model - LT) Given a directed graph G = (V, E, w), V is
the set of nodes, and |V | = n, E is the set of edges and |E| = m, and w is the set of weighted
values of all edges in E. A node v in G is affected by each of its neighbors u with probability
p(u, v), p(u, v) ∈ w, and

∑︁
u neighbor of v p(u, v) ≤ 1. Each node v is assigned a threshold Λv

from the interval [0; 1] at random. This threshold is the weighted proportion of v’s neighbors
that must become active to influence v becoming active. The process spreads as follows. At
the beginning, we initialize a random set of threshold values and a seed set of active nodes S,
while other nodes are inactive. At step t, all nodes that were active in step t−1 remain active,
and we activate any node v with a total weight of active neighbors greater than or equal to Λv.

∑︂
u active neighbor of v

p(u, v) ≤ 1 (2.5)

22

a

b

d

c

e

0.7

0.6

0.5

0.4 0.5

0.2

0.2

0.3

0.4

0.4
0.3

Figure 2.2: An example of Linear Threshold model

Figure 2.2 shows an example of the information propagation process on the LT model.
Assume that in the seed set S = a, each vertex has activation thresholds and each edge has
a corresponding weight. The process of information transmission takes place as follows.

• At step t = 0, S0 = S = {a}.

• At step t = 1, the sum of the weights that affect the vertex b is 0.7, greater than the
threshold Λb = 0.5, so b is activated. The vertex c has a total weight of 0.4, less than
the threshold Λc = 0.6, so it is not activated. We have S1 = {a, b}.

• At step t = 2, the vertex c is activated. We have S2 = {a, b, c}.

• At step t = 3, the vertex d activated, so S3 = {a, b, c, d}.

• At step t = 4, no vertices are activated, the propagation stops.

2.3 Concluding remarks

This chapter presented important fundamental components, which serve as the theoretical
basis for the problems studied in the thesis. Especially they include the concept and properties
of submodular functions, types of submodular optimization problem, application problems of
submodular optimization in influence propagation, and their propagation models.

23

Chapter 3

Problem 1. Minimizing cost submodu-
lar cover under noises

This chapter describes the problem of minimizing cost submodular cover under multiplicative
and additive noise models in detail, including the motivation to study the problem, problem
definition, related work, proposed algorithms, experiment and result evaluation. Table 3.1
summarizes the usually used notations in this chapter.

Table 3.1: Table of the usually used notations in the Submodular cover under noise problem.

Notation Description
G a graph.
n the number of nodes in the graph.
V the set of nodes in the graph G. |V | = n.
2V the subset family of V .
E the set of edges in the graph G.

F
the function calculates the influence of an element e or subset S in the
graph.

T the threshold to calculate F.
Si seed set for threshold T .
S the returned size-k seed set of the Str-SCN-M and Str-SCN-A algorithms.
S∗ an optimal size-k seed set.
OPT OPT = |S∗|
v a random node in V .
u a neighbor node of v in V .
k an upper bounded of |S|.
g a sample graph in G.
f(S) an optimal influence spread of seed set S.
r the number of sample graph generated from the original graph G = (V, E).

24

3.1 Introduction

One of the important problems of the submodular optimization problem is to minimize a
submodular function subject to a submodular lower bound constraint, also known as the
minimizing cost submodular cover (Submodular Cover problem in short). Formally, the sub-
modular cover problem can be defined as in Definition 8 [52].

Definition 8 (Submodular Cover problem - SC) Given a ground set V , a monotone and
submodular function f : 2V → R+ and the threshold T ≤ f(V), the problem asks to find the
subset S ⊆ V with minimal cardinality so that f(S) ≥ T .

This problem is found in many applications, such as data summarization [52, 53], mon-
itor placement [16, 54], influence threshold in online social networks [55, 56], and active set
selection [57]. According to recent studies, existing solutions to the SC problem often assume
that the value oracle access to f , meaning that f can be queried at any subset S ⊆ V [54, 58,
59]. Unfortunately, for many rising applications in submodular optimization, computing the
function f takes exponential time [22, 55, 60]. Instead of directly accessing f , we only query
a noise oracle F of f in polynomial time under noise models. There are two common noise
models that are multiplicative noise [17, 22, 61], i.e., (1 − ϵ)f(S) ≤ F (S) ≤ (1 + ϵ)f(S) and
additive noise [22], i.e., f(S)−ϵ ≤ F (S) ≤ f(S)+ϵ. Unfortunately, in many cases, F does not
inherit the good properties (monotone or submodular) of f , which can help to approximate
SC with a theoretical guarantee [22]. Therefore, it becomes more challenging to approximate
SC.

Motivated by this phenomenon, Crawford et al. [22] first investigated SC problem under
an additive noise model and proposed a greedy algorithm with theoretical bounds. However,
this algorithm takes O(n2) query complexity, and in some cases it has not been applicable
when the data is large due to the number of n passes over the data.

In reality, some applications’ data is often on a large scale, making it difficult to store
data on the computer. Therefore, it is critical to devise fast and efficient algorithms that not
only provide theoretical guarantees, but can also scan over the data in a single-pass or a few
passes. To address this challenge, we propose two efficient streaming algorithms for SC under
noise, which need one time to scan over the data and guarantee the theoretical bounds of the
solution. Specifically, our contributions are as follows:

• We propose two single-pass streaming algorithms for the Submodular Cover under Noises
(SCN) problem, named Str-SCN-M and Str-SCN-A, under multiplicative noise model and
additive noise model, respectively. Under the multiplicative noise model, Str-SCN-M
provides a (1−ϵ

1+ϵ(1 − 1
α), α(1 + m)) bicriteria approximation solution. In the additive

noise model, Str-SCN-A provides a solution S satisfying f(S) ≥ (1 − 1
α)T − 2ϵ and

25

|S| ≤ α(1 + m)|S∗|, where α, m > 0 are the input parameters and S∗ is the optimal
solution.

• We further investigate the performance of our algorithms by performing some exper-
iments on the IT problem (in Definition 7). The results indicate that our algorithms
provide solutions with a high value of function F and outperform the state-of-the-art
algorithm in both the number of queries and the running time.

3.2 Related work

Due to the wide application of the SC problem, many works have focused on approximating
the problem, despite being an NP-hard problem [23, 62]. The greedy strategy was first
proposed to find an approximate solution for the SC problem with value oracle access to f .
Specifically, Wolsey et al.[58] proved that if f is an integral value, the approximation ratio of
the greedy algorithm is ln(α), where α is the largest singleton value of f . Otherwise, if f is a
real value, the approximation ratio is 1 + ln(α/β), where β is the smallest nonzero marginal
gain. Later, Wan et al. [59] investigated SC by considering the cost function of the set of
elements and showed that the greedy algorithm has an approximation ratio of γ ln(α), where
γ is the curvature of the cost function. Soma and Yoshida [54] generalized the SC problem
on the integer lattice domain. They proposed a decreasing threshold algorithm that has a
bicriteria approximation ratio of (1+3γ)ρ(1+ ln(α/β)), where γ < 1 is an input. In addition,
Mirzasoleiman et al. [53] proposed a distributed algorithm that ran in O(log(|S∗|+ log(T)))
rounds and provided a solution S with f(S) ≥ Tλ and the size was at most 2(1+log(T))|S∗|/λ,
where λ worked as an input.

Norouzi-Fardet al. [57] proposed the single-pass streaming algorithm providing a (1 −
1

ln(1/ϵ) , 2 ln(1/ϵ))-bicriteria approximation for the SC problem. However, this algorithm can-
not be directly applied to the submodular cover under noise (SCN) problem to obtain theo-
retical bounds for the following reasons: the approximation of this algorithm is obtained by
exploiting the submodular property of f but we can only apply this algorithm by calling F

(multiplicative/additive noise oracle) instead of f but F does not inherit the properties of
f , i.e, F is not submodular and may not be monotone. In addition, the noise can mislead a
process of constructing a solution by magnifying the marginal gain of a selection whose con-
tribution may be insignificant. As a result, the approximation guarantees of this algorithm
do not hold. To handle the noises, we give appropriate estimates for f(S ∪ e)− f(S) by using
noise oracle F , where S is the current solution and e is an incoming element. Besides, we
provide the upper bound of the optimal solution by finding X such that F (X)/(1+ϵ) ≥ T (or
F (X) ≥ T + ϵ). This helps our algorithm reduce the number of queries as well as the mem-
ory to find and store unnecessary candidate solutions. In addition, our algorithm provides a

26

(1−ϵ
1+ϵ(1− 1

α), α(1 + m)) bi-criteria solution that depends on ϵ, α and m. It makes the efficiency
of the algorithm easy to control when these parameters are independent of each other. In
contrast, the Greedy algorithm depends only on ϵ, so we must make a trade-off between the
solution cost and the objective function value.

Most previous studies assumed that the objective function is noise-free, that is, it is
easy to calculate the objective function precisely. However, we must have a noisy evaluation
in many practical applications. For example, in the influence threshold problem [55, 56],
calculating the influence spread function has been shown to be P-hard [60]. Thus, it is
often estimated by simulating the random diffusion process [23] or using the sketch-based
method [22, 62]. Another example is the sparse regression problem, when only a set of limited
data can be used for evaluation, making the evaluation noisy. In addition, some works have
studied the maximizing of the submodular under a noise model and proposed approximation
algorithms. Chao et al. [61] studied the problem of maximizing a set function characterized
by a submodularity ratio γ with two types of noise. Under the multiplicative noise model,
they gave a 1−ϵ

1+ϵ(1− e−γ) approximation algorithm, and under the additive noise model, they
gave a (1− e−γ)− 2ϵ approximation algorithm via a Pareto method.

Recently, Crawford et al. [22] studied Submodular Cost Submodular Cover (SCSC) prob-
lem, a generalization version of SC under the additive noise model. SCSC considers a cost
function c : 2V → R≥0, and the problem finds a subset S with minimal cost such that
f(S) ≥ T . In the seminal paper, they proposed the Greedy algorithm that returns a solution
S satisfying f(S) ≥ T − ϵ and c(S) ≤ ρ

1− 4ϵcmaxρ
cminµ

−γ

(︂
2 + ln(nαρ

γµ)
)︂

c(S∗) where S∗ is an opti-

mal solution, µ > 4ϵcmaxρ/cmin, γ ∈ (0, 1 − 4ϵcmaxρ/cminµ), with cmin = mine∈S c(e) and
cmax = maxe∈S c(e). However, the Greedy algorithm requires |S| passes over the input data
and has O(|S|n) number of calls for F . Its query complexity tends to O(n2), so it may not be
applicable to big data. Meanwhile, our proposed algorithms do not only provide guaranteed
theoretical bounds, but also reduce query complexity to O(n log n).

3.3 Problem definition

Given the ground set V = {e1, . . . , en} and a utility function f : 2V → R+ that measures
the quality of a subset S ⊆ V and f is the submodular function.

For simplicity, we denote S + e as S ∪{e} and assume that f is normalized, i.e., f(∅) = 0.
Assume that the values of the utility function f(S) cannot be obtained while a noise oracle,
F (S), is easily computed. In our work, we consider the SC problem in multiplicative and
additive noise models (in Definition 11) with ϵ-multiplicative noise oracle and ϵ-additive noise
oracle, defined as follows.

27

Definition 9 (ϵ-multiplicative noise oracle) A function F : 2V → R+ is an ϵ-multiplicative
noise oracle of f if for all S ⊆ V , we have:

(1− ϵ)f(S) ≤ F (S) ≤ (1 + ϵ)f(S) (3.1)

Definition 10 (ϵ-additive noise oracle) A function F : 2V → R+ is an ϵ-additive noise
oracle of f if for all S ⊆ V , we have:

f(S)− ϵ ≤ F (S) ≤ f(S) + ϵ (3.2)

In this thesis, we study the Submodular Cover under Noise problem, defined as follows.

Definition 11 (Submodular Cover under Noise - SCN) Given a group set V , a thresh-
old T , an ϵ-multiplicative noise oracle F (ϵ-additive noise oracle) of a monotone and submod-
ular function f : 2V → R+ under the multiplicative noise (additive noise) model. The problem
asks to find the subset S ⊆ V with minimal size such that f(S) ≥ T .

Throughout this thesis, we denote S∗ as an optimal solution and OPT = |S∗|. We call
an algorithm (α, β)-bicriteria approximation for the SCN problem if it returns a solution S

satisfying f(S) ≥ α · T and |S| ≤ β · OPT, for α, β > 0.

3.4 Proposed algorithms

This section introduces two streaming algorithms for the SCN problem under multiplicative
and additive noise models.

3.4.1 Streaming Algorithm under multiplicative noise

At a high level, the main idea of the algorithm is that (1) we give the prediction to the value
of OPT, based on the set of observed elements, and update the prediction to reduce storing
memories of the candidate solutions, and (2) we compare the incremental value of F for each
element with the given threshold to select high value elements.

3.4.1.1 Algorithm description

The detail of the algorithm is fully presented in Algorithm 1.
The algorithm receives a threshold T , parameters m (0 < m < 1), α (α > 1), which are

related to the quality of the solution as well as the running time of our algorithm. They allow

28

Algorithm 1: Streaming algorithm under the multiplicative noise for SCN
(Str-SCN-M)

Input: A noise oracle F , a threshold T , parameters m (0 < m < 1), α (α > 1)
Output: A solution S

1: l← ⌈log1+m(αn)⌉
2: Si ← ∅,∀i = 1, . . . , l
3: X ← ∅
4: foreach e ∈ V do
5: if F (X∪{e})

1+ϵ ≥ T then
6: Update: X ← X ∪ {e}, l← ⌈log1+m(α|X|)⌉
7: Delete Si for all i > l.
8: else
9: X ← X ∪ {e}

10: for i = 1 to l do
11: if F (Si∪{e})

1−ϵ − F (Si)
1+ϵ ≥

T
(1+m)i and |Si|+ 1 ≤ (1 + m)i then

12: Si ← Si + {e}

13: Find S ← arg minSi∈{S1,S2,...,Sl}{|Si| : F (Si) ≥ (1− ϵ)T (1− 1
α)} by doing a binary

search.
14: return S.

us to adjust the solution quality trade-off with runtime. Specifically, α is to guarantee that
the value of the objective function f is near to T while α and m are to guarantee the bound
of the size of the returned solution. Besides, α and m will affect the running time of the
algorithm. If α is larger and m is smaller, the algorithm gives good solution quality, but the
running time increases and vice versa.

The algorithm initiates l = ⌈log1+m(αn)⌉ candidate solutions Si, i = 1, . . . , l and a predic-
tion of the optimal solution X which is initiated as an empty set. For each observed element
e, if e passes the condition that

f(X) ≥ F (X ∪ {e})
1 + ϵ

≥ T

the algorithm updates X by adding e. Also, the value of l is updated to ⌈log1+m(α|X|)⌉ at
this time to reduce the number of candidate solutions and the running time of the algorithm.
Candidate solutions Sj , j > l will be removed.

The algorithm next updates the candidate solution Si as follows. If the incoming element
e satisfies conditions |Si|+ 1 ≤ (1 + m)i and

F (Si ∪ {e})
1− ϵ

− F (Si)
1 + ϵ

≥ T

(1 + m)i

29

then the algorithm adds e to Si. Otherwise, it ignores Si and moves into the next candidate
solution Si+1. The value of F (Si∪{e})

1−ϵ − F (Si)
1+ϵ represents the marginal value of f at e when we

add it to Si.
After scanning one pass over the ground set, the algorithm finds the best solution among

the candidates (line 17) by doing a binary search.

3.4.1.2 Theoretical analysis

We first analyze the complexity of the algorithm, stated in Lemma 1

Lemma 1 Algorithm 1 is a single-pass streaming algorithm that has O(n log1+m(n)) query
complexity and takes O(n log1+m(n)) memory complexity.

Proof The algorithm scans only once over the ground set V . There are at most α log1+m(n)
candidate solutions, so the algorithm takes O(n log1+m(n)) memory complexity. Further-
more, each candidate solution is updated at most n times, so the total number of queries is
O(n log1+m(n)).

The approximation guaranteed by the algorithm is shown in the following theorem.

Theorem 1 Algorithm 1 is a
(︂

1−ϵ
1+ϵ(1− 1

α), α(1 + m)
)︂
-bicriteria approximation algorithm.

Proof When the condition in line 5 is satisfied, we have f(X) ≥ F (X)
1+ϵ ≥ T which implies

|X| ≥ OPT and log1+m |X| ≥ log1+m OPT. Since l = ⌈log1+m(α|X|)⌉, therefore there exists
a positive number i ∈ [l] such that:

(1 + m)i−1

α
≤ OPT ≤ (1 + m)i

α
(3.3)

The algorithm returns one candidate solution Sj for some j ∈ [l], we consider all possible
cases of the final solution as follows:
Case 1. The algorithm returns Si. Due to the condition of selecting the additional element
e in line 12, we always have:

Si ≤ (1 + m)i = (1 + m)(1 + m)i−1 ≤ (1 + m)αOPT (3.4)

To give the bound of f(Si), we consider the following cases:
Case 1.1. If |Si| = (1+m)i, denote Si = {s1, s2, . . . , s|Si|}, where st is the t-th element added

30

to Si and St
i = {s1, s2, . . . , st}, t ≤ |Si|. We have:

f(Si) ≥
|Si|∑︂
j=1

(f(Sj
i)− f(Sj−1

i)) (3.5)

≥
|Si|∑︂
j=1

(︄
F (Sj

i)
1− ϵ

− F (Sj−1
i)

1 + ϵ

)︄
(3.6)

≥ T |Si|
(1 + m)i

≥ T (3.7)

Case 1.2. If |Si| < (1 + m)i. Assume that S∗ is an optimal solution, S′ = S∗ \ Si =
{s′

1, s′
2, . . . , s′

d}, S′
t = {s′

1, s′
2, . . . , s′

t}, t ≤ d. Due to OPT ≤ (1+m)i

α , we have:

f(S∗ ∪ Si)− f(Si) =
d∑︂

t=1
(f(Si ∪ S′

t)− f(Si ∪ S′
t−1)) (3.8)

≤
d∑︂

t=1
(f(Si ∪ s′

t)− f(Si)) (3.9)

≤ OPT · max
s′

t∈S′
(f(Si ∪ s′

t)− f(Si)) (3.10)

≤ OPT max
s′

t∈S′

(︃
F (Si ∪ s′

t)
1− ϵ

− F (Si)
1 + ϵ

)︃
(3.11)

< OPT T

(1 + m)i
≤ T

α
(3.12)

It implies that f(Si) ≥ (1− 1
α)T and F (Si) ≥ (1− ϵ)(1− 1

α)T .
Case 2. If Algorithm 1 returns a solution Si′ with i′ < i, then we also have:

|Si′ | ≤ (1 + m)i′
< (1 + m)i = (1 + m)(1 + m)i−1 ≤ (1 + m)αOPT (3.13)

Due to the selection of the final solution in line 17, we have: f(Si′) ≥ F (Si′)
1+ϵ ≥

1−ϵ
1+ϵ

(︂
1− 1

α

)︂
T .

Case 3. If the Algorithm 1 returns a solution Sk with k > i, similar to the arguments in
Cases 1.1 and 1.2, we also have: f(Sk) ≥ 1−ϵ

1+ϵ(1− 1
α)T . In the other hand, due to the selection

of the final solution in line 17, we also have: |Sk| ≤ |Si| ≤ α(1 + m)OPT. By combining all
cases, we obtain the proof.

3.4.2 Streaming Algorithm under additive noise

3.4.2.1 Algorithm description

In this section, we introduce a streaming algorithm for SCN under the adaptive noise model,
named Str-SCN-A (Algorithm 2). Str-SCN-A inherits the operating principle of Str-SCN-M

31

with some modifications to be suitable for additive noise. Accordingly, we give a prediction of
the optimal solution by adding elements until F (X ∪ {e})− ϵ ≥ T (line 5). Str-SCN-A adds a
new element e to a candidate solution Si if |Si|+ 1 ≤ (1 + m)i and F (Si∪{e})−F (Si) + 2ϵ ≥

T
(1+m)i . The full details of this algorithm are described in Algorithm 2.

Algorithm 2: Streaming algorithm for SCN under the additive noise (Str-SCN-A)
Input: A oracle F , a threshold T , parameters m (0 < m < 1), α (α > 1)
Output: Subset S

1: l← ⌈log1+m(αn)⌉
2: Si ← ∅,∀i = 1, . . . , l
3: X ← ∅
4: foreach e ∈ V do
5: if F (X ∪ {e})− ϵ ≥ T then
6: Update: X ← X ∪ {e}, l← ⌈log1+m(α|X|)⌉
7: Delete Si for all i > l.
8: else
9: X ← X ∪ {e}

10: for i = 1 to l do
11: if F (Si ∪ {e})− F (Si) + 2ϵ ≥ T

(1+m)i and |Si|+ 1 ≤ (1 + m)i then
12: Si ← Si + {e}

13: Find S ← arg minSi∈{S1,S2,...,Sl}{|Si| : F (Si) ≥ T (1− 1
α)− ϵ} by using binary search.

14: return S

3.4.2.2 Theoretical analysis

We now analyze the performance of the algorithm in Theorem 2.

Theorem 2 Algorithm 2 is a single-pass streaming algorithm, has O(n log1+m(n)) queries,
and returns a solution S satisfying f(S) ≥ (1− 1

α)T − 2ϵ and |S| ≤ α(1 + m)OPT.

Proof We prove this theorem by using the same argument as the proofs of Lemma 1 and
Theorem 1. Since the operations of Algorithm 1 and 2 is similar, the query complexity
of Algorithm 2 is O(n log1+m(n)). When the condition in line 5 is satisfied, we also have
f(X) ≥ F (X) − ϵ ≥ T and l = ⌈log1+m(α|X|)⌉. Therefore, there exists a positive number
i ∈ [l] such that:

(1 + m)i−1

α
≤ OPT ≤ (1 + m)i

α

If the algorithm returns Si as the final solution, we consider the two following cases:
Case 1. If |Si| = (1 + m)i, denote Si = {s1, s2, . . . , s|Si|}, where st is the t-th element added

32

to Si and St
i = {s1, s2, . . . , st}, t ≤ |Si|. We have the following:

f(Si) ≥
|Si|∑︂
j=1

(f(Sj
i)− f(Sj−1

i)) (3.14)

≥
|Si|∑︂
j=1

((F (Sj
i)− ϵ)− (F (Sj−1

i) + ϵ)) (3.15)

=
|Si|∑︂
j=1

(F (Sj
i)− F (Sj−1

i)− 2ϵ) (3.16)

≥ T |Si|
(1 + m)i

− 2ϵ ≥ T − 2ϵ (3.17)

Case 2. If |Si| < (1 + m)i. Assume that S∗ is an optimal solution, S′ = S∗ \ Sj
i =

{s′
1, s′

2, . . . , s′
d}, S′

t = {s′
1, s′

2, . . . , s′
t}, t ≤ d. Since OPT ≤ (1+m)i

α , we have:

f(S∗ ∪ Si)− f(Si) =
d∑︂

t=1
((f(Si ∪ S′

t)− f(Si ∪ S′
t−1)) (3.18)

≤
d∑︂

t=1
(f(Si ∪ s′

t)− f(Si)) (3.19)

≤ OPT · max
s′

t∈S′
(f(Si ∪ s′

t)− f(Si)) (3.20)

≤ OPT · max
s′

t∈S′
((F (Si ∪ s′

t) + ϵ)− (F (Si)− ϵ)) (3.21)

= OPT · max
s′

t∈S′
(F (Si ∪ s′

t)− F (Si) + 2ϵ) (3.22)

≤ OPT T

(1 + m)i
≤ T

α
(3.23)

It implies that f(Sj
i) ≥ (1 − 1

α)T and F (Si) ≥ (1 − 1
α)T − ϵ. Combining the two above

cases, we have F (Si) ≥ (1− 1
α)T − ϵ.

In the case when Algorithm 2 returns a solution Si′ with i′ < i, we have

|Si′ | ≤ (1 + m)i′
< (1 + m)i ≤ α(1 + m)OPT

Due to the condition in line 13, we have: f(Si′) ≥ F (Si′)− ϵ ≥
(︂
1− 1

α

)︂
T − 2ϵ

If Algorithm 2 returns a solution Sk with k > i, we also have f(Sk) ≥ (1 − 1
α)T−2ϵ and

|Sk| ≤ |Si| ≤α(1 + m) OPT. By combining all the cases, we obtain the proof.

33

3.5 Experiment and Result evaluation

As mentioned above, we conduct some experiments of Problem 1 on the Influence Threshold
problem (Definition 4), which is an instance of SC problem.

Since calculating f of the IT problem is P-hard [63], i.e, it cannot be calculated exactly
in polynomial time. The value of function f is calculated based on the sample graphs (deter-
ministic graph) G1, G2, . . . , Gr which generated from the original graph G = (V, E) and the
number of all sample graphs is exponential. Therefore, we only compute the function F , an
ϵ-multiplicative or ϵ-additive noise oracle of f by using the approximate reachability method
proposed in [62], which is based only on a given finite number of sample graphs (typically
poly(n)). Now we present the details of this method. It was also used in the recent work of
Crawford et al. [22].
Approximate reachability method. In the IT problem, the value of the function f is
calculated based on the sample graphs (deterministic graphs) G1, G2, . . . , Gr which generated
from the original graph G = (V, E). Cohen et al.[62] proposed to compute the approximate
average reachability oracle of f by basing on bottom-k min-hash sketches. Given k ∈ Z>0, F

is computed as follows: For every vertex v, instance pair (v, i) ∈ V × {1, ..., r} and a random
rank value ranki

v is drawn from the uniform distribution on [0, 1]. For every vertex u ∈ V ,
the combined reachability sketch Su of u is the smallest k value from the set {ranki

v : v is
reachable from u on instance Gi}. Su is stored for all u ∈ V .

Let S ⊆ T . If |∪u∈SSu| < k, F (S) = |∪u∈SSu| /r. Otherwise, let t be the k-th smallest
value in ∪u∈SSu, F (S) = (k− 1)/(rt). Hence, F can be an ϵ-approximation to f by choosing
a sufficiently large k: for c > 2, if k = cϵ−2 log(n) the relative error of all queries over the
duration of three algorithms is within ϵ with probability at least 1− 1/nc−2.

In this section, all experiments are conducted to compare the performance of the Str-SCN-M,
Str-SCN-A, and the Greedy algorithm [22], the state-of-the-art algorithm for the SCN prob-
lem. We evaluated the performance of each algorithm based on five important metrics, such
as running time, value of F

T (1+ϵ) for Str-SCN-M, value of F
T +ϵ for Str-SCN-A, number of queries

F , size of seed set S, and memory usage. Note that F
T (1+ϵ) and F

T +ϵ are lower bounds of f
T

which are to quantify the closeness between the value of f for the returned solutions and the
threshold T .

3.5.1 Experimental Settings

3.5.1.1 Datasets

For the comprehensive experiment purpose, we choose three datasets with different sizes. They
are three real social networks from SNAP [64]: the Facebook ego network (ego-Facebook), the
ArXiV General Relativity collaboration network (ca-GrQc), and the Gnutella peer-to-peer file

34

sharing network (p2p-Gnutella05). They are applied commonly for submodular optimization
problems [22, 61, 65]. The description of the datasets used is presented in Table 3.2.

• ego-Facebook: This dataset consists of ’circles’ (or ’friend lists’) from Facebook. This
dataset includes node features (profiles), circles, and ego networks.

• ca-GrQc: ArXiV GR-QC (General Relativity and Quantum Cosmology) collaboration
network is from the e-print arXiv and covers scientific collaborations between the papers
of authors, which were submitted to the General Relativity and Quantum Cosmology
category. If an author i co-authored a paper with the author j, the graph contains an
undirected edge from i to j. If the paper is co-authored by k authors, this generates a
completely connected (sub)graph on k nodes. The data cover papers in the period from
January 1993 to April 2003 (124 months).

• p2p-Gnutella05: A sequence of snapshots of the Gnutella peer-to-peer file-sharing
network from August 2002. There are a total of 9 snapshots of the Gnutella network
collected in August 2002. The nodes represent hosts in the Gnutella network topology,
and the edges represent connections between Gnutella hosts.

Table 3.2: Statistic of Datasets and r is the number of sample graphs, which are generated
from the original graph G = (V, E) to compute the function F

Dataset Nodes Edges Type r

ego-Facebook 4039 88234 Undirected, Unweighted 256
ca-GrQc 5242 14496 Undirected, Unweighted 256

p2p-Gnutella05 8846 31839 Directed, Unweighted 256

3.5.1.2 Environment

All our experiments are carried out using a Linux machine with a 2 x Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz, 64GB RAM DDR4 @ 2400MHz. Our implementation is written in
C/C++ language and compiled with g++ 11. We use the THREAD and OMP libraries for
parallel programming.

3.5.1.3 Parameter Setting

Based on the Greedy [22], we tailor the test-specific parameters to the following: datasets
implemented in the experiment are a directed graph and directly weighted. We prepos-
sessed datasets from undirected graphs to directed graphs and assigned edges weight by
using the Weighted Cascade edge-weight assignment method [23, 62]. The weights are as-
signed as

⃓⃓⃓⃓ 1
|In(v)|

⃓⃓⃓⃓
, where |In(v)| denotes in-degree of node v in the graph V . The calcu-

lation of the F function is based on the Reachability method of [62]. Default parameters

35

ϵ = 0.1 and ϵ = 0.2; α = ⌈log2 n⌉/2; m ∈ {0.5, 0.6, 0.7, 0.8}. We choose a threshold T

according to the number of vertices in the dataset, as follows: for p2p-Gnutella05, T ∈
{1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000}, for ca-GrQc, T ∈ {1000, 2000, 3000, 4000, 5000},
and for ego-Facebook, T ∈ {1000, 2000, 3000, 4000}. For the number of sample graphs r, we
set r = 256 according to the recent work in [22].

3.5.2 Experiment Results and Evaluation

In the experiment, we compare similar approximation guaranteed multiple thresholds regard-
ing running time, number of queries F , ratio of F

T (1+ϵ) for Str-SCN-M and F
T +ϵ for Str-SCN-A,

seed set size S, and memory usage. Two outstanding advantages of our algorithms over
Greedy in the experiment are (1) the f function value is close to threshold T and the S seed
set size is close to size of Greedy’s solution; (2) the running time and the number queries of
our algorithms are 15 to 237 times faster and 12 to 208 times smaller than that of Greedy
algorithm, respectively. Our algorithms have good results as above because the complexity
of Greedy is O(n2) [22], while the complexity of ours is only O(n log1+m(n)). The larger n

is, the larger the deviation of the two complexities. We discuss thoroughly the experimental
results of each metric in the following, and the results are shown in the figures of Figure 3.1,
3.2, and 3.3.

3.5.2.1 Runtime

The Greedy algorithm must always spend a lot of running time because it sequentially selects
elements until f(S) ≥ T −ϵ (for additive noise) and f(S) ≥ T (1−ϵ) (for multiplicative noise).
Therefore, it has |S| passes over the data and takes O(|S|n) query complexity. If |S| = Ω(n),
its query complexity becomes O(n2). Thus, the runtime of Greedy depends on the size of the
data n. The larger n is, the longer Greedy’s runtime is. On the contrary, since the Str-SCN-A
and Str-SCN-M algorithms are based on the streaming method, they only do one-pass over
data to find elements that have F influence meeting the condition of threshold T . The results
indicate that our algorithms are 16 to 196 times faster for Str-SCN-M and 15 to 237 times
faster for Str-SCN-A than Greedy. Also, because the running time of our algorithms depends
only on T and n, and does not depend on ϵ, the running time is not much different in two
experiments ϵ = 0.1 and ϵ = 0.2. The results are shown in Figure 3.1.

3.5.2.2 Number of queries to function F

The running time of three algorithms is long due to the number of queries to calculate the
function F . These two values are proportional to each other. Hence, the number of queries F

of Greedy is also much larger than our algorithms, and increases exponentially as T and n get
larger. In our experiments, the number of queries F of the Greedy is more 12 to 197 times

36

ego-Facebook

1000 1500 2000 2500 3000 3500 4000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

ca-GrQc

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

102

103

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

102

103

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

102

103
R

u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

102

103

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

p2p-Gnutella05

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

102

103

104

R
u
n
ti

m
e
 (

se
c.

)

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

106

107

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

F

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

Figure 3.1: The runtime and number of queries to F of Str-SCN-M, Str-SCN-A and Greedy
on three datasets

37

ego-Facebook

1000 1500 2000 2500 3000 3500 4000
Threshold T

500

1000

1500

2000

2500

3000

3500

4000
|S

|

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

500

1000

1500

2000

2500

3000

3500

4000

|S
|

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

500

1000

1500

2000

2500

3000

3500

4000

|S
|

Epsilon = 0.1
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

500

1000

1500

2000

2500

3000

3500

4000

|S
|

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

0.7

0.8

0.9

1.0

1.1

F/
(T

(1
+

E
p
si

lo
n
))

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F/
(T

(1
+

E
p
si

lo
n
))

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

0.7

0.8

0.9

1.0

1.1

1.2

1.3

F/
(T

+
E
p
si

lo
n
)

Epsilon = 0.1
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000
Threshold T

0.7

0.8

0.9

1.0

F/
(T

+
E
p
si

lo
n
)

Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

ca-GrQc

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

1000

2000

3000

4000

5000

|S
|

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

1000

2000

3000

4000

5000

|S
|

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

1000

2000

3000

4000

5000
|S

|
Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

1000

2000

3000

4000

5000

|S
|

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

0.70

0.75

0.80

0.85

0.90

0.95

F/
(T

(1
+

E
p
si

lo
n
))

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

0.55

0.60

0.65

0.70

0.75

0.80

F/
(T

(1
+

E
p
si

lo
n
))

Epsilon = 0.2

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

0.75

0.80

0.85

0.90

0.95

1.00

1.05

F/
(T

+
E
p
si

lo
n
)

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 1500 2000 2500 3000 3500 4000 4500 5000
Threshold T

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
F/

(T
+

E
p
si

lo
n
)

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

p2p-Gnutella05

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0

1000

2000

3000

4000

5000

6000

7000

8000

|S
|

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0

1000

2000

3000

4000

5000

6000

7000

8000

|S
|

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0

1000

2000

3000

4000

5000

6000

7000

8000

|S
|

Epsilon = 0.1
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0

1000

2000

3000

4000

5000

6000

7000

|S
|

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F/
(T

(1
+

E
p
si

lo
n
))

Epsilon = 0.1

Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F/
(T

(1
+

E
p
si

lo
n
))

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

F/
(T

+
E
p
si

lo
n
)

Epsilon = 0.1

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

1000 2000 3000 4000 5000 6000 7000 8000
Threshold T

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F/
(T

+
E
p
si

lo
n
)

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

Figure 3.2: The size of seed set S and the F
T (1+ϵ) (multiplicative noise), F

T +ϵ (additive noise)
ratios of three algorithms on datasets.

38

greater than Str-SCN-M and 12 to 208 times greater than Str-SCN-A. The result is shown in
Figure 3.1.

3.5.2.3 Ratios of f
T (1+ϵ) (for multiplicative noise) and f

T +ϵ (for additive noise)

We compare the ratios f
T (1+ϵ) and f

T +ϵ , lower bounds of f
T under two considered noise models of

our algorithms with Greedy algorithm (Figure 3.2). Because the Greedy algorithm calculates
F for all elements of V , it always finds a seed set that is almost equal to the threshold
values T . Hence, the ratio values of Greedy have almost no change for each experimental
case. In contrast, our algorithms only need to find a S that guarantees f(S) ≥ (1− 1

α)1−ϵ
1+ϵT

(for Str-SCN-M), and f(S) ≥ (1 − 1
α)T − 2ϵ (for Str-SCN-A). As a result, the ratio values

of our algorithms have fluctuations but still ensure the set approximation of the problem.
Specifically, the experimental results obtained are as follows. For the multiplicative noise,
with ϵ = 0.1, the F

T (1+ϵ) of Str-SCN-M from 66% to 117%, meanwhile ϵ = 0.2, the value of
ratios from 53% to 89%. Concurrently, the ratio values of Greedy are equal to almost 91%
when ϵ = 0.1 and 83% when ϵ = 0.2. For the additive noise, ϵ = 0.1, the F

T +ϵ of Str-SCN-A
from 72% to 128%, and with ϵ = 0.2, the value of ratios from 63% to 106%. Conversely,
Greedy’s values are nearly equal to 100% for two values of ϵ in the additive noise case.
Concisely, for both multiplication and addition noise algorithms, the results (values of ratio)
of our algorithm are at least equal to 63%(ϵ = 0.1) and 72%(ϵ = 0.2) compared to Greedy’s
results.

3.5.2.4 Size of seed set S

The size of seed sets of our algorithms is 0.7 to 2.8 times larger than the Greedy algorithm.
The algorithms Str-SCN-M and Str-SCN-A do not depend on ϵ. Their |S| are not much
different in two cases ϵ = 0.1 and ϵ = 0.2. In summary, the difference in |S| between our
algorithms and Greedy is too small compared to the huge run-time benefit of ours. The result
is shown in Figure 3.2.

3.5.2.5 Memory usage

The results on the memory usage of Greedy do not depend on the threshold T and m. They
depend on the number of nodes and edges in the dataset, especially the more edges, the more
the list of neighbors will be saved. Therefore, the experimental results of the Greedy test
cases T and m have the same memory usage value. Thus, in the three datasets, although
the ego-Facebook data has the smallest number of nodes, it has 2.8 times more edges than
ca-GrQc and 6.1 times more than p2p-Gnutella05, so its memory usage in Greedy is 5 times
higher than the others. Additionally, when comparing the results of memory usage between
Greedy and our algorithms, the experimental results show that our algorithms must store data

39

like Greedy and save a list of sets of Si, which is used to choose the smallest Si. Therefore,
the memory usage of our algorithms is 1.2 to 5.2 times larger than Greedy. Furthermore, the
memory usage of our algorithms does not differ much between the test cases T and m. When
T and m are large, the memory usage reaches the maximum fixed result for each data set.
The results are shown in Figure 3.3.

ego-Facebook

10
00

20
00

30
00

40
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

10
00

20
00

30
00

40
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

10
00

20
00

30
00

40
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.1
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

10
00

20
00

30
00

40
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

ca-GrQc

10
00

20
00

30
00

40
00

50
00

Threshold T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

or
y

us
ag

e

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

10
00

20
00

30
00

40
00

50
00

Threshold T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

or
y

us
ag

e

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

10
00

20
00

30
00

40
00

50
00

Threshold T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
M

em
or

y
us

ag
e

Epsilon = 0.1
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

10
00

20
00

30
00

40
00

50
00

Threshold T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

or
y

us
ag

e

Epsilon = 0.2
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

p2p-Gnutella05

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.1
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.2
Str-SCN-M: m=0.5
Str-SCN-M: m=0.6
Str-SCN-M: m=0.7
Str-SCN-M: m=0.8
Greedy

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e

Epsilon = 0.1
Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e
Epsilon = 0.2

Str-SCN-A: m=0.5
Str-SCN-A: m=0.6
Str-SCN-A: m=0.7
Str-SCN-A: m=0.8
Greedy

Figure 3.3: Memory usage (GB) of Str-SCN-M, Str-SCN-A and Greedy on three datasets.

3.6 Concluding remarks

We studied SCN and proposed two efficient streaming algorithms with theoretical bounds un-
der two common noise models that are multiplicative and additive noise models. We compare
our algorithms with the-state-of-art algorithm by conducting some experiments. The results
reveal that our algorithms are highly scalable and outperform the adaptations in terms of
both the running time and the number of queries. In future work, we will further improve
the running time by developing more accelerated techniques.

40

Chapter 4

Problem 2. Fairness budget distribution
for Influence Maximization

This chapter describes maximizing the submodular function in the IM problem (Definition 5)
under budget threshold constraints, which set an pair of upper and lower bounded budgets to
choose seeds in each input community to guarantee the fairness constraint (FBIM problem in
short). IM is an instance of the submodular function maximization problem [23]. The content
of this chapter includes the motivation to study the problem, problem definition, related work,
proposed algorithms, experiment and result evaluation. Table 4.1 summarizes the notations
commonly used in this chapter.

4.1 Introduction

In the digital information age, using online social networks (OSNs) has become indispensable
and widespread for people. Currently, many OSNs have millions or billions of users, such as
Facebook, Twitter, Instagram, LinkedIn, Youtube, and others. As a result, OSNs can rapidly
influence by sharing behavior, spreading content, or messages from one person to another
[66]. This propagation is similar to the way viruses spread exponentially. Based on this
powerful feature of OSNs, brands or organizations use an online marketing tactic through
OSNs, also known as viral marketing. Because this tactic can rapidly spread information,
effectively promote products, usefully support candidates in elections, etc., on a large scale,
it often helps to achieve high results with modest investment costs [67]. However, an effective
viral marketing campaign must seed content with groups of influential people on OSNs. The
process of identifying a group of such individuals is referred to as the IM problem.

There are many efficient approaches for the IM problem that assess the spread of influence,
such as the formulation of the discrete optimization problem, which is NP-hard [23]; using
continuous-time models [68]; ranking and score-based heuristics [69], or an excited approach,

41

Table 4.1: Table of the usually used notations in Chapter 4

Notation Description
G a graph
n the number of nodes in the graph G.
V the set of nodes in the graph G, |V | = n.
2V the subset family of V .
m the number of edges in the graph G.
E the set of edges in the graph G, |E| = m.
w the set of edge weights in the graph.
v a random node in the graph.
u a neighbor node of v in the graph.
k a total budget, which is upper bound of |S|.

K
the number of target communities is selected for the
FBIM’s input.

C′ the set of K communities in network G.
C a set of disjoint communities of the graph, |C| = N

N the size of a set C
Ci, Cj the i-th community and the j-th community.
Vi the set of nodes of the community Ci

kl
i the lower bounded budget of the community Ci.

ku
i the upper bounded budget of the community Ci.

S the returned size-k seed set of algorithms.
S∗ an optimal size-k seed set.
Ri, Rj a random RR set.
T the number of nodes in C′ , T =

⃓⃓⃓⋃︁
Ci∈C′ (Ci)

⃓⃓⃓
and T ≤ n.

R,R′
,R1,R2 the set of random RR sets.

CovR(S) number of RR sets in R incident at some node in S.
f(S) influence spread of a seed set S

fl(S), fu(S∗) the lower bound of f(S), the upper bound of f(S∗).
f̂(S) an estimation of f(S) on a collection of RR sets R
E the expected value
M a matroid

42

using sketches and the Reverse Influence Sampling (RIS) framework, which was suggested by
Borgs et al.[24]. Numerous publications have used RIS to solve the problem IM with positive
results [2, 15, 70, 71].

However, most of these existing solutions to the problem IM focus on the most influential
nodes to maximize the total number of affected nodes. That means these methods only aim
to find the most influential users to maximize the number of affected people. Meanwhile, they
lost interest in whether the influenced people are fairly distributed over the network. Thus,
there is a high probability that users in groups that do not contain seeded users will not be
influenced or will not receive the spread information. On the contrary, it is these users who
must need to be affected.

For example, viral marketing is a significant and standard application of the IM problem.
The objective is to maximize the profits of advertisers by promoting products to users on
OSNs [72]. OSNs are the fertile ground of the advertising field, which has millions or billions
of users, and the number of users continuously increases every day. However, it is troubling
that users of OSNs often encounter advertising content that has been viewed too many times
or purchased, so they do not care about them. In contrast, users who are the right customers
for these ads do not receive them. That is boring and frustrating for users. Therefore, the
challenge is how to spread the advertising content to the right customers and other potential
customer groups in the OSNs communities.

In recent years, to conquer the above weakness of IM, a new variant of it has been de-
veloped that has attracted the attention of researchers. That is, the problem fair influence
maximization (FIM) which aims to ensure a fair distribution for the groups in the final set
of selected nodes [43, 73]. In other words, it guarantees coverage propagation in the target
communities. However, each of the existing methods offers a unique perspective on fairness.
For all we know, there are no publications that consider both minimum and maximum budget
constraints for each group to guarantee equitable distribution.

Fueled by this challenge, we study FIM under budget threshold constraint, setting an
upper and lower bounded budget to choose seeds in each community to guarantee fairness.
This problem is called FBIM problem shortly. Specifically, our contributions are as follows.

• We propose three algorithms to solve the problem FBIM. These algorithms provide a
(1/2− ϵ)-approximation to the optimum solution work efficiently in big data.

(1) The first is the FBIM1 algorithm that uses a combination of some methods:
generating sampling by the RIS framework with the dynamic stop-and-stare algorithm,
also known as. DSSA in [2], and adding the fairness constraint in seed set selection. Our
algorithm has O

(︃
kT log

(︃
(8 + 2ϵ)n ln 2

δ
+ln (n

k)
ϵ2

)︃)︃
complexity. The results show that our

algorithm has a runtime, and the objective function value can be equal to or better than

43

DSSA, which depends on the adjustment of the dependent parameters. Particularly, our
method resolves the fairness constraint, while DSSA lacks that [39].

(2) The second is the FBIM2 algorithm that combines seed selection to ensure maxi-
mum coverage and fairness constraint with the online processing influence maximization
algorithm, also known as OPIMC in [15]. FBIM2 has O

(︂
kT log n

ϵ2k

)︂
complexity. Fur-

thermore, like DSSA, OPIMC does not solve the fairness constraint.

(3) The last is the FBIM3 algorithm that improves FBIM2 using the greedy tech-
nique with a threshold criterion for selecting a seed set. FBIM3 has O

(︂
T
ϵ log k

ϵ log n
ϵ2k

)︂
complexity. Significantly, the seed set’s distribution guarantees a high coverage ratio,
which is an expression of ensuring the fairness constraint.

• We further investigate the performance of our algorithms by conducting some exper-
iments for the FBIM under both well-known diffusion models, Linear Threshold and
Independent Cascade [23], on real social networks. The results indicate the seed sets
of our algorithms, whose coverage ratio over communities is greater than the result of
OPIMC. It is 2x to 10x larger and there are even some cases in which FBIM reaches 100%
coverage on target communities. This process depends on the appropriate parameter se-
lection for each dataset. An extensive coverage ratio signifies the number of chosen seeds
covering the target communities, ensuring that the impacted individuals are the ones
we want to influence. Besides, the efficiency of FBIM’s algorithms must be influenced
by objective factors due to the implementation method and the fairness constraints.
This leads to more cost but lower objective function value than OPIMC. Nevertheless,
the results still guarantee the optimal theoretical approximation, especially the fairness
constraint.

4.2 Related work

According to much earlier research [23, 47, 60, 74], the problem IM is often addressed using a
greedy technique with an approximation of (1− 1/e). Although the greedy strategy is quite
successful for IM, computing the influence function f(S) is still challenging because it is P-
hard. Existing approaches for IM may be classified into three primary classes based on how
the influence function is calculated [75].

(1) The simulation-based approaches, such as Greedy [23], CELF [76], CELF++[41, 42],
UBLF[77], calculate the influence function using Monte Carlo sampling. To achieve highly
scalable algorithms for IM, they merged heuristic techniques based on the greedy algorithm.
These algorithms aim to produce an (1 − 1/e) approximation answer. These methods have
an advantage that is suitable for diffusion models. Nevertheless, the disadvantage is that, if

44

we want to calculate the objective function with minor errors, we must generate many sample
cases. Hence, it significantly increases computational costs.

(2) The proxy-based approaches, such as SimPath [78], Degree [41], PageRank [79, 80,
81], EasyIM [82], approximate the influence function f(S) to conquer the P-hard by devising
proxy models. The approximate solution obtained is (1 − 1/e − ϵ) for any ϵ > 0. Many
algorithms have demonstrated that the proxy-based strategy is efficient for empiricism but
does not provide theoretical guarantees.

(3) The sketch-based approaches, such as TIM, TIM+ [83], IMM [84], use a novel RIS
sampling method. The goal of these techniques is to produce an (1 − 1/e − ϵ)-approximate
solution with minimal numbers of RIS samples [24]. The drawback of these approaches is
that their lower bounded budget is unknown, and the number of samplings generated can be
rather large. Furthermore, these algorithms guarantee theoretically efficient, having rigorously
bounded solutions and minimal time complexities. However, because they must ensure the
approximation ratio for the worst-case scenario, the sketch-based strategy’s practical efficiency
may be lower than that of the proxy-based approaches.

Subsequently, Nguyen et al. [2] proposed two new sampling techniques, SSA and DSSA,
which attempt to obtain a small number of RIS samples while ensuring (1−1/e−ϵ)-approximations.
Despite this, Huang et al. [85] discovered that SSA/DSSA has certain flaws. They also pro-
vided SSA-Fix, an updated version of SSA. Afterward, Nguyen et al. presented D-SSA-Fix
[86], a significantly updated version of DSSA that produces (1− 1/e− ϵ)-approximations.

In addition, there are many studies that resolve other variants of IM [70, 83, 84, 86].
However, almost all of these methods focus on offline processing. This means that the user
does not receive any output until the final result is obtained. Thus, the user cannot terminate
the algorithm early to trade the solution quality for efficiency. Motivated by this phenomenon,
Tang et al. proposed the OPIMC algorithm for online processing of influence maximization in
[15]. This method can allow the user to terminate any timestamp, then get a seed set S and
report an approximate guarantee (1− 1/e− ϵ), such that S is the IM problem’s approximate
solution with at least (1− α) probability, with α ∈ (0, 1) is a user-specified parameter.

Unsuccessfully, virtually all of the above methods have focused on identifying the most
influential nodes to increase the number of nodes affected. They fail to ensure that chosen
nodes are evenly distributed across the partitions of the dataset. This shortcoming as a
driving force has attracted the attention of researchers. Recent publications have proposed
multiple definitions of fairness and explicitly integrated fairness into the IM problem. One of
these fairness concerns, known as group fairness, is to ensure that each group receives a fair
share of resources and that the distribution of those resources respects the various makeup of
the groups. These studies for the group fairness constraint in the IM problem have obtained
positive results.

45

Tsang et al. (2019)[87] proposed the issue of optimizing the dissemination of a strat-
egy while keeping a group-fairness restriction in mind. The authors developed two fairness
measures (maximin fairness and group rationality) to assess group-fairness in IM. Maximin
fairness measures the smallest number of nodes within each group that are influenced must
be maximized. Meanwhile, the main principle of group rationality is that no group increases
its influence when it withdraws from IM with its proportional allocation of resources and
distributes those resources internally. Both measures aim to ensure that each group receives
an equitable share of resources.

Stoica et al. (2020) [88] studied the problem of fair resource allocation in influence max-
imization. The authors provided an algorithmic framework to locate solutions that satisfy
fairness constraints for multi-objective submodular maximization problems. This method in-
creases the diversity of nodes in the seed set and may have an impact on the effectiveness
and fairness of the information diffusion process. The authors demonstrated that, in some
circumstances, seeding methods that consider the diversity of nodes in the seed set are more
effective and fair.

Halabi et al. (2020) [89] worked on the problem of maximizing fair submodular functions
(including monotone and non-monotone submodular functions). They proposed streaming
algorithms for this problem. For monotone case, the authors achieved two results, the (1/2)-
approximation algorithm and the (1/4)-approximation algorithm use O(log k) time. For non-
monotone case, they achieved a (q + ϵ)-approximation with q is an input excess ratio and
requires O(k) time. These approaches apply to creating fair summaries for a massive dataset.

Next, Khajehnejad et al. (2020) [43] studied the fair influence maximization in an effort to
more fairly reach minorities. The authors used machine learning approaches to pick a seed set
using an adversarial graph embedding technique, which allows for strong impact propagation
as well as fairness amongst communities.

Rahmattalabi et al. (2021) [44] resolved the problem that Tsang et al. studied in [87]. This
is the group-fairness in the influence maximization problem. However, Rahmattalabi et al.
took a different approach, which is to offer a principled characterization of the properties that a
fair influence maximization algorithm must meet. The authors designed a framework founded
on the social welfare theory that aggregates the cardinal utilities each community derives
using isoelastic social welfare functions. In this framework, the trade-off between fairness and
efficiency can be handled by a single inequality aversion design parameter.

More recently, Becker et al. (2022) [73] also considered the problem the same as Tsang et
al.[87] and also proposed a new approach. The authors modeled the problem on the basis of
the probabilistic techniques used to choose seed sets rather than purely deterministic ones.
They provided two variations of this probabilistic problem: the node-based problem, which
uses probabilistic strategies over nodes, and the set-based problem, which uses probabilistic
strategies over sets of nodes. After examining the relationship between the two probabilistic

46

problems, the authors demonstrated that both probabilistic variants give approximation al-
gorithms that achieve a constant multiplicative factor of (1− 1/e) minus an arbitrarily small
additive error caused by the simulation of the information spread.

Ali et al. (2022) [90] solved the fairness of the spread process in various groups. They
focused on the time-critical aspect of IM, examining the number of affected people and the
time step at which they are influenced. After doing these things, maximizing the expected
number of individuals reached by selecting a fixed cardinality seed set and minimizing the
amount of seeds needed to affect a given portion of the network can lead in unfair solutions.
The authors proposed an objective function that balances two goals, such as maximizing
the expected number of nodes reached and minimizing the maximum disparity in influence
between any two communities.

Razaghi et al. (2022) [91] also worked on the group-fairness-aware influence maximization
in social networks as Tsang et al. [87]. However, they fixed an important omission that Tsang
et al. overlooked, that is, did not assess the time for receiving resources by nodes of groups.
The authors expand the concept of group-fairness in the IM problem by examining the speed
of nodes’ activation in different groups of social networks. They proposed a multi-objective
meta-heuristic (SetMOGWO), founded on the multi-objective gray wolf optimizer, to increase
the fair propagation of information in IM problem relating to various fairness measures.

Through the literature available, these publications show that each study is concerned
with a different aspect or constraint on the problem of group fairness in IM. As far as we
know, there has not been a single study that mentions the fairness constraints on the lower
and upper bounded budgets of the target communities in the dataset. That is the reason and
impetus for us to research and find a solution to this shortcoming.

4.3 Problem definition

In this section, we first introduce the definition of the Fair Submodular Maximization (FSM)
problem [89], the generation of our studied problem, and recap the Fair Greedy algorithm
that returns an approximation of 1/2 within O(nk) queries. We then introduce our studied
fairness influence maximization problem and recap some properties of the problem.

4.3.1 Fair Submodular Maximization problem

Given a ground set V of n elements and a submodular function f : 2V → R+, with f is a
monotone submodular function. The problem FSM is defined as follows.

Definition 12 (FSM problem) Assume that V is divided into C′ disjoint subsets V1, V2, . . . , VK ,
and Ci ∩ Cj = ∅. Each subset Vi has a lower and an upper bound on the number of elements

47

kl
i and ku

i representing the fairness constraint. Let a positive number k be a global cardinality
constraint. The FSM asks to find:

max: f(S) (4.1)

subject to: |S| ≤ k (4.2)

kl
i ≤ |S ∩ Vi| ≤ ku

i , i = 1 . . . K (4.3)

We defined an instance of FSM problem as a tuple (f, V, V1, . . . , VK , k). The problem FSM
can be reduced to submodular maximization under a matroid constraint (SMM) problem [89]
defined as follows.

Definition 13 (SMM problem) The problem ask to select a set S ⊆ V with S ∈ M such
that it maximize f(S), where M is a matroid. If a family of sets M subset 2V satisfies the
following conditions, it is referred to as a matroid.

1. M ≠ ∅;

2. downward-closedness: if A ⊆ B and B ∈M, then A ∈M;

3. augmentation: if A, B ∈M with |A| ≤ |B|, then there exists s ∈ B such that A+s ∈M.

Fair Greedy algorithm. We now recap the Fair Greedy algorithm (Algorithm 3) [89] The
operation of this algorithm based on the notation of an extendable set.

Algorithm 3: Fair Greedy algorithm
Input: An instan of FSM problem (f, V, V1, . . . , VK , k)
Output: A 1/2-approximation solution S

1. S ← ∅
2. for i = 1 to k do
3. U ← {s ∈ V |S ∪ s is extendable }
4. v ← arg maxs∈U f(s|S)
5. S ← S ∪ {v}
6. return S

Definition 14 (An extendable set S [89]) A set S ⊆ V is extendable if and only if

|S ∩ Ci| ≤ ku
i , i = 1, . . . , K and

K∑︂
i=1

max(|S ∩ Ci|, kl
i) ≤ k (4.4)

48

4.3.2 Fairness Budget Influence Maximization problem

In this section, we introduce the problem FBIM, which is the focus of this study, and its
related definitions. FBIM inherits two issues: fair submodular maximization (FSM) [89] and
fair influence maximization (FIM) [44].

Definition 15 (FIM problem) Given a graph G = (V, E), V is the set of vertices, |V | = n,
E is the set of edges, |E| = m and a global cardinality constraint k ∈ Z+. Let C be a set of
disjoint communities (empty intersection) of the graph. Each vertex v of V belongs to one
of the communities Ci ∈ C, i ∈ 1, ..., N such that V1 ∪ ... ∪ VN = V where Vi denotes the
set of vertices of the community Ci. Furthermore, communities may be disconnected, that is,
∀Ci, Cj ∈ C and ∀v ∈ Vi, u ∈ Vj, there is no edge between v and u. A denotes the initial
set of vertices (referred to as influencer vertices), and we define A∗ := {A ⊂ V ||A| ≤ k} as
the set of feasible budget influencers. Lastly, for any choice of A ∈ A∗, we let hCi(A) denote
the expected fraction of the influenced vertices of the community Ci, where the expectation is
taken under a diffusion model in the spread of influence. The fair influence maximization
problem solves the optimization problem

maximize
A∈A∗

∑︂
Ci∈C

|Vi|.hCi(A) (4.5)

Definition 16 (FBIM problem) Given a social network G = (V, E, w), |V | = n and a set
C′ = {C1, C2, . . . , CK} where ∀Ci ⊂ G and Ci

⋂︁
i ̸=j Cj = ∅. Each group Ci has a pair of lower

kl
i and upper ku

i bounded budgets, kl
i ≤ ku

i . For a given total budget k, the problem asks to find
a seed set S, |S| ≤ k, which satisfies kl

i ≤ |S ∩ Ci| ≤ ku
i so that f(S) is maximal, where f(S)

is the influence function. The f(S) measures the expected number of users in V that can be
influenced by the elements in S under a diffusion model.

In this study, we solve the problem FBIM under both information diffusion models, IC (in
Definition 6) and LT (in Definition 7).

For problem FBIM, according to the proposition of Halabi et al. in [89], the greedy method
selects the element with the highest marginal gain (the marginal gain of an element s is the
value of (f(S ∪ s)− f(S))) while meeting the constraints. We note that the greedy approach
might not produce a feasible solution if this element was only required to meet the upper
bound and cardinality constraints. It may satisfy the global cardinality restriction without
meeting the lower bounds. As a result, more careful element selection is required. To this
end, the seed set S must be an extendable set.

49

Besides, there are some definitions that are usually used in this study. They are Reverse
Influence Sampling (RIS), Reachable Reverse set (RR set) and the Coverage of seed set S on
the set of Reachable Reverse sets (CovR(S)).

Definition 17 (RIS [24]) Given a graph G = (V, E, w), RIS apprehend the influence scene
of G by generating a set R of random RR sets. A RR set contains nodes that can reach v in
g, where v is a random node in V and g is a sample graph from G.

Definition 18 (RR set [24]) Given a graph G = (V, E, w) under the IC model. A random
RR set Ri is generated from G according to the following steps:
• Step 1. Choose a source node v ∈ V .
• Step 2. Generate a sample graph g from G.
• Step 3. Return a Ri that contains nodes can be reached from v in g.

We denote R as the set of random RR sets. As reported by [2], finding a seed set S and
influence spread f(S) is based on computing the coverage of S on most RR sets. Due to the
generation of a set R of multiple random RR sets, influential nodes may appear frequently
in the RR sets. Therefore, we find the nodes that appear in the most RR sets to add the
seed set S. Besides, the influence spread f(S) on a random RR set Ri is proportional to the
probability that S intersects with Ri. Thus, a seed set S covers a set RR Ri if S ∩ Ri ̸= ∅.
For simplicity, we denote the coverage of S on R as CovR(S), and it is calculated as follows.

CovR(S) =
∑︂

Ri∈R
min{1, |S ∩Ri|} (4.6)

Furthermore, the influence spread f(S) on a random RR set Ri is proportional to the
probability that S intersects with Ri. According to recent work [24], we can calculate the
influence spread function f(·) as follows:

f(S) = n · E[min{1, |S ∩Ri|}] (with E is the expected value) (4.7)

and an estimation of f(S) over a collection of RR sets R is

f̂(S) = n · CovR(S)/|R| (4.8)

4.4 Proposed algorithms

In this section, we design a Threshold Greedy algorithm for the FSM problem. Later, based
on this Greedy algorithm, we improved to develop one of the algorithms for FBIM because
FSM is the generation of the FBIM.

50

4.4.1 Threshold Greedy algorithm for FSM

The Threshold Greedy algorithm applies the decreasing threshold greedy strategy for the FSM
problem. This algorithm is improved from Algorithm 3 by using a decreasing threshold to
reduce the number of data traversals while still ensuring the approximate solution.
a. Algorithm description

The Threshold Greedy algorithm operates as follows. At the beginning, it initiates the
initial threshold t with M , where M = maxu∈V f(u). One loop of the inner loop ’for’ is named
one iteration. It scans all elements in S. At each iteration, if the current element s satisfies
two conditions, S ∪ s is extendable and f(s|S) ≥ t, s will be selected into S. After each loop
of the "while" loop, t will be decremented by (1− ϵ) times until t < ϵM/k then the algorithm
terminates and returns S. A detailed description of this algorithm is given in Algorithm 4.

Algorithm 4: Threshold Greedy algorithm
Input: An instance of FSM problem (f, V, V1, . . . , VK , k), accuracy parameter ϵ.
Output: A (1/2− ϵ)-approximation solution S

1. S ← ∅
2. M ← maxu∈V f(u)
3. t←M
4. while t ≥ ϵM/k do
5. for s ∈ V do
6. if S ∪ {s} is extendable and f(s|S) ≥ t then
7. S ← S ∪ {s}

8. t← (1− ϵ)t
9. return S

b. Theoretical analysis

The following theoretical analysis and proofs in Lemma 2 and Theorem 3 will demonstrate
the feasibility and efficiency of this algorithm to guarantee the approximation solution.

Lemma 2 Denote ti be threshold t at the i-th iteration and Si be S at the beginning of the
i-th iteration. We first show that:

ti ≥ (1− ϵ) max
s∈V :Si∪{s} is extendable

f(s|Si) (4.9)

Proof We prove Lemma 2 using the induction. If i = 1, S1 = ∅ and t1 = M ≥ (1 −

51

ϵ) maxs∈V :S1∪{s} is extendable f(s). Assume that the lemma holds for i ≥ 1. We have:

ti+1 = (1− ϵ)ti ≥ (1− ϵ) max
s∈V :Si+1∪{s} is extendable

f(s|Si+1) (4.10)

The inequality is due to the fact that the element

smax = arg max
s∈V :Si+1∪{s} is extendable

f(s|Si+1)

was not added to S in iteration i. The lemma is proved.

Theorem 3 Algorithm 4 requires O(n
ϵ log k

ϵ) runtime and returns a (1/2− ϵ)-approximation
solution for FSM problem.

Proof The computational complexity can easily be proved. Assume that there are in total
x number of iterations in the "while" loop of Algorithm 4. Therefore, we have (1 − ϵ)x = ϵ

k .
Solving this equation yields

x =
log k

ϵ

log 1
1−ϵ

≤ 1
ϵ

log k

ϵ
(4.11)

The "for" loop does n iterations. Thus, the time complexity of this algorithm is O(n
ϵ log k

ϵ).
Besides, assume that smax = maxs∈V :Si∪{s} is extendable f(s|Si), Si = Si−1∪{s1, s2, . . . , sl}, and
Ss be S just before going s is processed and Ss

i ∪ {s} is extendable. We have the following:

ti ≥ f(smax|Ss) ≥ f(smax|Si) (4.12)

Now, assume that S = {s1, s2, . . . , su}, u ≤ k is S after ending the main loop of the algorithm.
We consider the following two cases:

Case 1. We have |S| = u, u = k, assume that O = {o1, o2, . . . , ok} is the optimal solution
such that {s1, s2, . . . , si−1, oi} can be extended, which exists because the extendability is
matroids [89] and satisfies the augmentation property. Denote Si be S right before si is

52

added to S and t(si) be t at the iteration si be added to S. We have the following:

f(S) =
u∑︂

i=1
f(si|{s1, s2, . . . , si−1})

≥
u∑︂

i=1
t(si)

≥
u∑︂

i=1
(1− ϵ)f(si|Si)(By Lemma 2)

≥
u∑︂

i=1
(1− ϵ)f(oi|Si)

≥
u∑︂

i=1
(1− ϵ)f(oi|{s1, s2, . . . , si−1})

≥
u∑︂

i=1
(1− ϵ)f(oi|{s1, s2, . . . , su} ∪ {o1, . . . , oi−1})(Due to the submodularity of f)

=
u∑︂

i=1
(1− ϵ)f(oi|S ∪ {o1, . . . , oi−1})

= (1− ϵ)(f(O ∪ S)− f(S))(by equality (2))

and so

f(S) ≥ (1− ϵ)
(2− ϵ)f(O)

≥ (1− 2ϵ)
2 f(O)

= (1
2 − ϵ)f(O)

Case 2. We have |S| = u, u < k and S = {s1, s2, . . . , su}, assume that O is the optimal
solution, S′ = {su+1, . . . , sk} and Sk = {s1, s2, . . . , su}∪{su+1, . . . , sk}, so Sk = S∪S′. Denote
tlast be t after ending the main loop of the algorithm. Thus, we have the following:

k∑︂
i=u+1

f(si|{s1, s2, . . . , si−1}) ≤ ktlast (Due to f(si|S)i=u+1,...,k ≤ tlast)

≤ k
ϵM

k
≤ ϵM ≤ ϵf(O)

and so

f(Sk)− f(S) ≤ ϵf(O)

53

We have the equivalent inequality as follows:

f(S) ≥ f(Sk)− ϵf(O)

≥ (1
2 − ϵ)f(O)− ϵf(O) (By the proof of Case 1)

≥ (1
2 − 2ϵ)f(O)

≥ (1
2 − ϵ′)f(O) (with ϵ′ = 2ϵ)

The proof is completed.

As above mentioned, FSM is the generation of the FBIM problem. Therefore, we based on the
Threshold Greedy algorithm as an important key to designing an efficient algorithm for the
FBIM problem in the next section. It is the Threshold Greedy algorithm for Fairness Max
Cover (Algorithm 8), which finds a seed set S so that it satisfies to maximize the coverage
and fairness constraint.

4.4.2 Proposed Algorithms for FBIM

This section introduces three algorithms for the FBIM problem, including FBIM1, FBIM2,
and FBIM3. The details of these algorithms are fully presented in Algorithms 6, 7, and 9,
respectively. Because our proposed algorithms are based on the DSSA [2] and OPIMC [15]
methods, we do not perform the proofs given in their originals.

4.4.2.1 FBIM1 - an algorithm based on the stop-and-stare method

This method combines an improved greedy strategy for selecting seeds satisfied the fairness
constraint with generating sampling of the DSSA. The FBIM1 algorithm’s fundamental prin-
ciple is: (1) choose k nodes that occur on the majority of communities and add them to S

to maximize the coverage of S on the set of RR sets; (2) calculate f(S) by the stop-and-stare
technique. If the result does not satisfy the threshold condition of the algorithm, the process
repeats the search for a new S on the new set of RR sets with double the number of elements.
The details of the algorithm are fully presented in Algorithms 5 and 6.
a. Algorithm description

The FBIM1 algorithm (Algorithm 6) inputs a K-size communities set C′ , a budget k,
parameters ϵ and δ, (0 ≤ ϵ, δ ≤ 1), which are related to the solution’s quality and the
algorithm’s runtime. They allow us to adjust the solution quality trade-off with runtime.
Especially, ϵ and δ guarantee the size bound of S. In contrast, k and the set C′ guarantee the
value of the objective function f(S) and the coverage ratio of S in communities in C′ , which
is considered to satisfy the fairness constraint.

54

Algorithm 5: Fairness-Max-Coverage (FMC) procedure
Input: Graph G, C′ , k, RR sets (R).
Output: A seed set S that satisfies fairness constraint, |S| ≤ k and its estimated

influence f(S).
1. S ← ∅
2. for i = 1 to k do
3. U← {s ∈ (CjCj∈C′ \ S)|S ∪ s is extendable }
4. v ← arg max{s∈U}(CovR(S ∪ s)− CovR(S))
5. S ← v

6. return S.

Algorithm 6: FBIM1 algorithm
Input: Graph G, C′ , k, and 0 ≤ ϵ, δ ≤ 1
Output: A seed set S, |S| ≤ k.

1. Γ←
√

8(1 + ϵ)2ln(2
δ

) 1
ϵ2

2. R ← Generate Γ random RR sets by RIS
3. S ← FMC(G, C′

, k,R)
4. f(S)← n.CovR(S)/|R|
5. repeat
6. R′ ← Generate |R| random RR sets by RIS
7. f

′(S)← n.CovR′ (S)/|R′ |
8. ϵ1 ← (f(S)/f

′(S))− 1
9. if ϵ1 ≤ ϵ then

10. ϵ2 ← (ϵ− ϵ1)/(2(1 + ϵ1))
11. ϵ3 ← (ϵ− ϵ1)/(2(1− 1

e))

12. δ1 ← e
−

CovR(S).ϵ2
3√

8(1 + ϵ1)(1 + ϵ2)

13. δ2 ← e
−

(︁
CovR′ (S)− 1

)︁
.ϵ2

2√
8(1 + ϵ2)

14. if δ1+δ2 ≤ δ then
15. return S.

16. R ← R∪R′

17. S ← FMC(G, C′
, k,R)

18. f(S)← n.CovR(S)/|R|

19. until |R| ≥ (8 + 2ϵ)n.
ln

2
δ

+ ln
(︁n

k

)︁
ϵ2 ;

20. return S.

55

In the initial step, the algorithm generates a set R that contains Γ the random RR sets by
RIS, with the value of Γ initialized as line 1. The formula of Γ was proved in [2]. Subsequently,
based on this R, the FMC procedure (Algorithm 5) returns a seed set S.

Algorithm 5 receives a K-size community C′ set, a budget k and a set R. This algorithm
produces a k-size seed set S that satisfies fairness constraint. Initiate an empty set S. It
performs a loop of k times, each iteration finds an element s in all Cj of C′ , except in S, so
that (S +s) is extendable and the coverage of s on the RR sets of R is maximal. This element
s is added to S. After the loop ends, the algorithm returns the seed set S.

We now turn our attention to Algorithm 6. The algorithm executes an indefinite loop. In
each iteration, it evaluates the efficiency of S by computing f

′(S) on the set R′ and checks
whether (f(S)/f

′(S)) − 1 meets the conditions in lines 9 and 14. If it is true, the algorithm
stops. Otherwise, R doubles by adding R′ to find a new S and goes to the next iteration.

The loop stops when |R| is at least (8 + 2ϵ)n.
ln2

δ + ln
(︁n

k

)︁
ϵ2 .

b. Theoretical analysis

Theorem 4 Algorithm 5 is an improved greedy algorithm, has O(k.T) complexity with T =⃓⃓⃓⋃︁
Ci∈C′ (Ci)

⃓⃓⃓
and T ≤ n.

Proof Algorithm 5 iterates k times to select seeds for the seed set S of size k. Each iteration
scans the majority of the elements of Ci (∀Ci ∈ C

′) to select an element that has the greatest
coverage on R. As a result, the complexity of the algorithm is O(kT).

Theorem 5 Algorithm 6 has O

(︃
k.T.log

(︃
(8 + 2ϵ)n.

ln 2
δ

+ln(n
k)

ϵ2

)︃)︃
complexity.

Proof Algorithm 6 iterates the generation of the set R of random RR sets with randomly
chosen source elements from Ci and finding ⟨S, f(S)⟩ founded on R through Algorithm 5.
At lines 14 and 19, Algorithm 6 has two requirements to break the loop. Because, in each
iteration, |R| is doubled in size and calls Algorithm 5 to find a new S, in the worst case, this
algorithm stops when it meets condition line 19, which indicates that the maximum number

of iterations is log
(︄

(8 + 2ϵ)n
ln 2

δ + ln
(︁n

k

)︁
ϵ2

)︄
. Consequently, the complexity of this method is

O

(︄
kT log

(︄
(8 + 2ϵ)n

ln 2
δ + ln

(︁n
k

)︁
ϵ2

)︄)︄
.

4.4.2.2 FBIM2 & FBIM3 - algorithms based on the online processing of influence maxi-
mization method

a. Algorithm description

56

Algorithm 7: FBIM2 algorithm
Input: Graph G, C′ , k, ϵ, δ
Output: An (1

2 − ϵ)-optimal solution S, |S| ≤ k with probility at least 1− δ

1. Γmax ←
2n
(︂

1
2

√︂
ln6

δ +
√︂

1
2(ln

(︁n
k

)︁
+ ln6

δ)
)︂2

ϵ2k
2. Γ0 ← Γmax.ϵ2k/n
3. R1 ← Generate Γ0 random RR sets by RIS
4. R2 ← Generate Γ0 random RR sets by RIS
5. imax ← ⌈log2(Γmax/Γ0)⌉
6. for i← 1 to imax do
7. S ← FMC(G, C′

, k,R1)
8. δ1 = δ2 = δ/3imax

9. compute fl(S) and fu(S∗) by (4.13) and (4.14)
10. ϵ

′ ← fl(S)/fu(S∗)
11. if ϵ

′ ≥ (1
2 − ϵ) or i == imax then

12. return S.
13. Γ0 ← 2Γ0 and generate Γ0 new random RR sets for R1,R2.

Exactly, FBIM2 (Algorithm 7) and FBIM3 (Algorithm 9) algorithms are similar in the
main idea and only different in the finding seed set S step. The main idea of these algorithms
is to perform a finite loop that does the following processing: (1) generate two set of RR sets,
R1 and R2; (2) find a seed set S based on R1 so that S satisfies the fairness constraint; (3)
compute fl(S) based on R2 and fu(S∗) based on R1. If the ratio fl(S)/fu(S∗) satisfies the
optimal solution approximation (for FBIM2, it is at least 1/2− ϵ, and for FBIM3, it is at least
1/2− 2ϵ), the algorithm stops before the limit. Otherwise, the algorithm repeats the finding S

with R1 and R2 doubled in size.
As mentioned above, FBIM2 and FBIM3 are inherited from the OPIMC method of Tang et

al. [15], so we have the expressions fl(S) and fu(S′) as follows.

fl(S) =

⎛⎜⎝
⎛⎝√︄CovR2(S) + 2 ln(1/δ2)

9 −

√︄
ln(1/δ2)

2

⎞⎠2

− ln(1/δ2)
18

⎞⎟⎠ .
n

Γ0
(4.13)

fu(S∗) =

⎛⎝√︄CovR1(S)
1/2 + ln(1/δ1)

2 +

√︄
ln(1/δ1)

2

⎞⎠2

.
n

Γ0
(4.14)

For FBIM2, finding the seed set S is similar to FBIM1 (Algorithm 5), that is, select k

elements in all Ci communities of C′ so that each element appears the most in communities
and guarantees S extendable after adding to S, which is known as the mandatory condition

57

of the fairness constraint.The detail of this algorithm is fully presented in Algorithm 7.
For FBIM3, finding the seed set S is improved by decreasing the search elements times for

S. Instead of having to do k iterations as FBIM2 does, FBIM3 only requires at most 1
ϵ log(k

ϵ)
iterations. The detail of this process is fully presented in the Threshold Greedy algorithm
for Fairness Max Cover procedure (Algorithm 8). The main idea of this algorithm is to find
elements s in Cj , (∀Cj ∈ C

′) that make S + s is extendable and the gain of coverage ratio of s

when adding to S on R is maximum (line 4 and 5). This idea was based on the principle of a
simple near-linear time algorithm for the problem of maximization of monotone submodular
functions, which was studied by Badanidiyuru and Vondrák [92].

b. Theoretical analysis

Theorem 6 Algorithm 7 has O

(︃
kT log n

ϵ2k

)︃
complexity.

Proof Algorithm 7 iterates generating two random RR sets, R1 and R2, the size of each
set is Γ0. Later, the algorithm finds a seed set S based on R1 through Algorithm 5. Next,
it calculates the approximation solution ϵ

′ of S, with ϵ
′ = fl(S)

fu(S∗) . This algorithm has two
conditions to stop and return the result on line 11. Because, in each iteration, Γ0 doubles in
size and calls Algorithm 5 to find a new S, in the worst case, this algorithm stops when it
has not met a S satisfying ϵ

′ ≥ (1/2− ϵ) and the number of iterations has reached imax, with
imax = ⌈log(Γmax/Γ0)⌉ in line 5. We have:

Γmax =
2n
(︂

1
2

√︂
ln 6

δ +
√︂

1
2(ln

(︁n
k

)︁
+ ln 6

δ)
)︂2

ϵ2k
(at line 1).

Γ0 = Γmax.ϵ2k/n (at line 2).
After calculating to reduce for imax, we have imax = ⌈log n

ϵ2k
⌉. As a result, this algorithm

takes O
(︂
kT log n

ϵ2k

)︂
complexity.

Theorem 7 Algorithm 8 has O

(︃
T

ϵ
log

k

ϵ

)︃
complexity.

Proof Similar to Algorithm 4, in Algorithm 8, the outer "for" loop requires at most 1
ϵ log k

ϵ

iterations, and the inner "for" loop requires maximum T iterations. As a result, this algorithm
takes O

(︂
T
ϵ log k

ϵ

)︂
complexity.

Theorem 8 Algorithm 9 has O
(︂

T
ϵ log k

ϵ log n
ϵ2k

)︂
complexity.

Proof Algorithm 9 operates similarly to Algorithm 7, only differing in the step of finding the
set S (in line 7), that is, Algorithm 9 uses Algorithm 8. Therefore, we can prove likewise for
Algorithm 7, Algorithm 9 takes O

(︂
T
ϵ log k

ϵ log n
ϵ2k

)︂
.

58

Algorithm 8: Threshold Greedy algorithm for Fairness Max Cover
(ThresholdGreedy(R, ϵ)) procedure

Input: Graph G, C′ , k, RR sets (R), ϵ > 0
Output: An (1

2 − ϵ)-optimal solution, S, |S| ≤ k
1. S ← ∅
2. M ← maxu∈V CovR(u)

3. for (t = M ; t ≥ ϵ
M

k
; t← (1− ϵ)t) do

4. for s ∈ (CjCj∈C′ \ S)|S + s is extendable do
5. if (CovR(S ∪ s)− CovR(S)) ≥ t then
6. S ← S ∪ {s}

7. return S.

Algorithm 9: FBIM3 algorithm
Input: Graph G, C′ , k, ϵ, δ
Output: An (1

2 − 2ϵ)-optimal solution S, |S| ≤ k with probility at least 1− δ

1. Γmax ←
2n

(︃
1
2

√︂
ln6

δ +
√︃

1
2

(︂
ln
(︁n

k

)︁
+ ln6

δ

)︂)︃2

ϵ2k

2. Γ0 ← Γmax
ϵ2k

n
3. R1 ← Generate Γ0 random RR sets by RIS
4. R2 ← Generate Γ0 random RR sets by RIS
5. imax ← ⌈log2(Γmax/Γ0)⌉
6. for i← 1 to imax do
7. S ← ThresholdGreedy(R1, ϵ)
8. δ1 = δ2 = δ/3imax

9. compute fl(S) and fu(S∗) by 4.13) and (4.14
10. ϵ

′ ← fl(S)/fu(S∗)
11. if ϵ

′ ≥ (1/2− 2ϵ) or i == imax then
12. return S.
13. Γ0 ← 2Γ0 and generate Γ0 new random RR sets for R1,R2.

59

Table 4.2: Statistics of datasets.

Dataset #Nodes #Edges #Communities Avg. degree Type
Epinions 131,828 841,372 6,359 13.4 Directed

Pokec 1,632,803 30,622,564 1,284 37.5 Directed
Live-journal 3,997,962 34,681,189 5,000 28.5 Directed

Orkut 3,072,441 117,185,083 4,745 76.3 Undirected

4.5 Experiment and Result Evaluation

We conducted some experiments on the FBIM problem in our work. This section describes
the experiment process, including datasets, algorithms for comparison, parameter setting,
discussion, and evaluation of the results.

4.5.1 Experiment setting

4.5.1.1 Datasets

For a comprehensive experiment, we choose four datasets on SNAP [64]. These datasets have
medium to big, diverse numbers of edges, nodes, and communities. They include the Epinions
social network (Epinions), the Pokec social network (Pokec), the LiveJournal social network
and ground-truth communities (Live-journal), and the Orkut social network and ground-
truth communities (Orkut). These datasets have been used commonly to find the seed set
with Influence Maximization. Table 4.2 presents the information of the datasets.

4.5.1.2 Environment

We conducted our experiments on a Linux machine with Intel Xeon Gold 6154 (720) @
3.700GHz CPUs and 3TB RAM. Our implementation is written in C/C++ language and
compiled with g++ 11.

4.5.1.3 Algorithm Comparison

To the best of our knowledge, there is no existing algorithm that solves the problem of fairness
influence maximization under constraints with a pair of lower and upper bound budgets for
communities. Therefore, we experimented to compare FBIM1 to DSSA, three algorithms of
FBIM to OPIMC because they are similar in implementation. As such, this study’s experiment
does four algorithms, including OPIMC, FBIM1, FBIM2, and FBIM3, with different sets of input
parameters to analyze and evaluate the effectiveness of these algorithms. Briefly, we call our
three proposed algorithms (FBIM1, FBIM2, and FBIM3) FBIM’s algorithms. As a result, we
perform two separate experiments as follows:

60

• Experiment A. To compare FBIM1 to DSSA on two datasets, (Epinions and Orkut)
under the LT model.

• Experiment B. To compare FBIM’s algorithms to OPIMC on four datasets (Epinions,
Pokec, Live-journal, Orkut), under both information diffusion models (IC and LT). Al-
though the implementation method of FBIM1 differs from FBIM2 and FBIM3, we want
to evaluate their effect when experimenting on the same set of parameters and dataset.
Therefore, FBIM1 is also present in this experiment.

As mentioned above, FBIM’s algorithms obtain S and almost |S| ≃ k so that f(S) reaches
maximum. Furthermore, our algorithms find S to satisfy the fairness constraint, while DSSA
and OPIMC do not. Therefore, we compare factors such as influence f(S), running time,
memory usage, approximation ratio fl(S)

fu(S∗) , and coverage ratio S across the target commu-
nities. This ratio is the number of communities with elements selected into S that satisfy
the constraints of the lower and upper bounds, compared with the original total number of
communities (K).

4.5.1.4 Parameter Setting

We conducted two experiments, which are called Experiment A and Experiment B, Each
experiment has two sub-experiments with the following sets of parameter settings.

1. Experiment A. (FBIM1 & DSSA, under the LT model)

• Experiment A1. We set |C ′| = K with K ∈ [50, 1000], k ∈ [1000, 20000], the
pair (ki

l ; ki
u) of Ci are (0.3; 0.5), called FBIM-1.1 and (0.1; 0.9), called FBIM-1.2.

• Experiment A2. We used the same k as Experiment A1, but we did not set a
specific K. The upper bound was fixed at 0.5 while the lower bound would be
0.1, 0.01, and 0.001 for FBIM-1.3, FBIM-1.4, and FBIM-1.5 , respectively. We will
explain these changes in the experiment results section.

2. Experiment B. (FBIM’s algorithm & OPIMC, under the LT and IC models)

• Experiment B1. We set k ∈ [1000, 10000], |C ′| = K with K = 20%k, the pair
(kl

i; ku
i) of each Ci are (0.3; 0.5), called ⟨AlgorithmName⟩ .1 (such as FBIM1.1,

FBIM2.1, FBIM3.1); and (kl
i; ku

i) equals (0.1; 0.9), called ⟨AlgorithmName⟩ .2 (such
as FBIM1.2, FBIM2.2, FBIM3.2).

• Experiment B2. We use the same k as Experiment B1 and K = k. In this case,
K is no longer limited to the problem. Because it is already set to the maximum
value, that is, in the ultimate case, if the number of communities covered is exactly
K (for K = k), each community of K communities chooses precisely one element

61

for input S. For the rest parameters, the upper bound ku
i is assigned a fixed

value of 0.5 while the lower bound kl
i varies by 0.1, 0.01 and 0.001, respectively

for ⟨AlgorithmName⟩ .3, ⟨AlgorithmName⟩ .4, and ⟨AlgorithmName⟩ .5. In the
discussion of the experimental result, we will explain these changes.

Finally, we set the parameters ϵ = 0.1, δ = 1
n

as the default setting.

4.5.2 Discussion and evaluation of experimental results

In this section, we first analyze two objective factors that affect the efficiency of FBIM’s
algorithms. Later, we discuss and evaluate the experimental results to clarify the strengths
and weaknesses of the algorithms. The results are clearly shown in Figures 4.3 - 4.6.

4.5.2.1 Objective factors affect the efficiency of algorithms

As clarified in the theoretical analysis of the algorithms, our algorithms guarantee the theo-
retical optimization probability. However, in the experimental process, some objective factors
affect the performance of the algorithms. They are the data preprocessing and the sampling
generation by the RIS framework.

1. Data preprocessing

(a) Communities detection strategy. We used the Directed Louvain method [93] to
detect communities in dataset. This method applies the idea of simulating the
Monte Carlo approach’s randomness. It has been proven to be able to achieve a
more promising result at extracting communities in case of a directed graph, but
it still has its flaws. In short, our algorithms’ efficiency is affected by the random
factor during the communities detection.

(b) Communities selection strategy. To ensure objectivity, selecting K communities for
the input of the problem FBIM works by randomly choosing, as long as they have
the probability of satisfying the condition for a valid result within the upper/lower
bounds of the fairness constraint. The selection of the combination of communi-
ties is entirely random. This selection will be repeated many times if the previous
combinations do not satisfy the conditions of the problem FBIM. In a nutshell, our
algorithms are affected by the randomness factor in choosing the initial K commu-
nities. However, if we apply these algorithms to real problems, the communities
selection could depend on a constraint. Thus, the user can improve in selecting
elements of S on communities to achieve a better result.

2. RIS framework
Moreover, FBIM’s algorithms depend on the generation of sample graphs of the RIS

62

framework. In the first few iterations of the algorithms, if the vertices intersection set’s
size of the sample graphs and the selected communities is empty or small, the algorithm
must generate more sample graphs to increase this value (i.e., increase the number of
vertex degrees). After this necessary condition is satisfied, the algorithm finds a seed
set S that meets the fairness constraint. Therefore, our algorithms may take extra time
to generate sample graphs. Briefly, our algorithms depend on the random factor in
creating the sample graph and the number of sample graphs.

In summary, if the above factors are not good, the algorithm takes more time to run until it
chooses the set S that meets the problem requirements. These weaknesses are heading in one
of our improvement directions for future studies.

4.5.2.2 Experimental Result Evaluation

• Experiment A.

2500 5000 7500 10000 12500 15000 17500 20000
k

20000

40000

60000

80000

100000

Inf
lue

nc
e

Epinions dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

2295

2300

2305

2310

2315

2320

2325

2330

Me
m

or
y (

MB
)

Epinions dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tim
e (

s)

Epinions dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

0.5

1.0

1.5

2.0

2.5

Inf
lue

nc
e

1e6 Orkut dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

4550

4600

4650

4700

4750

4800

4850

Me
m

or
y (

MB
)

Orkut dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Tim
e (

s)

Orkut dataset

Algorithms
DSSA
FBIM-1.1
FBIM-1.2

Figure 4.1: Influence, memory usage and runtime of the Experiment A1 under the LT model.

1. Experiment A1. For the this parameter setting, we want to show how FBIM1
perform in a general setting, which include a large range [ki

l , ki
u] and a small K.

The results in Figure 4.1 shows that FBIM1 almost runs faster than DSSA, even in
some cases, FBIM1 is 2 to 4 times faster than DSSA. However, the influence f(S)
of FBIM is less than f(S) of DSSA because of the small value of K. When K is
small, we have fewer communities to cover. It leads to faster computation while
still guaranteeing the fairness constrain. Nevertheless, this is a double-edged sword.

63

Because the K communities are randomly chosen, we have a smaller range to choose
the seeds from, although we take less time to ensure fairness. Thus, it does not
guarantee that the algorithm chooses nodes with the greatest influence according
to the greedy strategy. Moreover, FBIM1 also takes more memory usage because
the dataset contains large communities (as Orkut). This cause is understandable
because FBIM1 must take an additional step to store and process communities
information. In summary, in this case, although FBIM1 obtains S with an influence
spread f(S) 2 to 3 times smaller than f(S) of DSSA, the running time of FBIM is
faster, and one important thing is it solves fairness constraint.

2500 5000 7500 10000 12500 15000 17500 20000
k

20000

40000

60000

80000

100000

Inf
lue

nc
e

Epinions dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

0.5

1.0

1.5

2.0

2.5

3.0

Tim
e (

s)

Epinions dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 ra
tio

Epinions dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

0.5

1.0

1.5

2.0

2.5

Inf
lue

nc
e

1e6 Orkut dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

5

10

15

20

25

30

35

40

45

Tim
e (

s)

Orkut dataset

2500 5000 7500 10000 12500 15000 17500 20000
k

0.0

0.2

0.4

0.6

0.8

1.0
Co

ve
ra

ge
 ra

tio
Orkut dataset

Algorithms
DSSA
FBIM-1.3
FBIM-1.4
FBIM-1.5

Figure 4.2: Running time, influence, and Coverage ratio of the Experiment A2 under the LT
model.

2. Experiment A2. For the second parameter setting, we want to show the value
of K to select a k-size seed set S, which can cover most of the target communities.
Therefore, we do not set a specific value for K. In this case, Figure 4.2 shows that
the lower bound impacted the results of FBIM1 strongly. We can see in Figure 4.2,
the influence of FBIM-1.4 and FBIM-1.5 increase significantly compared to FBIM-
1.3 (FBIM-1.3 has the same lower bound setting as FBIM1-2), even in some cases,
they were equal to the influence of DSSA. The communities coverage ratio also
changed drastically in FBIM-1.4 and FBIM-1.5. At times, it even reached 100%.
On the other hand, the set S covers the desired communities, so the influenced
individuals are the target ones we want to influence.

In summary, we can control the quality of the seed set of FBIM1 by holding the

64

lower bound ki
l and k. But the drawback is the long-running time. The cause is to

find S, DSSA only needs to see the first k seeds that satisfy its requirements, while
FBIM1 must find k seeds such that (1) satisfy the exact requirements as DSSA’s
and (2) satisfy the requirements so that S is extendable. The more communities
for S to cover, the more extensive the list of nodes that needs computing to ensure
the fairness constraint. For the convenience of the readers, we summarize the
experimental results of the FBIM1 DSSA algorithm in Table 4.3.

Table 4.3: Statistical comparison of experimental results of FBIM1 and DSSA

Experiment
A1

Runtime 2 to 4 times faster
Memory 0.96 to 1.01 times less
Influence 2 to 3 times less

Experiment
A2

Runtime 0.5 to 1.75 times faster
Influence 1 to 3 times less
Coverage ratio 1.6 to 5 times greater (for Orkut, even FBIM1 can

reach 100% while DSSA achieves 22%; for Epinion,
even FBIM1 can reach 100% while DSSA achieves 63%)

• Experiment B

1. Experiment B1. For this setting case, the goal of the experiment is to evaluate the
algorithm’s performance by choosing two narrow and wide bound ranges along with
the number of small communities. This setting simulates the general requirement
when it is necessary to select a seed set from several specific finite communities.
Experiment B1 will evaluate the algorithm’s feasibility when performing compared
to the algorithms in terms of runtime and resources. How disparate are they?
Hence, for Experiment B1, we want to show how the FBIM’ algorithms perform
in a general setting, including a large range [kl

i, ku
i] and a small K. The results in

the figures 4.3 and 4.4 show that most of the FBIM’s algorithms run faster than
OPIMC, even in some cases, the FBIM’s algorithms are 4 to 12 times faster than
OPIMC, especially when k increases. Because, for the essence of these algorithms,
OPIMC uses the greedy strategy, which scans all elements on V to find S on the R
set; meanwhile, FBIM2 and FBIM3 use an improved greedy approach, which scans
all elements in communities of C′ (|⋃︁Ci∈C′ (Ci)| ≤ n). However, there are some
cases in which the runtime of FBIM’s algorithms is extended more than OPIMC
since they are affected by the above objective factors. Intuitively, the instances of
the FBIM’s algorithm can run longer than OPIMC when k is small. Furthermore,
FBIM1 sometimes runs longer than OPIMC because DSSA (the base method of

65

FBIM1) generates more sample graphs than OPIMC. This assertion was made
clear by Tang et al. in [15].
Although the runtime of FBIM’s algorithms is usually faster than OPIMC, the
influence f(S) of FBIM’s algorithms is less than f(S) of OPIMC. The disparity
ranges from 1.5 to 10 times. The reason is the small value of K, that is, when K

is small, we have fewer communities to cover. It leads to faster computation while
still guaranteeing the fairness constraint. However, this is a double-edged sword.
Because the K communities are randomly chosen, we have a smaller domain to
choose the seeds, although we take less time to ensure fairness. Thus, it does not
guarantee that the algorithm chooses nodes with the greatest influence according
to the improved-greedy strategy.

2. Experiment B2. The goal of this experiment is to evaluate the theoretical po-
tential of the algorithm with the requirement to cover as many communities as
possible, so the K is not explicitly set. The lower bound changes, while the upper
bound remains the same. The lower bound determines the minimum number of
elements in the seed set that must be selected from each community to satisfy the
extendable property of S. The upper bound is merely a constraint on the maxi-
mum number of elements selected from each community.
Therefore, for this setting case, we want to show what is the possible value of K

to select a k-size seed set S so that S can cover most of the target communities?
Therefore, we do not set a specific value for K. In this case, the figures 4.5 and 4.6
show that the lower bound strongly affected the results of the algorithms FBIM. In
these figures, the influence of ⟨AlgorithmName⟩ .4 and ⟨AlgorithmName⟩ .5 in-
creased significantly compared to ⟨AlgorithmName⟩ .3 (⟨AlgorithmName⟩ .3 and
⟨AlgorithmName⟩ .2 have the same lower bound setting). The coverage ratio of
FBIM’s algorithms is greater than OPIMC’s ratio, from 2x to 10x. Even in some
cases, the coverage ratio of OPIMC is only 1.5% (for Pokec), but the ratio of FBIM’s
algorithms can achieve 33.9%− 43.9%. For the Orkut dataset, the most extensive
dataset in four, FBIM1 achieves 100%. Furthermore, the value of the coverage
ratio and the disparity of these ratios between FBIM’s algorithms and OPIMC are
proportional to k. Especially, because ⟨AlgorithmName⟩ .5 has the smallest lower
bound in the lower bounds of the experiments, the algorithm’s coverage ratios are
better and the difference distance of the f(S) value from OPIMC is shortened.
On the other hand, the set S covers the desired communities, so the influenced
individuals are the target ones we want to influence. In summary, we can control
the quality of the seed set of FBIM’s algorithms by holding the lower bound kl

i and
k. However, the drawback is the long runtime. The cause is to find S, OPIMC only
needs to see the first k seeds that satisfy its requirements, while FBIM’s algorithms

66

must find k seeds such that (1) satisfy the exact requirements as OPIMC’s and (2)
satisfy the requirement so that S is extendable. Therefore, the more communities
S covers, the more vertex lists must be computed to ensure the fairness constraint.
This assertion is clearly shown in the algorithms’ experiments in both the LT and
IC propagation models.
For the term of memory usage of these algorithms, in two parameters setting under
both IC and LT models, the FBIM’s algorithms almost take more memory usage
because the dataset contains large communities (as Epinions Live-journal, Orkut).
It is inevitable due to the FBIM’s algorithms must take an additional step to store
and process communities information. Briefly, although FBIM’s algorithms obtain
S with an influence spread f(S) smaller than f(S) of OPIMC, the running time of
our algorithms is usually faster and the most important thing is that they solve
the fairness constraint. For the convenience of the readers, we summarize the
experimental results of the FBIM’s algorithms and OPIMC algorithm in Table 4.4.

Table 4.4: Statistical comparison of experimental results of FBIMs’ algorithms and OPIMC

Experiment
B1

Runtime 4 to 12 times faster
Memory 1 to 2.7 times greater
Influence 1.5 to 10 times less

Experiment
B2

Runtime 0.5 to 6 times faster
Influence 2 to 6 times less
Coverage ratio 1 to 5 times greater (for Orkut, even FBIM1 can reach

100% ; for Pokec, FBIMs can achieve from 33.9% to
43.9% while OPIMC only achieves 1.5%).

4.6 Concluding remarks

We studied and proposed three algorithms to resolve the FBIM problem. The main result of the
study is that our approximation algorithms achieve a (1/2−ϵ)-approximation to the optimum
solution and require O

(︃
kT log

(︃
(8 + 2ϵ)n ln 2

δ
+ln(n

k)
ϵ2

)︃)︃
, O

(︂
kT log n

ϵ2k

)︂
, and O

(︂
T
ϵ log k

ϵ log n
ϵ2k

)︂
complexities, respectively. We compare our algorithms with the state-of-the-art algorithms
(DSSA and OPIMC) by conducting some experiments under both the information diffusion
models, LT and IC. The experiments help to confirm our proven theoretical results. Concur-
rently, we have presented the algorithms’ strengths and weaknesses in analyzing and evaluat-
ing experimental results. The results indicate that our algorithms are highly scalable, achieve
results that satisfy theoretical assurance and approximation solutions, and are feasible and

67

2000 4000 6000 8000 10000
k

1

2

3

4

5

6

Ti
m

e
(S

ec
on

d)

epinions

2000 4000 6000 8000 10000
k

2600

2610

2620

2630

2640

M
em

or
y

Us
ag

e
(M

B)

epinions

2000 4000 6000 8000 10000
k

10000

20000

30000

40000

50000

In
flu

en
ce

epinions

2000 4000 6000 8000 10000
k

0

20

40

60

80

Ti
m

e
(S

ec
on

d)

pokec

2000 4000 6000 8000 10000
k

3150

3200

3250

3300

3350

3400

3450

3500

M
em

or
y

Us
ag

e
(M

B)

pokec

2000 4000 6000 8000 10000
k

0

100000

200000

300000

400000

500000

600000

In
flu

en
ce

pokec

2000 4000 6000 8000 10000
k

50

100

150

200

250

Ti
m

e
(S

ec
on

d)

live-journal

2000 4000 6000 8000 10000
k

4500

5000

5500

6000

6500

M
em

or
y

Us
ag

e
(M

B)

live-journal

2000 4000 6000 8000 10000
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2
In

flu
en

ce

1e6 live-journal

2000 4000 6000 8000 10000
k

20

40

60

80

100

Ti
m

e
(S

ec
on

d)

orkut

2000 4000 6000 8000 10000
k

5000

5100

5200

5300

5400

5500

5600

M
em

or
y

Us
ag

e
(M

B)

orkut

2000 4000 6000 8000 10000
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
flu

en
ce

1e6 orkut

OPIMC FBIM1.1 FBIM1.2 FBIM2.1 FBIM2.2 FBIM3.1 FBIM3.2

Figure 4.3: Running time, memory usage and influence of the Experiment B1 under the LT
model.

68

2000 4000 6000 8000 10000
k

1

2

3

4

5

6

Ti
m

e
(S

ec
on

d)
epinions

2000 4000 6000 8000 10000
k

2600

2610

2620

2630

2640

M
em

or
y

Us
ag

e
(M

B)

epinions

2000 4000 6000 8000 10000
k

0

10000

20000

30000

40000

50000

In
flu

en
ce

epinions

2000 4000 6000 8000 10000
k

20

40

60

80

100

120

Ti
m

e
(S

ec
on

d)

pokec

2000 4000 6000 8000 10000
k

3200

3250

3300

3350

3400

3450

3500
M

em
or

y
Us

ag
e

(M
B)

pokec

2000 4000 6000 8000 10000
k

50000

100000

150000

200000

In
flu

en
ce

pokec

2000 4000 6000 8000 10000
k

100

150

200

250

300

350

Ti
m

e
(S

ec
on

d)

live-journal

2000 4000 6000 8000 10000
k

4250

4500

4750

5000

5250

5500

5750

6000

6250

M
em

or
y

Us
ag

e
(M

B)

live-journal

2000 4000 6000 8000 10000
k

0

100000

200000

300000

400000

500000

In
flu

en
ce

live-journal

2000 4000 6000 8000 10000
k

1000

2000

3000

4000

5000

6000

Ti
m

e
(S

ec
on

d)

orkut

2000 4000 6000 8000 10000
k

5500

6000

6500

7000

7500

M
em

or
y

Us
ag

e
(M

B)

orkut

2000 4000 6000 8000 10000
k

50000

100000

150000

200000

250000

In
flu

en
ce

orkut

OPIMC FBIM1.1 FBIM1.2 FBIM2.1 FBIM2.2 FBIM3.1 FBIM3.2

Figure 4.4: Running time, memory usage and influence of the Experiment B1 under the IC
model.

69

2000 4000 6000 8000 10000
k

0

5

10

15

20

Ti
m

e
(S

ec
on

d)

epinions

2000 4000 6000 8000 10000
k

0

10000

20000

30000

40000

50000

In
flu

en
ce

epinions

2000 4000 6000 8000 10000
k

0.0

0.1

0.2

0.3

0.4

0.5

Co
ve

ra
ge

 ra
tio

epinions

2000 4000 6000 8000 10000
k

0

20

40

60

80

Ti
m

e
(S

ec
on

d)

pokec

2000 4000 6000 8000 10000
k

0

100000

200000

300000

400000

500000

600000

In
flu

en
ce

pokec

2000 4000 6000 8000 10000
k

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

 ra
tio

pokec

2000 4000 6000 8000 10000
k

50

100

150

200

250

Ti
m

e
(S

ec
on

d)

live-journal

2000 4000 6000 8000 10000
k

0.0

0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

1e6 live-journal

2000 4000 6000 8000 10000
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Co
ve

ra
ge

 ra
tio

live-journal

2000 4000 6000 8000 10000
k

0

20

40

60

80

100

Ti
m

e
(S

ec
on

d)

orkut

2000 4000 6000 8000 10000
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

In
flu

en
ce

1e6 orkut

2000 4000 6000 8000 10000
k

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 ra
tio

orkut

OPIMC

FBIM1.3

FBIM1.4

FBIM1.5

FBIM2.3

FBIM2.4

FBIM2.5

FBIM3.3

FBIM3.4

FBIM3.5

Figure 4.5: Running time, influence, and Coverage ratio of the Experiment B2 under the LT
model.

70

2000 4000 6000 8000 10000
k

1

2

3

4

5

6

Ti
m

e
(S

ec
on

d)
epinions

2000 4000 6000 8000 10000
k

10000

20000

30000

40000

50000

60000

In
flu

en
ce

epinions

2000 4000 6000 8000 10000
k

0.1

0.2

0.3

0.4

0.5

Co
ve

ra
ge

 ra
tio

epinions

2000 4000 6000 8000 10000
k

20

40

60

80

100

120

140

160

Ti
m

e
(S

ec
on

d)

pokec

2000 4000 6000 8000 10000
k

50000

100000

150000

200000

In
flu

en
ce

pokec

2000 4000 6000 8000 10000
k

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

 ra
tio

pokec

2000 4000 6000 8000 10000
k

100

150

200

250

300

350

400

Ti
m

e
(S

ec
on

d)

live-journal

2000 4000 6000 8000 10000
k

0

100000

200000

300000

400000

500000

In
flu

en
ce

live-journal

2000 4000 6000 8000 10000
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Co
ve

ra
ge

 ra
tio

live-journal

2000 4000 6000 8000 10000
k

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
(S

ec
on

d)

orkut

2000 4000 6000 8000 10000
k

0

100000

200000

300000

400000

500000

600000

In
flu

en
ce

orkut

2000 4000 6000 8000 10000
k

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 ra
tio

orkut

OPIMC

FBIM1.3

FBIM1.4

FBIM1.5

FBIM2.3

FBIM2.4

FBIM2.5

FBIM3.3

FBIM3.4

FBIM3.5

Figure 4.6: Running time, influence, and Coverage ratio of the Experiment B2 under the IC
model.

71

effective even with big data. In future work, we plan to improve the objective factors that
affect the efficiency of these algorithms to obtain a shorter runtime and a more significant
influence spread.

72

Chapter 5

Problem 3. Maximizing DR-submodular
function on the integer lattice

This chapter describes the problem of maximizing DR-submodular function on the integer
lattice in detail, including the motivation to study the problem, problem definition, related
work, proposed algorithms, experiment and result evaluation. Table 5.1 summarizes the
usually used notations in this chapter.

5.1 Introduction

Submodular function maximization problems have recently received a lot of interest in the
research community. A satisfactory explanation for this state is the prevalence of optimization
problems related to submodular functions in many real-world applications as mentioned in
Chapter 1.

Given a ground set E, a function f : 2E → R≥0 is submodular function. The submodularity
of a monotone submodular function f is equivalent to the property diminishing return, i.e.,
for any A ⊆ B ⊆ E and ∀e ∈ E \B, it holds.

f(A ∪ e)− f(A) ≥ f(B ∪ e)− f(B) (5.1)

The submodular function maximization problem aims to select a subset A of the ground
set E to maximize f(A).

Most of the existing studies of this problem are in the area that considers submodular
functions identified over a set-submodular functions. It means that the problem has the input
is a subset of the ground set and returns an actual value. However, there are real-world
situations where it is crucial to know whether an element e ∈ E is selected and how many
copies of that element should be chosen. In other words, the problem considers submodular

73

Table 5.1: Table of the usually used notations in Chapter 5.

Notation Description
E a ground set, E = {e1, . . . , en}
n the number of elements in the ground set E.
2E the subset family of E.
A, B the arbitrary subsets of E

x, y the arbitrary vectors of ZE
+

χe the unit vector with coordinate e, e ∈ E

{x} the multiset contains elements in vector x, where each element
e ∈ E can appear many times.

x(e), y(e) the coordinate value of entry e in vector x, y, where e ∈ E

∥x∥∞ the infinity norm of vector x, ∥x∥∞ := maxe∈Ex(e)
∥x∥1 the taxicab norm of vector x, ∥x∥1 := ∑︁

e∈E x(e).
0 the vector zero whose value 0(e) = 0, ∀e ∈ E

B the upper bound vector of x, 0 ≤ x ≤ B
B B := ∥B∥∞
k

the upper bound of total elements in vector x on the integer
lattice ZE

+, x(E) ≤ k

ke the number of copies of e to be considered for addition to x
k′ the number of copies of e add to x

v
an optimal value of the object function, (1−ϵ)OPT ≤ v ≤ OPT
with (ϵ ∈ (0, 1/2))

x ∨ y the coordinate-wise maximum of x and y
(x ∨ y)(e) x ∨ y := max{x(e), y(e)}
x ∧ y the coordinate-wise minimum of x and y
(x ∧ y)(e) x ∨ y := min{x(e), y(e)}

x + y sum of 2 vectors x and y, with the multiset {x + y} whose e
appears (x(e) + y(e)) times.

x− y x− y = x + (−y)
f(x) the object function value of x
f(x|y) f(x|y) = f(x + y)− f(y)

74

functions over a multiset, under the name submodular function on the integer lattice [94].
The submodularity defined on the integer lattice differs from set functions because it does not
equate to the diminishing return property. Some notable examples include the optimal budget
allocation problem [95], document summarization and sensor placement [96], the submodular
welfare problem [97], and maximization of the spread of influence with partial incentives [98].
The definition of such a submodular function is as follows:
A function f : ZE

+ → R is an integer-lattice submodular function if for all x, y ∈ ZE
+

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (5.2)

where x ∧ y and x ∨ y denote the coordinate-wise min and max operations, respectively. A
function f : ZE

+ → R is called diminishing return submodular (DR-submodular), if for all
x, y ∈ ZE

+ with x ≤ y

f(x + χe)− f(x) ≥ f(y + χe)− f(y) (5.3)

where e ∈ E and χe denotes the unit vector with coordinate e being 1 and other elements are
0.

The submodularity defined on the integer lattice differs from set functions because it
does not equate to the diminishing return property. In other words, lattice submodularity
is weaker than DR-submodularity, i.e., a lattice submodular function may not be a DR-
submodular function, but any DR-submodular function is a lattice submodular one. [94].
Due to this cause, developing approximation algorithms is challenging; even for a single car-
dinality constraint, we need a more complicated method such as partial enumeration [95, 96].
Nevertheless, the diminishing return property of the DR-submodular function maximization
problem often plays a fundamental role in some practical problems [95, 96, 97].

There have been many approaches to solving the problem of maximizing the submodular
function under different constraints and contexts in the last decade. Two notable approaches
to this problem are greedy algorithms and streaming algorithms. Many studies show that the
greedy method is often used for this optimization problem because it outputs a better result
than other methods due to its "greedy" operation. Understandably, the greedy method always
scans many times on data to find the best. However, this cause makes its algorithms take a
long runtime; even it cannot apply to big data. Contrary to the greedy method, the streaming
method scans the data once. As each element in the dataset arrives in order, the streaming
algorithm must decide whether that element is selected before the next element arrives. Thus,
the result of this method may not be as good as the result of greedy, because the elements it
selects are not the best but meet the selection condition. However, the outstanding advantage
of the streaming method is that it runs much faster than the greedy method [99].

75

Attracted by the usefulness of the maximizing DR-submodular function on integer lat-
tice issue in many practical problems, numerous studies on this problem have recently been
published. These publications consider the problem under many different constraints and use
greedy or streaming methods as the standard approach. Some prominent examples include
using a fast double greedy algorithm for maximization of the nonmonotone DR-submodular
function [100], using a threshold greedy algorithm for maximization of the monotone DR-
submodular constraint knapsack over an integer lattice [101], combining the threshold greedy
algorithm with a partial element enumeration technique for maximization of the monotone
DR submodular knapsack constraint over an integer lattice [94], using a streaming method
to maximize DR-submodular functions with d-knapsack constraints [102], using an one-pass
streaming algorithm for DR-submodular maximization with a knapsack constraint over the in-
teger lattice [103], and using streaming algorithms for maximizing monotone DR-submodular
function with a cardinality constraint on the integer lattice [104].

In this study, we focus on the maximization of monotone DR-submodular function un-
der cardinality constraint on the integer lattice (the MDRSCa problem in Definition 20). In
reviewing the literature, there are two novel methods for this problem. First, Soma et al.
[94] proposed the Cardinality constraint/DR-submodular algorithm (called CaDRS), which
interpolates between the classical greedy algorithm and a truly continuous algorithm. This
algorithm achieves an approximation ratio of (1 − 1/e − ϵ) in O(n

ϵ log B log k
ϵ) complexity.

Second, Zhang et al. [104] first devised a streaming algorithm based on Sieve streaming [105].
Zhang’s method achieves an approximation ratio of (1/2−ϵ) in O(k

ϵ) memory and O(k
ϵ log2 k)

query complexity. Inspired by Zhang’s method [104], our study based on the streaming method
devises two improved streaming algorithms for the problem and obtains some positive results
compared to state-of-the-art algorithms. Specifically, our main contributions are as follows.

• To investigate the MDRSCa problem, we first devise an algorithm (called StrOpt) to
handle each element by scanning the data with the assumption of a known optimal value
(OPT). We prove that StrOpt guarantees the theoretical result with an approximation
ratio of 1/2. Later, we provide two streaming algorithms to solve this problem. They are
named StrDRS1 and StrDRS2. Because OPT cannot be determined in actual situations,
we estimate OPT based on a conventional method by observing OPT ∈ [m, 2km] where
m = maxe∈E{f(χe)}. Based on the estimated OPT, the StrDRS1, an one-pass streaming
algorithm, has an approximation ratio of (1/2−ϵ) and takes O(n

ϵ log(log B
ϵ) log k) queries.

For StrDRS2, we first find a temporary result that satisfies the cardinality constraint
by a single-pass streaming algorithm (Algorithm 12), which has an 1/4 approximation
solution. Subsequently, we increase the approximation solution ratio in StrDRS2 by
finding elements that hold the threshold restriction of the above temporary result. The
StrDRS2 is a multi-pass streaming algorithm that scans O(1

ϵ) passes, takes O(n
ϵ log B)

76

queries, and returns an approximation ratio of (1− 1/e− ϵ).

• We further investigate the performance of our algorithms by performing some experi-
ments on some datasets of practical applications.We run four algorithms, CaDRS [94],
SieveStr + + [104], StrDRS1, and StrDRS2, to compare their performance. The results
indicate that our algorithms provide solutions with a theoretically guaranteed value of
the objective function and outperform the state-of-the-art algorithm in both the number
of queries and the runtime.

For the convenience of comparing the number of scans, the approximation ratio, and the
complexity of the current state-of-the-art algorithms for MDRSCa problem, we summarize
them in Table 5.2.

Table 5.2: State-of-the-art algorithms for MDRSCa problem in terms of the number of scans,
approximation ratio, and complexity.

Reference Pass Ratio Query complexity
CaDRS O(1

ϵ log 1
ϵ) 1− 1/e− ϵ O(n

ϵ log B log k
ϵ)

SieveStr + + 1 1/2− ϵ O(k
ϵ log2 k)

StrDRS1 1 1/2− ϵ O(n
ϵ log(log B

ϵ) log k)

StrDRS2 O(1
ϵ) 1− 1/e− ϵ O(n

ϵ log B)

5.2 Related work

A considerable amount of literature has been published on the maximization of monotone
submodular functions under many different constraints over many decades. Nemhauser et
al. [106] are pioneers in studying this problem in combinatorial optimization and machine
learning. They proved that the standard greedy algorithm gives a (1/2)-approximation under
a matroid constraint and a (1 − 1/e)-approximation under a cardinality constraint. Their
method served as a model for further development. Later, Sviridenko [107] develops an im-
proved greedy algorithm, which achieves a (1−1/e)-approximation with O(n5) time complex-
ity for a knapsack constraint. Subsequently, Calinescu et al. [108] first devised a (1 − 1/e)-
approximation algorithm with a matroid constraint. This method combines a continuous
greedy algorithm and pipage rounding. The pipage rounding rounds the approximate frac-
tional solution of the continuous greedy approach to obtain an integral feasible solution.
Recently, Badanidiyuru et al. [92] design a (1 − 1/e − ϵ)-approximation algorithm with any
fixed constraint ϵ > 0, which takes O(n

ϵ log n
ϵ) time complexity for the cardinality constraint.

Several studies have recently begun to investigate the maximization of DR submodular
functions on the integer lattice under various constraints. For a knapsack constraint, Soma

77

et al. [96] propose a (1− 1/e)-approximation algorithm that takes a pseudo-polynomial time
complexity. Next, Soma et al. [94] continue to give algorithms under a cardinality constraint,
a knapsack constraint, and a polymatroid constraint on the integer lattice, respectively. These
algorithms have polynomial time and achieve a (1− 1/e)-approximation ratio. Subsequently,
Gu et al. [100] study the problem of maximizing non-monotone DR-submodular function
on the bounded integer lattice. They propose a fast double greedy algorithm that improves
the runtime. Their result achieves a 1/2-approximation algorithm with a O(n log B) time
complexity. Liu et al. [102] develop two streaming algorithms for this problem under the
d-knapsack constraint. The first is a one-pass streaming algorithm that achieves a (1−θ

1+d)-
approximation with O(log(dβ−1)

βϵ) memory complexity and O(log(dβ−1)
ϵ log B) update time per

element, where θ = min(α + ϵ, 0.5 + ϵ) and α, β are the upper and lower bounds for the
cost of each item in the stream. The second is an improved streaming algorithm to reduce
memory complexity to O(d

βϵ) with an unchanged approximation ratio and query complexity.
Most recently, Tan et al. [103] design an online algorithm for this problem with a knapsack
constraint, called DynamicMRT, which achieves a (1/3 − ϵ)-approximation ratio, a memory
complexity O(K log K

ϵ) and query complexity O(log2 K
ϵ) per element for the knapsack con-

straint K. Meanwhile, Gong et al. [101] consider the knapsack constraint maximization
problem of a non-negative monotone DR-submodular function f over a bounded integer lat-
tice. They present a deterministic algorithm and theoretically reduce its runtime to a new
record, O((1

ϵ

O(1/ϵ5)
.n log 1

cmin
log B)), (where cmin = mine∈Ec(e) and c(.) is a cost function

defined in E) with the approximate ratio of (1− 1/e−O(ϵ)).

5.3 Problem definition

This section introduces the definition of the MDRSCa problem and its associated notations.

5.3.1 Notation

For a positive integer k ∈ N, [k] denotes the set {1, . . . , k}. Given a ground set E =
{e1, . . . , en}, we denote the i-th entry of a vector x ∈ ZE

+ by x(i), and for each e ∈ E,
we define the e-th unit vector with χe(t) = 1 if t = e and χe(t) = 0 if t ̸= e.

For x ∈ ZE
+, {x} denotes the multiset where the element e appears x(e) times and with

a subset A ⊆ E, x(A) = ∑︁
e∈A x(e) and supp+(x) = {e ∈ E|x(e) > 0}. According to the

definition of the vector norm, we have ∥x∥∞ := maxe∈Ex(e) and ∥x∥1 := ∑︁
e∈E x(e).

For two vectors x, y ∈ ZE
+, x ≤ y signifies ∀e ∈ E then x(e) ≤ y(e). Furthermore, given

x, y ∈ ZE
+, x∨ y and x∧ y denote the coordinate-wise maximum and minimum, respectively.

This means that (x∨y)(e) := max{x(e), y(e)} and (x∧y)(e) := min{x(e), y(e)}. In addition,

78

x + y denotes the multiset {x + y} where the element e appears (x(e) + y(e)) times. Thus,
we can infer x− y = x + (−y).

5.3.2 Definition

For function f : ZE
+ → R+, we define f(x|y) = f(x + y)− f(y).

Definition 19 (DR-submodular function) A function f : ZE
+ → R+ is monotone if

f(x) ≤ f(y) for all x, y ∈ ZE
+ with x ≤ y and f is said to be diminishing return submodular

(DR-submodular), if

f(x + χe)− f(x) ≥ f(y + χe)− f(y) (5.4)

Definition 20 (MDRSCa problem) Let B ∈ ZE
+, B = ∥B∥∞ and an integer k > 0, we

consider the DR-submodular function under cardinality constraint as follows

maximize: f(x) (5.5)

subject to: 0 ≤ x ≤ B, x(E) ≤ k (5.6)

5.4 Proposed algorithms

This section presents descriptions and theoretical analysis of the algorithms we propose for
the MDRSCa problem, including a streaming algorithm with the assumption that the optimal
value is known and two main streaming algorithms (StrDRS1, StrDRS2).

5.4.1 Streaming algorithm with approximation ratio of (1/2− ϵ)

First, we propose a single-pass streaming algorithm, called StrOpt (in Algorithm 10), for
the MDRSCa problem on the assumption that the optimal value of the objective function is
known. Afterwards, we base on the traditional method to estimate the optimal value and
devise the one-pass streaming algorithm called StrDRS1 (in Algorithm 11). This is the first
main algorithm in our study for the MDRSCa problem.

5.4.1.1 Algorithm with knowing optimal value

We assume that the optimal value OPT of the objective function of MDRSCa is already known.
Algorithm 10 is created to find vector x by utilizing this OPT. Given a known optimal value v

that satisfies (1− ϵ)OPT ≤ v ≤ OPT for any ϵ ∈ (0, 1
2). When each element e arrives, we find

a set I, which is the set of positive integers predicted to be the number of copies of e. Then we

79

use the binary search with threshold v
2k to find the minimum ke that holds f(ke|x)/ke < v

2k .
We denote by k

′ the number of copies of e that adds the result vector x. The value k
′ is the

minimum of two values ke and the rest of elements x’ in the cardinality k. If k
′ is equal to 0,

then e is not selected in x. Otherwise, e is selected in x with k
′ copies.

Lemma 3, Theorem 9, and their proofs demonstrate the theoretical solution guarantee of
Algorithm 10. On the basis of that, we devise the first main streaming algorithm for the
MDRSCa problem.

Algorithm 10: StrOpt(f, B, k, ϵ, v)
Input: f : ZE

+ → R+,B, k, ϵ, a guess of optimal value v
Output: A vector x

1: x← 0
2: foreach e ∈ E do
3: I ← {i1, i2, . . . , i|I|} : i1 < i2 . . . < i|I|} ← {⌈B(e)(1− ϵ)i⌉ : i ∈ Z, 1 ≤

B(e)(1− ϵ)i ≤ B(e)}
4: Find ke ← arg min{ij − 1 : ij ∈ I, f(ijχe|x)/ij < v

2k} by a binary search
5: k′ ← min{ke, k − ∥x∥1}
6: if k′ ̸= 0 then
7: x← x + k′ · χe

8: else
9: break

10: return x

Lemma 3 We have f(keχe|x) ≥ (1− ϵ)ke
v
2k

Proof Assume that ke = ij = ⌈x⌉ where x = B(e)(1 − ϵ)i with some i ∈ I. We have
ij ≥ ij−1 + 1 and

ke − ij−1 = ij − (ij−1 + 1) = ⌈x⌉ − (⌈(1− ϵ)x⌉+ 1)

≤ ⌈x⌉ − (⌈x⌉+ ⌈(−ϵx)⌉) = −⌈(−ϵx)⌉

= ⌊ϵx⌋ ≤ ϵx ≤ ϵke

Therefore, ij−1 ≥ (1 − ϵ)ke. From the combination of the selection ke and the monotonicity
of f , we have the following.

f(keχe|x) ≥ f(ij−1χe|x) ≥ ij−1
v

2k
≥ (1− ϵ)ke

v

2k
(5.7)

The proof is complete.

80

Theorem 9 For any ϵ ∈ (0, 1
2) and (1 − ϵ)OPT ≤ v ≤ OPT, the Algorithm 10 takes

O(n log(1
ϵ log B)) queries and returns a solution x satisfying f(x) ≥ (1− ϵ)v/2.

Proof The Algorithm 10 scans only one time over E and each incoming element e, it takes
log |I| = O(log(1

ϵ log B)) queries to find ke. The total number of required queries of the
algorithm is O(n log(1

ϵ log B)).
Denote xi and kiχei are the solution at the beginning of the iteration i and the additional

vector into current solution at iteration i, respectively. We consider two following cases:
Case 1. If ∥x∥1 = k, we have k1 + k2 + . . . + kn = k thus:

f(x) =
n∑︂

i=1
f(kiχei |xi) ≥

n∑︂
i=1

(1− ϵ)ki
v

2k
= (1− ϵ)v

2 (5.8)

Case 2. If ∥x∥1 < k, after ending the main loop, we have f(e|x) ≤ v
2k for all e ∈ {B − x}.

Therefore:

f(o)− f(x) = f(o ∨ x)− f(x)

=
∑︂

e∈{o∨x−x}
f(χe|x)

=
∑︂

e∈{o−o∧x}
f(χe|x)

<
∑︂

e∈{o−o∧x}

v

2k
≤ v

2

where the second equality follows on from the lattice identity x ∨ y − y = x − x ∧ y for
x, y ∈ ZE

+. We have f(x) ≥ OPT− v/2 ≥ v/2. The proof is complete.

5.4.1.2 (1/2− ϵ)-approximation streaming algorithm - StrDRS1 algorithm

Based on the analysis of Algorithm 10, and the working frame of the Sieve streaming algorithm
[109], we design the StrDRS1 algorithm (in Algorithm 11) for the MDRSCa problem with the
following main idea. We find a set of solutions xv of OPT, where v ∈ O and O is the set
of values that changes according to the maximum value of the unit standard vector on the
arriving elements. Besides, we find a set I, which contains positive integers predicted to be
the number of copies of each element e if e is selected in xv. For each solution xv, v ∈ O,
the algorithm finds ke, is the smallest value in I so that the current element e satisfies the
condition in line 8 by binary search. Then we choose k

′ , which is the minimum value between
ke and k − ∥xv∥1. If k

′ is not equal to 0, this means that e is selected in xv with k
′ copies.

Otherwise, e is not selected in xv. In the end, the result x is xv, which makes f(x) maximal.

81

Algorithm 11: Streaming-I algorithm (StrDRS1)
Input: f : ZE

+ → R+,B, k, ϵ
Output: A (1/2− ϵ)-approximation solution x

1: O = {(1 + ϵ)i|i ∈ Z+}
2: xv = 0,∀v ∈ O, m← 0
3: foreach e ∈ E do
4: m← max{f(χe), m}
5: O = {(1 + ϵ)i|i ∈ Z+, m ≤ (1 + ϵ)i ≤ 2km}
6: I ← {i1, i2, . . . , i|I|} : i1 < i2 . . . < i|I|} ← {⌈B(e)(1− ϵ)i⌉ : i ∈ Z, 1 ≤

B(e)(1− ϵ)i ≤ B(e)}
7: for v ∈ O do
8: Find ke ← arg min{i ∈ I : f(iχe|xv) < i · v

2k} by a binary search
9: k′ ← min{ke, k − ∥xv∥1}

10: if k′ ̸= 0 then
11: xv ← xv + k′ · χe

12: else
13: break

14: return arg maxxv ,v∈O f(xv)

Theorem 10 Algorithm 11 is a single-pass streaming algorithm, has an approximation ratio
of (1

2 − ϵ) and takes O(n
ϵ log(log B

ϵ) log k) queries.

Proof By the definition of O, there exists an integer i such that

(1− ϵ)OPT ≤ OPT
1 + ϵ

≤ v = (1 + ϵ)i ≤ OPT

By applying the proof of Theorem 9, and the working frame of the Sieve streaming algorithm
in [109], we obtain:

f(xv) ≥ (1− ϵ)
2 v ≥ (1− ϵ)2

2 OPT ≥ (1
2 − ϵ)OPT (5.9)

The proof is complete.

5.4.2 Streaming algorithm with approximation ratio of (1− 1/e− ϵ)

In this section, we introduce two more algorithms for the MDRSCa problem, including one
with the role of a stepping stone (called Stepping-Stone algorithm) and the second main
algorithm (StrDRS2 algorithm) in our study.

82

5.4.2.1 (1/4)-approximation streaming algorithm (Stepping-Stone algorithm)

We design the Stepping-Stone algorithm (in Algorithm 12), which is a (1/4)-approximation
streaming algorithm. Stepping-Stone algorithm differs from StrDRS1 and StrDRS2 in that
it only selects elements for exactly one solution and has an approximately constant value.
In contrast, the other two algorithms find multiple solution candidates and choose the best
candidate.

In more detail, the main idea of this algorithm differs from StrDRS1 (Algorithm 11), that
is, Stepping-Stone algorithm (Algorithm 12) is a single-pass streaming algorithm and finds ke

without relying on a given v. In this way, after finding the set I as Algorithm 11, for each
element e, e ∈ E, ke is the largest it−1, it ∈ I so that it meets the conditions in line 3. Finally,
the output contains the last elements of x with ∥x∥1 = k.

Lemma 4, 5, 6, and Theorem 11 clarify the theoretical analysis of Algorithm 12.

Algorithm 12: 1/4-approximation algorithm (Stepping-Stone algorithm)
Input: f : ZE

+ → R+,B, k, ϵ
Output: A vector x

1: foreach e ∈ E do
2: I ← {i1, i2, . . . , i|I|} : i1 < i2 . . . < i|I|} ← {⌈B(e)(1− ϵ)i⌉ : i ∈ Z, 1 ≤

B(e)(1− ϵ)i ≤ B(e)}
3: Find ke ← arg max{it − 1 : it ∈ I, f(χe|x + (it − 1)χe) <

f(x + it−1χe)/k and f(χe|x + (ij − 1)χe) ≥ f(x + ij−1χe)/k,∀ j ≤ t− 1, j ∈ I}
4: x← x + ke · χe

5: x← last elements in x with ∥x∥1 = k
6: return x

Lemma 4 After each iteration of the Algorithm 12, we have f(keχe|x) ≥ (1− ϵ)kef(x)/k

Proof Due to the definition of I, after each iteration of the main loop, we have it− 1 ≥ it−1.
Similarly to the proof of Lemma 4, we have ke − it−1 = it − 1 − it−1 ≤ ϵke. By selection of
the algorithm, for 1 ≤ j < t we have

f(ij |x + ij−1χe) =
ij∑︂

l=ij−1+1
f(χe|x + ij−1χe) ≥

ij∑︂
l=ij−1+1

f(x + ij−1χe)/k (5.10)

≥ (ij − ij−1)f(x + ij−1χe)/k (5.11)

83

Therefore:

f(keχe|x) ≥ f(it−1 · χe|x) (5.12)

≥
t−1∑︂
j=1

(ij − ij−1)f(χe|x + ij−1 · χe) (5.13)

= it−1f(x)/k ≥ (1− ϵ)kef(x)/k (5.14)

The proof is completed.

Lemma 5 After the main loop of Algorithm 12, we have 2f(x) ≥ OPT

Proof Denote x(e) is x right before the element e is proceed. We have the following.

f(o)− f(x) = f(o ∨ x)− f(x) (5.15)

=
∑︂

e∈{o∨x−x}
f(χe|x) (5.16)

=
∑︂

e∈{o−o∧x}
f(χe|x) (5.17)

≤
∑︂

e∈{o−o∧x}
f(χe|x(e)) (5.18)

<
∑︂

e∈{o−o∧x}

f(x(e))
k

≤ f(x) (5.19)

which implies the proof.

Lemma 6 At the end of the Algorithm 12, we have f(x′) ≥ 1−3ϵ
2−3ϵf(x).

Proof If ∥x′∥1 < k, then x′ = x and Lemma 6 holds. We consider the case ∥x′∥1 = k.
Assume that supp(x) = {e1, e2, . . . , el}, xi = ∑︁i

j=1 x(ej) · χej , supp(x′) = {ep, ep+1, . . . , el}
and x1 = x− x′ where ej is added to x immediately after ej−1 and 1 ≤ p < l.
We further consider two cases.
Case 1. If {x1} ∩ {x′} = ∅, we have k = ∑︁l

i=p kep and

f(x)− f(x1) =
l∑︂

i=p

f(keiχei |xi) ≥
l∑︂

i=p

(1− ϵ)kei

f(xi)
k

(Lemma 4) (5.20)

≥ (1− ϵ)
l∑︂

i=p

kei

f(x1)
k

= (1− ϵ)f(x1) (5.21)

Case 2. If {x1} ∩ {x′} = {ep}. Denote q = kep − x1(ep) and c = min{ij ∈ I : ij ≥ x1(ep)}.
We have k = q +∑︁l

i=p+1 kep and ij−1 < x1(ep) ≤ c = ij . Similarly to the proof of Lemma 4,

84

we have c−x1(ep) ≤ ϵij ≤ ϵkep and thus c ≤ ϵij + x1(ep) ≤ ϵkep + x1(ep). Let x1
l = x1 + lχep ,

then

f(qχe|x1) ≥
it−1∑︂

l=c+1

f(χep |x1 + (l − 1)kep)
k

(5.22)

≥ (kep(1− ϵ)− c)f(x1
c)

k
= (kep(1− ϵ)− (x1(ep) + ϵkep))f(x1)

k
(5.23)

≥ (q − 2ϵkep)f(x1)
k

(5.24)

implying that f(qχe|x1) ≥ (q − 2ϵkep)f(x1)
k . Therefore:

f(x)− f(x1) = f(qχe|x1) +
l∑︂

i=p+1
f(keiχei |xi) (5.25)

≥ (q − 2ϵkep)f(x1)
k

+
l∑︂

i=p+1
(1− ϵ)kei

f(xi)
k

(Lemma 4) (5.26)

≥ (q +
l∑︂

i=p+1
kei − 2ϵkep − ϵ

l∑︂
i=p+1

kei)
f(x1)

k
(5.27)

≥ (k − 3ϵk)f(x1)
k

= (1− 3ϵ)f(x1) (5.28)

Hence f(x) ≥ (2 − 3ϵ)f(x1). Combined with the fact that f(x) ≤ f(x′) + f(x1) we have
f(x′) ≥ 1−3ϵ

2−3ϵf(x) which completes the proof.

Theorem 11 Algorithm 12 is a single-pass streaming algorithm that takes O(n
ϵ log B) and

provides an approximation ratio of 1/4− 3ϵ/4.

Proof The algorithm scan only one time over the ground set E and each element e, it
calculate f(χe|x + (ij − 1)χe) for all ij ∈ I to find ke. This task takes at most 1

ϵ log(B(e)) =
O(1

ϵ log B) queries. Thus, the total number of required queries is O(1
ϵ log B). For the proof

of approximation ratio, by using Lemmas 5 and (6), we have:

f(x′) ≥ 1− 3ϵ

2− 3ϵ
f(x) ≥ 1− 3ϵ

2(2− 3ϵ)OPT ≥ (1
4 −

3
4ϵ)OPT (5.29)

The proof is completed.

5.4.2.2 (1− 1/e− ϵ)-approximation streaming algorithm - StrDRS2 algorithm

StrDRS2 (in Algorithm 13) is a multi-pass streaming algorithm and is based on the output of
Algorithm 12 to compute the threshold θ of f(keχe|x) of each element e. The ke of each e is

85

the minimal value i, i ∈ {1, 2, . . . , B(e)}, so that f(iχe|x)/i < θ. The threshold θ decreases
(1− ϵ) times after each iteration.

Lemma 7 and Theorem 12 clearly demonstrate the theoretical solution-ability guarantee
of Algorithm 13.

Algorithm 13: (1− 1/e− ϵ)-approximation algorithm (StrDRS2)
Input: f : ZE

+ → R+,B, k, ϵ
Output: A vector x

1: x0 ← Result of Stepping-Stone algorithm, Γ← f(x0)
2: θ = (4−3ϵ)Γ

(1−3ϵ)k , x← 0
3: while θ ≥ (1− ϵ)Γ/(4k) do
4: foreach e ∈ E do
5: Find ke ← arg min{i− 1 : i ∈ {1, 2, . . . , B(e)}, f(iχe|x)/i < θ} by a binary

search
6: k′ ← min{ke, k − ∥x∥1}
7: if k′ ̸= 0 then
8: x← x + k′ · χe

9: else
10: break

11: θ = (1− ϵ)θ
12: return x

Lemma 7 In Algorithm 13, at any iteration of the outer loop, we have:

f(k′
eχe|x) ≥ (1− ϵ)ke

k
(OPT− f(x)) (5.30)

Proof For the first iteration of the outer loop, we have x = 0 and thus

f(o)− f(x) = k
OPT

k
≤ k

(4− 3ϵ)Γ
(1− 3ϵ)k <

kθ

1− ϵ
≤ f(k′

eχe|xi)
(1− ϵ)k′

e

(5.31)

Thus, f(k′
eχe|x) ≥ (1−ϵ)k′

e
k (OPT−f(x)), Lemma 7 holds. For the latter iterations, the marginal

gain of any element e with current vector x is less than the threshold of previous iterations

86

of the outer loop, i.e, f(χe|x) ≤ θ
1−ϵ for e ∈ {B− x}. Then

f(o)− f(xi) ≤ f(o ∨ x)− f(x) (5.32)

=
∑︂

e∈{o∨x−x}
f(χe|x) (5.33)

=
∑︂

e∈{o−o∧x}
f(χe|x) (5.34)

≤ k
θ

1− ϵ
≤ f(k′

eχe|xi)
(1− ϵ)k′

e

(5.35)

The proof is complete.

Theorem 12 The Algorithm 13 is a multi-pass streaming algorithm that scans O(1
ϵ) passes

over the ground set, takes O(n
ϵ log B)) queries, and returns an approximation ratio of (1 −

1/e− ϵ).

Proof We consider following cases
Case 1. If ∥x∥1 < k, after the last iteration of the outer loop we have:

f(o)− f(x) ≤ f(o ∨ x)− f(x) (5.36)

=
∑︂

e∈{o∨x−x}
f(χe|x) (5.37)

=
∑︂

e∈{o−o∧x}
f(χe|x) (5.38)

≤ kθmin ≤ k(1− ϵ) Γ
4k
≤ (1− ϵ)OPT

4 (5.39)

Hence f(x) ≥ 3+ϵ
4 OPT.

Case 2. If ∥x∥1 = k. Denote xi as x after i-th update, k′
ei

χei is the vector added to x at i-th
updated and the final solution x = xl, Lemma 7 gives

f(xi+1)− f(xi) = f(k′
ei+1χei+1 |xi) ≥

(1− ϵ)k′
ei+1

k
(OPT− f(xi)) (5.40)

87

Rearrange above inequality for i + 1 = l, we have:

OPT− f(xl) ≤ (1−
(1− ϵ)k′

el

k
)(OPT− f(xl−1)) (5.41)

≤ e−
(1−ϵ)k′

el
k (OPT− f(xl−1)) (5.42)

. . . ≤ e
−
∑︁l

j=1

(1−ϵ)k′
ej

k OPT (5.43)

e−(1−ϵ)OPT ≤ (1
e

+ ϵ)OPT (5.44)

Hence f(x) ≥ (1− 1/e− ϵ)OPT, the proof is completed.

5.5 Experiment and Result Evaluation

We conducted experiments based on the budget allocation problem over the bipartite influence
model [110]. This problem is an instance of the monotone submodular function maximization
problem over integer lattice under a constraint [7]. As mentioned above, we consider the
problem under a cardinality constraint.

Suppose we consider the context of the algorithmic marketing approach. The budget
allocation problem can be explained as follows. In marketing strategy, one of the crucial
choices is deciding how much of a given budget to spend on different media, including TV,
websites, newspapers, and social media, to reach as many potential customers as possible. In
other words, given a bipartite graph G(V ; E), where V is a bi-partition (V1; V2) of the vertex
set, V1 denotes the set of source nodes (such as ad sources), V2 denotes the set of target
nodes (such as people/customers), and E ⊆ V1 × V2 is the edge set. Each source node v1

has a capacity Bv1 ∈ Z+, which represents the number of available budget of the ad source
corresponding to v1. Each edge v1v2 ∈ E is associated with a probability p(v1v2) ∈ [0; 1], which
means that putting an advertisement to a slot of v1 activates customer v2 with probability
p(v1v2). Each source node v1 will be allocated a budget x(v1) ∈ {0, 1, ..., Bv1} such that∑︁

v1∈V1 x(v1) ≤ k where k ∈ Z+ denotes a total budget capacity. The object value function f ,
which means the expected number of target vertices activated by x[7], is defined as follows.

f : ZV
+ → R+ as f(x) =

∑︂
v2∈V2

⎛⎝1−
∏︂

v1v2∈E

(1− p(v1v2))x(v1)

⎞⎠ (5.45)

All experiments are conducted to compare the performance of StrDRS1, StrDRS2, CaDRS
and SieveStr + +. We evaluated the performance of each algorithm based on the number of
oracle queries, runtime, and influence f(x).

88

Table 5.3: Statistics of datasets. All datasets have type of bipartite, and undirected.

Dataset #Nodes #Edges Node meaning (n1; n2) Edge meaning
FilmTrust 3,579 35,494 (user, film) (1,508;2,071) rating

NIPS 13,875 1,932,365 (doc, word) (1,500;12,375) occurrence

5.5.1 Experimental Setting

5.5.1.1 Datasets

For the exhaustive experiment, we choose two datasets of different sizes regarding the number
of nodes and edges. They are two real networks that are bipartite, undirected type and weighted
from KONECT1 project [111]: the network of the FilmTrust ratings project and the NIPS
is doc-word dataset of NIPS full papers. The weighted of the rating datasets is rating value,
and one of the doc-word datasets is the number of occurrences of the word in the document.
The description of the datasets is presented in Table 5.3.

5.5.1.2 Environment

We conducted our experiments on a Linux machine with Intel Xeon Gold 6154 (720) @
3.700GHz CPUs and 3TB RAM. Our implementation is written in Python language.

5.5.1.3 Parameter Setting

We set the parameters as follows: ϵ = 0.1, B = 5 for all experiments. Because FilmTrust has
a small set of nodes, so k ∈ {60, 70, 80, 90, 100}. Meanwhile, NIPS has a large set of nodes
and edges, so k ∈ {120, 140, 160, 180, 200}. Besides, we do a simple preprocessing for the
edge-weighted of datasets, which refers to the probability p(v1v2). For FilmTrust, the edge-
weighted is the ratio of the rated value and the maximum rated value (rated value

maximum rated value).
While, it is the ratio of the number of the word’s occurrences in the document and the number
of words in the document (number of the word’s occurrences in the document

number of words in the document) for NIPS.

5.5.2 Experimental Results

This section discusses the experimental results to clarify the algorithms’ benefits and draw-
backs through three metrics: number of oracle queries, runtime, and influence. Two out-
standing advantages of our algorithms over CaDRS and SieveStr + + are (1) our algorithms’
runtime and the number of oracle queries are faster many times than those of CaDRS and
SieveStr + + ; (2) The influence of our algorithms is often smaller than that of SieveStr + +
and CaDRS. However, for some datasets, the influence of StrDRS1 and StrDRS2 can be equal

1http://konect.cc

89

aaaaaaaaaaaaaaaaaaaaaaaFilmTrust ratings

60 70 80 90 100
k

104

105

O
ra

cl
e

qu
er

ie
s

B=5

StrDRS1
StrDRS2
CaDRS
SieveStr++

60 70 80 90 100
k

102

103

104

Ti
m

e
(s

ec
.)

B=5

StrDRS1
StrDRS2
CaDRS
SieveStr++

60 70 80 90 100
k

1000

1200

1400

1600

1800

2000

In
flu

en
ce

B=5

StrDRS1
StrDRS2
CaDRS
SieveStr++

aaaaaaaaaaaaaaaaaaaaNIPS full papers - small k

120 140 160 180 200
k

104

105

O
ra

cl
e

qu
er

ie
s

B=5
StrDRS1
StrDRS2
CaDRS
SieveStr++

120 140 160 180 200
k

103

104

Ti
m

e
(s

ec
.)

B=5

StrDRS1
StrDRS2
CaDRS
SieveStr++

120 140 160 180 200
k

4000

5000

6000

7000

8000

9000

In
flu

en
ce

B=5

StrDRS1
StrDRS2
CaDRS
SieveStr++

Figure 5.1: The results of the experimental comparison of algorithms on the datasets.

to or greater than that of SieveStr + + and CaDRS if we suitably set parameters B and k for
the dataset. Figure 5.1 clearly shows the achievement results.

5.5.2.1 Oracle queries and Runtime

Because most of the execution time of the algorithms is consumed by the number of queries
for computing the function f , the runtime is directly proportional to the number of oracle
queries. In detail, for comparing StrDRS1 to SieveStr + +, the number of oracle queries of
StrDRS1 is 1.2 to 24.4 times smaller than SieveStr + +; and the runtime of StrDRS1 is 1.1
to 102.5 times faster than SieveStr + +. For comparing StrDRS2 to CaDRS, the number of
oracle queries of StrDRS2 is 5.1 to 6.5 times smaller than CaDRS; and the runtime of StrDRS2
is 2.0 to 4.8 times faster than CaDRS. Especially, even if k increases many times, the number
of queries and runtime of StrDRS2 only increase very small when compared with the other
algorithms. This cause makes it possible for us to mistake them for constants when looking
at the charts. Table 5.4 clearly shows the variation of the number of queries.

5.5.2.2 Influence

Through the analysis of experimental results, the difference in the influence value of the
algorithms is as follows. For the comparison of SieveStr + + and StrDRS1, the influence of
StrDRS1 is 1.1 to 1.2 times smaller than SieveStr + +. For the comparison of CaDRS and

90

Table 5.4: Statistics of the number of queries

k StrDRS1 StrDRS2 CaDRS SieveStr + +
FilmTrust rating

60 7601 40895 240202 183453
70 8126 40917 247335 198063
80 8582 40939 252978 202716
90 8933 40957 261258 217947
100 9613 40979 264730 225569

NIPS full papers
120 10934 40807 206599 13595
140 11040 40847 209606 15106
160 11108 40887 215624 17690
180 13313 40927 218639 19362
200 14446 40963 221672 22958

StrDRS2, the influence of StrDRS2 is 1.0 to 1.3 times smaller than CaDRS for FilmTrust
dataset. However, for NIPS dataset, the influence of StrDRS2 is 1.4 to 1.7 times greater
than CaDRS in this parameters set. Generally, because CaDRS uses a greedy technique, the
influence of this algorithm is always at its best. As k increases, this value of CaDRS can
reach the best values. In contrast, the remaining three algorithms use streaming techniques,
so it is difficult to achieve the same influence as CaDRS’s. Nevertheless, the difference in the
influence of streaming and greedy algorithms is not too large. Especially, this gap will decrease
as k increases. Thus the time benefit of our algorithms is a significant strength against this
disparity in influence.

5.6 Concluding remarks

We studies the maximization of monotone DR-submodular functions with a cardinality con-
straint on the integer lattice. We proposed two streaming algorithms that have determined
approximation ratios and significantly reduce query and time complexity compared to state-
of-the-art algorithms. We conducted some experiments to evaluate the efficiency of our al-
gorithms and novel algorithms for this problem. The results indicate that our algorithms
are highly scalable and outperform the compared algorithms in terms of both runtime and
number of queries, and the influence is slightly smaller.

For our future work, one direction is to study the monotone DR-submodular function
maximization problem under polymatroid constraint and knapsack constraint. In another
direction, we consider the maximization of the nonmonotone DR-submodular function under
cardinality constraint.

91

Chapter 6

Conclusions

6.1 Summary

This study contributes to clarifying the essential role of submodular function optimization
in combinatorial optimization problems, which has many applications in economic, social
network analysis, viral marketing, machine learning, game theorem, and other fields. In other
words, this thesis proposes efficient approaches to solve three variants of the submodular
optimization problem, including the problem of minimizing cost submodular cover under
noises (Problem 1), the fairness budget distribution for the influence maximization problem
(Problem 2), and the problem of maximizing DR-submodular function on the integer lattice
(Problem 3). At the same time, we perform experiments on these algorithms to investigate
their efficiency. The experimental results show that our algorithms work and outperform the
state-of-the-art methods in runtime and number of queries. Our algorithms especially perform
even for big data. Specifically, our contributions are as follows.

• Problem 1. We propose approaches that use the streaming strategy to minimize
cost submodular cover under noise models (Str-SCN-M, Str-SCN-A). These approaches
compute object function values near the optimal solution and satisfy the threshold
constraint, but they spend a low cost compared to the state-of-the-art. This work
was recognized through publications at the RIVF2021 international conference (Scopus)
[Publication 1] and the Computer Standards and Interfaces journal (Elsevier, SCIE)
[Publication 8].

• Problem 2. We combine the threshold greedy algorithm, the dynamic stop-and-start
technique, and the RIS framework to solve the problem of maximizing a submodular
function under fairness constraints (FBIM1, FBIM2, and FBIM3). The obtained results
are guaranteed to have a good approximation solution through theoretical analysis and
experimental results. Significantly, the seed set’s distribution guarantees a high coverage

92

ratio, which is an expression of ensuring the fairness constraint. This contribution
is recognized in publications at the ICABDE2021 international conference (Scopus)
[Publication 2] and the Mathematics journal (MDPI, SCIE) [Publication 9].

• Problem 3. We use the streaming strategy and the threshold greedy methods to design
two effective streaming algorithms for the problem of maximizing the DR-submodular
function with a cardinality constraint on the integer lattice. This contribution is recog-
nized in publication in the Mathematics journal (MDPI, SCIE) [Publication 10].

In summary, the obtained results of the thesis help to deal with some aspects of the chal-
lenges of the submodular optimization problem, which are mentioned in Chapter 1 (Motivation
section).

6.2 Future directions

As mentioned in the introduction chapter, submodular function optimization problems still
have many interesting and challenging things for the conquest of the research community on
combinatorial optimization problems. Here are some research directions that our team is and
will study:

• Currently, the efficiency of the algorithms of the FBIM problem is affected by two ob-
jective factors: the data preprocessing and generating sampling using the RIS frame-
work. Therefore, we are working to improve or raise constraints to reduce this affection.
Specifically, we are working on a community detection method that costs better than
the one we use (Directed Louvain method [93]). Besides, instead of randomly choosing
the target communities, we consider adding more parameters to select the input set of
the target communities with a better probability. In other words, we select the set of
target communities that satisfies the fairness condition of the FBIM problem, helping to
minimize the repetition when this set does not meet the requirements of FBIM.

• For the problem of maximizing a monotone DR-submodular function under the Knap-
sack constraint over the integer lattice, Gong et al. [101] proposed the novel determin-
istic algorithm, which used the threshold greedy strategy. We are studying a streaming
algorithm for this problem to improve the runtime with the same or better approxima-
tion.

• Another exciting research direction that we intend to study is considering the submod-
ular function of the simplicial complex and comparing the submodular function on the
simplicial complex to the graph and integer lattice.

93

Bibliography

1. VONDRÁK, Jan. Submodularity in combinatorial optimization. 2007. Available also
from: https://theory.stanford.edu/~jvondrak/data/KAM_thesis.pdf.

2. NGUYEN, Hung T.; THAI, My T.; DINH, Thang N. Stop-and-Stare: Optimal Sampling
Algorithms for Viral Marketing in Billion-scale Networks. In: Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016. ACM, 2016, pp. 695–710. Available from
doi: 10.1145/2882903.2915207.

3. GALHOTRA, Sainyam; ARORA, Akhil; VIRINCHI, Srinivas; ROY, Shourya. ASIM: A
Scalable Algorithm for Influence Maximization under the Independent Cascade Model.
In: Proceedings of the 24th International Conference on World Wide Web. Florence,
Italy: Association for Computing Machinery, 2015, pp. 35–36. WWW ’15 Companion.
isbn 9781450334730. Available from doi: 10.1145/2740908.2742725.

4. KAPRALOV, Michael; POST, Ian; VONDRÁK, Jan. Online Submodular Welfare Max-
imization: Greedy is Optimal. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA. SIAM, 2013, pp. 1216–1225. Available from
doi: 10.1137/1.9781611973105.88.

5. KORULA, Nitish; MIRROKNI, Vahab S.; ZADIMOGHADDAM, Morteza. Online Sub-
modular Welfare Maximization: Greedy Beats 1/2 in Random Order. SIAM J. Comput.
2018, vol. 47, no. 3, pp. 1056–1086. Available from doi: 10.1137/15M1051142.

6. CLARK, Andrew; POOVENDRAN, Radha. A submodular optimization framework
for leader selection in linear multi-agent systems. In: 2011 50th IEEE Conference on
Decision and Control and European Control Conference. IEEE, 2011, pp. 3614–3621.

7. SOMA, Tasuku; YOSHIDA, Yuichi. A Generalization of Submodular Cover via the Di-
minishing Return Property on the Integer Lattice. In: Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems.
2015, pp. 847–855.

94

https://theory.stanford.edu/~jvondrak/data/KAM_thesis.pdf
https://doi.org/10.1145/2882903.2915207
https://doi.org/10.1145/2740908.2742725
https://doi.org/10.1137/1.9781611973105.88
https://doi.org/10.1137/15M1051142

8. GOEMANS, Michel X.; WILLIAMSON, David P. Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J.
ACM. 1995, vol. 42, no. 6, pp. 1115–1145. Available from doi: 10.1145/227683.227684.

9. BACH, Francis R. Learning with Submodular Functions: A Convex Optimization Per-
spective. Found. Trends Mach. Learn. 2013, vol. 6, no. 2-3, pp. 145–373. Available from
doi: 10.1561/2200000039.

10. DAS, Abhimanyu; KEMPE, David. Approximate Submodularity and its Applications:
Subset Selection, Sparse Approximation and Dictionary Selection. Journal of Machine
Learning Research. 2018, vol. 19, no. 3, pp. 1–34.

11. IYER, Rishabh K.; BILMES, Jeff A. Submodular Optimization with Submodular Cover
and Submodular Knapsack Constraints. In: Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.
2013, pp. 2436–2444.

12. HASSIDIM, Avinatan; SINGER, Yaron. Submodular Optimization under Noise. In:
Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017. PMLR, 2017, vol. 65, pp. 1069–1122. Proceedings of Ma-
chine Learning Research.

13. BADANIDIYURU, Ashwinkumar; MIRZASOLEIMAN, Baharan; KARBASI, Amin;
KRAUSE, Andreas. Streaming Submodular Maximization: Massive Data Summariza-
tion on the Fly. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. New York, New York, USA: Association for
Computing Machinery, 2014, pp. 671–680. KDD ’14. isbn 9781450329569.

14. MIRZASOLEIMAN, Baharan; KARBASI, Amin; KRAUSE, Andreas. Deletion-Robust
Submodular Maximization: Data Summarization with "the Right to be Forgotten". In:
Proceedings of the 34th International Conference on Machine Learning, ICML. PMLR,
2017, vol. 70, pp. 2449–2458. Proceedings of Machine Learning Research.

15. TANG, Jing; TANG, Xueyan; XIAO, Xiaokui; YUAN, Junsong. Online Processing
Algorithms for Influence Maximization. In: Proceedings of the 2018 International Con-
ference on Management of Data. Houston, TX, USA: Association for Computing Ma-
chinery, 2018, pp. 991–1005. SIGMOD ’18. isbn 9781450347037. Available from doi:
10.1145/3183713.3183749.

16. PHAM, Canh V.; PHAM, Dung V.; BUI, Bao Q.; NGUYEN, Anh V. Minimum bud-
get for misinformation detection in online social networks with provable guarantees.
Optimization Letters. 2021. Available from doi: 10.1007/s11590-021-01733-0.

95

https://doi.org/10.1145/227683.227684
https://doi.org/10.1561/2200000039
https://doi.org/10.1145/3183713.3183749
https://doi.org/10.1007/s11590-021-01733-0

17. YANG, Ruiqi; XU, Dachuan; CHENG, Yukun; GAO, Chuangen; DU, Ding-Zhu. Stream-
ing Submodular Maximization Under Noises. In: 39th IEEE International Conference
on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7-10, 2019.
IEEE, 2019, pp. 348–357.

18. GUO, Jianxiong; CHEN, Tiantian; WU, Weili. Continuous Activity Maximization in
Online Social Networks. IEEE Transactions on Network Science and Engineering. 2020,
vol. 7, no. 4, pp. 2775–2786. Available from doi: 10.1109/TNSE.2020.2993042.

19. GRIMSMAN, David; SEATON, Joshua H.; MARDEN, Jason R.; BROWN., Philip
N. The Cost of Denied Observation in Multiagent Submodular Optimization. In: 59th
IEEE Conference on Decision and Control (CDC). 2020, pp. 1666–1671. Available from
doi: 10.1109/CDC42340.2020.9304054.

20. JALEEL, Hassan; SHAMMA, Jeff S. Distributed Optimization for Robot Networks:
From Real-Time Convex Optimization to Game-Theoretic Self-Organization. Proceed-
ings of the IEEE. 2020, vol. 108, no. 11, pp. 1953–1967. Available from doi: 10.1109/

JPROC.2020.3028295.

21. FUJISHIGE, Satoru. Submodular Functions and Optimization. In: 2005, pp. 71–104.

22. CRAWFORD, Victoria G.; KUHNLE, Alan; THAI, My T. Submodular Cost Sub-
modular Cover with an Approximate Oracle. In: Proceedings of the 36th International
Conference on Machine Learning, ICML 2019. PMLR, 2019, vol. 97, pp. 1426–1435.

23. KEMPE, David; KLEINBERG, Jon M.; TARDOS, Éva. Maximizing the spread of
influence through a social network. In: Proceedings of the Ninth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 24 - 27, 2003. 2003, pp. 137–146.

24. BORGS, Christian; BRAUTBAR, Michael; CHAYES, Jennifer T.; LUCIER, Brendan.
Maximizing Social Influence in Nearly Optimal Time. In: Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014. SIAM, 2014, pp. 946–957. Available from doi: 10.

1137/1.9781611973402.70.

25. TANG, Jing; TANG, Xueyan; YUAN, Junsong. Profit Maximization for Viral Mar-
keting in Online Social Networks: Algorithms and Analysis. IEEE Transactions on
Knowledge and Data Engineering. 2018, vol. 30, no. 6, pp. 1095–1108. Available from
doi: 10.1109/TKDE.2017.2787757.

26. LIU, Paul; VONDRÁK, Jan. Submodular Optimization in the MapReduce Model. In:
FINEMAN, Jeremy T.; MITZENMACHER, Michael (eds.). 2nd Symposium on Sim-
plicity in Algorithms, SOSA. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
vol. 69, 18:1–18:10. OASIcs.

96

https://doi.org/10.1109/TNSE.2020.2993042
https://doi.org/10.1109/CDC42340.2020.9304054
https://doi.org/10.1109/JPROC.2020.3028295
https://doi.org/10.1109/JPROC.2020.3028295
https://doi.org/10.1137/1.9781611973402.70
https://doi.org/10.1137/1.9781611973402.70
https://doi.org/10.1109/TKDE.2017.2787757

27. AMIR, Rabah. Supermodularity and Complementarity in Economics: An Elementary
Survey. Southern Economic Journal. 2005, vol. 71, no. 3, pp. 636–660. issn 00384038.

28. ABEDI, Vahideh Sadat; BERMAN, Oded; KRASS, Dmitry. Supporting New Prod-
uct or Service Introductions: Location, Marketing, and Word of Mouth. Operations
Research. 2014, vol. 62, no. 5, pp. 994–1013.

29. VONDRAK, Jan. Optimal Approximation for the Submodular Welfare Problem in
the Value Oracle Model. In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing. Victoria, British Columbia, Canada: Association for Computing
Machinery, 2008, pp. 67–74. STOC ’08. isbn 9781605580470.

30. BUCHBINDER, Niv; FELDMAN, Moran; NAOR, Joseph; SCHWARTZ, Roy. A Tight
Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization. SIAM
J. Comput. 2015, vol. 44, no. 5, pp. 1384–1402. Available from doi: 10.1137/130929205.

31. ELENBERG, Ethan R.; DIMAKIS, Alexandros G.; FELDMAN, Moran; KARBASI,
Amin. Streaming Weak Submodularity: Interpreting Neural Networks on the Fly. In:
GUYON, Isabelle; LUXBURG, Ulrike von; BENGIO, Samy; WALLACH, Hanna M.;
FERGUS, Rob; VISHWANATHAN, S. V. N.; GARNETT, Roman (eds.). Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, USA. 2017, pp. 4044–4054.

32. JEGELKA, Stefanie; BILMES, Jeff A. Submodularity beyond submodular energies:
Coupling edges in graph cuts. In: The 24th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011.
IEEE Computer Society, 2011, pp. 1897–1904. Available from doi: 10.1109/CVPR.

2011.5995589.

33. LIU, Yuzong; WEI, Kai; KIRCHHOFF, Katrin; SONG, Yisong; BILMES, Jeff. Sub-
modular feature selection for high-dimensional acoustic score spaces. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. 2013, pp. 7184–
7188. Available from doi: 10.1109/ICASSP.2013.6639057.

34. LIN, Hui; BILMES, Jeff A. A Class of Submodular Functions for Document Summa-
rization. In: The 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Port-
land, Oregon, USA. The Association for Computer Linguistics, 2011, pp. 510–520.

35. STREETER, Matthew; GOLOVIN, Daniel. An Online Algorithm for Maximizing Sub-
modular Functions. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2009.

97

https://doi.org/10.1137/130929205
https://doi.org/10.1109/CVPR.2011.5995589
https://doi.org/10.1109/CVPR.2011.5995589
https://doi.org/10.1109/ICASSP.2013.6639057

36. PHAM, Dung V; NGUYEN, Giang L; NGUYEN, Tu N; PHAM, Canh V; NGUYEN,
Anh V. Multi-topic misinformation blocking with budget constraint on online social
networks. IEEE Access. 2020, vol. 8, pp. 78879–78889.

37. PHAM, Canh V; PHU, Quat V; HOANG, Huan X; PEI, Jun; THAI, My T. Minimum
budget for misinformation blocking in online social networks. Journal of Combinatorial
Optimization. 2019, vol. 38, no. 4, pp. 1101–1127.

38. PHAM, Canh V; THAI, My T; DUONG, Hieu V; BUI, Bao Q; HOANG, Huan X.
Maximizing misinformation restriction within time and budget constraints. Journal of
Combinatorial Optimization. 2018, vol. 35, no. 4, pp. 1202–1240.

39. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; TRAN, Loi H.; PHAM, Canh V.;
SNÁŠEL, Václav. Fairness Budget Distribution for Influence Maximization in Online
Social Networks. In: The 2021 International Conference on Artificial Intelligence and
Big Data in Digital Era” (ICABDE 2021). 2021.

40. PHAM, Canh V; DUONG, Hieu V; HOANG, Huan X; THAI, My T. Competitive
influence maximization within time and budget constraints in online social networks:
an algorithmic approach. Applied Sciences. 2019, vol. 9, no. 11, p. 2274.

41. CHEN, Wei; WANG, Yajun; YANG, Siyu. Efficient Influence Maximization in So-
cial Networks. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Paris, France: Association for Computing
Machinery, 2009, pp. 199–208. KDD ’09. isbn 9781605584959.

42. GOYAL, Amit; LU, Wei; LAKSHMANAN, Laks V.S. CELF++: Optimizing the Greedy
Algorithm for Influence Maximization in Social Networks. In: Proceedings of the 20th
International Conference Companion on World Wide Web. Hyderabad, India: Associa-
tion for Computing Machinery, 2011, pp. 47–48. WWW ’11. isbn 9781450306379.

43. KHAJEHNEJAD, Moein; REZAEI, Ahmad Asgharian; BABAEI, Mahmoudreza; HOFF-
MANN, Jessica; JALILI, Mahdi; WELLER, Adrian. Adversarial Graph Embeddings for
Fair Influence Maximization over Social Networks. CoRR. 2020, vol. abs/2005.04074.
Available from arXiv: 2005.04074.

44. RAHMATTALABI, Aida; JABBARI, Shahin; LAKKARAJU, Himabindu; VAYANOS,
Phebe; IZENBERG, Max; BROWN, Ryan; RICE, Eric; TAMBE, Milind. Fair Influence
Maximization: a Welfare Optimization Approach. In: Thirty-Fifth AAAI Conference on
Artificial Intelligence. AAAI Press, 2021, pp. 11630–11638.

45. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; PHAM, Canh V.; SU, Anh N.;
SNÁŠEL, Václav. Streaming Algorithm for Submodular Cover Problem Under Noise.
In: 2021 RIVF International Conference on Computing and Communication Technolo-
gies (RIVF). 2021, pp. 1–6. Available from doi: 10.1109/RIVF51545.2021.9642118.

98

https://arxiv.org/abs/2005.04074
https://doi.org/10.1109/RIVF51545.2021.9642118

46. CHEN, Wei; WANG, Chi; WANG, Yajun. Scalable Influence Maximization for Preva-
lent Viral Marketing in Large-Scale Social Networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. USA:
Association for Computing Machinery, 2010, pp. 1029–1038. isbn 9781450300551.

47. KEMPE, David; KLEINBERG, Jon; TARDOS, Éva. Maximizing the Spread of Influ-
ence through a Social Network. Theory of Computing. 2015, vol. 11, no. 4, pp. 105–147.
Available from doi: 10.4086/toc.2015.v011a004.

48. CHEN, Yu; WANG, Wei; FENG, Jinping; LU, Ying; GONG, Xinqi. Maximizing mul-
tiple influences and fair seed allocation on multilayer social networks. PLOS ONE.
2020-03, vol. 15, no. 3, pp. 1–19. Available from doi: 10.1371/journal.pone.0229201.

49. BANERJEE, Abhijit; G A, Arun; DUFLO, Esther; JACKSON, Matthew. The Diffusion
of Microfinance. Science (New York, N.Y.) 2013-07, vol. 341, p. 1236498. Available from
doi: 10.1126/science.1236498.

50. YADAV, Amulya; WILDER, Bryan; RICE, Eric; PETERING, Robin; CRADDOCK,
Jaih; YOSHIOKA-MAXWELL, Amanda; HEMLER, Mary; ONASCH-VERA, Laura;
TAMBE, Milind; WOO, Darlene. Bridging the Gap Between Theory and Practice in
Influence Maximization: Raising Awareness about HIV among Homeless Youth. In:
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organiza-
tion, 2018-07, pp. 5399–5403. Available from doi: 10.24963/ijcai.2018/761.

51. MIRZASOLEIMAN, Baharan; BABAEI, Mahmoudreza; JALILI, Mahdi. Immunizing
complex networks with limited budget. EPL (Europhysics Letters). 2012-05, vol. 98,
no. 3, p. 38004. Available from doi: 10.1209/0295-5075/98/38004.

52. MIRZASOLEIMAN, Baharan; KARBASI, Amin; BADANIDIYURU, Ashwinkumar;
KRAUSE, Andreas. Distributed Submodular Cover: Succinctly Summarizing Massive
Data. In: Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2. Montreal, Canada: MIT Press, 2015, pp. 2881–2889.
NIPS’15.

53. MIRZASOLEIMAN, Baharan; ZADIMOGHADDAM, Morteza; KARBASI, Amin. Fast
Distributed Submodular Cover: Public-Private Data Summarization. In: Proceedings of
the 30th International Conference on Neural Information Processing Systems. Barcelona,
Spain: Curran Associates Inc., 2016, pp. 3601–3609. NIPS’16. isbn 9781510838819.

54. SOMA, Tasuku; YOSHIDA, Yuichi. A Generalization of Submodular Cover via the Di-
minishing Return Property on the Integer Lattice. In: Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2015, vol. 28.

99

https://doi.org/10.4086/toc.2015.v011a004
https://doi.org/10.1371/journal.pone.0229201
https://doi.org/10.1126/science.1236498
https://doi.org/10.24963/ijcai.2018/761
https://doi.org/10.1209/0295-5075/98/38004

55. GOYAL, Amit; BONCHI, Francesco; LAKSHMANAN, V. S. Laks; VENKATASUB-
RAMANIAN, Suresh. On minimizing budget and time in influence propagation over
social networks. Social Netw. Analys. Mining. 2013, pp. 179–192.

56. KUHNLE, Alan; PAN, Tianyi; ALIM, Md Abdul; THAI, My T. Scalable Bicrite-
ria Algorithms for the Threshold Activation Problem in Online Social Networks. In:
IEEE Conference on Computer Communications. 2017. Available from doi: 10.1109/

INFOCOM.2017.8057068.

57. NOROUZI-FARD, Ashkan; BAZZI, Abbas; BOGUNOVIC, Ilija; HALABI, Marwa El;
HSIEH, Ya-Ping; CEVHER, Volkan. An Efficient Streaming Algorithm for the Sub-
modular Cover Problem. In: Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. 2016, pp. 4493–4501.

58. WOLSEY, Laurence A. An analysis of the greedy algorithm for the submodular set
covering problem. Comb. 1982, vol. 2, no. 4, pp. 385–393. Available from doi: 10.

1007/BF02579435.

59. WAN, P.; DU, D.; PARDALOS, P.; WU, W. Greedy approximations for minimum
submodular cover with submodular cost. Computational Optimization and Applications.
2010, vol. 45, pp. 463–474.

60. CHEN, Wei; WANG, Chi; WANG, Yajun. Scalable Influence Maximization for Preva-
lent Viral Marketing inLarge-Scale Social Networks. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY.
2010, pp. 1029–1038.

61. CHAO, Qian.; JING-CHENG, Shi.; YANG, Yu.; KE, Tang.; ZHI-HUA, Zhou. Subset
Selection under Noise. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017, vol. 30.

62. COHEN, Edith; DELLING, Daniel; PAJOR, Thomas; WERNECK, Renato F. Sketch-
based Influence Maximization and Computation: Scaling up with Guarantees. In: Pro-
ceedings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management, CIKM 2014, Shanghai, China, November 3-7, 2014. ACM,
2014, pp. 629–638.

63. CHEN, Wei; LAKSHMANAN, Laks V. S.; CASTILLO, Carlos. Information and Influ-
ence Propagation in Social Networks. Morgan & Claypool Publishers, pp. 35-66, 2014.
Synthesis Lectures on Data Management.

64. LESKOVEC, Jure; KREVL, Andrej. SNAP Datasets: Stanford Large Network Dataset
Collection [http://snap.stanford.edu/data]. 2014-06.

100

https://doi.org/10.1109/INFOCOM.2017.8057068
https://doi.org/10.1109/INFOCOM.2017.8057068
https://doi.org/10.1007/BF02579435
https://doi.org/10.1007/BF02579435
http://snap.stanford.edu/data

65. NGUYEN, Lan; THAI, My T. Streaming k-Submodular Maximization under Noise
subject to Size Constraint. In: Proceedings of the 37th International Conference on
Machine Learning. PMLR, 2020-07, vol. 119, pp. 7338–7347. Proceedings of Machine
Learning Research.

66. HEIDEMANN, Julia; KLIER, Mathias; PROBST, Florian. Online social networks: A
survey of a global phenomenon. Computer Networks. 2012, vol. 56, no. 18, pp. 3866–
3878. issn 1389-1286.

67. BANERJEE, Suman; JENAMANI, Mamata; PRATIHAR, Dilip Kumar. A survey on
influence maximization in a social network. Knowledge and Information Systems. 2020,
vol. 62, no. 9, pp. 3417–3455.

68. DU, Nan; SONG, Le; GOMEZ RODRIGUEZ, Manuel; ZHA, Hongyuan. Scalable in-
fluence estimation in continuous-time diffusion networks. In: 2013, vol. 26.

69. LI, Jianxin; CAI, Taotao; MIAN, Ajmal; LI, Rong-Hua; SELLIS, Timos; YU, Jeffrey
Xu. Holistic influence maximization for targeted advertisements in spatial social net-
works. In: 34th International Conference on Data Engineering (ICDE). IEEE, 2018,
pp. 1340–1343.

70. PHAM, Canh V.; HA, Dung K. T.; VU, Quang C.; SU, Anh N.; HOANG, Huan X. In-
fluence Maximization with Priority in Online Social Networks. Algorithms. 2020, vol. 13,
no. 8.

71. SUN, Gengxin; CHEN, Chih-Cheng. Influence Maximization Algorithm Based on Re-
verse Reachable Set. Mathematical Problems in Engineering. 2021-07, vol. 2021, pp. 1–
12.

72. RICHARDSON, Matthew; DOMINGOS, Pedro M. Mining knowledge-sharing sites for
viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta,
Canada. ACM, 2002, pp. 61–70. Available from doi: 10.1145/775047.775057.

73. BECKER, Ruben; D’ANGELO, Gianlorenzo; GHOBADI, Sajjad; GILBERT, Hugo.
Fairness in influence maximization through randomization. Journal of Artificial Intel-
ligence Research. 2022, vol. 73, pp. 1251–1283.

74. UDWANI, Rajan. Multi-Objective Maximization of Monotone Submodular Functions
with Cardinality Constraint. CoRR. 2017, vol. abs/1711.06428. Available from arXiv:
1711.06428.

75. LI, Yuchen; FAN, Ju; WANG, Yanhao; TAN, Kian-Lee. Influence Maximization on
Social Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering.
2018, vol. 30, no. 10, pp. 1852–1872. Available from doi: 10.1109/TKDE.2018.2807843.

101

https://doi.org/10.1145/775047.775057
https://arxiv.org/abs/1711.06428
https://doi.org/10.1109/TKDE.2018.2807843

76. LESKOVEC, Jure; KRAUSE, Andreas; GUESTRIN, Carlos; FALOUTSOS, Christos;
VANBRIESEN, Jeanne; GLANCE, Natalie. Cost-Effective Outbreak Detection in Net-
works. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. San Jose, California, USA: Association for Computing
Machinery, 2007, pp. 420–429. KDD ’07. isbn 9781595936097.

77. ZHOU, Chuan; ZHANG, Peng; ZANG, Wenyu; GUO, Li. On the upper bounds of
spread for greedy algorithms in social network influence maximization. IEEE Transac-
tions on Knowledge and Data Engineering. 2015, vol. 27, no. 10, pp. 2770–2783.

78. GOYAL, Amit; LU, Wei; LAKSHMANAN, Laks V.S. SIMPATH: An Efficient Algo-
rithm for Influence Maximization under the Linear Threshold Model. In: 2011 IEEE
11th International Conference on Data Mining. 2011, pp. 211–220. Available from doi:
10.1109/ICDM.2011.132.

79. HE, Xinran; KEMPE, David. Stability of Influence Maximization. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. New York, New York, USA: Association for Computing Machinery, 2014, pp. 1256–
1265. KDD ’14. isbn 9781450329569.

80. LIU, Qi; XIANG, Biao; CHEN, Enhong; XIONG, Hui; TANG, Fangshuang; YU, Jef-
frey Xu. Influence Maximization over Large-Scale Social Networks: A Bounded Linear
Approach. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management. Shanghai, China: Association for Computing
Machinery, 2014, pp. 171–180. CIKM ’14. isbn 9781450325981.

81. PAGE, Lawrence; BRIN, Sergey; MOTWANI, Rajeev; WINOGRAD, Terry. The PageR-
ank Citation Ranking: Bringing Order to the Web. Stanford InfoLab, 1999-11. Technical
Report, 1999-66. Stanford InfoLab. Previous number = SIDL-WP-1999-0120.

82. GALHOTRA, Sainyam; ARORA, Akhil; ROY, Shourya. Holistic influence maximiza-
tion: Combining scalability and efficiency with opinion-aware models. In: Proceedings
of the 2016 International Conference on Management of Data. 2016, pp. 743–758.

83. TANG, Youze; XIAO, Xiaokui; SHI, Yanchen. Influence maximization: near-optimal
time complexity meets practical efficiency. In: DYRESON, Curtis E.; LI, Feifei; ÖZSU,
M. Tamer (eds.). International Conference on Management of Data, SIGMOD. ACM,
2014, pp. 75–86.

84. TANG, Youze; SHI, Yanchen; XIAO, Xiaokui. Influence Maximization in Near-Linear
Time: A Martingale Approach. In: SELLIS, Timos K.; DAVIDSON, Susan B.; IVES,
Zachary G. (eds.). Proceedings of the 2015 SIGMOD International Conference on Man-
agement of Data. ACM, 2015, pp. 1539–1554.

102

https://doi.org/10.1109/ICDM.2011.132

85. HUANG, Keke; WANG, Sibo; BEVILACQUA, Glenn; XIAO, Xiaokui; LAKSHMANAN,
Laks V. S. Revisiting the Stop-and-Stare Algorithms for Influence Maximization. Proc.
VLDB Endow. 2017-05, vol. 10, no. 9, pp. 913–924. issn 2150-8097.

86. NGUYEN, Hung T.; DINH, Thang N.; THAI, My T. Revisiting of Revisiting the Stop-
and-Stare Algorithms for Influence Maximization. In: CHEN, Xuemin; SEN, Arunabha;
LI, Wei Wayne; THAI, My T. (eds.). Computational Data and Social Networks. Cham:
Springer International Publishing, 2018, pp. 273–285.

87. TSANG, Alan; WILDER, Bryan; RICE, Eric; TAMBE, Milind; ZICK, Yair. Group-
Fairness in Influence Maximization. In: Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences
on Artificial Intelligence Organization, 2019-07, pp. 5997–6005.

88. STOICA, Ana-Andreea; HAN, Jessy Xinyi; CHAINTREAU, Augustin. Seeding network
influence in biased networks and the benefits of diversity. In: Proceedings of The Web
Conference. 2020, pp. 2089–2098.

89. HALABI, Marwa El; MITROVIC, Slobodan; NOROUZI-FARD, Ashkan; TARDOS,
Jakab; TARNAWSKI, Jakub. Fairness in Streaming Submodular Maximization: Al-
gorithms and Hardness. In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. 2020.

90. ALI, Junaid; BABAEI, Mahmoudreza; CHAKRABORTY, Abhijnan; MIRZASOLEIMAN,
Baharan; GUMMADI, Krishna P.; SINGLA, Adish. On the Fairness of Time-Critical
Influence Maximization in Social Networks. CoRR. 2019, vol. abs/1905.06618.

91. RAZAGHI, Behnam; ROAYAEI, Mehdy; CHARKARI, Nasrollah Moghadam. On the
Group-Fairness-Aware Influence Maximization in Social Networks. IEEE Transactions
on Computational Social Systems. 2022.

92. BADANIDIYURU, Ashwinkumar; VONDRÁK, Jan. Fast algorithms for maximizing
submodular functions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA. SIAM, 2014, pp. 1497–1514.

93. DUGUÉ, Nicolas; PEREZ, Anthony. Directed Louvain: maximizing modularity in di-
rected networks. 2015. PhD thesis. Université d’Orléans.

94. SOMA, Tasuku; YOSHIDA, Yuichi. Maximizing monotone submodular functions over
the integer lattice. Mathematical Programming. 2018, vol. 172, no. 1, pp. 539–563.

95. ALON, Noga; GAMZU, Iftah; TENNENHOLTZ, Moshe. Optimizing budget allocation
among channels and influencers. In: Proceedings of the 21st international conference on
World Wide Web. 2012, pp. 381–388.

103

96. SOMA, Tasuku; KAKIMURA, Naonori; INABA, Kazuhiro; KAWARABAYASHI, Ken-
ichi. Optimal budget allocation: Theoretical guarantee and efficient algorithm. In: In-
ternational Conference on Machine Learning. PMLR, 2014, pp. 351–359.

97. KAPRALOV, Michael; POST, Ian; VONDRÁK, Jan. Online submodular welfare max-
imization: Greedy is optimal. In: Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 2013, pp. 1216–1225.

98. DEMAINE, Erik D; HAJIAGHAYI, MohammadTaghi; MAHINI, Hamid; MALEC,
David L; RAGHAVAN, S; SAWANT, Anshul; ZADIMOGHADAM, Morteza. How to
influence people with partial incentives. In: Proceedings of the 23rd international con-
ference on World wide web. 2014, pp. 937–948.

99. MITROVIC, Slobodan; BOGUNOVIC, Ilija; NOROUZI-FARD, Ashkan; TARNAWSKI,
Jakub; CEVHER, Volkan. Streaming Robust Submodular Maximization: A Partitioned
Thresholding Approach. In: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017. 2017, pp. 4557–
4566.

100. GU, Shuyang; SHI, Ganquan; WU, Weili; LU, Changhong. A fast double greedy algo-
rithm for non-monotone DR-submodular function maximization. Discrete Mathematics,
Algorithms and Applications. 2020, vol. 12, no. 01, p. 2050007.

101. GONG, Suning; NONG, Qingqin; BAO, Shuyu; FANG, Qizhi; DU, Ding-Zhu. A fast
and deterministic algorithm for Knapsack-constrained monotone DR-submodular max-
imization over an integer lattice. Journal of Global Optimization. 2022, pp. 1–24.

102. LIU, Bin; CHEN, Zihan; DU, Hongmin W. Streaming Algorithms for Maximizing DR-
Submodular Functions with d-Knapsack Constraints. In: Algorithmic Aspects in In-
formation and Management - 15th International Conference, AAIM. Springer, 2021,
vol. 13153, pp. 159–169.

103. TAN, Jingjing; ZHANG, Dongmei; ZHANG, Hongyang; ZHANG, Zhenning. One-pass
streaming algorithm for DR-submodular maximization with a knapsack constraint over
the integer lattice. Comput. Electr. Eng. 2022, vol. 99, p. 107766.

104. ZHANG, Zhenning; GUO, Longkun; WANG, Yishui; XU, Dachuan; ZHANG, Dongmei.
Streaming Algorithms for Maximizing Monotone DR-Submodular Functions with a
Cardinality Constraint on the Integer Lattice. Asia Pac. J. Oper. Res. 2021, vol. 38,
no. 5, 2140004:1–2140004:14.

105. KAZEMI, Ehsan; MITROVIC, Marko; ZADIMOGHADDAM, Morteza; LATTANZI,
Silvio; KARBASI, Amin. Submodular Streaming in All Its Glory: Tight Approxima-
tion, Minimum Memory and Low Adaptive Complexity. In: Proceedings of the 36th
International Conference on Machine Learning. PMLR, 2019, vol. 97, pp. 3311–3320.

104

106. NEMHAUSER, George L.; WOLSEY, Laurence A.; FISHER, Marshall L. An analysis
of approximations for maximizing submodular set functions - I. Math. Program. 1978,
vol. 14, no. 1, pp. 265–294.

107. SVIRIDENKO, Maxim. A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 2004, vol. 32, no. 1, pp. 41–43.

108. CĂLINESCU, Gruia; CHEKURI, Chandra; PÁL, Martin; VONDRÁK, Jan. Maximiz-
ing a Monotone Submodular Function Subject to a Matroid Constraint. SIAM J. Com-
put. 2011, vol. 40, no. 6, pp. 1740–1766.

109. BADANIDIYURU, Ashwinkumar; MIRZASOLEIMAN, Baharan; KARBASI, Amin;
KRAUSE, Andreas. Streaming Submodular Maximization: Massive Data Summariza-
tion on the Fly. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Association for Computing Machinery, 2014,
pp. 671–680. KDD ’14.

110. HATANO, Daisuke; FUKUNAGA, Takuro; MAEHARA, Takanori; KAWARABAYASHI,
Ken-ichi. Lagrangian Decomposition Algorithm for Allocating Marketing Channels. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI
Press, 2015, pp. 1144–1150.

111. KUNEGIS, Jérôme. KONECT: the Koblenz network collection. In: 22nd International
World Wide Web Conference, WWW ’13. ACM, 2013, pp. 1343–1350.

105

List of own publication activities

This section shows the list of own publications.
My ORCID : Bich-Ngan T. Nguyen (https://orcid.org/ 0000-0002-5297-6262)

A. Publications by Author

1. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; PHAM, Canh V.; SU, Anh N. Su;
SNÁŠEL, Václav. Streaming Algorithm for Submodular Cover Problem Under Noise.
In: 2021 RIVF International Conference on Computing and Communication Technolo-
gies (RIVF), 2021, pp. 1-6. Available from DOI: 10.1109/RIVF51545.2021.9642118.

2. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; TRAN, Loi H.; PHAM, Canh V.;
SNÁŠEL, Václav. Fairness Budget Distribution for Influence Maximization in Online
Social Networks. In the 2021 International Conference on Artificial Intelligence and Big
Data in Digital Era” (ICABDE), 2021. Available from DOI: 10.1007/978-3-030-97610-
1_19.

3. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; VU, Thanh Nguyen; PHAN, Quoc
Viet; LE, Dinh Tuan; SNÁŠEL, Václav. Py_ape: Text Data Acquiring, Extracting,
Cleaning and Schema Matching in Python. In: 2020 FDSE International Conference on
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and
Industry 4.0 Applications (FDSE), 2020, pp. 78–89. Available from DOI: 10.1007/978-
981-33-4370-2_6.

4. PHAM, Phuong N. H.; NGUYEN, Bich-Ngan T.; CO, Quy T. N.; SNÁŠEL, Václav.
Multiple Benefit Thresholds Problem in Online Social Networks: An algorithmic ap-
proach. In Mathematics, 2022, vol. 10, no. 6. Available from DOI: 10.3390/math10060876.

5. PHAM, Phuong N. H.; NGUYEN, Bich-Ngan T.; PHAM, Canh V.; NGHIA, Nghia
D.; SNÁŠEL, Václav. Efficient Algorithm for Multiple Benefit Thresholds Problem
in Online Social Networks. In: 2021 RIVF International Conference on Computing
and Communication Technologies (RIVF), 2021, pp 138-143. Available from DOI:
10.1109/RIVF51545.2021.9642099.

106

https://orcid.org/https://orcid.org/0000-0002-5297-6262
https://orcid.org/ 0000-0002-5297-6262
https://doi.org/10.1109/RIVF51545.2021.9642118
https://doi.org/10.1007/978-3-030-97610-1_19
https://doi.org/10.1007/978-3-030-97610-1_19
https://doi.org/10.1007/978-981-33-4370-2_6
https://doi.org/10.1007/978-981-33-4370-2_6
http://doi.org/10.3390/math10060876
https://doi.org/10.1109/RIVF51545.2021.9642099

6. PHAM, Phuong N. H.; NGUYEN, Bich-Ngan T.; CO, Quy T. N.; PHAM, Canh;
SNÁŠEL, Václav. Threshold Benefit for Groups Influence in Online Social Networks.
In: 2021 FDSE International Conference on Future Data and Security Engineering. Big
Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE), 2021,
pp 53-67. Available from DOI: 10.1007/978-3-030-91387-8_4.

7. PHAM, Phuong N. H.; NGUYEN, Bich-Ngan T.; CO, Quy T. N.; NGUYEN, Tu
Nguye; TRAN, Phuoc; SNÁŠEL, Václav. An Efficient Hybrid Algorithm for Community
Structure Detection in Complex Networks Based on Node Influence. In: ICIC Express
Letters Part B: Applications, 2021, 10, 899-908.
Available from DOI: http://dx.doi.org/10.24507/icicelb.12.10.899.

B. Publications by Author Which Are Currently Under Review

8. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; PHAM, Canh V.; SNÁŠEL, Vá-
clav. Fast Streaming Algorithms Submodular Cover under Noises.
Submitted it to the Computer Standards and Interfaces journal (Elsevier), ISSN: 0920-
5489, SCIE, Q1, IF:3.721.
We submitted it on June 2021; resubmitted the minor revise (round 2) on September
2022, and pending acceptance.

9. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; LE, Van-Vang; SNÁŠEL, Václav.
Influence Maximization under Fairness Budget Distribution in Online Social Networks.
Submitted it to the Mathematics journal (MDPI), ISSN: 2227-7390, SCIE, Q1, IF: 2.592.
We submitted it on July 2022, resubmitted the minor revision September 2022, accepted
and pending publication.

10. NGUYEN, Bich-Ngan T.; PHAM, Phuong N. H.; LE, Van-Vang; NGHIEM, Xuan
Dung; SNÁŠEL, Václav. Efficient Streaming Algorithms for Maximizing Monotone DR-
Submodular Function on the Integer Lattice.
Submitted it to the Mathematics journal (MDPI), ISSN: 2227-7390, SCIE, Q1, IF: 2.592.
We submitted it in early September 2022; we are revising to resubmit the revised
manuscript.

11. LE, Van-Vang; TRAN, Toai K.; NGUYEN, Bich-Ngan T.; NGUYEN, Quoc-Dung;
SNASEL, Vaclav. Network alignment using a combination of multiple embedding tech-
niques.
Submitted it to the Computational Intelligence and Neuroscience journal (Hindawi),
ISSN: 1687-5273, SCIE, Q1, IF: 3.120.
We submitted in on June 2022, it’s currently under review.

107

https://doi.org/10.1007/978-3-030-91387-8_4
http://dx.doi.org/10.24507/icicelb.12.10.899

	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Main Goals and Contributions
	Outline of the Thesis

	Background
	Submodular function optimization
	Influence propagation - an application of submodular optimization
	Concluding remarks

	Problem 1. Minimizing cost submodular cover under noises
	Introduction
	Related work
	Problem definition
	Proposed algorithms
	Experiment and Result evaluation
	Concluding remarks

	Problem 2. Fairness budget distribution for Influence Maximization
	Introduction
	Related work
	Problem definition
	Proposed algorithms
	Experiment and Result Evaluation
	Concluding remarks

	Problem 3. Maximizing DR-submodular function on the integer lattice
	Introduction
	Related work
	Problem definition
	Proposed algorithms
	Experiment and Result Evaluation
	Concluding remarks

	Conclusions
	Summary
	Future directions

	Bibliography

