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ABSTRACT 
The number of smart homes is rapidly increasing. Smart homes typically feature functions such as 

voice-activated functions, automation, monitoring, and tracking events. Besides comfort and 

convenience, the integration of smart home functionality with data processing methods can provide 

valuable information about the well-being of the smart home residence. This study is aimed at taking the 

data analysis within smart homes beyond occupancy monitoring and detection of falling events of people. 

Two different approaches are proposed to integrate human activity recognition within smart homes. The 

first approach utilizes KNX standard-based devices to obtain room air quality data (humidity, CO2, 

temperature) and combine the obtained data with two wearable devices that provide movement-related 

data. The second approach simplifies, improves, and addresses a few of the shortcomings of the first 

approach, it utilizes different measuring devices with higher sampling rates. It examines multiple 

statistical methods and ultimately chooses a simpler multi-layer perceptron neural network model. 

Resulting in a less computationally intensive solution with higher accuracy levels. The study achieved 

cross-validation accuracy levels above 98 %. 

Keywords 
Human Activity Recognition (HAR), Machine Learning, Artificial Intelligence (AI), Smart Homes, Activity 

Recognition, Artificial Neural Networks (ANN), Logistical Regression, C5, Support Vector Machines 

(SVM), Decision trees. 

 

ABSTRACT 
Chytrých domácností rychle přibývá. Inteligentní domy obvykle obsahují funkce, jako jsou hlasově 

aktivované funkce, automatizace, monitorování a sledování událostí. Kromě komfortu a pohodlí může 

integrace funkcí chytré domácnosti s metodami zpracování dat poskytnout cenné informace o pohodě 

rezidence chytré domácnosti. Tato studie je zaměřena na analýzu dat v inteligentních domácnostech nad 

rámec monitorování obsazenosti a detekce pádu osob. Jsou navrženy dva různé přístupy k integraci 

rozpoznávání lidské činnosti do inteligentních domácností. První přístup využívá zařízení založená na 

standardu KNX k získávání dat o kvalitě vzduchu v místnosti (vlhkost, CO2, teplota) a kombinování 

získaných dat se dvěma nositelnými zařízeními, které poskytují údaje související s pohybem. Druhý přístup 

zjednodušuje, zlepšuje a řeší několik nedostatků prvního přístupu, využívá různá měřicí zařízení s vyšší 

vzorkovací frekvencí. Zkoumá více statistických metod a nakonec volí jednodušší vícevrstvý model 

perceptronové neuronové sítě. Výsledkem je méně výpočetně náročné řešení s vyšší úrovní přesnosti. 

Studie dosáhla úrovně přesnosti křížové validace nad 98 %. 

keywords  
Rozpoznávání Lidské Aktivity (HAR), Strojové Učení, Umělá Inteligence (AI), Chytré Domácnosti, 

Rozpoznávání Aktivity, Umělé Neuronové Sítě (ANN), Logistická Regrese, C5, Podpůrné Vektorové Stroje 

(SVM), Rozhodovací Stromy.  



iv 

 

Acknowledgment 
I would like to thank my supervisor prof. Ing. Petr Bilík, Ph.D. for his support and assistance during 

my study. I would like to also thank the projects European Regional Development Fund in the Research 

Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16019/0000867, 

the Student Grant System of VSB Technical University of Ostrava, grant number SP2019/118, SP2020/151, 

SP2021/123, IQZeProd Inline quality control for zero-error-products within the CORNET program. A joint 

project with Fraunhofer Institute IWU Chemnitz Germany. Funded by the Czech Ministry of Industry and 

Trade. registration number CZ.01.1.02/0.0/0.0/17_103/0011811, and the project e-Town, Development 

of super-light, long-range small electric vehicles for intergenerational, urban e-mobility concepts”. A joint 

project with Fraunhofer Institute IWU Chemnitz Germany. Project INTER-EXCELLENCE, INTER-EUREKA of 

the Ministry of Education, Youth and Sports of Czech Republic, registration number LTE220001 for making 

this research possible.  

 



1 

 

1 TABLE OF CONTENTS 

List of abbreviations ...................................................................................................................................... 5 

Impact and novelty of the work .................................................................................................................... 6 

The aim and scope of the work ..................................................................................................................... 7 

1 Introduction .......................................................................................................................................... 8 

2 Related works ..................................................................................................................................... 12 

2.1 Smartphone-based human activity recognition ......................................................................... 12 

2.2 Vision-based human activity recognition ................................................................................... 13 

2.3 Body-worn sensors-based human activity recognition .............................................................. 14 

2.4 Summary ..................................................................................................................................... 17 

3 Methodology and Measurement Methods ........................................................................................ 21 

3.1 Measurement and data acquisition ............................................................................................ 21 

3.1.1 Approach 1: Use room ambient conditions in combination with IMU-based Devices. ...... 22 

3.1.2 Approach 2: STM32L4-based wearables with remote data storage .................................. 25 

3.1.3 Real-time recognition.......................................................................................................... 29 

3.1.4 Integration with smart home systems and IoT platform .................................................... 30 

3.2 Machine learning methods ......................................................................................................... 33 

3.2.1 Logistic Regression .............................................................................................................. 33 

3.2.2 Support-Vector Machines (SVM) ........................................................................................ 35 

3.2.3 Random Tree (RT)- Classification or Regression Trees (C&RT trees) .................................. 35 

3.2.4 Random Forest (RF) ............................................................................................................. 36 

3.2.5 C5.0 ..................................................................................................................................... 36 

3.2.6 Artificial Neural Network (ANN) .......................................................................................... 36 

4 Implementation and Results ............................................................................................................... 39 

4.1 Approach 1 results ...................................................................................................................... 40 

4.1.1 Logistical regression ............................................................................................................ 40 

4.1.2 Artificial neural networks .................................................................................................... 44 

4.2 Approach 2 results ...................................................................................................................... 48 

4.2.1 Support Vector Machines ................................................................................................... 49 

4.2.2 Logistic Regression .............................................................................................................. 51 



2 

 

4.2.3 Artificial Neural Networks (Initial testing) .......................................................................... 53 

4.2.4 Random Tree ....................................................................................................................... 55 

4.2.5 Random Forest .................................................................................................................... 56 

4.2.6 C5 ........................................................................................................................................ 59 

4.2.7 Evaluation of the statistical methods and method selection. ............................................ 60 

4.2.8 Artificial Neural Networks (Detailed investigation) ............................................................ 62 

5 Conclusions ......................................................................................................................................... 72 

References ................................................................................................................................................. 75 

Author’s publications related to the dissertation topic .............................................................................. 88 

Authors other publications ..................................................................................................................... 89 

List of projects ........................................................................................................................................... 90 

About the author ...................................................................................................................................... 90 

Appendices ............................................................................................................................................... 91 

 

  



3 

 

LIST OF TABLES 

Table 1. Summary of the review of three main categories of solutions for human activity recognition ... 19 

Table 2. Description of activity Categories for the second approach ......................................................... 21 

Table 3. List of measured quantities and their unit .................................................................................... 23 

Table 4. List of measured quantity by wearable gadgets ........................................................................... 24 

Table 5. example of possible room interaction according to the user's activity ........................................ 32 

Table 6. MLP stopping rules ........................................................................................................................ 38 

Table 7. Classification table using datasetA1. ............................................................................................. 41 

Table 8. Classification table using dataset A2. ............................................................................................ 42 

Table 9. Odds ratio ...................................................................................................................................... 43 

Table 10. Validation result of training using dataset A1. ............................................................................ 44 

Table 11. Validation result of training using dataset A2. ............................................................................ 45 

Table 12. Scoring result of training dataset A1 and evaluation dataset A2. ............................................... 47 

Table 13. Scoring result of training dataset A2 and evaluation dataset A1. ............................................... 48 

Table 14. The number records in each measurement dataset. .................................................................. 49 

Table 15. Validations and scoring accuracy of support vector machines (SVM). ....................................... 50 

Table 16. General build and training settings for support vector machines model ................................... 51 

Table 17. General build and training settings for the Logistic regression model ....................................... 52 

Table 18. Validations and scoring accuracy of logistical regression ........................................................... 52 

Table 19. General build and training settings for the Artificial neural networks model ............................ 53 

Table 20. Validations and scoring accuracy of artificial neural network (ANN) ......................................... 54 

Table 21. General build and training settings for the random tree model ................................................. 55 

Table 22. Validations and scoring accuracy of the random tree (RT) ......................................................... 56 

Table 23. General build and training settings for the random forest model .............................................. 57 

Table 24. Validations and scoring accuracy of random forest (RF) ............................................................ 58 

Table 25. General build and training settings for the ................................................................................. 59 

Table 26. Validations and scoring accuracy of C5 ....................................................................................... 60 

Table 27. Average accuracy among tested classification methods. ........................................................... 61 

Table 28. Cross-validation results of the second approach ........................................................................ 62 

Table 29. Cross-validation – Average accuracy of activity classes .............................................................. 64 

Table 30. Scoring results of the second approach ...................................................................................... 65 

Table 31. Scoring – Average accuracy of activity classes ............................................................................ 66 

Table 32. Detailed and complete list of cross-validation accuracy for the second approach .................... 91 

Table 33. Detailed and complete list of scoring accuracy for the second approach .................................. 92 

  



4 

 

LIST OF FIGURES 

Figure 1. Block diagram of the proposed method using logistic regression ............................................... 22 

Figure 2. Block diagram of the proposed method using artificial neural networks ................................... 23 

Figure 3. Inertial Measurement Unit (IMU) worn on a leg. ........................................................................ 24 

Figure 4. The custom-built wearable device which is based on STMicroelectronics B-L475E-IOT01A2. ... 25 

Figure 5. The development board, location, and orientation of sensors ................................................... 26 

Figure 6. The actual orientation of the sensors .......................................................................................... 26 

Figure 7. Hardware and communication architecture of the wearable gadget ......................................... 27 

Figure 8. The onboard system initialization ................................................................................................ 28 

Figure 9. Data processing chain for none real-time implementation ......................................................... 29 

Figure 10. the real-time Data processing chain .......................................................................................... 30 

Figure 11. Diagram of the real-time solutions with feedback to the smart home system and IoT 

platforms. .................................................................................................................................................... 31 

Figure 12. Diagram of the data chain within the host compute. ................................................................ 32 

Figure 13. Example of the logistic function ................................................................................................. 33 

Figure 14. Example of the developed multilayer perceptron artificial neural network model with 24 

neurons input layer, 8 neurons in the first hidden layer, 4 neurons in the second hidden layer, and 5 

neurons output layer. ................................................................................................................................. 38 

Figure 15. Training and validation stream developed in IBM SPPSS modeler ............................................ 39 

Figure 16. Scoring stream built-in IBM SPPSS modeler. ............................................................................. 40 

Figure 17. Predictors importance for model 3 trained with dataset A1. .................................................... 45 

Figure 18. Predictors importance for model 11 trained with dataset A1. .................................................. 46 

Figure 19. Validation accuracy (%) with increments of neuron count within hidden layers (represented 

with the model number). ............................................................................................................................ 46 

Figure 20. Average validation accuracy affected by hidden layer neuron count. ...................................... 63 

Figure 21. Average scoring accuracy with respect to Hidden layer neuron count. .................................... 63 

Figure 22. Predictors importance for climbing the stairs down activity class ............................................ 67 

Figure 23. Predictors importance for climbing the stairs up activity class ................................................. 67 

Figure 24. Predictors importance for using a personal computer activity class ......................................... 68 

Figure 25. Predictors importance for writing using a pen activity class ..................................................... 68 

Figure 26. Predictors importance for the relaxing activity class ................................................................. 69 

Figure 27. Predictors importance for the standing activity class................................................................ 69 

Figure 28. Predictors importance for the running activity class ................................................................. 70 

Figure 29. Predictors importance for the walking activity class ................................................................. 70 

Figure 30. Predictors importance for the vacuum cleaning activity class .................................................. 71 

  



5 

 

LIST OF ABBREVIATIONS  

Abbreviations Description 

HAR Human Activity Recognition 

CO2 Carbon dioxide 

KNX KoNneX 

ANN Artificial Neural Network 

MLP MultiLayer Perceptron 

SVM Support-Vector Machine 

LR Logistic Regression 

RF Random Forest 

XGBOOST EXtreme Gradient Boosting 

ppm Parts-Per-Million 

°C Degree Celsius 

deg s-1 Degree per second 

𝜇T Micro Tesla 

hPa Hectopascal 

NFC Near-Field Communication 

Wi-Fi Wireless Fidelity 

TCP Transmission Control Protocol 

IP Internet Protocol 

IoT Internet of Things 

ETS The Engineering Tool Software 

Sub-RF Sub-Radio Frequency 

MEMS Micro Electro Mechanical Systems 

I2C Inter-Integrated Circuit 

AP Access Point 

ipv4 Internet Protocol version 4 

li-ion Lithium-ion 

RTOS Real-Time Operational System 

TPU Tensor Processing Unit 

CPU Central Processing Unit 

GPU Graphical Processing Unit 

SDK Software Development Kit 

JSON JavaScript Object Notation 

PC Personal Computer 

MQTT Message Queuing Telemetry Transpor 

SR Stopping Rule 

Nr Number 



6 

 

IMPACT AND NOVELTY OF THE WORK 

This work targets new types of recognizable activities beyond common walking, running, and 

climbing stairs. Ultimately, this work is targeted to create a practical and highly accurate solution that can 

be used for live recognition of human behaviors within smart homes and smart buildings. This creates a 

smart home environment that is aware of its residence activities which opens new possibilities to provide 

additional convenience, comfort, and security to the residents by providing optimal air quality and 

temperature by utilizing heating, ventilation, and air conditioning control. Besides, it provides valuable 

information about the well-being of the elder residents. The work introduces a solution that removes 

most computational limitations and offers very high accuracy levels. Given that human activity recognition 

methods used in this work are based on sensors that are already available on most wearable devices, they 

can ultimately be widely adopted by a wide range of users with commercially available wearable devices. 

The novelty of the work is within the methodology, accuracy levels, comprehensiveness of the solution, 

and new types of recognizable activities. In summary, the main goals and impact of the work is activity 

recognition with new recognizable activities, remote processing, accuracy improvements, and integration 

with smart homes and IoT platforms.  
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THE AIM AND SCOPE OF THE WORK 

This study is aimed at taking the data analysis within smart homes beyond the current state of the 

art. Although there are few available works in the field of activity recognition, this study targets new types 

of recognizable activities beyond commonly investigated activities and integration with smart home 

systems broadcast to IoT platforms. This work proposes two separate approaches to integrating activity 

recognition within smart homes.  The first approach utilizes KNX standard-based devices to obtain room 

air quality data (Humidity, CO2 concentration, temperature) and combine the obtained data with two 

wearable devices that provide movement-related data. KNX-based devices were selected due to 

properties such as cost-effectiveness, compatibility, and wide availability within locations such as smart 

homes, office buildings, shopping centers, medical facilities, industrial locations, etc.  

In the first approach, logistic regression-based models will be initially developed to classify the 

obtained datasets. Logistic regression is one of the most used methods in the field of activity recognition. 

Therefore, it provides a good reference for the evaluation of the method using artificial neural networks. 

Ultimately, the first approach is proposing to use artificial neural networks and the obtained datasets to 

classify a few types of human daily activities such as relaxing, eating, cleaning, exercising using a stationary 

bike, and using a computer. IBM SPSS statistic 26 and IBM SPSS modeler 18 were selected as suitable data 

analysis platforms to develop required logistic regression and artificial neural network predictive models.  

The second approach simplifies, improves, and addresses a few of the shortcomings of the first 

approach such as overgeneralized activity categories, data synchronization problems, and a larger 

difference between cross-validation, and scoring accuracy. It examined six different classification methods 

(logistical regression, artificial neural networks, C5, support vector machines, random trees, and random 

forest) and the accuracy and the flexibility of these methods were cross-examined. Ultimately artificial 

neural network was selected as the most suitable method and further examination.  

The second approach utilizes different measuring devices. For simplicity of measurement and to 

address data synchronization issues, the use of room ambient data has been eliminated. The 

measurement data were initially classified using six different classification methods. The first three 

methods are conventional machine learning algorithms (support-vector machines, logistic regression, and 

artificial neural network (ANN)) and the second half are decision tree-based methods (classification or 

regression trees (C&RT trees), random forest (RF), and C5). Ultimately, the artificial neural network was 

chosen as the most suitable for the application of human activity recognition using the second approach. 

Besides introducing new activity classes, the least consistent activity classes have been replaced with 

more specific activity classes which results in better recognition accuracy. To increase measurement data 

size, multiple test subjects were used and new types of equipment have been utilized to increase the 

sampling rate. The above changes resulted in significant recognition accuracy improvements. In addition 

to monitoring the wellbeing of elderly residents, the obtained predictions can benefit the occupant by 

providing optimal air quality and temperature by utilizing heating, ventilation, and air-conditioning 

control. The obtained results yield highly accurate prediction accuracies.  
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1 INTRODUCTION 

The availability and affordability of smart home technology drive the rapid increase in the number 

of smart homes. Typically, smart home technologies enable voice-activated functions, automation, 

monitoring, and tracking of events such as the status of windows and doors, entry, and presence 

detection. Besides comfort and convenience, the integration of smart home functionality with the 

internet of things (IoT) and other communications system creates new possibilities for assisting and 

monitoring the well-being of seniors or disabled people [1].  

In recent years health care and assisted living within smart homes gained large attention among 

researchers. In a case study, Panagopoulos et al. [2] presented a usability assessment of “Heart Around”, 

an integrated homecare solution incorporating communication functionalities, as well as health 

monitoring and emergency response features. Loukatos et al. [3] investigated Speech-Based Methods to 

Assist People with Special Needs. Wiljer et al. [4] suggested improving health care by developing an 

Artificial Intelligence–Enabled Health Care Practice. 

The interest in human activity recognition is rapidly incrassating due to its wide variety of practical 

uses in real-world applications such as healthcare, sports, elderly care, safety, etc. The task of detecting 

and recognizing the actions of a human is often carried out by processing camera or wearable sensor data. 

The rapid growth of mobile and wearable devices makes sensor-based human activity recognition easily 

reachable and more viable than camera-based solutions. 

In addition, activity recognition within smart homes can provide valuable information about the well-

being of smart home residents. Such information can be utilized to automatically adjust the ambient 

conditions of the rooms with the use of heating, ventilation, and air-conditioning. Another use of this 

information could be the detection of irregularities within the activities of the residence that indicates 

required assistance or a medical emergency. In general, human activity recognition systems can be applied 

to many fields such as assisted living, injury detection, personal healthcare, elderly care, fall detection, 

rehabilitation, entertainment, and surveillance in smart home environments [5]. 

Much of the research in the indirect activity recognition field is emphasizing fall detection [6,7]. 

Sadreazami et al. [6] utilized Standoff Radar and a time series-based method to detect fall incidents. 

Ahamed et al. [7] used accelerometer-based data and deep learning methods for fall detection. Other 

researchers took activity recognition further than fall detection by recognizing multiple human behaviors. 

Commonly, camera-based recognition techniques are used to recognize multiple predefined human 

activities. Hsueh et al. [8] used deep learning techniques to learn the long-term dependencies in a multi-

view framework detection to recognize human behavior.  

Besides computational burdens, camera-based solutions frequently come with privacy and 

security concerns for the residents. Therefore, indirect recognition methods are generally preferred. 

Indirect recognition methods are often limited to presence detection and occupancy monitoring. Szczurek 

et al. [9] investigated occupancy determination based on time series of CO2 concentration, temperature, 

and relative humidity. Vanus et al. [10] designed a CO2-based method for human presence monitoring in 

an intelligent building. The work continues by replacing measured CO2 with predicted values of CO2. 
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Predictions were performed on artificial neural networks [11, 12, 13, 14, 15] random trees, and linear 

regression [16], ultimately the obtained predictions were utilized to detect the presence of people within 

specific rooms. That is a simple example of indirect recognition. 

On a larger scale, others have taken indirect recognition to a more advanced level by recognizing 

specific human activities. Kasteren et al. [17] introduced a sensor and annotation system for performing 

activity recognition in a house setting using a hidden Markov model and conditional random fields, 

resulting in a class accuracy of 79.4 %. Nweke et al. [5] reviewed deep learning algorithms for human 

activity recognition using mobile and wearable sensor networks. Albert et al. [18] used mobile phones for 

activity recognition in Parkinson’s patients. Hassan et al. [18] proposed using smartphone inertial sensors 

such as accelerometers and gyroscope sensors to recognize human activities. The obtained results showed 

a mean recognition rate of 89.61 %. Zhou et al. [20] used Deep-Learning and datasets collected from 

smartphones and on-body wearable devices to perform Human Activity Recognition within the Internet 

of Healthcare Things. In similar studies, Kwapisz et al. [21], and Bayat et al. [22] also suggested using 

smartphones. 

The use of smartphones as the primary sensor is very convenient but it comes with major 

drawbacks. In practice, they fail to identify complicated human activities. Ravi et al. [23] found that using 

a single triaxial accelerometer to recognize human activity can result in fairly accurate results. The work 

showed the limitation of a single worn sensor near the pelvic region when it comes to activities that 

involve the movement of just hands or mouth. Chen et al. [24] noted the variety of smartphone positions 

or orientations, and gross accuracy of their embedded sensors could result in additional challenges. Other 

works investigated the use of multiple sensors.  

Bao et al. [25] implementation involved five small biaxial accelerometers worn simultaneously on 

different parts of the body, decision tree classifiers showed an overall accuracy rate of 84 %. Furthermore, 

the research showed that the recognition accuracy only drops slightly when only two thigh and wrist-worn 

sensors are used. Trost et al. [26] compared results obtained from the hip and wrist-worn accelerometer 

data for the recognition of seven classes of activities. On the other hand, Zhang et al [27] noted 

computational limitation of wearable devices can also represent a challenge in real-world applications. 

Our implementation involves wrist-worn and ankle-worn devices that communicate wirelessly with a 

remote computer which eliminates computational limitations.  

In general, Human activity recognition is formulated as a classification problem. It is an important 

research topic in pattern recognition and pervasive computing. A significant amount of literature 

concerning machine learning techniques has focused on the automatic recognition of activities performed 

by people and the diversity of approaches and methods to address this issue [28, 29]. Minarno et al. [30] 

compared the performance logistic regression and support vector machine to recognize activities such as 

laying, standing sitting, walking, and walking upstairs or downstairs.  

Guan et al [31] tackle this issue using wearable devices and Long short-term memory model that 

for activity recognition. Ramamurthy et al. [32] noted that deep learning methods applied to Human 

activity recognition, commonly represent the data better compared to the handcrafted features, due to 



10 

 

their advantage of hierarchically self‐derived features. Jiang et al. [33] and proposed using accelerometer 

data and convolutional neural networks for Real-time human activity recognition. 

Lee et al. [34] also proposed using accelerometer data and a convolutional neural network and 

obtained 92.71 % of recognition accuracy. Wan et al. [35] compared four algorithms of neural networks 

(convolutional, long short-term memory, bidirectional long short-term memory, and multilayer 

perceptron) in the recognition of human behavior from smartphone accelerometer data. Murad et al. [36] 

noted the size of convolutional kernels restricts the captured range of dependencies between data 

samples and suggested using deep recurrent neural networks instead.  

One of the areas of human activity recognition applications that has gained a lot of popularity is 

sports, especially fitness and running. There are a lot of applications that allow the user to track training 

sessions mainly running and walking. Although these applications are fairly limited to few activities and 

rather provide very basic calculations and require the user to interact with the device continuously. 

However, the automatic detection of numerous activities by the users can provide a very good estimate 

of their energy consumption throughout the day without the user's intervention. The hardware necessary 

for such a task has been available to almost everyone with the development and spread of smartwatches 

but most devices available are limited to the detection of walking, running, and sleeping which shows the 

limitation of available software. 

Besides sports applications, there is a strong correlation between the amount of physical activity 

and the different diseases caused by insufficient activity, obesity, and metabolism. The valuable data that 

can be obtained from the user activity can be used to identify medical conditions or prevent them first 

place. Research has shown most people stay in one of the following states: sitting, standing, lying, walking, 

and running. Extended sitting, standing, or lying can be harmful to the body. A device capable of 

recognizing such activities can warn the user to take a break from a certain position to reduce the long-

term effects of unhealthy behaviors. 

Overall, the research and development in the human activity recognition area is lacking a 

complete, practical, and accurate solution. There are no devices commercially available that are capable 

of automatically recognizing a large number of human activities without requiring user input. This work 

aimed at addressing that issue by providing a large number of recognizable activities based on simple 

sensor-based recognition. This research may pave the road for commercially available smart wearable 

devices to develop automatic recognition capabilities. 

This work provides a comprehensive review of the current state of the art for human activity 

recognition, comparing three common approaches to human activity recognition, smartphone-based, 

vision-based solutions, and wearable gadget-based solutions. After establishing that wearable gadgets are 

the most suitable devices to collect movement data from users. However, the computational limitations 

of these devices do not allow comprehensive data processing. In the next stage, two different approaches 

will be examined. The first approach will use two Inertial measurement units to record body movements 

from the right hand and the right leg. Then the obtained data will be combined with room air quality data 

obtained from the implemented KNX setup. The resulting data based will be benchmarked using logistical 
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regression as it is the gold standard for binary classification. In the last stage, a multilayer layer perceptron 

type of artificial neural network will be used as the final solution.  

The second approach will use more advanced custom-made measurement devices, capable of 

data transmission using Wi-Fi technology which will be used for remote data processing. This removes the 

processing limitation of wearable devices. Additionally, higher sampling rates will be utilized within this 

approach. The obtained databases will be examined briefly using three conventional machine learning 

algorithms support-vector machines, logistic regression, and artificial neural network, and another three-

decision tree-based machine learning methods classification or regression trees, random forest, and C5. 

Ultimately, the most suitable method will be used for further investigation and optimal model selection. 

Upon establishing the most suitable model it will be used for real-time human activity recognition, 

transmission to IoT platforms, and integration with smart homes. Integration with the smart home system 

(namely KNX within this work) can provide some extra comfort to the home residence with control of air-

conditioning, heating, blinds and shutter control, etc.  

The above approaches will be examined across 12 different human activity classes including 

relaxing with minimal movements, using the computer for checking emails and web surfing, preparing tea 

and sandwich - eating breakfast, cleaning the room by wiping the desks and vacuum cleaning, exercising 

using the stationary bicycle, climbing down the stairs, climbing up the stairs, running, standing, vacuum 

cleaning, walking, and writing using a pen. The work will also examine these activities in terms of overall 

accuracy and the most relevant sensor for each activity which will provide useful information regarding 

the relevance of specific movement for recognition of specific activity. In the last stage of the work, the 

accuracy levels will be slightly increased using an outlier detection method and a buffering method for 

majority voting. 
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2 RELATED WORKS 

The role of human activity recognition in the everyday life of people will be significant because of the 

possibility of learning high-level information about human activities using stationary or wearable devices. 

In recent years, the growth of the elderly population resulted in a significant increase in healthcare 

demand. This adds to the value of research in the area of human activity recognition to help reduce the 

dangers to these populations with the detection of unexpected events or unhealthy behavior and lifestyle.  

In general, there are three main approaches for capturing human movement for human activity 

recognition. That are using smartphone sensors, using a camera for recognition using image processing, 

and the last using wearable devices. In the next stage, to perform recognition using the obtained data, 

the recognition method must be determined. This section reviews some of the contributions in this field 

and compares the obtained results. 

2.1 SMARTPHONE-BASED HUMAN ACTIVITY RECOGNITION 

Smartphones are widely integrated into our daily life. Sensors have an important role in making 

smartphones more functional. Accelerometer sensors are almost standard hardware for these devices. 

Data collected from the accelerometer can be processed to detect changes in movement. Another 

common sensor in smartphones is the gyroscope which is measuring orientation by measuring or 

maintaining orientation and angular velocity., it is typically used to detect the position and alignment of 

the device. Many features within the data collected from these sensors can be used to recognize the 

activities of the users carrying this device. This section provides a brief review of contributions within the 

field of human activity recognition using smartphone sensors.  

Saudi et al. [37] emphasized fast training time and easy experimental setup using smartphone 

accelerometer data for human activity recognition. The work examines the performance of the k-nearest 

neighbors, support vector machine, random forest, XGBoost, multilayer perceptron, and convolutional 

neural network. The results showed ensemble learning models outperform methods. Thakur et al. [38] 

proposed a smartphone sensor data and deep learning-based approach for human activity recognition 

where accelerometer and gyroscope data are utilized. The work combined convolutional neural networks, 

autoencoders, and long short-term memory for complementary modeling. Obtaining up to 98.67 % on a 

certain dataset.  

Tan et al. [39] proposed an ensemble learning algorithm and data recorded by smartphone 

sensors to perform human activity recognition. The proposed ensemble learning algorithm combined a 

gated recurrent unit, a convolutional neural network, and a deep neural network. The method achieved 

an accuracy of 96.7 %. Anguita et al [40] presented human activity recognition using smartphone inertial 

sensors and standard support vector machine combined with exploits fixed-point arithmetic. The system 

was used to recognize walking, climbing stairs up and down, sitting, and laying. The overall accuracy was 

89.0 %. Zeng et al. [41] developed a convolutional neural networks-based method and applied it to three 
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smartphone sensor-based public datasets, Skoda (assembly line activities), Opportunity (activities in the 

kitchen), and Actitracker (jogging, walking, etc). 

Voicu et al. [42] proposed a human activity recognition system based on data collected from 

smartphone accelerometers, gyroscopes, and gravity sensors.  recognizing six activities walking, running, 

sitting, standing, ascending, and descending stairs. The average accuracy was 93 %. Ronao et al. [43] used 

a deep convolutional neural network for human activity recognition from data obtained from smartphone 

sensors. The work exploited the inherent characteristics of activities and 1D time-series signals. The 

recognition accuracy was examined for activities of walking stairs up or down, sitting, standing, and laying 

down. The overall performance of raw sensor data was 94.79 %. 

Rasekh et al. [44] designed an activity recognition system based on a 3-axis smartphone 

accelerometer. The work classified the Activities using a quadratic classifier, k-nearest neighbor algorithm, 

support vector machine, and artificial neural networks. The best classification rate was achieved by 

support vector machines at 84.4 %. Qi et al. [45] used a deep convolutional neural network structure for 

human activity recognition using smartphone sensors. The results for the recognition of 12 human 

activities datasets showed 95.27 % accuracy. Bulbul et al. [46] used an accelerometer and gyroscope of a 

smartphone which was carried by different male and female volunteers while performing walking, 

climbing up or down the stairs, sitting, standing, laying down activities, and performing classification using 

different machine learning approaches. The work concluded that Support vector machines were the most 

accurate approach.  

2.2 VISION-BASED HUMAN ACTIVITY RECOGNITION  

Vision-based approaches for video surveillance and fall detection system typically use static 

cameras however more advanced applications require dynamic cameras, depth cameras, or muti-view 

camera systems in combination with image processing methods and human activity recognition. Often 

hidden Markov models, conditional random fields, and neural networks are used to perform this task. 

Early research within this field was mainly focused on very basic human activities such as jumping, 

running, and waving hands [47]. However, more recent research is shifted toward more advanced 

activities including human-human or human-object interactions. This section provides a brief review of 

contributions within the field of human activity recognition using vision-based methods. 

Chen et al. [48] provided a public domain dataset for the examination and comparison of different 

human action recognition methods. In particular, those involving fusion or using both a depth camera and 

an inertial sensor. Nguyen et al. [49] presented a depth video-based life-logging Human activity 

recognition system utilizing skeletons joints features generated by depth video sensors. experimental 

results showed mean recognition rates of 90.33 % over the conventional methods resulting in 72.25 % of 

recognition accuracy. Xia et al. [50] Used depth video and a filtering method that suppress the noisy 

measurements. The method was tested on activity recognition applications using public datasets and own 

datasets. The work examined sitting still, reading books, writing on paper, and using the laptop and 

obtained 88.2 % accuracy.  
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Yang et al. [51] presented a framework for recognizing human activities from video sequences 

captured by depth cameras and proposed using the general scheme of the super normal vector. Dubois 

et al. [52] proposed a method to detect falls using a system made up of RGB-Depth cameras. Furthermore, 

the work correctly detected seven activities sitting, walking, going up, squatting, lying on a couch, falling, 

bending, and lying down. Where bending activity had failed to be recognized. Kamel et al. [53] presented 

a method of human action recognition from depth maps and posture data using convolutional neural 

networks (CNNs). Three models were trained with different inputs depth motion images, depth motion 

images, and moving joint descriptors combined, moving joint descriptors only. The testing results of the 

method outperformed the histogram of oriented 4-D normals and Actionlet on the MSRAction3D 

database by 6.84 %. 

Holte et al. [54] approached human activity recognition with the optical flow into enhanced 3D 

motion vector fields. The approach detects the motion of the actors by using the optical flow in video 

from a multi-view camera. For the recognition of 9 actions, the classification accuracy reached 84.72 %. 

Gao et al. [55] developed an adaptive fusion and category-level dictionary learning model for multi-view 

human activity recognition. experiments with four public Multiview action benchmarks showed 

classification improvements in the range of 3 % to 10 % improvement in recognition accuracy. Putra et al. 

[56] used multiple cameras to solve the occlusion problem present in single-view human activity 

recognition. The work used deep neural networks which were based on convolutional neural networks, 

attention layers, long short-term memory networks with residual learning, and SoftMax layers. The 

experimental results on two public databases showed a classification of accuracies of 97.27 % and 

96.87 %. 

2.3 BODY-WORN SENSORS-BASED HUMAN ACTIVITY RECOGNITION 

The wearable devices are close enough to the user. Therefore, besides determining the user’s 

behavior, it also determines the user’s personalized behavior and cognitive data, which can identify the 

user’s intention [56]. Tee et al. [58] surveyed some state-of-the-art deep learning-based human activity 

recognition containing convolution neural networks and long short-term memory. Islam et al. [59] 

reviewed and summarize human activity recognition methods based on neural network architecture, 

namely convolutional neural networks.  

Jain et al. [60] Proposed a self-supervised learning algorithms technique called collaborative self-

supervised learning and used multiple devices worn by a user to learn new data. The result showed up to 

a 7.9 % increase in accuracy compared to the baselines. Banjarey et al. [61] introduced a technique that 

uses a one-dimensional convolutional neural network to recognize expected human behavior obtaining 

90.73 % accuracy. Nandy et al. [62] present a framework to identify both static and dynamic activities, 

The solution used majority voting for the classification of test instances. Weights of the base classifiers 

are determined by feeding their output performance for the training dataset in a neural network resulting 

in recognition accuracy above 94 %.  



15 

 

Khan et al. [63] proposed human activity recognition using augmented feature extraction from a 

single triaxial accelerometer sensor and artificial neural networks. Resulting recognition rate exceeding 

99 % for four activities of lying, standing, walking, and running. Khan et al. [64] expand their research to 

an accelerometer sensor-based human-activity recognition using a hierarchical scheme. The method 

recognized three states and 15 activities with an average accuracy of 97.9 % using only a single triaxial 

accelerometer worn on the chest. Zheng et al. [65] experimented with acceleration data-based human 

activity recognition from seven wearable devices reaching an accuracy of 97.20 % for eight daily activities. 

Hysenllari et al. [66] presented a human activity recognition method using a convolutional neural network 

on acceleration and angular velocity data recorded from sensors at the ankle, thigh, hip, wrist, upper arm, 

and chest locations. The obtained data were used to recognize sitting, standing, lying, walking, jogging, 

and cycling. The accuracy of the network varied for different sensors within the range of 96.57 % (ankle) 

to 99.28 % (thigh). 

Hassan et al. [67] wearable body sensor data and deep belief network model for successful 

recognition of twelve exercises standing, sitting, walking, lying down, stand-to-sit, walking sown stairs, 

walking-upstairs, sit to lie, sit-to-stand, lie-to-sit, lie-to-stand, and stand-to-lie. The overall accuracy was 

97.5 %. Xu et al. [68] proposed A multi-features extraction method based on Hilbert-Huang transform 

(HHT) for wearable sensors-based (wrist, ankle, chest) for recognition of lying, sitting, standing, walking, 

running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing, rope 

Jumping. The achieved accuracy was 93.77 %. Wolff et al. [69] presented a system using head-mounted 

inertial sensors for human activity recognition artificial neural networks to recognize running, walking, 

inline-Skating, cycling, standing, sitting, reading, and lying. the recognition accuracy was above 85 %. 

Brophy et al. [70] proposed using a convolutional neural network for heart rate estimation and human 

activity recognition in wrist Worn wearable devices. The method was able to heart rate sensor to 

distinguish between high and low-intensity activities (walking and running). Accuracy levels varied 

according to the sampling frequency where the highest accuracy level (90.8 %) was achieved with 256 Hz 

and the lowest (68.5 %) with 1 Hz.  

Haresamudram et al. [71] noted feature extraction is crucial for human activity recognition using 

body-worn movement sensors and introduced the contrastive predictive coding framework which 

captures the temporal structure of data. Xiao et al. [72] approached human activity recognition by 

designing a perceptive extraction network as the feature extractor for each user. Ouyang et al. [73] 

proposed a similarity-aware federated learning system for human activity recognition. Basly et al. [74] 

proposed a deep temporal residual system for daily living activity recognition that aims to enhance 

spatiotemporal feature representation to improve human activity recognition system performance. 

 Islam et al. [75] suggested a graphical attention-based hierarchical multimodal representation 

learning approach for human activity recognition. Gao et al. [76] presented a dual attention method that 

blends channel and temporal attention on residual networks to improve feature representation ability for 

sensor-based human activity recognition tasks. Pro Bono et al. [77] proposed a sensor-based human 

activity recognition with deep architecture for hybrid domain adaptation, to enable end-to-end learning 

for human activity classification. Tang et al. [78] Improving human activity recognition through Self-
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training with unlabeled data by a semi-supervised model that effectively learns to leverage unlabeled 

mobile sensing datasets to complement small labeled datasets.  

Suriani et al. [79] applied an open dataset of smartphone accelerometer data for various types of 

activities. The analog input data is encoded into the spike trains using some form of a rate-based method. 

Xia et al. [80] designed an optimization scheme with virtual sensor data for the human activity recognition 

system. The system can generate the optimal sensor position from all possible locations under a given 

sensor number. Li et al. [81] adopted a public radar micro-Doppler spectrogram dataset including six 

human activities with an average accuracy of 87.6 %. Mekruksavanich et al. [82] compared the 

Convolutional Neural Network and the long short-term memory deep learning for biometric User 

identification based on human activity recognition Using Wearable Sensors, the highest accuracy for all 

users was 91.8 % and 92.4 %, respectively.  

Fu et al. [83] designed a compact wireless wearable sensor node, which combines an air pressure 

sensor and inertial measurement unit (IMU) to provide multi-modal information for human activity model 

training. the average recognition accuracy of different subjects was 93.2 %. Mekruksavanich et al. [84] 

proposed using sensor-based smartphone data and a 4-layer Convolutional Neural Network and the long 

short-term memory network that enhanced the average recognition accuracy by up to 2.2 % compared 

to the prior state-of-the-art approaches. Dua et al. [85] employed a deep neural Network-based model 

with a convolutional neural network and gated recurrent unit, obtaining accuracy levels up to 97.2 %. 

Soleimani [86] introduced a novel method of adversarial knowledge that utilizes the generative 

adversarial network framework to perform cross-subject transfer learning within wearable sensor-based 

human activity recognition. it reached up to 90 % of accuracy in some cases. 

Challa et al. [87] designed a classification model for human activity recognition using wearable 

sensor data, a hybrid of the convolutional neural network, and bidirectional long short-term memory. The 

models achieved accuracy levels up to 96.05 %. Ramos et al. [88] focus on developing a recurrent neural 

networks model capable of recognizing the activities such as taking medication or eating the correct meals 

of the day in an elderly person. The developed predictive provided accuracy of 95.42 %. Roche et al. [89] 

leveraged the benefits of sensor fusion and multimodal machine learning. The method describes the 

activities being performed by subjects using regions with a convolutional neural network and a 3-D 

modified Fisher vector network reaching an activity classification of 90 %. Iloga et al. [90] suggested using 

smartphone acceleration data and Markov model-based techniques for human activity recognition. the 

proposed approach showed the best accuracies between 92 % and 98.85 % for all the classification tasks.  

Khaled et al. [91] presented an intelligent system for recognizing human daily activities in a 

complex IoT environment based on an enhanced model of a capsule neural network. The results suggested 

an accuracy of 98.67 %. Lima et al. [92] used a novelty discrete data stream for human activity recognition 

and focused on the continuous flow of data analysis. The approach was on average 33 times faster than 

the state of the art. Using a k-nearest neighbor algorithm for the classification of human activities. Moya 

Rueda et al [93] proposed a novel deep neural network for human activity recognition, where the network 

handles sequence measurements from different body-worn devices separately. 
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Altun et al. [94] investigated the application of bayesian decision making, the least-squares 

method (LSM), the k-nearest neighbor algorithm, dynamic time warping, support vector machines, and 

artificial neural networks to classify daily and sports activities using five sensor units worn by on the chest, 

the arms, and the legs. Guo et al. [95] propose a new feature extraction method named robust linear 

discriminant analysis in human action recognition using body-worn inertial sensors. Zebin et al. [96] 

Human activity recognition with inertial sensors using a deep learning approach. 

Yang et al. [97] proposed a systematic feature learning method that adopts a deep convolutional 

neural network to automate feature systematically learning from the raw inputs. Attal et al. [98] used 

three inertial sensor units at the chest right thigh and left ankle and applied k-nearest neighbor, support 

vector machines, gaussian mixture models, and random forest as well as three unsupervised classification 

techniques namely, k-means, gaussian mixture models, and hidden Markov model to perform human 

activity recognition. Mohsen et al. [99] developed models capable of recognizing activities such as laying, 

downstairs walking, sitting, upstairs walking, standing, and walking. Obtaining accuracy levels up to 

96.5 %. Artificial neural networks and deep learning have gained a lot of attention in the field of Human 

activity recognition using sensory data. 

Chen et al. [100] investigated the application of deep learning for sensor-based human activity 

recognition. Khan et al. [101] proposed an attention-based multi-head model for human activity 

recognition. The framework contained three lightweight convolutional heads, with each head designed 

using a one-dimensional conational neural network to extract features from data obtained by sensors. 

Gao et al. [102] introduced a new multi-branch conational neural network utilizing a selective kernel 

mechanism for human activity recognition, resulting in higher recognition accuracy within similar 

computing burdens. Gil-Martin et al. [103] evaluated several strategies for human activity recognition 

systems based on convolutional neural networks. Hassan et al.'s [104] approach involved an effective end-

to-end deep neural network model to recognize human activities from temporally sparse data signals of 

passive wearable sensors. 

Gorjani et al. [105] investigated the application of logistic regression for human activity 

recognition. room humidity, CO2, and temperature data were combined with two wearables to perform 

activity recognition. In another work Gorjani et al. [106], used the same methodology and compared the 

logistic regression models with artificial neural networks. The results indicated better accuracy with the 

artificial neural network where models with higher neuron count performed better. Gorjani et al. [107] 

used a multilayer perceptron neural network to recognize multiple human activities from wrist and ankle-

worn devices. The work used a simplified model with a single hidden layer multi-layer perceptron. Where 

accuracy was increasing with neuron counts up to the point where models were limited by the maximum 

allowed training time. The cross-validation results indicated accuracy levels above 98 %.  

2.4 SUMMARY  

Reviewing recent studies has shown that there are major sport-related applications for human 

activity recognition for accurate estimation and monitoring of energy expenditure which provides 



18 

 

valuable information about the amount of energy an individual uses to maintain essential body functions 

and as a result of physical activity. Information about users’ activities and behaviors can also be used as 

an indication of the health status and prevention of an unhealthy lifestyle. Additionally, Correct 

recognition may also be utilized to create additional comfort for daily life. In this chapter, three main 

solutions for human activity recognition were investigated. Table 1 provides a summary of the review of 

measurement approaches in the field of Human activity recognition. The numerical accuracy comparison 

between these approaches is rather difficult as the number and type of the recognizable activities affect 

the numeric value greatly. 

The first common solution was using smartphones. Some accurate results had been observed 

throughout the review. However, the accuracy was limited in terms of the number of recognizable 

activities as smartphones can only gather data from a single location within the body and the users may 

carry them at different locations such as jacket pocket, trouser pocket, by hand, etc. This affects the data 

acquisition significantly, resulting in an incorrect result. Besides that, the users might not always carry 

their smartphones with them and there are limited activities that can be recognized from a single 

measurement device at a single location on the user’s body. On the other hand, powerful smartphones 

are widely available among most of the population and require no additional device to be purchased.  

The second common approach that was examined was vision-based solutions which rely on 

cameras and image processing to detect human postures and ultimately recognition of activities. Cameras 

costs have been significantly dropped in recent years which makes requiring an additional device not very 

costly. However, image processing is computationally expensive and requires a powerful computer. 

Besides that, such solutions are limited to the camera viewing angle and the single location in which they 

are installed. The review also showed that the accuracy of this solution is typically lower than the other 

two solutions. Although, it is important to acknowledge that some activities are only recognizable using 

this approach, such as talking and a few types of sports.  

The last examined approach is using single or multiple wearable devices to obtain sensory-based 

data from the movement of the users or the test subjects. Depending on the number of devices and their 

location this approach provides the best accuracy with less computational burden in compering to vision-

based solutions. With a sufficient number of devices, a much larger number of activities can be recognized 

and the devices may be carried with the user throughout the entire day. The only downsides to this 

approach are higher cost and limited built-in computational power within these devices.  

One important aspect of this approach is the number of measurement devices. Some of the works 

utilize numerous amount devices across various parts of the human body such as wrists, thighs, ankles, 

chest, and head. Although using 8 locations to collect movements from test subjects can result in a large 

number of recognizable activities with impressive accuracy levels, it is an unrealistic approach as users 

would not be able to use such setups on daily bases. Besides that, the cost of such solutions and larger 

computational demand for processing would also be a major concern. On the other hand using a single 

sensor at a single location within presents a similar scenario to the use of smartphones, which introduces 

a limited number of recognizable activities. Therefore, the use of two devices at the wrist and ankle is a 
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more realistic solution that provides a sufficient number of recognizable activities with the downsides of 

wearing too many devices. 

 

Table 1. Summary of the review of three main categories of solutions for human activity recognition 

Approach Accuracy Advantages Disadvantages 

Smartphone-

based  

[37-47] 

High • Widely available 

among most of the 

population. 

• Good computation 

power within most 

devices. 

• Limited recognizable 

activities. 

• Not always being carried by 

the user. 

• Can be placed in a different 

location within the body. 

Vision-based 

[48-56] 

good • Larger recognizable 

activities and 

postures. 

 

• Privacy concerns. 

• Limited location and viewing 

angle. 

• Lower accuracy. 

• Need for large computation 

power  

• The requirement of 

additional devices  

• More sophisticated 

classification methods are 

required. 

Body-worn 

sensors-based 

[57-107] 

The 

highest 

• Can be carried and 

worn the entire day. 

• Small size 

• Can be used at 

multiple locations on 

the body.  

• A larger number of 

recognizable 

activities. 

• A larger number of 

devices can be used to 

recognize more 

activities. 

• Availability using 

smartwatches 

• Limited computational 

power. 

• Higher cost. 

• The requirement of 

additional devices.  



20 

 

Another important aspect is the sampling rate for data acquisition. Typically, higher sampling 

rates result in better recognition accuracy but it comes with the downside of higher energy and processing 

demand which greatly affects the battery life of the device. Therefore, finding a good balance between 

the accuracy and batter life of the device is essential. This can only be determined by experimentation as 

different devices, measurements, and classification methods respond differently to the sampling 

frequency. 

In the next stage, selection of optimal classification must be selected. It can be easily observed 

from the review, that a large number of classification methods are used and examined within this field. 

The most common approach is deep learning using the sophisticated structure of artificial neural 

networks. However, it is very important to realize that the nature of data, measurement techniques, 

sampling frequency, and types of activities can influence the effectiveness of the methods. Therefore, 

testing multiple classification methods for optimal accuracy is very important. This work chooses body 

worn sensors-based approach for data acquisition and will examine multiple classification methods.  
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3 METHODOLOGY AND MEASUREMENT METHODS 

This chapter describes the methodology and measuring systems. To perform recognition of 

human activities within smart homes two approaches were suggested which differ in terms of 

methodology and measurement system. The ultimate goal is to create a smart home environment that is 

aware of its residence activities, this can provide additional comfort, convenience, and safety. Overall, the 

proposed methods contain three main stages of the measurement system, data acquisition, Pre-

processing, and data processing using mathematical and statistical analytic methods. This chapter 

describes the above stages for each approach. 

3.1 MEASUREMENT AND DATA ACQUISITION 

The data acquisition for the first approach was performed on the 19th of July 2019 (08:28:00 to 

10:31:00) and the 26th of July 2019 (08:09:00 to 10:10:00) resulting in datasets A1, and A2 respectively. 

The activities were performed by a single occupant present in the room. The performed activities were 

divided into five classes that are described in Table 2 (Classes 1, 2, 3, 4, and 5). These classes can simulate 

part of the daily activities performed in a single-occupant room.  

 

Table 2. Description of activity Categories for the second approach 

Activity Class 
Measurement 

approach 
Description 

Class 1  1,2 Relaxing with minimal movements 

Class 2  1,2 Using the computer for checking emails and web surfing 

Class 3 1 Preparing tea and sandwich - eating breakfast 

Class 4 1 Cleaning the room by wiping the desks and vacuum cleaning 

Class 5 1 Exercising using the stationary bicycle 

Class 6  2 Climbing down the stairs 

Class 7  2 Climbing up the stairs   

Class 8  2 Running 

Class 9  2 Standing 

Class 10  2 Vacuum cleaning 

Class 11  2 Walking 

Class 12  2 Writing using a pen 
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In the second approach, the two individual wearable gadgets based on IMU devices were replaced 

with STMicroelectronics development boards. Instead of locally storing measurement data on the devices, 

these devices can take advantage of wireless technology to directly obtain and send information to a local 

host computer for further processing. After data buffering and data synchronizing, the local host 

computer performs human activity recognition using multiple recognition methods. The recognition result 

may be sent to online cloud services for remote monitoring and visualization. Table 2 also describes the 

list of nine activity classes (1, 2, 6, 7, 8, 9, 10, 11, and 12) that were used in this research. These classes 

represent a few of the common daily human activities.  

3.1.1 Approach 1: Use room ambient conditions in combination with IMU-based Devices. 

In the first approach, the KNX devices were employed to monitor the air quality of the room in 

terms of room temperature (°C), humidity level (%), and CO2 Concentration level (ppm). The movements 

of the room occupant were monitored using two individual wearable gadgets based on the Inertial 

Measurement Unit (IMU). After data synchronization and dealing with the missing data, predictive 

analytics were applied.  

Figure 1 shows the application of logistic regression using IBM SPSS statistics 26. A separate 

predictive model with binary output was dedicated to each type of activity class, where 0 represents false 

and 1 represents true. Since logistical regression is commonly used in this particular field of research, it 

provides a good benchmark or reference point for the evaluation of the artificial neural networks-based 

method. Figure 2 shows the application of artificial neural networks using IBM SPSS Modeler 18. It can be 

observed that in the second method a single output was used to determine the outcome of the predictive 

model. This model also applies to the second approach, with only one difference that room environment 

data had been removed in the second approach. 

 

 
Figure 1. Block diagram of the proposed method using logistic regression 
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Figure 2. Block diagram of the proposed method using artificial neural networks 

 

The first approach was evaluated using data acquired in laboratory EB312 at the Faculty of Electrical 

Engineering and Computer Science (FEECS) building of the VSB Technical University of Ostrava. A KNX 

(Konnex) based measurement system was employed to measure and record room-related data. KNX is an 

open standard (EN 50090 [108], ISO/IEC 14543 [109]) for domestic and commercial building automation 

in many different locations such as industrial locations, shopping centers, office buildings, medical 

facilities, etc. It can be used to control functions such as heating, cooling, ventilation, energy management, 

lighting control, etc.  

The KNX bus system can be described as a decentralized system that uses multi-master 

communication. The Engineering Tool Software (ETS) is commonly used to commission KNX modules. In 

addition to ETS, I have developed a .NET-based software [15] to ensure the connection of KNX-based 

devices and IBM cloud storage technology, which enables the communication between the IBM Watson 

IoT platform and KNX smart installation. The Schneider Electric MTN6005-0001 module was used to 

measure the room’s CO2 accumulation, indoor temperature, and humidity. Table 3 shows the measuring 

range of each particular quantity of this device. 

 

Table 3. List of measured quantities and their unit 

Sensor Unit Range 

CO2 concentration sensor ppm 300 to 9999 

Temperature 1 sensor °C 0 to +40 

Relative humidity sensor % 20 to 100 
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To record the experimenter’s movements [110, 111], two wearable gadgets were used. One is worn 

on the right wrist and the other on the right ankle (Figure 3). The wearable gadgets were based on the 

new generation of the Inertial Measurement Unit (IMU), developed by x-io Technologies, UK. The IMU is 

a compact data acquisition platform that combines diverse onboard sensors (as displayed in Table 4), and 

it is largely used for the evaluation of gait variability [112, 113].  

The first approach comprises an 8-channel analog input, and an SD card to store the data. The analog 

input of the IMU is equipped with a 10-bit AD-converter that allows us to acquire and convert the signals 

from a variety of modules. In a parallel study, the possibility of powering this device using a thermal 

electric pad is being investigated which provides a self-sustained wearable device [114]. Table 4 shows 

the measured quantities and their units measured by wearable gadgets. 

 

Table 4. List of measured quantity by wearable gadgets 

Quantity Unit 

Gyroscope X, Y, Z  deg s-1 

Accelerometer X, Y, Z g 

Magnetometer X, Y, Z 𝜇T 

Barometer hPa 

 
 

 
Figure 3. Inertial Measurement Unit (IMU) worn on a leg. 

 

The wearable devices are using an approximated data collection rate of 30 to 60 samples per second 

and the KNX-based data collection rate is between 1 to 10 samples per minute. This large difference 

creates a database synchronization problem. Therefore, the data collected from KNX devices had been 
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expanded to match the fast rates of wearable devices. A “.NET” based script was used to perform Data 

synchronization. Missing data can result in algorithm failure or decrease the accuracy of the analysis. 

Therefore, the IBM SPSS software tool automatically removes all of the records with missing data from 

the analysis. Using the IBM SPSS software tool time-related variables were removed and correct variable 

types were assigned to each quantity (continuous and binary).  

3.1.2 Approach 2: STM32L4-based wearables with remote data storage 

Two development boards B-L475E-IOT01A2 from STMicroelectronics were used for data acquisition 

in the second approach. It is based on an ultra-low-power MCU from the STM32L4 series with other 

modules for communication (Bluetooth, Wi-Fi, Sub-RF, NFC) and embedded Micro Electro Mechanical 

Systems (MEMS) sensors for monitoring environmental quantities (temperature, humidity, proximity, 

magnetic field) and mechanical quantities (acceleration, rotation). Figure 4 shows the custom-built 

wearable device based on STMicroelectronics B-L475E-IOT01A2. 

 

 
Figure 4. The custom-built wearable device which is based on STMicroelectronics B-L475E-IOT01A2. 

 

Due to the STM32L4 compact size and low cost, the development board enables fast design and 

deployment. Figures 5 and 7, show a detailed diagram of components of the development board used for 

measurement and data acquisition. Microcontroller unit (MCU) “A” collects and processes data from 

onboard sensors (“F” and “E”). The received data is then processed and prepared into a data structure to 

be sent to Transmission Control Protocol (TCP) server. Sending takes place asynchronously via WiFi 

module (C). It means, that sending is initiated for example every 50ms independently on the main program 
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cycle. The current program status is indicated by onboard LEDs (D) and can be modified via a user button 

(B).  

 
Figure 5. The development board, location, and orientation of sensors 

 
The designed measurement chain, for purpose of recording human movement, consists of a high-

performance 3-axis magnetometer (E, LIS3MDL), 3D accelerometer, and 3D gyroscope (F, LSM6DSL). 

These sensors allow recording 3-axis acceleration up to ±16 g and 3-axis angular rate up to ±2000 deg·s-1 

with up to 1 kHz readout frequency and recording 3-axis strength of the magnetic field and orientation up 

to ±1600 𝜇T with up to 80 Hz readout frequency. The actual orientations of the sensors are demonstrated 

in figure 6. The actual orientation of the sensors will be very useful for the analysis of the sensor's behavior 

according to the activity of the test subject. 

 
 

 
Figure 6. The actual orientation of the sensors 
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Figure 7. shows the utilized hardware and communication architecture of the data collection stage. 

Data was sent via a Wi-Fi module from Inventek Systems (C, ISM43362-M3G-L44) using the 802.11n 

protocol. The Inter-Integrated Circuit (I2C) bus is used for communication with sensors and the Serial 

Peripheral Interface (SPI) bus for communication with the Wi-Fi module. To guarantee sufficient mobility, 

the devices are powered by a Li-Ion-based power source.  

The data chain consists of two wireless measurement modules (TCP clients based on B-L475E-

IOT01A2) and a remote personal computer. The personal computer is also used as a Wi-Fi Access Point 

(AP) for TCP clients. Communication between these two sides is based on TCP/IP protocol, where static 

IPv4 addressing is used. This solution allows recording the movement of a person within the distance of 

25 meters in an open space (actual distance depends on the type and number of obstacles within the path 

of the signal) from the position of the host computer. Additionally, this solution provides sufficient 

communication speed and bandwidth for data transfer between all participating devices. 

 

 

Figure 7. Hardware and communication architecture of the wearable gadget 

 

As figure 8 illustrates, the onboard system initializes necessary modules using a custom firmware 

developed in C#.  If initialization is successful, the system establishes a TCP connection and starts two 

other threads. The measurement thread is used for data acquisition. After measuring all required 

quantities using sensors, the thread prepares the data for sending. The prepared data row is moved to 

the data buffer for sending and then sent to the TCP server for further processing. Sending of data is 

processed in another thread.  
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The program in this thread is processed every 15 ms. Proper timing and synchronization of the 

measured quantities are required. This is guaranteed by Real-Time Operational System (RTOS) within the 

implemented software. The sampling rate was programmatically set to 66.6 Hz which results in a single 

record every 15 ms. The second data transfer thread wakes up cyclically to verify the number of data 

samples measured and if the number is sufficient, the data is retrieved from the buffer and sent. Then the 

sending thread is put to sleep until the next wake-up. Thanks to the real-time operating system (RTOS), 

the wake-up of the threads can be precisely timed and the priority run of the measurements can be 

ensured with the priority system. 

 

 

Figure 8. The onboard system initialization 

For the data to be properly transferred from the client to the server, a connection must be 

established. Clients register before sending data on the server-side. After that, data can be transferred. 

Within the TCP server, the process is demonstrated in Figure 9, the data are pre-processed and stored in 

files. Due to the possibility of connection loss between the communicating devices, the TCP server is 

equipped with a data buffer. The buffer is used as a form of a data cache in case of data transfer failure 

of one of the clients. It happens that the TCP server then receives more data at once. This is also necessary 

for preventing data inconsistency.  

The buffer can save up to 50 data rows from each TCP client where each data row contains a single 

value from each measured quantity. Additional old irrelevant samples are discarded. The TCP server 
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application is written in C#. It consists of the SimpleTCP library and its class called Saver. The instance of 

the SimpleTCP server registers all clients and receives data from them. Using a receive event are data 

passed to the pre-processing routine, where the data are prepared for saving and to be used in IBM SPSS 

Modeler. In the next stage, the prepared data are moved into the buffer and synchronized data samples 

are finally saved. 

 

 

Figure 9. Data processing chain for none real-time implementation 

 

3.1.3 Real-time recognition  

For real-time implementation, the classification stage was moved from IBM SPSS modeler to 

python. Python is an interpreted, general-purpose, and high-level programming language that aims to 

assist programmers to write logical and clear code [115]. Python comprises maps, and filters, and reduces 

functions such as sets, expression generators, list comprehensions, and dictionaries [116]. Python has 

often been referred to as a “batteries included” language because of its relevantly comprehensive 

standard library [117, 118, 119, 120]. However, Python was designed to be highly extensible rather than 

including all of its functionality into its core. In the last few years, Python has only become popular for 

symbolic computing [119]. All calculations in this work were performed using the TensorFlow library which 

is a symbolic math library that is commonly used for machine learning applications such as neural 

networks. The main advantage of employing TensorFlow is parallel computation; computational tasks can 

be easily divided between the machine’s Processing cores (Central Processing Unit (CPU), Graphical 

Processing Unit (GPU), and Tensor Processing Unit (TPU)). According to the Tensor Board software, 95 % 

of the network calculations are compatible with TPU [121]. TensorFlow is ideal for GPU computing due to 

the creation of an algorithm graph that provides the possibility of parallel computation [121]. 

An important part is a software for online classification of the current activity. For this purpose, 

neural networks implemented in Python are used. The neural networks were trained on offline data. To 

perform the classification directly, the data were imported to the Python environment using Pandas. 

Pandas is free software that is developed for the Python environment. It provides data structures and 
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operations for manipulating numerical tables and time series. Partitioning is an important step for model 

evaluation and selection. Using the panda library (function sample), the datasets were partitioned into 

three sets of training (40 %), testing (30 %), and validation (30 %). The neural network implementation 

was performed using the Keras library. The Keras library is an open-source neural-network library that 

enables fast implementation of deep neural networks. Keras is built on the TensorFlow library and 

provides a cleaner and simpler API for building neural network models [121, 122, 123].  

For real-time prediction, it was necessary to create a data transfer between the C# and the Python 

application. On the TCP server side of the application, the possibility of creating a TCP client was 

implemented, through which the received and then pre-processed data is sent to the TCP server in Python, 

where it is provided as input to the trained neural networks. The results for each input are recorded in 

CSV files and graphs. Figure 10 shows the real-time data processing chain using the python platform in 

combination with the C# application. 

 

Figure 10. the real-time Data processing chain 

 

3.1.4 Integration with smart home systems and IoT platform 

Microsoft Visual Studio 2017 was chosen as the development environment. The .NET framework 

is used as the development framework and C# is used both by the KNX Association and IBM. A personal 

computer (PC) with the Windows 10 operating system is used as a hardware solution for running the 

developed SW. The IBM Watson IoT platform web service is used to access the KNX installation within IoT. 

The function and this software require running continuously on the selected device and maintaining a 

connection for two-way communication, respectively. This software is implemented to serve as access for 

an independent application that can allow the response of KNX set up according to the room occupant's 

activity. Room EB312 located in the FEECS building at VŠB TU Ostrava is monitored. Libraries for 

communication with the KNX bus, the IBM Watson IoT platform, the Cloudant database, and the JSON 

files were used as third-party libraries. The Falcon SDK library was used to establish connectivity with the 

KNX installations using the Manufacturer SDK version. Figure 11 shows the simplified interaction of 

different components of the proposed solution. 
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Figure 11. Diagram of the real-time solutions with feedback to the smart home system and IoT platforms. 

 

The IBM Watson IoT-C# library was used to interact with the IBM Watson IoT platform. The 

individual KNX modules communicate with IoT IBM using a KNXnet/IP router. The data obtained from the 

KNX installation by the software implemented must be transferred for further processing in real-time. To 

do this, the IBM Watson IoT platform service controlled through the Web interface is used. This is a PaaS 

service. This service acts as a broker, an intermediary for real-time communication between the 

applications and the IoT devices using the MQTT protocol.  

The software implemented acts as both a publisher and a subscriber because it is a gateway to 

the KNX installation from the Internet and allows two-way communication. Multiple publishers and 

subscribers can be logged into this service. Another Software application I have developed is the Console 

Gateway software, which is implemented as a console application (Figure 12). Its function is to maintain 

a continuous connection between the KNX installation and the IBM Watson IoT platform. During this 

connection, the application monitors the KNX bus and captures and sends the predetermined telegrams 

to the Watson IoT platform. The console application was created primarily for faster implementation and 

high reliability.  

The Console Gateway Software tool created was deployed on a laboratory PC that runs 

continuously as long as it is necessary to maintain a connection between the cloud service and the KNX 

installation. Upon start-up, it informs the user of the success or failure of the connection to the KNXnet/IP 

router and the Watson IoT cloud service. If both are okay, the user is prompted to start the data transfer. 

Then, the console writes data that is sent to the cloud.  

The official Falcon library provided by the KNX association is used for communication with the 

KNXnet/IP router. This library allows establishing connections, sending commands to the KNX installation, 

monitoring communication on the KNX bus, and requesting information about KNX devices. The 

connection to the router is established in tunneling mode. To establish a connection, it is necessary to 

configure the connection parameters, namely the IP address and the port number. When the program is 

closed, it is necessary to terminate the connection. Table 5 shows possible adjustments to the room 

according to preset settings by the room occupants. 
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Figure 12. Diagram of the data chain within the host compute. 

 

Table 5. example of possible room interaction according to the user's activity 

Activity 

Class 
Description Blinds Temperature 

Class 1  Relaxing  Closed 22 

Class 2  Using a computer  Closed 22 

Class 6  Climbing down the stairs Open 22 

Class 7  Climbing up the stairs   Open 22 

Class 8  Running Open 20 

Class 9  Standing Open 22 

Class 10  Vacuum cleaning Open 20 

Class 11  Walking Open 20 

Class 12  Writing using a pen Open 22 
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3.2 MACHINE LEARNING METHODS 

Predictive modeling is the general concept of building a model that uses big data to develop models 

capable of making reliable predictions. In general, these models are based on variables (also known as 

predictors) that are most likely to influence the outcome [124]. Predictive models are widely applied in 

variety application such as weather forecasting [125, 126, 127], Bayesian spam filters [128, 129, 130, 131], 

business [132, 134, 134, 135], fraud detection [136, 137, 138], etc. Predictive models typically include a 

machine learning algorithm that learns certain properties from a training dataset.  

The learning process can be applied using supervised learning [139, 140], unsupervised learning 

[140], and active learning [141]. In the purposed method, supervised learning was employed by presenting 

a set of solved (labeled) examples to the model for training. Once the model established a pattern 

between the predictors and the outcome, it could solve similar predictions on its own. In this work, 

predictive analytics is used as a recognition tool that classifies certain human activities from acquired data 

from the movements of the test subjects. This section describes the six machine learning methods used 

in this work. 

3.2.1 Logistic Regression 

Regression is one of the oldest and most often used algorithms in machine learning with a supervised 

learning strategy [142, 143]. Linear Regression and Logistic Regression are the two famous types of 

regression. In general, Linear Regression is used for solving Regression problems whereas Logistic 

Regression is used for solving the classification problems such as predicting the categorical dependent 

variable with the help of independent variables or where the probabilities between two classes are 

required [144]. Logistic regression is used in various fields, including machine learning, most medical 

fields, and social sciences [145, 146, 147, 148, 149]. The weighted sum of inputs passes through the 

logistic function (Formula 1) that can map values between 0 and 1. The logistic function is a sigmoid 

function and the curve obtained is called a sigmoid curve or S-curve (Figure 9). 

 

 

Figure 13. Example of the logistic function 
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The output of the binary logistic regression model can be only binary (either 0 or 1). Outputs with 

more than two values are modeled by multinomial logistic regression and if the multiple categories are 

ordered, by ordinal logistic regression. The logistic regression is not a classifier by itself, it simply provides 

a probability of output in terms of input. However, it can be used to make a classifier, for instance by 

choosing a cutoff value and classifying inputs with probability greater than the cutoff as 1 and below the 

cutoff as 0; this is a common way to make a binary classifier. The general equation of logistic regression is 

given by formula 2.  

 𝑓(𝑥) =
1

1+𝑒−𝑘(𝑥−𝑥0) (1) 

  

𝑦 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3+⋯+𝛽𝑛𝑥𝑛)   
 (2) 

 

Regression models can be created using multiple algorithms, these algorithms specify how 

independent variables are entered into the model [150, 151, 152, 153, 154]. The common algorithms are 

enter (regression) [155, 156], stepwise, backward elimination [157], and forward selection [158, 159]. The 

Hosmer–Lemeshow test and Omnibus test are some of the most common statistical tests used to examine 

the goodness of fit for logistic regression. It compares the observed event rates and expected event rates 

in subgroups of the model population. The test mainly identifies subgroups as the deciles of fitted risk 

values. Well-calibrated models are the models with similar expected and observed event rates in their 

subgroups. The expected probability of success is given by the equation for the logistic regression model.  

In general, the Hosmer–Lemeshow test is useful to determine if the lack of fit (poor prediction) is 

significant but it does not properly take overfitting into account. The omnibus test is a likelihood-ratio chi-

square test of the current model versus the null (in this case, the intercept) model. Generally, the 

significance value of less than 0.05 indicates that the current model outperforms the null model. The 

odds_ratio is often used to quantify the strength of the association between two events. In logistic 

regression, the odds_ratio shows the amount of increase in the output variable with every unit increase 

in a specific input variable. The odds_ratio for a continuous independent variable is defined by formula 3. 

This exponential relationship provides an interpretation for 𝛽1 where the odds are multiplied by 𝑒𝛽1 for 

every 1-unit increase in x [160]. If a, b, c, and d can are cells in a 2×2 contingency table then formula 4 

describes odds_ratio for a binary independent variable. 

 

𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜(𝑂𝑅) =
𝑝 (𝑥 + 1)

𝑝(𝑥) 
= 

𝑒𝛽0+𝛽1(𝑥+1)

𝑒𝛽0+𝛽1(𝑥)
=  𝑒𝛽1  (3) 

  

𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜(𝑂𝑅) =
𝑎𝑑

𝑏𝑐  
 (4) 

https://en.wikipedia.org/wiki/Contingency_table
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3.2.2 Support-Vector Machines (SVM) 

For classification purposes, support-vector machines also known as support-vector networks are 

a type of non-probabilistic binary linear classifier that is using supervised learning models that are 

commonly applied to classify data into two different classes or regression for problems. To make input 

data more separable compared to the original input space, nonlinear kernel functions are often used to 

transform input data into a high-dimensional feature space. The support-vector machine's model [161] 

used in this work can be described as follows: 

If 𝑥𝑖  is 𝑖𝑡ℎ  training sample, 𝑦𝑖  is the class label for 𝑖𝑡ℎ  training sample and 𝐼  is the number of 

samples than the training vectors 𝑥𝑖 ∈  𝑅𝑖, 𝑖 = 1, ⋯ , 𝐼, in two classes, and a vector 𝑦 ∈ 𝑅𝑖 such that 𝑦𝑖 ∈

{−1,1}, then the algorithm solves the dual problem in equation (5). Where 𝛼𝑖 is the coefficient for the 

training sample and 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ⋯ , 𝐼   such that 𝑦𝑇𝛼 = 1 , 𝛼 = (𝛼1, 𝛼2, ⋯ , 𝛼𝑖)𝑇  and the kernel 

matris is 𝑄(𝑥𝑖. 𝑥𝑗) = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖. 𝑥𝑗)  then the decision function D is given by equation 6 where 𝑏  is a 

constant term. 

𝑀𝑖𝑛 𝑓(𝛼) =
𝛼𝑇𝑄𝛼

2
−  𝑒𝑇𝛼  (5) 

  

𝐷 = 𝑠𝑔𝑛 (∑  𝑦𝑖
𝐼
𝑖=1 𝛼𝑖𝐾( 𝑥𝑖, 𝑥) + b)  (6) 

3.2.3 Random Tree (RT)- Classification or Regression Trees (C&RT trees) 

Decision trees are also one of the popular methods for machine learning tasks. Decision trees are 

often used as a predictive model. Random trees are a type of decision tree that provides possibilities for 

the output variable. It is a sophisticated and modern supervised learning tree-based classification by 

majority voting and building an ensemble model that consists of numerous decision trees. The 

classification and regression trees are binary models with inner splitting conditions. The random tree 

models are less likely to overfit due to the employment of bagging and field sampling. It is often used for 

cases large datasets and many fields are required. 

The algorithm uses the available input variables to find the best split as a threshold value of an 

attribute determined by best homogeneity for the sub-nodes, using the Gini Index criterion. This process 

continues until the last pure sub-set is found in the tree or the maximum number of leaves possible is 

reached. The formula of the Gini index is given by equation (7) where C is the total number of classes and 

P is the probability of class i.   

𝐺𝐼 = 1 − ∑ 𝑃𝑖
2

𝑐

𝑖=0  

 (7) 
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3.2.4 Random Forest (RF) 

Random forest (RF) models are based on a large number of individual decision trees that operate as 

an ensemble in which each of them splits a class prediction and then the class with the most votes 

becomes the model’s prediction.  Essentially it is based on the idea of crowd wisdom, numerous 

uncorrelated models that outperform any of the individual trees.  

Very deep trees are highly capable of learning irregular patterns but sometimes tend to overfit the 

training sets with low bias but large variance. It averages numerous deep decision trees resulting in lower 

variance and ultimately higher accuracy of the final model. In classification trees, the majority vote is used 

instead. The uncertainty of the prediction can be estimated using the standard deviation for each 

regression tree on x' (equation 8).  

𝜎 = √
∑ (𝑓𝑏(𝑥′) − 𝑓)2𝐵

𝑏=1

𝐵 − 1
 

 (8) 

3.2.5 C5.0 

C5.0 algorithm is one of the most well-known types of decision tree-based classification. It generally 

performs nearly as well as Neural Networks and Supports Vector Machines but it is much easier to 

understand and deploy. C5.0 algorithm performs many of the decision-making automatically with 

reasonable defaults. It first creates a large overfitting tree and then it removes nodes and branches that 

have an insignificant effect on the classification errors.  

The entropy concept is used to measure purity where 0 indicates a completely homogenous sample 

and 1 indicates the maximum disorder. The trees can continue to grow indefinitely until each example is 

perfectly classified however overly grown trees tend to overfit the training data. The records are scored 

with the class and confidence of the rule that fires for that record. the confidence for the rule is calculated 

as follows: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑓 + 1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 + 2
 (9) 

3.2.6 Artificial Neural Network (ANN) 

Due to their power flexibility and ease of use, artificial neural networks are widely used as predictive 

analysis and classification tools [162, 163, 164, 165, 166, 167, 168]. Artificial neural networks obtain their 

knowledge from the learning process and then use interneuron connection strengths (known as synaptic 

weights) to store the obtained knowledge [167, 168]. One of the most used classes of artificial neural 

networks is a multilayer perceptron which is a feedforward neural network that belongs to deep learning. 

Deep learning utilizes a hierarchical level of artificial neural networks to carry out the process of machine 

learning. Unlike traditional programs the hierarchical function of deep learning systems enables machines 

to process data with a nonlinear approach. The multilayer perceptron utilizes backpropagation for training 
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[171, 172, 173]. Due to its multiple layers and nonlinear activation, multilayer perceptron can distinguish 

data that is not linearly separable [174].  

In deep learning, in addition to input and output layers, the neural network contains multiple hidden 

layers and each can contain multiple neurons. The first layer of the neural network processes a raw data 

input like the amount of the transaction and passes it on to the next layer as output. The second layer 

processes the previous layer’s information by including additional information. This continues across all 

levels of the neural network. Each layer of its neural network builds on its previous layer. The multilayer 

perceptron artificial neural network with two hidden layers was chosen as a suitable deep learning 

method for this article (Figure 5). The second approach uses a simpler model that does not utilize room 

measurement data and eliminates the second hidden layer.  

The multilayer perceptron artificial neural network was implemented in the IBM SPSS Modeler 18 

software. The IBM SPSS modeler algorithm guide mathematically describes its multilayer perceptron 

model as followings [161]: 

Input layer: 𝑗0 = 𝑝 units, 𝑎0:𝑗, … , 𝑎0:𝑗0, with 𝑎0:𝑗 = 𝑥𝑗, where j is the number of neurons in the layer 

and X is the input. 

ith hidden layer: 𝑗𝑖  units, 𝑎𝑖:1, … , 𝑎𝑖:𝑗𝑖
, with 𝑎1:𝑘 =  𝛾𝑖(𝐶𝑖:𝑘)  and 𝐶𝑖:𝑘 = ∑ 𝜔𝐼:𝑗1,  k𝑎𝑖−1:𝑗𝑗𝑖−1

𝑗=0 , where 

𝑎𝑖−1:0 = 1, γ𝑖 is the activation function for layer I, and 𝜔𝐼:𝑗1 is weight leading from layer i−1. At this layer, 

the model uses hyperbolic tangent as an activation function given by γ(𝐶) = tanh(c)
𝑒𝑐−𝑒−𝑐

𝑒𝑐+𝑒−𝑐. 

Output layer: 𝑗𝐼 = 𝑅  units, 𝑎𝐼:1, … , 𝑎𝐼:𝐽𝐼
, with 𝑎I:𝑘 =  𝛾𝐼(𝐶𝐼:𝑘) and 𝐶𝐼:𝑘 = ∑ 𝜔𝐼:𝑗, k𝑎𝑖−1:𝑗𝐽1

𝐽=0 , where 

𝑎𝑖−1:0 = 1. The SoftMax function (γ(𝐶𝑘) =
𝑒𝑐𝑘

∑ 𝑒
𝑐𝑗

𝑗∈Γℎ

) is used as an activation function. 

Stopping rules determine when to stop MLP network training. Training proceeds through at least one 

cycle, and then it can be stopped according to one of the criteria in table 6. To avoid excessive and 

unnecessary training duration. The first criteria stop the training after the minimum relative change in 

error between iterations is achieved. The second criterion stop training when the error cannot be further 

decreased. And the last criteria stops the training once the maximum training time has been exceeded. 

Since the last stopping rule does not allow the models to reach their full potential, It is better to be avoided 

and use models and results from SR1 and SR2 criteria. 

The training accuracy is not sufficient to estimate the response of the trained MLP networks to 

unknown future input. To evaluate the performance of predictive models three methods of splitting, 

partitioning, and scoring are commonly used. If data is not scarce, the dataset is divided into three 

segments training, testing, and validation. Performing this splitting using multiple different ways and 

computing an average score over different partitions can reduce bias [175,176]. In other words, the 

datasets are randomly divided into training, testing, and validation partitions where models are trained, 

tested, and evaluated using different segments of the dataset. Overall, Partitioning is mostly 

recommended for very large datasets.  
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Figure 14. Example of the developed multilayer perceptron artificial neural network model with 24 neurons input layer, 8 
neurons in the first hidden layer, 4 neurons in the second hidden layer, and 5 neurons output layer. 

 

Table 6. MLP stopping rules 

Stopping rule Description 

SR1 Minimum relative change in error achieved 

SR2 The error cannot be further decreased 

SR3 
Maximum training time has exceeded  

(15 minutes) 

 

Most researchers only rely on validation results and skip the scoring stage. Unlike partitioning (cross-

validation), the models are trained and validated using an entirely different dataset. Typically, cross-

validation demonstrates the accuracy of models for a very large dataset. While scoring shows the real 

accuracy of the model with the current training dataset. Therefore, it is essential to provide accurate 

estimation for real-time applications. 
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4 IMPLEMENTATION AND RESULTS 

This section discusses the implementation and results of the human activity classifications using 

measured body movement obtained from gyroscope, accelerometer, magnetometer, and barometer 

sensors located in wearable gadgets and measured room ambient condition humidity, temperature, and 

humidity sensors within the KNX system. The obtained datasets are using letters (A, B, C, and D) to 

distinguish between test subjects, and numbers to distinguish between measurement dates.  

The IBM SPSS Modeler 18 software tool was used to create the recognition models. Figure 15 displays 

the cross-validation data stream developed to train, test, and validate predictive models. In the first stage, 

a dataset is imported into the data stream. To maintain the integrity of the analysis, the excel node is 

configured to exclude (delete) the records that contain missing values. The filter and type nodes are 

utilized to select relevant input data, assign correct variable types (continuous, categorical, etc.), and 

predefined inputs and outputs. The data stream uses a partitioning node with a partitioning ratio of 40 % 

training, 30 % testing, and 30 % validation.  

The random seed of “229176228” was set automatically by the partitioning node. The stream 

continues with the modeling node (training) which generates the predictive model (displayed as a nugget 

gem). In artificial neural network training, the training stops if one of the conditions in Table 6 is satisfied. 

Similar is also true for most other methods. Additionally, overfit protection was set to 30 %. The predictive 

model (nugget gem) can be connected to additional nodes to export its predictions to Excel files (using 

Excel node) or analyze them using built-in functions.  

 

 

Figure 15. Training and validation stream developed in IBM SPPSS modeler 

 

Figure 16 shows the scoring diagram implemented in the IBM SPSS modeler 18. The top row of 

nodes are used for the training data and the bottom for the evaluation data. In scoring the models are 

trained with a dataset and then evaluated using an entirely different dataset. As the second dataset has 
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never been seen by the model, it provides a very good estimation of the model performance for real-

time applications. 

 

Figure 16. Scoring stream built-in IBM SPPSS modeler. 

4.1 APPROACH 1 RESULTS 

The first approach uses logistic regression and artificial neural networks (MLP with two hidden layers) 

classification methods. Logistic regression is a commonly used classification method in the field of activity 

recognition. Therefore, it can provide a good comparison point for the main purposed method using 

artificial neural networks. The second approach uses a simpler MLP architecture that utilizes only one 

hidden layer. The obtained data from test subject A measurements were performed on the 19th of July 

2019 (dataset A1) and the 26th of July 2019 (dataset A2). These datasets were analyzed using IBM SPSS 

Statistics 26 software tool. In the first approach, IBM SPSS Statistics 26 software was used to perform the 

logistic regression analysis. This platform provides more detailed insights into the analysis results which is 

useful for providing a better benchmark. 

4.1.1 Logistical regression 

In the first stage, the datasets A1 and A2 were individually classified. The logistical regression models 

were developed using enter configuration, classification cutoff of “0.5” and a maximum of 20 iterations. 

The goodness of fit describes how well a statistical model fits a set of observations. Hosmer and Lemeshow 

and omnibus tests were used to determine the goodness of fit. For a good fit, the Hosmer & Lemeshow 

test significance value should be more than 0.05 and the omnibus should have a significance value of less 

than 0.05. These conditions were satisfied with large margins across all models. 

Tables 7 and 8 show the accuracy of classification for data obtained from measurements of dataset 

A1 (total of 296188 records) and dataset A2 (total of 290174 records). The result shows that all models 

obtained classification accuracy above 91.2 %. In analysis performs on the measurement interval of 

dataset A2 (Table 7), activity Class 3 shows almost complete accuracy (only two wrong predictions in 
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296188 records), and activity Class 4 shows the lowest accuracy (97.4 %). The overall accuracy is calculated 

using the average of correct predictions of zeros and ones. The classes mentioned in Tables 7 and 8 are 

described in Table 3 already. 

 

Table 7. Classification table using datasetA1. 

 

Similar class accuracy characteristics can be observed from the dataset A2 (Table 6) result where 

Class 3 yields the highest accuracy (99.9 %) and Class 4 the lowest (91.2 %). Table 3 indicates that Class 4 

is dedicated to cleaning activities such as wiping tables and vacuum cleaning. Therefore, the lower 

accuracy could be the direct result of less consistent movement during this activity class. Using a 

stationary bicycle (Class 5 activity) is a high-energy activity and on the contrary, relaxing with minimal 

movements (class 1) is a low-energy activity. Regardless of energy levels, both of these activities provide 

consistent movements which directly translates to a more recognizable pattern within data. This can be 

easily observed within the classification results (99.3 % and 98.9 % for Class 5 and 98.9 % and 99.5 % for 

Class 1). Summing up the classification accuracy resulted in 97.8 % of correctly classified records. 

Table 9 shows the odds ratio of different quantities in developed models. The odds ratio shows the 

amount of increase in the output variable with every unit increase in a specific input variable. Simply, the 

output variable is more associated with changes in quantities with a larger absolute value of the odds 

ratio. Additionally, Table 9 shows consistent odds ratios for the gyroscope and magnetometer (both 

Class Observed 

Predicted (Nr. of records) 
Percentage  

correct 

Overall 

accuracy  
0 1 

Class 1 

0 273204 2758 99.9 
98.9 

1 422 19804 97.9 

Class 2 

0 213908 3764 98.3 
97.4 

1 3877 74639 95.1 

Class 3 

0 220320 0 100.0 
100.0 

1 2 75866 100.0 

Class 4 

0 243244 5327 97.9 
95.4 

1 8209 39408 82.8 

Class 5 
0 223644 1096 99.5 

99.3 
1 869 70579 98.8 
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devices and across all three axes) and CO2 for all models. Therefore, it affects all models with a similar 

significance.  

By comparing each model with its alternative interval, it can be observed that except for Model 5, 

the temperature has a similar range in both datasets. However, models 1, 2, and 4 share a very high odds 

ratio, and model 3 has the null effect. Table 9 also shows that this null effect is also shared with the models 

based on dataset A1. It is also apparent that KNX-based data does not influence the recognition of Class 

3 activity. Whereas the accelerometer y-axis (both devices) shares a similar large odd_ratio across both 

models, In the case of exercising using a stationary bicycle (Class 5 activity), this large effect can be 

observed on the X-axis of the leg accelerometer.  

With few exceptions, the odds ratio of both datasets remains within a similar range, this indicates 

the consistency of the analysis. Overall, it can be observed that activity Class 1 is mainly affected by 

temperature, and activity classes 2, 4, and 5 are mostly affected by temperature and accelerometer-

based. The obtained conclusions from odds ratios were verified by regression weights, the test of 

significance, and Wald statistics. In the last stage of the analysis, the developed models were further 

evaluated with alternative datasets (scoring), resulting in a significant drop in the prediction accuracy (up 

to a 50 % decrease). This indicated is an indication of overfitting. Although Hosmer & Lemeshow and 

omnibus tests are a good indication of the goodness of fit, they do not detect overfitting. 

 

Table 8. Classification table using dataset A2. 

Activity Observed 

Predicted (Nr. of records) Percentage  

Correct 

(%) 

Overall 

accuracy  

(%) 0 1 

Class 1 

0 270378 867 99.7 
99.5 

1 640 18829 96.7 

Class 2 

0 213182 3791 98.3 
97.0 

1 5068 68673 93.1 

Class 3 

0 216883 95 100.0 
99.9 

1 51 73685 99.90 

Class 4 

0 235594 9914 96.00 
91.2 

1 15720 29486 65.20 

Class 5 

0 212940 1653 99.20 
98.9 

1 1535 74586 98.05 
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Table 9. Odds ratio 

Activity Class 
 Dataset A1 Dataset A2 

1 2 3 4 5 1 2 3 4 5 

K
N

X
 

Humidity 0.02 0.00 0.00 0.00 0.00 1.59 1.03 0.00 0.37 1.45 

Temperature 2.29 1.40 0.00 3.29 6.66 1.55 5.29 0.00 4.45 1.03 

CO2 0.94 0.89 0.31 0.86 0.71 0.12 0.99 0.00 0.96 1.05 

L
eg

 

G
y

ro
sc

o
p

e 

x 1.00 0.99 0.94 1.00 1.00 0.99 1.00 1.05 1.00 0.99 

y 0.99 0.99 1.05 1.00 1.02 0.99 0.99 0.92 1.00 1.01 

z 1.00 0.99 0.96 1.00 0.99 0.99 0.99 1.02 1.00 1.01 

A
cc

el
er

o
m

et
er

 

 

x 4.20 0.55 7.44 1.57 0.27 4.98 0.79 0.00 1.35 0.34 

y 0.43 5.32 
5.68 

× 104 
2.16 0.37 2.52 1.62 

5.75 

× 105 
1.23 0.28 

z 0.09 0.18 0.00 3.17 
4.97 
× 10 

0.02 0.34 0.01 1.61 2.14 

M
ag

n
et

o
m

et
er

 

 

x 0.99 0.99 1.65 1.01 0.99 0.99 0.95 1.17 1.01 1.04 

y 1.05 1.02 0.67 1.02 0.95 1.08 1.00 0.90 1.03 0.89 

z 1.02 0.89 0.37 1.06 1.17 0.92 0.93 0.92 1.02 1.24 

H
an

d
 

G
y

ro
sc

o
p

e 

 

x 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.02 1.00 1.00 

y 1.00 1.00 1.07 1.00 1.00 1.01 1.00 1.03 1.00 1.00 

z 0.99 0.99 1.09 1.00 1.00 0.99 1.00 1.03 1.00 1.00 

A
cc

el
er

o
m

et
er

 

 

x 0.06 0.67 0.35 0.08 
8.07 
× 10 

3.53 8.58 3.09 0.07 
1.79 
× 10 

y 3.30 
1.50 
× 10 

1.67 
× 10 

0.14 0.14 0.01 0.19 
8.01 

× 102 
0.68 1.85 

z 9.42 0.04 0.00 
2.78 
× 10 

1.13 0.87 
3.99 
× 10 

0.08 0.05 4.28 

M
ag

n
et

o
m

et
er

 

 

x 0.97 0.97 0.44 0.97 1.08 1.01 1.05 1.98 1.00 1.05 

y 1.08 1.067 0.235 0.967 0.939 1.024 0.969 0.662 0.987 1.01 

z 1.00 0.96 0.86 1.01 1.08 1.11 1.07 1.66 0.99 0.95 
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4.1.2 Artificial neural networks  

In the next stage, the datasets A1 and A2 were classified using artificial neural networks (MLP with 

two hidden layers). Tables 10 and 11 show the results of the cross-validation using the accuracy of 

validation partitions for each class in addition to the overall accuracy which is based on all partitions and 

quantities. Table 10 is based on training results using dataset A and Table 11 is based on training results 

using dataset B. Similar results can be observed in both training intervals. Model number 3 shows the 

highest and model 11 has the lowest accuracy levels. It can also be observed that the accuracy of models 

1 to 6 is above 99.50 % while models 7 to 11 are showing poor results. 

 

Table 10. Validation result of training using dataset A1. 

 

Further investigations showed that the models with the lower number of neurons are mainly based 

on KNX-based quantities (CO2, temperature, humidity) which are changing at a slower rate. An example 

of the predictor’s importance for model 3 trained with dataset A1 is provided in Figure 17. Meanwhile, 

the models with higher neuron counts are mainly based on wearable device data (accelerometer sensors 

and gyroscopes) which are changing at a much faster pace. An example of the importance of predictors 

Model 

Number of Neurons 
Overall 

Accuracy 

(%) 

Accuracy of Validation partition (%) 

Hidden 

Layer 1 

Hidden 

Layer 2  1 2 3 4  5 

1 8 4 99.80 99.05 99.99 99.85 99.95 99.96 

2 16 8 99.90 99.79 99.99 99.88 99.96 99.97 

3 16 32 99.99 99.81 99.99 99.91 99.98 99.98 

4 64 32 99.90 99.76 99.97 99.91 99.93 99.94 

5 64 128 99.50 99.22 99.63 99.67 99.38 99.26 

6 128 64 99.60 98.92 99.83 99.68 99.74 99.64 

7 128 256 96.40 96.02 96.59 96.89 97.12 94.97 

8 256 128 98.50 98.44 98.93 98.87 98.85 97.29 

9 256 512 76.40 76.48 77.04 78.08 76.81 73.26 

10 512 256 82.80 83.98 82.30 83.84 82.94 80.06 

11 512 512 73.10 74.52 71.98 73.63 71.90 73.40 
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for model 11 trained with dataset A1 is provided in Figure 18. Additionally, Figure 18 shows that the 

predictor's importance is more balanced in comparison with Figure 17. 

 

Table 11. Validation result of training using dataset A2. 

 

 

Figure 17. Predictors importance for model 3 trained with dataset A1. 

Model 

Number of neurons Overall 
Accuracy 

(%) 

Accuracy of Validation partition (%) 

Hidden 
Layer 1 

Hidden 
Layer 2 1 2 3 4 5 

1 8 4 99.70 99.20 99.97 99.78 99.71 99.73 

2 16 8 99.80 99.81 99.90 99.91 99.71 99.63 

3 16 32 99.90 99.70 99.97 99.92 99.94 99.95 

4 64 32 99.80 99.66 99.89 99.91 99.76 99.67 

5 64 128 99.50 99.56 99.62 99.79 99.43 99.02 

6 128 64 99.50 99.43 99.78 99.7 99.45 99.27 

7 128 256 96.70 97.50 96.55 96.74 97.21 95.38 

8 256 128 98.50 98.53 98.69 98.95 99.07 97.04 

9 256 512 76.40 77.13 81.02 73.32 75.54 75.47 

10 512 256 83.30 84.31 85.28 80.45 84.27 82.52 

11 512 512 74.00 73.75 75.70 70.20 75.69 74.00 
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Figure 18. Predictors importance for model 11 trained with dataset A1. 

 

Figure 19 shows training accuracy (%) according to neurons in hidden layer count which are 

represented with model numbers. The trend from both datasets is very similar, nearly overlapping for all 

models. It is also apparent that after model number 4 with a total of 96 hidden layers neurons (64 and 32 

neurons on the first and second respectively) the accuracy starts declining and after model 6 with a total 

of 192 hidden layers neurons the decline becomes more significant. A major accuracy drop can be 

observed right after the small accuracy recovery with model 8. The overall trends show a drastic increase 

in neuron count can result in accuracy drops due to immature training of the models due to time-limited 

training and overfitting to different segments of the data. 

 

 

Figure 19. Validation accuracy (%) with increments of neuron count within hidden layers (represented with the model number). 
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As mentioned earlier, partitioning is a commonly used method of evaluation method. However, 

scoring is commonly applied to get a better understanding and estimate of the real performance of the 

models. In scoring two different datasets are introduced. One dataset is solely used for training and a 

separate dataset for evaluation. i.e., the predictive model has never seen the input data used for 

evaluation. Tables 12 and 13 represent the results obtained from the scoring stage where Table 12 shows 

the models trained with dataset A1 evaluated with interval dataset A2 and Table 13 shows the models 

trained with dataset A2 evaluated with dataset A1.  

 

Table 12. Scoring result of training dataset A1 and evaluation dataset A2. 

Model 

Neurons 

In Hidden Layers 
Accuracy of each activity Class (%) 

Layer 1 Layer 2 1 2 3 4 5 

1 8 4 93.30 94.26 73.82 47.23 84.45 

2 16 8 93.30 25.36 73.82 64.37 84.45 

3 16 32 93.30 25.36 73.82 25.37 84.45 

4 64 32 93.30 74.64 73.82 25.53 84.42 

5 64 128 93.30 77.17 75.37 25.47 84.44 

6 128 64 93.30 71.41 73.02 25.37 84.45 

7 128 256 6.81 46.69 73.64 25.58 30.11 

8 256 128 93.30 82.13 41.33 25.39 84.45 

9 256 512 89.21 40.60 50.34 34.60 40.89 

10 512 256 92.94 25.42 68.58 41.13 84.26 

11 512 512 30.37 30.83 74.14 35.67 63.93 

 

In Table 13, For models 1 to 6 and activities classes 1, 3, and 5, we can observe consistent and 

acceptable results. The highest accuracy for activity Class 2 was achieved by model 1 (94.26 %). 

Meanwhile, model 2 showed the highest accuracy (64 %) for activity Class 4. In general, the accuracy of 

Class 2 and Class 4 is inconsistent. Table 13 shows that models 2 and 3 show better overall accuracy. In 

specific model 2 has the highest accuracy for activity classes 1, 2, 3, and 5.  

In summary, model 2 with 24 neurons in the hidden layers (16 and 32 respectively) shows the 

highest average scoring accuracy. Similar characteristics could be observed from the validation stage. 
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Although the average accuracy of this model was not exactly the highest at the validation stage, the 

difference was within the margin of error. Hence, this model’s setting can be used as the most suitable 

for this approach 1. The Artificial neural network showed overall superiority over logistic regression 

models in terms of accuracy and flexibility. In summary, some promising results were observed in cross-

validation using approach 1. But scoring stage showed that the room environment data negatively impacts 

the accuracy as many external factors affect these quantities. Therefore, in the following approach, these 

parameters won’t be used in the training of the models. 

 

Table 13. Scoring result of training dataset A2 and evaluation dataset A1. 

Model 

Neurons 
In Hidden Layers 

Accuracy of each activity Class 

1 2 1 2 3 4 5 

1 8 4 50.83% 88.64% 75.88% 63.5% 83.92% 

2 16 8 93.17% 98.51% 75.88% 67.11% 96.2% 

3 16 32 81.21% 88.59% 75.88% 55.81% 76.11% 

4 64 32 27.6% 88.79% 75.88% 66.03% 68.66% 

5 64 128 82.01% 82.30% 75.88% 77.77% 44.14% 

6 128 64 77.94% 92.65% 75.88% 73.02% 50.21% 

7 128 256 17.71% 49.58% 75.71% 26.85% 44.48% 

8 256 128 22.60% 85.72% 75.87% 64.71% 30.62% 

9 256 512 40.22% 44.92% 50.45% 49.82% 63.95% 

10 512 256 33.51% 13.1% 77.95% 52.3% 29.81% 

11 512 512 70.2% 78.37% 48.53% 56.77% 33.39% 

 

4.2 APPROACH 2 RESULTS  

New datasets were acquired in laboratory EB412 at the FEECS building of the VSB Technical 

University of Ostrava to perform a second approach analysis. This room was not equipped with KNX-based 

measurement systems therefore new dataset only contains body movement measurements obtained 
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from the gyroscope, accelerometer, magnetometer, and barometer sensors located in the second type of 

wearable gadgets  

In total, six datasets (B1, B2, C1, C2, D1, and D2) were obtained as the results of these 

measurements where each letter corresponds to the different test subject and each number corresponds 

to the different measurement date. Additionally, two testing datasets (T1 and T2) were created by 

combining data from all test subjects for each experiment time. Table 14 shows the number of records in 

each recorded dataset. This section evaluates the recognition accuracy of the developed models with the 

use of cross-validation and scoring.  

Datasets T1 and T2 were used to test multiple machine learning methods to establish the most 

suitable solution. Each dataset was individually portioned into tree segments of training, testing, and 

validation. This process is standard practice for the validation of classification models. This work takes the 

analysis a step further by using scoring accuracy where models are trained with the entire dataset T1 and 

evaluated using the entire dataset T2. Scoring accuracy is expected to be lower as the datasets used differ 

but it is a good indication of how the models will perform in the real-time application. This section provides 

the accuracy of each method in terms of validation and scoring accuracy. 

 

Table 14. The number records in each measurement dataset. 

Dataset Number of records 

B1 128300 

B2 202506 

C1 114560 

C2 165224 

D1 135451 

D2 181023 

T1 B1+C1+D1 

T2 B2+C2+D2 

4.2.1 Support Vector Machines 

The first examined method for the second approach was support vector machines. Table 15 shows 

the validations and scoring accuracy obtained from support-vector machines (SVM) models. Dataset T1 

shows an average validation accuracy of 99.78 % whereas class 2 and class 1 validated to 100.0 % 

classification accuracy. On the other hand, class 11 showed the lowest validation accuracy (99.26 %) 

within this dataset. Dataset T2 averaged 99.67 % of validation accuracy and similar to dataset T1, class 1 

validated 100.0 %. Similarly, the lowest validation accuracy was obtained by class 99.06 % class 11. Since 
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validation accuracy among both datasets and all classes is above 99 %, comparison between these classes 

is within the margin of error. In the next stage, models were trained with dataset T1 and scored against 

dataset T2 resulting in an average classification accuracy of 90.85 % which is highly accurate. Similar to 

the validation results class 1 scored 100.0 %. In the scoring stage, the accuracy of classes 10 and 2 

experienced a significant drop. Given that these classes correspond to vacuum cleaning and using a 

computer, the accuracy drop can be explained by inconsistent behavior across different test subjects and 

therefore harder classification. Overall, the validation and scoring accuracy for this method is highly 

accurate. Table 16 shows the basic parameters used to build and train this model additionally it can be 

observed that the training time for this method is very long (more than 50 hours in total). 

 

Table 15. Validations and scoring accuracy of support vector machines (SVM). 

 Activity Class 

 Dataset T1  Dataset T2 

 T1XT2 

 Training  Testing  Validation  Training  Testing  Validation 

 Class 1  100.0%  100.0%  100.0%  100.0%  100.0%  100.0%  100.0% 

 Class 2  100.0%  100.0%  100.0%  99.97%  99.97%  99.96%  80.87% 

 Class 6  99.80%  99.68%  99.72%  99.42%  99.31%  99.28%  90.34% 

  Class 7  99.83%  99.72%  99.75%  99.61%  99.5%  99.49%  98.04% 

 Class 8  99.90%  99.77%  99.82%  99.87%  99.76%  99.78%  97.07% 

Class 9  99.89%  99.89%  99.88%  99.89%  99.86%  99.89%  89.15% 

 Class 10  99.66%  99.60%  99.60%  99.69%  99.64%  99.64%  80.06% 

 Class 11  99.46%  99.25%  99.26%  99.27%  99.08%  99.06%  94.39% 

 Class 12  100.0%  100.0%  99.99%  99.96%  99.94%  99.95%  87.69% 

 Average  99.84%  99.77%  99.78%  99.74%  99.67%  99.67% 90.85% 
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Table 16. General build and training settings for support vector machines model 

 Parameter  Value 

Kernel type  Radial basis function (RBF) 

RBF gamma 0.1 

Gamma 1.0 

Bias  0.0 

Avrage Training time 5h,50m per activity 

 

 

4.2.2 Logistic Regression 

Logistical regression is one of the standard methods for binary classification therefore it provided 

a good reference point for the other methods. Table 17 general build and training settings for the logistic 

regression model. For this implementation, enter method was selected as a suitable method for entering 

values into the model. Additionally, the main effect was selected as the type of model build. From table 

17 it can also be observed that the training time is rather very significant (about 8 hours in total) which 

can act as a reason for method selection in later stages. All Logistic regression models have passed 

Hosmer–Lemeshow and omnibus tests by large margins. 

Table 18 shows the validation and scoring accuracy of the obtained models using logistical 

regression. Dataset T1 averaged a validation accuracy of 94.31 % where the most accurate was class 1 

(99.95 %) and the least accurate was class 11 (86.64 %). Similarly, Dataset T2 averaged 94.56 % where 

class 1 with 100.0 % was the most and class 11 with 85.79 % was the least accurate results. The scoring 

resulted in an average of 90.29 %. Although the validation results were less accurate in compering with 

SVM, the scoring result does not differ as much. 

Interestingly, some classes scored better in logistic regression in comparison to the validation 

stage. This shows a good fit for the trained logistic regression models. Comparing the logistic regression 

results from both approaches shows similar validation accuracy but in the second approach, the scoring 

results are improved significantly. This shows this approach is simpler and more accurate due to the 

removal of room ambient conditions data which eliminates the irrelevant and slower variables. Besides 

that increase in sampling frequency and the number of test subjects resulted in larger datasets which is a 

major contributor to accuracy improvements. 
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Table 17. General build and training settings for the Logistic regression model 

 Parameter  Value 

Multinominal Method  Enter 

Build Model Type Main effect 

Mode Simple 

Training Model Type  Classification 

Average Training time 57m per activity 

 

Table 18. Validations and scoring accuracy of logistical regression 

Activity Class 

 Dataset T1  Dataset T2 
AXB 

Training Testing Validation Training Testing Validation 

 Class 1 99.96% 99.95% 99.95% 100.0% 100.0% 100.0% 99.99% 

 Class 2 99.02% 99.04% 99.05% 95.29% 95.38% 95.36% 84.59% 

 Class 6 97.31% 97.42% 97.35% 97.21% 97.23% 97.17% 96.84% 

  Class 7 97.26% 97.11% 97.13% 97.73% 97.82% 97.77% 97.15% 

 Class 8 92.22% 92.30% 92.29% 95.56% 95.66% 95.61% 93.81% 

Class 9 89.61% 89.67% 89.67% 88.64% 88.7% 88.78% 86.81% 

 Class 10 92.59% 92.47% 92.26% 93.7% 93.75% 93.73% 82.60% 

 Class 11 86.76% 86.78% 86.64% 85.83% 85.9% 85.79% 88.03% 

 Class 12 94.38% 94.37% 94.42% 96.88% 96.95% 96.82% 82.79% 

Average 94.35% 94.35% 94.31% 94.54% 94.60% 94.56% 90.29% 
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4.2.3 Artificial Neural Networks (Initial testing) 

The last none decision tree-based method used was Artificial neural networks (ANN). Table 19 

shows the model building and training settings for the artificial neural networks. Similar to the first 

approach, the second approach is also using a Multilayer perceptron but with only a single hidden layer 

utilized. For the only purpose of method selection, only one hidden layer neurons count (8) was used. The 

smaller neurons count resulted in relevantly high training speed (total of fewer than 5 hours) while 

presenting very accurate results. Only two stopping criteria were used, Maximum training time reached 

or when accuracy cannot be further improved. Given the small size of the models, the training of all 

models stopped when accuracy could not be further improved. Furthermore, the number of components 

for posting or bagging was set to 10. 

The validation and scoring results of this method are shown in Table 20. The average validation 

accuracy of datasets T1 and T2 were 99.01 and 99.05 % respectively which is slightly lower than SVM but 

noticeably higher than logistical regression. Similarly, to previous methods, class 1 was the highest and 

class 11 the lowest validating class. Comparing validation results with the neural network used in approach 

1 shows significant superiority over the second approach. Although the first approach represented higher 

average accuracy, the second approach is more consistent across different activities. This is due to higher 

sampling rates, simpler models, and larger datasets.  

 

Table 19. General build and training settings for the Artificial neural networks model 

 Parameter  Value 

Neural network model  Multilayer perceptron 

 Maximum training time per component model 15 min 

 Hidden layer 1 neuron count  8 

Hidden layer 2 neuron count 0 

Combining Rule Voting 

Number of components for boosting or bagging  10 

Stopping criteria  
-Maximum training time 

-Accuracy cannot be further improved 

Avrage Training time 29 minuts, per activity 
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Interestingly enough, artificial neural networks (ANN) scored highest (average of 93.48 %) among 

previous methods which shows the superiority of this method in real life and real-time application. Class 

6, 7, 8, 2, and 1 were highly accurate within the scoring process. Meanwhile, class 10 suffered a bit more 

accuracy drop as vacuum cleaning is a bit more challenging to recognize due to inconsistency within the 

activity and test subjects’ movements. Considering the scoring accuracy of each activity class, this method 

can be recognized as the most suitable for sensor-based human activity classification applications. 

Furthermore, the accuracy levels can be further increased by using a larger neural network model with a 

higher neuron count. The superiority of the second approach is even further obvious in the scoring stage, 

all classes performed decently whereas in the first approach some of the activity classes failed to very low 

classification accuracy. The scoring average of 93.8 % surpasses the state-of-the-art in human activity 

recognition especially given that this approach classifies a large number of activities (9 classes). 

 

Table 20. Validations and scoring accuracy of artificial neural network (ANN) 

Activity Class 
 Dataset T1  Dataset T2 

AXB 

Training  Testing Validation Training Testing Validation 

  Class 1 99.99% 99.98% 99.98% 100.0% 100.0% 100.0% 99.99% 

 Class 2 99.97% 99.96% 99.96% 99.95% 99.94% 99.93% 95.11% 

 Class 6 98.73% 98.75% 98.69% 98.26% 98.23% 98.18% 95.95% 

 Class 7 98.63% 98.60% 98.60% 98.92% 98.92% 98.92% 97.43% 

 Class 8 98.63% 98.60% 98.60% 98.82% 98.81% 98.83% 96.86% 

Class 9 99.79% 99.79% 99.73% 99.38% 99.38% 99.37% 90.78% 

 Class 10 98.63% 98.57% 98.63% 98.54% 98.47% 98.48% 85.54% 

 Class 11 97.03% 96.90% 96.96% 97.87% 97.83% 97.82% 90.66% 

 Class 12 99.94% 99.93% 99.92% 99.94% 99.92% 99.92% 90.98% 

Average 99.04% 99.01% 99.01% 99.08% 99.06% 99.05% 93.48% 
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4.2.4 Random Tree 

The Random Tree (RT) or Classification or regression trees (C&RT trees) was the first decision tree-

based method examined in this work. Table 21 describes the General build and training settings for the 

random tree model. The model is built with a maximum depth of trees of 10 with a maximum child node 

size of 5. Overall maximum number of nods was set to 10 000. The build setting allows the training stage 

to use up to 100 models and select the best one. The stopping criteria for the random tree were set to 

training until the accuracy of the models can not be further improved, this results in maximum accuracy 

of this model settings without time restrictions. It can be noted the total training time is more than 13 

hours, therefore this method is rather computationally heavy. 

The validation and scoring results of this method are shown in. Dataset T1 and Dataset T2 

validated average accuracies of 97.86 % and 97.72 % respectively. Similar to the previous methods class 

1 had the highest validation accuracy (100.0 % in both data sets) and class 11 had the lowest validation 

accuracy. The Scoring stages resulted in an average of 88.27% which is the lowest among all methods 

tested within this work. Interestingly, it is also the only method that experienced an accuracy drop within 

class 1 which corresponds to the relaxing activity class. Although the scoring accuracy of this class is above 

95 % (which is highly accurate), this activity class is among the easiest type to recognize based on uniform 

minimal change across all predictors. Perhaps better results are expected. Overall, the random tree can 

be concluded as the least suitable among all tested methods for the second approach but it outperforms 

both artificial neural networks and logistic regression in the first approach.  

 

Table 21. General build and training settings for the random tree model 

 Parameter  Value 

 Maximum tree depth  10 

 Maximum child node size 5 

 Maximum number of nodes 10 000 

Number of predictors for splitting 1 

Cost increase for output variables Linear 

Maximum number of models to build 100 

Stopping criteria  When accuracy cannot be improved 

Avrage Training time 1h,30m per activity 
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Table 22. Validations and scoring accuracy of the random tree (RT) 

Activity Class 

 Dataset T1  Dataset T2 

AXB 

Training Testing Validation Training Testing Validation 

 Class 1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 95.50% 

 Class 2 99.96% 99.95% 99.97% 99.87% 99.85% 99.84% 76.77% 

 Class 6 97.21% 96.99% 96.99% 94.09% 93.8% 93.88% 92.06% 

 Class 7 96.54% 96.41% 96.39% 97.71% 97.61% 97.55% 92.72% 

 Class 8 95.68% 95.38% 95.36% 97.22% 97.08% 97.05% 92.61% 

Class 9 99.18% 99.18% 99.15% 99.39% 99.4% 99.34% 94.63% 

 Class 10 97.86% 97.71% 97.69% 97.05% 96.92% 97.00% 79.08% 

 Class 11 95.44% 95.19% 95.19% 95.17% 95.12% 94.86% 85.22% 

 Class 12 100.0% 99.98% 99.98% 99.95% 99.93% 99.94% 85.82% 

Average 97.99% 97.87% 97.86% 97.83% 97.75% 97.72% 88.27% 

4.2.5 Random Forest 

The Random Forest was the second decision tree-based method examined in this work. Table 25 

describes the General build and training settings for this method. It can be observed that the settings are 

very similar to random trees as these methods are very similar. The model is built with a maximum depth 

of trees of 10 with a maximum leaf size of 5. Overall maximum number of nods was set to 10 000. The 

build setting allows the training stage to use up to 100 models and select the best one. The stopping 

criteria for the random tree were set to training until the accuracy of the models can not be further 

improved, this results in maximum accuracy of these model settings without time restrictions. In addition, 

the build was set to use bootstrap samples when building trees but the use of out-of-bag samples to 
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estimate the generalization accuracy was disabled. It can be noted the total training time is more than 18 

hours, therefore this method is also computationally heavy. 

Random forest (RF) showed very promising validation and scoring results (Table 26). Dataset T1 

and T2 validated to 99.73 % and 99.67 % respectively. The trend of class 1 being the most accurate 

validating class continuous in random forest reaching 99.99 % and 100 % in datasets T1 and T2. It can be 

easily noted that all validation accuracy levels are above 99.19 % which represents a slight uplift in 

comparison with random trees but on an insignificant scale. 

 

Table 23. General build and training settings for the random forest model 

 Parameter  Value 

Maximum tree depth 10 

Maximum leaf size 5 

Maximum number of nodes 10 000 

Number of predictors for splitting 1 

Cost increase for output variables Linear 

Maximum number of models to build 100 

bootstrap samples when building trees Enable 

Out-of-bag samples  Disabled 

Stopping criteria When accuracy cannot be improved 

Avrage Training time 2h per activity 

 

The scoring stage also shows highly accurate classification, averaging 92.18 % across all activity 

classes. Class 10 which is the hardest class to classify achieved 86.17 % which is the highest among all 

tested models. It can also be noted that class 2 did not score all that well. However, its accuracy was 
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decent in neural networks. Comparing the result of the random forest with random trees shows a 

noticeable improvement. Overall, the results of the random forest are highly accurate.  

Table 24. Validations and scoring accuracy of random forest (RF) 

Activity Class 

 Dataset A  Dataset B 

AXB 

Training Testing Validation Training Testing Validation 

 Class 1 100.0% 100.0% 99.99% 100.0% 100.0% 100.0% 99.99% 

 Class 2 100.0% 99.99% 100.0% 100.0% 99.99% 99.99% 79.64% 

 Class 6 99.98% 99.55% 99.54% 99.95% 99.25% 99.25% 97.72% 

 Class 7 99.97% 99.59% 99.61% 99.97% 99.55% 99.54% 98.13% 

 Class 8 99.97% 99.51% 99.55% 99.98% 99.63% 99.61% 97.78% 

Class 9 100.0% 99.93% 99.91% 99.99% 99.85% 99.86% 88.98% 

 Class 10 99.98% 99.67% 99.68% 99.98% 99.64% 99.63% 86.17% 

 Class 11 99.96% 99.36% 99.32% 99.96% 99.2% 99.19% 95.85% 

 Class 12 100.0% 99.98% 99.98% 100.0% 100.0% 99.99% 85.34% 

Average 99.98% 99.73% 99.73% 99.98% 99.68% 99.67% 92.18% 
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4.2.6 C5 

The C5 was the last decision tree-based method examined in this work. Table 25 describes the 

General build and training settings for this method. The settings used for this method are similar to the 

random trees and random forest as these methods are very similar. The model is built with a maximum 

depth of trees of 10 with a simple build mod. The build favors accuracy over generality. It allows two 

records in each child branch with a pruning severity of 75. The stopping criteria for the method were set 

to training until the accuracy of the models can not be further improved, this results in maximum accuracy 

of this model settings without time restrictions. It can be easily noted that the total training time was less 

than 9 minutes which is extremely fast for the size of the database. Therefore, this method is the least 

computationally heavy method tested in work.  

Similar to previous methods C5 was validated and scored (Table 26). Validation of datasets T1 and 

T2 resulted in an average accuracy of 99.57 % and 99.48 % which is highly accurate. Similar to all tested 

methods class 1 performed perfectly and class 11 validated less accurately. On the other hand, scoring 

results were among the least accurate results (average of 89.13 %). The C5 models sometimes struggle to 

distinguish between writing using pen and paper activity and using a casual use of a computer. This trend 

could also be observed with similar significance in Random Tree (RT) and Random Forest (RF), Support-

vector machines (SVM), and logistical regression (RF). 

 

Table 25. General build and training settings for the 

 Parameter  Value 

Maximum tree depth  10 

Build Mode Simple 

Build faver Accuracy over generality 

Stopping criteria  When accuracy cannot be improved 

Records per child branch  2 

Pruning severity  75 

Average Training time 1m per activity 
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Table 26. Validations and scoring accuracy of C5 

Activity Class 

 Dataset T1  Dataset T2 

AXB 

Training Testing Validation Training Testing Validation 

Class 1 9 99.98% 99.83% 99.81% 99.94% 99.75% 99.75% 89.37% 

 Class 2 12 99.99% 99.96% 99.96% 99.99% 99.96% 99.97% 77.43% 

 Class 3 6 99.84% 99.36% 99.44% 99.78% 99.1% 99.04% 95.12% 

 Class 4 7 99.89% 99.61% 99.63% 99.88% 99.51% 99.49% 86.58% 

 Class 5 8 99.78% 99.14% 99.15% 99.79% 99.26% 99.26% 94.84% 

 Class 6 11 99.72% 98.81% 98.84% 99.67% 98.63% 98.65% 94.7% 

 Class 7 10 99.88% 99.36% 99.34% 99.83% 99.26% 99.25% 84.57% 

 Class 8 2 99.99% 99.98% 99.97% 99.99% 99.96% 99.95% 79.54% 

 Class 9 1 100.0% 99.99% 99.99% 100.0% 100.0% 100.0% 99.99% 

Average 99.90% 99.56% 99.57% 99.87% 99.49% 99.48% 89.13% 

4.2.7 Evaluation of the statistical methods and method selection. 

In this work, two wearable devices were used to measure and record the movements of the test 

subjects. The obtained data were classified using three statistical machine methods (SVM, LR, and ANN) 

and three decision tree-based methods (RT, RF, and C5). These methods classified the records into nine 

classes standing in one location with minimal movement, writing using a pen and paper, climbing the 

stairs case down, climbing the stairs case up, jogging, walking, cleaning floors using the vacuum cleaner, 

using a computer for web surfing, relaxing- laying down with the minimal movements. A close look at the 

analysis showed relaxing- laying down with minimal movements is the most accurate class among all 

methods and cleaning floors using a vacuum cleaner is the hardest activity to classify as it scored lowest 

among all methods.  
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A common trend within scoring results showed that vacuum cleaning is often confused with 

walking as it shares similar movements. Also, it can be easily noted that the decision tree-based methods 

did not handle class 8 (using a computer activity) scoring as well as SVM, LR, and ANN, sometimes it was 

recognized as writing using pen and paper due to the similar posture of the test subjects. Overall, the 

validation of all models resulted in an average of 98.37 % accuracy and a scoring of 90.70 %, the small 

differences between these two values show that the obtained data size used within this work is sufficient.  

Table 27 shows the average accuracy of each tested classification method. Support-vector 

machines showed the highest accuracy levels (99.73 %) and showed a very high average scoring accuracy 

of 91.26 % which is more than an acceptable result. Meanwhile, logistic regression showed the lowest 

validation accuracy with an average of 94.44 % for correct predictions but scored above 90 % which is an 

acceptable outcome too. The random tree method resulted in the lowest validation (97.79 %) and scoring 

(88.27 %) accuracy among tree-based methods. The C5 method showed accurate validation (average 

99.53 %) but did not score well (88.13 %), this indicated that the trained model is likely overfitted to the 

training data.  

On the other hand, the random forest method validated 99.70 % while holding a good scoring 

accuracy of 92.18 %. Therefore, it’s the most suitable method among tree-based methods. Lastly, artificial 

neural networks were validated to average above 99.00 % and scored best (93.48 % correct predictions) 

among all methods. Given the small size of the neural networks, this accuracy can be significantly 

increased with larger neuron counts. A closer look at the scoring results of this method reviled that it 

performs consistently well across all activity classes. Overall, the random forest and artificial neural 

networks can be assumed as the best two methods for sensor-based human activity recognition. 

 

Table 27. Average accuracy among tested classification methods. 

Method Average Validation Average Scoring 

SVM 99.73% 90.85% 

LR 94.44% 90.29% 

ANN 99.04% 93.48% 

RT 97.79% 88.27% 

RF 99.70% 92.18% 

C5 99.53% 89.13% 
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4.2.8 Artificial Neural Networks (Detailed investigation) 

The analysis was performed using the IBM SPSS modeler. In the first stage, models were trained 

and evaluated using cross-validation. The datasets were divided into three subsets of training (30 % of 

total data), testing (30 % of total data), and validation (40 % of total data), and analyzed using MLP models 

with a single hidden layer and seven different model settings. Using six different datasets resulted in 42 

models. These models mostly showed accuracy levels above 99 % which is considerably more accurate 

than similar implementations. Minimum accuracy of 94.59 % was observed in dataset C1, activity class 6 

with 8 neurons in the hidden layer. on other hand, many models resulted in 100.0 % of accuracy across 

multiple activity classes and neuron settings. Table 28 shows the average accuracy of the models across 

all nine classes. In general, it can be observed that increase of number neurons slightly improve the 

accuracy but this accuracy improvement reveres in models with more than 128 hidden layer neurons. A 

closer look shows that these models are limited by the maximum allowed training time (stopping rule 

SR3). Therefore, these models cannot reach the lowest possible error state and highest accuracy within a 

maximum of 15 minutes of allowed training time. Complete and detailed cross-validation results are 

provided in table 32. 

 

Table 28. Cross-validation results of the second approach 

Neuron 
count 

Dataset SR 
Accuracy 

(%) 
Dataset SR 

Accuracy 
(%) 

Dataset SR 
Accuracy 

(%) 

8 

B1 

1 98.10 

C1 

2 98.60 

D1 

2 98.00 

16 2 99.40 2 99.30 2 98.90 

32 2 99.70 2 99.50 2 99.20 

64 2 99.80 2 99.60 2 99.50 

128 2 99.90 2 99.70 2 99.70 

256 3 99.90 2 99.70 3 99.60 

512 3 99.70 3 99.50 3 99.40 

8 

B2 

2 98.60 

C2 

2 99.70 

D2 

1 98.48 

16 1 99.30 2 98.90 2 99.16 

32 2 99.70 2 99.50 2 99.50 

64 2 99.80 2 99.70 2 99.67 

128 3 99.90 2 99.80 2 99.77 

256 3 99.80 3 99.90 3 99.77 

512 3 99.60 3 99.70 3 99.60 
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Figure 20 shows the average classification with an increase in neuron count of the hidden layer. 

The plot clearly shows an increase in accuracy with the increase of neuron count up to 128 neurons and 

it declines rapidly after 256 neurons as the training time limitation prevents fully trained models. The 

average validation accuracy of this stage is similar to the initial implementation using T1 and T2 datasets. 

 

 

Figure 20. Average validation accuracy affected by hidden layer neuron count. 

 

Figure 21 shows the average classification with an increase in neuron count of the hidden layer. 

Considering the model with 16 neurons to be an outlier. The plot clearly shows an increase in accuracy 

with an increase in neuron count and it declines rapidly after 256 neurons as the training time limitation 

prevented fully trained models. It can be noted the average accuracy in this stage is lower in compering 

to the initial method testing stage where datasets T1 and T2 were used. Given that, in this stage, the 

scoring accuracy is calculated using an average of six separate models that are trained with smaller 

datasets and in the initial stage the scoring was done with much larger datasets (T1 and T2), the accuracy 

drop is expected and justified. 

 

 

Figure 21. Average scoring accuracy with respect to Hidden layer neuron count. 
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Table 29 represents the average accuracy of each activity class across multiple datasets. Class 1 is 

the most accurate and often averages 100.0 % of recognition accuracy. Given that it corresponds to 

relaxing and minimal movement, it is a very consistent activity and easy to recognize. All other activity 

classes maintained average accuracy levels above 98.86 %.  

 

Table 29. Cross-validation – Average accuracy of activity classes 

Activity 
Class 

B1 
(%) 

B2 
(%) 

C1 
(%) 

C2 
(%) 

D1 
(%) 

D2 
(%) 

Average 
(%) 

1 100.00 99.97 99.99 99.99 100.00 99.99 99.94 

2 99.99  99.94 99.97 99.94 99.98 99.82 99.94 

6 99.26 98.87 99.04 98.88 99.00 98.14 98.86 

7 99.53  99.41 98.96 99.20 98.85 99.20 99.19 

8 99.28  99.32 99.49 99.36 98.72 99.46 99.27 

9 99.63 99.49 99.64 99.54 99.68 99.68 99.61 

10 99.15 98.97 99.96 99.97 98.72 98.44 99.20 

11 98.89 99.08 98.15 98.19 98.24 98.22 98.46 

12 98.89 99.08 98.15 98.19 98.24 98.22 98.46 

 

The above results demonstrated an extremely accurate recognition result and the high potential 

of the introduced method. To estimate the real performance of the models, they were scored against 

alternative datasets. As mentioned earlier, it is expected to observe noticeable differences in accuracy 

levels in comparison with cross-validation results. The larger the difference, the better indication of the 

larger training dataset requirement. 

Table 30 shows the average scoring accuracy of the models. Scoring dataset B1 and dataset B2 

against each other resulted in an average of 91.35 % and 91.04 % which is impressive. On the other hand, 
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datasets C1 and C2 experienced a more significant drop (an average of 79.45 % and 77.45 %). Further 

investigation showed that these significant accuracy drops were only present in classes 10 and 12 activities 

which are the direct result of inconsistent actions of the test subject during these activities. Scoring 

datasets D1 and D2 against each other results in 88.72 % and 93.60 % which is also an impressive outcome. 

Complete and detailed scoring results are provided in table 33. 

 

Table 30. Scoring results of the second approach 

Neuron 
count 

Dataset Accuracy(%) Dataset Accuracy(%) Dataset Accuracy(%) 

8 

B1XB2 

88.43 

C1XC2 

73.07 

D1XD2 

88.05 

16 94.91 80.32 87.42 

32 89.82 76.77 83.37 

64 89.02 83.73 89.81 

128 94.04 78.82 91.76 

256 93.35 83.12 90.90 

512 89.90 80.28 89.70 

8 

B2XB1 

92.80 

D2XD1 

77.61 

D2XD1 

92.52 

16 89.19 77.39 93.61 

32 87.83 78.54 96.32 

64 95.82 78.09 95.23 

128 96.79 78.52 93.52 

256 96.05 77.79 94.42 

512 78.82 74.25 89.59 

 

Table 31 shows the average scoring accuracy of each activity class across multiple models and 

datasets. In general Classes, 1, 6, 7, and 8 show highly accurate scoring results. On the other hand, class 

10 average accuracy suffers from significant accuracy loss. A closer look shows that this accuracy loss is 

mainly present in the experiment using datasets C1 and C2. Otherwise, the other datasets performed 

decently across all classes and models. In total, the validation accuracy averaged 99.40 % and the scoring 
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accuracy averaged 86.94 %. This difference is smaller for specific model settings. Further observations of 

each evaluation showed accuracy levels increase with an increase in hidden layer neuron count. Typically, 

this relation reverses after 128 or 256 neurons duo to the maximum allowed training times (15 minutes 

per model). The model setting with 256 neurons was selected to be the most suitable model setting. The 

average validation and scoring accuracies of these models are 99.78 % and 89.27 % respectively which 

results in approximately 10 % difference. This is a significant improvement over the previous 

implementation. 

 

Table 31. Scoring – Average accuracy of activity classes 

Activity 

Class 

B1XB2 

(%) 

B2XB1 

(%) 

C1XC2 

(%) 

C2XC1 

(%) 

D1XD2 

(%) 

D2XD1 

(%) 

Average 

(%) 

1 99.99  99.94 99.97 99.94 99.98 99.82 99.94 

2 100.0 99.97 99.99 99.99 100.0 99.99 99.99 

6 99.26  98.87 99.04 98.88 99.00 98.14 98.86 

7 99.53  99.41 98.96 99.20 99.20 98.85 99.19 

8 99.28  99.32 99.49 99.36 98.72 99.46 99.27 

9 99.63  99.49 99.64 99.54 99.68 99.68 99.61 

10 99.15  98.97 99.96 99.97 98.72 98.44 99.20 

11 98.89  99.08 98.15 98.19 98.24 98.22 98.46 

12 99.95  99.95 99.93 99.92 99.93 99.88 99.93 

 

In the next stage, the importance of the predictors (Sensors) was investigated, this provides 

valuable information about the relation of activities to certain sensors. Figures 22 and 23 represent 
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climbing the stairs down and up respectively. Both activities show similar relations to sensor data. In both 

models, the leg magnetometer across the Y axis is the most important predictor as it can sense the height 

difference rotation. Overall, the first three important predictors are based on magnetometer data on both 

activities.  

 

Figure 22. Predictors importance for climbing the stairs down activity class 

 

 

Figure 23. Predictors importance for climbing the stairs up activity class 
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Figures 24 and 25 represent predictors importance for using a personal computer and writing 

using a pen respectively. Both activities show a high correlation to hand movements as the most important 

predictors are based on wrist accelerometer data. Although the direction is different. The inactivity of the 

legs during these activities is an important factor for correct prediction as well. 

 

 

Figure 24. Predictors importance for using a personal computer activity class 

 

  

Figure 25. Predictors importance for writing using a pen activity class 
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Figures 26 shows the predictors importance of relaxing with minimal movements. The inactivity 

of the test subject during this activity class is the most important feature of the data. Figure 26 clearly 

shows the most important predictors for this activity are based on acoumeters and a magnetometer 

located on the ankle of the test subject. A similar characteristic can be observed in the standing activity 

class (figure 27). However, wrist sensors play a bit more significant role as it helps the model distinguish 

between standing and relaxing activity class. 

 

 

Figure 26. Predictors importance for the relaxing activity class  

 

 

Figure 27. Predictors importance for the standing activity class. 
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Figure 28 shows predictors importance for running activity. A good balance between both wrist 

and ankle sensors can be observed as running involves both hand and leg movement. Similar is also true 

for walking activity as it also involves hands and legs movements. However, the importance of the 

predictors (figure 28) is less balanced in compering to running activity. This is due to the different nature 

of body movement while walking. 

 

 

Figure 28. Predictors importance for the running activity class 

 

 

Figure 29. Predictors importance for the walking activity class 
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Figure 30 shows predictors importance for vacuum cleaning activity. Involves very complex 

movements of the body and it is very challenging for most models to provide a good classification. From 

the predictor’s importance chart, horizontal movements of the arm are the highest signature of this 

activity, but sensors on the ankle also play a role in the recognition of this activity.  

 

Figure 30. Predictors importance for the vacuum cleaning activity class 

  

 To Improve recognition accuracy, outliers were detected by use of the majority voting 

technique. The data were divided into segments with a size of 120 records (which is approximately 2 

seconds in real-time recognition) and the activity type with the most occurrences was selected as the 

segment's outcome. This method eliminates prediction noise (minor false detections) but it introduces 

additional false recognition at the moment of activity change, given the non-sensitive nature of data slight 

delay in recognition is negligible. In the other words, with the buffer size of 120 samples and sampling 

frequency of 66.6Hz, the worst recognition delay will be in less than 2 seconds in real-time applications. 

  



72 

 

5 CONCLUSIONS 

This work proposed two different approaches to recognizing human activities within smart 

homes. The first approach used room air quality data (Humidity, CO2, temperature) in combination with 

movement-based data (accelerometer, gyroscope, magnetometer) and the second approach was entirely 

based on body movement-based data (accelerometer, gyroscope, magnetometer). The measured data 

were used to recognize multiple predefined human activity classes such as relaxing with minimal 

movements (Class 1), using the computer for checking emails and web surfing (Class 2), preparing tea and 

sandwich eating breakfast (Class 3), cleaning the room by wiping the Tables desks and vacuum cleaning 

(Class 4), exercising using the stationary bicycle (Class 5), climbing down the stairs (Class 6), climbing up 

the stairs (Class 7), running (Class 8), standing (Class 9), vacuum-cleaning (Class 10), walking (Class 11), 

and writing using a pen (Class 12). Four different test subjects were used to perform the measurement 

resulting in datasets A1, A2, B1, B2, C1, C2, D1, and D2 where the letters are assigned to the test subject 

and numbers to the different measurement dates. 

As mentioned above the first approach proposed recognizing human activities in a single occupant 

room using room air quality data (Humidity, CO2, temperature) in combination with movement-based 

data (accelerometer, gyroscope, magnetometer). The classification was performed using logistic 

regression and artificial neural networks (multilayer perceptron) where logistic regression was used as a 

reference for the evaluation of the main purposed method that is using artificial neural networks. The 

Hosmer and Lemeshow test and omnibus test showed a good fit for the models. The result showed 

average classification accuracy of 97.8 % and minimum average accuracy of 91.2 %.  

The accuracy of models based on dataset A1 ranged between 97.4 % to 100.0 % and for dataset 

A2 the accuracy ranged between 91.2 % and 99.9 %. In both datasets Class 3 yields the highest accuracy 

and Class 4 the lowest. The main contributor to the reduced classification accuracy was identified as less 

consistent movements during cleaning activity. On the contrary, relaxing (Class 1) and using a stationary 

bike (Class 5) are relevantly consistent activities (with regards to movement patterns), hence higher 

accuracy was observed. To develop a better understanding of the results, the obtained models were 

examined in terms of the odds ratio, regression weights, test of significance, and Wald statistic. With some 

exceptions, the odds_ratio of both datasets remained within a similar range which is a good indication of 

consistency within the analysis result. Further investigations showed that activity class 1 is mainly affected 

by temperature and activity classes 2,4, and 5 are mostly affected by temperature and accelerometer-

based data. 

Once the logistic regression set an accuracy reference point, the multilayer perceptron artificial 

neural networks were implemented in the IBM SPSS Modeler 18 software. Initially, the models were 

developed and evaluated using a partitioning method resulting in relevantly similar validation results for 

both datasets. Model 3 held the highest accuracy, and model 11 the lowest, the models 1 to 6 were all 

above 99.50 % while models 7 to 11 showed less impressive results. Deeper investigations showed that 

the models with the lower number of neuron counts (models 1 to 6) are mainly influenced by room 

measurement data (CO2, temperature, humidity).  
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Meanwhile, the models with a higher number of neurons were mainly based on wearable Device 

data (accelerometer sensors and gyroscopes) which are changing at a much faster pace. In the latter case, 

the predictor's importance was more balanced and spread. The validation results of multilayer perceptron 

models 1 to 6 surpassed the accuracy of logistic regression by staying above 98.92 % in all classes where 

the logistical regression score average of 97.8 %. The superiority of the artificial neural networks became 

significantly more apparent by performing model scoring where a significant decrease in accuracy was 

observed with logistic regression models. When it comes to scoring a decrease in prediction accuracy is 

always expected. Increasing the size of the training datasets closes the gap between the validation and 

scoring accuracy. In the case of logistic regression, the gap was significant enough to conclude that the 

models are overfitting. In the case of artificial neural networks, the results were more consistent and 

acceptable for activity classes 1, 2, 3, and 5. Similar to the previous cases, Class 4 performed poorly due 

to inconsistencies within movements during this activity class. 

Overall, the obtained results showed that the first approach provides a promising outcome. The 

second approach was designed to address shortcomings of the first approach, inaccurate predefined 

activity classes, use of a single test subject, utilization of two different measurement systems, and 

significant differences between cross-validation, and scoring results. The above issues were resolved by 

the use of a new methodology that utilizes a novel data collection method to recognize nine different 

human activity classes with impressive accuracy levels.  

The obtained data were classified using three statistical machine methods (SVM, LR, and ANN) 

and three decision tree-based methods (RT, RF, and C5). Support-vector machines showed the highest 

validation accuracy levels (99.73 %) and showed a very high average scoring accuracy of 91.26 % which is 

more than an acceptable result. Meanwhile, logistic regression showed the lowest validation accuracy 

with an average of 94.44 % for correct predictions but scored above 90 % which is an acceptable outcome 

too. The random tree method resulted in the lowest validation (97.79 %) and scoring (88.27 %) accuracy 

among tree-based methods. The C5 method showed accurate validation (average 99.53 %) but did not 

score well (88.13 %), this indicated that the trained model is likely overfitted to the training data.  

On the other hand, the random forest method validated 99.70% while holding a good scoring 

accuracy of 92.18 %. Therefore, it’s the most suitable method among tree-based methods. Lastly, artificial 

neural networks were validated to average above 99.00 % and scored best (93.48 % correct predictions) 

among all methods. Given the small size of the neural networks, this accuracy can be significantly 

increased with larger neuron counts. A closer look at the scoring results of this method reviled that it 

performs consistently well across all activity classes. Overall, the random forest and artificial neural 

networks can be assumed as the best two methods for sensor-based human activity recognition. 

After selecting Artificial neural networks as the most suitable classification method, The 

developed models were cross-validated to accuracy levels above 98 % across all activity classes. Thanks 

to the use of higher data collection rates and subsequently larger datasets, the accuracy difference 

between cross-validation and scoring were reduced to only 10 %. In class 7 which was dedicated to 

vacuum cleaning activity, dataset C1 and dataset C2 struggled to score against each other but the other 

datasets scored well overall activity class. This could be due to measurement errors or inconsistent 
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behavior of the test subject during this activity class. Overall, the cross-validation accuracy levels were 

similar to the previous approach but scoring results were significantly improved. Besides using a superior 

data collection method, the second approach is using a simpler and less computationally intensive MLP 

structure. Allowing longer training times may increase the accuracy levels in neural networks with higher 

neuron count would certainly result in even more accurate results. Also, the results may further improve 

by using filters and data buffering to eliminate Outliers within the prediction results.  

Although there are many contributions in the field of human activity recognition, this study holds 

its novelty in terms of methodology, measurement techniques, and predefined activity classes. In terms 

of accuracy of activity recognition, this study is on par with or surpasses most similar previous works. In 

terms of predefined activities, the work studied new classes of activities where similar works are mainly 

focused on stair climbing, running, walking, and fall detection. The predefined activities in this work do 

not represent all possible daily activities performed by humans. But, the highly accurate obtained results 

show a promising path for expansion. In the future, the work will expand in terms of the number of 

recognizable activities, and the number of test subjects.  
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Appendices 

 

Table 32. Detailed and complete list of cross-validation accuracy for the second approach 

 
  

Dataset Model Number NN SSR Climbing down Climbing up PC surfing Relaxing Runing Standing Vacum cleaning Walking Writing Overall accuracy

A1 1 8 SR1 97.77% 99.22% 100.00% 100.00% 96.96% 98.65% 97.71% 95.23% 99.77% 98.37%

A1 2 16 SR2 99.08% 99.41% 99.97% 100.00% 99.14% 99.41% 98.52% 99.03% 99.93% 99.39%

A1 3 32 SR2 99.39% 99.45% 100.00% 99.99% 99.65% 99.82% 99.34% 99.49% 100.00% 99.68%

A1 4 64 SR2 99.62% 99.60% 100.00% 100.00% 99.79% 99.87% 99.65% 99.69% 100.00% 99.80%

A1 5 128 SR2 99.73% 99.74% 100.00% 100.00% 99.87% 99.93% 99.78% 99.79% 100.00% 99.87%

A1 6 256 SR3 99.73% 99.72% 99.99% 100.00% 99.85% 99.93% 99.70% 99.75% 100.00% 99.85%

A1 7 512 SR3 99.50% 99.58% 99.99% 99.98% 99.71% 99.78% 99.34% 99.25% 99.95% 99.68%

A2 1 8 SR2 97.10% 98.49% 99.88% 99.93% 97.64% 98.48% 97.05% 97.60% 99.86% 98.45%

A2 2 16 SR1 98.57% 99.55% 99.99% 100.00% 98.96% 99.27% 98.47% 98.50% 99.99% 99.26%

A2 3 32 SR2 99.04% 99.55% 99.99% 100.00% 99.66% 99.69% 99.26% 99.30% 99.98% 99.61%

A2 4 64 SR2 99.48% 99.59% 99.98% 100.00% 99.81% 99.81% 99.55% 99.70% 100.00% 99.77%

A2 5 128 SR3 99.48% 99.63% 99.99% 100.00% 99.85% 99.91% 99.75% 99.77% 100.00% 99.82%

A2 6 256 SR3 99.40% 99.61% 99.97% 100.00% 99.80% 99.71% 99.50% 99.61% 99.97% 99.73%

A2 7 512 SR3 99.01% 99.47% 99.78% 99.86% 99.49% 99.55% 99.18% 99.11% 99.83% 99.48%

B1 1 8 SR2 99.19% 99.10% 99.97% 100.00% 99.66% 99.70% 99.87% 94.59% 99.98% 99.12%

B1 2 16 SR2 98.52% 98.67% 99.91% 99.97% 99.08% 99.31% 99.94% 97.67% 99.85% 99.21%

B1 3 32 SR2 98.82% 98.70% 99.97% 99.99% 99.24% 99.69% 99.95% 98.62% 99.87% 99.43%

B1 4 64 SR2 99.07% 98.86% 100.00% 99.97% 99.51% 99.69% 99.98% 98.93% 99.90% 99.55%

B1 5 128 SR2 99.17% 99.01% 99.98% 99.99% 99.54% 99.66% 99.97% 99.03% 99.97% 99.59%

B1 6 256 SR2 99.30% 99.28% 99.98% 100.00% 99.74% 99.74% 99.99% 99.20% 99.99% 99.69%

B1 7 512 SR3 99.19% 99.10% 99.97% 100.00% 99.66% 99.70% 99.99% 99.00% 99.98% 99.62%

B2 1 8 SR2 96.76% 98.67% 99.90% 99.99% 98.86% 99.00% 99.97% 94.66% 99.87% 98.63%

B2 2 16 SR2 98.68% 98.82% 99.87% 99.99% 98.88% 99.49% 99.95% 97.73% 99.92% 99.26%

B2 3 32 SR2 99.13% 99.22% 99.94% 100.00% 100.00% 99.60% 99.97% 98.76% 99.90% 99.61%

B2 4 64 SR2 99.33% 99.37% 99.97% 100.00% 99.43% 99.68% 99.99% 98.99% 99.92% 99.63%

B2 5 128 SR2 99.48% 99.54% 99.97% 100.00% 99.50% 99.74% 99.97% 99.28% 99.96% 99.72%

B2 6 256 SR3 99.52% 99.54% 99.97% 100.00% 99.52% 99.73% 99.99% 99.22% 99.95% 99.72%

B2 7 512 SR3 99.24% 99.27% 99.93% 99.98% 99.35% 99.52% 99.98% 98.66% 99.92% 99.54%

C1 1 8 SR2 97.18% 96.60% 99.96% 100.00% 95.80% 98.49% 95.89% 94.72% 99.72% 97.60%

C1 2 16 SR2 98.94% 99.53% 99.98% 100.00% 97.12% 99.58% 98.38% 96.77% 99.92% 98.91%

C1 3 32 SR2 98.95% 99.33% 99.98% 100.00% 99.34% 99.92% 98.92% 98.83% 99.94% 99.47%

C1 4 64 SR2 99.30% 99.71% 99.98% 100.00% 99.55% 99.94% 99.33% 99.15% 99.98% 99.66%

C1 5 128 SR2 99.53% 99.76% 99.99% 100.00% 99.77% 99.99% 99.64% 99.51% 100.00% 99.80%

C1 6 256 SR3 99.59% 99.80% 99.99% 100.00% 99.78% 99.97% 99.57% 99.54% 99.99% 99.80%

C1 7 512 SR3 99.48% 99.69% 99.99% 100.00% 99.67% 99.85% 99.31% 99.16% 99.99% 99.68%

C2 1 8 SR1 96.57% 98.36% 99.67% 100.00% 98.85% 99.26% 94.84% 94.71% 99.67% 97.99%

C2 2 16 SR2 98.00% 98.68% 99.68% 100.00% 99.02% 99.41% 98.09% 97.65% 99.81% 98.93%

C2 3 32 SR2 97.98% 98.69% 99.88% 100.00% 99.32% 99.87% 98.85% 98.56% 99.87% 99.22%

C2 4 64 SR2 98.56% 99.05% 99.91% 99.99% 99.71% 99.87% 99.38% 99.16% 99.94% 99.51%

C2 5 128 SR2 98.81% 99.13% 99.89% 100.00% 99.85% 99.90% 99.55% 99.42% 99.98% 99.61%

C2 6 256 SR3 98.72% 99.11% 99.88% 100.00% 99.82% 99.85% 99.51% 99.34% 99.96% 99.58%

C2 7 512 SR3 98.35% 98.93% 99.83% 99.97% 99.67% 99.61% 98.85% 98.73% 99.93% 99.32%

Overall Average 98.86% 99.19% 99.94% 99.99% 99.27% 99.61% 99.20% 98.46% 99.93% 99.38%
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Table 33. Detailed and complete list of scoring accuracy for the second approach 

 

Dataset Model Number NN SSR Climbing down Climbing up PC surfing Relaxing Runing Standing Vacum cleaning Walking Writing Overall accuracy

A1XA2 1 8 SR1 97.11% 84.12% 82.74% 99.99% 93.41% 91.39% 89.37% 74.13% 83.60% 88.43%

A1XA2 2 16 SR1 97.94% 99.25% 89.49% 99.99% 98.47% 92.92% 90.51% 96.07% 89.55% 94.91%

A1XA2 3 32 SR1 82.71% 99.43% 72.40% 99.99% 99.17% 91.86% 90.32% 97.98% 74.56% 89.82%

A1XA2 4 64 SR3 98.33% 84.27% 68.91% 100.00% 99.63% 91.96% 90.68% 98.47% 68.91% 89.02%

A1XA2 5 128 SR3 98.47% 99.49% 78.93% 100.00% 99.67% 90.68% 98.15% 98.15% 82.83% 94.04%

A1XA2 6 256 SR3 98.31% 99.20% 77.97% 100.00% 99.48% 93.73% 89.99% 97.58% 83.85% 93.35%

A1XA2 7 512 SR3 95.78% 97.73% 74.05% 98.47% 96.85% 92.28% 89.10% 92.89% 71.97% 89.90%

A2XA1 1 8 SR2 97.70% 98.77% 94.93% 98.28% 98.15% 94.87% 69.43% 88.92% 94.15% 92.80%

A2XA2 2 16 SR1 98.58% 91.65% 82.99% 100.00% 98.61% 70.40% 95.00% 93.62% 71.85% 89.19%

A2XA3 3 32 SR1 98.91% 99.38% 94.09% 100.00% 98.90% 72.47% 75.56% 75.56% 75.56% 87.83%

A2XA4 4 64 SR3 99.41% 99.36% 99.36% 99.36% 99.33% 76.67% 91.30% 98.03% 99.57% 95.82%

A2XA5 5 128 SR3 99.23% 99.48% 88.33% 100.00% 99.41% 94.94% 92.31% 97.61% 99.76% 96.79%

A2XA6 6 256 SR3 98.68% 99.38% 85.50% 99.92% 98.65% 97.12% 93.82% 93.82% 97.54% 96.05%

A2XA7 7 512 SR3 73.56% 73.84% 63.54% 97.24% 73.52% 70.91% 97.54% 68.81% 90.39% 78.82%

B1XB2 1 8 SR2 95.95% 96.66% 87.37% 87.21% 67.57% 46.47% 19.54% 80.80% 76.09% 73.07%

B1XB2 2 16 SR2 78.99% 96.74% 86.06% 80.07% 80.05% 81.33% 68.00% 74.95% 76.71% 80.32%

B1XB2 3 32 SR2 92.24% 96.77% 87.80% 55.95% 92.04% 72.50% 38.33% 79.11% 76.16% 76.77%

B1XB2 4 64 SR2 96.67% 95.40% 85.94% 96.00% 94.23% 85.44% 48.50% 77.15% 74.28% 83.73%

B1XB2 5 128 SR2 96.35% 96.07% 87.83% 99.63% 93.49% 86.15% 22.81% 49.89% 77.19% 78.82%

B1XB2 6 256 SR2 95.98% 96.19% 87.86% 99.71% 92.62% 85.88% 34.04% 78.62% 77.18% 83.12%

B1XB2 7 512 SR3 85.58% 92.27% 85.54% 97.69% 92.02% 85.32% 34.24% 73.13% 76.73% 80.28%

B2xB1 1 8 SR2 90.41% 96.46% 94.73% 82.45% 88.02% 90.01% 11.41% 57.36% 87.62% 77.61%

B2xB1 2 16 SR2 94.18% 93.83% 94.71% 82.64% 89.55% 89.10% 3.64% 57.23% 91.64% 77.39%

B2xB1 3 32 SR2 93.15% 96.03% 94.76% 84.31% 90.70% 89.82% 5.48% 60.68% 91.90% 78.54%

B2xB1 4 64 SR2 92.15% 95.99% 94.72% 82.64% 90.22% 89.75% 6.58% 59.03% 91.73% 78.09%

B2xB1 5 128 SR2 96.30% 96.07% 94.70% 82.64% 91.16% 89.81% 5.29% 58.83% 91.84% 78.52%

B2xB1 6 256 SR3 96.41% 95.96% 94.61% 82.17% 90.41% 87.60% 5.66% 56.22% 91.10% 77.79%

B2xB1 7 512 SR3 89.59% 93.33% 91.51% 91.40% 75.84% 85.17% 13.08% 55.48% 72.84% 74.25%

C1XC2 1 8 SR2 96.62% 98.19% 87.58% 99.44% 85.63% 86.33% 76.02% 74.67% 87.99% 88.05%

C1XC2 2 16 SR2 96.57% 82.54% 84.52% 99.99% 97.16% 87.07% 57.09% 93.90% 87.98% 87.42%

C1XC2 3 32 SR2 94.98% 83.51% 67.50% 83.02% 97.41% 87.01% 69.91% 95.99% 71.01% 83.37%

C1XC2 4 64 SR2 97.23% 98.30% 84.39% 100.00% 98.22% 87.10% 58.87% 96.27% 87.95% 89.81%

C1XC2 5 128 SR2 97.71% 98.17% 84.37% 94.94% 98.40% 87.08% 80.57% 96.57% 88.01% 91.76%

C1XC2 6 256 SR3 97.55% 98.40% 84.47% 83.04% 97.77% 86.87% 86.92% 95.08% 88.00% 90.90%

C1XC2 7 512 SR3 96.70% 97.97% 84.16% 82.57% 96.92% 85.87% 83.27% 92.47% 87.40% 89.70%

C2XC1 1 8 SR1 97.24% 97.81% 85.71% 98.11% 89.33% 89.48% 87.80% 88.73% 98.48% 92.52%

C2XC1 2 16 SR2 97.65% 98.87% 99.11% 99.99% 83.94% 89.75% 86.81% 87.42% 98.93% 93.61%

C2XC1 3 32 SR2 98.21% 98.73% 98.88% 99.70% 93.99% 90.03% 93.65% 96.05% 97.65% 96.32%

C2XC1 4 64 SR2 97.36% 98.83% 97.13% 99.99% 93.46% 89.79% 91.29% 95.88% 93.38% 95.23%

C2XC1 5 128 SR2 97.17% 99.32% 99.45% 99.96% 82.20% 89.80% 88.14% 94.58% 91.04% 93.52%

C2XC1 6 256 SR3 96.92% 98.73% 94.10% 99.99% 94.14% 89.67% 93.68% 94.80% 87.78% 94.42%

C2XC1 7 512 SR3 94.26% 85.83% 89.49% 97.90% 92.66% 80.93% 87.97% 92.27% 85.02% 89.59%

Overall Average 94.88% 95.20% 87.20% 93.72% 92.44% 86.03% 64.56% 82.97% 85.42% 86.94%


