
LETTER • OPEN ACCESS

Future climate change significantly alters
interannual wheat yield variability over half of
harvested areas
To cite this article: Weihang Liu et al 2021 Environ. Res. Lett. 16 094045

 

View the article online for updates and enhancements.

You may also like
Predicting spatial and temporal variability
in crop yields: an inter-comparison of
machine learning, regression and process-
based models
Guoyong Leng and Jim W Hall

-

Time-varying impact of climate on maize
and wheat yields in France since 1900
Andrej Ceglar, Matteo Zampieri, Nube
Gonzalez-Reviriego et al.

-

Decomposing global crop yield variability
Tamara Ben-Ari and David Makowski

-

This content was downloaded from IP address 89.245.22.240 on 02/12/2022 at 08:05

https://doi.org/10.1088/1748-9326/ac1fbb
/article/10.1088/1748-9326/ab7b24
/article/10.1088/1748-9326/ab7b24
/article/10.1088/1748-9326/ab7b24
/article/10.1088/1748-9326/ab7b24
/article/10.1088/1748-9326/aba1be
/article/10.1088/1748-9326/aba1be
/article/10.1088/1748-9326/9/11/114011


Environ. Res. Lett. 16 (2021) 094045 https://doi.org/10.1088/1748-9326/ac1fbb

OPEN ACCESS

RECEIVED

14 September 2020

REVISED

9 August 2021

ACCEPTED FOR PUBLICATION

20 August 2021

PUBLISHED

3 September 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Future climate change significantly alters interannual wheat yield
variability over half of harvested areas
Weihang Liu1,2,3, Tao Ye1,2,3,4,∗, Jonas Jägermeyr5,6,7, Christoph Müller7, Shuo Chen1,2,3, Xiaoyan Liu1,2,3

and Peijun Shi1,2,3,8

1 Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875,
People’s Republic of China

2 Key Laboratory of Environmental Change andNatural Disaster,Ministry of Education, Faculty of Geographical Science, BeijingNormal
University, Beijing 100875, People’s Republic of China

3 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University,
Beijing 100875, People’s Republic of China

4 The Frederick S. Pardee Center for the Study of the Longer-Range Future andDepartment of Earth and Environment, BostonUniversity,
Boston, MA 02215, United States of America

5 NASA Goddard Institute for Space Studies, New York, NY 10025, United States of America
6 Center for Climate Systems Research, Columbia University, New York, NY 10025, United States of America
7 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14412 Potsdam, Germany
8 Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining
810016, People’s Republic of China

∗ Author to whom any correspondence should be addressed.

E-mail: yetao@bnu.edu.cn

Keywords: yield coefficient-of-variation, crop model emulator, contributions of climatic drivers, yield stability, global food security

Supplementary material for this article is available online

Abstract
Climate change affects the spatial and temporal distribution of crop yields, which can critically
impair food security across scales. A number of previous studies have assessed the impact of
climate change on mean crop yield and future food availability, but much less is known about
potential future changes in interannual yield variability. Here, we evaluate future changes in
relative interannual global wheat yield variability (the coefficient of variation (CV)) at 0.25◦ spatial
resolution for two representative concentration pathways (RCP4.5 and RCP8.5). A multi-model
ensemble of crop model emulators based on global process-based models is used to evaluate
responses to changes in temperature, precipitation, and CO2. The results indicate that over 60% of
harvested areas could experience significant changes in interannual yield variability under a
high-emission scenario by the end of the 21st century (2066–2095). About 31% and 44% of
harvested areas are projected to undergo significant reductions of relative yield variability under
RCP4.5 and RCP8.5, respectively. In turn, wheat yield is projected to become more unstable across
23% (RCP4.5) and 18% (RCP8.5) of global harvested areas—mostly in hot or low fertilizer input
regions, including some of the major breadbasket countries. The major driver of increasing yield
CV change is the increase in yield standard deviation, whereas declining yield CV is mostly caused
by stronger increases in mean yield than in the standard deviation. Changes in temperature are the
dominant cause of change in wheat yield CVs, having a greater influence than changes in
precipitation in 53% and 72% of global harvested areas by the end of the century under RCP4.5
and RCP8.5, respectively. This research highlights the potential challenges posed by increased yield
variability and the need for tailored regional adaptation strategies.

1. Introduction

Interannual crop yield variability is one of the
primary drivers of food system instability (IPCC

2019). Assessing the effects of climate change on yield
variability is critical to understanding the impact of
climate change on food security (FAO 2019). Due to
trends in global warming (Lobell et al 2011) and the

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac1fbb
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac1fbb&domain=pdf&date_stamp=2021-9-3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5037-8410
https://orcid.org/0000-0002-8368-0018
https://orcid.org/0000-0002-9491-3550
mailto:yetao@bnu.edu.cn
http://doi.org/10.1088/1748-9326/ac1fbb


Environ. Res. Lett. 16 (2021) 094045 W Liu et al

changing frequency and intensity of climate extremes
(Trnka et al 2014), potential decreases in the mean
yields of crops and an increase in the interannual
yield variability could adversely affect the livelihoods
of producers, create spikes in food prices, lead to hun-
ger (IPCC 2014), and even cause political instabilities
at a regional level (Sternberg 2011). Previously, the
impact of climate change on mean crop yield (Lobell
et al 2011, Rosenzweig et al 2014) has been investig-
ated with a focus on food availability (Campbell et al
2016). From a climate risk perspective, the concept
of time of climate impact emergence has recently
been introduced, linkingmean yield changeswith his-
torical yield variability (Jägermeyr et al 2021). Yet,
the impact of climate change on future interannual
yield variability has not received sufficient attention
(Wheeler et al 2013, Challinor et al 2014).

Interannual yield variability has always been one
of the key risk indicators of crop production. Early
studies have either assumed a stationary process
without considering variability changes (Ray et al
2015, Ceglar et al 2016, Tao et al 2016, Matiu et al
2017) or linked changes in variability to non-climatic
factors (Kucharik and Ramankutty 2005, Döring and
Reckling 2018, Knapp and Van Der Heijden 2018,
Müller et al 2018). Recent studies have provided evid-
ence for changes in the interannual yield variability of
major cereal crops and identified significant impacts
of climate change at the global scale 0.5◦ grid level
or at the country level (Osborne and Wheeler 2013,
Iizumi and Ramankutty 2016). These studies have
been followed up by regional, county-level analyses
of the interannual yield variability of maize (Hawkins
et al 2013, Lobell et al 2014, Leng 2017). Efforts have
also been devoted to projecting the impact of future
climate change on interannual yield variability, focus-
ing on wheat and maize at global and regional scales,
using process-based crop models (Moriondo et al
2011, Liu et al 2019) and statistical models (Urban
et al 2012, Ben-Ari et al 2018, Tigchelaar et al 2018).
Results from these studies have indicated substantial
changes in interannual yield variability as a result of
climate change, and that the sign and magnitude of
change varies by production region.

Climate-related risk assessment on crop yield
requires reflecting the spatial heterogeneity of both
agricultural systems and climate change effects rel-
evant for interannual yield variability (Benami et al
2021). There are still major research gaps in our
understanding of these linkages across regions. In
terms of major staple crops, only changes in yield
coefficient of variation (CV) of wheat (Liu et al
2019) and maize have been analysed (Tigchelaar et al
2018) at the global scale. As these studies have used
either site-based simulation or globally homogen-
eous warming perturbations, it is difficult to deduce
robust conclusions on changes in interannual yield
variability, reflecting the spatial heterogeneity of cli-
mate projections (Leng and Hall 2020). In addition,

although the mechanism of impact and the mean
yield response to change in climate drivers (e.g. tem-
perature, precipitation, and CO2) have been intens-
ively discussed (Schlenker and Roberts 2009, Zhu et al
2019), the response of interannual yield variability
to changes in the various climate drivers is not well
understood.

The aim of this study is to evaluate potential
changes in interannual wheat yield variability under
two climate change scenarios globally, and to attrib-
ute individual contributions of temperature, precipit-
ation, and CO2. The main research questions are: (a)
How could climate change affect interannual wheat
yield variability on current wheat-growing areas by
the end of the century? (b) How much of these
changes can be attributed to changes in temperature,
precipitation, and their interaction, respectively? (c)
To what extent can elevated CO2 concentrations mit-
igate potential increases in yield variability? Answers
to these questions will provide crucial information
for climate risk assessment and effective adaptation
measures.

We address these questions by conducting multi-
model ensemble simulations with crop model emu-
lators forced with global climate projections at high
spatial resolution (0.25◦). Statistical cropmodel emu-
lators are developed based on simulations from
global gridded crop models (GGCMs), facilitated
by AgMIP’s Global Gridded Crop Model Intercom-
parison Project (GGCMI). Crop model emulators
have recently gained popularity as a powerful tool
for assessing the impact of climate change on crop
yield (Lobell and Burke 2010, Holzkämper et al
2012, Oyebamiji et al 2015, Raimondo et al 2021,
Müller et al 2021). Emulators substantially improve
computational efficiency and reduce data-processing
requirements compared to running the originalmod-
els, without sacrificing much prediction performance
(Blanc and Sultan 2015, Blanc 2017, Folberth et al
2019, Franke et al 2020a, Ringeval et al 2021). The
use of a large ensemble of GCM projections in com-
bination with the ensemble of crop yield emulat-
ors allows for comprehensively evaluating changes in
future yield variability and the associated distribution
of extreme yield levels.

2. Materials andmethods

2.1. Input data
2.1.1. Gridded crop model data for emulator
construction
The input and output data for the simulation of global
gridded wheat yield were obtained from the GGCMI
phase 2 experiment dataset (Franke et al 2020b). The
spatial resolution of this dataset is 0.5◦. The input
data included four different data types, i.e. climate,
soil, atmospheric CO2 concentration, and nitro-
gen fertilizer application rates (table S1 (available
online at stacks.iop.org/ERL/16/094045/mmedia),
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Franke et al 2020b). Baseline climate inputs were
used from the AgMIP Modern-Era Retrospective
Analysis for Research and Applications (AgMERRA)
forcing dataset (1980–2010), including daily max-
imum and minimum temperatures, precipitation,
and solar radiation (Ruane et al 2015). Based on these
baseline reference simulations, the GGCMI phase 2
experiment used systematic perturbations in each
grid cell with seven temperature levels (from−1 K to
+6K in 1K interval, with+5K skipped), nine precip-
itation levels (from−50% to+30%, in 10% interval,
with −40% skipped), four CO2-concentration levels
(360, 510, 660, and 810 ppm), and three nitrogen
levels (10, 60, and 200 kg ha−1) (table S2; Franke et al
2020b). Twelve GGCMswere then forced with each of
these perturbations of the original reanalysis weather
data. The GGCMs used a national and subnational
crop calendar for wheat that is based on Sacks et al
(2010), Portmann et al (2010), and environment-
based extrapolations (Elliott et al 2015).

The output data contained irrigated and rain-
fed yield simulations from 1980 to 2010 for each
of the different perturbation levels. In this study,
we selected 8 out of the 12 crop models in the
GGCMI phase 2 experiment for constructing the
emulators. These were APSIM-UGOE, EPIC-IIASA,
EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, pDSSAT,
and PEPIC. CARAIB was not included as it did not
consider nitrogen stress. ORCHIDEE-crop was not
included as it did not provide simulation results for
springwheat. PROMET and JULESwere not included
as they used different climate inputs. Although these
eight crop models differed in their representation of
crop phenology, leaf-area development, yield form-
ation, root expansion, and nutrient assimilation, all
accounted for the effects of water and heat stress and
assumed no technological change (Blanc 2017). All
input and output data sets were provided by GGCMI
at the standardized spatial resolution of 0.5◦. More
detailed descriptions of the individual crop mod-
els and the input and output data characteristics are
available in the supplementary material (SM).

2.1.2. Data for emulator-based yield projections
To project a high spatial resolution global wheat
yield, the Earth Exchange Global Daily Downscaled
Projections (NEX-GDDP) dataset (Thrasher 2012),
with a spatial resolution of 0.25◦, was obtained
from the National Aeronautics Space Administration
(NASA). This database contains the global daily max-
imum/minimum near-surface air temperature and
precipitation data from 21 General Circulation Mod-
els (GCMs) from the Coupled Model Intercompar-
ison Project phase 5 (CMIP5, Taylor et al 2012) under
two representative concentration pathways (RCP4.5
and RCP8.5), covering the years 1950–2100. Other
RCPs are not available through NEX-GDDP.

The emulator-based projections used a national
and subnational crop calendar for wheat from

MIRCA2000 (Portmann et al 2010). Given that
MIRCA2000 has only monthly resolution, it was
assumed that the first day of the month was the date
of planting, and the last day of themonth was the date
of harvesting (Elliott et al 2015). The calendarwe used
to project yield was only MIRCA2000 because if we
used the calendar of the GGCMI phase 2, we would
be troubled with the mismatch between the separated
spring andwinter wheat calendar and only wheat har-
vested areas in spatial production allocation model
(SPAM). Global wheat harvested area distribution
around the year 2005 was obtained from the SPAM
for rainfed and irrigated systems at five arc-minute
resolution (You et al 2014).

2.2. Methods
The methodologies for evaluating changes in wheat
yield variability under future climate scenarios
includes the following steps (figure 1): (a) Develop
annual yield emulators for the process-based GGCMI
crop models. (b) Conduct emulator-based yield pro-
jections based on the NEX-GDDP climate model
ensemble. (c) Summarize the future changes in wheat
yield variability relative to the baseline; decompose
the changes in yield variability into changes in mean
yield and yield standard deviation. And (d) Separate
the contributions from the changes in climatic drivers
to the changes in the yield variability.

2.2.1. Development of annual GGCM emulators by
extreme gradient boosting (XGB)
A previous study developed emulators of
climatological-mean yield based on GGCMI phase
2 experiment data (Franke et al 2020b). We, however,
develop an emulator capable of capturing year-to-
year variability in yield. A machine-learning (ML)
approach was used in this study for its flexibility for
data-driven development of models with high accur-
acy (Folberth et al 2019) and its associated computa-
tional efficiency.

Development of the emulator consists of
training—via a ML algorithm—on specific GGCM
input and output datasets, so that the emulator rep-
licates the complex process of yield simulation within
the crop model. Variables that have been frequently
reported to significantly influence wheat yield were
prepared as the predicting variables, including cli-
mate, soil type, length of growing season, and man-
agement practices (table S3). All the data for training
were computed/adapted from the GGCMs’ input and
output datasets.

All prediction variables were computed/obtained
from the GGCMI phase 2 data archive. The climate
data are supplied as daily values and were, in a first
step, aggregated tomonthly sums or averages (MON).
For each grid, the month of planting was defined as
month 1 to harmonize, on a global basis, the order of
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Figure 1. Framework for evaluating changes in global wheat yield interannual variability (T: temperature, P: precipitation).

months fromplanting. Subsequently, prediction vari-
ables were calculated for each month in the growing-
season months and the entire growing season (GS,
based on the planting and harvesting dates for the
GGCMs). Soil properties were adopted primarily for
the topsoil class. Additional characteristics like length
of growing season were regarded as a cultivar char-
acteristic. The total amount and fraction of the nitro-
gen fertilizer application andCO2 concentrationwere
uniform for each grid.

In total, 32 different emulators were trained for
the eight GGCMs, each with two water management
modalities (rainfed and irrigation) and two wheat
types (spring wheat and winter wheat). An XGB
algorithm was used due to its better performance
in terms of goodness-of-fit, cross-validation errors,
and computation efficiency compared with a random
forest algorithm (Folberth et al 2019). The predict-
ing variables and the simulated yield in the GGCMs
were randomly split into training and validation sets,
which contained 75% and 25% of the samples (Yue
et al 2019), respectively. Depending on the size of
the dataset supplied by each GGCM, 1.7 × 106–
2.3× 107 (0.9× 107–1.9× 108) samples were used for

model training and 0.6 × 106–0.8 × 107 (0.3 × 107–
0.6 × 108) samples were used for validation of irrig-
ation (rainfed) conditions, covering the period of
1981–2010. More details on emulator training, valid-
ation, and performance evaluation are available in SM
and figures S1 and S2.

2.2.2. Emulator-based wheat yield projections
The emulators were then used to project global
wheat yield by using future GCM projections. It is
important to ensure that emulator-based projec-
tions do not exceed the range of training samples
to avoid unrealistic extrapolation effects (Fol-
berth et al 2019, Franke et al 2020b). The GGCMI
phase 2 perturbations were designed to accom-
modate high-end warming scenarios (RCP8.5-
2080s). For growing season average maximum tem-
perature, the range of training data (interannual
and spatial variability in AgMERRA + GGCMI
perturbation) covered the entire range of the
GCM projections. CO2 concentrations were aver-
aged with a 30 year moving window and the
highest CO2 concentration under RCP8.5-2080s is
760 ppm.
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Table 1. Climate driver sensitivity simulations.

Climate drivers Descriptions

‘T’ Using future scenarios of temperature, other drivers taken from baseline
‘P’ Using future scenarios of precipitation, other drivers taken from baseline
‘T+ P’ Using future scenarios of temperature and precipitation, holding CO2 constant at 360 ppm
‘T+ P+ CO2’ Using future scenarios of temperature, precipitation, and CO2

Ensemble yield projections were conducted at the
global level for grids with a spatial resolution of
0.25◦ for the years 1976–2005 (baseline), 2006–2035
(2030s), 2036–2065 (2050s), and 2066–2095 (2080s)
under RCPs of 4.5 and 8.5. If the spring and winter
wheat are grown in parallel at national or subna-
tional level, we determined the wheat type with larger
harvested areas according to MIRCA2000 (Portmann
et al 2010). The multi-model ensemble approach
improves the robustness of future climate-change
impact estimates and allows for analyses of spatial
heterogeneity and inter-model uncertainty (Martre
et al 2015). There were 336 future wheat yield estim-
ates (21 GCMs × 8 emulators × 2 RCPs), each
simulated for 4 × 30 year periods. Throughout all
simulations, planting dates, cultivar selection, soil
properties, and management practices were assumed
to remain constant over time, which is consistent with
the GGCMI Phase 2 experimental design A0 (Franke
et al 2020b), which is used for training the emulat-
ors here. Final estimates of future yield responses are
based on themedian across the cropmodel emulators
and GCMs.

2.2.3. Measuring the change in yield variability
Rainfed and irrigated yield were first aggregated to
grid and national levels using an area-weighted aver-
age (Müller et al 2017), as described in the following
equation:

yt =

n∑
i=1

yi,firr,t·areafirr +
n∑

i=1
yi,noirr,t·areanoirr

n∑
i=1

(areafirr + areanoirr)
. (1)

where i is the index of any grid cell assigned to the
spatial unit in year t, n is the number of grid cells
in that spatial unit, yi,firr,t is the emulator-projected
yield under fully irrigated conditions in grid cell i,
and yi,noirr,t is the emulator-projected yield for rain-
fed conditions in grid cell i; area is the harvested area
in grid cell i, either due to fully irrigated or rainfed,
obtained from SPAM.

We used the CV a measure of interannual
yield variability, where CV= σ/µ, in which σ and
µ are the standard deviation and mean, respect-
ively, over a reference period. We compare the
baseline period (1976–2005) with six future scenario-
periods: RCP4.5-2030s, RCP4.5-2050s, RCP4.5-
2080s, RCP8.5-2030s, RCP8.5-2050s, and RCP8.5-
2080s. The percentage change in yield CV in one of

the six future scenario-periods relative to the baseline
period is then measured by:

δscenario =
CVscenario −CVbaseline

CVbaseline
× 100%. (2)

2.2.4. The effects of changes in temperature,
precipitation, and CO2

The effects of changes in temperature, precipitation,
and CO2 were separated by using individual climate
driver perturbed simulations, with one climate factor
at a time taken from a climate scenario and the rest
from the baseline. Four such climate driver sensitiv-
ity simulations (table 1) were conducted to isolate the
effects of changes in temperature, precipitation, their
interaction effects, and the CO2 fertilization effect.

The climate driver sensitivity simulations listed in
table 1 allow for addressing the following:

(a) The effects of temperature and precipitation
changes can be derived by comparing the results
of groups ‘T’ and ‘P’ with the baseline simula-
tions, respectively.

(b) The interaction between temperature and pre-
cipitation changes can be evaluated using the dif-
ference between groups ‘T+ P’ and ‘T’+ ‘P’.

(c) The effect of CO2 fertilization can be eval-
uated using the difference between groups,
‘T+ P+ CO2’ and ‘T+ P’.

3. Results

3.1. Global patterns of future change in wheat yield
interannual variability
By the end of the century, model simulations indic-
ate an overall decrease in wheat yield CV, but in
some regions, including major producing countries,
there would be more unstable wheat yield (figure 2).
The spatial patterns of CV changes intensify towards
the end of the century, indicating a more polarized
pattern under the long-term scenarios RCP4.5-2080s
and RCP8.5-2080s (figure S3). Under RCP8.5-2080s,
with the CO2 fertilization effect (‘T + P + CO2’),
the yield CV increases significantly in 18% of har-
vested areas (p < 0.05; see figure S4 for signific-
ance test), while 44% of harvested areas experi-
ence significant decrease of the yield CV (p < 0.05).
Under RCP4.5-2080s, with theCO2 fertilization effect
(‘T + P + CO2’), 23% of harvested areas undergoes
significant increase of yield CV (p < 0.05), while yield
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Figure 2. Changes in wheat yield CV (RCP4.5-2080s and RCP8.5-2080s) relative to the baseline (1976–2005) based on the median
of 21 GCMs and 8 crop model emulators using perturbations of temperature, precipitation, and CO2 concentration according to
RCP4.5 and RCP8.5 (‘T+ P+ CO2’).

becomes more stable in 31% of harvested areas sig-
nificantly (p < 0.05). Western Europe, northern Aus-
tralia, central US, South Asia, Southwest China, and
Myanmar are found to experience a small increase
in yield CV (<40%). In eastern Europe, southern
Australia, and central India yield CV is indicated to
decrease by >20% under RCP8.5-2080s (figure 2).
The spatial patterns of changes are consistent across
different scenarios and time periods, but the size of
changes varies (figure S5). The uncertainty across
crop yield projections (standard deviation of CVs
across all 8 emulators and 21 GCMs) ranged between
17% and 119% with the CO2 fertilization effect, with
a global mean of 39% under RCP8.5-2080s. Uncer-
taintywasmost pronounced in central Europe to east-
ern Russia, and in the northern Indian production

regions (figure S6). We further break the total uncer-
tainty to those associated with the emulators and
those with the GCMs, by analysis of variance. Dis-
agreement across the emulators explained less than
50%of the total variance in 47%of the harvested areas
(figure S7).

Changes in yieldCV are linked to changes inmean
yield and yield standard deviation. Under RCP8.5-
2080s, mean yield levels increase in 92.1% of harves-
ted areas and the yield standard deviation increases
in 95.3% of harvested areas (figure S8). About 30.8%
of the areas in which CV is found to increase, CV
changes are dominated by increases in yield standard
deviation (|SD+| > |MY+|). In regions where CV is
decreasing, 59.3%of the areas are dominated bymean
yield increases (|SD+| < |MY+|) (figure 3, table 2).
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Figure 3. Factors of yield CV changes, including mean yield changes (MY) and yield standard deviation changes (SD). Positive
changes are indicated with ‘+’ and negative changes with ‘−’. The |MY+| and |SD+| denote the absolute increase of mean yield
and yield standard deviation, respectively.

Under RCP4.5-2080s, mean yield levels and the yield
standard deviation increase in 92.8% and 94.5% of
the harvested areas, respectively (figure S8). About
42.7% of the areas in which CV is found to increase,
CV changes are dominated by increases in yield stand-
ard deviation (|SD+| > |MY+|). In regions where
CV is decreasing, 47.6% of the areas are dominated
by mean yield increases (|SD+| < |MY+|) (figure 3,
table 2).

3.2. Changes in the yield CV across different
climatic regions
Changes in the wheat yield CV exhibited a clear rela-
tionship with the baseline regional temperature, pre-
cipitation, and nitrogen fertilizer application rate. In
general, regions with hotter growing seasons (grow-
ing season average temperature > 20 ◦C) or with

lower nitrogen fertilizer application rates (nitrogen
application rate < 200 kg ha−1), experienced the
largest relative increase in wheat yield CV (figure 4).

The increases in yield CV tend to be greater
in regions with hotter growing seasons under both
RCP4.5 and RCP8.5, including sub-Saharan Africa,
India, Australia’s wheat belt, South East US, and
southern Brazil and Argentina. These are regions in
which mean wheat yields are expected to decrease
under high-emission climate change scenarios,
whereas at higher latitudes with lower growing season
temperatures mean wheat yields are generally projec-
ted to increase (Jägermeyr et al 2021). The change
in yield CV undergoes smaller decline under RCP8.5
and even experiences subtle increase under RCP4.5
in regions with wetter growing seasons, which can be
attributed to stronger variability of precipitation in

7
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Table 2. Attribution of wheat harvested area with yield CV changes to changes in mean yield (MY) and standard deviation (SD) under
RCP4.5-2080s and RCP8.5-2080s.

Fraction of harvested areas

Changes in yield CV Category of SD and MY change RCP4.5 RCP8.5

CV+ SD+ &MY−a 4.3% 5.2%
|SD+| > |MY+| 42.7% 30.8%
|SD−| < |MY−| 2% 0.6%

CV− |SD+| < |MY+| 47.6% 59.3%
|SD−| > |MY−| 0.9% 2.1%
SD− &MY+ 2.6% 2.0%

a ‘+’ denotes positive changes, and the ‘−’ denotes negative changes. ‘|SD+| > |MY+|’ denotes the absolute

value of increase in yield SD is greater than that in the mean yield.

Figure 4.Wheat yield CV change under RCP4.5 and RCP8.5, separated by different climatic and management bins: growing
season mean temperature (a), growing season total precipitation (b), and nitrogen fertilizer application (c). The bin classification
refers to baseline reference conditions. CV change is based on the T+ P+ CO2 simulations. Box-and-whisker plots show the
distribution of yield CV changes across all cultivated grid cells in each class. The group divisions are based on approximately equal
sample sizes.

wetter regions. Underperforming wheat production
system regions, like Brazil, sub-Saharan Africa, and
South East Asia, with lower levels of nitrogen applica-
tion, are likely to experience a greater increase in yield
CV under both RCP4.5 and RCP8.5.

3.3. Climatic drivers of and their relative
contributions to the change in yield CV
In simulations based on individual climate drivers,
temperature changes alone increase the yield CV

for 55% and 56% of the harvested areas under
RCP4.5-2080s and RCP8.5-2080s, respectively.
Under RCP8.5-2080s the magnitude of increased
yield CVwith temperature change alone is larger than
that with precipitation change alone, but the extent
of the area affected by increasing yield CV is smaller
(figure 5). The yield CV increases in 64% and 60%
of harvested areas when only precipitation change
is assumed under RCP4.5-2080s and RCP8.5-2080s,
respectively (figure 5).
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Figure 5. Changes in yield CV under isolated temperature and precipitation perturbations (RCP4.5-2080s and RCP8.5-2080s).
Yield CV changes are shown as the median of 21 GCMs and 8 crop model emulators. ‘T’ is the effect of temperature change, and
‘P’ is the effect of precipitation change.

After separating the relative contributions of cli-
mate drivers (without elevated CO2 concentration)
under RCP4.5-2080s, precipitation was the domin-
ant driver to increase the yield CV in 33% of har-
vested areas, even if the temperature change plays a
more important role in yieldCV change in over half of
harvested areas (53%). The interaction between tem-
perature and precipitation change played a domin-
ant role in changes in yield CV in 10% of harvested
areas. Under RCP8.5-2080s, temperature becomes a
more important factor and was found to be the dom-
inant driver in 72%of global wheat harvested areas, of
which, yield CV increased in 41% of harvested areas.
Precipitation was found to be the dominant driver in
21% of harvested areas, of which, yield CV increased
in 17% of harvested areas. The interaction between
temperature and precipitation played a dominant role
in the change in yield CV in only 8% harvested areas
(figure 6).

The elevated CO2 concentration reduced the
increase in yield CV, which was greatest in RCP8.5-
2080s. The effect was strongest (>15%) in central
Europe, south Asia, North and Southwest China, and
North America. The mitigation effect was weaker
under the other RCP4.5-2080s, but the spatial pat-
terns were largely consistent with RCP8.5-2080s
(figure 7).

To elucidate the link between changes in yield CV
and climate factors, we further examined the change
in yield CV with climatic factors changes in mean,
variability, and extremes of temperature and pre-
cipitation by using perturbation ‘T’ and ‘P’ results.

A linear regression was conducted between median
changes in yield CV and growing season climatic
factors from food producing units (FPUs, Kummu
et al 2010) (figure 8). The change in yield CV was
positively correlated with change in interannual vari-
ability (TgsinterV, figure 8(c)), intra-seasonal vari-
ability (TgsintraV, figure 8(d), and extreme degree
day (EDDgs, figure 8(e)) of temperature. The rela-
tionship between mean temperature and yield CV
varied by region. For regions with hotter growing
seasons (Tgsmean > 10 ◦C, figure 8(a)), a warming
trend tended to increase the yield CV, and decrease
the yield CV in regions with colder growing sea-
son (Tgsmean < 10 ◦C, figure 8(b)). For the effect
of precipitation change, results from grid cells with
rainfed systems showed that change in yield CV
was negatively correlated with change in total pre-
cipitation (Pgsmean, figure 8(f)), but positively cor-
related with interannual variability of precipitation
(PgsinterCV, figure 8(g)), and drought intensity (con-
secutive drought days, CDDgs, figure 8(h)), all statist-
ically significant.

4. Discussion

4.1. Changes in future wheat yield variability
Our results indicate that wheat yield CV might
increase significantly in 18% of the global harvested
area under a high-emission climate change scenario.
In turn, yield variability is found to decrease in 44%
of currently cultivated areas, regions in which mean
yields are projected to increase under climate change.
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Figure 6.Major contributors to the change in wheat yield CV (RCP4.5-2080s and RCP8.5-2080s). The dominant factors driving
the change in yield CV are defined as the driving factors that contribute the most to the increase (or decrease) in the yield CV in
each grid cell. The suffix ‘+’ attached to the driving factor name indicates increase in the CV, whereas a ‘−’ indicates a reduction
in the CV.

Globally, our findings are consistent with those of
earlier studies indicating that declining yield variab-
ility is wide-spread but increasing yield variability is
found across important breadbasket regions (Iizumi
and Ramankutty 2016, Leng 2017). Site-based simu-
lation results for a 2 ◦C warming scenario (Liu et al
2019) have provided a more pessimistic estimation,
with wheat yield CV increases in 36 out of the 60 sites,
including theCO2 fertilization effect. Our results con-
firm higher yield variability in hot regions as repor-
ted by (Liu et al 2019) and in regions with low nitro-
gen fertilizer application rates as reported by (Han
et al 2020). Similarly, the low yield CV in high nitro-
gen fertilizer application rates regions is consistent
with the findings of nutrients-driven intensification

that additional nutrient inputs raise mean crop
yields and thus decrease yield CV (Müller et al
2018).

A detailed comparison of yield CV changes
between site-based projections (Liu et al 2019) and
our gridded projections demonstrates the importance
of revealing spatial heterogeneity of yield variability
changes. Changes in yield CV were identified as sig-
nificantly increasing at all 14 sites for the 2 ◦C warm-
ing scenario (Liu et al 2019). Among the 14 sites, our
estimates were consistent with 10 of the 14 stations.
For the other 46 sites, our results are largely consistent
with the 25 sites across the central U.S., South Amer-
ica, the Middle East, the western European coastline,
and Southern Russia; but are different in the direction
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Figure 7. Reduction effect (‘T+ P+ CO2’−‘T+ P’) on change in yield CV from CO2 fertilization.

of change for other sites. Spatial heterogenous yield
variability changes are the main cause of inconsist-
ence between our projections and Liu et al (2019).
This is the case in Glen and Bloemfontein in South
Africa, and Dharwar in India for the four inconsist-
ent sites, as well as 11 out of the other 21 inconsist-
ent sites, including those in northwest US, around the
western or northern coast of the Black Sea, in cent-
ral southern Russia, North China, and south-eastern
Australia. Besides, another cause may be the choice
of the crop model ensemble and underlying uncer-
tainties.We examined our results for each cropmodel
emulator. The direction of each site-based change in
yield CV reported by Liu et al (2019) can be found in
the result of at least one of our emulators, indicating
GCMs-crop models ensemble combination is critical
to yield projection.

Spatial heterogeneity of crop yield variabil-
ity creates a huge challenge for agricultural risk
management (Benami et al 2021). The spatially
heterogeneous yield CV changes are also found in
earlier reports that yield variability changes in rice
and wheat are sensitive to spatial resolution (Iizumi
et al 2018). Previous yield variability projections con-
ducted with site-based, process-based models have
found that regional yield variability changes are not
consistent across different sites (Liu et al 2021). Thus,
the gridded process-based crop models can provide
an overview of global or regional changes in yield
variability (Ostberg et al 2018, Parkes et al 2018). The
ability to represent this spatial heterogeneity in yield
variability in light-weight emulators allows for more
comprehensive assessments of the risk of changes in
yield variability.
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Figure 8. Correlations of changes in yield CV with the changes in mean, variability, and extremes of temperature and
precipitation at the FPU level relative to the baseline. In each panel, the changes in growing season climate factor are: (a) mean
temperature (baseline value > 10 ◦C), (b) mean temperature (baseline value < 10 ◦C), (c) interannual variability (standard
deviation) of mean temperature, (d) intra-season variation of daily temperature, (e) extreme degree days, (f) total precipitation,
(g) interannual variability (coefficient of variation) of precipitation, and (h) consecutive drought days.

4.2. Climatic drivers of changes in future wheat
yield variability
The present results indicate strong links between
changes in the wheat yield CV and changes in tem-
perature andprecipitation. Previous reports have sug-
gested that changes in yield interannual variability
are closely related to changes in the variability (both
interannual and intra-seasonal) (Iizumi et al 2013,
Peng et al 2018) and extremes of climate factors
(Iizumi and Ramankutty 2016, Chen et al 2018). In
addition, due to the non-linear relationship between
yield and temperature, changes in the mean temper-
ature, away from the optimal range, will increase the
interannual yield CV (Urban et al 2012, Tigchelaar
et al 2018). The response of the interannual yield vari-
ability to changes in precipitation is more complex

than for temperature. In general, changes in precip-
itation have smaller effects on irrigated yield than
on rainfed yield (Tubiello et al 2002, Kothari et al
2019). In rainfed systems, yield interannual variabil-
ity has been known to be closely related to interan-
nual variability of rainfall, as well as frequency and
intensity of drought (Webber et al 2018). The effect
of total precipitation change largely depends on the
baseline humidity of the production region. For dry-
lands, increasing total precipitation increases mean
yield (Fronzek et al 2018) and consequently reduces
CV. Also, the interaction between temperature and
precipitation changes can mitigate the increase in
yield CV, although the magnitude of the interaction
effect on change in yield CV is modest, within 10%.
This is similar to the mitigation effect of irrigation
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on heat stress (Zaveri and Lobell 2019). However,
the interaction effect cannot be explicitly explained,
depending on the timing, intensity, and volume of
rainfall (Tack et al 2017).

Higher atmospheric CO2 concentrations mitigate
variability changes in crop yield (Urban et al 2015), a
consistent finding across different scenarios and time
periods (figure 7). The mitigation effect is mainly
attributed to increases in mean crop yield under elev-
ated CO2. Wheat as a C3 crop is known to have a high
capacity to benefit from elevated CO2 levels, which
has been confirmed by various previous experiment-
based evidences (Kimball 2016, Toreti et al 2020).
Negative effects of global warming on future wheat
yield could potentially be fully compensated by yield-
amplifying effects of elevated atmospheric CO2 con-
centrations (Ye et al 2020).

4.3. Uncertainties
The spatial pattern of uncertainty in our results
is consistent with different uncertainty distribution
between high and low latitudes provided by crop
model simulation (Xiong et al 2020). Including the
CO2 fertilization effect would further increase the
total size of uncertainty in the projected yield. This
is in agreement with a recent analysis on sources of
uncertainty regarding GCMs and GGCM statistical
emulators (Müller et al 2021).

The use of emulator ensemble simulation enabled
the estimation of wheat yield variability change
driven by climate change. Nevertheless, our approach
has two limitations. First, crop damage from climate
extremes is a major driving force of interannual yield
variability (Trnka et al 2014), but the capability of
most crop models in reproducing extreme climate
damage to crops is still limited (Rötter et al 2018). For
instance, process-based crop models of the GGCMI
phase 1 experiment fail to reproduce yield impact
from too wet conditions (Li et al 2019). Also, process-
based crop models underestimate the extremeness
of the 2003 heat-drought (Schewe et al 2019). We
employ newly developed crop model emulators to
project future wheat yield and these emulators are
capable of capturing the direction of yield anom-
alies due to climate extremes, indicating the type of
extreme event-induced yield variability that is cap-
tured by themodels (heat, drought) will increase yield
variability in a fair share of current cropland. Second,
interannual yield variability driven by non-climatic
factors is not considered in our analysis. These non-
climatic factors can strongly affect yield variability
(Albers et al 2017) and changes in management can
also strongly affect yield levels under climate change
(Minoli et al 2019, Zabel et al 2021).

4.4. Implications
The spatial scale of our estimates reached the sub-
province scale in China and the sub-state scale in the

US and thus provided more insight than previous
global estimates. First, gridded estimated yield vari-
ability change could provide more detail on spatial
heterogeneity in local areas. Such local spatial dif-
ferences were pronounced in South Africa, eastern
Africa, and Central Russia. Second, when there is a
need to estimate regional or country-level aggreg-
ated yield variability change, our gridded estimates
could enable straightforward aggregation rather than
upscaling from site-based estimates—these estimates
rely heavily on the representativeness of sites.

High-spatial resolution gridded estimates of
future yield variability change enabled global estim-
ates of future change in yield CV. Globally, changes in
yield CV tend to decrease in 44% of global harvested
areas; but still yields would become more unstable
in 18% of global harvested areas under RCP8.5-
2080s, including several major production regions
and countries. This indicates potential challenges
to the stability of grain supply, market price, and
consequently, the whole food system in the context
of future climate change. It is important for local
and regional economies to proactively implement
adaptation measures and policy support (Iizumi and
Ramankutty 2016). In light of this, our results can
provide details of spatial heterogeneity in local areas
and identify regions with urgent needs, including
those hot and low-fertilizer application regions. The
predominant climate driver is also identified, so that
adaptation strategies can be tailored for regional or
local challenges.

To face the challenge of increased yield inter-
annual variability, adaptations including mean-
increasing and variance-reducing strategies (Mehrabi
and Ramankutty 2019), are needed because the
changes in relative yield variability (CV) are sourced
from both changes in mean yield and yield stand-
ard deviation (figure S9). The focus on the relative
yield variability (CV) rather than absolute (e.g. SD)
reflects the producer perspective, where the variab-
ility around the mean is relevant (storage and fin-
ancial buffers) even if the mean is increasing in the
long-term (Hasegawa et al 2021). Shifting cultivars
(Liu et al 2010, Olmstead and Rhode 2011), chan-
ging sowing regions (Iizumi et al 2021) and adjusting
planting dates (Lobell 2014, Huang et al 2020) have
been recognized as effective adaptation options to
address heat stress. Likewise, reinforcing irrigation
equipment and adjusting irrigation strategies could
relieve water shortages (Zhao et al 2020). Addition-
ally, increasing nitrogen application rates in under-
performing wheat production system regions could
mitigate the increase in yield CV (Han et al 2020).
From a risk management perspective, the risk in
increased yield CV requires better domestic inter-
temporal reserves of wheat grain to smooth fluctu-
ations in interannual production, market supply, and
commodity price and better financial buffers at the
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producer level, to mitigate financial losses from local
less-than-average yields.

5. Conclusions

This study presents one of the first projections of
future wheat yield interannual variability change at
high spatial resolution and disentangles the impacts
from changes in temperature, precipitation, and CO2

on those changes. Our results reveal that future cli-
mate change alters wheat yield interannual variability
in over 60% of harvested areas. Wheat yield variab-
ility may decrease in over 40% of global wheat har-
vested areas under a high-emission climate change
scenario (RCP8.5-2080s), while under RCP4.5-2080s
only 31% of harvested areas undergo the declined
yield CV. However, 23% and 18% of harvested areas
experience increased yield CV under RCP4.5-2080s
and RCP8.5-2080s, respectively. Greater increase in
yield standard deviation than that in the mean yield
was the main reason for the increase yield variabil-
ity under both RCP4.5 and RCP8.5. Yields in hot-
ter or lower fertilizer regions are projected to become
more unstable. Worldwide, changes in temperature
have a stronger influence on changes in yield vari-
ability compared with precipitation in 72% of global
harvested areas under RCP8.5-2080s, whereas under
RCP4.5-2080s the areas controlled by temperature
changes are smaller (predominant in 53% of har-
vested areas). The global mean of yield CV reduc-
tion due to rising CO2 concentration across current
harvested areas are 5% and 8% under RCP4.5-2080s
and RCP8.5-2080s, respectively. High spatial resolu-
tion patterns of changes in wheat yield variability, as
well as site-specificmajor driver identification results,
have great implications for policy-makingwith regard
to where food supply and farmer income need to be
stabilized by additional measures in wheat produc-
tion throughout the world.

Data availability statement

The data that support the findings of this study are
available upon reasonable request from the authors.

Acknowledgment

P S and T Y were funded by National Key R&D Pro-
gram of China (No. 2016YFA0602404). T Y was also
supported byNational Natural Science Foundation of
China (No. 42171075). J J was supported by theNASA
GISS Climate Impacts Group and the Open Philan-
thropy Project.

ORCID iDs

Tao Ye https://orcid.org/0000-0002-5037-8410
Jonas Jägermeyr https://orcid.org/0000-0002-
8368-0018

Christoph Müller https://orcid.org/0000-0002-
9491-3550

References

Albers H, Gornott C and Hüttel S 2017 How do inputs and
weather drive wheat yield volatility? The example of
Germany Food Policy 70 50–61

Ben-Ari T, Boé J, Ciais P, Lecerf R, Van Der Velde M and
Makowski D 2018 Causes and implications of the
unforeseen 2016 extreme yield loss in the breadbasket of
France Nat. Commun. 9 1627

Benami E, Jin Z, Carter M R, Ghosh A, Hijmans R J, Hobbs A,
Kenduiywo B and Lobell D B 2021 Uniting remote sensing,
crop modelling and economics for agricultural risk
management Nat. Rev. Earth Environ. 2 140–59
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