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Abstract
This paper analyzes the implications of investors’ short-term oriented asset holding and
portfolio decisions (or short-termism), and its consequences on green investments. We adopt
a dynamic portfolio model, which contrary to conventional static mean-variance models,
allows us to study optimal portfolios for different decision horizons. Our baseline model
contains two assets, one asset with fluctuating returns and another asset with a constant risk-
free return. The asset with fluctuating returns can arise from fossil-fuel based sectors or from
clean energy related sectors. We consider different drivers of short-termism: the discount
rate, the nature of discounting (exponential vs. hyperbolic), and the decision horizon of
investors itself. We study first the implications of these determinants of short-termism on
the portfolio wealth dynamics of the baseline model. We find that portfolio wealth declines
faster with a higher discount rate, with hyperbolic discounting, and with shorter decision
horizon. We extend our model to include a portfolio of two assets with fluctuating returns.
For both model variants, we explore the cases where innovation efforts are spent on fossil
fuel or clean energy sources. Detailing dynamic portfolio decisions in such a way may allow
us for better pathways to empirical tests and may provide guidance to some online financial
decision making.

Keywords Dynamic portfolio decision · Short-termism · Decision horizon · Hyperbolic
discounting · Harmonic estimation

1 Introduction

Substantial amounts of capital,whether frompublic or private sources of financing, are needed
to fund the mitigation and the adaptation to climate change. These types of projects are of
long-term nature, and investors should respond to the long-term risks of global warming,
(Carney, 2015). As recent literature has pointed out (i.e. Cella et al., 2013 and Davies et al.,
2014), investors’ short-sighted behavior can limit the amount of capital channeled towards

B Ibrahim Tahri
tahri@pik-potsdam.de

1 Economics Department, New School for Social Research, New York, NY, USA

2 Potsdam Institute for Climate Impact Research, Potsdam, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-05018-2&domain=pdf
http://orcid.org/0000-0003-3437-2323


Annals of Operations Research

green investments. There is no commonly agreed or accepted definition of short-termbehavior
or short-termism as we define it in this paper, but it can be loosely understood as the tendency
of financial intermediaries or corporate managers to overly favor short-term payoffs over
long-term opportunities. The aim of this paper is to study the implications of short-termism
on portfolio decisions of investors, and its potential consequences on green investments.

The debate over short-termism in investment decisions is not recent, and most of the dis-
course tends to describe it as sub-optimal with adverse implications. For instance, short-term
behavior is believed to lead to inefficiencies and mispricing in financial markets, including
asset price bubbles and panics (Bushee, 2001; Rappaport, 2005; Cremers & Pareek, 2015;
Cella et al., 2013). Short-termism can also affect corporate behavior, by inducing corporate
myopia, which in turn has an adverse impact on investment decisions, creation of long-term
value and hence economic growth (Chen et al., 2007; Elyasiani & Jia, 2010; Attig et al.,
2012). Finally, short-termism can impact the efficiency of financial intermediation, through
the rise of the trading frequency (Edelen et al., 2013) or through the mis-alignments of
horizons between investors and institutions managing their wealth (i.e., the agency problem)
(Guo, 2013). Hence, short-term behavior can exacerbate the obstacles for financing long-term
projects, including environmentally friendly green investments.

A number of determinants (often interlinked) has been identified in the literature with
respect to investment horizon. Warren (2014) provides an exhaustive list of determinants
of short-termism, which can be grouped into three types of influences: those related to the
conditions under which investors operate; for instance, the extent to which investors have
freedom in trading decisions directly influences their need for liquidity, and so their tolerance
to adopt a longer investment horizon. Another type of influences is related to the design of the
investment environment; the way organizations are configured (i.e., remuneration practices;
financial market structures) can influence their scope to adopt a long-term approach. Finally,
there are influences related to investors’ behavior. Immediate gratification, present bias,
aversion to risk or myopic loss aversion expressed by agents can lead to adopting short-term
investment decisions.

Based on the above short description of the determinants of investment horizon, we limit
our treatment of short-termism by varying three main drivers; namely, the risk-aversion
parameter, the discount factor, and the decision horizon itself. A dynamic model of intertem-
poral choice in finite horizon is suited to analyze the impact of short-termism on investment
decisions when climate risks hold, it allows us to study optimal portfolios for different
decision horizons. In this regard, a simplified Merton-type dynamic consumption and asset
allocation problem is formulated in continuous time. For analytical purposes, we start first
with a simple model of two assets, one asset with constant risk-free returns and the other
with time-varying returns, where the objective of the investor is to maximize her welfare
over payouts (or consumption). We explore then the effects of varying risk aversion, discount
rate, and decision horizon on consumption-wealth ratio and the wealth dynamics. Next, we
expand our analysis and include, in the same baseline model, a time-inconsistent discount
factor, namely a hyperbolic discount function, to illustrate its impact on wealth accumula-
tion overtime. We also study the impact of shocks on asset returns and their effect on the
evolution of wealth. Finally, we extend the model to include two decision variables and two
time-varying returns, and we explore again the effects of the variation of the parameters of
discounting and decision horizon.

Questions related to investment/consumption decisions problems in continuous time have
been usually approached, in the literature, using the Merton’s (1971) framework. Merton’s
theory has been widely adopted, under various extensions, in academic research. While,
under certain assumptions, it provides elegant solutions and insightful results overall, it
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remains hard to implement in practice. For instance, measuring accurately state variables,
betas or correlations remains a challenging task, particularly that portfolio maximization is
very sensitive to inputs (Cochrane, 2021).Another difficulty resides in the ability to accurately
forecast stock returns. The estimation of stochastic processes in the empirical literature to
predict asset returns has not been sufficiently successful; amongother reasons, the dependence
of the stochastic processes on the Gaussian distribution is one limitation (Blomberg et al.,
2020).

A number of methods, in the literature, have been developed to accurately forecast stock
returns, among them is spectral analysis. Also termed harmonic analysis, this method decom-
poses a time periodic phenomenon into a series of linear combination of sine-cosine functions,
each defined by a unique amplitude and phase values. Spectral analysis has been used in the
literature for different purposes; for instance, to analyze the behavior of economic time series
(Iacobucci, 2005); to forecast the growth rate and returns (Keim et al., 2006); to examine asset
volatility and stock return series (Tsay, 2010; Chaudhuri & Lo, 2015); to price derivatives,
(Phelan et al., 2019); and to study the degree of interdependence between markets (Créti et
al., 2014).

Our modeling approach departs from the standard one in two respects. First, asset returns
in our model are represented by a trigonometric sine-cosine function, instead of a stochastic
process as in Merton. This is an assumption that is based on the fact that consumption and
portfolio decisions by individuals and asset managers are often undertaken with respect to
low-frequency data. Another difference to the standardmodel is related to the numerical solu-
tion method. InMerton’s standard approach, the model is solved via Dynamic Programming,
but this method suffers from the so-called “curse of dimensionality” when we increase the
number of state variables. In our paper, we adopt the numerical method of Nonlinear Model
Predictive Control (NMPC), which has the advantage of easily handling multi-dimentional
and finite horizon decision making problems. In addition, NMPC allows us to differenti-
ate between the control horizon, which could be interpreted as the decision horizon of the
investor, and the planning horizon. The latter is a long run horizon the end of which is
obtained through a sequence of receding decision horizons. Finally, the numerical method
is of great practical use: the prediction-control mechanism permits the investor to undertake
some on-line strategy where assets are re-allocated when new information is coming in from
the market.

From the different cases studied in the paper, we find that portfolio wealth declines faster
when we vary the different determinants of investment horizon we defined. An increase in
the discount rate, reflecting investors’ impatience, affects negatively asset buildup. Similar
results are obtainedwhenweconsider a different discount factor, (i.e. hyperbolic discounting).
Investors with shorter decision horizon (control horizon) tend to depreciate faster portfolio
wealth. The later results are obtained with the general conjecture that short-sighted investors
tend to investmostly in fossil fuel assets. In addition, the negative externalities effect resulting
from carbon emissions will also generate lower returns even if the decision horizon is the
same. Thus, short-termism, and negative externalities, not internalized in asset price forma-
tion, will impede the ability of green investments to take off easily even with good portfolio
performance.

The rest of the paper proceeds as follows. Section 2 sets out an analytical portfolio frame-
work for one asset with fluctuating returns and one risk-free asset with constant return to
capture the potentially adverse consequences of short-termism, in particular for the cost of
capital and for investment intentions. Section 3 presents numerical results on specific chan-
nels of short-termism. Section 4 extends the model by building on two assets driven by time
varying returns whereby the asset returns are empirically estimated through harmonic esti-
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mations. A sketch of the algorithm used for the solution of the model variants in Sects. 3 and
4 is presented in the appendix. Section 5 concludes with next steps for policy and research
on this topic.

2 The dynamic portfolio model

Our point of departure is the standard Merton model, which we briefly describe, then modify
to represent assets returns in harmonic form. Under the new setting, we derive the optimal
consumption and investment policies. Next, we derive the optimal policies under the assump-
tion of hyperbolic discounting. We also consider the case when there is a sudden shock to the
asset’s fluctuating returns. Finally, we further extend the model to include another decision
variable, to estimate the role of innovation investment in the value of the portfolio over time.

We consider a continuous-time economy similar in spirit to the ones of Merton (1971),
Merton (1973), Cox et al. (1985), Gennotte (1986) models, where the economy is endowed
with a finite number of production technologies; for instance, a polluting technology and a
clean (innovative) one, each represented by a productive firm, or both owned by the same
firm. In addition to direct investment in one of the production technologies, agents can invest
in a risk-free asset with constant returns; namely a treasury bond. Therefore, we study, as a
baseline model, a dynamic portfolio choice problem that contains two assets. We consider
the portfolio performance of the assets for either of the portfolios. To summarize, investors
are facing an asset allocation decision problem, while at the same time and as pointed out by
Tobin (1958), there is a choice to be made on how much to save and how much to consume.

2.1 The standardmodel

Under the defined setting, the investor chooses a strategy of consumption and investment
over a time horizon (planning horizon) T in order to maximize her expected time-additive
utility of consumption and possibly of terminal wealth.

max{ct ,ωt }
E

{∫ T

t
ϕα(τ)F(csWs)ds + ϕα(τ)F̄[WT ]

}
(1)

subject to the wealth process, Wt , satisfying a dynamic self-financing budget constraint:

dWt = Wt

[
ωt

d Pt
Pt

+ (1 − ωt )
dBt

Bt

]
− (Ct + X(ωt ,Wt )) dt (2)

F(ctWt ) and F̄(WT ) in (1) are the utility of consumption and of terminal wealth respectively.
ϕα(t) is a general discount factor, taking the form:

ϕα(τ) = exp{(α − 1)δ0τ − α log (1 + δ1τ)} (3)

for α ∈ [0, 1]. In the two extreme cases, when α = 0, ϕ0(τ ) becomes an exponential discount
factor with discount rate δ0, and when α = 1, it is a hyperbolic discount function with rate δ1.
τ in (3) is the relative time from a baseline date. Ct in (2) is the consumption rate. X(ωt ,Wt )

represents the adjustment costs that the investor incurs by holding the equity assets. ωt is the
share of wealth invested in the productive asset, while Bt and Pt are the prices of the risk-free
bond and the productive asset respectively. The risk-free bond, Bt , pays a constant interest
rate r f , and satisfies the equation:

dBt = Btr
f dt (4)
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As for the price dynamics of the productive asset, they are represented in the standard setting
by the following general process:

dPt = Pt [μ(φt , t)dt + σP (φt , t)dZt ] (5)

with μ(φt , t), the drift term, representing the expected return of the asset; σP (φt , t) the
volatility of the price process. Zt is a Brownian motion. φt in (5) is a state variable that
captures the variations inμ andσP over time, andwhose dynamics follow a diffusion process:

dφt = m(φt )dt + v(φt )
ᵀdZt + v̂(φt )dZ

′
t (6)

withm(φt ) a function of state variable φt , andZ′
t is a standard Brownian motion independent

of Zt .

2.2 Portfolio of assets with time-varying returns

In this section, we illustrate how a Fourier Series of a periodic function can be used to
model the dynamics of the productive asset returns. Unlike high-frequency trading where
a large number of orders are transacted by powerful computers in a fraction of a second,
consumption and portfolio decisions by individuals or portfolio managers are often based on
low-frequency data. We consider assets characterized by returns that can be represented by
low frequency movements to take place as time varying expected returns. The main objective
of spectral analysis is to highlight the cyclical processes. It entails the wave structure of the
considered variable of stochastic process. Through the use of trigonometric functions, we
can analyze time series in the frequency domain. Therefore, we re-express (5) and (6) in our
model as:

dPt = Pt r
e
t dt (7)

where ret represents the time-varying return of the productive asset and can take the following
general form:

ret = α0

2
+

∞∑
n=1

[
α1,k sin

(
α2,k tn

) + β1,k cos
(
α2,k tn

)]
(8)

with α0 representing a phase shift, α1,n and β1,n are coefficients representing the amplitude of
the asset’s return, while α2,k = 2π k

T represent the cyclicality of the return. The approximated
Fourier coefficients α1,n and β1,n (denoted α̃1,n and β̃1,n) are estimated by a collocation
method in the frequency domain1:

α̃1,k = 2

M

M−1∑
n=0

re(t) sin

(
2π

k

T
tn

)
; β̃1,k = 2

M

M−1∑
n=0

re(t) cos

(
2π

k

T
tn

)

where tn = (n − 1)�t for n = 0, 1, 2, ..., M − 1 and �t = T /M . 1
T , 2

T , 3
T , . . ., are

frequencies of the sines and cosines (the frequency k
T is called the kth harmonic). In Sect. 3,

for illustrative purposes, we simplify (8) into

ret = α0

2
+ α1 sin (α2t) (8’)

then we revert back again to the more general (8), in Sect. 4, to approximate from current
market data the asset returns of two assets in the portfolio.

1 See Gómez et al. (2010).
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2.3 Optimal policies under time-varying returns

Having defined the model and expressed the returns of the productive asset in harmonic
form, we derive next the optimal policies of the investor. In the baseline case, we consider an
investor with time-additive expected constant relative risk aversion utility, with risk aversion
parameter γ . In addition, the utility function of the investor is discounted by an exponential
discount factor (i.e., α = 0 in Eq. (3)). Based on (1) and (2), the maximization problem of
the investor is reformulated explicitly as:

max{ct ,ωt }
Et

{∫ T

t
e−δ0(s−t)F(csWs)ds + e−δ0(T−t) F̄[WT ]

}
(9)

such that Ẇ (t) = ωt (r
e
t − r f )Wt + r f Wt − ctWt − x(ωt )Wt (10)

adjustment costs, x(ωt ), is a function of the number of productive asset shares held. We
interpret investment broadly to include changes in working capital so, under clean surplus
accounting, capital becomes conceptually equivalent to total assets and the book value of
the firm, (see Broer and Jansen, 1998, Liao et al., 2020). x(ωt ) takes the standard quadratic
form:2.

x(ωt ) = 1

2
θ ω2

t , (11)

θ is an adjustment cost parameter; a higher value of θ implies a higher cost x(ωt ).
To derive the optimal solutions using dynamic programming, we restate (9) in terms of

an indirect utility function and apply the Bellman principle of optimality. The indirect utility
function is given by

V (Wt , t) ≡ max
(Cs ,ωs )s∈[t,T ]

Et

[
ε1

∫ T

t
e−δ0(s−t)F(Cs)ds + ε2e

−δ0(T−t) F̄[WT ]
]

(12)

where ε1 and ε2 are greater than or equal zero with at least one of them being non-zero3.
Equation (12) is subject to the same constraint as in (9), hence V (W (T ), T ) = ε2 F̄[Wt , T ].
The Hamilton-Jacobi-Bellman equation associated with our optimization problem is

δ0V (Wt , t) = max
Ct ,ωt

[
F(Ct ) + ∂V (t)

∂t
+ VW

[(
ωt (r

e
t − r f ) + r f − 1

2
θ ω2

t

)
Wt − Ct

]]

(13)

Assuming a power utility function exhibiting constant relative risk-aversion,

F(Ct ) = C1−γ
t

1 − γ
(14)

it is straightforward to obtain the optimal consumption and investment decisions; the first-
order conditions with respect to Ct and ωt yield:

C∗
t = ε

1
γ

1 V
− 1

γ

W (15)

2 We employ a quadratic adjustment cost function for technical suitability, but empirical studies show that
adjustment costs can be convex or at least quadratic, (Cochrane, 1991; Engle & Ferstenberg, 2007). Other
works in the literature assume different types of transaction costs; for instance linear or fixed (Lobo et al.,
2007)
3 ε1 and ε2 are weights determining the importance of intermediate consumption and terminal wealth in the
utility of the investor.
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and

ω∗
t = 1

θ
(ret − r f ) (16)

the optimal share of the productive asset in the portfolio is a function of the fluctuating returns,
or equivalently the excess return (i.e. the difference between the fluctuating return and the
constant risk-free rate). Also from (16), an increase in θ reduces the optimal asset allocation,
leading to a faster decay of wealth accumulation over time. Optimal consumption, on the
other hand, is a function of the partial derivative of the value function V (Wt , t) with respect
W . Since the value function inherits similar properties to the utility function, we conjecture
the value function V (Wt , t) to be of the following form

V (Wt , t) = 1

1 − γ
g(t)γ [Wt ]1−γ (17)

then

C∗
t = ε

1
γ

1 (Wt/g(t)) (18)

given the time varying nature of the equity returns, the value function g(t) can be estimated
numerically. In the special case of the Bernoulli logarithmic utility, (i.e. γ → 1), the solutions
to the decision problem do not fundamentally change as one can observe from both graphs
of Fig. 1 in section .

2.3.1 Optimal policies under hyperbolic discounting

A growing evidence, from the fields of psychology and behavioral sciences, shows that
individual preferences tend to be rather time-inconsistent (Elster & Loewenstein, 1992;
Loewenstein & Prelec, 1993; Gabaix & Laibson, 2017; Andrikopoulos & Webber, 2019).
For instance, in searching for instant gratification, decision makers often exhibit a change of
preferences when choosing between a smaller, earlier payoff and an alternative larger, but
delayed reward. Contrary to the standard assumption of time-consistent preferences, where
the investor has no incentives to deviate from an ex-ante optimal plan in future times, in
this section we look into utility maximization where the agent discounts future payoffs at a
non-constant rate.

Time-inconsistent preferences are often modeled through hyperbolic discounting. Hyper-
bolic discount functions are characterized by higher discount rates over short horizons and
a relatively low discount rate over long horizons, which creates conflict between today’s
preferences and those that will be held in the future. The time inconsistency that results from
this discounting approach can lead investors to put more weight on the near-term outcomes,
relative to more distant prospects such as long-term investments. In our model we look into
the case when α = 1; hence, the discount function (3) becomes ϕ1(τ ) = 1

1+δ1τ
. Formally,

in the case of hyperbolic discounting, the value function V (Wt , t) satisfies the following
Hamilton–Jacobi–Bellman equation:

max
Ct ,ωt

[
F(Ct ) + ∂V (t)

∂t
+ VW [ωt (r

e
t − r f )Wt + r f Wt − Ct − X(ωt ,Wt )]

]

= −Et,w

[∫ T

t
ϕ′
1(s − t)F(Cs)ds + ϕ′

1(T − t)F̄(WT )

]
(19)
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the expectation Et,w

[∫ T
t ϕ′

1(s − t)F(Cs)ds
]
in (19) shows the difference in how one would

value consumption between her current self and her immediate future self. This is similar to
saying that the derivative characterizes the difference between the current value function and
the continuation value function. The existence of the expectation term in (19) is due to the
fact that the hyperbolic discount rate is non-constant, which makes the Hamilton–Jacobi–
Bellman equation non-local; therefore, difficult to solve analytically. Following the approach
of Dong and Sircar (2014), it is possible to bypass the non-local issue by using the method
of asymptotic expansions. The optimal consumption under hyperbolic discounting is

C∗
t = C∗

0

(
1 − ε

γ

h(t)

g(t)

)
(20)

and

ω∗
t = 1

θ
(ret − r f ) (21)

We refer to Dong and Sircar (2014) for more details on the steps of the asymptotic
expansions method to derive the optimal policies under hyperbolic discounting. From the
above results, the proportion of wealth invested in the productive asset is not affected by the
addition of a small amount of hyperbolic discounting feature to the discount factor. On the
other hand, the solution for consumption rate is changed by a fraction that depends on the ratio
h(t)
g(t) . Zou et al. (2014) obtain similar results. Hyperbolic discounting encourages individuals
to consume at a faster rate, than under the exponential discount rate case. The increase in
consumption rate would reduce wealth accumulation as depicted in Fig. 2. In this figure, we
can notice the difference between the paths of wealth when adopting an exponential discount
factor (lower curve) as opposed to a hyperbolic one.

2.3.2 Optimal policies under random occurrence of shocks

Our baseline model is built under the assumption that the returns of the equity asset are time-
varying but the coefficients of the sine-wave function that approximate the low-frequency
movements are set constant, which would make the periodic returns predictable; therefore,
one could predict the optimal path of the control and state variables. In reality though, as
has been referred to above, the periodic functions are basically a harmonic fit of real price
movements of assets, and should be updated with new incoming realizations that are exposed
to shocks. Hence coefficients’ values can change, particularly after a sudden jump (upward
or downward) of the price of the equity asset. Formally, from (8′) this would mean that the
coefficient α1 becomes time dependent such that

ret = α0

2
+ α1(τ

′) sin (α2 t)

While using a deterministic model in the background, it is still possible to represent a regime
change, at an uncertain time, in the asset returns. We consider α1(τ

′) a time dependent
process, whose value can change at a random point in time, τ ′. As illustrated in the numerical
section, Fig. 3 shows the path of wealth when the coefficient α1, representing the magnitude
of the return, changes after a randomly determined period.

2.3.3 Dirty consumption vs. clean innovation

We extend in this section the model to include a new decision variable for the objective
function. Namely, in addition to spending a fraction ct of her wealth on consumption, the
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investor decides to spend also a fractionut of herwealth in innovation efforts; efforts aimed for
instance at developing clean technology. This is in line with the previous work of Acemoglu
et al. (2012) on directed technical change. We explore then the effects of time varying returns
and decision horizon on the consumption-wealth ratio and the path of wealth. This will
allow us also to observe whether wealth is increasing or decreasing over time considering
innovation. We again allow for two assets, a risk-free bond and an equity, whereby the equity
asset displays time varying returns, and we consider the effects short-termism versus long
run investment strategies, specified in terms of the decision horizon.

The new decision problem of the investor can be stated as follow:

max{u,c,ω}E
[∫ T

t
e−δ(s−t)F(csWs, usWs)ds + e−δ(T−t) F̄[WT ]

]
(22)

such that Ẇ (t) = ωt (R
e
t − r f )Wt + r f Wt − (ut + ct )Wt − X(ωt ,Wt ) (23)

with

ct = Ct

Wt
and ut = Ut

Wt
(24)

We presume, following endogenous growth theory4, that the spending on ut , as a fraction
of wealth, can have a positive externality effect on the returns on the equity asset Re

t Wt . We
also assume that the mean of the returns for the short term interest rate, r f , is not affected, but
the equity return is positively impacted by spending on innovation (or negatively impacted
by the external effects arising from fossil fuel production).

With a slight change of notation, we denote asset returns here by Re
t and it is formulated

as follows:

Re(t) = ret (1 ± μ(utWt )) (25)

The time varying return is formulated in a similar way as in the previous section, but there
is now an additional return effect for equity return, Re

t , represented by the term (±μ (utWt )),
with μ a constant coefficient. A “+′′ sign in (25) implies a positive feedback on the asset’s
return due to a positive externality from innovation spending. Innovation in a low carbon
emission technology, for example, reduces the chances of climate impact damages, which
will positively impact the long-run returns of the asset and the growth of the economy. On
the other hand, a “−′′ sign, implies a negative feedback from the technology used. One can
think of a fraction of population operating as fossil fuel engineers who are creating long-run
adverse effects on the economy through the creation of negative externalities (such as CO2

emission, affecting global temperature and creating damages in the long run)5. Finally, we
attach weights (φ1) and (1− φ1) to the two components of the objective functions, as shown
in (28), which could be varied exogenously.

Solutions to the decision problem

To derive the optimality equations, we restate (22) in a dynamic programming form in order
to apply the Bellman principle of optimality. Again, the indirect utility function is defined by

4 See Greiner et al. (2005, chs. 4–5).
5 We could also think of the sign “−′′ as indicating that the the fossil fuel subsidies are reduced and thus the
return on fossil fuel asset would fall.
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V (Wt , t) ≡ max{ut ,ct ,ωt }
E

[
ε1

∫ T

0
e−δ0t F(ctWt , utWt )dt + ε2e

−δ0t F̄[Wt , T ]
]

(26)

Equation (26) is subject to similar constraint as (9), hence V (W (T ), T ) = F̄[Wt , T ]. The
Hamilton–Jacobi–Bellman equation for our economic problem is

δ0V (Wt , t) = max
u,c,ω

[
F(ctWt , utWt ) + ∂V (t)

∂t
+ VW

[(
ωt (R

e
t − r f )

+r f − (ut + ct ) − 1

2
θ ω2

t

)
Wt

]]
(27)

For this specific excercise, we assume the limiting case of γ → 1 of log utility function for
F(cs, us):

F(ct , ut ) = φ1 log (ctWt ) + (1 − φ1) log (utWt ) (28)

Following the same procedures as in the baseline model, the value function V (Wt , t) in the
log utility case takes the following form

V (Wt , t) = g(t) lnWt

the first order conditions with respect to ct , ut , and ωt give us the following optimal paths:

c∗
t = ε1φ1

1

g(t)
(29)

u∗
t = (A1 ± 1)

2A2
+

√
g(t)

(
4A2(1 − φ1) + (A1 ± 1)2g(t)

)
2A2 g(t)

(30)

and

ω∗
t = 1

θ

(
ret (1 ± μ(utWt )) − r f

)
(31)

where A1 = 1
θ
ret Wtμ

(
ret − r f

)
, and A2 = 1

θ
re

2

t W 2
t μ2.

from (30), the optimal fraction u∗
t in innovation efforts is influenced by the asset’s returns

ret , adjustment costs θ and the parameter μ.

3 Numerical solutions

To gain better intuition, we show the numerical results of varying the three determinants of
short-termism we defined earlier; namely, the risk-aversion parameter, the discount rate and
the discount factor (Sect. 3.2), and the decision horizon itself (Sect. 3.3). We first introduce
the numerical method we use. We treat our model as an optimal control problem and solve it
numerically by means of Nonlinear Model Predictive Control (NMPC). The NMPC method
carries a number of computational advantages. The optimization procedure allows us to
compute a higher dimensional problem. It allows us to compute one trajectory at a time for
the two state variables and the two decision variables {ct , ωt } (and later for three decision
variables in the extended version; {ct , ut , ωt }) at a finite time horizon with forward looking
behavior.Model PredictiveControl allows us also to relax the assumption of perfect foresight,
since estimates of the control variables are based on the decision horizon and not the full
planning horizon, and are re-estimated at every iteration (Nystrup et al., 2019).
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3.1 The NMPC procedure

Also known as the Receding Horizon Control (RHC), the NMPCmethod involves repeatedly
solving a constrained optimization problem, using estimates of future payoffs and constraints
over a moving time horizon representing the decision horizon6. The numerical procedure
consists of replacing the maximization of a long horizon functional in continuous time by
the iterative maximization of a finite horizon functional in discrete time. In general terms,
we re-express (1) and (2) in a discretized form:

max
N−1∑
k=0

ϕi
αF(ck,iWk,i ) (32)

s.t xk+1,i = �(h, xk,i , νk,i ) (33)

N ∈ N is a truncated (receding) finite horizon. The index i = 1, 2, 3, . . . indicates the
number of iterations. xk,i is the set of state variables; in our model xk,i = {W , t}7. νk,i is
the set of control (decision) variables; νk = {ck, ωk} in the standard case. Given an initial
value of the state x0, an approximate solution of the system (32)–(33) can be obtained by
iteratively solving (33) such that for i = 1, 2, 3, . . . that solves for the initial value x0,i := xi
the resulting optimal control sequence is ν∗

k,i , but uses only the first control νi := ν∗
0,i . At the

next step, the process is repeated, starting from the new control νk+1. In addition, by means
of the turnpike property8, it is possible to improve the convergence properties of the model
in the context of a long planning horizon, if globally optimal steady-state (x̄, ν̄) exist.

The economic interpretation of N in our model refers to the decision horizon; a large N
implies that the investor caresmore about the distant future payoffs, while a small N indicates
that the investor thinks rather about near future payoffs and does not care much about the
long-term returns. We restrict the decision variable ωt to ωt ≤ 1.2 which means restricting
the short selling of the risk-free asset. Finally, in the numerical solution procedure, we do
not consider the terminal condition to solve the model.

3.2 Portfolio performance and the discount rate

In this section, we numerically solve the baseline model for a planing horizon of T = 40
(iterations) and a decision horizon of N = 6. Time is represented on the horizontal axis and
the evolution of wealth is on the vertical axis. From Fig. 1, we can observe that wealth shifts
down faster with higher discount rates. The evolution of wealth behaves more or less the
same, whether we consider a power utility function or the more special case of log utility.

In the context of project selection, the investor is interested in estimating the present value
(PV ) of the project’s discounted payouts (asset returns). We use the model predictive control
to calculate the PV , or asset value, of time varying returns for different discount rates. For
higher discount rates, the value of the discounted payouts (the integral in Eq. (1)) comes
down, from PV = 138.1, 133.3, 126.1, 109.5 and 85. The relation between discount rates
and the present value of the financial investment is shown in Table 1.

6 See Grüne and Pannek (2011) for more details on the solution steps, proofs and general algorithm of the
NMPC method. For the discounted variant, applicable to our economic model see also Grüne et al. (2015).
7 In the numerical model, time t is considered a state variable as well, where ẋ2 = 1
8 See Faulwasser and Grüne (2022) for more on turnpike properties and their use in the NMPC context
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Fig. 1 Solutions path of wealth for different discount rates, δ0 = 0.01, 0.015, 0.03, 0.07, 0.15

Table 1 Asset value at different
discount rates

N = 6 T = 40 T = 40 T = 40 T = 40 T = 40

δ0 0.01 0.015 0.03 0.07 0.15

PV 138.1≥ Inv 133.3≥ Inv 126.1≥ Inv 109.5≤ Inv 85≤ Inv

N , decision horizon; T , planning horizon (iterations); δ, discount rate;
PV , present value; Inv, book value of investment

Table 1 illustrates results for a constant decision horizon N = 6 and an evaluation of
the financial investment project over 40 periods9. We evaluated the financial investment at
different discount rates to represent different types of investors. In this example, investors
with δ ≥ 0.07 are defined as short-sighted investors. The results presented in table 1 can
be linked to fossil fuel and clean energy based assets: If investors exhibit more impatience,
namely through a higher discount rate, it will reduce the value of the discounted future payoffs
and the project’s PV will be below the investment cost (as in Davies et al. (2014)). This could
affect clean energy assets as the capital costs for these types of projects tend to be higher.
That is what one can read from Table 1.

Following Tobin’s q theory of investment, one can for instance assume that the investment
cost is represented by a bookvalue of investment, Inv = 110. If the investor exhibit a high level
of impatience, the investment evaluations with a higher discount rate than δ ≥ 0.07 would
be very low and the investment would be rather discarded. Thus, short-termism expressed
through high-discount rates, will prevent investors from taking on those financial projects in
the last two columns. Short-term behavior represents in this case an obstacle to the devel-
opment of renewable energy. Therefore, if short-termism and the investor’s nearsightedness
is dominant, risky projects and eventually those with less informative signals are not con-
sidered. Capital intensive green infrastructure can be seen as these types of projects, which
might have difficulties attracting sufficient funds and thus the portfolio holdings of this type
of assets will decline. Marginal investment projects, with lower discount rates than δ ≤ 0.07,
could also be affected; for instance, fossil fuel energy based assets which are first seen as
profitable could suddenly collapse when the discount rates swings up, as studies of the years
2008-9 have shown, see Cochrane (2011).

9 Note that as is proven (Grüne et al., 2015) the large enough decision horizon and receding periods will make
the project’s PV as computed here for the finite horizon approximating the infinite horizon solution.
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Fig. 2 Solutions path of wealth for different types of discount factors, δ = 0.03; upper curve, exponential
discounting (α = 0), lower curve, hyperbolic discounting (α = 1)

Given that we analyze a dynamic portfolio model with dynamic returns over time, and
wealth built up (or decline), a selling of clean energy based assets could also occur, providing
then less financial resources for clean energy projects. In our model, we assume however that
the asset is held, but its share in total assets holding will fluctuate and eventually decline,
as shown through the numerical results of the model. In the above exercise, we varied the
discount rate but kept the assumption that investors discount projects on a time-consistent
exponential discount factor. Figure 2 displays the solution paths of wealth discounted using
the same discount rate but two different discount functions; namely exponential discounting
against hyperbolic discounting.

As discussed in Sect. 2.3, hyperbolic discounting mainly affects the consumption rate.
Hence, the faster decline of wealth as shown by the lower curve in Fig. 2 is due to higher
consumption rate in early periods as opposed to the constant exponential discounting. We
have also tracked the solution of the case when there is a shock to the returns at a random
time. This is depicted in Fig. 3 where there appears a jump in the return at roughly period 5,
as numerically programmed in the appendix 10.

A positive shock to the asset’s fluctuating returns (through α1) at random time t led to
higher wealth accumulation over time as depicted by the upper curve of Fig. 3.

3.3 Portfolio performance and the decision horizon

In the previous section, we numerically solved our baseline model for different values of
discount rates and different types of the discount factor, while considering the decision hori-
zon N to be fixed for a given planning horizon (iterations) T . In this section we numerically
solve the second model, whereby the investor chooses between consumption and spending
a fraction of her wealth in innovation efforts. In addition, we modify the asset’s fluctuating
returns by introducing a positive drift in the equity returns arising from energy innovation
and agnegative drift from fossil fuel externalities respectively. Here we test another aspect
of short-termism namely by changing the decision horizon, while we keep the rate of the

10 With the NMPC algorithm it is possible to solve for optimal investment policies taking into account that a
shock can occur at a random period.
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Fig. 3 Solutions path of wealth as a result of change of α1 from 0.05 to 0.08 at t = 8

Fig. 4 Solutions path of wealth for different time horizon, δ = 0.03; upper figure, N = 8, lower figure, N = 6

exponential discount factor fixed. We let the model to be solved for T = 30 iterations and a
receding window of N = 2, 6, 8.

In Fig. 4 the results are shown for different decision horizons, N = 8 and N = 6. The
lower graph representing a shorter run decision horizon exhibiting short-termism in the sense
of Davies et al. (2014). As we can observe, the time horizon of N = 6 leads to less asset
built up, more specifically to dissipating asset value in the long run. Here, we simulate the
model where the term (1 ± μ(utWt ) holds for + , which implies that μ(·) > 0.

In the second case, we explore another decision horizon N = 2 but without including
the effect of externalities; in other words, the term (1 ± μ(utWt ) = 1) which implies that
μ(·) = 0. Letting the model to be solved again for T = 30, we get:

Figure 5 shows solutions path of wealth for different decision horizons, as in the previous
figure, upper graph, N = 8, lower graph, N = 6, lowest graph, N = 2. As one can observe
from the figure above, the lowest graph shows the least asset built up. Hence, even if there is
no negative effect from externalities, asset formation is lowest with short-termism driven by
a very short decision horizon.
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Fig. 5 Solutions path of wealth for different time horizon, two upper graphs μ(·) > 0, low graph μ(·) = 0,
T = 30

Fig. 6 Solutions path of wealth for different time horizons

Figure 6 shows four curves: the upper curve, N = 8; the two graphs below, N = 6, with
the term (1 + μ(utWt )), and N = 6, with the term (1 − μ(utWt )), representing external
cost of fossil fuel use; finally the lowest curve, N = 2, and here the term (1± μ(utWt ) = 1
which implies that μ(·) = 0. As we can see in Fig. 6, the decision horizon of N = 8 with
the additional innovation effect for the equity returns, produces superior asset formation,
the two graphs below for N = 6, with the term (1 + μ(c1,tWt )), and for N = 6, with
the term (1 − μ(c1,tWt )), representing external cost of fossil fuel use, exhibit a lower asset
formation, in fact decline of asset formation. The lowest graph for N = 2 and here the term
(1 ± μ(c1,tWt ) = 1, thus even with a μ(·) = 0 this portfolio exhibits a rapid decline of
assets.

In general, we observe from the different cases studied that wealth declines faster with
shorter decision horizon. It is important to note that the above results are obtained if the
general conjecture holds that the short-sighted investors are agents investing mostly in fossil
fuel assets. If investors exhibit short-termism, this will show up as a short decision horizon
for an asset portfolio (as in Davies et al. (2014)). In addition, the negative externalities effect
resulting from CO2 emissions will also generate lower returns even if the decision horizon
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is the same, as shown in Fig. 6 with N = 6. Thus, short-termism, and negative externalities,
not internalized in asset price formation, will hinder the ability of green investments to take
off easily even with good portfolio performance.

Hence, short-termism would be an impediment for the fast development of clean energy.
Moreover, carbon based energy provisions will show additional negative asset effects in the
long run, since it reduces equity returns resulting from disrupted production processes due to
climate damages. Therefore, if short-termism and share holders’ nearsightedness is dominant,
themore risky projects, andmaybe thosewith less rich information, are not considered. These
are likely to be renewables which will have issue attracting sufficient capital funds and thus
the portfolio holdings of this type of assets will decline. We also want to note that in principle
the weights φ1 and (1− φ1) of the two objective functions in (28) could be varied and some
Pareto frontier could be computed to explore which weights are the realistic ones, see Kaya
and Maurer (2014).

4 Dynamic portfolio model with two fluctuating assets

We present here an extension of the standard model of Sect. 2 in order to further study
the impact of green and fossil fuel asset dynamics on investment decisions. The investors’
portfolio still rely on two assets, but we have now two assets with time-varying returns: a
green and a fossil fuel one. In this exercise, the portfolio returns are obtained through har-
monic estimations using a Fast Fourier Transform, as Chiarella et al. (2016, ch. 4). We use
the annual monthly total returns in USD for the S&P Global BMI Energy, representing the
fossil fuel sector, and for the Dow Jones Sustainability Global equity indices, representing
the green sector, both available from April/2004 to May/2021. One objective in represent-
ing assets returns using current market data is to provide a theoretical background and a
clearer perspective on future empirical work on the performance of portfolios (with climate
externalities) that is of interest to finance practitioners.

The estimated harmonic oscillations for both assets – regreen(t) and reFF (t) – are shown
below and are later adjusted to account for the negative externality effects and social returns
arising from green innovation. The new decision problem of a portfolio holder can be stated
as follow

max{ut ,ct ,ωt }
E

[∫ T

0
e−δ0t F(ctWt , utWt )dt + e−δ0t F̄[Wt , T ]

]
(34)

such that Ẇ (t) = ωt R
e
greenWt + (1 − ωt )R

e
FFWt − (ut + ct )Wt − X(ωt ,Wt ) (35)

in which ωt is the share of green bonds in investors’ portfolio with ωt ≤ 1.2, allowing thus
fossil fuel divestment, while the green and fossil asset returns are respectively given by

Re
green = (1 + μ(ξ ut ))(φ2 + φ1r

e
green(t)) (36)

Re
FF = (1 − μ((1 − ξ)ut ))(r

e
FF (t)) (37)

Hereby, the fractions ofwealth used for renewable energy innovations, ξ , and the remaining
part used for fossil fuel innovationswill be taken as fixedwith equal shares. Simulations could
be undertakenwith various fractions of ξ . Innovation efforts, as in Sect. 2, impact asset returns
through externality effects but, additionally, green assets will face lower volatility of returns,
φ1 = 0.5, and higher returns in the long-run (φ2 is a mean-adjustment term that represents
the positive impact of externalities which will be varied in our simulations). The adjusted

123



Annals of Operations Research

Fig. 7 Returns for green (reg) and fossil fuel assets (rec): harmonic estimations after adjusting for externality
effects for different levels of φ2

harmonic estimation returns for the constant φ2 equals to 0.034, 0.024 and 0.0 are shown in
Fig. 7.

We select the harmonic estimations that minimize the squared root error, employing var-
ious linear combinations of sine-cosine functions (see equations bellow and Fig. 8).

regreen(t) = 0.0040 sin(2(π/43)t) + 0.1616 cos(2(π/43)t) + 0.0306 sin(2(π/28.67)t)

+ 0.1323 cos(2(π/28.67)t) − 0.0711 sin(2(π/17.20)t) + 0.0919 cos(2(π/17.20)t)

− 0.0006 sin(2(π/86)t) − 0.0646 cos(2(π/86)t) − 0.0527 sin(2(π/8.60)t)

− 0.0009 cos(2(π/8.60)t) − 0.0151 sin(2(π/7.82)t) − 0.0673 cos(2(π/7.82)t)
(38)

reFF (t) = 0.0297 sin(2(π/43)t) + 0.1285 cos(2(π/43)t) − 0.0007 sin(2(π/21.5)t)

+ 0.0455 cos(2(π/21.5)t) + 0.0431 sin(2(π/28.67)t) − 0.0128 cos(2(π/28.67)t)

− 0.0253 sin(2(π/7.8182)t) − 0.0436 cos(2(π/7.8182)t) − 0.0255 sin(2(π/17.2)t)

+ 0.0164 cos(2(π/17.2)t) + 0.0057 sin(2(π/7.1667)t) − 0.0236 cos(2(π/7.1667)t)
(39)

The harmonic estimations shown in Fig. 8 are adjusted for the externality term, driving
investors’ portfolio choice. Asset returns are extremely volatile but, from Fig. 9, we observe
that investors tend to diversify and increase the share of green assets whenever green assets’
returns are larger than fossil fuel asset returns, mitigating the negative effects of climate
transition, see Figs. 9 and 10.
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Fig. 8 Original harmonic estimations obtained to fossil fuel (S&P Global BMI Energy) and green (Dow Jones
Sustainability Global Index) assets

Fig. 9 Portfolio decision - share of green assets for the cases with φ2 = 0.034, φ2 = 0.024, and φ2 = 0

We obtain the portfolio model’s numerical solutions for the three simulations of φ2 also
usingNMPCas a solution procedure.We use a parameter valueμ = 0.2. In Fig. 10, the lowest
curve represents the effect with a parameter φ2 = 0, the middle graph is for φ2 = 0.024
and the upper curve for φ2 = 0.034. The greater the positive externality effect, the more
wealth is accumulated overtime. Negative externalities are likely to lead to less asset built
up, but more specifically to dissipating asset value in the long run. Innovation efforts and
the positive externalities from climate investments protect financial markets from long-term
climate risks.
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Fig. 10 Solutions path of wealth for different asset returns, the upper graph with φ2 = 0.034, middle graphs
with φ2 = 0.024 and lowest graph φ2 = 0.0 (N=6, T=100)

Each solution path shown in Fig. 10 is associated with a portfolio composition choice.
When investors hold a larger share of green assets, the negative effects of the carbon exter-
nality tend to be mitigated.

5 Conclusion

In this paper we analyzed the potential implications of short-termism on the dynamic
consumption-investment decisions of investors and their impact on green investments. We
first employ a simple inter-temporal choice model that contains two assets, one equity asset
with fluctuating returns and another asset with constant risk-free return. Equity returns are
represented by low frequency movements, which we approximated with appropriate sine-
wave functions—which are then later estimated as harmonic estimations in Sect. 4 using
actual market data. We studied the effect of short-termism by varying three main drivers;
namely, risk-aversion, the discount rate, and the decision horizon.

In the baseline model with one decision variable in the utility function, namely consump-
tion, the numerical results showed that with higher discount rates (an investor exhibiting a
high level of impatience), investments with lower present value (PV) tend to be more often
discarded. In addition to the level of discount rate, the type of discount factor can also impact
the evolution of wealth. With a time-inconsistent discount factor (a hyperbolic discount fac-
tor), numerical results showed that wealth tends to decline even faster than with discounting
with exponential discount factor, due to a higher consumption rate in the beginning of the
time horizon. Finally, we vary the decision horizon, N , and show that the smaller the deci-
sion horizon the lower is wealth accumulation over time, thus supporting the assumption that
short-termism affect negatively the value of the portfolio over the long-run.

We extend themodel to include a second decision variable in the objective function, where
the investor decides to spend also a fraction of her wealth in innovation efforts, which could
create positive or negative external effects. An extension that is in line with the previous
work of Acemoglu et al. (2012) on directed technical change in endogenous growth models,
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exploring the positive external effects.We also explore amodel versionwith negative external
effects from innovation efforts. In those two versions of the model, we look into the effects
of time varying returns and decision horizons on the consumption-wealth ratio and the fate
of wealth. Finally, in a further extension of the model, we estimate the fluctuation of returns
through harmonic estimations and use them in a dynamic portfoliomodelwith two productive
assets. A stochastic version, though of simplified form, is also explored.

Detailing what short-termism is in the context of a model of dynamic portfolio decisions,
for an economy that aims at a better mix of fossil fuel and renewable energy, may point
to better pathways for empirical work. In addition, the numerical method we are proposing
(NMPC) is of great practical use: the prediction-control mechanism of finite horizon permits
the decision maker to undertake some on-line strategy where assets are re-allocated when
new information is coming in from the market. Given the new information, the harmonic
estimations could be updated through the numerical algorithm triggering a change in asset
allocations. So our approach may have significant importance for financial practitioners in
the future.
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A NMPC subroutine algorithm

To account for a shock affecting the asset returns at a random time, we augment the NMPC
algorithm using a set up, similar to the multi-phase dynamcics as in Semmler et al. (2021).
In our model, we assume a shock affects the parameter α1 in (8′), changing the amplitude of
the return process, at a random time.

We use a concrete example for the number of iterations and create random time events.
The sub-routine generates random time in an ascending order. Then let the random process,
as sub-routine, determine the random event time for the switch of the coefficient α1 in the
NMPC algorithm. Using a running time index in the NMPC program as 2nd state variable
we can write: ẋ2 = 1, which represents our running time index. Then the above random time
sequence triggers the switch of the coefficient α1, with a certain size, in the NMPC solution
program. This way the amplitude of our return fluctuations is randomly fluctuating, possibly
capturing the new information coming in at random time when time moves forward. Below
is a summary of the routine we described.
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x2 = sort((T − 1) ∗ rand(T , 1) + 1);
y = round(x2);
if (x2 == y(5, 1)) then

α1 = 0.8;
else

α1 = 0.5;
end
re = α1 ∗ sin(0.2 ∗ x2) + 0.025

Algorithm 1: subroutine algorithm
Note that for example the entry y(8, 1), is used in our simulation of Fig. 3. Yet the entry

represents a random time at which we have a switching coefficient α1. This is so, because
iterating forwardwhatwill be the exact time index at the the place 8 is completely random.The
results give us Fig. 3. Yet, for a one shock simulation, as in Fig. 3, any other entry y(., 1) could
be used to generate a random switch time. We could have also multiple random time changes
of α1. The graph would then look much more complex than Fig. 3. Thus, to illustrate our
procedure we have used in Fig. 3 a simple presentation, namely using a one-time coefficient
shock at random time. Moreover, we could also, in addition, introduce a sub-routine that
make the size of the shock α1 random. Those complications are not implemented here but
could with some additional programming effort, also be addressed.
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