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Abstract
Global flood models (GFMs) are increasingly being used to estimate global-scale societal and
economic risks of river flooding. Recent validation studies have highlighted substantial differences
in performance between GFMs and between validation sites. However, it has not been
systematically quantified to what extent the choice of the underlying climate forcing and global
hydrological model (GHM) influence flood model performance. Here, we investigate this
sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an
ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events spread
over four continents and various climate zones. For most regions, the simulated inundation extent
is relatively insensitive to the choice of GHM. For some events, however, individual GHMs lead to
much lower agreement with observations than the others, mostly resulting from an overestimation
of inundated areas. Two of the climate forcings show very similar results, while with the third,
differences between GHMs become more pronounced. We further show that when flood
protection standards are accounted for, many models underestimate flood extent, pointing to
deficiencies in their flood frequency distribution. Our study guides future applications of these
models, and highlights regions and models where targeted improvements might yield the largest
performance gains.

1. Introduction

Of all natural disasters worldwide, fluvial (river)
flooding is among the most frequent and devastating
hazards (Jha et al 2012). In the recent years of 2010–
2018, it caused 115 million human displacements
(IDMC 2019), 49 595 fatalities, and US$ 360 billion
in economic losses (Munich Re 2020). For example,
11 million displacements (IDMC 2019), 1985 deaths,
and US$ 9.5 billion in economic losses (EM-DAT
2020) were recorded in the aftermath of the Pakistan
floods in 2010. Flooding killed 6054 people in India in
2013 (EM-DAT 2020) and caused an estimated US$
33 billion losses in China in 2016, with only 2% of
losses insured (Floodlist 2016). Beyond these records,
one can expect further losses such as of cultural her-
itage and ecosystem services, which are, however, dif-
ficult to assess (Hurlbert 2018).

Continental-scale changes in flood discharge have
been observed recently, in line with theoretical
expectations about the effects of global warming on
the hydrological cycle (IPCC 2014, Blöschl et al 2019).
This poses the question to what extent the soci-
etal impacts of floods have already been shaped by
anthropogenic climate change. However, displace-
ments, damages and losses associated with floods are
a function not only of the physical flood hazard, but
also of socioeconomic factors. The latter, in partic-
ular, determine exposure—the number of people or
the value of assets potentially affected by flooding—,
and vulnerability—the susceptibility of exposed ele-
ments to the hazard (IPCC 2012, Jongman et al
2015). Together, these controlling risk factors form
a dynamic, spatially and temporally variable balance
used for risk assessment. Since not all three factors
are generally known, it is challenging to quantify their
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relative contributions to the ultimate impacts of his-
torical floods.

Global flood models (GFMs) can be used to
estimate historical flood extents based on observed
weather, and could thereby provide the physical flood
hazard component for such assessments when dir-
ect observations of flood extent are lacking. This
approach is increasingly being used, for instance, to
estimate past changes in vulnerability (Tanoue et al
2016) or attribute trends in reported flood-induced
damages (Sauer et al 2021). However, the degree to
which such studies can explain the observed vari-
ations in damages and affected population varies sub-
stantially, and can be fairly low for many parts of the
world. It is unclear to what extent this is due to short-
comings in the simulated flood hazard, exposure, or
assumptions about vulnerability.

This highlights that a thorough understanding
of the reliability of global flood hazard estimates is
important. However, validation and benchmarking
studies are rare (Hoch and Trigg 2019), which is
mainly due to the scarce availability of reference flood
maps outside of some high-income countries and
regions such as the European Union, North Amer-
ica, or Australia (Dottori et al 2016). A compar-
ison of several GFMs to satellite imagery in three
African river sections showed considerable differ-
ences betweenmodels in terms of how accurately they
reproduced observed flood extent; most models both
missed flooding in some areas and falsely simulated
flooding in others (Bernhofen et al 2018). The agree-
ment between these models in simulated flood extent
was shown to be only 30%–40%, with considerable
differences in hazard magnitude and spatial patterns
(Trigg et al 2016).

It is hardly known to what extent such differences
between GFM simulations and their predictive capa-
cities are related to theGFMs themselves, for instance,
due to differences in model structure or the underly-
ing digital elevation models; and to what extent they
are related to the boundary conditions used to force
the GFMs. Depending on the modelling framework,
these boundary conditions consist either of gauged
river flow datasets, or—for the majority of GFMs—
of gridded runoff estimates from global hydrological
model (GHM) or land-surface models (Trigg et al
2016). Those runoff simulations in turn needmeteor-
ological variables as input, which come from global
climate reanalyses or climate models. Most global
flood hazard simulations thus are the result of a cas-
cade of differentmodels and data products, withmul-
tiple options available at each step in the cascade. The
influence of choices in the upstream steps of this cas-
cade on the resulting flood extent estimate has hardly
been systematically investigated (Zhou et al 2021).

In this study we address this research gap. We run
a state-of-the-art GFM with runoff forcing from 11
different GHMs, each in turn forced by three dif-
ferent climate reanalyses. We evaluate the resulting

simulation ensemble against satellite-derived flood
extent observations for eight recent large flood events
on four continents, covering different climatic and
hydraulic environments, and assess the influence of
the choice of both climate forcing and GHM on the
performance of the GFM simulations. We do this
under different assumptions about flood protection,
to also assess the realism of simulated return intervals.

2. Data andmethodology

2.1. Models
We use the GFM CaMa-Flood (Yamazaki et al 2011),
driven by an ensemble of 11 GHMs and three grid-
ded climate forcing datasets, leading to 33 combin-
ations in total. The climate forcing datasets used to
drive the GHMs are the Princeton Global Forcing
data set version 2 (PGFv2) (Sheffield et al 2006), the
Global Soil Wetness Project phase 3 forcing data set
(GSWP3) (Hyungjun 2014) and the WATCH forcing
data methodology applied to ERA-Interim reana-
lysis data (WFDEI) (Weedon et al 2011, 2014). All
three datasets are based on reanalysis products (ERA-
Interim for WFDEI; 20CR for GSWP3; NCEP/N-
CAR for PGFv2) that assimilate information from
local weather stations, and subsequently apply cor-
rections to the precipitation data and other variables
using station-based observational data; two datasets
(WFDEI and GSWP3) also correct for precipita-
tion undercatch by rain gauges. Given these meth-
odologies, and the gridded nature of the forcing
products, direct comparison with local station data is
not straightforward, but existing validation exercises
show reasonable agreement with station data as well
as with gridded observational datasets (Weedon et al
2014, Essou et al 2017).

The set of GHMs comprises CLM4.0 (Leng et al
2015), DBH (Tang et al 2007), H08 (Hanasaki et al
2008), JULES-W1 (Best et al 2011), LPJmL (Sitch
et al 2003), MATSIRO (Pokhrel et al 2014), MPI-HM
(Stacke and Hagemann 2012), ORCHIDEE (Traore
et al 2014), PCR-GLOBWB (Wada et al 2014), VIC
(Liang et al 1994) and WaterGAP2 (Müller Schmied
et al 2016). An overview of the GHMs’ main char-
acteristics, e.g. evaporation and runoff schemes, is
available in the supplementary material—table S1.
All GHM simulations follow a common protocol
(ISIMIP2a, www.isimip.org) to ensure a standard-
ized input scheme for CaMa-Flood. Simulations are
performed under naturalized conditions, i.e. storage
in man-made reservoirs or agricultural water with-
drawal are not included.

The runoff of the respective GHM then consti-
tutes the input for CaMa-Flood v3.6.2 which yields
discharge as well as flood depth on a 0.25◦ resolution
grid. The underlying river network in CaMa-Flood
has been derived by the model author based on the
flowdirectionmapsHydroSHEDS (Lehner et al 2008)
andGDBD (Masutomi et al 2009) as well as the digital
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elevation model SRTM3 (Farr et al 2007) using their
FLOW method (Yamazaki et al 2009). Using these
same data, we downscale flood depth to 18 arc sec.
i.e. the daily flood volume in a low-resolution (0.25◦)
grid cell is distributed onto the underlying high-
resolution (18 arc sec) grid cells according to their
elevation.We then assign to each high-resolution grid
cell the annual maximum daily value, resulting in an
annual flood depth timeseries. The event duration
according to the satellite imagery matches with the
rising limb or the peak of the flood simulations for
most regions of interest; and coincideswith no second
flood event in the year of investigation, which legit-
imizes this approach (figures S22–S33 in the supple-
mentary material (available online at stacks.iop.org/
ERL/16/094010/mmedia)). This dataset is used to
produce figure 2. Finally, we calculate the flooded
fraction on an intermediate-resolution (2.5 arc min)
grid, i.e. the fraction of flooded high-resolution grid
cells within each intermediate-resolution grid cell.
This flood fraction dataset is used to calculate the per-
formance scores (see below).

Whereas this constitutes our default simulation
setup (‘default’), we also assess setups assuming pro-
tection against floods with an average recurrence
interval (ARI) of 2 years (‘protect 2y’ setup), and
assuming flood protection standards according to the
FLOPROS database (Scussolini et al 2016) (‘protect
FLOPROS’ setup). FLOPROS incorporates modelled
protection, infrastructure, and policy measures in a
best estimate (‘merged’ layer) on a sub-national level.
Fitting, for each climate forcing and GHM, a general-
ized extreme value (GEV) distribution to the annual
maximum discharge for each cell and in the simu-
lation period available for all models (1971–2010),
we obtain the return period in dependence of dis-
charge. We then compare the return period for each
studied event to the protection level for the respective
cell; i.e. either 2 years, or the protection level given by
FLOPROS. In the ‘protect’ settings, we thereby only
account for flood events in cells in which this pro-
tection level is exceeded and assume no flooding for
events with lower return period.

It should be noted that there are well-established
practices used in floodplain planning processes
internationally (World Meteorological Organization
2009) that do not rely on GFMs but instead use more
complex, locally calibrated hydrodynamic models
(Raadgever and Hegger 2018). However, these tech-
niques require elaborate calibration for each indi-
vidual catchment (Canning and Walton 2014), and
rely on local observational data that is not commonly
available in all parts of the world. For instance, in
a new, comprehensive global streamflow database
(Do et al 2018, Gudmundsson et al 2018), local
gauge records are available for only one of the events
studied in this paper (the 2010 flood in Dalby, Aus-
tralia; see below), and are entirely unavailable for
some of the study regions. Thus, while the global

models evaluated here are likely inferior to more
complex, locally-informed flood prediction mod-
els where those exist, the global models nonetheless
are important tools widely used in continental- or
global-scale applications (Bates et al 2021).

2.2. Observational data
For the comparison of our simulated flood extent
we use satellite imagery from the archive of the
Dartmouth Flood Observatory (DFO), which is
based on NASA MODIS satellite sensors (https://
floodobservatory.colorado.edu/) (Brakenridge 2006),
and from the UNOSAT Flood Portal (UFP) providing
flood extent maps derived from a variety of satellite
sensors (http://floods.unosat.org/geoportal/catalog/
main/home.page). The number of eligible events is
limited, because consistent geospatial imagery starts
in 2010 for DFO and 2006 for UFP, respectively,
and most the climate reanalysis products used here
extend only until 2010 or (for PGFv2) 2012. Only
large-scale disasters with a large river size are taken
into account to ensure that the inundated areas can
be adequately captured given the spatial resolution
of the GFM. It is essential that observational valida-
tion data is available, consistent and comprehensive
for the entire area of interest. Additionally, a spread
across different climate zones and continents is desir-
able for a comprehensive global comparison study
(Dottori et al 2016). We exclude flash flood events,
storm surge flooding, as well as floods caused by
mismanagement or failure of man-made structures,
since these types of floods cannot be modelled by the
GFM.

We identify ten regions of particular interest in
the context of eight major flood events, as shown
in figure 1. The following regions, named after the
central city or town affected, are used for valida-
tion: Huainan in China (year of flood event: 2007),
Sayaxché in Guatemala (2008; the westernmost part
is located in Mexico), Trinidad in Bolivia (2008),
Alipur and Ghotki in Pakistan (2010), Phimai in
Thailand (2010), Dalby in Australia (2010), Chemba
in Mozambique (2007), as well as Lokoja and Idah
in Nigeria (2012). Chemba (MOZ; we will indicate
each location’s ISO3 country code throughout the
paper for ease of reference), Lokoja (NGA), and Idah
(NGA) are studied in a recent GFM intercompar-
ison study, thus facilitating comparison of our results
with that study (Bernhofen et al 2018). The selected
areas are located inmonsoon climates, tropical savan-
nas and rainforests, subtropical climates, and deserts,
on four continents (Peel et al 2007). The selection
covers a variety of hydraulic characteristics, ranging
from confined watercourses of the Niger River and
the anabranching Condamine River in Queensland to
highly braided and slow sections of the Indus River.
A more detailed description of the chosen events and
the river hydraulics can be found in the supplement-
ary material—table S2.
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Figure 1. Satellite imagery of flood extent (blue) in the study areas (red). Note: the outlines of Chemba (MOZ), Lokoja (NGA)
and Idah (NGA) follow the flood shape and are not rectangular. Country shapes reproduced from https://gadm.org/data.html.

The satellite imagery of flood extents for the
regions Alipur (PAK), Ghotki (PAK), Phimai (THA),
and Dalby (AUS) are taken from the DFO. Satel-
lite imagery for Huainan (CHN), Sayaxché (GTM)
and Trinidad (BOL) are downloaded from the UFP.
For some events, the data consists of several days
of imagery and is hence merged into one maximum
flood extent per event. Rectangular analysis regions
are defined for the events above (red rectangles in
figure 1). Flood footprints and outline data for the
regions Chemba (MOZ), Lokoja (NGA) and Idah

(NGA) are derived from Research Data Leeds (http://
archive.researchdata.leeds.acuk/411/), which is inten-
ded for GFM validation (Bernhofen et al 2018) and
also based on the DFO archive. In contrast to the
other regions, data for these regions is only available
inside an irregularly shaped polygon roughly out-
lining themain inundation area, which limits the ana-
lysis of both observations and simulations to these
polygons (we will discuss the implications of this
below). The satellite imagery for all regions is at
a 209 m resolution. Only the simulations of eight
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GHMs forced with PGFv2 extend to the year 2012,
which limits the analysis of Lokoja (NGA) and Idah
(NGA).

2.3. Analysis
The analysis procedure starts with a visual compar-
ison of the simulated and the observed flood extent.
For the former, we use the gridded CaMa-Flood flood
depth output downscaled to 18 arc sec resolution
(approx. 550 m at the equator). This yields a binary
grid with two grid cell states (flooded or not flooded)
for each climate forcing and GHM. For each climate
forcing and grid cell we then count the number of
GHMs showing flooding in the respective cell, to cre-
ate amodel agreementmap.We use the flood outlines
for each region (red outlines in figure 1) tomask both
the model agreement map and the satellite imagery.
The masked images are then superimposed onto each
other (figure 2). Next, in order to quantify model per-
formance, we use two different performance metrics
(Bates and de Roo 2000, Aronica et al 2002, Werner
et al 2005, Bernhofen et al 2018). First, the critical suc-
cess index (CSI) is defined as:

CSI=
Fm ∩ Fo
Fm ∪ Fo

where Fm is the modelled flooded area by CaMa-
Flood and Fo is the observed flooded area by the satel-
lite imagery. Fm ∩ Fo is the intersection area between
modelled and observed flood extent, i.e. the area cor-
rectly simulated as flooded by themodel; and Fm ∪ Fo
is the union area between modelled and observed
flooded area. The CSI is perceived as the one of the
most comprehensive scores (Bernhofen et al 2018). It
ranges from 0 to 1, where 1 represents a perfect model
‘fit’ (Sampson et al 2015), and penalizes overpredic-
tion. The Bias score is defined as:

Bias=
(Fm ∩ Fo)+ Fm
(Fm ∩ Fo)+ Fo

− 1.

An unbiased model has a Bias score of 0, positive and
negative values indicate a tendency towards over- or
under prediction of flood extents, respectively. The
Bias score rewards a large intersection area between
modelled and observed flood extent.

At high spatial resolution, mismatches in river
geometry between the satellite imagery and the digital
elevation models used in the GFM could deteriorate
the performance scores in confined floodplains; e.g.
if a river channel in the DEM is offset relative to its
real location (Yamazaki et al 2011). Since we want to
evaluate simulated flood extent per event, rather than
DEM accuracy, we therefore calculate performance
scores at the coarser resolution of 2.5 arc min. For
that, we downsample both the binary satellite imagery
and the CaMa-Flood binary flood data to 2.5 arc min
using simple linear sampling, yielding the share of
flooded area per cell. Incorporating absolute cell area

we thus compute absolute flooded area per cell for
both CaMa-Flood output and satellite imagery. Sum-
ming over all cells within an analysis region yields Fm
and Fo respectively. The intersection area Fm ∩ Fo is
calculated analogously but multiplying, in each cell,
the smaller flooded fraction of either CaMa-Flood or
satellite data with the cell area; for the union area
Fm ∪ Fo the larger value of either model or data is
used. This approach is based on the assumption that
the location of flooding at the sub-grid scale is, for
a given grid-scale flood extent, constrained by topo-
graphy. For comparison, we also show CSI and Bias
scores computed directly on 18 arc sec resolution in
supplementary material figures S36 and S37.

In the section 3, along with the performance
metrics for individual simulations and regions, we
also show the median over all regions as well as
median, minimum, maximum and spread over all
hydrological models. Lokoja (NGA) and Idah (NGA)
were excluded from the computation of the regional
median, in order to allow a fair comparison of the
median values between the three climate forcing
datasets.

3. Results

We first analyse results for the default simulations not
accounting for flood protection; and subsequently,
in section 3.3, discuss the simulations with flood
protection.

3.1. Model agreement map
Figure 2 displays the model agreement overview
for all three climate forcings and ten regions, for
the default simulations. Results differ substantially
between the regions. The agreement between mod-
els is high, and the simulated flood outline in relat-
ively good agreement with observations, for Sayaxché
(GTM), Trinidad (BOL), Lokoja (NGA), Idah (NGA),
and Phimai (THA), although the models miss some
extended parts of the flood in Trinidad (BOL) and
Phimai (THA), and somewhat overestimate the flood
extent in Idah (NGA). Agreement between models is
also high (indicated by reddish colours) in Huainan
(CHN); however, the models overestimate the extent
of flooding there, including a large area in the north-
western part of the region where most models falsely
simulate flooding. In Chemba (MOZ), as well as
in Alipur (PAK) and Ghotki (PAK), most models
agree on flooding along the main river branches, but
partly underestimate the extent of this flooding; while
manymodels falsely simulate flooding in an extensive
area to the east of the Indus River in Ghotki (PAK),
and along the Sutlej river estuary in Alipur (PAK).
Finally, in Dalby (AUS), only some models capture
the more extensive parts of the flood; at the same
time, several models simulate flooding alongside long
stretches of the river channel where no flooding is
observed.
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Figure 2.Model agreement map indicating the flood extent overlap between the 11 GHMs and the satellite data for each study
region (row) and climate forcing (column). The cell colour represents the number of GHMs that computed the corresponding
cell to be flooded. The underlying flood extent of the satellite imagery (light grey) is assigned a dark colour tone if it matches with
at least one GHM. For the 2012 flood in Lokoja (NGA) and Idah (NGA) (marked with an asterisk ∗), only eight GHMs, driven
with PGFv2, were available.
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Figure 2. (Continued.)

The simulation of flooding in large areas where
no flooding was observed—found for the floods in
China, Pakistan, and Australia—could theoretically
be induced by contamination of our flood extent
estimate by a different flood event: i.e. an event occur-
ring in the same year which had an even higher flood
magnitude in that part of the region, and would thus
be picked up when taking the annual maximum dis-
charge in every grid cell. However, analysis of daily
flood data confirms that this is not the case; while
there can be a considerable delay of the flood peak
in CaMa-Flood compared to observations (Zhao et al
2017), the estimated flood extent is largely related
to one coherent flood event, except for outliers in
marginal grid cells (supplementary material, figures
S1–S33).

Regarding the climate forcing, the GSWP3 and
WFDEI reanalysis datasets lead to very similar results.
The PGFv2 dataset leads to markedly smaller simu-
lated flood extents in Alipur (PAK), Ghotki (PAK),

and Huainan (CHN), with most or all GHMs. This
partly remedies the overestimation of flooding out-
side the main river floodplains, but also leads to
a more substantial underestimation of flood extent
along the main rivers in Alipur (PAK) and Ghotki
(PAK), compared to the other two forcing datasets.

3.2. Model performance scores
In line with the observations from the model agree-
ment maps, the CSI scores vary substantially between
the different regions (figure 3). A comparatively
low CSI is found for Alipur (PAK), Ghotki (PAK),
Huainan (CHN),with scores between 0.3 and 0.4, and
especially Dalby (AUS) with scores below 0.3. High
CSI scores of around 0.5 and higher are found for
Sayaxché (GTM), Trinidad (BOL), Chemba (MOZ),
Lokoja (NGA), and Idah (NGA). Intermediate scores
of around 0.45 are found for Phimai (THA). Since
the CSI score also depends on the flood magnitude
(Stephens et al 2014), this numerical comparison

7
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Figure 3. CSI scores for all combinations of GHMs and PGFv2 (top), GSWP3 (middle), and WFDEI (bottom) forcing. The
‘Median Region’ across the even number of regions is calculated as the mean of the two middle values. Lokoja (NGA) and Idah
(NGA) (marked with ∗) were excluded from the computation of the ‘Median Region’. ‘-’ means no input data was available and a
black box indicates the best-performing GHM(s) for a given region.

between regions and events should be interpreted
with caution, and in conjunction with the model
agreementmaps. In particular, for a given regionwith
a concave topography (e.g. extensive floodplain), the
larger the flood magnitude, the more the flood extent
will be constrained by topography, and the less vari-
ation in flood extent will be induced by a given vari-
ation in flood discharge; potentially leading to more
favourable CSI scores than for smaller floods. These
caveats however do not affect comparison between
models and datasets within one region and event,
which we turn to next.

We find differences in performance between cli-
mate forcings and between GHMs to be mutually
dependent, and we discuss them together in the fol-
lowing. The spread across GHMs (rightmost column

in figure 3) is by far largest for Chemba (MOZ). This
is primarily because there the CSI with the VICmodel
is zero for all three forcings, and the CSI with the
MATSIROmodel is zero for the PGFv2 forcing; indic-
ating that there is no intersection between simulated
and observed flood extent. The MATSIRO model
with PGFv2 forcing also has very low CSI scores in
Alipur (PAK) and Ghotki (PAK). However, even if the
MATSIRO and VIC models were excluded, Chemba
(MOZ), Alipur (PAK) and Ghotki (PAK) would still
remain the regions with the largest differences in
CSI scores across GHMs, under the PGFv2 forcing;
for instance, compare CLM and PCR-GLOBWB for
Alipur (PAK) and Ghotki (PAK), or MPI-HM and
ORCHIDEE for Chemba (MOZ). Using the other
two climate forcings, these inter-GHMdifferences are

8
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Figure 4. CSI scores for all combinations of GHMs and WFDEI for ‘protect 2y’ (top) and ‘protect FLOPROS’ (bottom).
The ‘Median Region’ across the even number of regions is calculated as the mean of the two middle values. Lokoja (NGA) and
Idah (NGA) were excluded from the computation of the ‘Median Region’. A black box indicates the best-performing GHM(s) for
a given region.

much smaller, mostly with a difference of about 0.1 or
less between the scores of the best and worst perform-
ing model.

The median CSI scores over all regions (bottom
row in each subplot in figure 3) indicate that none of
the GHMs performs consistently better or worse than
the others. Even the VIC model, which fails to cap-
ture the flood inChemba (MOZ), achieves reasonable
scores in the other regions, and has a region-median
CSI only slightly below the other GHMs (between
0.36 and 0.39 depending on the climate forcing). The
MATSIROmodel, which shows very lowCSI scores in
three of the regions under PGFv2 forcing, is among
the best performing GHMs in some of the other
regions; in particular, it achieves the highest CSI score
of all GHMs in Huainan (CHN) for all three forcings,
and has the highest region-median CSI score under
the WFDEI forcing.

Similarly, the statistics over all GHMs (rightmost
four columns in figure 3), and the combined statistics
across regions and GHMs (bottom right in each sub-
plot in figure 3, as well as figure 5), show that neither
of the three climate forcing datasets is generally super-
ior to the others: the GHM-regionmedianCSI is 0.42,
0.43, and 0.44, respectively, for PGFv2, GSWP3, and
WFDEI. PGFv2 exhibits slightly lower GHM-median
CSI scores, and lowerminimum scores, than the other
two forcings in many of the regions; on the other

hand, in Huainan (CHN), all GHMs achieve substan-
tially higher scores with PGFv2 than with GSWP3 or
WFDEI.

There is thus no climate forcing dataset that per-
forms best in all regions; nor is there one GHMwhich
consistently performs best in all regions and with all
forcings (see black boxes in figure 3).

We now turn to the Bias scores. While a low
CSI score generally already implies a high bias,
the Bias score additionally indicates whether the
observed total flood extent is over- or under pre-
dicted by the model. We find that with WFDEI
and GSWP3 forcing, Bias scores are generally either
small or positive (with the exception of VIC in
Chemba (MOZ)) (figure 4). This confirms the obser-
vation made in the model agreement maps that flood
extent is generally either matched relatively well, or
overestimated, by the model simulations. With the
PGFv2 climate forcing, the overall result is similar,
but substantial negative Bias scores—indicating an
under prediction of flood extent—occur in several
cases: for Alipur (PAK), Ghotki (PAK), and Chemba
(MOZ), with CLM, MATSIRO, and MPI-HM; cor-
responding to the anomalous CSI values for these
combinations described above. On the other hand,
the PGFv2 forcing leads to much smaller (posit-
ive) biases than the other two forcings in Huainan
(CHN).
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Figure 5. Comparison of CSI and Bias scores between the default setting (‘default’), protection against floods with an ARI of
2 years (‘protect 2y’) and protection standards according to FLOPROS (‘protect FLOPROS’) for the climate forcings PGFv2,
GSWP3 and WFDEI. Figures (a) and (b) include all GHMs and regions, (c) and (d) only account for the best GHM per region.
The regions Lokoja (NGA) and Idah (NGA) were excluded from the computation.

Calculating the performance scores on the higher-
resolution (18 arc sec) binary flood outputs confirms
these overall results, though the scores are somewhat
lower (supplementary material, figures S36 and S37).

3.3. Flood protection
We now analyse the simulations accounting for flood
protection infrastructure, by counting only those
flooded pixels whose ARI (estimated through fitting
a GEV function) is longer than either 2 years (‘protect
2y’) or the protection standard indicated in the global
database FLOPROS (Scussolini et al 2016) (‘protect
FLOPROS’).

Under the WFDEI forcing, CSI scores in the ‘pro-
tect 2y’ simulations change only little compared to the
default simulations. Most notably, there are now two
GHMs simulating no flooding in Chemba (MOZ):
WaterGAP2, in addition to VIC; and the CLMmodel
shows lower CSI scores in Alipur (PAK) and Dalby
(AUS) (figure 4). More widespread deterioration of
CSI scores appears under the other two forcings.With
GSWP3, there are multiple GHMs each in Chemba
(MOZ), Alipur and Ghotki (PAK) that show no or
almost no flooding (supplementary figure S39). With
PGFv2, the CSI drops to zero in Chemba (MOZ)
for almost all models, with the exception of DBH
which still shows a high CSI score there; and CSI
scores in Huainan (CHN) are seriously degraded for
all GHMs. In summary, while for most regions the
maximum CSI scores achieved are preserved when
assuming protection against ARI of 2 years, the spread

among models and among forcings increases not-
ably compared to the default simulations (figures 5(a)
and (c)).

This pattern becomes even more pronounced
when assuming flood protection according to FLO-
PROS. CSI scores degrade in the majority of regions
and forcing-GHM combinations (figures 4, 5 and
supplementary figure S41). While all of the ‘pro-
tect FLOPROS’ simulations still exhibit significant
CSI scores in Trinidad (BOL), they all show zero
or almost zero CSI in Dalby (AUS). In most other
regions, we find both: multiple GHM-forcing com-
binations that still achieve relatively high CSI scores,
often preserving the maximum CSI for the region
found in the ‘default’ setup; as well as many combin-
ations showing zero or very low CSI scores. Chemba
(MOZ) is an interesting case as here the CSI score
drops to zero for most of the ‘protect FLOPROS’
simulations, while, with WFDEI forcing, one single
GHM (PCR-GLOBWB) still achieves the same CSI as
in the default setup; and the same is true for three
GHMs (CLM, ORCHIDEE, and PCR-GLOBWB)
with GSWP3 forcing.

While the Bias scores were mostly positive in the
‘default’ simulations, the ‘protect FLOPROS’ setup
mostly results in negative biases, which are in many
parts of substantial magnitude (figures 5(b) and
supplementary figure S42). This corresponds to the
decreased and, often, zero CSI scores found in this
setup. Bias scores in the ‘protect 2y’ setup are, as
expected, closer to those in the ‘default’ setup; with
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more pronounced overestimation of flood extent
under WFDEI forcing, and more pronounced under-
estimation in some regions under PGFv2 forcing
(supplementary figure S40).

Considering the entire simulation ensemble, the
lowest median bias in flood extent is achieved in the
‘protect 2y’ setup, in particular the simulations forced
with PGFv2 and GSWP3 yielding a lower median
bias than in the ‘default’ setup (figure 5(b)). On
other hand, the spread among simulations is largest
for ‘protect 2y’. In the ‘protect FLOPROS’ setup, the
majority of simulations show a large negative bias,
as discussed above. However, when considering for
each region only the best-performing model, the
least biased results are achieved with WFDEI forcing
in the ‘protect FLOPROS’ setup; the corresponding
GSWP3 simulations being only slightly more biased
(figure 5(d)).

4. Discussion and conclusions

A number of key results emerge from our analysis:

(1) The performance of a global river flood model-
ling chain in reproducing observed flood extent
for major recent floods differs considerably
between events. While CSI scores of 0.7 and
higher are obtained for Chemba (MOZ), Idah
(NGA), Lokoja (NGA) (similar as in Bernhofen
et al (2018)), scores are much lower for many
other events, dropping below 0.3 for Dalby
(AUS).

(2) The choice of GHM and climate forcing have
mutually dependent effects on flood model per-
formance.

(3) PGFv2 performs somewhat poorer than the
other two climate forcing datasets for many
regions andGHMs, but better for some. The per-
formance spread between GHMs is largest with
PGFv2.

(4) No climate forcing or GHM performs best for
all regions. Considering the median over all
regions, the PCR-GLOBWBmodel stands out as
achieving the best, or among the best, results
for all forcings and in particular for the ‘protect’
setups.

(5) Accounting for flood protection according to
the FLOPROS database dramatically degrades
the average agreement between simulations and
observations, by reducing or eliminating simu-
lated flood extent in many cases. However, indi-
vidual forcing-GHM combinations remain in
almost every region that achieve high CSI and
low Bias scores.

Regarding key result no. 1, we reiterate that CSI
scores should not be compared between regions at
face value, because of the varying flood extents.
However, it is also evident from the maps in figure 2

that both the overall match between models and
observations, and the level of agreement among
models, differ depending on the region and event
that is analysed. This may be explained by varying
topographies among the regions, leading to differ-
ent errors in simulated flood extent due to cross-
floodplain slopes. Another important caveat is that
the shape of the study area is not consistent across
regions. While the study areas for most regions are
rectangular and include large parts where no flood-
ingwas observed, the study areas for Chemba (MOZ),
Lokoja (NGA), and Idah (NGA) are irregularly
shaped polygons narrowly outlining the observed
flood extent along the main river channels. This
means that potential flooding along tributaries is
excluded from the analysis (supplementary figures
S45–S48). Considering an example of a model over-
estimating observed flood extent, the overestimation
may appear less severe if parts of the flood that are fur-
ther away from the main channel are cut off. With the
rectangular study areas, such excess simulated flood
extent would be more visible and would degrade the
CSI score to a larger degree. This might go some way
in explaining why Chemba (MOZ), and especially
Lokoja (NGA) and Idah (NGA), exhibit systematic-
ally higher CSI scores than other regions. These scores
are similar to those found for the same three regions
by Bernhofen et al (2018), who used the same study
area outlines. This may indicate that the general level
of model performance found in our study is compar-
able to that in Bernhofen et al (2018), and that the
lower CSI scores in the additional regions in our study
may also be related to the layout of the study area,
rather than only to a poorer model performance in
those regions.

Regarding key result no. 2, the importance of the
choice of GHM is confirmed by a recent study that
compared different sources of uncertainty in CaMa-
Flood estimates: the GHM runoff inputs, variables
for flood frequency analysis and fitting distributions
(Zhou et al 2021). Of these three, the GHMs were
found to be by far the largest source of variation in the
estimate of flood depth and inundation. That study
used a single reanalysis forcing dataset (WFDEI) as
input to the GHMs and did not evaluate different
GHMs’ performance in relation to observed flood-
ing; rendering our study a useful complement. It
should be pointed out that the hydrological mod-
elling approach underlying many of these GHMs is
traditionally aimed at evaluating water and energy
balances at longer timescales (also termed catchment
yield-type models, in contrast to rainfall-runoff-type
models), without specific focus on flood generation;
whichmay partly explain their deficiencies in estimat-
ing floodmagnitudes and timing.Disparities between
GHM-simulated and actual runoff may thus be a fun-
damental reason for the relatively poor performance
of the flood modelling methodology applied here,
compared to conventional basin-scale flood analysis;
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also affecting the results summarized in key results
no. 3 and 4.

Regarding key result no. 3, Müller Schmied et al
(2016) evaluated hydrological simulations with a
single GHM (WaterGAP2) driven by the same cli-
mate forcing datasets as in our study, and found
substantial differences in long-term average runoff
and other hydrological indicators. In particular, rel-
atively low precipitation and runoff estimates were
foundwith PGFv2, compared toGSWP3 andWFDEI;
likely related to the lack of a precipitation under-
catch correction in this dataset, but potentially also
to a different observational product that precipita-
tion was corrected against (CRU TS3.21 for PGFv2;
GPCC version 6 for GSWP3 andWFDEI).While run-
off extremes were not directly assessed in that study,
systematically lower precipitation forcing could non-
etheless explain the larger negative biases in flood
extent that we find in our default simulations with
PGFv2 for some regions and GHMs; and might like-
wise explain the smaller positive biases and higher
CSI scores in Huainan (CHN), where flood extent
is strongly overestimated with GSWP3 and WFDEI
forcing.

Nevertheless, the differences even between
GSWP3- and WFDEI-driven flood simulations high-
light some remaining uncertainty in the forcing data.
To test whether using observational datasets directly
as input to the GHMs might be beneficial, we per-
formed a set of simulations where, for each event
and grid cell, the return period simulated by a given
GHM-forcing combination was mapped to the cor-
responding flood volume given by a benchmark sim-
ulation of MATSIRO which was driven with station-
based (GPCC) rather than reanalysis precipitation
data (Kim et al 2009). This adjustment procedure
was originally devised to correct biases in climate
model-derived runoff (Hirabayashi et al 2013), and
has been applied in other global flood modelling
studies (Dottori et al 2018, Willner et al 2018, Sauer
et al 2021). However, in our study, the adjustment
using the MATSIRO benchmark simulation does not
systematically improve the agreement between sim-
ulated and observed flood extent (supplementary
material figures S43 and S44); suggesting that neither
a particular GHM nor the observations-based pre-
cipitation forcing are generally superior to the GHM
ensemble and the reanalysis-based forcings studied
here, respectively.

Regarding key result no. 5, one striking finding
is that the incorporation of flood protection stand-
ards according to FLOPROS leads to zero simu-
lated flood extent in some regions with many or all
GHMs and climate forcings. This can either mean
that the protection standard indicated in the FLO-
PROS database is higher than in reality for these
regions; or that the return period simulated by the
models is too short—in other words, that the mod-
els simulate too frequent flooding; or both. It must be

remembered that the FLOPROS protection levels are
purely model-based estimates for most of the events;
except for those inMozambique, China andAustralia,
where information about the actual design standards
or about corresponding policy regulations entered
the estimates provided in the database. Thus, FLO-
PROS values may not exactly reflect the flood pro-
tection standards actually implemented in the study
regions.

Reported estimates of the average recurrence
interval (ARI) are only available for some of the flood
events studied here, and available estimates often dif-
fer between sources and/or come with considerable
uncertainties. Nevertheless, the actual ARI appears to
be higher than the FLOPROS protection standard for
most events (supplementary table S3). This suggests
that the deterioration of model results when apply-
ing FLOPROS may not be predominantly related to
errors in FLOPROS. Instead, it suggests that the ARI
in the affected model simulations may be too short;
i.e. the model too frequently simulates a flood of the
given magnitude.

The ‘protect FLOPROS’ simulations thus serve to
highlight those GHM-climate forcing combinations
that correctly simulate an ARI larger than the protec-
tion standard, according to FLOPROS. For instance,
applying FLOPROS, the CSI for Chemba (MOZ)
drops to zero for almost all simulations except for
PCR-GLOBWB with GSWP3 and WFDEI forcing,
and for CLM and ORCHIDEE with GSWP3 for-
cing (supplementary figure S41). Similarly, impos-
ing FLOPROS flood protection levels in Sayaxché
(GTM), the majority of models still achieve a reas-
onable CSI with GSWP3 and WFDEI forcing but
simulate no flooding with PGFv2 forcing. In Alipur
(PAK) and Ghotki (PAK), only JULES-W1 and PCR-
GLOBWB realistically simulate a large ARI with all
three climate forcings. Interestingly, not a single sim-
ulation shows substantial flooding in Dalby (AUS) in
the ‘protect FLOPROS’ setup; suggesting that here,
the protection standard of a 100 year ARI assumed
in FLOPROSmay indeed be too high; which is also in
line with reports of a 90 year ARI for the 2010/2011
flood event (supplementary table S3).

Generally though, many of the runoff simulations
used here may still be in need of improvement with
respect to the high-end of the runoff distribution.
Indeed, a recent evaluation of monthly runoff sim-
ulated by six GHMs, including H08, LPJmL, MAT-
SIRO, PCR-GLOBWB, and WaterGAP2, found that
most models—except MATSIRO and WaterGAP2—
tended to overestimate high-flow runoff (more pre-
cisely, Q5, the magnitude of runoff that is exceeded
5%of the time) (Zaherpour et al 2018). GHMspartic-
ularly struggle to capture the levels and variability of
runoff and, consequently, river discharge inmore arid
environments such as parts of the Murray–Darling
basin (Haddeland et al 2011, Hattermann et al 2017,
Zaherpour et al 2018). While the CaMa-Flood river
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routing model has been shown to improve the dis-
charge hydrograph compared to GHMs’ native rout-
ing schemes in many basins (Zhao et al 2017), it
may not always be able to compensate a systematic
overestimation of high-flow runoff by the GHMs,
which may then result in an overestimation of flood
extent. Moreover, CaMa-Flood does not account for
human water management such as water withdraw-
als or dams, which may in some cases have signific-
ant effects on flood volume and timing (Mateo et al
2014, Zhao et al 2017). Other limitations of the GFM
include the accuracy of the baseline topography, and
the use of a global empirical equation to calculate
channel depth as function of annual river discharge,
without separate calibration for each river (Yamazaki
et al 2014).

We can thus derive from our study some recom-
mendations for future applications of GFMs to simu-
late flood extent. One is that the choice of GHM (or
more generally, the runoffmodel) and climate forcing
should be carefully considered, because it can strongly
impact performance. The good news is that serious
losses in flood extent performance occurred only with
a limited number of individual climate forcing-GHM
combinations. Two of our three climate forcings, and
the majority of GHMs used, showed very similar
levels of performance. The more difficult news is that
there is no general recommendation on which for-
cings or runoff models not to use; because even those
that perform particularly poorly in some regions may
actually be the best choice in a different region, or
in a different GHM-climate forcing combination. A
multi-model, multi-forcing ensemble approach may
be advisable when there is no prior knowledge about
a certain combination’s performance for the specific
type of event and region under investigation. That
being said, validating the underlying runoff model(s)
separately from the flood model is a crucial compon-
ent of robust flood risk analysis; and the perform-
ance of each part in the modelling chain should be
taken into account to determine whether the model-
ling chain is fit for a given purpose.

Global flood modelling capacities could profit
from further development of GHMs, for instance,
addressing the difficulty to accurately capture run-
off extremes in arid and semi-arid regions. Weighted
ensembles of models may provide a useful method
when systematic differences in model performance
can be identified (Zaherpour et al 2018). A closer
coupling of runoff and flood modelling, accounting
for human alterations of river flow, could improve
flood estimates in highlymanaged river basins (Mateo
et al 2014, Boulange et al 2021). Not least, improv-
ing the availability and fidelity of observational data,
e.g. by extending direct observations of precipitation,
runoff, or flood levels, and by making existing data
more accessible—including on human-made altera-
tions of the natural river flow—would help with both
the calibration and validation of the different parts

in the flood modelling chain (Müller Schmied et al
2016).
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