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Abstract—This paper is devoted to the efficient computation ~ The increasing use in practical transmission systems of
of the feedback and feedforward filters of the decision feedback plock transmission with intensive block-based processing, has
equalizer. The key operation in the computation of the filters rocantly stimulated interest to the computation and the realiza-
is the spectral factorization. The paper proposes to adopt the tion of the FFF in the discrete frequency domain, thus taking
efficient method for spectral factorization due to Kolmogoroff, o ! -
which runs at the speed of FFT. Since the duration in the advantage from the efficiency of the FFT algorithm. Specifi-
time domain of the impulse response obtained from the spectral cally, a method that is based on time-domain computation of
factorization is not under the control of the designer, truncation of - the FBF and frequency-domain computation of the FFF can
that impulse response becomes necessary. We propose a methoghe gerived from the approach of Belfiore and Park [6], and has
tha_t mitigates the performance loss que to the truncation, and been recently proposed by Falcoeeal.[7] and by Benvenuto
validate the proposal by computer simulation on a variety of . ; L o
channels. and Tomasin [8]. This method optimizes the coefficients of

the FIR FBF by applying the Levinson recursion, which
I. INTRODUCTION comput_es the coefficients of the FBF with a_c_omplexity that
goes with the square of the number of coefficients. The FFF

Decision feedback equalization is a simple and effective computed in the discrete frequency domain by sampling the
technique for detection of signals affected by noise and Intesptimal transfer function, thus exploiting the efficiency of the
Symbol Interference (ISI). The Decision Feedback EqualizEFT/IFFT algorithm. Since it often happens that the number
(DFE) consists of a FeedForward Filter (FFF), an instantef taps of the FBF is much lower than the number of points
neous detector, and a FeedBack Filter (FBF) that operatsfsthe FFT, this method leads to more efficient computation
cancellation of the ISI due to the past data by feeding batian the class of methods based on computation of the FFF
a weighted combination of the past decisions taken by tiethe time domain.
detector. The most popular DFE dates back to Monsen [1].It is known that the key operation in the computation of
In the DFE of Monsen, which is known as the Minimunthe DFE feedback filter is the spectral factorization, and that
Mean Square Error DFE (MMSE-DFE), the FFF and the FBiE is also known that the method due to Kolmogoroff, which
optimize the Mean Square Error (MSE) between the input k@longs to the class akepstralmethods, computes the spectral
the detector and the transmitted constellation symbol. Ndtectorization by making use only of FFTs and look-up tables
that it has been recently observed in [2] that the FFF and tfeze e.g. [9]). When block processing making use of FFT is
FBF of the MMSE-DFE allow maximum likelihood sequencadopted, the computation of the feedback filter based on FFT
detection with minimum number of states, and that they céy@comes attractive, because often the speed of the FFT is so
also be adopted in suboptimal sequence detection schemagge that one can reuse the FFT kernel more times in the
such as the delayed decision feedback sequence detector oft[dle taken by the transmission of one block. The possibility
Although the scope of the present paper is limited to decisiofi performing the spectral factorization by cepstral methods
feedback equalization, it is clear that the observation of [ mentioned in [10] in the context of equalization, but it is
broadens the applicability of the MMSE-DFE FFF and FBHot further pursed in that paper. One potential limit to the
thus encouraging interest to the very classical research toggplication of the Kolmogoroff method is that no constraints
of efficient computation of the two filters. can be imposed on the duration of the impulse response of

Computation of the FFF and FBF by methods that operatee FBF. Therefore the number of taps of the FBF obtained
entirely in the time domain has been widely studied in they the Kolmogoroff method depends only on the duration of
past. The idea behind this class of methods is to model tthee impulse response of the channel, which, in the wireless
channel and both filters in the FIR form, and to optimizecenario, is not under the control of the designer. This is
the coefficients of the two filters. It often happens in thpotentially a severe drawback, because, in the practice, what
practice that the number of taps of the FFF is greater thane can do is either to design a DFE with a large number
the number of taps of the channel and of the FBF. In thaf feedback taps or to truncate the impulse response of the
case, the complexity of the computation is dominated by ti&F. The large number of feedback taps would sharpen the
computation of the FFF which goes witt?, wheren is the problem of error propagation, and, moreover, it would also
number of taps of the FIR FFF (see [4], [5]). lead to reduced spectral efficiency in the block transmission



proposed in [7], [8], which is based on a cyclic prefix ofinderstood that,(z) = S(2)S*(z71) =Y, 2% >, s¥siv
duration equal to the number of taps of the FBF. Truncation ahen", |s;|> < oo, while U (2) = Y, 27 ¥ E{s}s;1;} when
the impulse response of the FBF would lead to degradation.®fz) represents a stationary random sequence. In the above
the error performance. The issue of mitigating the performangetation, the superscriptdenotes the complex conjugate. The
loss due to truncation was considered by Qureshi and Newhatransform of the autocorrelation of the AWGN is
in the context of shortening methods for suboptimal sequence
detection [11]. The sequence detector with reduced number of Y (2) = No.
states of [11] uses in the Viterbi algorithm a truncated versiome »-transform of the autocorrelation of the observation is
of the impulse response of the FBF of the zero-forcing DFE.
The performance loss due to truncation is mitigated by filtering U,(2) = oo H(2)H(271) + No.
the signal feq to the sequence detector through the MMSE Signal-to-Noise Ratio (SNR) is :
feedforward filter.

We observe that the shortening method proposed by Qureshi SNR = DI |hi|2.
and Newhall for the sequence detector is not well suited to Ny
shorten the impulse response of the FBF of the DFE. A$ MSE-DFE
a matter of fact, after truncation, the impulse response of ,. . . . .
the FBF could loose the minimum phase property, IeadirilgA'mmg to frequency-domain computation of the FFF, it

X - convenient to derive the MSE-DFE feedforward and feed-
to dramatic performance loss. Note that the minimum phaggck filters by the approach of predictive DFE developed by

property is much more important for_ the DFE than _for_ th elfiore and Park [6]. Let the-transform of the error at the
sequence detector. Henceforth, we introduce a variation {0

the method of Qureshi and Newhall that makes the minimuf§ ¢'='on device be

phase property robust against truncation. Specifically, we Potz)=(1—B(2))(C(2) X (2)=A(2))=D(2)(C(2) X (2)-A(2)),
pose of designing the FBF from a deliberately biased version ] )
of the power spectrum of signal plus noise. More precisely,"{1ere B(z) is the z-transform of the impulse response of the
constant term, which is calledirtual noise is added to the FBF andC(z) represents the FFF of the predictive DFE. The
true power spectrum. The biased spectrum is factored, then tEn
inverse Fourier transform of the spectral factor is truncated to U(z) = C(2)X(z) — A(2)
the desired duration. , _is the error that is predicted by the FBF. The MSE is

The rest of the paper is organized as follows. In Section - M
Il we present the system model and the background material " AN " jwT jwT
for decision feedback equalization. In Section IlI computatio‘r?_ 2 _W/T\P”(e Jdw= 27 _,,/Tlpd(e JTu(e7)dw.
of the spectral factor by the FFT algorithm and truncation of T T
the impulse response of the spectral factor are presented>[Ace Pa(e¢’") > 0 and W,(e’*7) > 0, one concludes
section IV experimental results are given for a static AWGHat the optimal FFF minimizes frequency-by-frequency the

channel and for two multipath fading channels. In section ROWer spectral density of the error before the linear prediction,
conclusions are drawn. independently of the FBF. Therefore the optimal FFF is the

MMSE linear equalizer, that is
Il. BACKGROUND ol o2H* (21
A. System Model (2) = U, (z)

We adopt the discrete time Additive White Gaussian NOiS&jith the MMSE linear equalizer one has
(AWGN) baseband equivalent model of the observation, and

use thez-transform to represent sequences(indicates the U, (2) = a2 No
unit delay). Let ,(2)’
X(2) = Y o = A()H(2) + W(2) and 02Ny Vu(2)
k A

be thez-transform of the observation, where all the quantitieFhe computation of the FBE proceeds as follows. We wish
are assumed to be complex-valued. In the above equatiPn, np ; P '
0 'predict u;, by linear prediction from the past samples

H(z) is the z-transform of the impulse response of the

channel,A(z) represents the i.i.d. data sequence, igt) k=12 k=2, @SSUMING that they are known. Let
represents the AWGN. Data are drawn from(afi— P AM )™ "
constellation,n = 1, 2 with variance Uk = Uk — Z bitg—i,
M2 -1 -
o2 =m . be the error after linear prediction withtaps. The coefficients
3 b = (b1, b,...,b,) are obtained as

In the following, we denote by (z) the z-transform of the ) )
autocorrelation of the sequence representedSby), being b =arg i E{Jvg["}.



W(z) .
AQ) 1 X(2) For the MSE of the MMSE-DFE one gets
— o

H(z) C(z) T /T _
J:gi]\]oofl = 03]\]0 exp ~3r / log (\I/x(eij)) dw .
™ —n/T

Note that for the MMSE-DFE one has
. O'?IN()D(Z)D*(Zil) . O'gNo

\PU - )
() U, (z) e!
Fig. 1. Block diagram of the system. which demonstrates thdD(z) is obtained from thespectral
factorization
The unique minimum is obtained by putting to zero the partial aD(2)D*(z71) = U,(2),
derivatives of the power of the error with respect to the entries ) ) o )
of b: where theD(z) that is monic, causal, and minimum phase, is
u taken. When?, (z) is FIR with 2v 4 1 taps, the FBF of the
9 . . MMSE-DFE hasv taps.
o Fllon?}=—B{ocui_} =—B{(ux—)_ bjun—j)ui_;} v ap
! Jj=1 [1l. COMPUTING FBF AT THE SPEED OFFFT

The most efficient method known for the computation of
the spectral factorization is the method due to Kolmogoroff
[9I:
where v, ; is the i-th sample of the autocorrelation of the T g
sequence represented byz). Hence the taps of the predictor VaD(e’")=exp (FT (us, © IFT (log (T2 (e’*"))))) , (1)
are obtained by solving the system of linear equations where FT indicates the Fourier Transform, IFT indicates the

n Inverse Fourier Transform{us;} is the unit step sequence,
Zbﬂz,w_j =y, i=1,2,..., 1, and © is the Shur-Hadamard (elementwise) product. In the
= literature of signal processing the tedng (¥, (¢7“7)) takes

the name otepstrum The computation requires only Fourier
: . o transformations and the log-exp operation, which can be
obtained from the Yule-Walker equations B¢z) = 1 — B(2) implemented by look-up table. Passing from the FT to the

is monic (dy = 1), causal andminimum phasdall the zeros FFT one achieves the complexit9 (n log(n)), where n is
of D(z) are on or inside the unit circle). The block diagrant1he number of points of the FFT ’

of th? system is reported.m Fig. 1’. yvhere, as it h‘?‘ppens "NAs mentioned in the introduction, the duration of the im-
practical systems, the available decisions are used in place_ 0 .

. pulse response of the spectral factor resulting from (1) depends
the true transmitted data sequence. . )

. . . only on the duration of the impulse response of the channel,
Computation of the FFF in the frequency domain re-, .~ . . T
uires only frequency-by-frequency inversion f, (e~T) which, in the wireless scenario, it is not under the control of
q y Treq y-by-ireq y w\® . the designer. Truncation of the impulse response could induce

and frequency-by-frequency multiplication between the Mramatic performance loss because the truncated spectral fac-

verse of the power spectrum and the matched filter. Note ﬂ%g could loose the minimum phase property. Experimentally

inversion of ¥, (e/“T) is also required in the computation of o .
the FBF. After the above mentioned inversion, the computatiir?e can observe that the minimum phase property is often

I
:_wu,i + ijw’u,b—] = Oa i = 172a s My

Jj=1

which are known as thé&'ule-Walkerequations. TheD(z)

: ; . lost when U (z) has zeros that are close to the unit circle.
of the two filters is performed by two parallel branches, whi . . :
. . . . erefore one would like to bring these zeros far from the unit

can be an advantage in VLSI implementation. Computation ¢

X ) ; circle before the factorization of the power spectrum. One wa
the FBF with ; taps by the Levinson recursion has a co b P y

plexity that goes withu2. The conventional (nonpredictive%oc?ggéz\;;rﬁhls objective is to perform the following spectral

MSE-DFE with ideal FFF is obtained by using the cascade o
linear MMSE andD(z) as FFF, and by feeding back through aD(z)D*(z71) = U,(2) + A, (2)

B(z) the past data. where A\ > 0 is up to the designer. The parameteradds

C. MMSE-DFE a floor to the power spectrum, thus preventing the presence

Ideal prediction is obtained when the power spectrum of tﬁ)f spectral zeros. Note that ds— oo, the feedback taps of

error after prediction is white, leading to the MMSE-DFE. Wtﬁe DFE tend to zero, and the receiver is reduced to the pure

. ) - . MMSE linear equalizer. After the spectral factorization and
write the white power spectrum of the error after pred|ct|ng1 : ;
as the fraction e IFFT, only the firsju + 1 taps of the impulse response are

2N, retained. Unfortunately, it is difficult to derive by analytical
Uy (z) = aa . means the optimal for the given channel and for the desired
1. What one can do is to apply the procedure for many values
of A and evaluate the MSE as

T /”/T T To? (™" Dr(e’*T)Dy(e7%T)
a=exp| — log (U (e?“)) dw | . J = a T T d 3
b (277 oy 28 ) 27Ny /_W/T v O

The scalare can be computed as [12]:
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Fig. 2. MSE versus\ for the AWGN channel with the truncation methodFig. 4. FEER versus SNR for the AWGN channel with memory of the FBF
for memory of the FBF equal to 4. Curves are parametric in the SNR thatdgual to4.

reported next to them. The dashed lines represent the MSE that is obtained

when the coefficients of the FBF are computed by the Yule-Walker equations.

can be observed that the MSE is a smooth function\ pf
which is a desirable property because the performance is not
15} ] much sensitive to the choice of. It can be seen from the
o | figure that good performance is obtained for= 0.08 at any
¥ SNR. We observe that, fok = 0, the MSE obtained by the
] truncation method is insensitive to the SNR, so that at high

SNR the performance is dramatically degraded, making the
truncation method not suitable. Conversely, a judicious choice
S ] of X\ brings the performance of the truncation method near to

] the performance of the MSE-DFE at any SNR. Fig. 3 reports
the zeros of the impulse responses obtained by the application
l 1 of different methods for SNR= 20 dB. Note that the bad
-2 ‘ ‘ ‘ performance obtained fok = 0 by the truncation method

=) -1 0 1 2
Real(z) is explained by observing that this method gives a maximum

Fig. 3. Zeros of the impulse responses of the FBF obtained by the applicatBﬁalse FBF (all the roots are outside the unit circle), while Fhe
of the competitor methods at SNB& dB. Truncation withA = 0: 'o’; Mminimum phase property of the FBF is preserved by adding
Truncation withA = 0.08: "o'; Yule-Walker equations:+'. the bias. Fig. 4 shows the First Error Event Rate (FEER) versus

SNR of the truncation method for = 0 and A = 0.08. The
where Dy (z) is the truncated spectral factor. This allows t&"EER is measured by a random sequenceéfsymbols. The
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select the besk for the given channel and the desirgd performance of the Yule-Walker equations and of the linear
MMSE is also reported. The figure confirms the observations
IV. EXPERIMENTAL RESULTS made on Fig. 2 regarding the effectiveness of the bias.

The benefits of introducing in (2) to obtain robust trun- As far as the multipath fading channel is concerned we
cation of the spectral factor are demonstrated on a varietyafnsider two examples. The first is the channel model A
channels. In this section we report examples of AWGN ardefined by ETSI BRAN for HiperLAN/2 [15]. The modulation
multipath fading channels. In the following we assume that tileeheme that we consider is QPSK. In this case simulations
channel is always perfectly known at the receiver. For all trege used to generat®)” realizations of the fading channel.
examples the spectral factor was computed by performing ther each channel realization we compute the output Signal-
FFT over512 points. As a first example we report simulatiorto-Disturbance Ratio (SDR) of the MMSE-DFE as
results for the AWGN channelll (z) = 0.176 + 0.3162~% +
0.476272 + 0.532273 + 0.4762% + 0.31627° + 0.17627. spr= i =7
It is worth noting that this channel is the worst channel J

with v = 6 [14]. Simulation results for this channel wererpe optimal \ is obtained by optimizing the average SDR.

carried out by setting the memory of the FBF 0= 4 The instantaneous FEER for QPSK is given by
and by considering BPSK modulation. As mentioned in the

previous section, the preliminary operation of selecting the SDR
optimal A is required. In Fig. 2 it is reported the MSE versus FEER= 2Q) (1 /22> ,
a-(l.

A computed according to equation (3). From the figure it
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Fig. 5. FEER versus SNR for the Hiperlan type A channel with memory dfig. 6. FEER versus SNR for the second example of multipath fading channel
the FBF equal ta3. with memory of the FBF equal t@.
truncation becomes necessary. We have proposed to mitigate
_ 1 /°° e*%du the performance loss due to truncation by adding a bias in
27 J, ' the factored power spectrum. Experimental results obtained
Note that to compute the FEER one should derive the pro\ﬁr';th athsizvere static (Izhanl?el t?]nd W:cth two fad:ﬁt?] cthannetlsd
ability density function of ISI plus noise, for example by thg"OW that our proposal makes the performance or the truncate

method proposed in [13]. However, a fairly accurate estima[P E. Clods? to thﬁ perflormarlwli:e of the .DFE with feedback filter
is obtained by considering the Gaussian approximation. TR8t@INed from the Yule-Walker equations.

where

Q(x)

FEER reported in the figures is obtained by averaging the
instantaneous FEER over thé” channel realizations. Fig. 5 [1]
shows the performance fqor = 3 of the proposed method.
We observe that, with the fading channel, the performandél
of the truncation method is close to the performance of the
MSE-DFE, and that it is not much sensitive to the bias. Az3]
small improvement can be obtained by adding the bias only at
high SNR. At FEER- 10~ 7 the performance of the proposed [4
method withA = 0.04 is approximately0.5 dB better than
with A = 0 and 0.9 dB worse than that of the Yule-Walker [5]
equations. The second example of multipath fading channel
was obtained by considering each coefficient of the AWGNg;
channel of [14] as a Rayleigh random variable with average
power equal to the square of the corresponding coefficient’
In order to increase the time duration of the channel we
inserted3 zeros in between each coefficient. Fig. 6 shows thé8]
performance of the competitor methods foe 7. Also in this
case we note that the performance of the truncation methqgl
is not much sensitive to the bias, and that it is close to the
performance of the MSE-DFE. Small differences are appr@—
ciated only at high SNR. At FEER 107 the performance
of the truncation method withh = 0.1 is approximatelyl.2
dB better than withA = 0 and 1.1 dB worse than that of the
Yule-Walker equations.

[11]

[12]

V. CONCLUSIONS [13]

Efficient computation of the forward and backward filters of
the decision feedback equalizer is possible by computing thél
spectral factorization by the method due to Kolmogoroff. The
disadvantage of the method is that the time duration of tius)
feedback filter is not under control, therefore, in the practice,
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