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Abstract— This paper is devoted to the efficient computation
of the feedback and feedforward filters of the decision feedback
equalizer. The key operation in the computation of the filters
is the spectral factorization. The paper proposes to adopt the
efficient method for spectral factorization due to Kolmogoroff,
which runs at the speed of FFT. Since the duration in the
time domain of the impulse response obtained from the spectral
factorization is not under the control of the designer, truncation of
that impulse response becomes necessary. We propose a method
that mitigates the performance loss due to the truncation, and
validate the proposal by computer simulation on a variety of
channels.

I. I NTRODUCTION

Decision feedback equalization is a simple and effective
technique for detection of signals affected by noise and Inter-
Symbol Interference (ISI). The Decision Feedback Equalizer
(DFE) consists of a FeedForward Filter (FFF), an instanta-
neous detector, and a FeedBack Filter (FBF) that operates
cancellation of the ISI due to the past data by feeding back
a weighted combination of the past decisions taken by the
detector. The most popular DFE dates back to Monsen [1].
In the DFE of Monsen, which is known as the Minimum
Mean Square Error DFE (MMSE-DFE), the FFF and the FBF
optimize the Mean Square Error (MSE) between the input to
the detector and the transmitted constellation symbol. Note
that it has been recently observed in [2] that the FFF and the
FBF of the MMSE-DFE allow maximum likelihood sequence
detection with minimum number of states, and that they can
also be adopted in suboptimal sequence detection schemes
such as the delayed decision feedback sequence detector of [3].
Although the scope of the present paper is limited to decision
feedback equalization, it is clear that the observation of [2]
broadens the applicability of the MMSE-DFE FFF and FBF,
thus encouraging interest to the very classical research topic
of efficient computation of the two filters.

Computation of the FFF and FBF by methods that operate
entirely in the time domain has been widely studied in the
past. The idea behind this class of methods is to model the
channel and both filters in the FIR form, and to optimize
the coefficients of the two filters. It often happens in the
practice that the number of taps of the FFF is greater than
the number of taps of the channel and of the FBF. In this
case, the complexity of the computation is dominated by the
computation of the FFF which goes withn2, wheren is the
number of taps of the FIR FFF (see [4], [5]).

The increasing use in practical transmission systems of
block transmission with intensive block-based processing, has
recently stimulated interest to the computation and the realiza-
tion of the FFF in the discrete frequency domain, thus taking
advantage from the efficiency of the FFT algorithm. Specifi-
cally, a method that is based on time-domain computation of
the FBF and frequency-domain computation of the FFF can
be derived from the approach of Belfiore and Park [6], and has
been recently proposed by Falconeret al. [7] and by Benvenuto
and Tomasin [8]. This method optimizes the coefficients of
the FIR FBF by applying the Levinson recursion, which
computes the coefficients of the FBF with a complexity that
goes with the square of the number of coefficients. The FFF
is computed in the discrete frequency domain by sampling the
optimal transfer function, thus exploiting the efficiency of the
FFT/IFFT algorithm. Since it often happens that the number
of taps of the FBF is much lower than the number of points
of the FFT, this method leads to more efficient computation
than the class of methods based on computation of the FFF
in the time domain.

It is known that the key operation in the computation of
the DFE feedback filter is the spectral factorization, and that
it is also known that the method due to Kolmogoroff, which
belongs to the class ofcepstralmethods, computes the spectral
factorization by making use only of FFTs and look-up tables
(see e.g. [9]). When block processing making use of FFT is
adopted, the computation of the feedback filter based on FFT
becomes attractive, because often the speed of the FFT is so
large that one can reuse the FFT kernel more times in the
time taken by the transmission of one block. The possibility
of performing the spectral factorization by cepstral methods
is mentioned in [10] in the context of equalization, but it is
not further pursed in that paper. One potential limit to the
application of the Kolmogoroff method is that no constraints
can be imposed on the duration of the impulse response of
the FBF. Therefore the number of taps of the FBF obtained
by the Kolmogoroff method depends only on the duration of
the impulse response of the channel, which, in the wireless
scenario, is not under the control of the designer. This is
potentially a severe drawback, because, in the practice, what
one can do is either to design a DFE with a large number
of feedback taps or to truncate the impulse response of the
FBF. The large number of feedback taps would sharpen the
problem of error propagation, and, moreover, it would also
lead to reduced spectral efficiency in the block transmission



proposed in [7], [8], which is based on a cyclic prefix of
duration equal to the number of taps of the FBF. Truncation of
the impulse response of the FBF would lead to degradation of
the error performance. The issue of mitigating the performance
loss due to truncation was considered by Qureshi and Newhall
in the context of shortening methods for suboptimal sequence
detection [11]. The sequence detector with reduced number of
states of [11] uses in the Viterbi algorithm a truncated version
of the impulse response of the FBF of the zero-forcing DFE.
The performance loss due to truncation is mitigated by filtering
the signal fed to the sequence detector through the MMSE
feedforward filter.

We observe that the shortening method proposed by Qureshi
and Newhall for the sequence detector is not well suited to
shorten the impulse response of the FBF of the DFE. As
a matter of fact, after truncation, the impulse response of
the FBF could loose the minimum phase property, leading
to dramatic performance loss. Note that the minimum phase
property is much more important for the DFE than for the
sequence detector. Henceforth, we introduce a variation to
the method of Qureshi and Newhall that makes the minimum
phase property robust against truncation. Specifically, we pro-
pose of designing the FBF from a deliberately biased version
of the power spectrum of signal plus noise. More precisely, a
constant term, which is calledvirtual noise, is added to the
true power spectrum. The biased spectrum is factored, then the
inverse Fourier transform of the spectral factor is truncated to
the desired duration.

The rest of the paper is organized as follows. In Section
II we present the system model and the background material
for decision feedback equalization. In Section III computation
of the spectral factor by the FFT algorithm and truncation of
the impulse response of the spectral factor are presented. In
section IV experimental results are given for a static AWGN
channel and for two multipath fading channels. In section V
conclusions are drawn.

II. BACKGROUND

A. System Model

We adopt the discrete time Additive White Gaussian Noise
(AWGN) baseband equivalent model of the observation, and
use thez-transform to represent sequences (z−1 indicates the
unit delay). Let

X(z) =
∑

k

xkz−k = A(z)H(z) + W (z)

be thez-transform of the observation, where all the quantities
are assumed to be complex-valued. In the above equation,
H(z) is the z-transform of the impulse response of the
channel,A(z) represents the i.i.d. data sequence, andW (z)
represents the AWGN. Data are drawn from an(M−PAM)m

constellation,m = 1, 2 with variance

σ2
a = m

M2 − 1
3

.

In the following, we denote byΨs(z) the z-transform of the
autocorrelation of the sequence represented byS(z), being

understood thatΨs(z) = S(z)S∗(z−1) =
∑

k z−k
∑

i s∗i si+k

when
∑

i |si|2 < ∞, while Ψs(z) =
∑

k z−kE{s∗i si+k} when
S(z) represents a stationary random sequence. In the above
notation, the superscript∗ denotes the complex conjugate. The
z-transform of the autocorrelation of the AWGN is

Ψw(z) = N0.

The z-transform of the autocorrelation of the observation is

Ψx(z) = σ2
aH(z)H∗(z−1) + N0.

The Signal-to-Noise Ratio (SNR) is :

SNR=
σ2

a

∑
i |hi|2

N0
.

B. MSE-DFE

Aiming to frequency-domain computation of the FFF, it
is convenient to derive the MSE-DFE feedforward and feed-
back filters by the approach of predictive DFE developed by
Belfiore and Park [6]. Let thez-transform of the error at the
decision device be

V(z)=(1−B(z))(C(z)X(z)−A(z))=D(z)(C(z)X(z)−A(z)),

whereB(z) is thez-transform of the impulse response of the
FBF andC(z) represents the FFF of the predictive DFE. The
term

U(z) = C(z)X(z)−A(z)

is the error that is predicted by the FBF. The MSE is

J =
T

2π

∫ π/T

−π/T

Ψv(ejωT )dω =
T

2π

∫ π/T

−π/T

Ψd(ejωT )Ψu(ejωT )dω.

Since Ψd(ejωT ) ≥ 0 and Ψu(ejωT ) ≥ 0, one concludes
that the optimal FFF minimizes frequency-by-frequency the
power spectral density of the error before the linear prediction,
independently of the FBF. Therefore the optimal FFF is the
MMSE linear equalizer, that is

C(z) =
σ2

aH∗(z−1)
Ψx(z)

.

With the MMSE linear equalizer one has

Ψu(z) =
σ2

aN0

Ψx(z)
,

and

Ψv(z) =
σ2

aN0Ψd(z)
Ψx(z)

.

The computation of the FBF proceeds as follows. We wish
to predict uk by linear prediction from the past samples
uk−1, uk−2, . . ., assuming that they are known. Let

vk = uk −
µ∑

i=1

biuk−i,

be the error after linear prediction withµ taps. The coefficients
b = (b1, b2, . . . , bµ) are obtained as

b = arg min
b

E{|vk|2}.



Fig. 1. Block diagram of the system.

The unique minimum is obtained by putting to zero the partial
derivatives of the power of the error with respect to the entries
of b:

∂

∂bi
E{|vk|2}=−E{vku∗k−i}=−E{(uk−

µ∑

j=1

bjuk−j)u∗k−i}

=−ψu,i +
µ∑

j=1

bjψu,i−j = 0, i = 1, 2, . . . , µ,

where ψu,i is the i-th sample of the autocorrelation of the
sequence represented byU(z). Hence the taps of the predictor
are obtained by solving the system of linear equations

µ∑

j=1

bjψu,i−j = ψu,i, i = 1, 2, . . . , µ,

which are known as theYule-Walkerequations. TheD(z)
obtained from the Yule-Walker equations asD(z) = 1−B(z)
is monic (d0 = 1), causal, andminimum phase(all the zeros
of D(z) are on or inside the unit circle). The block diagram
of the system is reported in Fig. 1, where, as it happens in
practical systems, the available decisions are used in place of
the true transmitted data sequence.

Computation of the FFF in the frequency domain re-
quires only frequency-by-frequency inversion ofΨx(ejωT )
and frequency-by-frequency multiplication between the in-
verse of the power spectrum and the matched filter. Note that
inversion ofΨx(ejωT ) is also required in the computation of
the FBF. After the above mentioned inversion, the computation
of the two filters is performed by two parallel branches, which
can be an advantage in VLSI implementation. Computation of
the FBF withµ taps by the Levinson recursion has a com-
plexity that goes withµ2. The conventional (nonpredictive)
MSE-DFE with ideal FFF is obtained by using the cascade of
linear MMSE andD(z) as FFF, and by feeding back through
B(z) the past data.

C. MMSE-DFE

Ideal prediction is obtained when the power spectrum of the
error after prediction is white, leading to the MMSE-DFE. We
write the white power spectrum of the error after prediction
as the fraction

Ψv(z) =
σ2

aN0

α
.

The scalarα can be computed as [12]:

α = exp

(
T

2π

∫ π/T

−π/T

log
(
Ψx(ejωT )

)
dω

)
.

For the MSE of the MMSE-DFE one gets

J =σ2
aN0α

−1 =σ2
aN0 exp

(
− T

2π

∫ π/T

−π/T

log
(
Ψx(ejωT )

)
dω

)
.

Note that for the MMSE-DFE one has

Ψv(z) =
σ2

aN0D(z)D∗(z−1)
Ψx(z)

=
σ2

aN0

α
,

which demonstrates thatD(z) is obtained from thespectral
factorization

αD(z)D∗(z−1) = Ψx(z),

where theD(z) that is monic, causal, and minimum phase, is
taken. WhenΨv(z) is FIR with 2ν + 1 taps, the FBF of the
MMSE-DFE hasν taps.

III. C OMPUTING FBF AT THE SPEED OFFFT

The most efficient method known for the computation of
the spectral factorization is the method due to Kolmogoroff
[9]:
√

αD(ejωT )=exp
(
FT

(
usk ¯ IFT

(
log

(
Ψx(ejωT )

))))
, (1)

where FT indicates the Fourier Transform, IFT indicates the
Inverse Fourier Transform,{usk} is the unit step sequence,
and ¯ is the Shur-Hadamard (elementwise) product. In the
literature of signal processing the termlog

(
Ψx(ejωT )

)
takes

the name ofcepstrum. The computation requires only Fourier
transformations and the log-exp operation, which can be
implemented by look-up table. Passing from the FT to the
FFT one achieves the complexityO (n log(n)), where n is
the number of points of the FFT.

As mentioned in the introduction, the duration of the im-
pulse response of the spectral factor resulting from (1) depends
only on the duration of the impulse response of the channel,
which, in the wireless scenario, it is not under the control of
the designer. Truncation of the impulse response could induce
dramatic performance loss because the truncated spectral fac-
tor could loose the minimum phase property. Experimentally
one can observe that the minimum phase property is often
lost whenΨx(z) has zeros that are close to the unit circle.
Therefore one would like to bring these zeros far from the unit
circle before the factorization of the power spectrum. One way
to achieve this objective is to perform the following spectral
factorization

αD(z)D∗(z−1) = Ψx(z) + λ, (2)

where λ ≥ 0 is up to the designer. The parameterλ adds
a floor to the power spectrum, thus preventing the presence
of spectral zeros. Note that asλ → ∞, the feedback taps of
the DFE tend to zero, and the receiver is reduced to the pure
MMSE linear equalizer. After the spectral factorization and
the IFFT, only the firstµ+1 taps of the impulse response are
retained. Unfortunately, it is difficult to derive by analytical
means the optimalλ for the given channel and for the desired
µ. What one can do is to apply the procedure for many values
of λ and evaluate the MSE as

J =
Tσ2

a

2πN0

∫ π/T

−π/T

DT (ejωT )D∗
T (e−jωT )

Ψx(ejωT )
dω, (3)
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Fig. 2. MSE versusλ for the AWGN channel with the truncation method
for memory of the FBF equal to 4. Curves are parametric in the SNR that is
reported next to them. The dashed lines represent the MSE that is obtained
when the coefficients of the FBF are computed by the Yule-Walker equations.
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Fig. 3. Zeros of the impulse responses of the FBF obtained by the application
of the competitor methods at SNR=20 dB. Truncation withλ = 0: ’◦’;
Truncation withλ = 0.08: ’¦’; Yule-Walker equations: ’∗’.

whereDT (z) is the truncated spectral factor. This allows to
select the bestλ for the given channel and the desiredµ.

IV. EXPERIMENTAL RESULTS

The benefits of introducingλ in (2) to obtain robust trun-
cation of the spectral factor are demonstrated on a variety of
channels. In this section we report examples of AWGN and
multipath fading channels. In the following we assume that the
channel is always perfectly known at the receiver. For all the
examples the spectral factor was computed by performing the
FFT over512 points. As a first example we report simulation
results for the AWGN channelH(z) = 0.176 + 0.316z−1 +
0.476z−2 + 0.532z−3 + 0.476z−4 + 0.316z−5 + 0.176z−6.
It is worth noting that this channel is the worst channel
with ν = 6 [14]. Simulation results for this channel were
carried out by setting the memory of the FBF toµ = 4
and by considering BPSK modulation. As mentioned in the
previous section, the preliminary operation of selecting the
optimal λ is required. In Fig. 2 it is reported the MSE versus
λ computed according to equation (3). From the figure it
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Fig. 4. FEER versus SNR for the AWGN channel with memory of the FBF
equal to4.

can be observed that the MSE is a smooth function ofλ,
which is a desirable property because the performance is not
much sensitive to the choice ofλ. It can be seen from the
figure that good performance is obtained forλ = 0.08 at any
SNR. We observe that, forλ = 0, the MSE obtained by the
truncation method is insensitive to the SNR, so that at high
SNR the performance is dramatically degraded, making the
truncation method not suitable. Conversely, a judicious choice
of λ brings the performance of the truncation method near to
the performance of the MSE-DFE at any SNR. Fig. 3 reports
the zeros of the impulse responses obtained by the application
of different methods for SNR= 20 dB. Note that the bad
performance obtained forλ = 0 by the truncation method
is explained by observing that this method gives a maximum
phase FBF (all the roots are outside the unit circle), while the
minimum phase property of the FBF is preserved by adding
the bias. Fig. 4 shows the First Error Event Rate (FEER) versus
SNR of the truncation method forλ = 0 and λ = 0.08. The
FEER is measured by a random sequence of106 symbols. The
performance of the Yule-Walker equations and of the linear
MMSE is also reported. The figure confirms the observations
made on Fig. 2 regarding the effectiveness of the bias.

As far as the multipath fading channel is concerned we
consider two examples. The first is the channel model A
defined by ETSI BRAN for HiperLAN/2 [15]. The modulation
scheme that we consider is QPSK. In this case simulations
are used to generate107 realizations of the fading channel.
For each channel realization we compute the output Signal-
to-Disturbance Ratio (SDR) of the MMSE-DFE as

SDR=
σ2

a − J

J
.

The optimalλ is obtained by optimizing the average SDR.
The instantaneous FEER for QPSK is given by

FEER≈ 2Q

(√
SDR
2σ2

a

)
,
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Fig. 5. FEER versus SNR for the Hiperlan type A channel with memory of
the FBF equal to3.

where

Q(x) =
1
2π

∫ ∞

x

e−
u2
2 du.

Note that to compute the FEER one should derive the prob-
ability density function of ISI plus noise, for example by the
method proposed in [13]. However, a fairly accurate estimate
is obtained by considering the Gaussian approximation. The
FEER reported in the figures is obtained by averaging the
instantaneous FEER over the107 channel realizations. Fig. 5
shows the performance forµ = 3 of the proposed method.
We observe that, with the fading channel, the performance
of the truncation method is close to the performance of the
MSE-DFE, and that it is not much sensitive to the bias. A
small improvement can be obtained by adding the bias only at
high SNR. At FEER= 10−7 the performance of the proposed
method withλ = 0.04 is approximately0.5 dB better than
with λ = 0 and 0.9 dB worse than that of the Yule-Walker
equations. The second example of multipath fading channel
was obtained by considering each coefficient of the AWGN
channel of [14] as a Rayleigh random variable with average
power equal to the square of the corresponding coefficient.
In order to increase the time duration of the channel we
inserted3 zeros in between each coefficient. Fig. 6 shows the
performance of the competitor methods forµ = 7. Also in this
case we note that the performance of the truncation method
is not much sensitive to the bias, and that it is close to the
performance of the MSE-DFE. Small differences are appre-
ciated only at high SNR. At FEER= 10−7 the performance
of the truncation method withλ = 0.1 is approximately1.2
dB better than withλ = 0 and1.1 dB worse than that of the
Yule-Walker equations.

V. CONCLUSIONS

Efficient computation of the forward and backward filters of
the decision feedback equalizer is possible by computing the
spectral factorization by the method due to Kolmogoroff. The
disadvantage of the method is that the time duration of the
feedback filter is not under control, therefore, in the practice,
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Fig. 6. FEER versus SNR for the second example of multipath fading channel
with memory of the FBF equal to7.

truncation becomes necessary. We have proposed to mitigate
the performance loss due to truncation by adding a bias in
the factored power spectrum. Experimental results obtained
with a severe static channel and with two fading channels
show that our proposal makes the performance of the truncated
DFE close to the performance of the DFE with feedback filter
obtained from the Yule-Walker equations.
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