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ABSTRACT 

In this paper  we discuss the how to best handle motion 
vectors in spatially scalable wavelet-based video decoders. 
Motion vectors with full resolution are normally included in 
the bit-steams relative to spatially scaled version of a video 
sequence. When a low-resolution version of the original 
sequence is received, the decoder must scale the motion 
vectors accordingly. We will show that the motion vector 
scaling (truncation) is not the best solution and that better 
results can be obtained by interpolating the subsampled 
sequence to full resolution using of the wavelet synthesis 
low-pass filter. We illustrate the results of experiments 
carried out with an in-band wavelet-based fully scalable 
coder that performs spatial analysis, followed by temporal 
filtering. Emphasis is given to the computation of the 
Overcomplete DWT in the spatially scalable scenario. 

1. INTRODUCTION 

Nowadays video streaming is, in fact, ubiquitous, as more 
and more devices are able to render image sequences. As a 
consequence, it is no longer possible to produce multiple 
encoded representations of the signal in order to adapt to the 
decoder’s characteristics. In fact, there is an ever increasing 
requirement of sending an encoded representation that is 
adapted to the device and network characteristics, in such a 
way that the coding is performed only once while decoding 
may take place several times at a different resolution, frame 
rate and quality. We refer to these requirements in terms of 
spatial, temporal and rate scalability, respectively. Wavelet-
based video coders-decoders are able to fulfill such 
scalability requirements while achieving a good level of 
performance when they work at full spatio-temporal 
resolution. We can identify two families of wavelet-based 
video coders: SD-MCTF (Spatial-Domain Motion-
Compensated Temporal Filtering) [1] and IB-MCTF (In-
band Motion-Compensated Temporal Filtering) [2]. The 
former applies temporal filtering first along motion 
trajectories in order to reduce temporal redundancy. A 
simple Haar filter is often employed in this phase, although 
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longer filters such as 5/3 filters have been recently shown to 
enable better compression. The output of temporal analysis 
is then 2D filtered in the spatial domain to reduce spatial 
redundancy. Wavelet coefficients are then entropy-coded 
using any of the wavelet-based still image compression 
algorithms (JPEG2000, SPIHT, EZBC). In literature, 
MCTF-EZBC is the state-of-the-art scalable video coder that 
implements a SD-MCTF scheme with EZBC coding of the 
wavelet coefficients. This is the reference implementation 
within the MPEG Ad-Hoc group on Scalable Video Coding. 
In-Band MCTF swaps temporal and spatial analysis in such 
a way that the motion estimation/compensation phase is 
carried out in the wavelet domain. Because of the shift-
variance of the critically sampled DWT, the motion-
compensated temporal filtering takes place in the 
Overcomplete DWT (ODWT) domain. The ODWT is a 
redundant subband decomposition of the input signal that 
removes the subsampling operations, thus achieving shift 
invariance. On the positive side, the IB-MCTF approach 
gets rid of blocking artifacts even when a block-based 
motion compensation algorithm is employed. On the other 
hand, this approach is computationally quite demanding and 
memory consuming due to the ODWT computation. 
Both SD-MCTF and IB-MCTF coders decompose each 
group of pictures (GOP) in a plurality of spatio-temporal 
subbands. Scalability is achieved by pulling from the 
encoded bitstream only those subbands that represent the 
sequence at the desired frame rate and resolution up to a 
given quality (i.e. quantization) level.  
The rest of this paper is organized as follows: Section 2 
illustrates the motion vector handling and addresses spatial 
scalability. Section 3 extends what shown in Section 2 to the 
IB-MCTF scenario. Section 4 shows some experimental 
results. 

2. MOTION VECTOR HANDLING FOR SPATIALLY 
SCALABLE WAVELET-BASED VIDEO CODERS 

Wavelet-based video coders address spatial scalability in a 
straightforward way. At the end of spatio-temporal analysis 
each frame k of a GOP of size K represents a temporal 
subband further decomposed into spatial subbands up to 
level L as illustrated in Figure 1. Each frame thus consists of 
the following subbands: LLk

(L), LHk
(l), HLk

(l), HHk
(l) with 
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l=1…L, k = 1…K. Let us assume that we want to send and 
decode a sequence whose resolution is 2s times lower than 
the original one. For example, if s is equal to one a CIF 
resolution sequence would be decoded at QCIF resolution. 
We need to send only those subbands LLk

(L), LHk
(l), HLk

(l), 
HHk

(l) with l=s+1…L if s < L. Else, if s = L only LLk
(L) is  

sent. At the decoder side, spatial decomposition and motion-
compensated temporal filtering is inverted in the  synthesis 
phase. The problem that must be addressed is that the 
motion vector field, available at the decoder side, normally 
has a full resolution, while the received subbands represents 
a lower resolution version of the sequence. In  the rest of 
this paper we assume for simplicity of exposition that the 
motion field is represented by motion vectors having integer 
components. We want to compare from a theoretical point 
of view the following approaches: 
(a) the motion vectors are truncated and rounded in order to 

match the received sequence resolution; 
(b) the original motion vectors are retained, while a full 

resolution sequence is interpolated starting from the 
received subbands. 

In the implementation available to us MCTF-EZBC adopts 
the former approach. It is computationally simpler while not 
as efficient as the latter in terms of reconstruction quality. 
In order to state things formally let us concentrate our 
attention on a one-dimensional discrete signal x(n) and its 
translated version by an integer displacement d, i.e. y(n) = 
x(n – d). Their 2D counterpart are the reference and the 
current frame respectively. This way we are are neglecting 
motion compensation errors due to complex motion, 
reflections and illumination changes. Temporal analysis is 
carried out with a “lift” implementation of the Haar 
transform along the motion trajectory d: 
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L(n) and H(n) are wavelet transformed and, in the case of 
spatial scalability, only a subset of their subbands are sent. If 
we scale at half the original resolution, the decoder receives 
the following signals: 
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Temporal synthesis reconstructs a low resolution 
approximation of the original signals: 
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For reasons better explained in Section 4, we compute the 
reconstruction error using the spatially low-pass filtered and 
subsampled version of the original frames as reference: 
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We derive the solution for scenario (b) first, since we will see 
(a) as a particular case. The decoder reconstructs an 
interpolated version of the original sequence. This is 
accomplished by setting to zero the coefficients of the 
missing subbands before performing the wavelet synthesis. It 
is worth pointing out that this is equivalent to estimating the 
missing samples using the wavelet scaling function as 
interpolating kernel. The energy of the reconstruction error 
turns out to be: 
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Figure 2 illustrates how erec(n) is computed starting from x(n) 
and y(n). H(z) represents the analysis wavelet low-pass filter, 
while G(z) is the synthesis low-pass filter. In the rest of this 
paper we assume that they are Daubechies 9/7 biorthogonal 
filters. As they are nearly orthogonal, the equation (1) is 
satisfied. The reconstructed signal xrec(n) is an approximation 
of x(n) having the same number of samples. Therefore 
motion compensation can use the original motion vector d. In 
the Fourier domain we write: 
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Equivalent expressions can be written for yrec(n). By 
Parseval’s theorem the prediction error in equation (1) 
becomes (scenario b is considered): 

 ∫∑
+

−

−
−

=

−=
π

π

ω ωωω dYeXne rec
dj

rec

N

n
brec

21

0

2
)( )()()(  (3) 

By substituting (2) in (3) and recalling that: 
djeXYdnxny ωωω −=⇒−= )()()()(  

We obtain: 
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If we constrain the displacement to be integer, the previous 
expression turns out to be zero if d is even. Conversely, if d 
is odd, the expression of the error becomes: 
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Figure 3 depicts the energy spectrum of G( + � and        
H( ) together with their product. We can conclude that the 
error energy depends on the frequency characteristics of the 
signal and it is close to zero if its energy is mostly 

Figure 1 - When a sequence is scaled at half its resolution (s = 1) 
only the greyed spatial subbands are sent for each GOP 

Figure 2 – Reconstruction error computation without motion 
vector truncation (Scenario (b)) 
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concentrated at low frequencies. In fact in this case the 
approximation we get interpolating with G( ) is very much 
similar to the original. On the other    hand equation (4)  
suggests   that the error is zero  also  when the  energy is  
concentrated  at  high frequencies. 

Figure 3 – Frequency responses of the filters cited in the paper 

This counterintuitive result can be explained as follows: 
when an high frequency signal passes through the system in 
Figure 2 it is almost cancelled by the low-pass analysis filter 
H( ). The error turns out to be zero because both xrec(n) and 
yrec(n) have little residual energy.  
The error in scenario (a) can be derived as a special case of 
scenario (b). Since the received signal has lower resolution 
than the motion field, vectors are truncated (scaled and 
rounded). The reconstruction error turns out to be: 
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In order to find a frequency domain expression for this 
scenario we can observe that the operation of truncating and 
rounding motion vectors is equivalent to interpolating the 
low resolution version received by the decoder with a 
sample&hold filter and then applying the full resolution 
motion field. As a matter of fact the error turns out to be: 
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Having fixed |H( )|2, we are not able to state that the 
following inequality holds for any signal: 
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Nevertheless, if we assume that most of the energy is 
concentrated at low frequencies, inequality (5) holds. In 
order to enforce this intuition let us take the expectation on 
both sides of (5) with respect to x(n).  
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If we model the signal as a wide-sense stationary noise with 
correlation coefficient  the signal power spectrum is: 
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Figure 4 – Comparison between the (normalized) error in 
scenario (a) and (b) with WSS input and correlation coeff. � 

As illustrated in Figure 4 for any  in [0,1] Err(a) > Err(b) and 
their ratio is higher for   close to 1, meaning that the penalty 
due to motion vector truncation with respect to interpolating 
at full resolution with G( ) is greater when the input signal 
has energy concentrated in the low frequency range. 

3. SPATIALLY SCALABLE IN-BAND MCTF 

In-Band Motion Compensated Temporal Filtering (IB-
MCTF) represents a valid alternative to conventional SD-
MCTF since the reconstructed sequence does not suffer 
from blocking artifacts at low bitrates even when a block-
matching algorithm is employed for  motion compensation. 
On the other hand IB-MCTF is computationally and 
memory demanding since motion estimation-compensation 
takes place in the ODWT domain. Figure  shows a block 
diagram of a system implementing the ODWT using the 
algorithm à trous [3]. Due to the absence of decimators the 
ODWT is shift invariant. Note that h0(n) represents the low-
pass analysis filter (it is the same as h(n) in our previous 
discussion), while h1(n) the high-pass analysis filter. The 
concepts stated in the previous sections have been deduced 
in the SD-MCTF scenario. Nevertheless they holds true in  
the IB-MCTF case, the only significant difference being the 
computation of the Overcomplete DWT of the reference 
frame. The received subbands are used to reconstruct a full 
resolution version of the signal xrec(n). Since this is a low-
pass approximation of x(n) the output of the high pass filter 
h1(n) of the critically sampled DWT is zero. On the other 
hand, contrary to intuition, the correspondent sub-band of 
the ODWT is not zero. More specifically, it is always equal 
to zero only in those locations corresponding to the critically 
sampled coefficients (indeed, by critically sampling the 
ODWT we end up with the DWT). For this reason the 
computation, at the decoder side, of the ODWT cannot be 
stopped prematurely, i.e. by setting to zero all the 
coefficients of  the missing subbands, otherwise a sensible 
drop in reconstruction quality would be observed. 
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Experimental results demonstrated a drop up to 1dB in the 
PSNR if the ODWT is not computed in a complete way. 
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h1
(4)(n)

L3

H3
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Figure 5 - Overcomplete DWT (ODWT) computed through the 
algorithm à trous. h(k)(n) is the dilated version of h(n) obtained 

inserting k-1 zeros between two consecutive samples. 

4. EXPERIMENTAL RESULTS 

We carried out several experiments in order to put in practice 
the principles stated in the previous sections. In order to 
assess the objective quality of the reconstructed sequence at 
reduced spatial resolution we used the low-pass filtered and 
subsampled version of the original sequence as a reference. 
We have chosen H0( ) as anti-aliasing filter. This approach 
differs from the one adopted when assessing temporal 
scalability [4], where the references used are the unquantized 
temporal low frequency frames output of the first level of the 
MCTF pyramid. On the other hand, as far as spatial 
scalability is concerned the output of MCTF is not a good 
reference, especially when working at full pixel  motion 
accuracy. When using it as a reference objective results 
(PSNR)  does not always match subjective evaluation 
criteria. For this reasons we argue that the low-pass 
subsampled frames can be deemed to be a better reference. 
Figure 6 shows the average Y PSNR of the 
Mobile&Calendar sequence spatially scaled from CIF to 
QCIF resolution. We set motion accuracy to full pixel and 
full reconstruction frame rate in our experiments. We 
compared three different coders: 
- IB-MCTF-1: our implementation of an in-band coder  

with motion vector truncation - scenario (a) 
- IB-MCTF-2: same as IB-MCTF-1 but with full 

resolution motion vectors and setting to zero all ODWT 
coefficients of the missing subbands - scenario (b) 

- IB-MCTF-3: same as IB-MCTF-2 but computing 
ODWT coefficients in a complete way -scenario (b) 

Figure 7 shows an example taken from the reconstructed 
sequence. IB-MCTF-3 turns out to yield the best objectice 
and subjective results for all test sequences. The reason why 
IB-MCTF-1 does not grow above 20dB even at high bitrates 
is that in this case the lossless reconstruction differs from the 
reference due to the non invertibility of the MCTF phase, 
which is caused by motion vector truncation. We also tested 
the implementation of MCTF-EZBC available to us. As 
expected it yielded results similar to the IB-MCTF-1 case. 
Although scenario (b) turns out to be the best choice as far as 
reconstruction quality is concerned, it is more 
computationally demanding. In our experiments we observed  
that decoding is between 2.1 and 2.3 times slower than 
scenario (a) for CIF sequences scaled down to QCIF 
resolution. In addition to this it is more memory demanding, 

especially in the IB-MCTF case, since the decoder works on 

a full resolution version of the spatially scaled sequence. 
We have also carried out experiments using fractional 
resolution of the motion vectors. The results are very similar 
to those shown in Figure 6. The gap between IB-MCTF-2 
and IB-MCTF-3 remains about always the same, while the 
gain of IB-MCTF-2 whit respect to IB-MCTF-1 reduces 
when the resolution of the motion vectors increases (about 2 
dB at 512 kbps and a m.v. resolution of a quarter of a pixel). 

5. CONCLUSIONS 

In this paper we theoretically proved that truncating the 
motion vectors gives a poorly reconstructed sequence when it 
is decoded at lower spatial resolution. Better results can be 
obtained by setting to zero the missing subband and 
interpolating at full resolution before performing temporal 
synthesis. Future works will address an adaptive optimal 
interpolation of the low resolution subbands with filters other 
than G( ) in order to achieve better performance in the 
spatial scalability scenario. 
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Figure 6 - Mobile&Calendar scaled at QCIF@30fps 
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