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12 N treatments in 2020 and 11 in 2021 were replicated four times over four locations in a 

randomized complete block design. The first research tested the efficacy of CYG for Mississippi 

corn (Zea mays L.) production. The optimum N rates were calculated by fitting four models. 

Differences between the CYG rate and AONR were compared. AONR varied from 134 to 301 

kg N ha–1 at different management levels. When we compared the AONR to the CYG rate, the 

CYG rate over-recommended N in 12 of the 14 possible comparisons. The second study 

compared different VIs, methods, and sensors at various corn stages to predict in-season yield 

potential. Relative VI measurements were superior for grain yield prediction. MicaSense best 

predicted yield at the VT-R1 stages, Crop Circle and SPAD at VT, and GreenSeeker at V10. 

When VIs were compared, SCCCI outperformed other VIs.  
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CHAPTER I 

DISCREPANCY BETWEEN THE CROP YIELD GOAL RATE AND OPTIMUM NITROGEN 

RATES FOR MAIZE PRODUCTION IN MISSISSIPPI 

Article published in Agronomy Journal: Oglesby, C., Dhillon, J., Fox, A.A.A., Singh, 

G., Ferguson, C., Li, X., Kumar, R., Dew, J., & Varco, J. (2022). Discrepancy between the crop 

yield goal rate and optimum nitrogen rates for maize production in Mississippi. Agronomy 

Journal. https://doi.org/10.1002/agj2.21179 

1.1 Abstract 

The varying influence of the environment on N supply and demand dictates the need for 

annually updated fertilizer N recommendations. Currently, crop yield goal (CYG) methods are 

used by 34 land grant universities, including Mississippi State University, which do not consider 

environmental variations. This research tested the efficacy of CYG by determining the 

agronomic optimum N rate (AONR) and the economic optimum N rate for Mississippi corn (Zea 

mays L.) production. In total, 12 treatments in 2020 and 11 in 2021 were replicated four times 

over four locations in a randomized complete block design. The optimum N rates were 

calculated by fitting linear, quadratic, linear plateau, and quadratic plateau models by means of 

three different goodness of fit measures. Furthermore, differences between the CYG rate 

calculated from the Mississippi yield goal equation and AONR were compared at different 

management levels (14 comparisons) (all data combined, both years combined, sites combined 

by year, and individual sites). Overall, AONR varied from 134 to 301 kg N ha–1 at different 

management levels. When we compared the AONR to the CYG rate, the CYG rate over-

recommended N in 12 of the 14 possible comparisons, with differences ranging from 69 kg N 
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ha–1 less to 110 kg N ha–1 greater than the AONR. These differences between AONR values 

highlight variability caused by factors such as the soil, environment, and their interaction with N 

supply and demand, which are unaccounted for by the CYG method. 

1.2 Introduction 

Inefficient N use leads to significant economic losses, considering the cost of N fertilizer 

within an agricultural budget (Dhakal & Lange, 2021). Fertilizer input constraints are 

particularly evident when coupled with a sharp upward trend in N fertilizer prices in the United 

States (USDA Economic Research Service, 2022). Environmental perturbations accruing from 

the misuse of fertilizer N as runoff to the Gulf of Mexico have caused the death of organisms at 

the lowest depths of the water body (Mee, 2006). Conversely, the underapplication of N leads to 

below-optimum production with reduced profitability (Pagani et al., 2012; Cassman & 

Dobermann, 2021). 

The agronomic optimum N rate (AONR) constitutes the total quantity of fertilizer N 

necessary to maximize yield, with the extent of the yield response diminishing beyond the 

optimal rate (Camberrato & Nielsen, 2014). Applying the AONR curtails the overapplication of 

N beyond a yield response, limiting the readily available N in the soil that is susceptible to 

losses. The economic optimum N rate (EONR) is defined as the N rate that makes the most 

effective use of N on a monetary basis. The N rates described by AONR and EONR are similar 

(Lindsey et al., 2015; Maharjan et al., 2016) but have an inherent difference. 

The dissimilarity between AONR and EONR originates from EONR being dependent on 

the economic environment. For example, EONR can increase with an increase in the grain price, 

decrease with an escalation in the fertilizer N price, or remain unchanged if the ratio of fertilizer 

N costs to grain prices remain the same (Camberato et al., 2017). 
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Determining the optimal fertilization rate of either AONR or EONR involves obtaining 

the yield data from fields with multiple fertilizer N rates and then fitting the yield data to a 

specific yield response model. The quadratic model is the most commonly used model (Cerrato 

& Blackmer, 1990) but does not always produce the maximum profit for all crops, despite being 

the most frequently used (Bullock & Bullock, 1994). Taking care to accurately evaluate the best 

fitting model is necessary because of the economic and environmental importance of optimizing 

fertilizer N rates (Cerrato & Blackmer, 1990). 

Crop yield goal (CYG) nutrient management has been a widespread practice in 

agriculture for farmers for nearly 50 yrs. (Rodriguez et al., 2019). Yield-based strategies 

continue to be recommended by 34 states at Land Grant universities, including Mississippi State 

University, to determine the seasonal N demand of a crop (Morris et al., 2018). Stanford (1973), 

who established the CYG method, created the multiplicative calculation of 1.2× the realistic 

yield goal to achieve an optimal fertilizer N rate for corn (Zea mays L.). Although their study 

used whole-plant N to derive this 1.2 value, it is currently multiplied solely by the expected grain 

yield to predict the optimal rate. For this equation to be effective, Stanford (1973) noted that 

reliable fertilizer prediction needs “realistic estimates of attainable yield, efficiency, and the 

residual mineral N supply”. Despite its popularity because of its ease of use (Morris et al., 2018), 

there are problems with the practical application of the CYG method. For example, historical 

yield is not an adequate predictor of future yield (Raun et al., 2017). The discrepancy between 

the historical and predicted yield derives from the marked differences in corn genetics, 

environment, and management between locations and years (Puntel et al., 2018). Without 

accurate yield predictions, the ability to subsequently recommend an optimal N rate is negated 

(Raun et al., 2017). The discrepancy between the CYG and the optimal rate is compounded by 
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the CYG’s failure to consider the N cost (Rodriguez et al., 2019). Additionally, the alteration of 

the original 1.2 value to a larger number such as Mississippi’s 1.3 recommendation increases the 

amount of N applied despite the lack of published papers justifying this modification. Evidence 

also suggests that even if all the necessary factors could be accurately predicted, the 1.2 

nitrogen/crop ratio was created via an inadequate methodology that would still not support an 

optimal N rate calculation (Rodriguez et al., 2019). 

If the nutritional management of crops is not improved, excessive fertilizer N 

applications will continue to exacerbate already problematic environmental conditions and 

compound economic losses (Schröder et al., 2000; Stevens et al., 2005; Cassman & Dobermann, 

2021). Conversely, insufficient fertilizer N applications will negatively influence the target 

production demands of the ever-expanding population (Chardon et al., 2012). 

Thus, the overarching purpose of this study was to evaluate the efficacy of the CYG 

method for fertilizer N recommendations for corn in Mississippi. This study was limited to corn 

in 2020 and 2021 in the general vicinity of central Mississippi. 

1.3 Materials and Methods 

The research was conducted in 2020 and 2021 in Mississippi across four locations: (a) 

Black Belt Experiment Station in Noxubee County in Brooksville, (b) the R. R. Foil Plant 

Science Research Center in Oktibbeha County in Starkville, (c) Delta Research Extension Center 

in Washington County in Stoneville, and (d) Northeast Mississippi Branch Experiment Station in 

Lee County in Verona. Location-specific soil information is noted in Table 1.1. The study 

locations are indicated in Figure 1.1. 

The experiments were established in a randomized complete block design with four 

replications. In 2020, there were 12 treatments including a no-N control; in 2021, there were 11 
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treatments including the control. The complete treatment structure is found in Table 1.2. The first 

and second N applications consisted of a 32% urea ammonium nitrate solution knifed into the 

soil with a LM 1255 four-row liquid fertilizer applicator (KBH Corp., Clarksdale, MS, USA) 

equipped with coulter knives spaced at approximately 20 cm from the row at a 7.5-cm depth. 

The Brooksville and Starkville experimental units were 3.9 m wide by 9.1 m long, 

planted in raised beds 96 cm high. At Stoneville, the experimental units were 4.2 m wide by 

9.1 m long, planted in raised beds 101 cm high. Verona’s experimental units were 3.9 m wide by 

10.7 m long, planted on raised beds 96 cm high. In 2020 and 2021, soil sample data were 

collected at all locations on a per-replication basis, with 16 cores collected per replication at a 

15-cm depth. Fertility for each location was modified on the basis of the soil test results as per 

Mississippi State University recommendations (Table 1.3). 

Corn was planted at a seeding rate of 74,000 seeds ha−1 in 2020 and 79,000 seeds ha−1 at 

all locations in 2021. In 2020, planting was completed from 6 to 29 April and harvested between 

3 and 17 September. In 2021, planting was completed from 12 March to 21 April and harvested 

between 24 August and 14 September. In 2020, Brooksville and Starkville were planted to the 

corn hybrid ‘DKC 67-44’, whereas ‘DKC 68-69’ was planted in Verona and ‘DKC 70-27’ was 

planted in Stoneville. In 2021, all locations were planted to DKC 67-44. Each trial was 

established where the previous crop was soybean [Glycine max (L.) Merr.]. For both 2020 and 

2021, the first N applications were applied during the V1–V2 growth stage followed by the 

second applications at the V5–V6 growth stage. In 2020 and 2021, Stoneville and Starkville were 

furrow-irrigated twice per year, with no irrigation used at Brooksville and Verona. Weeds at all 

sites were managed with a pre-emergence application of glyphosate at 0.33 kg acid equivalent 
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ha−1 and an application at the V3–V4 growth stage of atrazine at 1.47 kg a.i. ha−1, S-metolachlor 

at 1.47 kg a.i. ha−1, and mesotrione at 0.19 kg a.i. ha−1. 

Weather data were collected from NOAA’s monthly US Climate Division Database 

(NOAA, 2022). For 2020 and 2021, average temperature and precipitation data were collected 

from March through to September from the county weather data. The 2020 and 2021 data were 

then compared with the average historical weather data from the past 30 yr. 

The AONR data for the combined years, by year, and by location per year data calculated 

by fitting the yield to the applied total N rates in linear, quadratic, linear plateau, and quadratic 

plateau models in R version 4.0.2 statistical software (R Core Team, 2021) with the ‘easynls’ 

(Arnhold, 2017) and ‘Agroreg’ packages (Shimizu & Goncalves, 2022). The Tidyverse package 

was used for data handling, manipulation, and visualization (Wickham et al., 2019). The best 

model was selected on the basis of three criteria: the coefficient of determination (R2), the 

Akaike information criterion, and the root means square error (RMSE). The models that could 

not be fitted by all three goodness of fit measurements were not accounted for when deciding the 

final best model. The EONR was subsequently calculated from the best yield response model via 

the following equation 

 

(CP × 𝑌) − (Price × Rate) 1.1 

 

where CP is the corn price, Y is the yield, Price is the N price, and Rate is the total N rate. 

The price of corn for this equation was fixed as $0.202 kg−1 and the total fertilizer N price as 

$1.38 kg−1. 
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The CYG was calculated by multiplying the yield at AONR for each level by the 

recommended value of 1.3 (Oldham, 2012). This approach differed from the practice of 

calculating CYG from an average of 3 to 5 yr plus 10% (Morris et al., 2018). There were two 

reasons for the deviation from the established method, (a) realistic yield goals were not 

calculable (Raun et al., 2017); (b) we wished to use the most accurate targeted yield for an 

unbiased comparison between CYG and AONR. Possible N credits were not accounted for as 

these are not considered in the Mississippi-based CYG recommendations. Comparisons between 

the AONR and CYG-recommended rate were then conducted to evaluate the efficacy of the 

CYG method for N recommendations. 

1.4 Results 

In both 2020 and 2021, the combined experiments experienced greater than average 

precipitation than the 30-yr average (Table 1.4). In 2020, temperatures were warmer than the 

average for the combined data but were less than average in 2021 when compared with the 30-yr 

average (Table 1.4). In 2020, when compared with the 30-year average, Brooksville was 

characterized by higher than average precipitation in April and June, which was also the case for 

Starkville in April, Stoneville in September, and Verona in August (Table 1.4). In 2021, 

Brooksville and Starkville’s precipitation was above average in June, July, and August; the 

highest for Stoneville was in March and June; and the highest for Verona was in June and 

August (Table 1.4). Furthermore, Stoneville in March of 2021 experienced warmer temperatures 

compared to the average (Table 1.4). 

Consistent with our objective, we examined the differences in the optimum N 

requirements at different levels. At the first level, all eight site-years were analyzed individually. 
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The second-level data were combined by location over both years. For the third level, the data 

were combined by years, where four sites per year were combined separately, resulting in two 

datasets. Finally, the data from all eight site-years were combined. The results of the three 

criteria used to establish the best model by year, by location, combined by location, and for the 

fully combined data are noted in Table 1.5. 

The Brooksville site in 2020 was described by the quadratic plateau model, with an 

AONR of 134 kg ha−1 at a maximum yield of 9.8 Mg ha−1 (Figure 1.2a). In 2021, the Brooksville 

site’s relationship changed and was quadratic, with an AONR of 205 kg ha−1 at a maximum yield 

of 10.5 Mg ha−1 (Figure 1.2e). The Starkville site in 2020 showed a similar relationship for both 

the quadratic and quadratic plateau model, with an AONR of 252 kg ha−1 at a maximum yield of 

12.6 Mg ha−1 (Figure 1.2b). In 2021, the relationship was quadratic at Starkville and had the best 

fit at an AONR of 251 kg ha−1 at a maximum yield of 11.2 Mg ha−1 (Figure 1.2f). At Stoneville 

in 2020, the quadratic plateau model best described the yields, plateauing at an AONR of 194 kg 

ha−1, resulting in a maximum yield of 10.9 Mg ha−1 (Figure 1.2c). In 2021, the relationship was 

quadratic when yield decreased beyond an AONR of 228 kg ha−1 after reaching a maximum 

yield of 10.0 Mg ha−1 (Figure 1.2g). In 2020, Verona had a linear relationship for yield as N 

application increased, never reaching a plateau (Figure 1.2d). However, in 2021, the relationship 

between yield and fertilizer N was quadratic and the yield plateaued at 11.9 Mg ha−1, with an 

AONR of 192 kg ha−1 (Figure 1.2h). 

When we combined the Brooksville location data over both years, the location was best 

fitted by the linear plateau model, with an AONR of 134 kg ha−1 at a maximum yield of 10.1 Mg 

ha−1 (Figure 1.3a). For the combined Starkville data, the best fitting model was also the linear 
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plateau model, with an AONR of 156 kg ha−1 at a maximum yield of 11.5 Mg ha−1 (Figure 1.3b). 

The Stoneville combined data were best fitted with the quadratic model with an AONR of 201 kg 

ha−1 at a maximum yield of 10.5 Mg ha−1 (Figure 1.3c). Lastly, the combined Verona data were 

best fitted by both the quadratic and the quadratic plateau models, with an AONR of 301 kg ha−1 

at a maximum yield of 10.0 Mg ha−1 (Figure 1.3d). 

The combined data for all locations in both years were best fitted by the quadratic model, 

with an AONR of 237 kg ha−1 at a maximum yield of 10.5 Mg ha−1 (Figure 1.4a). When the 

years were separated the 2020 data for all locations was again best fitted by the quadratic model, 

with an AONR of 265 kg ha−1 at a maximum yield of 10.2 Mg ha−1 (Figure 1.4b). Alternatively, 

the linear plateau model best represented the 2021 data for all locations, with an AONR of 

144 kg ha−1 at a maximum yield of 10.7 Mg ha−1 (Figure 1.4c). Irrigated and non-irrigated sites 

were combined to mimic the lack of differentiation between the two conditions by the CYG 

method, which does not account for the effect of weather, soil conditions, irrigation, etc. 

In 12 of the 14 possible comparisons between CYG and AONR, the CYG-recommended 

rate exceeded the AONR. The excess in the recommended rate was exacerbated when the CYG 

rate was compared with the EONR, which, when averaged across all levels, recommended 

approximately 12% less N than the AONR (Figures 1.2–4). When the data were separated by 

location and year, substantial variations were observed between the AONR and the CYG rates. 

In Brooksville in 2020, the CYG rate was 93 kg ha−1 greater than the AONR. This declined to a 

38 kg ha−1 difference in 2021. In 2020, Starkville’s CYG rate was 40 kg ha−1 greater than the 

AONR, decreasing to a 9 kg ha−1 difference in 2021. Stoneville’s CYG rate in 2020 was 59 kg 

ha−1 greater than the AONR, reducing to a 4 kg ha−1 difference in 2021. In contrast to 2020, 
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when a plateau was never achieved and the AONR was not calculable, the CYG rate was 84 kg 

ha−1 greater than the AONR in Verona in 2021. For the combined Brooksville data, the CYG rate 

was 100 kg ha−1 greater than the AONR. Similar to Brooksville, the combined Starkville CYG 

rate was 110 kg ha−1 greater than the AONR. The CYG rate of combined data of Stoneville was 

42 kg ha−1 compared with the corresponding AONR. In contrast to the other three locations, the 

CYG rate of the combined data of Verona was 69 kg ha−1 less than the AONR. In 2020, the CYG 

rate was 29 kg ha−1 less than the AONR. This contrasts with 2021, when the CYG rate was 

104 kg ha−1 greater than the AONR. When we examined the fully combined data, the CYG 

method recommended a higher fertilizer N rate than the AONR by 6 kg ha−1 (Figure 1.5). 

1.5 Discussion 

The variance observed among sites in this experiment are similar to studies within similar 

regions (Scharf et al., 2005), as well as those in dissimilar regions and across longer time periods 

(Dhital & Raun, 2016). Differences in variation were omitted when the data were combined by 

year or completely. The variation in individual site years was overlooked when estimating an 

average response curve with pooled data. 

Extensive differences were observed in AONR among the models, particularly when we 

compared the rates recommended by the linear plateau model with the other models (Table 1.5). 

The widespread differences raise the question as to what degree the model recommendations 

should be based on statistical rather than agronomic thresholds, considering that the yields at 

AONR are similar. The lack of a single model with the best fit across all data (Table 1.5) 

indicates that a single model cannot be assumed for determining the AONR and EONR. The 

quadratic plateau model is the most commonly used (Bullock & Bullock, 1994; Cerrato & 
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Blackmer, 1990; Lindsey et al., 2015; Scharf et al., 2005), and our experiment validates this 

choice. Although the quadratic plateau model may accurately explain the data, there is the 

disadvantage of possibly over-recommending N, as models such as the linear plateau 

recommended lower N without any yield differences. Observed differences that may have led to 

AONR and EONR variations include the above-average precipitation during the second N 

application (Tremblay et al., 2012)(Table 1.4) as well as the different soil characteristics among 

the sites (Camberrato & Nielsen, 2014)(Tables 1.1 and 1.3). Only limited variability may be 

adequately accounted for by the CYG-based recommendation, thus highlighting the inadequacy 

of using the CYG method for fertilizer N recommendations in Mississippi (Figure 1.5). The 

results of this study suggest that locations should be individually examined for fertilizer N 

recommendations, as failure to practice site-specific management may lead to an over- or under-

application of fertilizer N (Raun et al., 2017). Ransom et al. (2020) compared 31 corn N 

recommendation tools and tested them across a wide geographic area and found only 10 to be 

weakly reliable, with CYG methods incurring the highest environmental costs. Despite some 

states transitioning to alternate nutrient management strategies, such as a maximum return to N 

approach, no one tool can deliver an optimum N across all areas (Ransom et al., 2020). Strategies 

incorporating location-specific models that can account for the plants’ morphological features, 

vegetation indices, and climatological data might lead to improved N rate recommendations in 

Mississippi (Raun et al., 2019; Dhillon et al., 2020). 

1.6 Conclusion 

This research elucidated the prevalence of temporal and spatial variability resulting from 

sources such as weather volatility and diverse soil characteristics, which will, in turn require 
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dynamic N recommendations. Despite its highly normalized deployment and practice, the CYG 

method cannot account for site variability and is inadequate for providing accurate fertilizer N 

recommendations. In the future, methods that can account for in-season conditions and 

subsequently create a fertilizer rate that is specific to highly variable conditions may improve 

fertilizer N management in Mississippi. If the CYG system continues to be used, over-

application of fertilizer N may continue to worsen the current environmental and economic 

concerns.
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Table 1.1 Location, soil series, and taxonomic class of the Brooksville, Starkville, Stoneville, 

and Verona research locations in 2020 and 2021 

Location Coordinates Year Soil series Taxonomic class 

Brooksville 33°15′23.843″ N 

88°33′26.208″ W 

2020 Brooksville silty clay Fine, smectitic, thermic Aquic 

Hapluderts 

33°15′33.307″ N 

88°32′22.927″ W 

2021 Okolona silty clay Fine, smectitic, thermic Oxyaquic 

Hapluderts 

Starkville 33°28′44.573″N 

88°47′15.382″ W 

2020 Leeper silty clay loam Fine, smectitic, nonacid, thermic 

Vertic Epiaquepts 

33°28′42.150″ N 

88°47′13.146″ W 

2021 Catalpa silty clay loam Fine, smectitic, thermic Fluvaquentic 

Hapludolls 

Stoneville 33°25′37.333″ N 

90°57′24.599″ W  

2020 Bosket very fine sandy 

loam 

Fine-loamy, mixed, active, thermic 

Mollic Hapludalfs 

33°25′39.313″ N 

90°54′35.320″ W 

2021 Bosket very fine sandy 

loam 

Fine-loamy, mixed, active, thermic 

Mollic Hapludalfs 

Verona 34°09′53.330″ N 

88°44′30.714″ W 

2020 Catalpa silty clay loam Fine, smectitic, thermic Fluvaquentic 

Hapludolls 

34°10′05.135″ N 

88°44′29.306″ W 

2021 Tuscumbia silty clay loam Fine, mixed, active, nonacid, thermic 

Vertic Epiaquepts 
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Table 1.2 Treatments, first and second application rates, and total nitrogen (N) rate applied at 

Brooksville, Starkville, Stoneville, and Verona, MS, in 2020 and 2021 

Treatment 
2020 2021 

 Application 1 Application 2 Total N rate Application 1 Application 2 Total N rate 

 —kg N ha−1— 

1 0 0 0 0 0 0 

2 45 0 45 90 0 90 

3 45 35 80 45 45 90 

4 90 0 90 135 0 135 

5 45 70 115 45 90 135 

6 135 0 135 180 0 180 

7 45 100 145 45 135 180 

8 180 0 180 225 0 225 

9 45 135 180 45 180 225 

10 45 170 215 270 0 270 

11 225 0 225 45 225 270 

12 45 200 245 – – – 
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Table 1.3 Phosphorus, K, and Mg soil test results and soil pH at 0 to 15 cm for Brooksville, 

Starkville, Stoneville, and Verona in 2020 and 2021 before nutrient amendments 

Location Year P K Mg pH 

  —kg ha−1—  

Brooksville 2020 59 237 74 6.7 

2021 18 268 189 6.6 

Starkville 2020 129 294 105 8.3 

2021 151 268 166 8.2 

Stoneville 2020 26 233 453 6.4 

2021 82 286 851 6.3 

Verona 2020 79 301 115 6.5 

2021 66 228 168 8.1 
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Table 1.4 Average temperature and precipitation in 2020 and 2021 per month compared with 

the 30-yr average for Noxubee (Brooksville), Oktibbeha (Starkville), Washington 

(Stoneville), and Lee (Verona) Counties 

Month Location 30-yr average 2020 2021 

Temp. Precip. Average 

temp. 

Total 

precip. 

Average 

temp. 

Total 

precip. 

  °C cm °C cm °C cm 

Mar. 

Brooksville 13.2 13.3 17.6 18.6 14.9 20.1 

Starkville 12.9 13.5 16.6 21.2 14.8 21.5 

Stoneville 13.3 13.6 16.2 19.9 15.6 20.6 

Verona 12 13.4 15.7 16.1 14.6 21.1 

Apr. 

Brooksville 17.3 14 16.2 25 16.4 14.2 

Starkville 17 14.4 15.6 20.2 15.6 12.2 

Stoneville 18 14.6 17.4 17.7 16.7 10.5 

Verona 16.5 14.2 15.1 16 15.3 13.6 

May 

Brooksville 21.9 9.8 20.6 10.8 20.9 10.2 

Starkville 21.7 11.1 20.3 8 20.3 9.6 

Stoneville 22.7 12.3 21.9 5.6 21.5 9.2 

Verona 21.2 13.4 19.8 12.2 19.9 11.5 

June 

Brooksville 25.8 10.5 25.4 15.5 25.3 30 

Starkville 25.6 10.7 25.4 13.1 25.1 32.3 

Stoneville 26.5 9.8 26.1 13.4 25.9 20.2 

Verona 25.2 11.9 25 14.5 24.9 34.2 

July 

Brooksville 27.3 11.3 27.9 14 26.6 18 

Starkville 27.1 11.6 27.9 13.3 26.7 18.5 

Stoneville 27.9 10.2 28.5 12.4 27.7 12.6 

Verona 26.8 11.1 27.6 10.4 26.5 15.8 

Aug. Brooksville 26.9 10.3 26.8 10.4 27.1 21 

Starkville 26.8 10 26.2 8.5 27.1 21.4 

Stoneville 27.5 8.9 26.8 10.8 27.5 13.2 

Verona 26.5 9.8 25.8 16.4 27.2 16.5 

Sept. Brooksville 24.1 9.3 23.7 6.4 23.6 12.4 

Starkville 23.9 9.7 23.3 6.9 23.9 8.6 

Stoneville 24.6 8.1 24.2 13.1 24.4 6.6 

Verona 23.4 9.4 22.8 9.6 23.7 6.1 
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Table 1.5 Year, location, model, R2, Akaike information criterion (AIC), RMSE, crop yield 

goal (CYG) rate, economically optimum nitrogen rate (EONR), agronomic optimal 

nitrogen rate (AONR), and yield at AONR (YAONR) for all possible models 

Location Year Model R2 AIC RMSE CYG 

rate 

EONR AONR YAONR 

      —kg N ha−1— Mg ha−1 

Brooksville 

2020 

Linear .56 137.77 0.95 – – – – 

Quadratic .75 113.71 0.73 234 163 192 10.1 

Linear 

plateau 

.79 104.98 0.66 227 97 97 9.8 

Quadratic 

plateau 

.80 103.32 0.65 227 120 134 9.8 

2021 
Linear .24 207.62 2.67 – – – – 

Quadratic .37 201.89 2.43 243 183 205 10.5 

Starkville 

2020 

Linear .83 155.72 1.15 – – – – 

Quadratic .90 131.35 0.87 292 228 252 12.6 

Quadratic 

plateau 

.90 131.35 0.87 292 228 252 12.6 

2021 

Linear .59 161.39 1.47 – – – – 

Quadratic .69 151.12 1.28 260 218 251 11.2 

Linear 

plateau 

.69 151.82 1.28 257 168 167 11.1 

Stoneville  

2020 

Linear .38 133.09 0.91 – – – – 

Quadratic .47 127 0.84 255 150 201 11 

Quadratic 

plateau 

.47 126.98 0.84 253 146 194 10.9 

2021 

Linear .51 159.37 1.38 – – – – 

Quadratic .65 146.15 1.16 232 196 228 10 

Linear 

plateau 

.62 149.30 1.21 227 147 147 9.8 

Verona 

2020 Linear .86 123.96 0.83 – – – – 

2021 

Linear .17 140.91 1.31 – – – – 

Quadratic .54 119.14 0.97 276 171 192 11.9 

Linear 

plateau 

.53 120.41 0.98 264 105 105 11.4 

Brooksville All 

Linear .30 382.97 1.96 – – – – 

Quadratic .42 367.12 1.78 239 175 200 10.3 

Linear 

plateau 

.44 364.68 1.76 234 134 134 10.1 

Starkville All 

Linear .67 335.77 1.48 – – – – 

Quadratic .79 297.62 1.19 271 212 236 11.7 

Linear 

plateau 

.79 295.85 1.18 266 157 156 11.5 

Quadratic 

plateau 

.78 298.57 1.19 273 216 242 11.8 
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Table 1.5 (continued) 

Location Year Model R2 AIC RMSE CYG 

rate 

EONR AONR YAONR 

Stoneville All 

Linear .27 342.38 1.51 – – – – 

Quadratic .39 328.15 1.38 243 165 201 10.5 

Linear 

plateau 

.36 332.86 1.41 239 141 141 10.3 

Verona All 

Linear .34 451.20 3.04 – – – – 

Quadratic .36 450.12 2.98 232 265 301 10 

Quadratic 

plateau 

.36 450.12 2.98 232 265 301 10 

All 2020 
Linear .27 921.37 2.62 – – – – 

Quadratic .29 918.22 2.59 236 222 265 10.2 

All 2021 

Linear .34 713.98 1.97 – – – – 

Quadratic .49 671.95 1.73 253 189 214 10.9 

Linear 

plateau 

.49 670.61 1.72 248 145 144 10.7 

All All 

Linear .31 1,651.26 2.36 – – – – 

Quadratic .36 1,623.16 2.27 243 205 237 10.5 

Linear 

plateau 

.36 1,623.91 2.27 239 156 156 10.3 

Notes. The best fitting model for all data combined, both years combined, sites combined by year, and individual 

sites is shown in bold. A dash indicates the value is incalculable. 

a CYG was calculated as 10.1 Mg ha−1 = 
10.1 1,000

62.77


 = 161 bu acre−1; 161 × 1.3 = 209.17 lb N acre−1; 209 × 

1.12 = 234 kg N ha−1. Conversions: 1Mg = 1,000 kg, 1 bu acre−1 = 62.77 kg ha−1, 1 lb acre−1 = 1.12 kg ha−1. 
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Figure 1.1  Locations of four experimental sites within the state of Mississippi: Brooksville 

(blue), Starkville (red), Stoneville (green), and Verona (yellow) 
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Figure 1.2 The effect of the total N application rate on grain yield in 2020 and 2021 by site 

for (a) 2020 in Brooksville, (b) 2020 in Starkville, (c) 2020 in Stoneville, (d) 2020 

in Verona, (e) 2021 in Brooksville, (f) 2021 in Starkville, (g) 2021 in Stoneville, 

and (h) 2021 in Verona. Black dots indicate yield at each fertilizer nitrogen (N) 

application rate, the agronomic optimum nitrogen rate (AONR) is represented by 

the maroon dot, and the economic optimum nitrogen rate (EONR) is represented 

by the green square 
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Figure 1.3 The effect of total nitrogen application rate on grain yield in 2020 and 2021 for the 

sites combined over both years for (a) Brooksville, (b) Starkville, (c) Stoneville, 

and (d) Verona. The goodness of fit is indicated by the coefficient of determination 

(R2) in blue. Black dots indicate the yield at each N rate, the agronomic optimum 

nitrogen rate (AONR) is represented by the maroon dot, and the economic 

optimum nitrogen rate (EONR) is represented by the green square 
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Figure 1.4 The effect of total nitrogen application rate on grain yield for (a) the fully 

combined data, (b) 2020 data, and (c) 2021 data. The goodness of fit was indicated 

by the coefficient of determination (R2) in blue. Black dots indicate yield at each N 

rate, the agronomic optimum nitrogen rate (AONR) is represented by the maroon 

dot, and the economic optimum nitrogen rate (EONR) is represented by the green 

square 
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Figure 1.5 A comparison of the agronomically optimum nitrogen rate (AONR) versus the 

crop yield goal (CYG) rate for all data combined, both years combined, sites 

combined by year, and individual sites
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CHAPTER II 

PREDICTING IN-SEASON MAIZE GRAIN YIELD USING OPTICAL SENSORS 

Article published in Agronomy: Oglesby, C., Fox, A.A.A., Singh, G., Dhillon, J. Predicting  in‐

season corn grain yield using optical sensors. Agronomy 2022, 12, 2402. 

https://doi.org/10.3390/agronomy12102402 

2.1 Abstract 

In-season sensing can account for field variability and improve nitrogen (N) 

management, however, opportunities exist for further refinement. The purpose of this study was 

to compare different  sensors and vegetation indices (VIs) (normalized difference vegetation 

index (NDVI); normalized difference red edge (NDRE); Simplified Canopy Chlorophyll Content 

Index (SCCCI)) at various corn stages to predict in-season yield potential. Additionally, different 

methods of yield prediction were evaluated where the final yield was regressed against raw or % 

reflectance VIs, relative VIs, and in-season yield estimates (INSEY, VI divided by growing 

degree days). Field experiments at eight-site years were established in Mississippi. Crop 

reflectance data were collected using an at-leaf SPAD sensor, two proximal sensors: 

GreenSeeker and Crop Circle, and a small unmanned aerial system (sUAS) equipped with a 

MicaSense sensor. Overall, relative VI measurements were superior for grain yield prediction. 

MicaSense best predicted yield at the VT-R1 stages (R2 = 0.78-0.83), Crop Circle and SPAD at 

VT (R2 = 0.57 and 0.49), and GreenSeeker at V10 (R2 = 0.52). When VIs were compared, 

SCCCI (R2 = 0.40-0.49) outperformed other VIs in terms of yield prediction. Overall, the best 
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grain yield prediction was achieved using the MicaSense derived SCCCI at the VT-R1 growth 

stages. 

2.2 Introduction 

Nitrogen application has increased crop yields by 30-50% (Stewart et al., 2005), 

promoting economic development, and supporting a larger population (Foley et al., 2011). 

Currently, most of the N fertilizer consumed in the US is used for corn production. Only half of 

the N applied is recovered with rest lost to the environment and causing agricultural N pollution 

(Raun & Johnson, 1999). One of the reasons for low N recovery is the use of suboptimal 

methods such as yield goals for N recommendation (Raun et al., 2017; Rodriguez et al., 2019). 

Moreover, Mississippi State also recommends the crop yield goal (CYG) method for N rate 

recommendation (Morris et al., 2018), which was proven ineffective in Mississippi for 

accounting the spatial and temporal variabilities necessary to minimize misapplication (Oglesby 

et al., 2022).  

One proposed alternative to CYG based N management is non-destructive canopy 

reflectance sensing (Raun et al., 2001). Nitrogen is important for many significant processes 

within the plants. It is required in large quantities compared to other nutrients, and its deficiency 

is reflected in chemical or physical properties of plants (Morris et al., 2018). Crop canopy 

sensors accurately account for N deficiencies as it results in lower chlorophyll content and 

greenness of plants. Furthermore, various vegetation indices (VIs) were developed based on 

differences in crop reflectance to characterize spatial and temporal N variability. 

Consistently, in-season sensing has demonstrated the capability to provide an 

environmentally distinct N rate that can account for temporal and spatial variability (Ali & 

Thind, 2015; Dhillon et al., 2020; Dhital & Raun, 2016). The development of a nutrient 
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management strategy grounded in sensor technology is contingent upon the ability to predict in-

season yield potential using an algorithm created from on-site observations (Bushong et al., 

2018; Dhillon et al., 2020; Raun et al., 2017). The calculation of in-season yield potential is 

enabled by the ability to distinguish differences in crop N uptake by using distinctions in 

vegetation indices (VI) as a proxy for crop N uptake differences (Raun et al., 2002).The 

algorithm is created by computing a regression analysis between actual yield and a predictor 

such as raw or % reflectance corrected VI values, or in-season estimated yield (INSEY) 

expressed as a VI (such as the normalized difference vegetation index (NDVI) divided by 

growing degree days (GDD)), with a more robust data set generally improving yield prediction. 

Recently, Paiao et al. (2020) introduced relative VIs for comparison, where these values were 

calculated by dividing VI from each plot by VI from the highest N rate treatment. Specifically, 

when INSEY is used the predicted in-season yield potential is multiplied by a response index 

(RI), created from an N-rich strip as a proxy for unlimited N supply, to calculate whether yield 

may be improved by the addition of N. Finally, an N rate prescription is created specific to that 

site to match crop N demand (Raun et al., 2002).  

2.2.1 Sensor-based Datasets and Corn Correlations 

Accurate in-season yield prediction is dependent upon a range of factors including corn 

growth stage, VI, and sensor. Corn growth stages are generally divided into vegetative and 

reproductive stages, where V1 denotes 1-leaf stage until tasseling which is designated as VT. 

Similarly, R stages are designated as R1 based on corn kernel development and ends at R6 with a 

mature harvest ready crop (Ritchie et al., 1986). Martin et al. (2007) observed that NDVI was 

most correlated to corn grain yields at the V7 to V9 growth stages. Similarly, Tagarakis and 

Ketterings (2017) observed V7 as the most effective stage for grain yield prediction. Different 
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sensors have also been compared, with Sharma et al. (2016) revealing no significant differences 

between the Crop Circle™ ACS-430 (Holland Scientific, Lincoln, Nebraska, USA) and 

GreenSeekerTM (Trimble Inc., Sunnyvale, California, USA) sensors when predicting yield using 

an NDVI-derived INSEY approach at the V6 stage.  

Furthermore, the accuracy of in-season yield potential prediction is conditional upon the 

strength of the relationship between final grain yield and an in-season crop indicator. An INSEY-

based prediction model is predominantly used and recommended. Tagarakis and Ketterings 

(2017) used an INSEY-based model, with the INSEY-derived model exhibiting superior 

capabilities for grain yield prediction. Paiao et al. (2020) compared Soil Plant Analysis 

Development (SPADTM) (Konica Minolta, Inc., Japan), NDVI, relative NDVI, normalized 

difference red edge (NDRE), and relative NDRE with the relative NDRE demonstrating the 

greatest capability for grain yield estimation.  

The relationship between INSEY and yield improved when NDRE was utilized due to the 

red edge wavelength being less influenced by saturation effects at later growth stages (Paiao et 

al., 2020). There is also evidence that the simplified canopy chlorophyll content index (SCCCI), 

which incorporates both NDVI and NDRE, is better for grain yield prediction versus NDVI or 

NDRE (Barzin et al., 2020; Parker, 2022; Sumner et al., 2021) . 

Considering the intertwining factors influencing in-season yield prediction, the purpose 

of this study was to assess the applicability of sensor-based N management comprehensively. N 

management assessment was accomplished by analyzing the ability to predict yield potential 

using various sensors and VIs at multiple growth stages. The most competent method for 

utilizing VI data for grain yield prediction was also evaluated. The ultimate goal of this study is 

to use drawn conclusions to create an algorithm capable of accurately predicting N needs in 
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Mississippi similar to those created for other regions (Dhillon et al., 2020; Tagarakis & 

Ketterings, 2017).  

2.3 Materials and Methods 

The research was conducted in 2020 and 2021 at four locations across Mississippi: a) 

Black Belt Experiment Station, in Noxubee County at Brooksville, b) R. R. Foil Plant Science 

Research Center, in Oktibbeha County at Starkville, c) Delta Research Extension Center, in 

Washington County at Stoneville d) Northeast Mississippi Branch Experiment Station, in Lee 

County at Verona. In both years soil sample data were collected on a per replication basis at all 

locations. 16 cores were collected per replication at a 15 cm depth. Fertility for each location was 

modified according to Mississippi State University recommendations based on soil test results 

(Table 2.1). 

The experiment employed a randomized complete block design with four replications. In 

2020, the experiment consisted of 12 treatments including a 0-N control, and in 2021, 11 

treatments including a 0-N control. Treatment structure details are located in Table 2.2. Both N 

applications utilized 32% urea ammonium nitrate (UAN) solution knifed into the soil using a 

four-row liquid fertilizer applicator. In 2020, corn harvest occurred between September 3rd and 

September 17th. In 2021, harvest began August 24th and completed September 14th. The middle 

two rows of each treatment were combine harvested then the yield data was adjusted to 15.5% 

moisture level. 

The V stage was identified each time staging was executed by the number of visible leaf 

collars on a random selection of three corn plants within the field. At later stages where the 

earliest collars had diminished, three plants were bisected, and nodes counted to gain an 
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indication of V stage. The R1 stage was identified by the presence of visible silks and the R5 

stage by denting on a majority of corn kernels.  

2.3.1 Sensor Technologies 

The center two rows of each plot were used for data collection. The sensors utilized in 

this study included the GreenSeeker hand-held, Crop Circle ACS-430, SPAD, and MicaSense™ 

MX RedEdge (MicaSense Inc., Seattle, WA, USA) sensors. The wavelengths measured by each 

sensor are noted in Table 2.3. The GreenSeeker sensor utilizes two bands, a 656 nm red band and 

a 774 nm NIR band, which can be used to calculate NDVI (Whelan, 2015). The Crop Circle 

sensor employs three bands, a 670 nm red band, a 730 nm red edge band, and a 780 nm near-

infrared (NIR) band to calculate both the NDVI and NDRE (Whelan, 2015). The MicaSense 

camera utilizes five bands, a 668 nm red band, a 560 nm green band, a 475 nm blue band, an 840 

nm NIR band, and a 717 nm red edge band (Thomson et al., 2021). The band combinations can 

calculate, among other VIs, NDVI, NDRE, and SCCCI (Barzin et al., 2022). Consistent sensor 

deployment and/or timing was not executed in either year, with sensor heterogeneity and sensing 

frequency concentrated within the later stages, the 2020 year, the Crop Circle sensor, and the 

Brooksville and Starkville locations. 

Three SPAD measurements were sampled per plant on the corn leaf between the midrib 

and leaf margin and then averaged for three different plants for a total of three SPAD values per 

treatment. This averaged number was not further modified except for transformations to an 

INSEY and relative value in the relevant VI comparisons. In both years, SPAD measurements 

were collected during the VT and R1 growth stages.  

In 2020 and 2021, remote and proximal sensing was conducted from the V4 to R5 growth 

stages, with measurements primarily taken within the V6 to VT growth stages. Proximal sensing 
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measurements were parallel to the canopy at a 0.5 m from the canopy. The remote sensing sensor 

was mounted on a 650 mm class X-frame small unmanned aerial system (sUAS). Flight creation 

and implementation were completed using ArduPilot® Mission Planner®  (Mission Planner, 

2021). Flights were conducted during solar noon at 60 m above the canopy and speed of 7.6 m s-

1. Overlap and sidelap were set to 75% and overshoot and lead in 15 m. All images were 1280 x 

960 pixels at a 16-bit resolution. Camera specifications included a 47.2° horizontal field of view 

(HFOV) and a 35.4° vertical field of view (VFOV). Reflectance panel imagery was taken before 

and after each flight for absolute reflectance referencing. 

2.3.2 Data Processing 

Data from the Crop Circle and GreenSeeker sensors was averaged in Microsoft® Office 

Excel to create a single data point per treatment per growth stage. Post-flight image processing 

was conducted using the Ag Multispectral workflow in Pix4DMapper® (Pix4Dmapper, 2021) to 

create image mosaics. Pixels were converted to % reflectance using the reflectance panel 

imagery at a reflectance value of 0.98. The purpose of this was to compensate for varying light 

conditions so that the image mosaics would be comparable across space and time. Raw Crop 

Circle, GreenSeeker, and SPAD values were not converted to % reflectance. VI data extraction 

was completed within QGIS® Desktop 3.16.6 with GRASS 7.8.5 (QGIS Development Team, 

2021), ArcGIS® Desktop 10.8.1 (ESRI, 2021), and R® version 4.0.2 (R Core Team, 2021) with 

only the center two rows extracted and subsequently used for VI calculations. 

2.3.3 Vegetation Indices 

Indices including NDVI, NDRE, and SCCCI were calculated for each sensor. Table 2.4 

displays the VI calculations calculated for each sensor. 



 

31 

2.3.4 Calculations and Statistics 

Three methods were utilized for the best means of sensor-based yield prediction. 

Regression analysis with grain yield included comparisons with raw or % reflectance corrected 

VI values (Frels et al., 2018), an INSEY based comparison (Raun et al., 2002), and relative VI 

values (Paiao et al., 2020) for all sensors. The INSEY was calculated as VI divided by growing 

degree days (GDD), consisting of the sum of the number of days from sowing to sensing with an 

average temperature above 10 ◦C (Raun et al., 2002). Similarly, relative VI values were 

calculated by dividing the sensor reading in each plot by the mean reading in the highest N rate 

treatment (Paiao et al., 2020). Comparisons of the three methods were completed across each VI 

sensor combination present within this study with the entire VI dataset utilized within this 

segment of comparison.  

Next, the VI with the greatest capability for yield prediction was evaluated. Only the 

MicaSense relative NDVI, NDRE, and SCCCI, and Crop Circle relative NDVI, NDRE, and 

SCCCI values were utilized in this comparison due to the capability of both sensors to calculate 

each VI evaluated within this study.  

After the VI to yield comparison, the most efficient sensor for yield prediction was 

evaluated. The SPAD, GreenSeeker, and Crop Circle sensors were compared at the VT stage. 

For the GreenSeeker and Crop Circle sensors, NDVI relative values were employed for 

comparison. VT was chosen due to being the most prominent stage for VI data collection. NDVI 

was used due to the commonality between sensors. The lack of VT data for every location in 

2021 led to 2021 data omission for the sensor comparison. There was an inadequate amount of 

MicaSense data to accurately make a yield prediction comparison to its counterparts.  
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Lastly, the optimum stage for yield prediction was assessed. All GreenSeeker, 

MicaSense, and Crop Circle sensor data, differentiated by stage, were utilized for comparison. 

As SCCCI was most correlated to yield, MicaSense and Crop Circle sensor’s relative SCCCI 

values were chosen for comparison. For the GreenSeeker sensor, relative NDVI was used. For 

the GreenSeeker sensor the V4, V6, V10, and VT stages, the Crop Circle sensor the V4, V6, V8, 

V10, and VT stages, and the MicaSense sensor the V6, V8, V10, VT, R1, and R5 stages were 

compared.  

Datapoints 2.5 standard deviations or greater were removed as outliers before analysis. 

Comparisons were gauged by goodness of fit through coefficient of determination (R2), Akaike 

Information Criterion (AIC), and Root Mean Square Error (RMSE). As this study should be 

considered a feasibility study, no independent validation of results was performed and will be 

completed in future research. 

2.4 Results 

2.4.1 Best method for sensor-based grain yield predictions 

All collected VI data was utilized in this segment of comparison. Best results for the Crop 

Circle and the MicaSense sensor are illustrated in Figure 2.1. Sensor-based yield prediction 

employed three different methods for grain yield prediction, including raw or % reflectance 

corrected VI values, INSEY, and relative VI values. With the SPAD sensor, the raw values were 

best at explaining grain yield variations with an R2 of 0.49, AIC of 1873, and RMSE of 1.945. 

Relative values were almost identical in yield prediction capabilities with an R2 of 0.48, AIC of 

1888, and RMSE of 1.976 (Table 2.5). For the GreenSeeker sensor, no method effectively 

predicted grain yield. The INSEY VI values were the most effective method, with a low R2 of 

0.11, AIC of 1941, and RMSE of 3.171 (Table 2.5). With the Crop Circle derived NDVI, the 
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INSEY method predicted yield with a low R2 of 0.07, AIC of 5602, and RMSE of 2.955. 

Furthermore, for Crop Circle, the relative NDRE yield prediction resulted in an R2 of 0.29, AIC 

of 5299, and RMSE of 2.582 (Figure 2.1C). Relative SCCCI was the best yield prediction 

method for the Crop Circle derived SCCCI, with an R2 of 0.40, AIC of 5109, and RMSE of 

2.371 (Table 2.5; Figure 2.1E). For the MicaSense sensor’s NDVI, relative values predicted yield 

with an R2 of 0.25, AIC of 1347, and RMSE of 1.941 (Figure 2.1B). NDRE’s yield prediction 

capabilities for the MicaSense sensor were maximized when relative values were used, with an 

R2 of 0.44, AIC of 1251, and RMSE 1.674. For SCCCI, relative values were also best for yield 

prediction, with an R2 of 0.49, AIC of 1227, and RMSE of 1.611 (Table 2.5; Figure 2.1F).  

2.4.2 Comparison of VIs for sensor-based yield prediction 

Total MicaSense and Crop Circle sensor data was utilized in this comparison segment. 

For the Crop Circle sensor, the relative SCCCI values were best for grain yield prediction, with 

an R2 of 0.40, AIC of 5109, and RMSE of 2.371 (Table 2.5; Figure 2.1E). Relative SCCCI was 

also best for yield prediction for the MicaSense sensor, with an R2 of 0.49, AIC of 1227, and 

RMSE of 1.611 (Table 2.5; Figure 2.1F). For the MicaSense sensor, the relative NDRE values 

provided a similar capability for grain yield prediction with an R2 of 0.44, AIC of 1251, and 

RMSE of 1.674 (Table 2.5; Figure 2.1D). For both the Crop Circle and MicaSense sensor, NDVI 

was the worst VI for grain yield prediction (Table 2.5).  

2.4.3 Comparison of Sensors for sensor-based yield prediction 

In this segment, the 2020 SPAD, GreenSeeker, and Crop Circle VT sensor data was 

compared. Between the SPAD, GreenSeeker, and Crop Circle sensors, the SPAD sensor was 

most effective for grain yield prediction when all sensors were compared, with an R2 of 0.53, 
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AIC of 647.3, and RMSE of 2.243 (Table 2.6; Figure 2.2A). The second most suitable sensor 

was the Crop Circle sensor with an R2 of 0.31, AIC of 701.6, and RMSE of 2.709 (Table 2.6; 

Figure 2.2C). The least effective sensor for grain yield prediction was the GreenSeeker sensor 

with an R2 of 0.24, AIC of 714.3, and RMSE of 2.831 (Table 2.6; Figure 2.2B).  

2.4.4 Comparison of growth stages for sensor-based yield prediction 

In this segment, total GreenSeeker, MicaSense, and Crop Circle sensor data, separated by 

stage, was compared. For the GreenSeeker sensor, the most effective stage for yield prediction 

was the V10 stage with an R2 of 0.52, AIC of 359.7, and RMSE of 1.527 (Table 2.7). The most 

suitable stage for yield prediction for the Crop Circle sensor was the VT stage with an R2 of 0.57, 

AIC of 1156, and RMSE of 1.916 (Table 2.7). For the MicaSense sensor, the superior stage for 

grain yield prediction within the vegetative stages was the VT stage with an R2 of 0.78, AIC of 

134.3, and RMSE of 1.075. When the reproductive stages are included, R1 was most suitable for 

grain yield prediction with an R2 of 0.83, AIC of 124.7, and RMSE of 0.962 (Table 2.7). 

2.5 Discussion 

As opposed to Tagarakis and Ketterings (2017), where GreenSeeker INSEY values were 

better suited for yield prediction, we found that was not the most common optimal method 

overall (Table 2.5). The insufficiency of the INSEY method may be derived from the consistent 

GDDs present within the corn growing season relative to crops such as winter annuals. Results 

also correspond to the findings of Paiao et al. (2020), with five of the eight sensor VI 

combinations best predicting yield when the relative VI method was utilized (Table 2.5). Akin to 

past studies, VIs that incorporated the red-edge wavelength were better predictors of grain yield, 

with SCCCI superior to either NDVI or NDRE (Barzin et al., 2020; Sumner et al., 2021)(Table 
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2.5). This greater prediction capability is possibly due to SCCCI, which integrates NDRE and 

NDVI, being responsive to variance in both biomass and chlorophyll (Sumner et al., 2021). 

While NDVI is the most common VI utilized in yield prediction, the improved relationship 

between relative SCCCI and yield necessitates further research into the capabilities of relative 

SCCCI-derived algorithms. For sensor comparison, results were similar to Sharma et al. (2016), 

with the Crop Circle and GreenSeeker sensors providing proximate prediction capability when 

NDVI is employed (Table 2.6). The sUAS driven MicaSense sensor has the greatest potential for 

commercial use due to its ability for rapid data collection relative to the other sensors.  

Considering this advantage, the significance of the proportion of sensor capability to 

applicability should be considered when the aim is for commercial employment. Also, the 

capability of an algorithm to accurately predict N requirements should be gauged when the data 

originates from a sensor type not utilized in its creation (Sumner et al., 2021). The study results 

are similar with findings from past studies that have analyzed the effect of stage, with VI to yield 

correlation strengthening as the season progresses (Martin et al., 2007; Tagarakis & Ketterings, 

2017). The improved correlation between yield and relative VI as the corn matures will need to 

be considered in algorithm creation due to the need for specialized equipment at later stages. In 

total, the combination that produced the highest correlation between VI and grain yield was the 

MicaSense sensor with relative SCCCI at the VT or R1 growth stages. 

Recently, Colaço et al. (2021) challenged the existing sensor-based N management 

strategies and inferred that encompassing multiple variables and using a non-mechanistic model 

would lead to a more accurate N rate. Furthermore, this paper is accentuating the need to account 

for VI methodology for algorithm creation in N management. By distinguishing the most 
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accurate VI, sensor, and stage, and considering the best method for VI data manipulation, a more 

robust algorithm can be created that could enhance N rate prescription capabilities 

2.6 Conclusion 

In this study, four sensors and three VIs across multiple growth stages were assessed. 

Distinctions in the capability for grain yield prediction were observed across the different VIs, 

sensors, and stages. Specifically, SCCCI and later growth stages were best able to predict grain 

yield. While the SPAD sensor was best suited for grain yield prediction, practicality should be 

considered when the ultimate goal for an algorithm is commercial employment. Additionally, 

this study evaluated and found significant variance when VI data methodology was examined. 

Variance derived from methodology differences highlights the pertinence of assessing VI 

methodology in future yield prediction modeling. By considering each factor, more accurate 

yield prediction algorithms may be derived that, sequentially, could provide better N prescription 

capabilities.
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Table 2.1 Phosphorus (P), potassium (K), and magnesium (Mg) soil test results in kg ha-1 

and soil pH 0 to 15 cm for Brooksville, Starkville, Stoneville, and Verona in 

2020 and 2021 before nutrient amendments 

Location Year P (kg ha-1) K (kg ha-1) Mg (kg ha-1) pH 

Brooksville 2020 59 237 74 6.7 

Brooksville 2021 18 268 189 6.6 

Starkville 2020 129 294 105 8.3 

Starkville 2021 151 268 166 8.2 

Stoneville 2020 26 233 453 6.4 

Stoneville 2021 82 286 851 6.3 

Verona 2020 79 301 115 6.5 

Verona 2021 66 228 168 8.1 

 

Table 2.2 Treatments, first and second application rates, and total N rate applied at 

Brooksville, Starkville, Stoneville, and Verona, MS in 2020 and 2021  

  2020 2021 

Treatment 
Application 1 

kg N ha-1 

Application 

2 

kg N ha-1 

Total N rate kg 

N ha-1 

Application 

1 

kg N ha-1 

Application 

2 

kg N ha-1 

Total N rate kg 

N ha-1 

1 0 0 0 0 0 0 

2 45 0 45 90 0 90 

3 45 35 80 45 45 90 

4 90 0 90 135 0 135 

5 45 70 115 45 90 135 

6 135 0 135 180 0 180 

7 45 100 145 45 135 180 

8 180 0 180 225 0 225 

9 45 135 180 45 180 225 

10 45 170 215 270 0 270 

11 225 0 225 45 225 270 

12 45 200 245 - - - 

 

Table 2.3 Sensor types with their respective sensed wavelengths 

Sensor Name Blue λ Green λ Red λ Red Edge λ NIR λ 

Crop Circle   670 730 780 

GreenSeeker   656  774 

MicaSense 475 560 668 717 840 

SPAD   650  940 
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Table 2.4 Vegetation indices used in the study table adapted from Fox (2015) 

Acronym Name Algorithm Reference 

NDVI Normalized Difference Vegetation Index (R840-R650)/(R840+R650) Rouse et al. (1973) 

NDRE Normalized Difference Red Edge (R780-R720)/(R780+R720) 
Barnes et al. (2000)  

Varco et al. (2013) 

SCCCI 
Simplified Canopy Chlorophyll Content 

Index 
NDRE/NDVI 

Barnes et al. (2000)  

Varco et al. (2013)  

Raper and Varco (2014) 

Fox (2015) 
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Table 2.5 Comparison in yield prediction between the raw or % reflectance corrected VI, 

INSEY, and relative VI values for the SPAD, GreenSeeker, Crop Circle, and 

MicaSense sensors. The best fit method based on R2, AIC, and RMSE for each 

VI by sensor is bolded 

Sensor Method n Y R2 P AIC RMSE 

SPAD 

SPAD 448 -1.39 + 0.236 X 0.49 <0.001 1873 1.945 

SPAD-INSEY 448 6.1 + 97.2 X 0.17 <0.001 2096 2.494 

rSPAD 448 -3.95 + 13.8 X 0.48 <0.001 1888 1.976 

GreenSeeker 

GS-NDVI 376 11.7 – 5.67 X 0.11 <0.001 1942 3.176 

GS-INSEY 376 3.75 + 6.61 x 103 X 0.11 <0.001 1941 3.171 

GS-rNDVI 376 0.259 + 8.03 X 0.08 <0.001 1954 3.228 

Crop Circle 

CC-NDVI 1118 9.1 – 0.786 X < 0.01 0.095 5681 3.062 

CC-INSEY 

(NDVI) 

1118 4.91 + 5.38 x 103 X 0.07 <0.001 5602 2.955 

CC-rNDVI 1118 1.18 + 7.74 X 0.07 <0.001 5607 2.962 

CC-NDRE 1118 7.84 + 2.95 X < 0.01 0.004 5675 3.054 

CC-INSEY 

(NDRE) 

1118 3.64 + 1.72 x 104 X 0.16 <0.001 5491 2.812 

CC-rNDRE 1118 -3.71 + 13.2 X 0.29 <0.001 5299 2.582 

CC-SCCCI 1118 -6.4 + 35.7 X 0.21 <0.001 5418 2.723 

CC-INSEY 

(SCCCI) 

1118 6.62 + 3.79 x 103 X 0.09 <0.001 5583 2.931 

CC-rSCCCI 1118 -17.1 + 26.5 X 0.40 <0.001 5109 2.371 

MicaSense 

MC-NDVI 322 3.93 + 7.1 X 0.11 <0.001 1404 2.120 

MC-INSEY 

(NDVI) 

322 7.37 + 3.27 x 103 X 0.06 <0.001 1421 2.178 

MC-rNDVI 322 -6.6 + 16.8 X 0.25 <0.001 1347 1.941 

MC-NDRE 322 4.05 + 10.9 X 0.24 <0.001 1354 1.962 

MC-INSEY 

(NDRE) 

322 7.09 + 5.62 x 103 X 0.11 <0.001 1402 2.114 

MC-rNDRE 322 -3.22 + 13.6 X 0.44 <0.001 1251 1.674 

MC-SCCCI 322 2.66 + 10.7 X 0.17 <0.001 1381 2.048 

MC-INSEY 

(SCCCI) 

322 8.22 + 2.33 x 103 X 0.04 <0.001 1428 2.202 

MC-rSCCCI 322 -14.6 + 24.9 X 0.49 <0.001 1227 1.611 
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Table 2.6 Sensor comparison between the relative VI values for the SPAD, GreenSeeker, 

and Crop Circle sensors. Data was collected at the VT stage from the 

Brooksville, Starkville, and Verona 2020 sites. The best fit sensor based on R2, 

AIC, and RMSE is bolded 

Sensor n Y R2 P AIC RMSE 

rSPAD 144 -6.31 + 15.6 X 0.53 <0.001 647.3 2.243 

GS-rNDVI 144 -31.4 + 40.2 X 0.24 <0.001 714.3 2.831 

CC-rNDVI 144 -35.9 + 45 X 0.31 <0.001 701.6 2.709 

 

Table 2.7 Stage comparison between the GreenSeeker, Crop Circle, and MicaSense 

sensors. The best fit stage based on R2, AIC, and RMSE is bolded 

Sensor Stage n y R2 P AIC RMSE 

GreenSeeker 

V4 88 8.77 + 1.89 X 0.05 0.029 300.6 1.291 

V6 48 8.89 + 1.6 X 0.07 0.074 152.5 1.113 

V10 96 -15.1 + 21 X 0.52 <0.001 359.7 1.527 

VT 144 -31.4 + 40.2 X 0.24 <0.001 714.3 2.831 

Crop Circle 

V4 275 -23.9 + 33.2 X 0.15 <0.001 1331 2.691 

V6 192 -32.2 + 42 X 0.46 <0.001 849.6 2.177 

V8 181 -3.64 + 13.5 X 0.27 <0.001 786.6 2.091 

V10 192 -25.3 + 34.6 X 0.56 <0.001 856.9 2.219 

VT 278 -16.1 + 25.9 X 0.57 <0.001 1156 1.916 

MicaSense 

V6 48 -45.7 + 54.9 X 0.43 <0.001 150.7 1.092 

V8 48 -60.4 + 72.7 X 0.67 <0.001 187.3 1.599 

V10 96 -23.2 + 33.8 X 0.5 <0.001 366.9 1.585 

VT 43 -19.7 + 30.1 X 0.78 <0.001 134.3 1.075 

R1 43 -14 + 24.1 X 0.83 <0.001 124.7 0.962 

R5 44 -7.2 + 17.5 X 0.54 <0.001 156 1.331 
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Figure 2.1 Grain yield vs. relative VI comparison when collected using Crop Circle and 

MicaSense sensors. Crop Circle relative VIs included NDVI (A), NDRE (C), 

SCCCI (E), whereas MicaSense relative VIs included NDVI (B), NDRE (D), and 

SCCCI (F). The number of datapoints for each equation are represented by n, the 

equation is represented by y, the coefficient of determination is represented by R2, 

the P-value by P, and the Akaike Information Criterion by AIC 
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Figure 2.2 Sensor comparison between the relative VI values for the SPAD (A), GreenSeeker 

(B), and Crop Circle sensors (C) at the VT stage. The population for each equation 

is represented by n, the equation is represented by y, the coefficient of 

determination is represented by R2, the P-value by P, and the Akaike Information 

Criterion by AIC
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