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This study aimed at evaluating the agreement of spaceborne Light Detection and Ranging (lidar) 

ICESat-2 canopy height with Airborne Laser Scanning (ALS) derived canopy height to inform 

about the performance of ICESat-2 canopy height metrics and understand its uncertainties and 

utilities. The agreement was assessed for different forest types, physiographic regions, a range of 

percent canopy cover, and diverse disturbance histories. Results of this study suggest that best 

agreements are found using strong beam data collected at night for canopy height retrieval using 

ICESat-2. The ICESat-2 showed great potential for estimating canopy heights, particularly in 

evergreen forests with high canopy cover. Statistical models were developed using fixed-effects 

and mixed-effects modeling approaches to predict ALS canopy height metrics using ICESat-2 

parameters and other attributes. Overall, ICESat-2 showed good agreement with ALS canopy 

height and showed its predictive ability to characterize canopy height. The outcome of this study 

will help the scientific community understand the capabilities and limitations of ICESat-2 canopy 

heights; the study also provides a new approach to obtain wall-to-wall ALS standard canopy height 

maps at landscape level.  
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CHAPTER I 

ACCURACY EVALUATION OF SPACEBORNE LIDAR (ICESAT-2) TREE HEIGHT 

PRODUCTS USING AIRBORNE LIDAR DERIVED TREE HEIGHT ESTIMATES  

1.1 Introduction 

Forests in Mississippi cover more than 65% of the state’s total land area (Morgan et al., 

2012). These forests provide a great deal of resources, ecosystem goods and services to local 

communities including timber production, biomass and carbon sequestration, regulation of 

temperature and rainfall, recreation, habitat for wildlife and soil protection (di Sacco et al., 

2021). The provisioning of ecosystem services from these forests are often affected by human 

intervention and natural disturbances. Forest managers often employ management operations, 

such as prescribed fire and thinning that modify the forest structure (Harrod et al., 2009). 

Additionally, unpredictable natural phenomenon such as windstorms, flooding, hurricanes, and 

severe wildfires alter forest structure (Seidl et al., 2011). In Mississippi, the frequently occurring 

hurricanes (Day et al., 2007), increasing trends in forest fire severity and occurrence (Grala et al., 

2017), and flooding severely impact the state’s forests (Oswalt, 2019). As a result, forest 

productivity and ecosystem services are negatively impacted. There is a need for robust 

evaluation of the patterns in forest structure caused by the disturbances and how these forest 

stands recover after disturbances.  

Forest structure is a three-dimensional characteristic of a forest describing the spatial 

arrangement of trees’ trunks, branches, and canopy heights in the forest (Tello et al., 2018). 
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Important forest structural attributes include tree height, diameter, basal area, stand density, 

canopy cover, and leaf area index (Guan et al., 2020). Quantifying forest structure is a critical 

step to understand aboveground biomass and carbon dynamics (Alves et al., 2010), as well as for 

other forest monitoring applications, such as growth modeling and fire risk assessment (van 

Leeuwen & Nieuwenhuis, 2010). To describe forest structure, structural heterogeneity in the 

horizontal and vertical dimensions need to be considered. The horizontal structure reflects size, 

density, and arrangement of stand whereas vertical structure accounts for tree height variability 

and vertical distribution of canopy (Tello et al., 2018). This study focused on the vertical 

structure of the forest, specifically tree height since it is one of the most important parameters for 

characterizing forest structure (Rödig et al., 2018). 

Traditionally forest structure characterization has been based on field-based inventory, 

and forest structure metrics have been derived based on the measurement of individual tree 

information, such as height, basal area, canopy dimensions, species composition, and/or stand 

density (Tello et al., 2018). The forest structure maps produced from large-scale field inventories 

become outdated quickly and are prone to error (Kayitakire et al., 2006). With the advent of 

remote sensing techniques, researchers have been able to precisely estimate forest structure more 

rapidly. Use of remote sensing techniques help alleviate time consuming and costly field work 

covering large areas, which may not be logistically feasible in all situations (Zahawi et al., 2015). 

Various studies have demonstrated the accuracy and reliability of measurements made using 

remote sensing techniques. For example, Rahimizadeh et al., (2020) estimated canopy gap by 

object-and pixel-based methods with 91% accuracy when compared with field-based inventory. 

Hyyppä et al., (2000) compared various data sources to estimate forest stand attributes and found 

that the remote sensing profiling instrument presented an equivalent accuracy to conventional 
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forest inventory with 𝑅2 of 0.77, 0.59, and 0.68 in estimating mean height, basal area, and stem 

volume respectively. Ma et al., (2017) used very-high-resolution (VHR) optical imagery to 

classify tree crown cover with 93% overall accuracy. However, optical methods suffer from 

saturation effects causing decreased sensitivity of the backscatter since electromagnetic 

radiations from the sun cannot penetrate the upper forest canopy directly (Chen et al., 2007). In 

recent years, remote sensing technologies such as waveform Light Detection and Ranging (lidar) 

and Synthetic Aperture Radar (SAR) have allowed the measurement of 3-D forest information. 

Researchers have used SAR (Tello et al., 2018), Terrestrial Laser Scanner (TLS) (Danson et al., 

2014), Airborne Laser Scanning (ALS) and a combination of ALS and multi spectral scanners 

(Manzanera et al., 2016) to characterize forest structure. Research has shown higher accuracy of 

lidar data for measuring forest structural parameters, such as tree height, compared to the 

estimates of ground-based surveys and other optical remote sensing methods (Akay et al., 2009).  

Lidar is a laser-based remote sensing technique that illuminates the target by emitting 

pulses of energy. The travel time of each laser pulse emitted from the sensor to the target 

provides the distance from the instrument to the target (Dubayah & Drake, 2000). This 

information is used to understand the overall characteristics and structure of the target, such as 

forest trees and terrain. Lidar can penetrate upper forest canopies and map undergrowth and 

ground data. Thus, lidar-based forest structure data and high-resolution Digital Elevation Models 

(DEMs) have been widely used in forest inventory, managing forest fires, planning forest 

operations, and measuring forest structures at landscape scales (Wulder et al., 2008). At local 

scales, traditional in-situ forest inventory methods measure forest structure precisely, while 

airborne and spaceborne lidar datasets provide an opportunity to scale local measurements to 

regional and even global scales (Wulder et al., 2012). 
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In forested ecosystems, wise management decisions are made by comprehensively 

considering variables such as forest composition and structure. Information on forest structure 

has been used to undertake various forest management operations such as clearcutting, thinning, 

soil preparation and weeding, as well as monitoring forest deforestation and degradation 

(Holmgren et al., 1996). The new lidar technology has the ability to characterize the forest 

structure by directly measuring canopy height, sub-canopy topography, and vertical distribution 

of intercepted surfaces between the top of the canopy and the ground surface (Dubayah & Drake, 

2000). Past studies that used lidar to estimate tree height have shown good results with Root-

Mean Squared Error (RMSE) values ranging from 17 to 19 centimeters (cm) in pavement, low 

grass, and evergreen forests and 26 cm in deciduous forests (Hodgson & Bresnahan, 2004). 

Although the application of lidar to ecological problems has shown promising results, current 

airborne lidar acquisitions remain prohibitively expensive for large scale monitoring projects and 

regional studies (Beland et al., 2019). 

Spaceborne lidar missions such as ICESat-2 (Ice, Cloud, and land Elevation Satellite) and 

GEDI (Global Ecosystem Dynamics Investigation) are capable of directly measuring canopy 

heights which could improve our understanding of forest structure at near global scale 

(Neuenschwander & Magruder, 2019). GEDI is the first spaceborne lidar instrument specifically 

optimized to measure vegetation structure and forms the basis of critical reference datasets. 

GEDI lidar observations are used to create data sets on canopy height, canopy cover and vertical 

profile, leaf area index and profile, topography, and footprint-level and gridded Above Ground 

Biomass Density (AGBD) within 51.5° latitude (Dubayah et al., 2020). On the other hand, 

ICESat-2 is the only space-based lidar system that collects data above 51.5° latitude. As such, 
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ICESat-2 data will provide a new opportunity to directly measure the height and distribution of 

forests at higher latitudes than GEDI.  

The ICESat-2 consists of three pairs of beams, each pair separated by about 3 kilometers 

(km) cross-track with a pair spacing of 90 meters (m). Each of the beams has a nominal 17 m 

diameter footprint with an along-track sampling interval of 0.7 m. The ICESat-2 ATL08 (Land 

and Vegetation Height) dataset contains the along-track terrain elevation and canopy heights 

(Neuenschwander et al., 2016). The ATL08 product is developed from ATL03 using 

DRAGANN (Differential, Regressive, and Gaussian Adaptive Nearest Neighbor), algorithm 

specifically designed for extracting terrain and canopy heights. It provides estimates of terrain 

and canopy height and canopy cover of a segment at every 100 m step size in the along-track 

direction (Neuenschwander et al., 2020). For the ICESat-2 ATL08 product, the terrain and 

canopy parameters are consecutively provided at a fixed step-size of 100 m along the ground 

track, referred to as a segment, and along track distance of 0.7 m. This ensures there are a 

sufficient number of photons to estimate terrain and canopy height (Liu et al., 2021).  

Current spaceborne lidar acquisitions from missions like ICESat-2 offer opportunities for 

mapping canopy height at regional scales, but the accuracies of these canopy height products 

have not been systematically evaluated over the southern USA, particularly in recently disturbed 

areas. Many airborne lidar datasets have been acquired over time under the USGS 3D Elevation 

Program (3DEP). They provide opportunities to build synergies for consistent and spatially 

complete characterization of vertical forest structures (Thatcher et al., 2020). Although 

spaceborne lidar like ICESat-2 has the advantage of large-area coverage over airborne lidar 

systems, it is still not certain that they can fully replace airborne lidar. Comparing height 

estimates from airborne and spaceborne lidar datasets in a variety of scenarios would help 
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validate the usefulness of spaceborne lidar data and provide information on the uncertainties, 

their scientific utility, and conditions for their reliability.  

While the ICESat-2's ATL08 product is increasingly utilized by researchers, validation of 

its canopy height data is still limited. Studies have assessed ICESat-2 terrain height and canopy 

height data over different regions. For example, Neuenschwander & Magruder, (2019) reported 

on ICESat-2 ATL08 product, with RMSEs of 0.85 m and 3.69 m for terrain and canopy height 

retrievals, respectively on forests of Finland. Liu et al., (2021) in assessing ICESat-2 canopy 

height using all data pairs, regardless of data acquisition time and beam intensity reported an 

RMSE values of 40.2% and 𝑅2 value of 0.61. Mulverhill et al., (2022) compared 95th percentile 

canopy heights derived from ICESat-2 with National Terrestrial Ecosystem Monitoring System 

(NTEMS) data and reported a RMSE of 4.87 m. These efforts to validate height estimates from 

the ICESat-2’s products have largely focused on a single biome or ecoregion (Neuenschwander 

et al., 2020), or assess terrain heights (Tian & Shan, 2021). Malambo & Popescu, (2021) 

conducted a study to assess canopy height over different biomes, however they did not focus on 

the disturbance history and forest types within the study area. Therefore, to inform the 

performance of ICESat-2 for characterizing the vertical structure of forests, there is a need to 

evaluate a variety of canopy height metrics over various vegetation types and disturbance 

histories. 

This study aims to evaluate the accuracy and uncertainties associated with estimating 

canopy heights from ICESat-2. Canopy height from ICESat-2 was validated using data from 

ALS across different physiographic regions and forest types in Mississippi. The disturbance 

maps from Vegetation Change Tracker (VCT) and LANDFIRE were used to identify the 

occurrence of the initial disturbance, its location, extent and frequency and the last occurrence of 
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disturbance between 1986 to 2016. This information was used to see how the spaceborne lidar 

determines the canopy height over previously disturbed areas as well as undisturbed areas. The 

findings presented in this research will provide information on the accuracy of the ICESat-2 

canopy height product and its accuracy over different scenarios. It demonstrates the value and 

potential of integrating diverse data sources for forest structure monitoring. Additionally, it will 

help to develop a model to map forest structure on multi-spatial and temporal scales.  

1.2 Objective 

The overall objective of this study was to compare spaceborne lidar tree height data with 

airborne lidar data over 27 counties of Mississippi. The specific objective was to evaluate the 

accuracy and uncertainties of ICESat-2 canopy height products using airborne lidar derived tree 

height estimates.  

1.3 Materials and methods 

1.3.1 Study area 

The study area covers 27 counties of Mississippi (Figure 1.1). The study area boundary 

map was obtained from Mississippi Automated Resource Information System (MARIS, 2022). 

Mississippi state encompasses about 125,460 km² with elevation ranging from 30 to 200 m 

above mean sea level. The mean annual temperatures range from 16 degrees Celsius (°C) to 

20°C and precipitation ranges from about 1270 to 1650 millimeters (mm) across the state from 

north to south (Department of Geosciences at Mississippi State University, 2022). Major tree 

species include loblolly pine (Pinus taeda), elm (Ulmus spp.), ash (Fraxinus spp.), cottonwood 

(Populus deltoides), oak (Quercus spp.), cypress (Cupressus spp.), sweetgum (Liquidambar 

styraciflua), black willow (Salix nigra), and hickory (Carya spp.) (Oswalt, 2019). 
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Figure 1.1 Map showing study area within Mississippi. The land use and land cover types are 

extracted from the National Land Cover Database (NLCD) 2019 (MRLC, 2022). 
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1.3.2 Dataset 

Lidar data from both airborne and spaceborne platforms were used in this study. The 

datasets used in this study were ICESat-2 ATL08 data, ALS data, National Land Cover Database 

(NLCD), and disturbance maps collected from VCT and LANDFIRE. These datasets were 

processed to examine the agreement between canopy height estimates from ICESat-2 and 

corresponding height estimates from ALS. Two approaches were used to compare the ALS 

canopy height with the ICESat-2. First, we compared ICESat-2 data with Canopy Height Model 

(CHM) derived canopy heights and second approach was to compare ICESat-2 data with ALS 

relative metrics i.e., ALS derived maximum height (ALS max) and ALS 99th percentile height 

(RH99). The overall flow of the study is shown in the Figure 1.2. 

 

Figure 1.2 Flowchart for assessing the agreement between ICESat-2 and ALS derived canopy 

height 
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1.3.3 ICESat-2 data acquisition and processing 

ICESat-2 ATL08 canopy height data collected between 2018 October to 2020 December 

was downloaded from the Earthdata Search website (https://search.earthdata.nasa.gov). ICESat-2 

carries the Advanced Topographic Laser Altimeter System (ATLAS), a single-photon sensitive 

lidar instrument that can detect individual photons reflected from vegetation canopy (Queinnec et 

al., 2021). It transmits three pairs of laser beams at a wavelength of 532 nm (green) and each pair 

of beams consists of a weak beam and a strong beam with a transmitted energy of approximately 

1:4 ratio transmitted at a rate of 10 kHz. ATLAS can record a transmitted laser pulse every 70 

cm from a nominal orbit altitude of 500 km and can detect up to approximately 10 signal photons 

per footprint over highly reflective surfaces such as ice and snow surfaces, and between 0 and 4 

signal photons over land and vegetation (Neuenschwander et al., 2016; Neuenschwander & 

Magruder, 2019). As a result, the amount of data captured is directly proportional to the 

difference in transmitted beam energy. In the case of vegetation, the level of penetration and 

subsequent characterization of the understory structure may be influenced by beam energy, 

atmospheric effects and noise levels. Another important factor for a photon-counting lidar 

system like ICESat-2 is acquisition time. When detected with ICESat-2's own transmitted laser 

pulse, similar green energy from solar radiation is highest during the day, resulting in higher 

levels of background noise for day acquisitions than for night acquisitions (Neuenschwander et 

al., 2020).  

This study used the Level-4 Land and Vegetation Height data product (ATL08), for the 

canopy heights above the WGS84 ellipsoid. The ATL08 data is characterized by each of the six 

ground tracks. Each ground track group on the ATL08 data product contains subgroups for land 

and canopy heights as well as for beam and reference parameters utilized in the ATL08 

https://search.earthdata.nasa.gov/
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processing. The ATL08 data provides along track terrain and canopy height metrics in 100 m 

segment including estimates like relative heights (RH or the height from the ground at which a 

certain quantile of energy is returned) of canopy and descriptive statistics of terrain elevation 

including mean, minimum, maximum, median, standard deviation, mode, and skewness of the 

terrain height within each 100 m step (Liu et al., 2021). All available version 4 ATL08 granules 

between October 2018 and December 2020 were downloaded. After spatial and data quality 

filtering of 337 HDF5 files, 1,057,848 sample segments were obtained over Mississippi 

containing valid measurements (Figure 1.3).  

ICESat-2 reports three canopy height metrics: h_max_canopy (maximum canopy height 

relative to the ground), h_canopy (RH98, 98% relative height) and canopy_h_metrics (height 

metrics based on the cumulative distribution of relative heights above the interpolated ground 

surface, calculated at 5% intervals for percentages 10-95). The most significant challenge to the 

ICESat-2 algorithm comes from the effect of solar background noise; thus, the data acquisition 

time and beam intensity affect the accuracy of labeled ground photons and canopy photons by 

affecting the number of photons in the segment (n_seg_ph) and the signal-to-noise ratio (SNR). 

For ICESat-2, the RH98 parameter is recommended as a measurement of the top canopy height 

rather than the maximum of canopy photons owing to the signal-to-noise uncertainty at the top of 

the canopy (Neuenschwander et al., 2020; Neuenschwander & Pitts, 2019).  

This study examined the RH metrics including 25th, 50th, 75th, 95th, 98th and maximum 

canopy height percentile from ICESat-2 and ALS over different scenario as shown in Table 1.1. 

This study compared the RH98 from ICESat-2 with RH99 of ALS because the RH metric closest 

to RH98 given by ALS was RH99. 
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Table 1.1 Variables used to assess the agreement of ICESat-2 and ALS.  

Variable Scenario  

Beam type Strong, and weak 

Time of acquisition Day, and night 

Beam type and time of acquisition Strong day, strong night, weak day, and weak night 

Forest types Deciduous forest, evergreen forest, mixed forest, and 

woody wetlands 

Physiographic regions Black prairie, Pontotoc ridge, flatwoods, north central 

hills, loess hills, and alluvial plain 

 

% Canopy cover 0 - 1 

Disturbance frequency 0, 1, 2, and >2   

Year since disturbance <20, 20-25, 25-30, and >30 
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Figure 1.3 Lidar footprints observed in Mississippi. A total of 1,057,848 ICESat-2 records 

were observed from 2018-2020. 

1.3.4 ALS data acquisition and processing 

Airborne Laser Scanning (ALS) data of some regions within Mississippi were 

downloaded from a publicly available dataset to verify the accuracy of the canopy height 

retrieved in this study. ALS data was downloaded from 3DEP LiDAR Explorer website 

(http://prd-tnm.s3.amazonaws.com/LidarExplorer/index.html#/). This data was collected in three 

http://prd-tnm.s3.amazonaws.com/LidarExplorer/index.html#/
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phases as Mississippi Delta A1 2018 (February 18, 2018 - February 8, 2019), Mississippi Delta 

A2 2018 (January 24, 2019 - February 29, 2019) and Mississippi Delta A3 2018 (February 26, 

2018 - December 13, 2020) with point density of 2 pts/m2. The downloaded ALS data was 

located in 6 of the 11 physiographic regions of Mississippi. The metadata for the ALS data 

suggests that its RMSEz value is ≤10 cm (USGS, 2020), which is an order of magnitude lower 

than the canopy height error of ICESat-2. Therefore, the use of this ALS product as reference 

data is a good indicator of the canopy height accuracy of ICESat-2.  

Over 11,337 ALS tiles were downloaded, each tile covering an area of 1 km2, and 

sampling was carried out to select tiles for further processing due to the processing and memory 

limitations. This study used the location of all the Forest Inventory and Analysis (FIA) plots 

across Mississippi to sample the tiles, and only those tiles that were within a 1 km buffer around 

the FIA sites were chosen. The FIA plot location was used for sampling because it collects data 

on forest vegetation and related attributes, using a systematic plot design that covers the 

conterminous United States (Tinkham et al., 2018). The resulting 2145 tiles were processed 

using LIDAR360 software. A total of 47,482 ICESat-2 segments across all sites were evaluated 

to assess the agreement between ICESat-2 and ALS canopy heights. 

Canopy height metrics from ALS were derived using LiDAR360 software Version 5.2 

(GreenValley International, 2022). LiDAR360 software provides tools required for effectively 

interacting and manipulating lidar point cloud data. Two different kinds of individual tree 

segmentation algorithms are provided in the software to derive individual tree parameters, the 

CHM-based marker-controlled watershed segmentation algorithm (Conrad et al., 2015) and 

point-cloud based algorithm (Li et al., 2012). This study used CHM for further analysis. The first 

step in CHM segmentation includes outlier removal function and then classifying the ground 
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points (filter) to generate Digital Surface Model (DSM) and Digital Elevation Model (DEM). 

The DEM and DSM were calculated from the lidar ground returns and first returns with the 

ordinary kriging method at 1 m spatial resolution (Guo et al., 2010). Then, CHM was calculated 

as the difference between DSM and DEM. Relative height (RH) metrics were also calculated 

using the LiDAR360 software to get parameters related to point cloud elevation. It was used to 

calculate the RH metrics by 100 m × 12 m segment polygons which gave RH (1-100) within the 

segment to correlate with the ICESat-2 data.  

1.3.5 Disturbance map 

This study used VCT and LANDFIRE disturbance maps both with a spatial resolution of 

30 m. The VCT algorithm uses time series observations from Landsat images to map the 

location, timing, and spectral magnitudes of forest disturbance events (Huang et al., 2010) 

whereas the LANDFIRE disturbance maps the location, extent, type, and severity of major 

disturbances for the entire US using Landsat images (Landfire, 2011). Although the name 

suggests LANDFIRE would only show wildfire, it includes disturbance from different sources 

such as clearcutting, thinning, prescribed fire, and development activities. The VCT disturbance 

maps from 1986 - 2010 were downloaded from ORNL DAAC website (https://daac.ornl.gov). 

Similarly, the LANDFIRE disturbance maps were downloaded from LANDFIRE website 

(https://landfire.gov/hdist.php) for years 1999 - 2016. Between the LANDFIRE and VCT, only 

LANDFIRE provides information about the severity of the disturbance from low to high. Our 

preliminary analysis showed that the VCT and LANDFIRE were similar when LANDFIRE 

disturbance maps were filtered by only high and medium disturbance severity. After comparison, 

we combined LANDFIRE and VCT maps for the overlapping map years (1999 - 2010) of high 

and medium severity areas. This produced a uniform disturbance map for years 1986 - 2016, 

https://daac.ornl.gov/
https://landfire.gov/hdist.php
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which was then analyzed in ArcGIS and Python version 3.7 (Van Rossum & Drake, 2009). Then, 

ICESat-2 footprints were overlaid over the disturbance maps and were evaluated if the footprint 

locations were disturbed within study period. The ICESat-2 footprints were also grouped as 

undisturbed, disturbed once, disturbed twice, disturbed more than twice, and years since 

disturbance.  

1.3.6 National Land Cover Database (NLCD) and Physiographic Regions Map  

NLCD provides nationwide data on land cover and land cover change based on Landsat-8 

multispectral satellite images at 30 m resolution. NLCD is an operational land cover monitoring 

program providing updated land cover and related information for the United States (Wickham et 

al., 2021). For this study, NLCD land cover data from 2019 was downloaded from Multi-

Resolution Land Characteristics Consortium website (https://www.mrlc.gov/data). Among the 

total of 16 land cover types in NLCD 2019, this study used the 4 different land covers, namely 

deciduous forest, evergreen forest, mixed forest, and woody wetlands. The NLCD map was used 

to evaluate ICESat-2 estimated tree height over different forest types and was supplementary 

data to assist our assessment. 

Similarly, a Physiographic Regions map of 2013 was downloaded from MARIS website 

(www.maris.state.ms.us/). 6 of the 11 physiographic regions in Mississippi namely the North 

Central Hills, Flatwoods, Pontotoc Ridge, Black Prairie, Alluvial Plain, and Loess Hills were 

covered by the ALS tiles used in the study. Therefore, this study includes only these 

physiographic regions for further analysis. 

https://www.mrlc.gov/data
http://www.maris.state.ms.us/
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1.3.7 Data processing and height metrics extraction 

The geolocation (horizontal) accuracy of ICESat-2 is <5 m and tend to be 2-3 m which is 

much better than that of GEDI (20 m for the first version and 10 m for the second version) (Liu 

et al., 2021). Since several different elevation data sets are involved in this study, it is necessary 

to co-register them correctly. Prior to extracting canopy height metrics from ICESat-2 and ALS, 

a few preprocessing or data correction steps were carried out to enhance the comparison. The 

first critical step taken was to ensure that the ICESat-2 and ALS data were co-registered well to 

each other. Before calculating corresponding height metrics from ALS data, all data were 

projected from their respective coordinate systems to the Albers Conic equal area coordinate 

system. 

ICESat-2 product provides each segment with an uncertainty index 

“h_canopy_uncertainty” for the uncertainty of the relative canopy height for the segment. This 

uncertainty index incorporates all systematic uncertainties (e.g., timing, orbits, geolocation, etc.) 

as well as the uncertainty in photon identification. An “invalid” value (3.4028E + 38) is reported 

if the number of ground photons in the segment is ≤5% of total number of signal photons per 100 

m segment. Without a sufficient number of ground photons in a segment, the calculated terrain 

height has little confidence. Thus, the segments with the “invalid” value in the 

h_canopy_uncertainty attribute in the ICESat-2 product, noted as invalid segments, were 

eliminated from evaluation. Preliminary analysis showed that there were many outliers, which 

may have been caused by incorrect ground interpolation due to cloud or solar noise. Therefore, 

the outliers were removed by removing those observations that are higher than the tallest trees in 

Mississippi. FIA database suggested the maximum canopy height of 60 m over Mississippi, 
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therefore, all the observations above this value were eliminated. Further, ICESat-2 footprints 

were filtered using the following criteria:  

1.  A relative uncertainty value of less than 20 m for canopy height 

(h_canopy_uncertainty <20 m) (Liu et al., 2022);  

2. Estimated forest canopy height should be greater than 2 m and less than 60 m. 

In order to examine the robustness of our approach for retrieval of canopy height through 

integration of ICESat-2 and ALS products, the approach was applied to different ICESat-2 tracks 

in Mississippi at different segment sizes such as diameters of 13 m, 17 m, and 100 m (along-

track) × 12 m (across-track) segment. The 𝑅2 and Root Mean Square Deviation (RMSD) 

between retrieved ICESat-2 canopy height and corresponding ALS metrics were calculated and 

used as indicators for assessing the effectiveness of the proposed approach. We found that 100 m 

× 12 m segment had the greatest agreement with 𝑅2 of 0.52 followed by 13 m and 17 m diameter 

with 𝑅2 of 0.34 and 0.21 respectively. Also, studies have suggested that ICESat-2 ALT08 

product is sampled using continuous 100 m × 12 m segments, therefore we also used 100 m × 12 

m segments around ICESat-2 footprints to compare with the ALS in our study (Liu et al., 2021).  

The centroids of the first and last segments were used to calculate the track inclination, 

and then a rectangular buffer of 100 m × 12 m around the centroids of the segments were 

created. LiDAR360 software was used for processing the ALS data as discussed in section 1.3.4. 

From the processed ALS data, canopy heights were extracted for each ICESat-2’s 100 m × 12 m 

segment and corresponding height metrics were obtained per segment. Canopy height metrics 

such as canopy height, max canopy height and other relative canopy height metrics along with 

canopy cover were also calculated for each segment.  



 

19 

1.3.7.1 Data analysis 

This study performed exploratory data analysis to get the summary statistics and graphics 

to understand the data. For statistical visualization, the study used histograms, scatterplots, 

boxplots, and density plots to comprehend the data. R statistical software version 4.1.1 (R Core 

Team 2021) was used for creating statistical graphs. 

1.3.7.2 Equivalence test 

Equivalence test was employed to check if the canopy height derived from ICESat-2 and 

ALS were statistically equivalent. This study used two one-sided t-test (TOST) procedures for 

testing the equivalence. Here, the null hypothesis is the non-agreement of the heights derived 

from ICESat-2 and ALS. Thus, rejecting the null hypothesis indicates agreement of canopy 

height metrics between ICESat-2 and ALS. The equivalence test is based on a range within 

which differences between test and reference data are considered negligible (Robinson & Froese, 

2004). The TOST approach aims to specify a lower and upper bound, such that results falling 

within this range are considered equivalent. The observed data are compared against lower and 

upper bounds in two one-sided tests. If the p-value for both tests is less than the level of 

significance, the null hypothesis is rejected i.e., ICESat-2 and ALS derived canopy height are 

statistically equivalent for a given threshold value; else, we fail to reject the null hypothesis 

indicating the ICESat-2 and ALS derived canopy height are statistically different for a given 

threshold value. Having established the threshold value, it then determines whether difference 

between ICESat-2 and ALS canopy height lies within the region. If the region of indifference 

completely encompasses the confidence interval, then the height metrics measured by ICESat-2 

and ALS are deemed statistically similar. If not, then the null hypothesis of difference is not 

rejected. In this study various intervals of tree height were established as the region of 
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indifference and the probabilities of rejecting the null hypothesis of dissimilarity under a range of 

sample sizes at α=0.05 were calculated. The null hypothesis (Equation 1.1) and alternative 

hypothesis (Equation 1.2) in each case were: 

𝐻0: 𝜇𝐴𝐿𝑆 − 𝜇𝐼𝐶𝐸𝑆𝑎𝑡−2 ≠ 0 
(1.1) 

𝐻1: 𝜇𝐴𝐿𝑆 − 𝜇𝐼𝐶𝐸𝑆𝑎𝑡−2 = 0 
(1.2) 

where 𝜇𝐴𝐿𝑆 refers to the ALS derived mean canopy height of 100 × 12 m segment and 

𝜇𝐼𝐶𝐸𝑆𝑎𝑡−2 refers to ICESat-2 canopy height. 

This study used equivalence test to evaluate the agreement between ICESat-2 canopy 

height metrics and ALS derived canopy height metrics by beam type, time of acquisition, forest 

type, physiographic regions, canopy cover, disturbance frequency, and years since disturbance.  

1.3.8 Accuracy assessment 

Based on canopy height metrics extracted from ALS products as a reference, we applied 

several statistical measures to assess the accuracy of ICESat-2 canopy height. Statistical 

measures to evaluate the height agreement of ICESat-2 were computed by forest types, 

physiographic regions, percent canopy cover, disturbance history, and years since disturbance. 

Below are the equations (Equation 1.3 – 1.6) of statistical measures employed to evaluate the 

height agreement:  

𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑀𝐷) =  
1

𝑛
∑ (ℎ𝐼𝐶𝐸𝑆𝑎𝑡−2 − ℎ𝐴𝐿𝑆)

𝑛

𝑖=1
 (1.3) 

 

%𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  100
∑ (ℎ𝐼𝐶𝐸𝑆𝑎𝑡−2 − ℎ𝐴𝐿𝑆)𝑛

𝑖=1

∑ (ℎ𝐴𝐿𝑆)𝑛
𝑖=1

 (1.4) 
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𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑅𝑀𝑆𝐷) =  √
1

𝑛
∑ (ℎ𝐼𝐶𝐸𝑆𝑎𝑡−2 − ℎ𝐴𝐿𝑆)2

𝑛

𝑖=1
 (1.5) 

 

%𝑅𝑀𝑆𝐷 = (
𝑅𝑀𝑆𝐸 

ℎ̅𝐴𝐿𝑆

) 100% (1.6) 

 

where, n is the total number of ICESat-2 segments evaluated; ℎ𝐼𝐶𝐸𝑆𝑎𝑡−2 is the ICESat-2 

ATL08 height metric, ℎ𝐴𝐿𝑆 is the corresponding ALS height metric; and ℎ̅𝐴𝐿𝑆 is the mean ALS 

canopy height.  

Agreement between height products was also determined based on the percentage of 

ICESat-2 canopy heights falling within the 95% confidence interval of the ALS mean canopy 

height (mean ± 1.96 SD), and then summarized across each forest type and physiographic 

regions. 

1.4 Results  

1.4.1 Overall agreement of ALS and ICESat-2 

In this study, the greatest agreement was found between ICESat-2 RH98 (the height from 

the ground at which 98th percentile of energy is returned) and ALS RH99 (the height from the 

ground at which 99th percentile of energy is returned) with 90.58% of ICESat-2 RH98 heights 

falling within 95% confidence interval of ALS RH99 heights (MD -1.43 m and 𝑅2 0.54) (Table 

1.2). 
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Table 1.2 Agreement between height products from ICESat-2 and ALS falling within 

different range of ALS. 

Scenario % Within 95% CI MD (m) RMSD (m) R2 

ICESat-2 max vs CHM max 90.48 -1.77 4.81 0.52 

ICESat-2 max vs ALS max 90.39 -1.79 4.81 0.52 

ICESat-2 R98 vs ALS RH99 90.58 -1.43 4.54 0.54 

ICESat-2 RH95 vs ALS RH95 51.22 -10.48 12.03 0.24 

ICESat-2 RH90 vs ALS RH90 50.44 -10.30 11.86 0.22 

95% CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation,  

RMSD = root mean squared deviation, CHM = Canopy Height Model, RH = relative height 

The equivalence test showed that the ICESat-2 RH98 and ALS RH99 derived canopy 

height metrics were statistically equivalent when the acceptable region of similarity was up to 

1.38 m (TOST p-value > 0.05) whereas for ICESat-2 max paired with ALS max and CHM max 

derived canopy height metrics were statistically equivalent when the acceptable region of 

similarity was 1.8 m (TOST p-value > 0.05) (Figure 1.4).  
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Figure 1.4 Equivalence test of ICESat-2 and ALS derived canopy height metrics. 

On the other hand, 95th, 75th, 50th and 25th percentile canopy height metrics were 

statistically equivalent when the acceptable region of similarity was within range of 9.4 m to 

11.6 m (TOST p-value > 0.05) (Figure 1.5). Among these relative heights, ICESat-2 RH98 was 

statistically equivalent to ALS derived RH99 pair with the lowest threshold value of 9.4 m 

whereas RH50 had the highest threshold value at 11.6 m. Since the region of similarity for 

RH25, RH50, RH75 and RH95 were large, we excluded these metrics for further study. 
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Figure 1.5 Equivalence test of different relative height metrics from ICESat-2 and ALS. 

1.4.2 Relative height agreement 

The canopy height agreement between ICESat-2 and ALS were evaluated by constructing 

three pairs: ICESat-2 max vs. CHM max, ICESat-2 max vs. ALS max, and ICESat-2 RH98 vs. 

ALS RH99 under different scenarios for further analysis. 

The measures of agreement between ICESat-2 max with CHM max and ALS max, and 

between ICESat-2 RH98 and ALS RH99, respectively under different scenarios of beam 

intensity and data acquisition time are presented in Table 1.3 and 1.4.  
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Table 1.3 Canopy height agreement between ICESat-2 max, CHM max, and ALS max under 

different scenarios. 

Scenario % Within 95% CI MD (m) RMSD (m) R2 Sample (%) 

CHM max      

Unfiltered 90.48 -1.77 4.81 0.52 100 

Strong beams 91.52 -1.64 4.25 0.59 77.97 

Weak beams 87.19 -2.22 6.39 0.35 22.03 

Day 87.97 -1.68 5.71 0.42 46.05 

Night 92.75 -1.84 3.87 0.66 53.95 

Weak & Night 90.94 -2.55 4.85 0.55 8.50 

Weak & Day 84.66 -2.02 7.20 0.28 13.52 

Strong & Night 93.13 -1.70 3.66 0.68 45.45 

Strong & Day 89.46 -1.55 4.96 0.50 32.52 

ALS max      

Unfiltered 90.39 -1.79 4.81 0.52 100 

Strong beams 91.45 -1.66 4.26 0.59 77.97 

Weak beams 86.96 -2.25 6.39 0.35 22.03 

Day 87.87 -1.69 5.71 0.42 46.03 

Night 92.62 -1.88 3.88 0.66 53.97 

Weak & Night 90.72 -2.59 4.85 0.56 8.51 

Weak & Day 84.47 -2.03 7.20 0.28 13.51 

Strong & Night 92.98 -1.74 3.67 0.68 45.46 

Strong & Day 89.50 -1.54 4.97 0.50 32.52 

CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation, RMSD = root mean 

squared deviation, Sample (%) = % of all data. 

Table 1.4 Canopy height agreement between ICESat-2 RH98 and ALS RH99 under different 

scenarios. 

Scenario % Within 95% CI MD (m) RMSD (m) R2 Sample (%) 

Unfiltered 90.58 -1.43 4.54 0.54 100 

Strong beams 91.23 -1.45 4.07 0.61 78.05 

Weak beams 88.09 -1.33 5.93 0.36 21.95 

Day 88.19 -1.39 5.41 0.43 45.98 

Night 92.59 -1.45 3.64 0.67 54.02 

Weak & Night 92.11 -1.45 4.33 0.56 8.52 

Weak & Day 85.23 -1.26 6.75 0.29 13.44 

Strong & Night 92.70 -1.45 3.50 0.69 45.5 

Strong & Day 89.40 -1.45 4.75 0.52 32.54 

CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation, RMSD = root mean 

squared deviation, Sample (%) = % of all data. 
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Overall, ICESat-2 RH98 shows better agreement with ALS RH99 than other pairs (ICESat-2 

max vs. ALS max, and ICESat-2 max vs. CHM max) regardless of the beam type and time of 

data acquisition with 𝑅2 of 0.54 (Figure 1.6). The MD between ICESat-2 and ALS canopy height 

estimate for ICESat-2 RH98 represents an overall under estimation with a value of -1.43 m. This 

however shows improvement over previous study such as Neuenschwander et al., (2020) who 

reported an overall bias of 3.05 m in boreal forests. The overall RMSD of 4.54 m also shows 

variation in agreement between the two products.  

Although majority of data points are clustered around one-to-one line, large differences 

are observed in areas with ICESat-2 max height below 10 m and above 40 m.  

 

Figure 1.6 Scatterplot for ICESat-2 vs. ALS derived canopy height for (a) ICESat-2 max vs 

CHM max, (b) ICESat-2 max vs ALS max, and (c) ICESat-2 RH98 vs ALS RH99. 

The effect of beam intensity and data acquisition time on the accuracy of the ICESat-2 

canopy heights in comparison with CHM max, ALS max, and ALS RH99, ALS RH98 showed 

lower MD for weak beams (MD -1.33 m) compared to strong beams (MD -1.45 m) across 

metrics (Figure 1.7). The ICESat-2 RH98 and ALS RH99 were statistically equivalent when the 

(a) (b) (c) 

MD = -1.77; RMSD = 4.81  
R2 = 0.52 

MD = -1.79; RMSD = 4.81  
R2 = 0.52 

MD = -1.43; RMSD = 4.54  
R2 = 0.54 
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acceptable region of similarity was up to 1.43 m for weak and 1.48 for strong beam (Appendix 

A, Figure A.1). This threshold was 1.64 m and 2.35 m for strong and weak beam respectively for 

CHM max and ALS max.  

 

Figure 1.7 Scatterplot of ICESat-2 vs. ALS derived canopy height for strong and weak beam 

for (a) ICESat-2 max vs CHM max, (b) ICESat-2 max vs ALS max, and (c) 

ICESat-2 RH98 vs ALS RH99  

Night acquisitions showed higher mean deviation (MD -1.45, 𝑅2 0.67) compared to day 

acquisitions (MD -1.39, 𝑅2 0.43) (Figure 1.8). The equivalence test results for time of 

acquisition also showed that ICESat-2 and ALS derived canopy height metrics for daytime 

acquisition were statistically equivalent when the acceptable region of similarity was up to 1.45 

m which is lower than that of nighttime acquisition which is 1.49 m (TOST p-value > 0.05) 

(Appendix A, Figure A.2).  

MD = -1.64; RMSD = 4.25  
R2 = 0.59 

MD = -1.66; RMSD = 4.26  
R2 = 0.59 

MD = -1.45; RMSD = 4.07  
R2 = 0.61 

MD = -2.22; RMSD = 6.39  
R2 = 0.35 

MD = -1.33; RMSD = 5.93  
R2 = 0.36 

MD = -2.25; RMSD = 6.39  
R2 = 0.35 

(a) (b) (c) 
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Figure 1.8 Scatterplot of ICESat-2 vs. ALS derived canopy height for day and night for (a) 

ICESat-2 max vs CHM max, (b) ICESat-2 max vs ALS max, and (c) ICESat-2 

RH98 vs ALS RH99. 

For ICESat-2, the strong beam data acquired at night have the lowest statistical error in 

all pairs (Table 1.3 and 1.4). This is because the strong beam has greater penetration and can 

extract canopy information more accurately, and the data acquired at night are less affected by 

background noise caused by solar radiation. For ICESat-2 RH98 vs. ALS RH99 pair, in terms of 

RMSD, strong beams (RMSD 4.07 m) showed better results than weak beams (RMSD 5.93 m). 

Similarly, night data acquisition showed better performance (RMSD 3.64 m) than daytime 

acquisition (RMSD 5.41 m). The use of nighttime, strong beam data largely eliminates the 

outliers, except when the ICESat-2 max are greater than 40 m, yielding RMSD value of 3.5 m, 

and 𝑅2 value of 0.69 (Figure. 1.9). The MD between the ICESat-2 canopy height estimates and 

the ALS reference values are also negative, indicating that the canopy height is still 

MD = -1.68; RMSD = 5.71  
R2 = 0.42 

MD = -1.69; RMSD = 5.71  
R2 = 0.42 

MD = -1.39; RMSD = 5.41  
R2 = 0.43 

MD = -1.84; RMSD = 3.87  

R2 = 0.66 

MD = -1.88; RMSD = 3.88  
R2 = 0.66 

MD = -1.45; RMSD = 3.64  
R2 = 0.67 

(b) (a) (c) 
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underestimated. Overall, the accuracy of the ICESat-2 canopy height estimates is better when 

using only strong beam data acquired at night.  

Based on the equivalence test, ICESat-2 max, paired with CHM max and ALS max 

canopy height were statistically equivalent when the acceptable region of similarity was up to 

1.77 m and 1.6 m when filtered by strong beam data acquired at night and strong beam data 

acquired at day respectively (TOST p-value > 0.05) (Appendix A, Figure A.3). For ICESat-2 

RH98 and ALS RH99 pair, using strong day and strong night had similar region of similarity i.e., 

1.5 m.  

 

Figure 1.9 Scatterplot of ICESat-2 vs. ALS derived canopy height using only strong beam 

data acquired at night for (a) ICESat-2 max vs CHM max, (b) ICESat-2 max vs 

ALS max, and (c) ICESat-2 RH98 vs ALS RH99. 

1.4.2.1 Agreement by forest type 

Canopy height measured in evergreen forest had the highest agreement whereas woody 

wetlands had the lowest agreement, with underestimation of 0.75 m and 2.29 m respectively 

(Table 1.5). The forest type with the lowest correspondence were woody wetlands with less than 

90% of ICESat-2 max falling within the 95% confidence interval of CHM max height. 

MD = -1.7; RMSD = 3.66  
R2 = 0.68 

MD = -1.74; RMSD = 3.67  
R2 = 0.68 

MD = -1.45; RMSD = 3.5  
R2 = 0.69 

(a) (b) (c) 
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Conversely, evergreen forest had among the highest correspondence between products, with 91% 

of ICESat-2 heights falling within the 95% confidence interval of CHM max height values. The 

ICESat-2 RH98 canopy heights underestimated ALS RH99 canopy heights across all forest types 

with smallest underestimation in evergreen (MD 0.47 m, RMSD 3.63 m) and greatest in woody 

wetlands and deciduous forest across all pairs (Table 1.6). The evergreen forests had the lowest 

MD and RMSD in all three pairs of ICESat-2 and ALS. ALS RH99 showed highest MD and 

RMSD in deciduous forest whereas CHM and ALS max showed highest MD and RMSD in 

woody wetlands. Woody wetlands had the greatest 𝑅2 (0.55 to 0.58) but also had highest MD 

and RMSD (MD = 2.33 m and RMSD 5.37 m for ALS max).  

Table 1.5 Correspondence between ICESat-2 max, CHM max and ALS max canopy height 

products by forest type in terms of percentages of ICESat-2 height falling within 

different ranges of ALS predictions.  

Forest types % Within 95% CI MD (m) RMSD (m) R2 Sample (%) 

CHM max      

Deciduous 90.34 -2.20 5.16 0.52 32.39 

Evergreen 91.53 -0.75 3.78 0.54 24.05 

Mixed 90.15 -1.61 4.53 0.46 18.04 

Woody Wetlands 88.45 -2.29 5.36 0.55 25.52 

ALS max      

Deciduous 90.27 -2.21 5.17 0.52 32.38 

Evergreen 91.51 -0.76 3.78 0.54 24.05 

Mixed 89.88 -1.64 4.53 0.46 18.02 

Woody Wetlands 88.33 -2.33 5.37 0.55 25.55 

CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation, RMSD = root mean 

squared deviation, Sample (%) = % of all data. 
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Table 1.6 Correspondence between ICESat-2 RH98 and ALS RH99 canopy height products 

by forest type in terms of percentages of ICESat-2 height falling within different 

ranges of ALS predictions.  

Forest types % Within 95% CI MD (m) RMSD (m) R2 Sample (%) 

Deciduous 90.12 -1.92 4.95 0.53 32.41 

Evergreen 91.63 -0.47 3.63 0.55 24.07 

Mixed 90.59 -1.36 4.35 0.48 18.03 

Woody wetlands 89.17 -1.75 4.89 0.58 25.49 

CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation, RMSD = root mean 

squared deviation, Sample (%) = % of all data. 

In general, there is more variation in the ICESat-2 max distributions with a slightly 

greater spread of values relative to the distribution of the ALS (Figure 1.10).  

    

Figure 1.10 Density plot showing the distribution of ICESat-2 and ALS canopy height metrics 

by forest types for (a) ICESat-2 max, CHM max, and ALS max (b) ICESat-2 

RH98 and ALS RH99. CHM max and ALS max have similar distribution and are 

seen overlapping. 

Further analysis by the ALS derived height class indicated that for all height class except 

for height class 0-10 m, the ICESat-2 median canopy height is lower than the corresponding ALS 

value (Figure 1.11 and 1.12). Additionally, for all forest types in 11-20 m height class, the 

(a) (b) 
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median values of ALS and ICESat-2 are similar particularly in evergreen forest. It indicates that 

the ICESat-2 overestimates the tree heights of 0-10 m height class and underestimates the higher 

height classes.  

 

Figure 1.11 Distribution of ICESat-2 max, CHM max and ALS max canopy heights by forest 

type and 10 m height classes derived from ALS. Boxplots represent median, 

interquartile range, and extreme values. 
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Figure 1.12 Distribution of ICESat-2 RH98 and ALS RH99 canopy heights by forest type and 

10 m height classes derived from ALS. Boxplots represent median, interquartile 

range, and extreme values. 

The equivalence test showed that the ICESat-2, and CHM max and ALS max derived 

canopy height metrics were statistically equivalent with similar acceptable region of similarity 

(TOST p-value > 0.05) in different forest types (Figure 1.13). Evergreen forest had the lowest 

value of acceptable threshold ranging from 0.5 m in ALS RH99 pair to 0.8 m in CHM and ALS 

max. In ALS RH99 pair, deciduous forest showed the lowest threshold value of 2 m whereas 

CHM and ALS max showed greatest threshold value of 2.4 m.  
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Figure 1.13 Equivalence test showing p-value and epsilon for ICESat-2 and ALS derived 

canopy height metrics for different forest types. Dashed line represents 0.05 p-

value. 

1.4.2.2 Agreement by physiographic regions 

Wide variation in agreement was observed when ICESat-2 data were analyzed by the 

physiographic regions (Table 1.7 and 1.8). The physiographic region with the lowest 

correspondence was the alluvial plain with less than 90% of ICESat-2 falling within the 95% 

confidence interval of ALS canopy height. Conversely, the black prairie had the highest 

correspondence between products, with 93% of ICESat-2 canopy heights falling within the 95% 

confidence interval of ALS canopy height values. The ICESat-2 canopy heights underestimated 

ALS canopy heights across all physiographic regions with greatest underestimate in the alluvial 

plain (MD -1.76 m, RMSD 4.98 m for ICESat-2 RH98 vs. ALS RH99 pair) and lowest in the 

black prairie (MD -0.86 m, RMSD 3.78 m). Based on 𝑅2, best agreement was observed in the 

alluvial plain (R2 0.59) despite having greatest MD and RMSD.  
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Table 1.7 Correspondence between ICESat-2 max, CHM max, and ALS max canopy height 

products by physiographic regions, in terms of the percentage of ICESat-2 heights 

falling within different ranges of ALS predictions. 

Physiographic regions % Within 95% CI MD (m) RMSD (m) R2 Sample (%) 

CHM max      

Black Prairie 93.00 -1.00 4.16 0.43 0.97 

Pontotoc Ridge 90.76 -1.95 5.95 0.34 6.22 

Flatwoods 90.13 -1.98 4.62 0.56 2.84 

North central hills 90.68 -1.63 4.64 0.53 68.65 

Loess hill 90.28 -2.03 4.68 0.49 11.7 

Alluvial plain 88.93 -2.32 5.36 0.59 9.62 

ALS max      

Black Prairie 92.54 -1.01 4.13 0.44 0.97 

Pontotoc Ridge 90.73 -1.96 5.95 0.34 6.22 

Flatwoods 89.87 -1.98 4.65 0.56 2.84 

North central hills 90.59 -1.65 4.65 0.53 68.65 

Loess hill 90.19 -2.04 4.68 0.49 11.67 

Alluvial plain 88.83 -2.35 5.39 0.59 9.65 

CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation, RMSD = root mean 

squared deviation, Sample (%) = % of all data. 

Table 1.8 Correspondence between ICESat-2 RH98 and ALS RH99 canopy height products 

by physiographic regions, in terms of the percentage of ICESat-2 heights falling 

within different ranges of ALS predictions. 

Physiographic regions % Within 95% CI MD (m) RMSD (m) R2 Sample (%) 

Black Prairie 92.54 -0.86 3.78 0.51 0.97 

Pontotoc Ridge 90.46 -1.56 5.73 0.35 6.23 

Flatwoods 90.3 -1.61 4.38 0.57 2.84 

North central hills 90.72 -1.33 4.38 0.55 68.63 

Loess hill 89.86 -1.68 4.48 0.5 11.68 

Alluvial plain 89.95 -1.76 4.98 0.61 9.65 

CI = 95% confidence interval (mean ± 1.96 SD), MD = mean deviation, RMSD = root mean 

squared deviation, Sample (%) = % of all data. 

In general, there is more variation in the ICESat-2 distributions with skewness at lower 

heights relative to the ALS distribution (Figure 1.14 and 1.15).  
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Figure 1.14 Density plot showing the distribution of ICESat-2 and ALS canopy height metrics 

by physiographic regions for (a) ICESat-2 max, CHM max, and ALS max (b) 

ICESat-2 RH98 and ALS RH99. CHM max and ALS max have similar 

distribution and are seen overlapping. 

 

Figure 1.15 Density plots showing the distribution of ICESat-2 RH98 and ALS RH99 canopy 

height by physiographic regions.  
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Further analysis by the ALS derived height class indicated that for all height class except 

for height class 0-10 m, the ICESat-2 median is lower than the corresponding ALS value (Figure 

1.16 - 1.17). As indicated in the figure, ICESat-2 overestimated for 0-10 m height class for all 

physiographic regions except for the flatwoods and alluvial plain. For height class 11-20 m, the 

ICESat-2 overestimated only in the black prairie whereas it underestimated for other regions. For 

height class >20 m ICESat-2 underestimated canopy height. 

 

Figure 1.16 Distribution of ICESat-2 max, CHM max, and ALS max canopy heights by 

physiographic regions and 10 m height classes derived from ALS. Boxplots 

represent median, interquartile range, and extreme values. 
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Figure 1.17 Distribution of ICESat-2 RH98 and ALS RH99 canopy heights by physiographic 

regions and 10 m height classes derived from ALS. Boxplots represent median, 

interquartile range, and extreme values. 

With the equivalence test, we found that the canopy height estimation from CHM max 

and ALS max with the ICESat-2 max were similar in different physiographic regions. All three 

pairs were statistically equivalent with the lowest threshold value in the black prairie (TOST p-

value > 0.05) (Figure 1.18). In the case of ICESat-2 RH98 vs. ALS RH99 pair, the canopy 

heights were statistically equivalent when the acceptable region of similarity was up to 2 m, 

particularly in the black prairie physiographic zone with lowest threshold value of 1.15 m. 

However, the greatest threshold value was observed for the alluvial plain in all cases. 
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Figure 1.18 Equivalence test showing p-value and epsilon for ICESat-2 and ALS derived 

canopy height metrics for different physiographic regions. Dashed line represents 

0.05 p-value. 

1.4.2.3 Agreement by percent canopy cover  

ICESat-2 ATL08 data product does not provide the estimates of canopy cover (CC) 

therefore we derived canopy cover using the ALS data from LiDAR360 software. The absolute 

MD between ALS and ICESat-2 were assessed in relation to canopy cover (Figure 1.19 - 1.21). 

The figures show maximum absolute MD in canopy height for lower canopy cover percentages 

and a gradual decrease in the absolute MD as the canopy cover increases. However, when the 

canopy cover was about 75%, the absolute MD slightly increased which again decreased at 80%. 

The best agreement between ICESat-2 and ALS was observed for canopy cover greater than 

65%.  
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Figure 1.19 Absolute mean difference between ICESat-2 max and CHM max by canopy cover. 

 

Figure 1.20 Absolute mean difference between ICESat-2 max and ALS max by canopy cover. 
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Figure 1.21 Absolute mean difference between ICESat-2 RH98 and ALS RH99 by canopy 

cover. 

The equivalence test by percent canopy cover (Appendix A, Figure A.5 – A.7) shows that 

ICESat-2 RH98 and ALS RH99 are statistically equivalent with the lowest threshold value of 0.9 

m for 65% CC followed by 85% and 95% CC. Similarly, ALS max pair also shows the lowest 

threshold value of 1.4 m for 65% CC whereas CHM max shows 95% CC with the lowest 

threshold value of 1.2 m followed by 65% CC. On the other hand, CHM and ALS max shows 

that the greatest threshold value for 15% CC. 

1.4.2.4 Agreement by disturbance frequency and years since disturbance 

In 0-10 m height class, the ICESat-2 overestimated the canopy height irrespective of 

number of disturbances (Figure 1.22). In 11-20 m height class, for area disturbed more than 
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twice, CHM max, ALS max, and ICESat-2 max canopy heights are similar. Also, greater 

difference among ICESat-2 and ALS were observed with increasing height classes. Similar 

results were also observed for ICESat-2 RH98 vs. ALS RH99 (Figure 1.23).  

 

Figure 1.22 Distribution of ICESat-2 max, CHM max, and ALS max canopy heights by 

frequency of disturbance and 10 m height classes derived from ALS. Boxplots 

represent median, interquartile range, and extreme values. 
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Figure 1.23 Distribution of ICESat-2 RH98 and ALS RH99 canopy heights by frequency of 

disturbance and 10 m height classes derived from ALS. Boxplots represent 

median, interquartile range, and extreme values. 

The equivalence test (Appendix A, Figure A.8 – A.10) for all three pairs showed that 

ICESat-2 was statistically equivalent to ALS derived canopy height with a similar threshold 

value of 1.38 m. This threshold ranged from 1.1 m to 1.4 m for sites disturbed once and 1.6 m to 

2.1 m for undisturbed sites. 

In the case of time since disturbance, ICESat-2 underestimated the canopy height 

regardless of time since disturbance (Figure 1.24). In general, both height products captured 

patterns of height increase since disturbance. For a longer time following disturbance, both 
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ICESat-2 and ALS heights followed the expected increase in canopy height due to assumed 

growth. 

 

Figure 1.24 Distribution of ICESat-2 and ALS derived canopy height by year since disturbance 

for (a) ICESat-2 max, CHM max, and ALS max (b) ICESat-2 RH98 and ALS 

RH99. Boxplots represent median, interquartile range, and extreme values. 

The equivalence test (Appendix A, Figure A.11 – A.13) results show that all three pairs 

have similar results with forests 20-25 years since disturbance having the lowest threshold value 

of similarity (0.6 m) in the ALS RH99 pair. This threshold was 1.2 m in ALS max whereas the 

largest threshold value was found for forests disturbed <20 years ago ranging from 1.6 m to 1.95 

m. 

 

 

(a) (b) 
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1.5 Discussion 

This study evaluated the degree of agreement between the maximum and RH98/RH99 

canopy heights measured from two different lidar systems- ICESat-2 and ALS. This study also 

evaluated the height agreement with respect to different sensor parameters such as beam type, 

time of acquisition and other factors like forest types, physiographic regions, canopy cover, 

disturbance frequency and year since disturbance.  

ICESat-2 RH98 and ALS RH99 had the best agreement among the height pairs 

compared- 𝑅2 0.54 and ME -1.43 m. Popescu et al., (2018) in their study to validate simulated 

ICESat-2 canopy height based on photon level comparisons, reported RMSD of 3.2 m which is 

lower than the results in this study (RMSD 4.76 m for ICESat-2 RH98). This may be because 

this study used discrete return lidar data, which may have higher variations than using photon 

counting lidar.  

Canopy heights from ICESat-2 ATL08 data product underestimated the canopy heights 

when compared with ALS for ICESat-2 RH98 and ALS RH99 pair (MD = -1.43 m). Several 

factors can contribute to the underestimation of the canopy height by spaceborne lidar. For 

ICESat-2, the small probability of detecting the treetop may lead to an underestimation of 

canopy height when the number of photons within the segment is low. This finding concurs with 

the recent study of Neuenschwander et al., (2020) who reported a MD of -3.05 m for canopy 

heights derived from ICESat-2 and ALS. Mulverhill et al., (2022) in comparing canopy height 

over different forested ecosystems of Canada found MD of -0.55 m and RMSD of 4.87 m. This 

poorer performance of ICESat-2 canopy heights could be due to various factors such as sub-

optimal sampling by the ICESat-2 sensor, and reduced performance of ICESat-2 ATL08 filtering 

algorithms in classifying off-terrain point (Malambo & Popescu, 2021). ICESat-2 produces a 
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high-frequency micro-pulse laser producing height values every 0.7 m on the surface, however it 

records only 0 - 4 photons from an emitted laser pulse over vegetation surfaces 

(Neuenschwander & Pitts, 2019) whereas the ALS data used in this study has average point 

density of 2 pts/m2. Therefore, there is a chance of characterizing forest canopies inadequately in 

some areas. Moreover, the lower sampling rate increases the chance of missing the canopy tops 

that leads to underestimation of relatively higher-resolution ALS estimates. With lower sampling 

rates, noise filtering algorithms and classification of photon used in ICESat-2 product generation 

performs poorly and thus, may lead to underestimation of canopy heights (Malambo & Popescu, 

2021). There is an increasing agreement for the ICESat-2 canopy metrics with increasing height 

percentiles (Table 1.2). Higher agreement is observed for higher height percentiles (RH98) than 

RH90 and RH95 due to better characterization of the canopy top (Figure 1.19 - 1.21).  

This study also evaluated the agreement of canopy heights derived from ICESat-2 and 

ALS using the beam combinations (weak and strong) in relation to data acquisition time (day and 

night). There was a higher agreement in canopy heights measured with strong beam at night than 

any other combination of beam type and time of acquisition. Weak beam data acquired at night 

had lower RMSD (RMSD = 4.33 m) than strong beam data acquired during the day (RMSD = 

4.75 m) for the RH98 pair which aligns with study by Liu et al., (2021) who found RMSD of 

5.07 m and 7.99 m for weak and night, and weak and day respectively. One of the reasons for 

higher accuracy of night data could be the absence of solar background noise at night and higher 

number of points from strong beams facilitating better estimation of canopy height (Malambo & 

Popescu, 2021). 

Another important factor impacting the canopy height was the canopy structure within 

the study area. Increasing canopy cover has a positive impact on ICESat-2 agreement which 
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explains better performance in evergreen forest (average canopy cover of 55%) whereas woody 

wetlands (average canopy cover of 47%) and deciduous forests (average canopy cover of 44%) 

had lowest agreement, which is in line with other studies like Malambo & Popescu, (2021). We 

found best agreement for the stands with >65% canopy cover. This is consistent with the 

findings from Neuenschwander et al., (2020) who observed the best agreement between ICESat-

2 and ALS ranging between 40% and 85% which also implies that very high or very low canopy 

cover may not produce sufficient ground or canopy photons respectively. When canopy cover 

exceeds 90%, the mean difference also increases which is also observed by Mulverhill et al., 

(2022). Except for woody wetlands, our result showed high agreement of canopy heights derived 

from ICESat-2, where about 90% of ALT08 heights were within 95% confidence interval of 

ALS height estimates.  

Among different forest types and their height classes, except for the woody wetlands in 

<10 m height class, ICESat-2 overestimated the canopy heights in median values. Other studies 

have also reported that ICESat-2 tend to overestimate canopy heights in dwarf shrubland 

whereas with taller canopy heights, the ICESat-2 tends to underestimate the canopy height (Liu 

et al., 2021). Evergreen forests in Mississippi are comprised of coniferous species like loblolly 

pine, slash pine, and longleaf pine with dense canopies, which show better performance for 

height estimation using lidar. Malambo & Popescu, (2021) also found better agreement between 

ICESat-2 and ALS in conifer forest than other environments. On the other hand, there was poor 

agreement in woody wetlands (average canopy cover of 47%) and deciduous forests (average 

canopy cover of 44%). Woody wetlands (vegetation cover >20%, soil periodically saturated or 

covered with water) signifies a sparse forest with low canopy cover, which may be the cause for 

poor performance of ICESat-2. Similarly, in our study the deciduous forests had among the 
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lowest mean canopy cover (44%), which could be the reason for its poor performance among 

other forest types. Neuenschwander et al., (2016) also discussed limitations in the ICESat-2 

retrieval of terrain height in the ecosystem of deciduous forests, which ultimately had an impact 

on estimations of canopy height.  

For all physiographic regions, except for the alluvial plain, 90% of ICESat-2 canopy 

heights were within 95% confidence interval of ALS (max and RH98) height estimates (Table 

1.7). The black prairie also showed the lowest MD and RMSD values as compared to other 

physiographic regions. The equivalence test also suggested that ICESat-2 performs best for the 

black prairie physiographic region with the lowest threshold value of similarity whereas the 

alluvial plain had the greatest threshold value. Also, the boxplot of canopy heights by 

physiographic regions showed good agreement between ICESat-2 and ALS and greater MD for 

the higher height classes. As the height class increased, the agreement between the height 

products decreased. Similar results were also observed by Mulverhill et al. (2022). Overall, there 

was good correspondence between ICESat-2 and ALS for lower height classes i.e., 0-10 m and 

11-20 m, across various physiographic regions which shows potential of integrating two data 

sources for forest monitoring studies. All the physiographic regions in the <10 m height class 

showed ICESat-2 overestimating the canopy heights and gradually shifts to an underestimation 

as canopy height increased. The reason for this shift with canopy height for ICESat-2 is unclear, 

more related research could help improve the canopy height retrieval algorithm for ICESat-2. 

Another reason could be due to the impact of using discrete categories of height classes based on 

ALS which generated somewhat artificial over and underestimates at the low and high extremes 

of the canopy heights respectively. Also using new versions of data products would provide 
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better estimates of canopy height therefore we encourage other users to use the latest versions of 

these data products for research and applications.  

ICESat-2 seems to overestimate canopy heights for height class <10 m irrespective of the 

frequency of disturbances but in height classes >10 m, the ICESat-2 underestimated the canopy 

height. Differences between ICESat-2 and ALS increased with increasing canopy height. For 

height classes 11-20 m (Figure 1.22 and 1.23), the ICESat-2 and ALS have similar values 

compared to height classes such as 21-30 m and over 30 m. This suggests that tall trees are 

difficult to estimate than shorter ones. 

 Since we do not know if the disturbance is a stand-replacing disturbance or not, the 

differences would be greater in burned areas than in harvested areas, since burned areas are 

characterized by more heterogeneous forest structures following disturbance. If standing dead 

trees remained after disturbance, ICESat-2, ALS or both may have difficulty capturing the 

regeneration in such heterogeneous conditions. Even though the ICESat-2 underestimates canopy 

height, both height products captured patterns of height increment with a corresponding increase 

in the time since disturbance.  

Overall, the ICESat-2 seems to underestimate the canopy height for height class >10 m in 

all cases. This could be associated with the differences in the pulse density from the two different 

lidar sensors. The ICESat-2 illuminates the nominal 17 m diameter footprint on the surface every 

70 cm in the along-track direction and detects 0-4 photons over vegetations (Neuenschwander & 

Magruder, 2019). This lower number of returns may not be sufficient to estimate accurate 

canopy height at the footprint level. Another reason for the underestimation could be due to the 

high variance in estimated canopy height within the ICESat-2 segment, especially when the 

landcover within the segment is heterogeneous. Studies measuring the precision of individual 
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tree heights undertaken independently by different mensurationists demonstrate that difference in 

measurements for the same trees ranged between 0.1 and 4.2 m (Luoma et al., 2017). Moreover, 

the FIA guide indicates that the tolerance of the tree height measurement can be up to ± 10 % of 

true tree height (US Forest Service, 2007). The MD observed between the canopy height 

products from ICESat-2 and ALS along with the equivalence test in this study demonstrate that 

the differences are within the tolerance and hence the ICESat-2 canopy height data can be used 

for reliable estimates. 

The results from this study showed a good level of agreement between canopy height 

products from ICESat-2 and ALS. However, there were some unexpected observations that may 

be associated with the ICESat-2 data processing algorithms. The differences in the estimates 

were particularly due to the extreme estimates caused by noise and point cloud classification 

algorithms. Therefore, it is necessary to adequately clean the data by removing the outliers 

before using the ICESat-2 data. Another important thing to consider is that the discrete return 

systems can also be biased upwards as a function of leading-edge ranging (Queinnec et al., 

2021). Besides, it is also important to co-register all the dataset before carrying out further 

analysis. Results in this study are based on version 4 of the ICESat-2 ATL08 products. The 

ATL08 products are continuously updated with some improvements in the product. However, 

validating each version is also equally important to understand the performance of the product. 

This shows potential for integrating spaceborne lidar data into large scale forest monitoring 

activities with other optical datasets like Landsat and Sentinel-2. Since ICESat-2 has global 

coverage, unlike GEDI which does not have spatial coverage outside 51.6°N - 51.6°S latitude, it 

has greater potential in integrating with other data products (Dubayah et al., 2020).  
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This study provides insight in comparison between ICESat-2 and ALS data that will be 

useful to guide integration with other data sources in the future. ICESat-2 synergy with finer 

resolution dataset like Sentinel-2 data could be used to generate wall-to-wall estimate of forest 

structure. ICESat-2 data provides global spatial coverage as compared to ALS and could be used 

to augment the representation of ALS to inform generation of a wall-to-wall canopy height 

product. This could be further used to assess forest monitoring activities like ours over larger 

area to study impacts over disturbed areas. Another application would be to provide consistent 

measures of global tree heights which is critical for biomass estimation. 

1.6 Conclusions 

In this study, we evaluated the performance of ICESat-2 ATL08 canopy height products. 

The accuracy of the canopy height products from ICESat-2 was evaluated with reference to high 

resolution ALS data products of the same year. Overall, results indicate agreement between 

ICESat-2 and ALS derived canopy heights. Canopy height estimates from ICESat-2 varied with 

forest types, canopy structure and physiographic regions. Estimation of canopy height using high 

beam at night produced the most accurate estimation of canopy height. For forests with a 

moderate canopy cover, ICESat-2 provides accurate estimates. It shows potential to estimate 

canopy heights with a high degree of accuracy, especially for evergreen forests and other 

ecosystems similar to those found in the Black Prairie region. Another important application of 

ICESat-2 could be to detect forest disturbances and its recovery trajectory.  

From this study, we conclude that ICESat-2 can provide reliable canopy height estimates 

with high accuracy. It has potential to provide information on canopy height throughout the 

globe. Incorporating this data with other data sources such as optical images, and RADAR will 

further expand its application at multiple spatial and temporal scales. The findings presented in 
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this research provide information on the accuracy of the ICESat-2 canopy height product and its 

accuracy over different scenarios. It demonstrates the value and potential of integrating the use 

of diverse data sources for forest structure monitoring.  
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CHAPTER II 

MODELS TO PREDICT AIRBORNE LASER SCANNING CANOPY HEIGHT METRICS 

FROM ICESAT-2 SPACEBORNE LIDAR 

2.1 Introduction 

Canopy height has been used in deriving individual tree and stand-level variables such as 

standing volume, biomass, carbon stock, stand growth, productivity, and site index (Jurjević et 

al., 2020). Researchers have emphasized the importance of tree height in estimating above 

ground biomass (Wang et al., 2016), its relation to tree diversity (Zhang et al., 2022) and habitat 

for wildlife (Vaglio Laurin et al., 2019). Recent development in remote sensing technology like 

Terrestrial Laser Scanning (TLS), Airborne Lidar Scanning (ALS), and Unmanned Aerial 

Vehicles (UAV) have the prospect of precisely measuring tree height (Zhang et al., 2022) saving 

time and money. Among them, ALS has become popular for estimating canopy height and forest 

biomass across landscapes (Boudreau et al., 2008; Wang et al., 2016). Traditional forest 

inventories measure forest attributes such as canopy height, canopy cover, distribution of vertical 

layers, and biomass at local level and then extrapolated over a landscape either to estimate or 

derive those attributes using principles of statistical sampling.  However, air and spaceborne lidar 

systems have the capability to measure these attributes at a wider scale and a much faster rate, 

saving time and money (Wulder et al., 2012). 

Lidar remote sensing assists in the direct measurement and estimation of several crucial 

forest characteristics such as canopy height, sub-canopy topography, and the vertical distribution 
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of intercepted surfaces between the canopy top and the ground. Other forest structural 

characteristics, such as above-ground biomass, are modeled or inferred from these direct 

measurements (Dubayah & Drake, 2000). The laser beams from the lidar sensor penetrate forest 

canopy and provide details of ground vegetation. Because of this ability and independence from 

solar illumination, lidar-derived Canopy Height Models (CHM) are used to estimate tree height, 

and canopy cover (Ma et al., 2017). High-resolution canopy height models derived from ALS 

can provide detailed information on the vertical structure of forests. However, when compared to 

satellite data of similar resolution and extent, the ALS data are very expensive. Therefore, it is 

important to use a cost-effective approach that best meets monitoring goals and quantify forest 

resources from local to global scales. Spaceborne lidar missions, like ICESat-2, are capable of 

directly measuring canopy heights globally and provide a critical observation needed to improve 

our understanding of global carbon stocks (Neuenschwander & Magruder, 2019). ICESat-2 data 

provides a new opportunity to directly measure the height and distribution of boreal forest and 

other forests, which would otherwise be omitted from the next generation accounting of forest 

biomass using only ALS. 

ICESat-2 ATL08 data products have been used to determine terrain and canopy height 

over different forest types and ecozones (Malambo & Popescu, 2021). Many studies have used 

ALS data as a reference to compare ICESat-2 canopy heights and have shown good results (Liu 

et al., 2021; Queinnec et al., 2021). Wang et al., (2019) compared field measured height with 

ALS and Terrestrial Laser Scanner (TSL) and found that ALS based tree height estimates and 

field measurements have high correlation (𝑅2 = 0.94) and low error (RMSE = 1.69m). Liu et al., 

(2021) compared canopy heights derived from ICESat-2 with airborne lidar and reported 
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moderate correlation (𝑅2 = 0. 61) showing potential of ICESat-2 to estimate canopy height with 

good accuracy. 

Many airborne lidar datasets have been acquired over time under the USGS 3D Elevation 

Program (3DEP). However, ALS data are still not always open access, they are limited in terms 

of spatial and temporal coverage and are expensive and therefore, are unsuited for routine 

applications. Freely available ALS standard canopy height data with global coverage could aid in 

efficient canopy height estimation. Next generation lidar instruments like ICESat-2 are capable 

of global-scale mapping of forest canopy characteristics (Finley et al., 2017). It provides an 

opportunity to create wall-to-wall predictive maps of forest variables using statistical models to 

obtain ALS standard data products. Statistical models could be developed using a small subset of 

available ALS data to provide insights beyond the location of ALS measurements. Therefore, 

this study aims to develop models to predict ALS canopy height using freely available ICESat-2 

ATL08 canopy height data and generate wall to wall forest canopy height maps over the study 

area. 

2.2 Methods 

2.2.1 Study area 

The study area is the same as Chapter I (Figure 2.1). A detailed description of the study 

area is presented in Section 1.3.1 of Chapter I.  
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Figure 2.1 Map showing the study area within Mississippi state. The land use and land cover 

type are extracted from the National Land Cover Database (NLCD) 2019 (MRLC, 

2022). 
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2.2.2 Datasets 

The data used in this study are ALS and ICESat-2 ATL08 data from 2018 to 2020, the 

same data used in Chapter I. However, only the strong beams data acquired at night were used 

for the model development as our findings from Chapter I and other earlier studies have 

suggested that these datasets have lower statistical error (Liu et al., 2021; Neuenschwander et al., 

2020). A detailed description of the data is presented in Section 1.3.2 of Chapter I.  

2.2.3 Data management 

Further data cleaning was carried out to obtain clean data for modeling purpose. Firstly, 

we filtered ICESat-2 footprints using the following criteria:  

1. A relative uncertainty value of less than 20 m for canopy height 

(h_canopy_uncertainty <20 m) (Liu et al., 2022);  

2. Estimated forest canopy height should be greater than 2 m and less than 60 m. 

Secondly, we tested the datasets for possible outlying observations for all data using the 

Median Absolute Deviation (MEAD) using Equation (2.1) (Leys et al., 2013). Any observation 

outside the median ± 3 × MEAD was considered an outlier and removed from the dataset. This 

approach is not sensitive to outliers and is a more robust measure of dispersion that is easy to 

implement (Leys et al., 2013). 

𝑀𝐸𝐴𝐷 = 𝑏𝑀𝑖(|𝑥𝑖 − 𝑀𝑗(𝑥𝑗)|) 
(2.1) 

where 𝑥𝑖 is the set of n original observations, 𝑀𝑗 is the median of original observations, 

𝑀𝑖 is the median of the series, and b = 1.4826 is a constant associated with the normality 

assumption of the data without regarding the abnormality due to outliers (Leys et al., 2013). 
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2.2.4 Variable description and regression models  

The exploratory data analysis suggested a linear relationship between ICESat-2 and ALS 

height metrics. Therefore, linear regression was used to model ALS canopy height metrics from 

a set of selected ICESat-2 derived predictors. The description of the variables used in the model 

is shown in Table 2.1.  

Table 2.1 Description of variables used in model development. 

Variable Variable type Description 

CHM max Response (Continuous) Canopy Height Model derived 

maximum canopy height 

ALS max Response (Continuous) ALS maximum canopy height 

ALS RH99 Response (Continuous) ALS 99th percentile canopy height 

ICESat-2 max* Predictor (Continuous) ICESat-2 maximum canopy height 

ICESat-2 RH98* Predictor (Continuous) ICESat-2 98th percentile canopy 

height 

Forest type Predictor (Categorical) Deciduous, Evergreen, Mixed, 

Woody wetlands 

Physiographic regions Predictor (Categorical) Black Prairie, Pontotoc Ridge, 

Flatwoods, North central hills, 

Loess hill, Alluvial plain 

Disturbance presence Predictor (Binary) Yes or no 

Percent canopy cover Predictor (Binary) 0 to 1 

Signal to Noise Ratio (SNR)* Predictor (Continuous) Ratio of the number of ATL08 

signal photons to the number of 

noise photons per segment 

Terrain height* Predictor (Continuous) Height of terrain 

* indicates ICESat-2 parameters. 

Mississippi consists of 11 different physiographic regions, however the ALS data we 

used to develop the model were available only for six physiographic regions. Therefore, to 

predict the ALS height over the 6 physiographic regions the study used a linear mixed effects 
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model with physiographic region as a random variable, whereas for predicting the canopy height 

over the entire state of Mississippi, the study used a fixed effects model.  

First, the data was grouped by beam type and time of acquisition and divided into four 

subsets: strong beam data acquired at day, strong beam data acquired at night, weak beam data 

acquired at day, and weak beam data acquired at night. Then, the group that had the best 

evaluation statistics was used for model development. Both a linear fixed effects model (LM) 

and linear mixed effects model (LME) were created to predict ALS canopy height. Mixed effect 

models are primarily used to describe relationships between response variables and covariates in 

data that has been classified into one or more categories (Pinheiro et al., 2006). The fixed effects 

explain the variations whereas the random effects organize the unexplained variation (Robinson 

and Hamann, 2010). For LM, the study used forest types, canopy cover, disturbance presence, 

Signal to Noise Ratio (SNR), and year since disturbance as fixed effects. Whereas the random 

effect of physiographic regions was incorporated in the mixed effects model.  

The mixed-effect model was fitted using the lme function in ‘nlme’ package (Pinheiro et 

al., 2022) in R version 4.1.1. The general expression for a fixed and mixed model is defined in 

Equation 2.2 and 2.3 respectively. Residual plots of the models were visually assessed to 

evaluate the model assumptions. 

𝑌𝑖 = 𝑓(𝑿𝑖, 𝛽𝑖) + 𝜀𝑖 (2.2) 

𝑌𝑖 = 𝑓(𝑿𝑖 , 𝛼, 𝛽𝑖) + 𝜀𝑖 (2.3) 

where, 𝑌𝑖 is a vector of ALS canopy height (dependent variables); 𝑓 is the model equation 

form; 𝑿𝒊
’s is a matrix of the selected predictor variables; 𝛼 is a vector of random-effect 

parameters; 𝛽𝑖 is a vector of fixed-effects parameters; and 𝜀𝑖 is the error term. 



 

60 

To remedy the potential effect of collinearity, variance inflation factors (VIFs) were also 

used to investigate the relationships among variables. 

2.2.5 Model evaluation and validation 

The entire dataset was randomly split into two parts, with 75% for model development 

and 25% for validation. Validation data was then used to calculate model fit statistics including 

Mean Deviation (MD), Mean Absolute Deviation (MAD), Fit Index (FI), and Root Mean 

Squared Error (RMSE) to determine the accuracy of model estimations (Equation 2.4 – Equation 

2.7). The cross-validation process was repeated 20 times and the evaluation statistics were 

obtained by averaging over 20 iterations. Models that had smaller values of MD, MAD, and 

RMSE and higher values of FI were preferred as the best fit model. 

 

𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑀𝐷) =  ∑ (
𝑦𝑖 − 𝑦̂𝑖

𝑛
)

𝑛

𝑖=1

 
(2.4) 

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑀𝐴𝐷) =  ∑ (
|𝑦𝑖 − 𝑦̂𝑖|

𝑛
)

𝑛

𝑖=1

 
(2.5) 

 

𝐹𝑖𝑡 𝐼𝑛𝑑𝑒𝑥 (𝐹𝐼) = 1 − (
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

) 
(2.6) 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
1

𝑛
× ∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 (2.7) 

𝑦𝑖 and 𝑦̂𝑖 are observed and predicted values of the dependent variable; 𝑦̅𝑖 is the mean of 

the dependent variable; and n is the number of observations.  
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2.2.6 Interpolation 

Spatial interpolation is a method based on the Tobler's first law of geography that states 

that “everything is related to everything else, but near things are more related than distant things” 

(Tobler, 1970). Additionally, the Third Law of Geography hypothesizes that “near” things in 

similar geographic conditions should be more similar instead of things that are near only in 

spatial distance (Zhu et al., 2018). Regarding forest canopy height, it can be influenced by local 

environmental factors such as slope, aspect, and solar radiation (Simard et al., 2011; Tao et al., 

2016). Based on these ideas we can infer that the canopy height of trees close to each other have 

similar geographic conditions and are more related than distant trees. Consequently, interpolation 

can be used to obtain a uniform canopy height map over the study area. 

To obtain a uniform canopy height map over the study area, we used Ordinary Kriging 

(OK) interpolation method to interpolate canopy height from ICESat-2, ALS, and predicted 

canopy heights. OK of the canopy height data points was performed using the geostatistical 

analyst tool in ArcGIS software with the inclusion of a maximum of 5 data points at each 

interpolation node.  

2.3 Results 

Graphical analysis showed a linear relationship of ICESat-2 and ALS derived canopy 

heights for all pairs. For each linear fixed effect and linear mixed effect model of CHM max, 

ALS max and ALS RH99, the models were run twice to obtain only the significant variables (p-

value <0.05) (Table 2.2 - 2.4). The variance inflation factor (VIF) among the variables were also 

computed to investigate the relationships among variables. The VIF values for all the variables: 

ICESat-2 canopy height (1.10), forest type (1.93), physiographic regions (1.62), disturbance 
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history (1.15), canopy cover (1.28), and SNR (1.01) were found to be <2 which indicate that the 

variables were not correlated.  

In the case of the CHM max fixed-effect model, ICESat-2 max, forest type, SNR, canopy 

cover, SNR, and disturbance presence were statistically significant whereas terrain height was 

not (p-value < 0.05) (Table 2.2). Among the forest types, CHM max was predicted highest for 

deciduous forest whereas the other forest types had smaller predicted CHM max. Similarly, the 

higher CHM max was predicted when disturbance was not present. Similar results were also seen 

in the mixed-effect model.  

Table 2.2 Parameters, estimates, standard errors (SE), and t-values for the CHM max model 

Variable Parameter Estimate SE |t-value| p-value 

LM  

Intercept 𝑏1 6.1636 0.1528 40.331 < 0.001 

ICESat-2 max* 𝑏2 0.8071 0.0046 174.993 < 0.001 

Forest type (FT) 

𝑏3 = deciduous 

𝑏3 = evergreen 

𝑏3 = mixed 

𝑏3 = woody wetlands 

0    

-1.3668 0.0651 20.984 < 0.001 

-0.4372 0.0678 6.444 < 0.001 

-0.7597 0.0656 11.575 < 0.001 

Disturbance  𝑏4= yes -0.4365 0.0522 8.358 < 0.001 

SNR* 𝑏5 0.0011 0.0006 2.085 < 0.001 

Canopy cover 𝑏6 1.5250 0.2028 7.519 0.037 

LME  

Intercept 𝑏1 5.8576 0.2022 28.972 < 0.001 

ICESat-2 max* 𝑏2 0.8087 0.0046 174.838 < 0.001 

Forest type (FT) 

𝑏3 = deciduous 

𝑏3 = evergreen 

𝑏3 = mixed 

𝑏3 = woody wetlands 

0    

-1.3976 0.0663 21.069 < 0.001 

-0.4629 0.0683 6.774 < 0.001 

-0.5644 0.0751 7.51 < 0.001 

Disturbance 𝑏4 = yes -0.4363 0.0523 8.344 < 0.001 

SNR* 𝑏5 0.0013 0.0006 2.449 0.014 

Canopy cover 𝑏6 1.8185 0.2087 8.71 < 0.001 

LM = Linear fixed effect model; LME = Linear mixed effect model; SE = Standard Error;  

SNR = Signal to Noise Ratio; * indicates ICESat-2 parameters 
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For the ALS max fixed-effect model, all the predictor variables (ICESat-2 max, forest 

type, SNR, canopy cover, and disturbance presence) were statistically significant (Table 2.3). 

Among the forest types, ALS max was predicted highest for deciduous forest whereas the other 

forest types had smaller predicted ALS max. Similarly, the higher ALS max was predicted when 

disturbance was not present. Similar result was observed in the mixed-effects model except that 

lower ALS max was predicted with increasing terrain height. 

Table 2.3 Parameters, estimates, standard errors (SE), and t-values for the ALS max model 

Variable Parameter Estimate SE |t-value| p-value 

LM  

Intercept 𝑏1 6.5015 0.1828 35.572 < 0.001 

ICESat-2 max* 𝑏2 0.8053 0.0047 172.623 < 0.001 

Forest type (FT) 

𝑏3 = deciduous 

𝑏3 = evergreen 

𝑏3 = mixed 

𝑏3 = woody wetlands 

0    

-1.3973 0.0657 21.257 < 0.001 

-0.4801 0.0682 7.038 < 0.001 

-0.8377 0.0780 10.735 < 0.001 

Disturbance 𝑏4= 1 -0.4964 0.0526 -9.43 < 0.001 

SNR* 𝑏5 0.0013 0.0006 2.274 0.023 

Canopy cover 𝑏6 1.4086 0.2080 6.771 1.33 

LME     

Intercept 𝑏1 6.3516 0.2374 26.754 < 0.001 

ICESat-2 max* 𝑏2 0.8037 0.0047 1.72 < 0.001 

Forest type (FT) 

𝑏3 = deciduous 

𝑏3 = evergreen 

𝑏3 = mixed 

𝑏3 = woody wetlands 

0    

-1.4357 0.0667 21.512 < 0.001 

-0.5130 0.0688 7.460 < 0.001 

-0.7096 0.0847   

Disturbance 𝑏4= yes -0.5017 0.0526 9.534 0.007 

SNR* 𝑏5 0.0015 0.0006 2.666 < 0.001 

Canopy cover 𝑏6 1.6923 0.2134 7.929 < 0.001 

Terrain height* 𝑏7 -0.0033 0.0011 26.754 0.004 

LM = Linear fixed effect model; LME = Linear mixed effect model; SE = Standard Error; 

SNR = Signal to Noise Ratio; * indicates ICESat-2 parameters. 

Also, for the ALS RH99 fixed-effect model, ICESat-2 RH98, forest type, SNR, canopy 

cover, and disturbance presence were statistically significant whereas terrain height was not 
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(Table 2.4). Among the forest types, ALS RH99 was predicted highest for deciduous forest 

whereas the other forest types had smaller predicted ALS RH99. Similarly, the ALS RH99 was 

predicted higher when disturbance was not present. Similar results were also seen in the mixed-

effects model.  

Table 2.4 Parameters, estimates, standard errors (SE), and t-values for the ALS RH99 model 

Variable Parameter Estimate SE |t-value| p-value 

LM  

Intercept 𝑏1 6.1485 0.1454 42.276 < 0.001 

ICESat-2 RH98* 𝑏2 0.8064 0.0045 179.738 < 0.001 

Forest type (FT) 

𝑏3 = deciduous 

𝑏3 = evergreen 

𝑏3 = mixed 

𝑏3 = woody wetlands 

0    

-1.2851 0.0636 20.206 < 0.001 

-0.4212 0.0663 6.352 < 0.001 

-0.8155 0.0640 12.736 < 0.001 

Disturbance 𝑏4= 1 -0.5010  0.0511 9.812 < 0.001 

SNR* 𝑏5 0.0024 0.0005 4.488 < 0.001 

Canopy cover 𝑏6 0.5162 0.1980 2.61 0.009 

LME  

Intercept 𝑏1 5.9372 0.1751 33.913 < 0.001 

ICESat-2 RH98* 𝑏2 0.8054 0.0045 179.409 < 0.001 

Forest type (FT) 

𝑏3 = deciduous 

𝑏3 = evergreen 

𝑏3 = mixed 

𝑏3 = woody wetlands 

0    

-1.3197 0.0648 20.350 < 0.001 

-0.4468 0.0669 6.683 < 0.001 

-0.6951 0.0723 9.61 < 0.001 

Disturbance 𝑏4= 1 -0.5058 0.0512 9.882 < 0.001 

SNR* 𝑏5 0.0025 0.0005 4.7166 < 0.001 

Canopy cover 𝑏6 0.7418 0.2042 3.63 < 0.001 

LM = Linear fixed effect model; LME = Linear mixed effect model; SE = Standard Error;  

SNR = Signal to Noise Ratio; * indicates ICESat-2 parameters. 

The standardized residual vs. fitted plots were also evaluated for both the LM and LME 

for CHM max, ALS max, and ALS RH99 (Figure 2.2 – 2.4). Both the LM and LME showed a 

similar residual value in all cases. 
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Figure 2.2 Standardized residuals plotted against fitted values of CHM max for LM and LME 

models. 

 

Figure 2.3 Standardized residuals plotted against fitted values of ALS max for LM and LME 

models.   
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Figure 2.4 Standardized residuals plotted against fitted values of ALS RH99 for LM and 

LME models.   

Inclusion of the physiographic regions as a random effect produced slightly better 

evaluation statistics for ALS canopy height models (Table 2.5). A small reduction in MAD and 

RMSE was observed in the LME. Among CHM max, ALS max and ALS RH99 canopy height 

predictions, the LME model for ALS RH99 had the highest FI (0.73) and lowest RMSE (2.63).  

Table 2.5 Cross validation results for comparison of LM and LME models. 

Response variable Model MD MAD FI RMSE 

CHM max LM 0.0011 1.9711 0.7213 2.7286 

 LME 0.0007 1.9687 0.7219 2.7255 

ALS max LM 0.0087 1.9656 0.7228 2.7101 

 LME 0.0089 1.9638 0.7235 2.7070 

ALS RH99 LM 0.0150 1.8886 0.7358 2.6383 

 LME 0.0150 1.8879 0.7362 2.6363 

LM = Linear fixed effect model; LME = Linear mixed effect model; MD = Mean deviation; 

MAD = Mean absolute deviation; FI = Fit index; RMSE = Root mean square error. 
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We discovered that the LME was superior to the LM for predicting ALS metrics using 

ANOVA model comparison (Table 2.6), as evidenced by the AIC, BIC, and log likelihood of the 

two models.  

Table 2.6 Comparison of fixed- and mixed-effects models for predicting ALS metrics using 

ICESat-2 derived metrics. AIC = Akaike Information Criterion, BIC = Bayesian 

Information Criterion. Smaller values of AIC, BIC, and larger values of Log-

Likelihood are preferred. 

Response variable Model AIC BIC Log-Likelihood p-value 

CHM max LM 67541.61 67632.11 -33758.81 <.0001 

 LME 67505.43 67603.47 -33739.71  

ALS max LM 67663.25 67746.21 -33820.62 <.0001 

 LME 67635.44 67725.95 -33805.72  

ALS RH99 LM 66942.97 67025.94 -33460.48 <.0001 

 LME 66929.52 67020.03 -33452.76  

LM = Linear fixed effect model; LME = Linear mixed effect model 

The cross-validation result, standardized residual plots, and ANOVA comparison show 

that the LME performs slightly better than the LM, therefore this study used the LME to predict 

ALS canopy height within the study area and the LM to predict ALS height over the entire state 

of Mississippi for which physiographic information was incomplete.  

Since, ICESat-2 canopy height data collected throughout the Mississippi covered the 

majority of the areas (Figure 1.3), we interpolated canopy height for ICESat-2 as well as 

predicted ALS over the whole state of Mississippi. Predicted CHM max, ALS max and ALS 

RH99 canopy heights over all of Mississippi can be found in Appendix B (Figure B.1 – B.3). 

2.4 Discussion 

In this study, we used linear regression models to estimate ALS canopy height from 

ICESat-2 canopy height metrics. Studies on lidar have shown potential of relative height (RH) 

percentiles in regression models for predictions (Ku et al., 2012). For example, Sheridan et al., 
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(2014) used the 90th height percentile calculated from ALS as one of the best predictors of gross 

volume of Pacific Northwest FIA plots. There are several factors that influence ICESat-2 canopy 

height estimates such as site, biome, data acquisition time and beam strength (Liu et al., 2021; 

Malambo & Popescu, 2021; Varvia et al., 2022). Yu et al., (2022) suggested that strong beams at 

night are most suitable for retrieving canopy height estimates, which was the case in this study.  

An important predictor with positive influence on canopy height observed in this study 

was canopy cover, which is in line with the finding of Mulverhill et al., (2022) who found 

significant positive influence of forest canopy cover on ICESat-2 canopy height. In our study, 

canopy height models for CHM max, ALS max, and ALS RH99 predicted canopy heights with 

higher estimates as canopy cover increased. Narine et al., (2019) also found canopy cover to be 

an important predictor to estimate aboveground biomass using simulated ICESat-2 data. 

Similarly, another important predictor with positive influence on ALS canopy height is the SNR. 

Researchers have shown that SNR is an influential variable and higher SNR is important to 

generate more accurate terrain and canopy heights (Liu et al., 2021; Popescu et al., 2018). 

Studies have shown that in case of higher SNR, most signal photons can be separated from noise 

photons and therefore lower RMSE can be seen in determining the canopy heights (Wang et al., 

2019). A study by Popescu et al., (2018) used night data with higher SNR values and generated 

more accurate estimated canopy height as compared to their corresponding reference data with a 

RMSE of 3.77 m. The models in our study also showed that SNR had significant positive impact 

on ALS canopy height prediction with low standard error. 

The negative effect of disturbance presence on canopy height implies that ALS predicts 

smaller canopy height when measuring canopy heights in presence of disturbance. This finding is 

consistent with Mulverhill et al., (2022) who found lower canopy heights in forests following 
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disturbances. However, the limitation of this study is that we do not know if the disturbance is a 

stand-replacing disturbance or not. If standing dead trees persisted after disturbance, it may be 

difficult to capture the regenerating vegetation height under such heterogeneous conditions.  

Physiographic regions have a considerable impact on dominant height, stand basal area, 

and site index (Amateis et al., 2006). While fitting equations for canopy height estimates, using 

the LME method with physiographic regions as a random variable produced smaller MD and 

RMSE, and more reliable results than the standard LM model. Therefore, it is important to 

consider the uncertainty in the physiographical aspect on canopy height estimation using ICESat-

2. However, the gain in precision was minimal in this study. 

The model’s ability to predict ALS standard canopy height has practical relevance. 

Studies have used ALS height metrics to estimate volume, basal area, and above ground biomass 

with good accuracy (𝑅2 > 0.8) (Lim et al., 2003; Lim et al., 2006). This predictive ability offers 

new opportunities for enhanced forest monitoring, management, and planning. Moreover, the 

results presented in this study was used to model ALS canopy height only over a small part of 

Mississippi. However, it can be used to facilitate extrapolating the data to provide wall-to-wall 

coverage over larger areas such as the whole state. Moreover, the predictions could also be 

improved by combining lidar data with other optical dataset like Landsat and Sentinel-2 (Jiang et 

al., 2022). 

2.5 Conclusions 

The use of the LME technique while fitting equations for ALS canopy height prediction 

produced smaller MAD and RMSE than using LM model. This study showed that the linear 

mixed effect modeling approach can produce more reliable results than a standard fixed effect 

model. The FI values obtained from the regression models, ranging from 0.72 to 0.73, highlight 
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the predictive ability of ICESat-2 metrics to characterize canopy height. While using ICESat-2 to 

predict ALS height, it is important to filter the observations by strong beam data acquired at 

night and integrate variables like forest types, physiographic regions, terrain height, SNR, 

canopy cover and disturbance history. Hence, from this study we conclude that ICESat-2 data 

can be used to predict ALS standard canopy height using statistical models with good accuracy. 

However, the limitation of this study is that the model did not include additional variables like 

slope, aspect, forest stand structure, density or seasonally affected variables (i.e., leaf on and leaf 

off), which could influence canopy height or sensor returns. Therefore, the inclusion of such 

variables in the canopy height models could further improve the model’s predictive power. 

Moreover, this study focused only on a part of Mississippi, so scaling-up to regional and 

continental scales should be done cautiously and variations in forest types and topography must 

be taken into account as these factors influence the accuracy of estimates. 
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APPENDIX A 

EQUIVALENCE TEST FIGURES 
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Figure A.1 Equivalence test for strong and weak beams from ICESat-2 and ALS  

 

Figure A.2 Equivalence test for day and night beams from ICESat-2 and ALS  
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Figure A.3 Equivalence test for strong and day/night data from ICESat-2 and CHM max 

 

 

Figure A.4 Equivalence test for weak and day/night data from ICESat-2 and CHM max 
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Figure A.5 Equivalence test for canopy cover for ICESat-2 max vs. CHM max 

 

 

Figure A.6 Equivalence test for canopy cover for ICESat-2 vs. ALS max  
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Figure A.7 Equivalence test for canopy cover for ICESat-2 RH98 vs. ALS RH99 

 

 

Figure A.8 Equivalence test for disturbance frequency for ICESat-2 max vs. CHM max 
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Figure A.9 Equivalence test for disturbance frequency ICESat-2 max vs. ALS max 

 

 

Figure A.10 Equivalence test for disturbance frequency of ICESat-2 RH98 vs. ALS RH99 
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Figure A.11 Equivalence test for time since disturbance of ICESat-2 max vs. CHM max 

 

 

Figure A.12 Equivalence test for time since disturbance of ICESat-2 max vs. ALS max 
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Figure A.13 Equivalence test for time since disturbance of ICESat-2 RH98 vs. ALS RH99 
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APPENDIX B 

INTERPOLATED CANOPY HEIGHT MAPS OF MISSISSIPPI 
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Figure B.1 Observed ICESat-2 max vs. predicted CHM max canopy heights over Mississippi 
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Figure B.2 Observed ICESat-2 max vs. predicted ALS max canopy heights over Mississippi 
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Figure B.3 Observed ICESat-2 RH98 vs. predicted ALS RH99 canopy heights over 

Mississippi 
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