
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-9-2022

Comparing importance of knowledge and professional skill areas Comparing importance of knowledge and professional skill areas

for engineering programming utilizing a two group Delphi survey for engineering programming utilizing a two group Delphi survey

John F. Hutton
Mississippi State University, jfh232@msstate.edu

John F. Hutton
Mississippi State University, john.f.hutton@gmail.com

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

 Part of the Engineering Education Commons, Other Computer Engineering Commons, and the Other

Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Hutton, John F. and Hutton, John F., "Comparing importance of knowledge and professional skill areas for
engineering programming utilizing a two group Delphi survey" (2022). Theses and Dissertations. 5665.
https://scholarsjunction.msstate.edu/td/5665

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1191?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5665?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5665&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template C v4.3 (beta): Created by T. Robinson 01/2021

Comparing importance of knowledge and professional skill areas for engineering programming

utilizing a two group Delphi survey

By

TITLE PAGE

John F. Hutton

Approved by:

Jean Mohammadi-Aragh (Major Professor)

John E. Ball

Bryan Jones

Chaomin Luo

Jenny Du (Graduate Coordinator)

Jason M. Keith (Dean, Bagley College of Engineering)

A Dissertation

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in Electrical and Computer Engineering

in the Department of Electrical and Computer Engineering.

Mississippi State, Mississippi

December 2022

Copyright by

COPYRIGHT PAGE

John F. Hutton

2022

Name: John F. Hutton

ABSTRACT

Date of Degree: December 9, 2022

Institution: Mississippi State University

Major Field: Electrical and Computer Engineering

Major Professor: Jean Mohammadi-Aragh

Title of Study: Comparing importance of knowledge and professional skill areas for engineering

programming utilizing a two group Delphi survey

Pages in Study: 166

Candidate for Degree of Doctor of Philosophy

All engineering careers require some level of programming proficiency. However,

beginning programming classes are challenging for many students. Difficulties have been well-

documented and contribute to high drop-out rates which prevent students from pursuing

engineering. While many approaches have been tried to improve the performance of students and

reduce the dropout rate, continued work is needed. This research seeks to re-examine what items

are critical for programming education and how those might inform what is taught in

introductory programming classes (CS1). Following trends coming from accreditation and

academic boards on the importance of professional skills, we desire to rank knowledge and

professional skill areas in one list. While programming curricula focus almost exclusively on

knowledge areas, integrating critical professional skill areas could provide students with a better

high-level understanding of what engineering encompasses. Enhancing the current knowledge

centric syllabi with critical professional skills should allow students to have better visibility into

what an engineering job might be like at the earliest classes in the engineering degree. To define

our list of important professional skills, we use a two-group, three-round Delphi survey to build

consensus ranked lists of knowledge and professional skill areas from industry and academic

experts. Performing a gap analysis between the expert groups shows that industry experts focus

more on professional skills then their academic counterparts. We use this resulting list to

recommend ways to further integrate professional skills into engineering programming

curriculum.

ii

DEDICATION

Dedicated to my wife, Marlene Hutton who has been my most stalwart supporter, and

encourager. I could have done none of this without her. Praise to God the Father and Christ my

savior who always sustains me.

iii

ACKNOWLEDGEMENTS

Microsoft and my managers supported my dissertation work through their continuing

education benefit. Both their financial support as well as ongoing encouragements helped make

this a reality.

I am deeply grateful to all my survey participants. My engineering friends and peers took

time out of their busy days to complete all the surveys. They also endured some hiccups at the

start as I was learning the survey system. My academic experts agreed to help based on a blind

email, and most of them stuck around through all three rounds despite my timing being near the

end of the spring semester and start of summer. Without all my experts’ diligence I would not

have been able to complete this work.

Thanks to each of my committee members for their help and support. They have been by

me through many changes and several delays. Special thank to Prof. Jean Mohammadi-Aragh

for her support of this remote student for the past four plus years. Being allowed to come

alongside for her NSF grant work is an honor.

My wife, Marlene, has been enduring upwards of five years of me working full time and

PhDing part time. She has also had the pleasure (or pain) of editing every word I have written

throughout this process (though any remaining mistakes are solely mine).

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... viii

LIST OF FIGURES ...x

CHAPTER

I. INTRODUCTION ...1

1.1 Introduction ...1
1.2 Brief history of CS1 course content ..2

1.3 Defining knowledge and skills ..3
1.3.1 Knowledge areas ...3

1.3.2 Professional skills ..4
1.4 Should professional skills be added to engineering programming curricula?5

1.4.1 Industry ..6
1.4.2 Academia ...7

1.4.3 Understanding gaps between industry and academia8
1.5 Problem statement ...9

II. REVIEW OF LITERATURE ..12

2.1 Current state of CS1 courses ...12
2.2 Research on knowledge ...12

2.2.1 Computational thinking ...13

2.2.2 Additional research on knowledge ..15
2.3 Research on skills ..21
2.4 History of Delphi Technique ...28

2.5 Pedagogical methods ...30
2.5.1 Traditional ...31
2.5.2 Competency-Based ..31
2.5.3 Active learning ..31

2.5.4 Flipped classroom ..32
2.5.5 Inquiry-based ...33

2.5.5.1 Problem-based, Research-based, Design-based33
2.5.5.2 Simulation-based ...33

v

2.5.5.3 Team-based ..34
2.5.6 Assessments ...34

2.5.6.1 Challenge-based assessment ..34
2.5.6.2 Competency-based assessment ..34
2.5.6.3 Peer assessment ...35

2.5.7 Pedagogical methods summary ...35

III. METHODS: DELPHI SURVEY WITH EXPERT CLASSIFICATION36

IV. RESULTS: FORTUNE 500 COMPANY INDUSTRY EXPERTS49

4.1 Industry experts ...49
4.2 Expert classification breakdown ..49

4.2.1 Coding area ..49
4.2.2 Hiring involvement ..51
4.2.3 Number of interviews ..52
4.2.4 Training involvement ..53

4.2.5 Main coding language ...54
4.2.5.1 Other languages ...55

4.2.6 Percentage of time coding ...56
4.2.7 Self-ranking skill level ..57

4.2.7.2 Explain your ranking ...58

4.2.8 Years at skill level ...58
4.2.9 Classification summary and discussion ...59

4.3 Round 1 results ..60
4.3.1 Classification examples ...60

4.3.1.1 Example one – concise response ...60
4.3.1.2 Example two – descriptive with additional details62

4.3.2 Round 1 area “hit-list” ...65
4.3.3 Discussion ..67

4.4 Delphi Round 2 results ..68

4.4.1 Comparison between Round 2 and Round 1 results71
4.4.2 Discussion ..74

4.5 Delphi Round 3 results ..75

4.5.1 Discussion ..78
4.6 Implications ...82

V. RESULTS: ACADEMIC EXPERTS ..84

5.1 Academic experts ..84
5.2 Expert classification breakdown ..84

5.2.1 Coding area ..85
5.2.2 Courses taught ...86

5.2.3 Years teaching ...87
5.2.4 Conducts research ..88
5.2.5 Main coding language ...89

vi

5.2.6 Industry experience ...90
5.2.6.1 Years of industry experience ...91

5.3 Classification summary ...91
5.4 Round 1 results ..92

5.4.1 Round 1 area “hit list” ...92
5.4.2 Discussion ..94

5.5 Academic Round 2 analysis ..96

5.5.1 Academic hit-list to Round 2 results deltas ...98
5.5.2 Discussion ..100

5.6 Academic Round 3 analysis ..101
5.6.1 Discussion ..105

5.7 Industry/academic gap analysis ...105

5.7.1 Where industry and academic experts agree ...105

5.7.2 Second tier results, key professional skills ..107
5.7.3 Comparison of low ranked items between expert groups109

VI. CONCLUSION ...112

6.1 Review of our industry and academic individual results114
6.1.1 Industry results ..114
6.1.2 Academic results ...114

6.2 Key findings between our industry and academic experts115
6.3 Recommendations for engineering-based computer programming courses117

6.3.1 Recommendation #1: Continue to emphasize the importance of problem

solving, fundamentals of programming, and testing and debugging in all

engineering programming courses. ...118

6.3.2 Recommendation #2: Find new ways to instruct, highlight, and assess

important professional skills. ...118
6.3.3 Recommendation #3: Deemphasize less important knowledge areas to make

room for additional focus on professional skills. ..120

6.4 Contributions to the field of Computing Education ..121
6.4.1 What does an educator know now? ...121
6.4.2 What does a researcher know now? ..122

6.5 Limitations ...124
6.5.1 Defining and building a hierarchy of terms ...124
6.5.2 Diversity across our industry and academic groups.125
6.5.3 Attrition through the survey process ...125
6.5.4 Clear identification of knowledge areas which could be deemphasized126

6.6 Future research ..127
6.6.1 Professional skills in the classroom ...127

6.6.2 Fleshing out “fundamentals of programming” and “testing and debugging”

 ...128
6.6.3 Bridging the gap between industry and academics128

6.7 Closing remarks ...129

REFERENCES ..131

vii

APPENDIX

A. ROUND 1: DELPHI SURVEY OPENENDED AND CLASSIFICATION

QUESTIONS ..141

A.1 Delphi Questions ...142
A.2 Classification Questions – Industry Experts ..143
A.3 Classification Questions – Academic Experts ...144

B. KNOWLEDGE AND SKILL AREAS – CLASSIFICATION FRAMEWORK LISTS

 ..146

B.1 Partial Framework - Knowledge ...147

B.2 Partial Framework – Professional Skills ...150

B.3 Added Items ...152

C. SURVEY COMPLETION RATES AND BOILERPLATE EMAILS155

C.1 Delphi survey emails and interactions ...156
C.2 Boilerplate email ...157

C.2.1 Personal industry initial invite to join my expert team Subject: Looking for

your help (personal research) ..157

C.2.2 Personal “thank you” of someone agrees ..158
C.2.3 Personal “survey away” email. Subject: Round 1 survey sent!158
C.2.4 Initial Email with Qualtric link (from university email) Subject: Delphi

Survey Round 1 Invitation ...158

C.2.5 Thanks for completing survey Subject: Thanks for completing the Round 1

survey! ...159
C.2.6 Round 2 email Delphi Survey for John Hutton's PhD Research - Round 2 159

C.2.7 Round 2 Qualtric Message ..160
C.2.8 Round 3 email Subject: Delphi Survey for John Hutton's PhD Research -

Round 3 ...160

C.2.9 Academic ECE and CS Head Request for help Subject: Assistance with PhD

research in Engineering Programming ..162

C.2.10 Academic Personal Subject: Re: Assistance with PhD research in

Engineering Programming ...162
C.2.11 Academic Round 1 Qualtric Initial Email Subject: Delphi Survey Invitation

 ...163
C.2.12 Personal email if I fear spam capture! Subject: Round 1 Survey on-the-way

 ...164
C.2.13 Academic Round 2 email Subject: Delphi Survey for John Hutton's PhD

Research - Round 2 ...164
C.2.14 Aca Round 2 Qualtric Message Subject: Delphi Survey for John Hutton's

PhD Research - Round 2 ...165

C.2.15 Aca Round 2 email Subject: Delphi Survey for John Hutton's PhD Research

- Round 3 ...165

viii

LIST OF TABLES

Table 2.1 Top areas from Becker’s syllabi analysis ...17

Table 2.2 EUR-ACE eight learning areas ..18

Table 2.3 IEA Graduate Attributes and Professional Competencies [46] p15-1818

Table 2.4 Elements of Foundational and Professional Knowledge ..22

Table 2.5 Prospective Elements of Dispositions ..22

Table 2.6 Ten most and least important skills reproduced from [52]...24

Table 4.1 Additional languages mentioned ..56

Table 4.2 Framework Mapping of example expert 1 ...61

Table 4.3 Framework Mapping of example expert 2 ...65

Table 4.4 Industry Framework Mapping “Hit-List” ...66

Table 4.5 Round 2 statistical data of all industry results (28/31 samples)69

Table 4.6 Round 2 ranking versus Round 1 hit list ranking ...71

Table 4.7 Statistical data of all industry Round 3 results (24/31 samples)76

Table 4.8 Round 3 ranking and mean versus Round 2 ...77

Table 4.9 Top ten Round 3 categories ..82

Table 4.10 Bottom ten Round 3 categories ..83

Table 5.1 Academic framework mapping “hit-list” ...92

Table 5.2 Professional Skills comparison of Industry and Academic Round 1 results95

Table 5.3 Round 2 statistical data of all academic results (23/33) ...96

Table 5.4 Round 2 ranking versus Round 1 hit-list ranking ...98

ix

Table 5.5 Academic Round 3 statistical results with ranking ..102

Table 5.6 Academic Round 2 to Round 3 top 10 deltas ...103

Table 5.7 Academic Round 2 to Round 3 deltas by largest moves ..104

Table 5.8 Highest rated professional skills ...109

Table 6.1 Top industry results (from Table 4.7)...114

Table 6.2 Top academic results (from Table 5.5)...115

Table 6.3 Professional skills to emphasize in degree, programming, and individual

classes (from Table 5.8) ...119

Table 6.4 Knowledge areas to deemphasize in degree, programming, and individual

classes ...120

Table 6.5 Expert survey completion rate ..126

Table B.1 Comparison of knowledge areas from several references [14], [40], [42],

[44], [47]. ..147

Table B.2 Comparison of professional skill areas from eight references [17], [44], [45],

[48], [52], [109], [111]–[113]. ..150

Table C.1 Round completion rates for both expert groups ...156

x

LIST OF FIGURES

Figure 2.1 Framework for programming knowledge based on [47]. ...20

Figure 2.2 Conceptual Structure of the CC2020 Competency Model (based on original

figure in [15]) ...21

Figure 4.1 Contemporary view of the landscape of computing education (based on

original figure in [15]) ..50

Figure 4.2 Result: Where do you spend most of your coding time?..51

Figure 4.3 Result: How involved are you with hiring? ..52

Figure 4.4 Result: How many interviews have you been involved in in the last year?53

Figure 4.5 Result: How involved are you with training/mentoring new hires?54

Figure 4.6 Result: What languages do you spend the most time in? ...55

Figure 4.7 Result: How much of your current job involves coding? ...56

Figure 4.8 Result: How would your rank your skill level? ..57

Figure 4.9 Result: How many years have you been this skill level? ...58

Figure 4.10 Round 2 boxplot of all industry result question statistics sorted by mean.70

Figure 4.11 Example of Round 3 survey ...75

Figure 4.12 Round 2 histogram for “Problem solving” ...79

Figure 4.13 Round 3 histogram for “Problem solving” ...80

Figure 5.1 Contemporary view of the landscape of computing education (based on

original figure in [15]) ..85

Figure 5.2 Result: Where do you spend most of your coding time ...86

Figure 5.3 Result: What level of engineering/computer science programming courses do

you teach ...87

xi

Figure 5.4 Result: How long have you been teaching ...88

Figure 5.5 Result: Do you conduct research in programming or programming educations88

Figure 5.6 Result: What languages do you spend the most time in or teach89

Figure 5.7 Result: Do you have industry experience ...90

Figure 5.8 Academic years of industry experience ..91

Figure 5.9 Round 2 boxplot of all academic result question statistics sorted by mean

rank. ..97

Figure 5.10 Industry and academic Round 3 top-ten comparison ...106

Figure 5.11 Industry and academic Round 3 bottom-eleven comparison110

1

CHAPTER I

INTRODUCTION

1.1 Introduction

Engineering degrees, as well as engineering careers, depend on some proficiency with

programming. While most engineers will take several programming classes in pursuit of their

degree, as well as using programming to solve problems in some of their engineering classes,

learning programming knowledge must be coupled with development of professional skills to be

a truly effective engineer. While we would like to consider recommendations which apply at the

engineering degree level, we are narrowing our research to engineering programming. As we

consider the challenges, even at this narrowed scope, we begin our problem analysis by looking

at introductory computer programming, often referenced as CS1.

CS1 is one of the fundamental courses engineering students take early in their college

career. Programming can be difficult to learn [1] and some percentage of students fail or drop out

[2]. Motivations for dropping out are complex [3]. One area of current research is trying to assess

what the difficulties are in both teaching and learning CS1 material [4]. Another orthogonal area

of research is searching for ways to improve or enhance the curriculum. Examples here are

adding methods like peer instruction [5], [6], adding gaming to the programming content [7], and

including automation in assistive programming tools and assessments grading [8]–[11]. Research

continues because we do not yet have a complete understanding of how to improve programming

instruction that can translate to the variety of programming classes, teachers, and students. This

2

dissertation implements a survey with supporting methods and analysis, to discover possible

focus areas that could enhance student motivation and improve performance in engineering

programming courses.

1.2 Brief history of CS1 course content

To study what content areas a CS1 course covers, we start at a high level by considering

what has changed in CS1 curricula over the past twenty years. Pears et. al., in their survey of

literature from 2007 [12], studied papers on CS1 courses and generalized these papers into four

areas: curricula, pedagogy, language choice, and tools. Forward to 2019 where a similar paper by

Becker et. al. [13] showed how paper topics have expanded to encompass eight categories. While

they had the same starting four topics as the 2007 study, they sub-divided the group called

“curricula” into two separate groups: CS1 design, structure, and approach; and CS1 content. In

addition, they added three previously unclassified groups: collaborative approaches, learning and

assessment, and students. It may not surprise anyone today that the category “students” had the

largest number of papers in the 2010s. Some of the sub-divisions of the “students” group include:

teaching CS1 to non-majors; student retention; gender, diversity, inclusion and accessibility; and

predicting and measuring success. We see an expansion across these 20 years broadening the

study of what goes into CS1 material. Considering this expanded focus where the student is key,

we believe there are untapped areas for ideas of continuing to improve the CS1 course as well as

engineering programming courses generally.

Looking beyond literature reviews into curriculum content, Becker and Fitzpatrick [14],

reviewed 234 CS1 syllabi from 207 institutions and evaluated all of the learning outcomes to

create a list of 54 key concepts. Of these, 52 were knowledge-based items like testing and

debugging, writing programs, and if/then statements. The two remaining concepts were problem

3

solving, and teamwork and communication. These two concepts are not knowledge areas; they

are professional skills. These skills are learned, but they have a much broader application than a

knowledge-based item like “writing programs”. “Problem solving” is critical for a programming

course, but it is also critical for almost every engineering course. We will define professional

skills more clearly later in this chapter. We believe these skills represent the tip of the iceberg

when it comes to a full set of professional skills that are important to both programming and

engineering.

1.3 Defining knowledge and skills

Before we proceed to look deeper into the area knowledge and skill areas in the next

chapter, a brief definition of knowledge and skills is needed.

1.3.1 Knowledge areas

The need for knowledge in programming is irrefutable. Programming knowledge

includes needed facts and information about computers, programming languages, and

programming concepts. As mentioned from the Becker syllabi review, the authors found 52

different categories of knowledge that show up in a cross-section of CS1 course curricula. The

knowledge differential between a beginning programmer and an expert programmer is

substantial. CS1, as one of the first programming classes, lays the foundation of programming

knowledge that helps move students toward gaining all the knowledge needed to become solid

programmers.

The dictionary definition of knowledge is “acquaintance with facts, truths, or principles,

as from study or investigation”. Engineering knowledge includes the concepts that are required

4

to solve engineering problems across the spectrum of engineering fields. In the Computer

Curricula 2020 report:

Knowledge is that “know-what” dimension of competency that can be understood as

factual. An element of knowledge designates a core concept essential to a competency. [7

p125]

One challenge when teaching a CS1 class is selecting the correct knowledge areas to build the

foundation of the students’ current and future programming courses. Some specialized

knowledge, like the syntax of one particular programming language, is required to write

programs. This is needed to be able to teach broader concepts. While some time must be

dedicated to this learning, deep mastery of syntax has limited application outside that particular

language. Curriculum planners and teachers must strive to balance the specific knowledge

required to perform the work of the class with the time spent focusing on broader foundational

concepts. In his paper Learning to Program is Easy, Andrew Luxton-Reilly concludes: “Our

current approach to teaching programming is to cover too much content too rapidly and expect

students to be able to program at a higher level than they are capable of achieving at the end of

an introductory programming course” [16]. We will revisit knowledge areas in both our review

of literature and our methods chapter. Ultimately, we build a specific list of knowledge areas to

support our survey goals.

1.3.2 Professional skills

While there is no doubt that knowledge is critical for a CS1 study, the idea of what

professional skills are required is much less formalized. Professional skills appear to be as

important, or even more important, than many of the knowledge areas currently found in CS1

curricula. Professional skills have been receiving significant attention recently as both a critical

5

and underappreciated part of engineering education. In her paper A hard stop to the term “soft

skills”, Berdanier states:

In recent generations, these competencies that prioritize human interaction have been

labeled as “soft skills” or “nontechnical skills,” rhetorically separated from “hard” or

“technical” engineering even though they are essential for engineers to thrive. [17]

Some skills, such as critical thinking and problem-solving, deal with how we utilize our mind.

Other skills, such as teamwork and communication, focus more on how we express our thoughts

and interact with others. We also classify as skills personal aptitudes or dispositions such as

resilience, creativity, and persistence. In South Africa, research has focuses on “graduateness”

which comprise as a set of professional skills that employers expect from someone who has

graduated with a college degree. Many accreditation organizations are also including skills as

part of their evolving recommendations and requirements. But there is still work to do. In the

Becker CS1 curricula study, only two skill items were included in the 54 aggregated concepts.

While knowledge is critical, we posit that several professional skills are equally important and

should be integral to both engineering programming courses and engineering degree courses.

1.4 Should professional skills be added to engineering programming curricula?

We believe there should be a combination of knowledge and professional skills areas

included in teaching/learning goals of a engineering programming classes. To make this

argument, we need to look inside and outside the classroom experience. As engineering

education has a primary focus on training engineers for industry jobs, we should understand

expectations from industry. In addition, the experiences and opinions of teachers and

academicians control the content and teaching of CS1 courses. Understanding their expectations

and experiences is also mandatory.

6

1.4.1 Industry

What the student learns throughout their engineering degree program, prepares them for

jobs in industry. Classes like CS1, which are completed early in the college experience, should

fill a twofold purpose. First, the course should transfer knowledge that will combine with other

courses to help make capable programmers and engineers. This is the focus of most CS1 courses

today as we saw from the Becker and Fitzpatrick syllabi review [14]. The second purpose should

be to help prospective engineers discover if they truly want to pursue engineering as a career.

This is no easy task. In addition to knowledge areas, students need to understand what

professional skills are necessary for engineering and programming. Learning specific knowledge,

like programming language syntax, does not provide much insight into what an engineer does as

part of an industry job. However, learning to work with a team, learning how to solve problems,

or learning now to be creative might be much more indicative of what a future job in engineering

would look like. The more job-like experiences students participate in, the better they can see

themselves fitting into an industry setting. Academic jobs also rely on professional skills daily.

Learning how to work on a team in industry is like learning how to work on a team of professors

or a team of researchers.

Engineering jobs, like most jobs, involve a combination of knowledge, tasks, interactions,

goals, people, time, and skills. It is rare that any engineer would spend 100% of their time on

purely technical tasks. In many settings, engineers may have seasons where they only spend half

of their time engaged in technical design work like programming. This means that even great

engineering jobs may have up to 50% of their time engaged in non-technical tasks. These items

range from meetings, one-on-one interactions with peers, giving presentations, mentoring, being

mentored, working on budgets, figuring out program schedules, managing email, and many other

7

varied tasks. It would be extremely difficult to simulate all these items in any engineering course.

This may be why internships and coops can be valuable to students [18]. Learning and practicing

some of these professional skills may do more to help a student understand if they are interested

in mastering engineering than simply mastering knowledge. Extending this concept throughout

the entire program, as outlined in many accreditation board standards today, may be necessary to

produce engineers that can face the challenges of the future.

1.4.2 Academia

Instructors who develop and teach engineering courses in general, and CS1 classes in

specific, spend time carefully building a syllabus, preparing lessons, teaching classes, grading

homework and tests, and striving to give individual help and attention to all their students. They

have a vested interest in helping their students be successful. With so much knowledge that could

be provided, it can feel like sacrifices must be made on what is included and what is excluded.

Again, from the syllabi review of Becker and Fitzpatrick [14], most instructors focus on

knowledge.

While knowledge is required, we believe most professors understand the benefit and

necessity of professional skills. Even if not expressly called out in their course goals, they

include teaching professional skills, explicitly or implicitly, that they believe will be helpful to

their students. As we have seen from our 2007 and 2019 survey of literature papers, research has

been moving towards student needs as a key component of what ought to be taught. As we look

to our industry experts to discover their ranked list of knowledge and professional skills needed

for a programming job, we look to our academic experts with the same questions. How teachers

answer these questions reflects what they would naturally strive to highlight in a class. If

8

professional skills rank highly among academic experts, there should be more work forming

these into measurable goals for courses like CS1.

1.4.3 Understanding gaps between industry and academia

After understanding the rankings from industry and academic experts, a logical question

is, "Do academic experts and industry experts agree on what knowledge and professional skills

should be taught in engineering programming courses?” If they completely agree, then we have

large common ground on what is, and should be, taught. However, if we have any gap between

the two expert groups, that gap highlights a prime area to consider as fruitful areas for change.

This dissertation attempts to build an ordered list of what knowledge and professional

skill areas are important for programming by surveying both industry and academic experts. This

is expected to be somewhat difficult. In industry, there is a diversity of individual programmers

as well as a breadth of programming positions. In academia there are many schools of thought on

what should be taught in class, as well as what pedagogical techniques are best. In addition,

every instructor has their own ideas and opinions around what they have found that works.

In addition to the challenge of gathering subjective data, we further desire to take this

data and find a way to arrange it in a ranked list. This is another daunting task. If multiple

individuals are asked to rank a list, every individual may have a different ranking. We need some

way to allow our experts to build consensus. A method is needed which can help search for

group consensus among a large potential list of knowledge and skills. We believe the Delphi

Technique is the right tool for this task. This tool, originally developed in the 1960s, has been

used specifically for the task of consensus-building among groups of experts. We consider the

history of the Delphi survey in our next chapter and outline the method we utilize in chapter

three.

9

1.5 Problem statement

Engineering classes should both teach the subject and help students decide whether they

are well suited to an engineering degree and career. For courses like CS1, are there changes to

the curriculum which would improve the student’s ability to do this? CS1 is also the starting

class which leads into other programming classes and content. The programming component of

an engineering degree is also only a minor part of the entire collection of courses which make up

an engineering degree. Our survey focuses on what is needed to be successful as a new hire.

From this list, we can consider what items might be useful at both the engineering level,

engineering programming sub-level, and, finally, at the CS1 level. Bloom’s Taxonomy, in almost

all its iterations, focuses on proving the necessary time for students to master the knowledge they

are learning [19]. This means the most critical items generally need the most exposure. Whatever

items are at the top of our list would be likely to fit in the CS1 course so they could be re-

emphasized several times throughout the engineering degree.

We need a rank-ordered list of the knowledge and professional skill areas. We believe

doing a carefully constructed Delphi survey will allow us to assemble this list. Including both

academic and industry expert groups will allow us to compare and contrast these two lists to

identify any knowledge and professional skill area gaps. This brings us to our primary

hypothesis.

• H1: Academic experts and industry experts will have one or more gaps regarding

critical knowledge and professional skill areas required for programming in an

industry engineering position.

If we had complete agreement between academics and industry, it would be

straightforward to assemble one list. Recent work by Groeneveld indicates that there is a skills

gap between non-technical skills needed for programming versus what was taught in

10

undergraduate classes [20]. There were some limitations to this study. First, the study focused

only on non-technical skills without including knowledge. While this is valuable, it has limited

application for our purpose. In addition, while the study touched 11 countries and 21 companies

and universities, all the interviews were done in Dutch. Expanding the coverage into English

should help confirm the generalizability of their results. Finally, their single group combined

industry and academic experts into one group. As we will highlight in our methods chapter,

separating the two groups and doing a gap analysis should give more clarity to the results. Still,

the results of this study initially confirm our hypothesis.

For our research, we break the problem down into three primary research questions.

• RQ1: According to industry experts, what are the most important knowledge and

professional skills to consider for an industry programmer?

• RQ2: According to academic experts, what are the most important knowledge and

professional skills to consider for an industry programmer?

• RQ3: What is the gap between industry and academic experts in their answers to

these questions?

To answer the first two research questions, we will conduct two separate Delphi surveys.

Each will focus on building two group consensus ranked lists from the industry and academic

experts. Once we have the two results, we will evaluate question three by analyzing the gap

between the two expert groups. From this data, we hope to be able to propose an answer to our

final research question.

• RQ4: Is there knowledge or a set of skills which should be emphasized or

deemphasized in a CS1 curriculum which could give students a better ability to

know whether engineering is a degree they want to pursue?

The remainder of this dissertation is organized as follows: Chapter 2 is a review of

literature that outlines current research on computational thinking that leads into an expanded

review of what we call knowledge areas. In our research on professional skills, we review

11

several areas to build a broader definition of professional skill areas. The chapter also reviews

the method and history of Delphi surveys. Finally, we summarize several pedagogical

techniques to inform any final proposals for curricular changes.

Chapter 3 details the specific methods used in this dissertation. We construct a

classification framework to allow a straightforward method to distill open-ended answers to

individual knowledge and professional skill areas. We also outline the specifics of our Delphi

Survey. This includes discussion of our initial open-ended questions, which are the foundation of

any Delphi survey. We also describe our addition of classification questions as one of the ways

we can understand any data in the event we do not have complete consensus among each of the

groups.

Chapter 4 presents results from our industry group of experts, and Chapter 5 details

similar statistics from our academic group.

Chapters 6 concludes with discussions, recommendations, and future work.

12

CHAPTER II

REVIEW OF LITERATURE

2.1 Current state of CS1 courses

While arguments have been made for adjusting the total knowledge content of CS1

courses in light of achievable outcomes [21], [22], the literature review by Medeiros [23] calls

out problem solving, background knowledge, and better tools as key factors for improving the

teaching of programming. If our industry/instructor gap is weighted towards skills, we must do a

deeper dive into the current research around non-technical skills. What are they? How do they

rank? This is not a brand new or novel branch of research. Many papers on skills in recent years

still focus on programming skill [24], [25] instead of the non-technical skills that have

engineering applications outside of programming. South Africa, however, has conducted

significant research into this area over the past ten years. In addition to this work, both the joint

committee on computing curricula published by ASM/IEEE-CS, and the Accreditation Board for

Engineering and Technology (ABET) have started calling out skills in their recent publications.

With examples from all these sources, we will begin to build a deeper list of what skills we

expect to arise when we start surveying our Industry and Academic experts.

2.2 Research on knowledge

Knowledge is a broad subject. Even trying to specialize around knowledge needed for

programming still covers a large area of ground. Computational thinking is a concept that

13

abstracts how computers and computer programs execute into a model for problem solving. This

can be indispensable knowledge for learning about the art of programming.

2.2.1 Computational thinking

In her seminal article from 2006, Janette Wing defined the educational aspect of

computational thinking as involving “solving problems, designing systems, and understanding

human behavior, by drawing on the concepts fundamental to computer science” [26]. This work has

led to the concept of computational thinking (CT) applied at every level of the educational spectrum.

At the elementary level, there is a child-friendly programming environment called Scratch which

“enables young people to create their own interactive stories, games, and simulations, and then share

those creations in an online community with other young programmers from around the world” [27].

Barr et al ask the questions “how can we make CT accessible” and “why is CT important” [28]. Their

conclusion is that computer technology has entered every field and CT helps students learn how to

leverage computers to solve daily problems. In the book Computational Thinking Education,

multiple authors detail what CT is, discuss how to assess competency, and provide many specific K-

12 examples. They end with educational policy and implementation recommendations which

“indicate the importance of good policies and good planning in facilitating everyone in learning to

think computationally [29].

However, there is not universal understanding or adoption of CT in education. While

organizations such as CSTA, Computing at School, and ISTE have sought to clearly define

computational thinking, Denning in his article “Remaining Trouble Spots with Computational

Thinking” believes the definition remain vague [30]. He also advises teachers “use competency-

based skill assessments to measure student progress” while being “wary of the claim of universal

value”. In their review of literature, Shute and Sun believe that an agreed-upon definition is lacking,

14

which they attribute to the immaturity of the field. Their identification of “six main facets:

decomposition, abstraction, algorithm design, debugging, iteration, and generalization” [31],

however, seems to be a reasonable summary of several key concepts in CT. Tedre and Denning,

in their review, strive to both clarify claims that are exaggerated while highlighting “risks

looming over CT” [32]. Finally, Angeli and Giannakos, in their short article about the issues and

challenges of computational thinking education made this note:

While it is well accepted in the literature that CT involves a number of skills, like

problem decomposition (breaking down complex problems to simpler ones), developing

algorithms (step-by-step solutions to problems), and abstraction, there is still limited

evidence around the several issues and challenges someone needs to be aware of in order

to design appropriate learning experiences for CT competences. [33]

We can see that the general field of CT for general educational application is not completely

clear or settled.

While Computational Thinking may have some struggles as a general educational topic,

what about application to programming and engineering? In this area, the direct linkage between

computational thinking as a methodology to problem solve is much clearer. The scope initially

called out by Janette Wing and the six facets extracted from literature by Shute and Sun provide

some good fundamentals. Li pointed out that “programming was the most appropriate way for

expressing CT” [34]. Gross et al argue that CT is a core capability for most engineers [35]. They

link CT to recommendations by the National Academy of Engineering that “the essence of

engineering—the iterative process of designing, predicting performance, building, and testing—

should be taught from the earliest stages of the curriculum, including the first year” [36]. While

the linkage between CT and teaching programming seems logical, there are still some struggles

15

on how we teach and assess CT in a programming class. Miller et al proposed that enabling

computational thinking could be improved through creating thinking exercises [37]. Other

recent work continues to clarify and identify useful assessment methodologies for measuring CT

skills in an educational setting [38], [39]. Even in programming courses, a universal teaching of

CT has not yet been accepted.

The recommendation of the NAE that engineers should be trained in the model of design,

predict, build, test, is not directly a part of CT, but the concept of engineers being trained in this

fundamental iterative process couples nicely with all the skill areas we have seen referenced in

the definition of critical thinking. We appreciate the power of this model. Computational

thinking is one way of wrapping several knowledge areas rooted in computer science along with

some professional skills such as problem-solving and creative thinking.

For this investigation, however, computational thinking is not broad enough to cover the

gamut of responses we may receive from our expert groups. We must expand our research to

search for all the likely areas that will be brought up. We do expect that several of the principles

contained in computational thinking will end up in our final lists.

2.2.2 Additional research on knowledge

Finding ways to categorize and group knowledge can be a daunting task. For this paper,

we limit our study to programming knowledge. While we found no systematic analyses of

programming knowledge, several papers include a list of knowledge content areas as part of their

specific topic.

Qian et al researched misconceptions in introductory programming at the student and

teacher level. In their student-based review of literature [40], their survey grouped

misconceptions into three knowledge areas as well as seven likely causes. They then reviewed

16

existing strategies and tools that could address some of these problems. When they surveyed

teachers [41], they evaluated the importance of PCK (pedagogical content knowledge) when it

came to teacher confidence. They found 37 content areas across five topics where students

struggled. The five topic areas were variables, data structures, loops, functions, and object-

oriented programming.

When Schulte and Bennedsen preformed a similar review of introductory programming

[42], they compiled a list of 28 topics that represented their base assumption of content that

should be covered. Of this list, they had two items which might not be considered general

programming knowledge concepts. The first was the “integrated development environment”

(IDE) which covers items like the editor, compiler, file organization, and debugging. While these

topics all have some general application, most of this information pertains to running the specific

tool selected for the class to write programs. The second item was “ethics”. There was not an

expanded definition for what this topic covers. Both of these areas ended up ranking very low in

both importance and difficulty.

In their syllabi review, Becker and Fitzpatrick reviewed 234 CS1 syllabi from 207

institutions [14]. From their analysis of learning outcomes, they identified 52 knowledge areas

and 2 professional skill areas. The following table has the top seven most identified areas out of

the 234 parsed syllabi.

17

Table 2.1 Top areas from Becker’s syllabi analysis

Becker 2019 # of

Results

Writing programs 112

Testing & Debugging code 110

Control Structures & logic (if/else etc) 107

Problem Solving (and computational thinking) 106

Arrays, Lists, dictionaries, vectors, sets 93

Variables, assignment, arithmetic expressions,

declarations, data types

91

Basic OOP 89

For all programming courses including CS1, writing programs as well as testing and

debugging sound like what a student would need to learn. These are not clear “knowledge” items

as “writing programs” is the end result of assembling all the lower pieces of knowledge to solve

a problem. Testing and debugging also involves several methods and strategies. Selecting the

appropriate option for a particular situation is more a matter of proper application of knowledge.

The 3rd item, problem solving, is a professional skill-based item. This is one of the two in the list

with the other being teamwork and communication. The final three on this list are more classical

programming knowledge areas.

Engineering accrediting entities provide another source of data. The ABET curriculum

requirements for engineering are too general to be of much help here [43]. They have four broad

requirements, but no specific curriculum content requirements. However, in the ABET criteria

for computer science [44], we find a little more help. In their 40 semester credit hours of

computer science, they list several knowledge categories. However, most of these are still very

high-level and not internally defined. Some items—algorithms, computer architecture and

origination—match content from some of the other lists, while other items—like networking and

communication or operating systems—are advanced topics.

18

ENAEE, the European Network for Accreditation of Engineering Education, in their

EUR-ACE guidelines [45], takes a similar approach by specifying eight learning areas.

Table 2.2 EUR-ACE eight learning areas

Knowledge and understanding Engineering Practice

Engineering Analysis Making Judgements

Engineering Design Communication and Team-working

Investigations Lifelong Learning

As we will see in the next section, most of these fit more with our professional or

graduate skill concept areas than traditional technical knowledge areas. Most of the Becker items

would be included in “knowledge and understanding”.

The IEA, International Engineering Alliance, seeks common definitions of graduate

attributes and professional competencies to facilitate engineering talent to be predictable across

international borders [46]. Their assessment areas are also relatively broad.

Table 2.3 IEA Graduate Attributes and Professional Competencies [46] p15-18

 Graduate Attributes

1 Engineering knowledge

2 Problem analysis

3 Design/development of solutions

4 Investigation

5 Tool usage

6 The Engineer and the world

7 Ethics

8 Individual and Collaborative teamwork

9 Communication

10 Project management and finance

11 Lifelong learning

Even with the title, these items are clearly better slated for our next section. Knowledge is

generally lumped into item #1.

19

In the 200-page Computing Curricular Series Report of 2020 [15], we explicitly see what

has been inferred in many of these curriculum examples.

This CC2020 report encompasses most of the themes contained in its predecessor.

However, the changing dynamics of computing, computing education research, and

changes in the workplace have resulted in many new “add-ons” and features that did not

appear in the earlier report. Some of these additions include the following:

 • Focusing on competency

 • Transitioning from knowledge-based learning to competency-based learning

 [15] p12

This emphasis on “competency” includes a focus on professional skills that will be integral in

our next section. Knowledge content remains foundational, but without the skill and disposition

to apply this to a task, it does not rise to useful engineering.

As accreditation organizations are beginning to move past knowledge towards knowledge

and professional skills, or competencies, finding a summary rubric to group knowledge

categories has not been a focus in recent years. In 1997, Mcgill & Volet proposed a framework

for analyzing students’ knowledge [47]. As the knowledge base for computer programming was

still developing, they suggested that it could be valuable combining programming knowledge

areas (syntactic, conceptual, and strategic) with areas from cognitive psychology literature

(declarative, procedural, and conditional). Their final table grouping can be roughly represented

by the following graphic:

20

Figure 2.1 Framework for programming knowledge based on [47].

At a conceptual level, this generalization makes a lot of sense. It allows us to group

things at a very high level. As we will see in our methods chapter, this grouping may be at too

high of a level to be practical for characterizing and grouping our experts’ survey results. It still

serves as a good indication of how programming knowledge areas can be grouped. Syntactic

items, while necessary for doing a program in a specific language, will be secondary to the

Conceptual and Strategic items for general programming knowledge.

In our methods, we assemble several of the papers mentioned here to build a knowledge

category list to use in our classification framework. This final list will be details in APPENDIX

B.

21

2.3 Research on skills

As we have already noticed in the prior section, accreditation organizations are working

to move beyond a simple knowledge-based curriculum to include professional skills in the form

of competencies. Returning to the Computing Curricular 2020 report [15], we highlight their

compelling case for considering “competency” as a practical educational goal. This committee

sees competency as the proper application of skills and knowledge within a task. They also

acknowledge that dispositions cannot be removed from how knowledge and skills are applied.

Here is an instructive figure from that report.

Figure 2.2 Conceptual Structure of the CC2020 Competency Model (based on original figure

in [15])

In their table 4.2 titled “Elements of Foundational and Professional Knowledge”, there is

a list that calls out many general technical skills.

22

Table 2.4 Elements of Foundational and Professional Knowledge

Analytical and critical thinking Project and Task Organization and Planning

Collaboration and teamwork Quality Assurance / Control

Ethical and intercultural perspectives Relationship Management

Mathematics and statistics Research and Self-Starter/Learner

Multi-Task Prioritization and Management Time Management

Oral Communication and Presentation Written Communication

Problem Solving and Trouble Shooting

In addition to these, their table 4.4 titled “Prospective Elements of Dispositions” provides

a broad selection of non-technical or interpersonal skills:

Table 2.5 Prospective Elements of Dispositions

Adaptable Professional

Collaborative Purpose-driven

Inventive Responsible

Meticulous Responsive

Passionate Self-directed

Proactive

These are characteristics that help make up who an individual is and how they work.

From the report: “while it may be difficult to teach disposition, faculty members should instill

these concepts in their students through assessment design, exercises, sustained practice,

readings, case studies, and their own example.” Every working engineer and teacher, as well as

every student, will have a different mixture of these characteristics. They need to leverage what

they have, improve upon their strengths, and understand their weaknesses. Becoming well-

rounded in this way will help them be successful in both the classroom and future jobs.

One research avenue that has delved directly into this concept of professional skills is the

study of “graduateness” [48]. Graduate attributes are a collection of skills that a college graduate

may be expected to have mastered. This is very similar to the IEA term of Graduate Attributes.

23

Marianne Bester, in her dissertation on the subject, noted a “discrepancy between higher

education and the needs arising in the world of work”[49]. She agreed with several authors who

“suggest that a pertinent focus on developing graduate attributes could possibility [sic] address

this mismatch.” Her work focused on the South African Higher Education system. Her work is

not unique. In the foreword to a 2012 book about South African graduateness [50], Prof Ngambi

attributes the need for this study to a combination of “the fast-changing environment and recent

economic meltdown”. She believes that graduates needed to be RARE (Responsible,

Accountable, Relevant and Ethical) to meet the challenges of the day and the future[51]. Prof

Chetty, in her Chapter 1 introduction of this same book, lays out more details around the

background, need, and definition of graduateness [50]. While the concept of graduateness is

complex, it includes skills of the “hard” and “soft” variety. Following our definitions, hard skills

equate to knowledge. Teaching “soft” skills cannot be done in the same way as “hard” skills.

While there is a clear focus in all this work, South Africa is not the only region that has started

considering these soft skills.

While it is recognized that professional skills are critical to hiring and career

development as well as academic education, there is a recognition of a gap between what is

being taught and what employers need. In a survey of nearly 300 computing professionals, the

authors study “practitioners’ perspectives about how effective computing programs are at

preparing graduates for the most important aspects of their job” [52]. From their research, they

highlight the top and bottom knowledge areas and skills based on their industry surveys.

24

Table 2.6 Ten most and least important skills reproduced from [52]

Ten Most Important Skills Ten Least Important Skills

Problem solving Waterfall development model

Ability to teach myself Legal aspects

Critical thinking Calculus

Concepts across Languages Code generation tools

Verbal communications Extreme programming

Logic Spiral development model

Team problem solving Soft sciences

Written communications Assembly

Communicate with other specialties Physics

Perform different roles Hard sciences

Following the general pattern from the South African university studies and the

educational boards, the majority of the “most important” items are non-technical skills that

continue to show up as important to the general job of programming. As this study was focused

on non-technical professional skills, the area of general programming knowledge is once again

excluded from consideration. While this helps focus on skills, it still falls short of helping us

generate a combined knowledge and skills ranked list. In their conclusion, the most important yet

least taught skills were critical thinking, problem solving, and lifelong learning. This is no

surprise. These have already been noted in many of the works we have reviewed. As computer

technology and jobs are changing rapidly, specific knowledge like syntax of a single language

may be useless in a few years. Companies, and subsequently employees, will be constantly

challenged with new opportunities and problems that require mastering new languages, tools,

and skills. Our research goal remains: build a ranked list of knowledge and skills. Just focusing

on skills helps us greatly in understanding how important these skills are to programming and

engineering jobs. It is not enough to formulate a clear proposal on curriculum changes that must

balance knowledge and skills.

25

For another summary of graduateness and its ascendance into educational boards, we

return to a South African professor, Marthie Schoeman. While this paper’s main focus is to

describe several promising practical methods “to infuse certain aspects of graduateness into an

introductory programming module in an ODeL [Open Distance e-Learning] environment” [48],

she includes this description of graduateness, summarizing the approach of several other

educational boards:

“The Assessment & Teaching of 21st Century Skills (ATC21S) project classified ten

skills in four groups: thinking tactics (creativity and innovation, critical thinking,

problem-solving, decision-making, learning to learn/metacognition – understanding own

thinking processes); working tactics (communication, cooperation or teamwork); working

tools (information literacy, information and communication literacy) and behavior in the

world (local and global citizenship, life and career, personal and social responsibility)

(Binkley et al., 2014). The World Economic Forum (WEF) in turn identifies sixteen 21st

century skills grouped in three clusters: basic literacies (applying fundamental skills in

daily life: literacy, numeracy, scientific literacy, ICT literacy, cultural and civic literacy);

capabilities (approaching complicated tasks: critical thinking/problem-solving, creativity,

communication, collaboration) and personality traits (managing transforming environs:

curiosity, initiative, persistence/grit, adaptability, leadership, social and cultural

awareness).” [48]

The same skills we have seen show up once again. In addition, the author calls out several other

items such as the groups “behavior in the world” and “personal traits”. This does show that the

actual number of skills we could focus on is large. Schoeman also recognized both the difficulty

of classifying which skills could/should be taught in which classes as well as asking the question

26

of how they could be taught. This is a significant issue, especially in the area of skills that she

lists under personality traits. While there are ways for people to develop “grit” or “leadership”,

how an individual thinks, feels, and believes work in complex ways which make every person

unique. No person will be strong in every personal attribute just as no person could master all

knowledge. In addition, every programmer will not have identical capabilities in personality

traits. People blend their traits with knowledge and skills to find their own way to be a valuable

member of any team. If we hope to be successful in improving a CS1 student outcome, we must

evaluate any skills which arise in an industry/instructor skills gap while appreciating the

complexity and diversity of ways that these can interact in any individual. Skills must be

approached dynamically enough to allow for many different individual methods of integrating

them into their approach to engineering. Skills like communication or teamwork, which have

appeared in almost all these studies, are likely to show up in our results. Introducing these into a

curriculum would need care to help teach the high-level skill while allowing for a diversity of

individual approaches.

All the studies noted so far reference graduateness as skills learned through a general

university education. Our interest is specific to engineering programming inside an engineering

degree. We also want to understand the degree as leading to an engineering career. In their paper

from 2015, Li et al interviewed 59 software engineers at Microsoft striving to gain more clarity

on what we call skills [53]. Using hour-long individual interviews, the authors’ “analysis

identified a diverse set of 53 attributes of great software engineers” [53]. They organized these

skills into four groups: personal characteristics, decision making, teammates, and software

product. In each of these areas we see some of the same skills we have found throughout these

various analyses. Under personal characteristics we see skills such as “improving”, “passionate”,

27

and “curious”. For decision making we find people who are “knowledgeable about people” and

“knowledgeable about their technical domain”. In the teammates group, we have people who

“create shared context and success”, “mentoring”, and “manages expectations”. Finally in their

software product category we have terms like “elegant”, “creative”, and “anticipating needs”.

They generate a thought-provoking set of items. In their discussions, they have a section targeted

at educators:

“Our findings also raise significant questions about curriculum choices, teaching

methods, and learning objectives in formal computer science and software engineering

education. Educators may consider adding courses on topics not found in their current

curricula.” [53]

As we have shown, accreditation organizations are all starting to evolve towards knowledge

being strongly coupled to these graduate attributes. They also highlight that “our results provide

little insight into the relative importance of the attributes” [53].

As we strive towards a competency-based model, where knowledge and skills are

blended to solve tasks, we contend that knowing which knowledge and professional skill areas

are most impactful is critical. Our work strives to find those critical areas and seeks to map them

into engineering, programming, and even CS1 course curricula. Our survey will strive to build

this ranked list to inform any curriculum change proposals we might suggest. As we focus on

knowledge and professional skill areas needed for a programming job, we hope to extract

specific professional skills from our industry and academic gap analysis which could be applied

specifically to a engineering programming courses, as well as specific courses like CS1.

Does this application from engineering, to engineering programming, to a CS1 course

make sense? Reviewing the dissertation from Marianne Bester indicates that it may be required

28

[49]. Bester’s work began “it is reasonable to argue that a focus on mere academic disciplinary

knowledge is not sufficient to meet employers’ and students’ expectations about higher

education studies.” She gathered data for analysis by interviewing undergraduate teachers at a

South African University of Technology. Her conclusions argued that graduate skills must be

fully integrated into the class content to maximize the positive impact on students. In her

opportunities for future research she says, “It will also be helpful to focus on issues related to the

dynamic interaction between the conceptions of students, employers and academics in terms of

graduate attributes” [49].

We are not interested in every piece of knowledge or every professional skill that might

be useful to a programmer or an engineer. We are searching for the highest ranked knowledge

areas and skills identified by both industry programmers and academic instructors. While not a

simple task, we believe it is achievable. We turn to the Delphi Study as our means to gather a

consensus ranked list from our expert groups.

2.4 History of Delphi Technique

To understand why the Delphi Study is the right tool for this research, we need to look at

the history, purpose, and method of this technique. In the 1950s and 60s, the ever-increasing

pace of technology, along with a massive increase in data that could be generated and evaluated

by computers, highlighted a need to look into the future and reasonably predict what would

likely happen. One of the solutions proposed was the Delphi Method. Olaf Helmer in his

foundational article [54] posited on page 2, “The future is no longer viewed as unique,

unforeseeable, and inevitable; there are, instead, a multitude of possible futures, with associated

probabilities that can be estimated and, to some extent, manipulated.” To this end, he

championed a method that could help anticipate coming change in the light of insufficient or

29

overly massive data. He was looking to a revolution in soft sciences to help decision makers of

both private and public sectors address these challenges. He called out one of the new methods at

the time “that has become known as the Delphi Technique, which attempts to make effective use

of informed intuitive judgement” [54]. At its simplest, this is assembling a group of experts and

helping guide them to a consensus prediction. Fish and Busby said, “The Delphi method rests on

the idea that it is possible and often quite valuable to reach consensus through a collective human

intelligence process” [55].

Since the ‘60s, there have been many reviews of the method [56], [57] as well as books

which give more of the history and method variations [55], [58]. While there have been many

variations such as “policy Delphi” [59] and “real-time Delphi” [55], [60], the fundamentals have

remained like the original:

1. Select a group of experts.

2. Ask careful, open-ended questions to generate a list of key items.

3. Conduct additional rounds of ranking sessions to rank items.

The power of the Delphi Method is in its flexibility to address many situations. Most

often, the methodology is focused to drive consensus. While this can be useful for getting experts

to arrive at a best combined estimate, it can also help to bring working teams into agreement. It

combines a level of anonymity that allows all voices to be heard, with a reconciliation process

that allows for give and take in the process of ranking items.

Delphi Surveys have long been used in Medical and Nursing fields [57], [60], [61]. They

also have been conducted in fields such as tourism [62], [63], education [64]–[69], food safety

[70], psychology [71], business[72], and even curriculum questions during COVID-19 [73].

Applications can also be found in engineering fields such as Construction Management [74],

30

[75], Architecture and Construction [76], Software [77], [78], Information Systems [79], and

Industrial Engineering [80]. More general articles [64], [81] focus on practical implementation

with details on the high-level process and recommendations to achieve the best results. While

this is not an exhaustive list, it is clear that this methodology can help generate key consensus

points from a group of experts. We believe it will help us build a consensus list from our dual

groups of industry and academic experts. Further details of how we will conduct our Delphi

survey are found in our Methods chapter.

2.5 Pedagogical methods

We hope to achieve ranked lists of knowledge and professional skill areas from our two

expert groups. From there, we will recommend possible changes to what we teach in engineering

programming courses. If this is done at the professional skill level, the desire would be to have

this be agnostic to teaching methods. However, providing a brief review of some of the primary

pedagogical methods which are common among teaching of CS1 courses will allow us to cross

verify our final recommendations.

While there are many variations, we will list some of those that can be found in research.

At the heart of these methodologies, “There are three dominant theories of learning: (a)

behaviourism (studying and analysing human behaviours), (b) cognitivism (knowledge

constructed by mental cognition), and (c) constructivism (learners construct the knowledge

during the learning process).” [82] The concept of cognitive load is woven through all these

theories of learning. Cognitive load can be divided into three main loads [83]. Intrinsic load

pertains to how many pieces of information must be processed together to understand the target

concept. Extraneous cognitive load is when the activities required of the learner are too great.

Germane cognitive load is the optimal amount of load that fosters the learning process. For all

31

pedagogical methods, teachers are always striving to present material at the germane cognitive

load. While cognition and cognitive load are much larger topics, we will stop at this high level as

we review many of the current instructional methodologies.

2.5.1 Traditional

For traditional learning, the teacher is the dominant source of knowledge in the class [82].

While there are many flavors, this is the default lecture model which remains dominant in many

universities. This is mainly influenced by behaviorism. While this is an efficient way to

communicate knowledge, it has been criticized for not helping students learn how to learn.

2.5.2 Competency-Based

While traditional learning focuses on knowledge, “the competence is the ability to apply

knowledge to effective decision-making both in a specific subject area and in extreme

conditions” [84]. From another reference “Competency Based Education (CBE) aims at getting a

clear sense of students’ capacities in order to optimize their learning and to certify more

precisely their acquired knowledge” [85]. We have already seen that competency is becoming a

focus of many instructional organizations. However, defining the right competencies as well as

assessing them can be challenging [85].

2.5.3 Active learning

At its core, active learning seeks to minimize traditional classroom lecture time while

increasing the engagement of the student in activities like interactive learning, more small

assignments, or other tasks focused on learning through doing. One study showed that this had a

positive effect on CS1 instruction [86]. Like many of the alternative methods, active learning

strives to be student centered by requiring “learners to do meaningful learning activities,

32

combined with reflection on what they are learning and doing” [87]. Studies also indicate that

active learning can reduce student failure rate as well as produce general increases in course

grades [88], [89].

Hartikainen et al. conducted a survey of literature for active learning and listed a large

range of methods which could all be loosely called active learning [90]. It is a strength and a

difficulty that active learning can take so many flavors. Since there is no single model, we

consider active learning more of a principle than a methodology. Many of the following

paradigms could fall under the umbrella of active learning.

2.5.4 Flipped classroom

While traditional learning has lectures to teach the content information and homework to

practice the skills, the flipped model asks students to study the knowledge information outside of

class individually and attend class together to complete the practice assignments and get help

with any concept issues they have. Bergman and Sams, some of the first teachers to champion

this model, described the initial question that motivated the method. “What if we prerecorded all

of our lectures, students viewed the video as ‘homework,’ and then we used the entire class

period to help students with the concepts they don’t understand?” [91]. In their survey of

literature, Berssanette and de Francisco found 60% of the reviewed studies showed positive

feedback from students [87]. They also echoed that the downside of time, cost, and staffing were

the main drawbacks to this method. In addition, students must be motivated to prepare before

class [92].

33

2.5.5 Inquiry-based

Inquiry-based learning combines both learning and practice [82]. Drawing from the

constructivist model, students practice as part of acquiring knowledge. Developing problem-

solving skills is considered critical to the process. Criticism here is that the method requires both

highly motivated student who have a starting base of knowledge and teachers that can serve as

guides to the process. This is a much more complicated balance to maintain.

2.5.5.1 Problem-based, Research-based, Design-based

While there are many competing names, the core of this methodology focuses on

inspiring students to solve real-life challenges [93]. Following the constructivist model, this is

similar to inquiry-based learning but focuses on progressively harder problems as the students’

progress to build their knowledge. “In terms of cognitive architecture, two processes are

considered crucial to PBL: Activation of prior knowledge and elaboration.” [83].

While there is much to be said for these student-centric methodologies, critics have

argued that unguided or minimally guided approaches require students to have a sufficiently high

prior knowledge to be effective [94].

2.5.5.2 Simulation-based

A variation on Problem-based, simulations are useful when real-life opportunities could

be problematic (medicine, for example) [95]. It still relies on practice to help construct a

knowledge framework. Depending on the simulated task, skills such as communication or

collaboration and teamwork [95] could be the focus instead of pure knowledge.

34

2.5.5.3 Team-based

A variation on the problem-based model, team-based learning divides a larger group into

smaller teams that all work on the same problem. This is more formalized so one tutor could

supervise many teams [96]. From the literature, other group-based pedagogies, such as

collaborative or cooperative learning have many similarities [97]. While designed to build up

teamwork skills as well as improve content retention through the group problem solving process,

it is dependent on careful team selection and equal participation from all team members[97].

Like general active learning methods, it may reduce the dropping rate in first term programming

classes [98].

2.5.6 Assessments

Testing is generally considered necessary for tracking the progress of students. While this

always has a host of challenges, active learning models introduce additional struggles.

2.5.6.1 Challenge-based assessment

This is more of an assessment model where a challenging problem is set for the students

to evaluate what they have learned [99]. For programming, this could be a substantial coding

assignment. It is closely coupled to the research-based, design-based methodology.

2.5.6.2 Competency-based assessment

In this model, questions and short assignments are set to evaluate specific competencies

for the material presented [99]. While this can be applied to traditional learning models, it can

also be utilized instead of challenge-based assessment for problem-based models.

35

2.5.6.3 Peer assessment

For all team-based models, there needs to be some thought to peers evaluating their team

and each other. Done well, these assessments aim “to hold individuals accountable to their teams

and to lessen the likelihood of social loafing” [96], [100].

2.5.7 Pedagogical methods summary

While this brief overview is not meant to be exhaustive, it shows the broad range of

methods that are used in a classroom to both transfer knowledge and encourage students to

engage the material and make it their own. Our work, seeking professional skills which could be

more emphasized in engineering programming courses, should be easily integrated into any if

these methodologies.

36

CHAPTER III

METHODS: DELPHI SURVEY WITH EXPERT CLASSIFICATION

To gather actionable results, we must establish a classification framework to help parse

our open-ended survey results into knowledge and professional skill areas results. Once this has

been established, we will detail the specifics of our Delphi survey.

3.1 Classification framework

From our review of literature section, we have seen that knowledge items are starting to

be coupled with professional skill items. In the context of competency, we are searching for the

overlap of knowledge and skill. While the complete definition would include the individual’s

dispositions and anchor all of this in the completion of a task, the first step that our research

addresses is focused specifically on the knowledge and professional skills which are taught in

engineering programming classes and valued in engineering jobs.

3.1.1 Knowledge areas

For classifying knowledge items, the most general groupings follow Mcgill & Volet’s

mapping [47]. This would have the classifications of:

Table 3.1 Mcgill & Volet category summaries

Syntactic-Declarative Know syntax rules

Syntactic-Procedural Use syntax to write code

Conceptual-Declarative Know program functionality

Conceptual-Procedural Use functionality to write code

Strategic-Conditional Code to solve a problem

37

We will use this structure to potentially group and combine specific items from our

survey responses. The “declarative” versus “procedural” differentiation may blur back together

when reviewing our survey answers as “knowing” and “doing” will likely focus on “doing”. This

would make all the knowledge items lean toward the original computer categories instead of the

cognitive psychology additions. We expect that most summary items will also fall closer to the

strategic spectrum and move away from the syntactic items as single language syntax has limited

use for general training in programming.

While grouping at this high of a level may help us see which of these levels is most

important, it seems overly broad for application. We need a finer grained model. Becker’s

analysis of syllabi provides 52 knowledge and 2 professional skill ranked categories [14]. In

Appendix B, I have used this full list as a super-set to cross-reference several of the other lists

from multiple articles [40], [42], [44]. Apart from some advanced topics called out in the ABET-

CS guidelines, the Becker list proves to be a good starting point. If we apply the Mcgill and

Volet groupings, we find that we need several others to fully cover our complete list.

Table 3.2 Additional grouping summary items beyond Mcgill and Volet

Background Math, history, CS theory

Tools Useful tools for coding (IDE, etc)

Debugging Debugging methodology

Advanced Topics Topics like parallel processing

Professional Skills Professional skills

These items are relatively self-explanatory. Background represents information that

would be expected to be brought into a programming class (math, logic) or information that

supports the learning of the subject (history, theory). Tools would be any specific items like an

integrated development environment (IDE) that assist in writing programs. Debugging includes

38

both learning how to utilize the tools for debugging as well as effective strategies. Advanced

topics are things like parallel processing that would be building upon the programming

fundamentals. Professional skills, as we have discussed at length, are those skills like teamwork

and communication that are critical to most areas of engineering pursuits. I believe that the 52

Becker “knowledge” items will also be a superset of the result items called out by our experts.

Our final list can be found in Appendix B.1

3.1.2 Professional skill areas

From the skills side, we have no superset list like Becker. Without this, we followed the

model Becker used for ranking items from his syllabi survey. We combined lists from eight of

our references and ranked them based on how many of these sources referenced that professional

skill. In Appendix B.2, we have the superset list following the knowledge area list. As we saw

from the ABET guidelines, “student outcomes describe what students are expected to know and

be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that

students acquire as they progress through the program.” [43]. From our superset list, the

following table shows all professional skills that are acknowledged by two or more of our eight

references.

39

Table 3.3 Professional skills by ranked list.

Skill Count

(out of 8

references)

Communication 8

Teamwork and collaboration 8

Lifelong learning 6

Problem solving 5

Ethical responsibilities 5

Consideration of public factors 4

Experimentation and judgement 4

Knowledge Items 4

Adaptability 2

As the knowledge list had a few skill items mixed in, the skills list also has four

references that intertwine and include knowledge items. It will come as no surprise that

communication and teamwork were referenced in all eight surveyed references.

3.1.3 Classification framework

Utilizing the two ranked lists in Appendix B for knowledge and professional skill areas,

we will parse the Delphi results into the highest ranked item that is reasonable. The flow can be

seen in the Figure 3.1.

40

Figure 3.1 Classification framework decision flow

It is possible we will have some items that fall “not in list”. If we have enough of those to

rate in the top items, we may need to re-address our framework to understand why our references

were not inclusive enough. Our final list of added items can be found in Appendix B.3.

3.2 Delphi Survey

The Delphi Survey is a straight-forward concept, but there are many challenges that can

lead to failure. Turoff and Linstone highlighted several in their discussion of techniques and

applications for the Delphi [58]. Disagreements in ranking may indicate many different problems

with understanding of the questions or ideas. It may indicate fundamental differences in the

41

thinking of different groups among the experts. Further challenges include how to classify

“experts” and find a representative group. Some other technical concerns about how the statistics

are managed can also be found in the literature. In this chapter, we will present the specifics of

our planned Delphi Survey to build our industry and academic consensus ranked lists. From

these lists, we can extract any gap that will become the highlight of future curriculum change

recommendations. We address some of the difficulties and how we aim to avoid them. Using the

Olsen paper as a high-level guide [64], we walk through main decision points and provide details

of this Delphi Survey.

3.2.1 Developing Delphi research questions

To discern if a knowledge and skills gap exists between academic and industry experts,

we must first find those items most valued by each group. As we have shown, we expect to see a

mix of general knowledge areas and non-technical skills show up in both groups. At a high level,

we are trying to have our experts answer what knowledge and skills are most important for both

academic and industry success. For our open-ended questions, we want to be focused enough to

have the experts thinking about a common outcome, like being hired by a company, while

preventing words or phrases that would limit the possible responses of the individuals. From our

prior chapters, our desire is to encourage our experts to think about general knowledge and skills

in their answer. While not specifically excluding preliminary knowledge or specific knowledge,

our expectation is that general skills will rise to the top when we go through our ranking process.

For skills, we expect many of the same items presented in our review of literature to appear in

these lists.

What we are looking for in our survey would be the most important items from the

combination of knowledge, skills, graduate attributes, dispositions, and characteristics. While it

42

would be somewhat surprising if our Delphi survey replicated any of these referenced lists

exactly, I expect to see several of these items score highly both among the industry experts as

well as the academic experts.

Working through all these points, we decided on the following two key survey questions.

• Q1: What knowledge, skills, or characteristics should new hires in

programming positions possess?

As we have outlined, knowledge, skills, and characteristics include all the different

aspects of the lists detailed above. In addition, putting knowledge first, we expect to get any key

hard knowledge requirements, general, preliminary, or specific, deemed critical to the expert.

“Characteristics” is chosen to elicit thoughts that might lead into items like the list of

dispositions. It was thought that “characteristics” might be a more accessible word than

“dispositions”. As we are targeting industry-applicable skills, “new hires” should enable both our

industry experts and our teachers to imagine what they look for in someone just out of college.

Some hiring managers may consider experienced programmers in the group of “new hires”, but

we believe that even these managers will gravitate towards both general knowledge and

important skills that will apply at all job levels. The final word “possess” could have been

simplified to “have”, but “possess” implies a level of ownership. What skills should new hires

have already made their own? Placing this focus on new hire skill ownership is intended to

significantly reduce the set of skills that the employers would expect engineers to learn on the

job.

• Q2: What experiences are helpful to develop into a good programmer?

While this is still looking for skills and dispositions, it is intended to be focused more on

skills instead of academic knowledge. “Experiences” is intentionally broad, but still leans away

from knowledge that could be classified as book learning. Experiences are situations that

43

students should go through to learn about important principles such as the value of hard work, or

the difficulties and rewards of working in teams. The word “helpful” is also targeted to allow

disposition and characteristics to be included in the skill set. We hope this will bring out our

earlier idea that every individual must find a way to adapt their personalities to these skills in a

diverse way. While some experts may focus on being adaptable, others may focus on being

meticulous. Some may revel in the value of being collaborative and team engaged, while others

may call out personal creativity and inventiveness. When we see the highest ranked skills, we

expect that every individual engineer will develop some way to imbody it. Adding “to develop”

also highlights that these skills may not be mastered fully when entering the job market. While

the first question is looking for “possessed” skills, the second question is looking for “begun”

aptitudes.

3.2.2 Defining panelists and panel size

As our goal is to evaluate the potential alignment of industry versus academic experts, we

are designing a two-group survey, consisting of Fortune 500 company programmers and

professors of CS1 classes. One of the potential pitfalls of poor Delphi surveys is receiving a

small number of responses. From overall literature guidance, our plan is to target 30-35 finished

surveys in each expert group. This number is large enough to have group statistical significance

yet is small enough to allow for individual contact and follow-up which guidance says is crucial

to encouraging participants to stay through all the rounds of the survey.

3.2.2.1 Fortune 500 company programmers

As the author currently works for a Fortune 500 company, he has a large network of

coders of differing expertise that will generate a good cross-section for the Delphi survey. By

44

design, this group of programmers will have varied levels of programming expertise and varied

involvement in hiring. Another possible weakness in Delphi surveys is selecting a group of

experts that do not have much diversity across the group. While it is impossible to have a

completely random group of experts, we will reach into the US, China, Israel, and Finland to get

a relatively broad cross-section of geographies and cultures.

3.2.2.2 Professors of introductory programming classes

Our second group represents academics. We will reach out to professors who design

programming curriculum and teach programming classes. Our goal would be to have 30-35

finished surveys like the first group. Recruiting for this group will take a little more outreach.

Several avenues will be used to find suitable and interested experts. First, the authors will reach

out specifically to land grant schools in each state as most of these have some level of

engineering program. Second, we will search for lists calling out the top engineering schools in

the country and reach out to those schools. Finally, we will search the ASEE report which lists

schools that are graduating the most computing majors. With all these lists, we will use school

websites to locate the best potential teachers of beginning programming classes. If necessary, we

will reach out to department deans to locate CS1 professors. In addition, if we remain short of

participants, we will use snowball recruitment from our existing contacts. At this time, we will

not specifically search for colleges outside the US. This will reduce the diversity of this expert

group but correlating different countries’ requirements and expectations could prevent the group

from being able to reach consensus. This might be something that could be considered for future

research.

45

3.2.3 Self-classification questionnaire

Another issue that the Delphi survey must contend with is the nebulous definition of

“expert”. There is not an objective standard that can be easily applied to our group of

programming engineers or professors. If we have a large variation in the skill level of our group,

we might see different levels of experience emphasize different skills. In order to mitigate this,

we will be pulling from programmers of different expertise levels and programming areas. We

have classification questions which may help resolve differences within a group. For example,

coders that are working on low-level firmware may have different expectations than coders

working on application code or test code. If we have any specific differences in skills and/or

ranking, we will strive to resolve these based on the secondary classification questions. While

there are known concerns with self-classification, this seems to be the best way to have some

method of looking for variations within the separate groups of experts. We will ask the same

classification questions to our academic experts. By design, teachers of CS1 and engineering

programming classes will be more homogenous, but our classification questions should help

show some diversity in how long they have been involved in teaching.

The full classification questionnaire can be seen in Appendix A.

3.2.4 Delphi Rounds

For this survey, we will have three rounds. The first will be our two open-ended

questions. The second would be individual ranking of the resulting skills list. The third would be

group-versus-individual ranking to see if we can converge on the skills which have the most

support.

46

3.2.4.1 Delphi Round 1

This round simply states the research questions as the main Delphi Survey input. We will

also include the classification questions in this round. Once these results are entered, the

classification framework will be used to distill the open-ended question answers to a list of

knowledge and professional skill areas. This completed list will become the ranking list for the

next round of the survey.

3.2.4.2 Delphi Round 2 – Individual ranking

Once we have a list of areas from Round 1, we will send these skills back to the experts

and ask them to use a Likert scale to rank them. Following Norman [101], we will utilize a five-

point importance/scale questionnaire as shown in the next figure.

Figure 3.2 Example Likert 5-point importance scale questionnaire

47

This scale will equate “1” with Not Important and “5 with Extremely Important”. Once

the ranking is complete, we enter basic statistical analysis for these results. Likert scales have the

issue of a discrete number of ranking selections for every question. In addition, reviewers may

self-select different metrics such as not using the number 1 or 5 as a matter of course. This

means that several skills could end up ranked at the same number for many experts. If one expert

ranked three skills as “Very Important”, there is no information on how the expert would rate

these skills against each other. This does give us a ranked list that clusters skills into importance

groups.

Utilizing SPSS, we will do simple mean analysis to rate all of the items from our experts.

This will then be provided as part of our Round 3 analysis.

3.2.4.3 Delphi Round 3 – Group classification

After the second round, we compile all the rankings into a single group ranking. Iqbal

and Pipon-Young [81] recommend using percentages to show the group rankings, but with our

Likert scale the mean number seemed more accessible. Experts would see a mean of 3.89 and

realize that this was between 3 “moderately important” and 4” important, with the scale tipped

most of the way toward “important”. We allow the subjects to have one more chance to re-rank

their items considering the group and their own ranking. According to the Delphi process, seeing

the larger group context will help them determine if they agree with the group, or still believe

their ranking is better than the group ranking. The results are re-tallied to generate our final

ranking.

48

3.2.5 Industry/Academic gap analysis

Once we have the two expert rankings, we will analyze the lists against each other. We

will run T-Test and ANOVA tests on the data from each list. While Likert data is ordinal, which

might indicate the Spearman rho assessment or the Mann-Whitney U test should be used for

analysis, several researchers have shown that normal parametric tests are generally robust

enough to provide good results [101]–[103]. It is possible that we will have some categories in

each group that end up excluded from the other groups lists. Again, we will use SPSS to analyze

the data. If this analysis is not instructive, we will fall back to simple rank and mean comparison

to describe the deltas between the two groups.

From this analysis, we should be able to compare where the two groups agree and where

they diverge. This analysis will inform our discussion as well as any recommendations we might

make for targeting specific areas for increased emphasis in a CS1 curriculum.

49

CHAPTER IV

RESULTS: FORTUNE 500 COMPANY INDUSTRY EXPERTS

4.1 Industry experts

As we discussed in chapter three, our industry expert group is entirely comprised of

engineers from the same Fortune 500 company. Geographically, participants hail from the

United States and Israel, with some additional representation from Finland and China. This

selection across different continents is intended to give us some representation from different

cultures and experiences. While we expect our results to be applicable to all industry engineers,

future research may be needed to confirm there are no single-company biases hidden in these

results. In addition, all surveys were done in English, which also can limit the findings from

having global reach without additional studies crossing different languages.

4.2 Expert classification breakdown

In our classification questions, we are looking for diversity across several metrics: coding

area, primary programming language, involvement in hiring, and self-ranked skill level. The

graphs below are based upon the thirty-one completed Round 1 surveys. We have two experts

who did not complete the classification questions, so most of the results are based on twenty-nine

samples.

4.2.1 Coding area

Our first classification question is:

50

• Where do you spend most of your coding time (check all that apply)?

For reference, we pulled a chart that provides one cross section of different programming areas

[15].

Figure 4.1 Contemporary view of the landscape of computing education (based on original

figure in [15])

51

Figure 4.2 Result: Where do you spend most of your coding time?

While we did not have any experts with Information Technology background, most of the

other areas are reasonably represented. Not surprisingly for this company, computer engineers

and computer science were selected by a significant number of the respondents. Many experts

selected more than one area, so the total result is much higher than the 29.

4.2.2 Hiring involvement

Our second classification question is:

• How involved are you with hiring?

52

Figure 4.3 Result: How involved are you with hiring?

We have a broad range of hiring involvement. There were only four individuals that said

they had no hiring responsibilities. This indicates that our experts reflect the opinions of people

who have a cross section of experience with hiring new engineers.

4.2.3 Number of interviews

Our next classification question is:

• How many interviews have you been involved in in the last year?

53

Figure 4.4 Result: How many interviews have you been involved in in the last year?

This question helps qualify the prior question. We have six experts that have not been in

an interview in the past year. As we are still coming out of the Covid-19 economy, hiring was

not at the same level as in the years before Covid. However, we also have almost a flat spread

across all other selections. This supports our prior conclusion that this industry expert group has

broad hiring experience with most experts completing multiple interviews in the last year.

4.2.4 Training involvement

Our next classification question is:

• How involved are you with training/mentoring new hires?

54

Figure 4.5 Result: How involved are you with training/mentoring new hires?

Many of our experts have served as mentors and managers. This is not surprising with ten

hiring managers in our expert pool. We had a small number of trainers. It appears that mentoring

is much more common than training. This is a case where deeper study of the concepts of

training and mentoring might explain why we see this result. On the other side of the spectrum,

we only had three experts who were not involved with new hires.

4.2.5 Main coding language

Our next classification question is:

• What languages do you spend the most time in (select all that apply)?

55

Figure 4.6 Result: What languages do you spend the most time in?

While C, C#, C++ all had several ticks, Python had the largest number of users. It was a

little surprising to me how many of the languages from our target list were not used at all at this

company. It is not surprising that C and its derivatives were common. Python is a language that

has been increasing in popularity, and certainly is used by most of our experts. As we also

allowed multiple selections, the total languages mentioned exceed the 29 respondents. Several of

my experts called out C, C#, C++, and Python, so a majority of engineers regularly worked in

several different languages. Java, SQL, JavaScript, and PHP were always accompanied by one of

the top four languages, so no-one called out these coding languages as their only environment.

4.2.5.1 Other languages

Our next classification question was looking to see if our selection of languages was

sufficient. While most surveys had this blank, we did have a few additional mentions.

56

Table 4.1 Additional languages mentioned

Language Mentions

Powershell 3

Matlab 2

Rust 2

System Verilog 1

Haskell 1

Lisp/scheme 1

None of these rises to a “major” language. Powershell is a scripting language, so this is

often a companion to other languages. System Verilog is specific to chip designers. Matlab is

very useful for some of our data scientists to do high-end calculations. While we could include

these on future lists, this does not impact our primary finding that Python, C, C++, and C# are

the most used languages in this expert group.

4.2.6 Percentage of time coding

Our next classification question is:

• How much of your current job involves coding?

Figure 4.7 Result: How much of your current job involves coding?

57

Twelve of our respondents do very little coding in their day job. Seven of these were

actually hiring managers, which seems to make sense. From a diversity perspective, we once

again have representation across all possible categories for this questions.

4.2.7 Self-ranking skill level

Our next classification question is:

• How would you rank your skill level?

Figure 4.8 Result: How would your rank your skill level?

While we had one “Beginner” and two “Advanced-Beginners” in our group, most of our

respondents were in the “Expert” and “Proficient” categories. It is also notable that we had only

one self-ranked “Master”. As we did not define these terms, it might be an interesting sub-study

to understand what our group of coders considered the difference between an “Expert” coder and

a “Master” coder. While every selection has representation, this group is shaded toward the more

experienced end of skill.

58

4.2.7.2 Explain your ranking

Our next classification question is:

• In 1-2 sentences, explain why you chose this ranking.

Our “Beginner” did give more background when answering this question. “I am a PM

[Project Manager], I don't get to code very often. However, I do do code reviews.” Even our one

“Master” coder added “While there is always room to improve, mastery means that there is really

no programming challenge in my domain that I am not equipped to successfully deliver code

for.” There were many short personal stories contained in this data that would be fun to

mention/investigate further.

We have a broad range of coding expertise in our expert group.

4.2.8 Years at skill level

Our final classification question is:

• How many years have you been this skill level?

Figure 4.9 Result: How many years have you been this skill level?

59

For this group, the majority have been at their same skill level for years. This gives some

indication that many of these experts are very stable in their current positions. We clearly had no

actual “new hires” in this group as everyone had been at their level for two years or more.

4.2.9 Classification summary and discussion

These questions assessed the diversity of our expert group. While we were expecting to

have some areas where our individuals would cluster together, the actual findings showed

individuals in almost every category for every question.

As we mentioned in several areas, future work to better define many of these terms and

details would help provide clear results. Discovering the difference between mentoring and

training comes to mind as a clear item which would be interesting to unravel. Extensive work

could be done around the concept of which programming language is most useful for particular

classes of problems. One of our experts added this comment when discussing programming

languages:

Experience, even if light, with the three main programming paradigms (imperative, object

oriented, functional) is definitely very welcome as it helps us approach problems through

different lenses. Of course, this implies having experience with different languages (in

most cases) as it's hard for a single language to properly support all three paradigms. To

that end, my top three choices would be C (imperative), Ruby (object oriented), and

Haskell (functional).

There may be many other competing takes on this subject.

For our classification purposes, we believe these results show that our particular group of

experts should be an excellent cross-section that represent the industry segment well.

60

4.3 Round 1 results

The most delicate and time-consuming work of a Delphi survey is taking the open-ended

question essay answers and distilling them into a set of rankable items. Our chapter three

framework was applied to make this classification process as objective as possible.

4.3.1 Classification examples

In order to show our classification framework in action, we present two examples from

our Round 1 surveys. In each of these, we show the initial response from an expert and then

decompose their essay response into knowledge and professional skill areas to feed into our

Round 2 survey.

To recap, these are the two open-ended questions in the survey:

• Q1: What knowledge, skills, or characteristics should new hires in

programming positions possess?

• Q2: What experiences are helpful to develop into a good programmer?

We are trying to get at the same list of knowledge and professional skill areas by

presenting two different ways to think about the problem. For our analysis, the questions are

parsed into the same single list of category areas.

4.3.1.1 Example one – concise response

Here is the text from one of our experts for our Delphi Q1 and Q2 questions.

Q1 answer

1. Knowledge of programming language syntax and good programming practices.

2. Creativity to solve a problem with their own perspective.

3. Thorough. Document, test, and verify their solution.

61

Q2 Answer

Learn from mistakes. Don't take it as personal attack but opportunity for growth. Bug

failure analysis. Investigate and discover. Peer Code reviews

This engineer was organized and concise. Many of our responses were similar to this

mode of communicating. Following our framework, we strive to break out words or phrases that

can map into one of the entries in our knowledge list or our professional skills list. If we find no

good mapping, we add a line to our list tracking added categories.

Take the first item in their Q1 list “Knowledge of programming language syntax”. This is

clearly a knowledge area, so we start with our knowledge list. The highest ranked item on this

list is “Writing programs”. This appears to be a reasonable match. Reviewing the rest of the list,

nothing stands out as simpler or clearer. The next table shows how we map these ideas for the

rest of the answers.

Table 4.2 Framework Mapping of example expert 1

Expert Text Area Mapping

Knowledge of programming language syntax Writing programs (knowledge)

Good programming practices Developing good program design (knowledge)

Creativity to solve a problem with their own

perspective

Creativity and innovation (skill)

Problem solving (skill)

Thorough. Document, test, and verify their

solution.

Generating clear documentation (knowledge)

Testing and debugging (knowledge)

Learn from mistakes. Don't take it as personal

attack but opportunity for growth.

Lifelong learning (skill)

Bug failure analysis. Investigate and discover. Failure analysis (new)

Peer Code reviews Code reviews (knowledge)

Many of these mappings are very straightforward, but some lose some nuance when

mapped. For example, “thorough” has been grouped into our “generating clear documentation”.

It is possible that “thorough” may have been intended to be a stand-alone item representing

62

something more like “attention to detail”. While we stand by our mapping as best representing

the intent of the expert based on surrounding context, there are definitely some chance that not

every thought of the respondent is fully appreciated in our final mapping list.

As a second example, the phrase “learn from mistakes” was classified as “lifelong

learning”. While this is what we think the best mapping is, it is possible the expert thought of this

as more of an attitude. They might have really intended to say that individuals should have an

attitude of translating mistakes or negative feedback into long-term personal growth. When

mistakes happen, is your attitude one of desiring to grow or do you see this feedback around

mistakes as a personal attack? Without further feedback from the expert, we continue to feel that

“lifelong learning” is more likely to represent what is being expressed here.

While the author has reviewed these groupings for all the entries and believes they are

accurate, we are humble enough to realize this process that cannot be completely objective. One

of the benefits of the Delphi survey is our Round 2 and Round 3 ranking passes help elevate the

most significant items while allowing for feedback to see if our experts feel any critical areas

were missed in the mapping. Our top-rated items, even if the mapping was not perfect, should

still represent the consensus from the group on what is truly important.

4.3.1.2 Example two – descriptive with additional details

Here is the essay text from our second example. Note that the item numbering was

entered by the expert and is reproduced as they wrote it.

63

Q1 answer

1. Programming language fluency. To a great degree, programming languages are

for human consumption rather than machine consumption (that's why we don't

program in machine code). Consequently, language fluency is critical. Like

reading other human languages, it's not just basic syntax understanding -

developing an intuition for what the code author was trying to accomplish and a

sense of the overall way the code hangs together, the nuances that a design

conveys about the requirements. In the same way, language fluency enables

authoring code that is maximally understandable by other humans and minimizes

the cognitive burden required to understand it.

2. Trained in the scientific method as applied to programming. Being able to

systematically analyze code, synthesize testable predictions about its behavior,

and formulate tests to prove or disprove those predictions is a key skill for debug

and program understanding.

3. Oriented towards knowledge acquisition instead of knowledge retention. Knows

how to discover answers to questions quickly rather than relying on memorized

domain knowledge.

4. Recognizes the importance of mastering the tools of the trade. Characterized by

having developed a stable of good tooling that contributes to rapid digestion and

exploration of complicated code bases. Most great programmers I know are true

masters of the code search tools and editors that they use and are constantly

improving the toolchest that they use through little scripts, editor extensions,

source control tricks, etc.

5. A humility about the correctness and performance of one's own code. My code is

always guilty until proven innocent by testing and verification of its expected

operation. Knows how to write tests that prove code is correct.

Q2 Answer

1. Opportunities to explore the boundaries of one's competence without being thrust

into completely alien territory. As experience grows, the frontiers of competence

expand - programmers that don't continue to chase that frontier become stagnant

with respect to expertise. Conversely, those who are thrown into the deep end

without support fail without learning. Staying in the goldilocks zone at the edge of

competence is key.

2. Exposure and engagement with experts. Even once a programmer has become a

highly-experienced "good programmer," continuing to interact with others at

high-levels of competence is important for refining and growing one's technique.

64

3. Successfully delivering a product. Creating something that is out there in the

world that people actually use is a key motivator for further success. If you only

work on things that no one sees or appreciates, or if all your projects are

cancelled before release, it is hard to be motivated to be any better.

4. Non-programming (e.g. people skills) development. Programming as a field can

often attract brilliant people who are somewhat difficult to interact with.

Developing non-technical skills such as clear communication, ability to give

grace to difficult people, knowing how to set good professional boundaries and

build professional relationships can actually be really key to unlocking access to

people who have a lot to contribute back to your own technical development.

On a first pass, we can see this respondent wrote many more words and tried to describe

his thought in much more detail. Where our 1st expert used around 50 words, our 2nd expert used

around 500. Without going through every phrase, our mapping ended up looking like this:

65

Table 4.3 Framework Mapping of example expert 2

Expert Text Area Mapping

Q1 #1 Coding as language (new)

Developing good program design (knowledge)

Q1 #2 Problem solving (knowledge)

Testing and debugging (knowledge)

Q1 #3 Lifelong learning (skill)

Q1 #4 Tools (new)

Q1 #5 Humble (skill)

Unit test (knowledge)

Q2 #1 Writing programs (knowledge)

Lifelong learning (skill - duplicate)

Q2 #2 Teamwork and collaboration (skill)

Q2 #3 Experimentation and judgement (skill)

Staying motivated (skill)

Q2 #4 Communication (skill)

Teamwork and collaboration (skill)

After mapping, we see that our areas were not nearly as divergent as the number of words

to describe them. Expert one had 9 areas while expert two has 14. We still have a chance, even

with the extra description, of missing some of the nuance when we do the mapping. For example,

this expert talks in Q1 #4 of “mastering the tools of the trade” with examples of “utilizing tools

to become efficient at their jobs through their ‘toolchest’”. This is mapped into “tools”. Clearly,

some of the scope and intent the expert is detailing is lost by the single mapping. Still, the Delphi

process should call out whether the consensus is that tools are “very important”, “not important”

or somewhere in between. It will also allow for comments if the concept of “fully utilizing tools

to develop job efficiency” is an item they feel is missing from the overall list.

4.3.2 Round 1 area “hit-list”

For Round 1 results, we have no rankings as key items are mapped from the essay

responses. However, counting how many experts “hit” on the same area gives us an initial feel

66

for how likely experts in our ranking sessions will highly rank the items they mentioned. It also

gives us a very rough ability to consider how our Round 2 results compare to this “hit-list”.

Table 4.4 Industry Framework Mapping “Hit-List”

Category Hits Area New

Problem solving 16 Professional skill

Communication 14 skill

Lifelong learning 14 skill

Teamwork and collaboration 13 skill

Curious 11 skill

Testing and debugging 11 knowledge

Writing programs 9 knowledge

Designing algorithms 7 knowledge

Creative and innovative 7 skill

Fundamentals of programming 7 knowledge

Single language 7 knowledge yes

Tools 6 knowledge yes

How computers work 6 knowledge

Data structures 6 knowledge

Developing good program design 6 knowledge

Multiple languages 6 knowledge yes

Object oriented programming 6 knowledge

Operating systems 6 knowledge

Unit test 5 knowledge yes

Program management 5 knowledge

Scripting language 4 knowledge yes

Generating clear documentation 4 knowledge

Knowledge and understanding 4 knowledge

Attention to detail 3 skill yes

Humble 3 skill yes

Ethical 3 skill

Accountable 3 skill yes

Helpful 3 skill yes

67

Table 4.4 (Continued)

Category Hits Area New

Computer hardware 3 knowledge yes

Passionate 3 skill yes

Code reviews 2 knowledge yes

Disciplined 2 skill

Big picture 2 skill yes

Multithreaded programming 2 knowledge yes

Empathy 2 skill

Abstraction 2 knowledge

Specific language 2 knowledge yes

Curiosity 1 skill yes

Scientific method 1 knowledge yes

Broad experience 1 knowledge yes

Pointers 1 knowledge

Asks for help 1 skill yes

Writing games 1 knowledge

Networking and communication 1 knowledge

Asks questions 1 skill yes

Failure analysis 1 knowledge yes

Machine learning 1 knowledge

Imperative Programming 1 knowledge yes

Memory allocation 1 knowledge

New = area not found in the current mapping lists derived from literature.

4.3.3 Discussion

While we cannot base any conclusions on the first round of a Delphi survey, there are

several interesting observations from this data.

First, this hit list shows that the top five items were professional skills. In addition, all of

these were present in the framework skills list. This certainly indicates that our industry experts

value skills highly. This supports the first half of our hypothesis H1 where we posit that industry

experts will have professional skills highly rated.

68

Second, all these highest hit-list skills were on the initial framework list. In addition, we

can see that many of the knowledge categories from our list also were called out by many

experts. This indicates that our framework appears to be doing a reasonable job predicting many

of our content areas.

Third, we do see several categories that are new from this breakdown. While we could

make a case for the area of “single language” as being possible to combine under one of our

knowledge list categories like “writing programs”, the language in the essays was direct enough

that we want to take this category into our Round 2 ranking. This does support that our initial

framework lists from research may not be comprehensive enough to cover all the areas our

experts find as having importance.

4.4 Delphi Round 2 results

The results from the hit-list table become the inputs into our Round 2 industry expert

survey. However, doing a ranking list on 49 items felt burdensome and could discourage some

experts from completing the Round 2 entry. To reduce this number, we removed items that were

only mentioned by one expert. While there is some risk one of these items might be seen by

experts and rated very high, this seems to be a reasonable trade-off to build a manageable

ranking list. Eliminating these entries, we end up with 37 items which seems much more

reasonable. We considered further dropping those categories that had only two hits from our

experts but dropping an additional seven items did not seem to change the overall number

enough. We also further risk an area recognized by two experts being seen as very important

when ranked alongside the other items. Further details about our survey structure can be seen in

Appendix A.

69

Below, the results are presented both as statistical data in tabular form and a box-plot

form.

Table 4.5 Round 2 statistical data of all industry results (28/31 samples)

Category Rank Mean Std Dev

Communication 1 4.43 0.69

Problem solving 2 4.39 0.79

Teamwork and collaboration 2 4.39 0.69

Accountable 2 4.39 0.63

Fundamentals of programming 5 4.36 0.83

Passionate 5 4.36 0.78

Ethical 7 4.21 0.83

Attention to detail 8 4.18 0.86

Testing and debugging 9 4.14 0.89

Knowledge and understanding 9 4.14 0.76

Lifelong learning 11 4.11 0.74

Big picture 11 4.11 0.74

Curious 13 4.04 0.84

Developing good program design 14 3.93 0.94

Creative and innovative 15 3.89 0.88

Helpful 16 3.86 0.85

Disciplined 17 3.71 0.76

Code reviews 18 3.68 0.94

Unit test 19 3.61 1.13

Generating clear documentation 20 3.57 1.14

Writing programs 21 3.50 1.07

Data structures 21 3.50 1.07

Empathetic 23 3.46 1.00

Abstraction 24 3.39 0.99

Humble 25 3.32 0.98

Tools 26 3.25 0.97

Multithreaded programming 27 3.14 0.80

Operating systems 28 3.11 0.99

How computers work 29 3.07 1.05

Designing algorithms 30 3.04 1.07

Computer hardware 30 3.04 1.10

Object oriented programming 32 3.00 0.98

Scripting language 33 2.93 0.90

70

Table 4.5 (Continued)

Category Rank Mean Std Dev

Program management 34 2.62 1.21

Multiple languages 35 2.39 1.07

Single language 36 2.36 1.19

Specific language 36 2.36 1.19

Figure 4.10 Round 2 boxplot of all industry result question statistics sorted by mean.

These results, statistically, show that we do have a reasonable separation in our data. The

highest ranked item had a mean of 4.43 while the lowest item was only 2.36. Nothing came in

under a mean of 2.00, which makes sense as everything on the initial Round 2 list had at least

two people in the initial results call out that item. The highest ranked items are all professional

skills: “communication”, “problem solving”, “teamwork and collaboration”, and “accountable”.

The lowest ranked items are knowledge items: “multiple languages”, “specific languages”,

“single languages”. This continues to support our hypothesis that industry experts will highly

value professional skills while ranking some specific programming knowledge categories much

lower.

71

On the knowledge areas, the highest ranked are: “fundamentals of programming”,

“testing and debugging”, and “knowledge and understanding”. These appear to be more general

topics than specific.

4.4.1 Comparison between Round 2 and Round 1 results

In order to evaluate how our expert rankings changed between these two survey passes,

we calculated a delta change between where items were ranked in the Round 1 hit-list, and where

they landed in the Round 2 results. The following table shows these deltas.

Table 4.6 Round 2 ranking versus Round 1 hit list ranking

Category Rank Hit

List

Rank

Delta

Teamwork and collaboration 1 4 3

Accountable 2 27 24

Communication 2 2 0

Problem solving 4 1 -3

Fundamentals of programming 5 10 4

Passionate 5 30 23

Testing and debugging 5 6 1

Ethical 8 26 17

Knowledge and understanding 8 23 15

Attention to detail 10 24 13

Big picture 10 33 21

Curious 10 5 -5

Lifelong learning 13 3 -10

Developing good program design 14 15 1

Helpful 15 28 13

Creative and innovative 16 9 -7

Code reviews 17 31 14

Unit test 18 19 1

Disciplined 19 32 13

Data structures 20 14 -6

Generating clear documentation 21 22 1

Tools 22 12 -11

72

Table 4.6 (continued)

Category Rank Hit

List

Rank

Delta

Writing programs 22 7 -15

Abstraction 24 36 12

Empathetic 25 35 10

Humble 26 25 -1

Operating systems 27 18 -9

Multithreaded programming 28 34 6

Object oriented programming 29 17 -12

Computer hardware 30 29 -3

Designing algorithms 30 8 -22

Scripting language 30 21 -10

How computers work 33 13 -20

Program management 34 20 -14

Multiple languages 35 16 -19

Specific language 36 37 1

Single language 37 11 -26

• Ties are ranked are the same level, and subsequent ranks are skipped. (If we have two

items tied at #2 the next available rank is #4 and we have no #3.

• Delta is positive if Round 2 ranked was higher, negative if Round 2 rank was lower, and

zero if the same.

Four of our top six are very similar. In particular, “communication” is #2 in both,

“problem solving” fell from #1 in the hit list to #4 in the Round 2, and “teamwork and

collaboration” is ranked #4 in the hit list and rose to #1 in the Round 2. From our review of

literature, “teamwork and collaboration” and “communication” are the only skills included in our

initial survey of syllabi. We can see that this data appears to backup that those may be the most

important items in this list.

We have several significant ranking moves. The delta column shows how much the

category rose or fell from the Round 1 hit list to the Round 2 ranking. The top five largest moves

up are: “accountable”, “passionate”, “big picture”, “ethical”, and “knowledge and

73

understanding”. Several of the ten largest moves up in our Round 2 ranking list were

professional skills. The three knowledge items that have a move of greater than ten points were

“code reviews”, “knowledge and understanding”, and “abstraction”.

There appear to be two primary reasons that could motivate these moves in our Round 2

rankings. The first seems to be items that were assumed in the Round 1 answers. For example,

“knowledge and understanding” was ranked 23rd in our Round 1 hit list with only 4 experts

mentioning it, but its Round 2 rank was #8. This clearly indicates that most experts thought this

was important, but few of them thought of this distinctly when filling out their Round 1 essay

answer responses. Professional skills seemed to show this type of move clearly. While most

experts did not mention many professional skills in their initial open-ended questions, many of

them were ranked as important in the Round 2 results. Several of these professional skills fall

into the skill subcategory that CC 2020 calls “attributes” [15]. Topping this list is “accountable”.

While this was 27th in our Round 1 hit list, with only three experts calling this out, it jumped 24

spots to tie for rank #2. This means that while only three of our expert group thought to call out

this item when describing what knowledge and professional skills new engineers need to have,

almost all of our experts acknowledged how important this attribute is. A corollary of this

finding is that several knowledge items were ranked much lower in this survey step. Areas that

fell ten or more slots were all knowledge items, with four falling more than twenty spots: “object

oriented programming”, “designing algorithms”, “multiple languages”, and “single language”.

“Single language”, for example, was #11 in our initial list, but was #37 in the Round 2 list. While

more work would be needed to expose the underlying reasons, we suggest that specific language

knowledge is clearly not as important as most other items.

74

On the other end of the spectrum, we had professional skills that dropped in the Round 2

assessment. “Lifelong learning”, which was ranked #3 in our hit list, fell to #13. While this

professional skill is still considered important with a mean of 4.11, it was not ranked as “very

important” by many experts. We have foreshadowed that we expected knowledge areas which

are very specific, language knowledge in particular, would rank lower for our industry experts.

The data bears this out. While I expected the top knowledge category from our review of

literature, “writing programs”, would have remained reasonably high in the Round 2 ranking, it

fell 15 ranks from #7 to #22. This seemed to be overshadowed by “knowledge and

understanding” which rose from #23 to #8. If engineers have base level programming

knowledge, it may be that it is assumed they have the ability to write programs.

From only this result, we already see a clear signal that industry experts generally place

more emphasis on many professional skills over particular knowledge categories. Of the top

thirteen ranked Round 2 items, 10 are skills. Of the bottom ten ranked items, all are knowledge-

based items. It is clear that a focus on professional skills in the engineering degree, and

programming specifically, must be undertaken to produce graduates that are fully capable of

stepping into first-time jobs.

4.4.2 Discussion

While this data clearly supports our main hypothesis, there seems to be some industry

assumptions that every candidate will meet some minimum level of programming knowledge to

be considered for a job. If a job applicant could not program in any language with some

proficiency, they would be a non-starter for a programming job. Future work to discover what

this minimum standard is would be useful as this needs to be fully covered in the knowledge

requirements from college degrees and programming course syllabi.

75

4.5 Delphi Round 3 results

Round 3 shows both the expert’s group responses as well as their initial response on each

ranked area. They are then asked to consider if they want to move their rating based on the group

result. The survey was presented to our experts like this:

Figure 4.11 Example of Round 3 survey

This has three notable items which are added to what was in the Round 2 survey. First,

the default answers in this survey were populated from the individual results during the Round 2

round. Second, the ranking in the list and the mean data are presented in the areas. Third, a small

text window was provided for feedback. Filling in the Round 3 survey, experts can keep or

change their response. In the instructions, the experts were asked to make a short note in the text

field if they either a) made a significant change to their prior answer, or b) kept their prior

answer in spite of a significant delta from the group results. This is intended to provide some

deeper ability to understand what an expert was thinking if they had a divergent response versus

the group. Thirteen of my twenty-nine industry respondents utilized these text fields to some

degree.

76

Here are the final Round 3 results.

Table 4.7 Statistical data of all industry Round 3 results (24/31 samples)

Category Area Rank Mean Std Dev

Problem solving Skill 1 4.58 0.50

Accountable Skill 2 4.46 0.51

Fundamentals of programming Knowledge 2 4.46 0.66

Communication Skill 4 4.38 0.71

Testing and debugging Knowledge 4 4.38 0.65

Attention to detail Skill 6 4.29 0.86

Teamwork and collaboration Skill 7 4.21 0.66

Ethical Skill 8 4.17 0.92

Lifelong learning Skill 8 4.17 0.70

Passionate Skill 8 4.17 0.82

Curious Skill 11 4.08 0.72

Developing good program design Knowledge 11 4.08 0.83

Knowledge and understanding Knowledge 11 4.08 0.72

Big picture Skill 14 4.04 0.75

Creative and innovative Skill 15 3.96 0.75

Code reviews Knowledge 16 3.92 0.83

Unit test Knowledge 17 3.88 0.90

Disciplined Skill 18 3.83 0.70

Data structures Knowledge 19 3.71 0.81

Generating clear documentation Knowledge 19 3.71 1.12

Helpful Skill 21 3.67 0.76

Abstraction Knowledge 22 3.58 0.83

Empathetic Skill 23 3.50 0.93

Writing programs Knowledge 23 3.50 1.10

Designing algorithms Knowledge 25 3.42 0.78

Humble Skill 25 3.42 0.78

Tools Knowledge 27 3.38 0.92

Multithreaded programming Knowledge 28 3.29 0.86

How computers work Knowledge 29 3.21 0.88

Operating systems Knowledge 29 3.21 0.83

Object oriented programming Knowledge 31 3.17 0.92

Scripting language Knowledge 32 3.04 0.95

Computer hardware Knowledge 33 2.88 0.74

Multiple languages Knowledge 34 2.54 1.02

77

Table 4.7 (continued)

Category Area Rank Mean Std Dev

Program management Knowledge 35 2.42 0.88

Single language Knowledge 35 2.42 1.02

Specific language Knowledge 37 2.29 0.95

If we compare these results to our Round 2 data, we see that we have some changes, but

things remained relatively stable. At most items moved no more than 5 rank items up or down.

Here is the delta list.

Table 4.8 Round 3 ranking and mean versus Round 2

Category
Round3

Rank

Round2

Rank

Rank

Delta

Mean

Delta

Problem solving 1 2 1 0.19

Accountable 2 2 0 0.07

Fundamentals of programming 2 5 3 0.10

Communication 4 1 -3 -0.06

Testing and debugging 4 9 5 0.24

Attention to detail 6 8 2 0.11

Teamwork and collaboration 7 2 -5 -0.18

Ethical 8 7 -1 -0.04

Lifelong learning 8 11 3 0.06

Passionate 8 5 -3 -0.19

Curious 11 13 2 0.04

Developing good program design 11 14 3 0.15

Knowledge and understanding 11 9 -2 -0.06

Big picture 14 11 -3 -0.07

Creative and innovative 15 15 0 0.07

Code reviews 16 18 2 0.24

Unit test 17 19 2 0.27

Disciplined 18 17 -1 0.12

Data structures 19 21 2 0.21

Generating clear documentation 19 20 1 0.14

Helpful 21 16 -5 -0.19

Abstraction 22 24 2 0.19

78

Table 4.8 (continued)

Category
Round3

Rank

Round2

Rank

Rank

Delta

Mean

Delta

Empathetic 23 23 0 0.04

Writing programs 23 21 -2 0.00

Designing algorithms 25 30 5 0.38

Humble 25 25 0 0.10

Tools 27 26 -1 0.13

Multithreaded programming 28 27 -1 0.15

How computers work 29 29 0 0.14

Operating systems 29 28 -1 0.10

Object oriented programming 31 32 1 0.17

Scripting language 32 33 1 0.11

Computer hardware 33 30 -3 -0.17

Multiple languages 34 35 1 0.15

Program management 35 34 -1 -0.20

Single language 35 36 1 0.06

Specific language 37 36 -1 -0.07

The mean delta was also a max drop of -0.20 points and a max gain of 0.38 points. This is

around one-third of a rating point.

4.5.1 Discussion

The collective data did have subtle but significant effects. “Problem solving” is a good

example to review. From a rank perspective, the Round 2 survey had this tied for #2. In the

Round 3 results, we saw this overtake the #1 position. A histogram of the results shows why this

happened.

79

Figure 4.12 Round 2 histogram for “Problem solving”

80

Figure 4.13 Round 3 histogram for “Problem solving”

We can see that Round 2 had one expert who rated this “Slightly important (2)”, and two

experts who rated this “Moderately important (3)”, in the round three results we had no-one who

placed this below “Important (4)”. In particular, the expert who had coded this at a “2” in the

Round 2 ranking changed this to a “4” in the Round 3 and added this comment: “Moved it to

important; original thinking was that not all of the work requires solving problems in its classic

meaning.” This is a great example of the extra round of survey with the group results giving

81

experts an opportunity to compare their initial ranking with the overall feel of the group. In this

case, this increased the mean of this category because we moved an outlier up significantly.

The largest move up the ranking was “Testing and debugging” which went from #9 to #4.

While there were a few single point moves up in this group, we also had the expert which rated

this “2” in Round 2 not respond to Round 3. This takes that low number out of the calculations.

It is difficult to know whether that expert would have increased his ranking based on the group

statistics or not. While there were not many comments on this category, one of the experts, who

rated this a “Very important (5)”, did add this note: “Most of the work is testing and debugging.

Probably the most crucial skill.” While there are some questions about the corners of the data, we

believe this is still the best consensus result from the team with the data we have.

The category of “teamwork and collaboration” was the largest drop from #2 to #7. This

was a little surprising as this seemed to be at the top of most of our lists going into Round 3.

Looking at the detail this seems to be the opposite of what we saw in “testing and debugging”.

Several experts who ranked this “5” did not participate in the Round 3 survey. This totaled six

experts. Looking at the other respondents, there were almost no changes in ranking. This led to a

reduction in the overall mean because we lost more high rankings based upon who did not

complete the Round 3 survey. We are under our desired limit of thirty responses which means

we can get some larger swings from this type of phenomenon. In a similar way, “helpful” also

has several “5” responses in the Round 2 results which were also missing from Round three

causing a drop of five ranks. It makes sense that experts who rated “teamwork and collaboration”

as very important, would rate “helpful” equally high. One of the other experts, who rated this a

“3” added this clarifying comment. “Being helpful is nice, but the majority of the time in coding

82

is spent alone.” This is an example of where our expert group was not uniformly agreed on this

particular category which resulted in a lower ranking.

While there are many additional levels of detail that could be gleaned from this data, this

gives enough examples to show that our final consensus list does represent the overall

importance of these knowledge and skill areas relative to each other.

4.6 Implications

The Round 3 of the Delphi survey did not show significant moves away from the Round

2 results, but it did give us a consensus rating which allows us to believe the top and bottom

categories have general agreement from our industry experts. Recapping our top ten:

Table 4.9 Top ten Round 3 categories

Category Area

Problem solving Skill

Accountable Skill

Fundamentals of programming Knowledge

Communication Skill

Testing and debugging Knowledge

Attention to detail Skill

Teamwork and collaboration Skill

Ethical Skill

Lifelong learning Skill

Passionate Skill

We see, like the Round 2 results, that only two knowledge categories were rated higher

than professional skills. As the mean for this group went from 4.17 to 4.58, we have the

consensus rating at between “Important (4)” and “Very important (5)”.

Looking at the bottom ten, we see the reverse trend.

83

Table 4.10 Bottom ten Round 3 categories

Category Area

Multithreaded programming Knowledge

How computers work Knowledge

Operating systems Knowledge

Object oriented programming Knowledge

Scripting language Knowledge

Computer hardware Knowledge

Multiple languages Knowledge

Program management Knowledge

Single language Knowledge

Specific language Knowledge

Only one of these categories is a professional skill. In addition, all the focus on languages

(scripting, multiple, single, specific) rated much lower than other areas.

It appears to be the consensus places much more importance on professional skills then

on detailed programming knowledge. This is not a completely conclusive statement. Even with

the bottom two categories here, “single language” and “specific language”, our means were still

2.29 and 2.42. This means they rated between “slightly important (2)” and “moderately

important (3)”. Where some of the experts did classify these two as “not important (1)”, others

had rankings as high as “very important (5)”. There may still be some assumption that

programmers will have some basic mastery of a single, or even of multiple, programming

languages. It would take some more detailed surveys to understand this nuance. However, the

overall finding is clear. For a new hire to excel as an engineer and a programmer, they must have

some mastery of these top-rated professional skills.

84

CHAPTER V

RESULTS: ACADEMIC EXPERTS

5.1 Academic experts

Academic experts are the second group critical to understanding knowledge and

professional skills rankings. Surveying academics who teach CS1 as well as more advanced

programming engineering courses will help understand what those closest to the classroom feel

are important. While there is expected to be some level of overlap, we expect academic experts

to have more highly ranked knowledge categories compared to their ranked professional skill

areas.

In order to build our list, we pulled a list of over 1300 ABET accredited engineering

program, randomized them, and started searching websites for EE or ECE department chairs.

We sent a blind request for assistance email to 156 chairs asking if they might have professors

with some experience with teaching introductory programming courses to engineering students.

While we only had 40 chairs respond, we were able to assembly a list of 71 potential professors

who were good candidates. Out of this list, we had 33 which agreed to join our Delphi survey.

5.2 Expert classification breakdown

As with our Industry experts, we asked our Academic experts several classification

questions to see if we had a broad representation of time teaching and experience in

programming areas.

85

5.2.1 Coding area

This question is identical to our Industry question.

• Where do you spend most of your coding time (check all that apply)?

For reference, we pulled a chart that provides one cross section of different programming areas

[15].

Figure 5.1 Contemporary view of the landscape of computing education (based on original

figure in [15])

86

From our expert sample we have coverage across several disciplines, but Computer

Science and Software Engineer were clearly the most common self-identified areas.

Figure 5.2 Result: Where do you spend most of your coding time

While “computer engineer” was our #1 category in our industry group, “computer

science” and “software engineering” rank above “computer engineer” for our academics. This is

not surprising as many of our academic experts were actually in the computer science field.

5.2.2 Courses taught

Our second question focuses on what level of courses our expert teach.

• What level of engineering/computer science programming courses do you teach

(check all that apply)?

Beginning programming is ranked the highest, which matches our methodology to find

experts in this area, but we have some representation through all the other categories as well.

87

Figure 5.3 Result: What level of engineering/computer science programming courses do you

teach

This shows we should be getting a reasonable cross section of experts who teach across

the spectrum of engineering programming courses included Embedded programming.

5.2.3 Years teaching

Our third question is:

• How long have you been teaching?

Almost half of our experts had been teaching for longer than 10 years. While there may be some

differences between new teachers and experienced teachers, we expect all of these professors are

keeping up with current expectations and standards.

88

Figure 5.4 Result: How long have you been teaching

5.2.4 Conducts research

In order to discover how many professors are doing research in programming, we asked

this question.

• Do you conduct research in programming or programming educations?

We would expect professors doing research in this area may be more involved with various

pedagogical techniques.

Figure 5.5 Result: Do you conduct research in programming or programming educations

0 2 4 6 8 10 12 14 16 18 20

Yes

No

89

Only a third of our expert group are also researching in this area. This could lead to a

more “traditional” bent among these teachers, however, that assertion would take more direct

questions. We do not add questions at this level of detail.

5.2.5 Main coding language

This question also mirrors the same question we ask our Industry group.

• What languages do you spend the most time in or teach (select all that apply)?

We can see that Python is also a slight winner among our academics as it was with our industry

experts.

Figure 5.6 Result: What languages do you spend the most time in or teach

90

The other languages (C++, C, Java, etc) are very similar to our Industry group. C# had a

much higher number of users in our industry group, which may be particular to the company we

surveyed. In generally, this shows high agreement on which languages are most valuable to teach

and to know in industry. While a small sub-finding, we believe this is a good area to have

industry and academic agreement. We did not ask specifically what languages they taught, but

we would expect these align closely with what they program in.

5.2.6 Industry experience

To learn whether our Academic group had interactions with industry programmers, we

ask this question.

• Do you have industry experience?

While this is slightly vague and could mean worked in industry or could mean worked

with industry, the results show that two-thirds of our academics self-identified as having industry

experience.

Figure 5.7 Result: Do you have industry experience

This would lead us to assume that there should be a fair amount of overlap between these

two groups when we have our final ranking.

0 2 4 6 8 10 12 14 16 18 20

Yes

No

91

5.2.6.1 Years of industry experience

If our experts answered “yes” to the prior question, we followed up with a question on

duration.

• How many years of industry experience?

Figure 5.8 Academic years of industry experience

While we had some answers in every category, eight of our nineteen experts claimed over

10 years of experience. This leads us to believe that these experts are likely to be cooperating

with industry concurrent with their teaching. Understanding the opinions of second career

teachers as well as teachers who also work with industry might be an interesting topic for further

study.

5.3 Classification summary

These questions assess the diversity of our expert group. Like our industry group, we

show reasonable diversity across all of these metrics. However, it is clear our expert group is

weighted to professors who generally have ten or more years teaching.

0 1 2 3 4 5 6 7 8 9

>10

6-10

3-5

2-3

0-1

92

5.4 Round 1 results

The process for classification matches follows the methodology laid out in Chapter 3

with examples of how this is done in Chapter 4. This matched what was done with our industry

experts.

5.4.1 Round 1 area “hit list”

For Round 1 results, we have no ranking as all the key items are extracted from the essay

responses. However, counting how many experts “hit” on the same area gives us some initial

assessment around how likely experts in our ranking sessions will highly rank the items they

mentioned. Here are the classification mapping results.

Table 5.1 Academic framework mapping “hit-list”

Category Rank Hits Area New

Writing programs 1 18 knowledge

Problem solving 2 16 skill

Teamwork and collaboration 3 15 skill

Testing and debugging 4 13 knowledge

Designing algorithms 5 12 knowledge

Lifelong learning 6 11 skill

Single language 6 11 knowledge yes

Developing good program design 8 10 knowledge

Communication 9 9 skill

Data structures 9 9 knowledge

Version control 9 9 knowledge yes

Abstraction 12 8 knowledge

Fundamentals of programming 12 8 knowledge

Generating clear documentation 14 7 knowledge

Multiple languages 14 7 knowledge

Tools 14 7 knowledge

Receives feedback well 17 6 skill

Comprehending programs 18 5 knowledge

Evaluating time/space complexity 18 5 knowledge

Internships 20 4 knowledge yes

93

Table 5.1 (continued)

Category Rank Hits Area New

Networking and communication 20 4 knowledge

Object oriented programming 20 4 knowledge yes

Persistence 20 4 skill yes

Code reviews 24 3 knowledge

Control structures and logic 24 3 knowledge yes

File handling and I/O 24 3 knowledge

How computers work 24 3 knowledge

IDE 24 3 knowledge

Operating systems 24 3 knowledge

Pseudocode 24 3 knowledge

Refactoring code 24 3 knowledge

Specifications 24 3 knowledge

Unit test 24 3 knowledge

Web development 24 3 knowledge

Arrays dictionaries lists vectors 35 2 knowledge

Asks for help 35 2 skill

Assembly language 35 2 knowledge

Attention to detail 35 2 skill

Coding to API 35 2 knowledge

Command prompt for compilation and execution 35 2 knowledge

Databases 35 2 knowledge

Ethics 35 2 skill

Life Cycle 35 2 knowledge

Memory allocation 35 2 knowledge

Threading and concurrency 35 2 knowledge yes

Accountability 46 1 skill

Advanced data structures 46 1 knowledge

Designing a user interface 46 1 knowledge

Experimentation and judgement 46 1 skill yes

Gathering client requirements 46 1 skill

Imperative programming 46 1 knowledge

Inheriting and extending others' code 46 1 knowledge

Meets deadlines 46 1 skill

Pattern recognition 46 1 knowledge yes

Pointers 46 1 knowledge

Program comprehension 46 1 knowledge

Program management 46 1 knowledge

Project management 46 1 knowledge

94

Table 5.1 (continued)

Category Rank Hits Area New

Regression testing 46 1 knowledge

Repetition and loops 46 1 knowledge

Scope of code 46 1 knowledge

Scripting language 46 1 knowledge

Searching algorithms 46 1 knowledge

Security 46 1 knowledge

Skill in stay motivated 46 1 skill

Sorting algorithms 46 1 knowledge

Specific language 46 1 knowledge

Teachable 46 1 skill

Tracing execution of program 46 1 knowledge

UML 46 1 knowledge yes

Variables assignments 46 1 knowledge

Writing large program 46 1 knowledge

5.4.2 Discussion

From a volume perspective, the Academic group called out 72 separate categories where

the industry experts only enumerated 50. For our academic group, we have only 15 professional

skills out of their 74 total items, and only 4 of their top ten items were skills. If we look at how

many professional skill items between the groups, we see our industry experts had 18 out of 50,

but 6 of the top 10 ranked items were skills. At an aggregate level, it does seem that our initial

hypothesis is correct. Academic experts have a higher importance on knowledge areas versus

professional skills.

If we look at the two professional skills from both groups, we see some overlap.

95

Table 5.2 Professional Skills comparison of Industry and Academic Round 1 results

Ind Skill Ind

Rank

Aca Skill Aca

Rank

Problem solving 1 Problem solving 2

Communication 2 Teamwork and collaboration 3

Lifelong learning 2 Lifelong learning 6

Teamwork and collaboration 4 Communication 11

Curious 5

Creative and innovative 8

The top four are identical, if in a slightly different order. This may be significant as

agreement on these professional skills may provide a platform for where increased focus could

be applied in programming classes. “Curious” and “Creative and innovative” are interesting.

While they ranked high in the industry list, they were not even mentioned in the Round 1

academic survey.

We remove everything with only one or two expert callouts to reduce the list to 33 items

which is more manageable for our Round 2 ranking. In addition, we add “curious” and “creative

and innovative” which were not mentioned in the Academic Round 1. We hope to determine

whether these professional skills were excluded as an oversite or if these items are really not

valued by our Academic experts. Including Round 2 areas that did not come from the Round 1

results is a deviation from our Delphi survey method, but we believe this is warranted allow a

broader analysis of these high ranked industry professional skills in our final gap analysis.

Having 35 items to rank is similar to the 37 items we had on the industry Round 2 survey.

96

5.5 Academic Round 2 analysis

Our survey structure is identical to the industry survey asking for an importance selection

across a randomized list of the items. That statistical tabular results and the box-plot format

below show the result of our Round 2 data.

Table 5.3 Round 2 statistical data of all academic results (23/33)

Category
Rank Mean Std

Dev

Variance Kurtosis Skewnes

s

Fundamentals of programming 1 4.64 0.12 0.34 1.20 -1.39

Problem solving 2 4.61 0.14 0.43 1.20 -1.50

Testing and debugging 3 4.52 0.14 0.44 0.19 -1.10

Writing programs 3 4.52 0.12 0.35 -0.22 -0.81

Control structures and logic 5 4.50 0.17 0.64 -0.20 -1.22

Comprehending programs 6 4.32 0.15 0.51 -0.76 -0.57

Developing-and coding to-

specifications
6 4.32 0.18 0.70 1.31 -1.23

Developing good program design 8 4.30 0.17 0.68 1.33 -1.18

Persistence 9 4.26 0.16 0.57 -1.00 -0.49

Communication 10 4.13 0.16 0.57 1.61 -0.92

Data structures 10 4.13 0.16 0.57 -1.14 -0.23

Teamwork and collaboration 12 4.09 0.12 0.36 0.16 -0.01

Abstraction 13 4.00 0.20 0.91 -0.28 -0.69

Generating clear documentation 13 4.00 0.18 0.73 -0.29 -0.48

Lifelong learning 13 4.00 0.25 1.33 -0.77 -0.82

Receives feedback well 16 3.91 0.20 0.90 -0.51 -0.51

Object oriented programming 17 3.87 0.17 0.66 -0.23 -0.30

Curious 18 3.77 0.25 1.42 -0.37 -0.63

Creative and innovative 19 3.70 0.16 0.58 -0.15 -0.07

File handling and I/O 20 3.65 0.20 0.96 1.14 -0.78

Multiple languages 21 3.57 0.19 0.80 -0.51 -0.21

Networking and communication 22 3.48 0.18 0.72 -0.34 0.32

Refactoring code 22 3.48 0.21 0.99 -0.92 0.07

Internships 24 3.45 0.21 0.93 -0.82 -0.03

Evaluating time/space complexity 25 3.43 0.14 0.44 0.14 0.26

Designing algorithms 26 3.39 0.21 0.98 -0.94 0.02

Code reviews 27 3.35 0.18 0.78 -0.21 0.51

97

Table 5.3 (continued)

Category Rank Mean
Std

Dev
Variance Kurtosis Skewness

How computers work 27 3.35 0.23 1.24 0.11 -0.56

Version control 29 3.30 0.23 1.22 -0.68 -0.23

Single language 30 3.27 0.24 1.26 -0.51 0.07

Operating systems 31 3.13 0.17 0.66 -0.23 0.30

Tools 31 3.13 0.20 0.94 -0.18 0.71

IDEs 33 2.95 0.22 1.09 -0.98 0.10

Pseudocode 34 2.91 0.24 1.23 -0.58 0.89

Web development 35 2.78 0.22 1.09 -0.16 -0.05

Figure 5.9 Round 2 boxplot of all academic result question statistics sorted by mean rank.

Like our industry data, there is a clear mean separation between the highest and lowest

ranked items. In addition, we see most of the low ranked items have some “very important” and

some “not important” classifications, while the highest ranked items have nothing lower than

“moderately important” which supports the high mean. Also matching our Industry group, the

lowest mean was 2.78 which is still just slightly under “moderately important”. All of the items

listed to be ranked were generally considered important to some degree. Our added “curious”

and “creative and innovative” ranked in the middle of the pack with a 3.77 and a 3.70 mean

98

respectively. These are still close to the “important” group to our Academic group. While these

were not called out in the Round 1 by any expert, they did value these above many of their other

explicitly called out items. They did rank slightly lower than then did with our Industry group

(4.04 and 3.89).

Looking at the table, the top twelve items are dominated by knowledge areas. There are

only 4 professional skills: “problem solving” at #2, “persistence” at #9, “communication” at #11,

and “teamwork and collaboration” at #12. It is not surprising that “fundamentals of

programming” ended up at #1 while “writing programs” and “testing and debugging” came in at

#2 and tied for #3. In addition, three items in the top 10 were items that did not show up in the

industry list at all: “control structure and logic”, “comprehending programs”, and “developing-

and coding to-specifications”.

The bottom three items were all knowledge categories, but they still had a mean close to

“moderately important”. These items were “IDEs”, “pseudocode”, and “web development”.

While these are in the bottom of the pack, we see nothing special that separate these from the

other items slightly higher in mean.

5.5.1 Academic hit-list to Round 2 results deltas

The following table shows how our Round 2 results varied from our initial hit-list.

Table 5.4 Round 2 ranking versus Round 1 hit-list ranking

Category Rank

Hit

List

Rank

Delta

Fundamentals of programming 1 12 11

Problem solving 2 2 0

Testing and debugging 3 4 1

Writing programs 3 1 -2

99

Table 5.4 (continued)

Category Rank

Hit

List

Rank

Delta

Control structures and logic 5 18 13

Comprehending programs 6 9 3

Developing-and coding to-specifications 6 24 18

Developing good program design 8 8 0

Persistence 9 20 11

Communication 10 35 25

Data structures 10 9 -1

Teamwork and collaboration 12 3 -9

Abstraction 13 12 -1

Generating clear documentation 13 14 1

Lifelong learning 13 6 -7

Receives feedback well 16 17 1

Object oriented programming 17 20 3

Curious 18 73 55

Creative and innovative 19 73 54

File handling and I/O 20 24 4

Multiple languages 21 14 -7

Networking and communication 22 20 -2

Refactoring code 22 24 2

Internships 24 20 -4

Evaluating time/space complexity 25 18 -7

Designing algorithms 26 5 -21

Code reviews 27 24 -3

How computers work 27 24 -3

Version control 29 9 -20

Single language 30 6 -24

Operating systems 31 24 -7

Tools 31 14 -17

IDEs 33 24 -9

Pseudocode 34 24 -10

Web development 35 24 -11

Similar to our Industry results, we do see some big moves from our Round 1 to our

Round 2 results. Several items ended up high in each list: “problem solving” was #2 in each list,

100

“testing and debugging” went from #4 to #2, and “writing programs” went from #1 to #3. Our

Round 2 #1 result “fundamentals of programming” moved up significantly from its #12 Round 1

position.

For our largest moves upwards, “curious” and “creative and innovative”, were not in the

Round 1 list. This means they were ranked #73 (beyond the 72 total items) so the delta move of

54 and 55 is a little deceptive. Still, they ended up #18 and #19 for the Round 2 list, as discussed

in the last section. The professional skill “communication” also moved from #35 to #10 while

“teamwork and collaboration” dropped from #3 to #12. This does not completely match the

thought that both would finish high. We don’t have any particular data to understand why

“teamwork and collaboration” dropped so much. We will see if this corrects at all in the Round 3

data. “Persistence” also saw an 11 position move from #20 to #9. On the knowledge area side,

“developing-and coding to-specifications” increased from #24 to #6, and “control structures and

logic” jumped from #18 to #5.

The downward moves were equally interesting. “Single language” lost 24 ranks moving

from #6 to #30. “Version control”, “tools”, “web development”, and “pseudocode” all moved

down 10-20 ranks to end up in the high twenties and thirties. The most significant drops were in

knowledge areas apart from two interesting professional skills. “Teamwork and collaboration”,

as we have already mentioned, dropped 9 spots to fall out of the top 10. “Lifelong learning” also

fell out of the top 10 dropping 7 ranks.

5.5.2 Discussion

At this point, we once again see that our hypothesis concerning academics rating

knowledge areas higher than skill areas continues to appear true. Seven of our top ten items are

knowledge based where only two knowledge areas broke the top ten in the industry group.

101

Overall, our Round 2 items only started with 8 out of 35 items being skills, and two of those

were added from our industry list.

At the same time, the bottom 16 items in the Round 2 list were all knowledge areas and

had mean values from 2.78 to 3.65. While this is still in the “moderately important” range, it

does show that there are several knowledge areas that rated lower than all of the 8 professional

skills in the overall ranking. In the comment section of my survey, one of the professors made

what we feel is a telling comment, “The problem is that it's always easy to find lots of things that

are important, but there is only so much time.”

“Teamwork and collaboration” and “lifelong learning” both dropping out of the top ten

are interesting data points. This seems to indicate that these are not as highly valued as many

other areas. Our industry group Round 3 data had “lifelong learning” at #11, so that group also

dropped this out of the top ten. “Teamwork and collaboration” ended up at #2, so there seems to

be some disconnect here that needs to be investigated further.

We will see how much our Round 3 data moves versus the Round 2 results. If the

industry results hold true, we will only see small moves at the next level.

5.6 Academic Round 3 analysis

Our academic Round 3 results are shown below.

102

Table 5.5 Academic Round 3 statistical results with ranking

Category Area Rank Mean Std

Dev

Fundamentals of programming Knowledge 1 4.76 0.10

Control structures and logic Knowledge 2 4.67 0.14

Problem solving Skill 3 4.62 0.15

Writing programs Knowledge 3 4.62 0.13

Testing and debugging Knowledge 5 4.57 0.15

Comprehending programs Knowledge 6 4.52 0.13

Developing-and coding to-specifications Knowledge 7 4.38 0.18

Persistence Skill 7 4.38 0.16

Developing good program design Knowledge 9 4.29 0.18

Communication Skill 10 4.10 0.15

Data structures Knowledge 10 4.10 0.18

Lifelong learning Skill 12 4.05 0.26

Teamwork and collaboration Skill 13 3.95 0.19

Generating clear documentation Knowledge 14 3.90 0.15

Abstraction Knowledge 15 3.86 0.23

Receives feedback well Skill 15 3.86 0.23

Curious Skill 17 3.81 0.25

File handling and I/O Knowledge 18 3.71 0.24

Creative and innovative Skill 19 3.57 0.16

Object oriented programming Knowledge 19 3.57 0.22

Evaluating time/space complexity Knowledge 21 3.38 0.18

Internships Skill 21 3.38 0.23

Multiple languages Knowledge 21 3.38 0.22

Single language Knowledge 21 3.38 0.24

Designing algorithms Knowledge 25 3.33 0.20

How computers work Knowledge 25 3.33 0.21

Refactoring code Knowledge 25 3.33 0.25

Networking and communication Knowledge 28 3.29 0.18

Version control Knowledge 29 3.14 0.20

Code reviews Knowledge 30 3.05 0.16

Operating systems Knowledge 31 2.95 0.18

Pseudocode Knowledge 31 2.95 0.26

Tools Knowledge 31 2.95 0.18

IDEs Knowledge 34 2.90 0.23

Web development Knowledge 35 2.57 0.16

103

If we look at the delta from the Round 2 to the Round 3, we see very little changes in the

top ten items.

Table 5.6 Academic Round 2 to Round 3 top 10 deltas

Category Round3

Rank

Round2

Rank

Delta

Rank

Mean

Delta

Fundamentals of programming 1 1 0 0.12

Control structures and logic 2 5 3 0.17

Problem solving 3 2 -1 0.01

Writing programs 3 3 0 0.10

Testing and debugging 5 3 -2 0.05

Comprehending programs 6 6 0 0.20

Developing-and coding to-specifications 7 6 -1 0.06

Persistence 7 9 2 0.12

Developing good program design 9 8 -1 -0.01

Communication 10 10 0 -0.03

Data structures 10 10 0 -0.03

If we look at the largest deltas, we do see some larger changes (for example “single

language” rose 9 ranks from phase 2 to phase three), but all other moves were small.

104

Table 5.7 Academic Round 2 to Round 3 deltas by largest moves

Category Round2

Rank

Round3

Rank

Delta

Rank

Mean

Delta

Single language 30 21 9 0.11

Evaluating time/space complexity 25 21 4 -0.05

Control structures and logic 5 2 3 0.17

Internships 24 21 3 -0.07

Pseudocode 34 31 3 0.04

File handling and I/O 20 18 2 0.06

How computers work 27 25 2 -0.02

Persistence 9 7 2 0.12

Abstraction 13 15 -2 -0.14

Object oriented programming 17 19 -2 -0.30

Testing and debugging 3 5 -2 0.05

Code reviews 27 30 -3 -0.30

Refactoring code 22 25 -3 -0.15

Networking and communication 22 28 -6 -0.19

Note: Delta Rank = Round2 – Round3. Positive means increasing rank in the Round 3 survey.

Like our industry Round 3 results, most of the moves were minor and many items did not

change at all. In the mean difference column, we can see that the importance average delta was

very small. “Single language” bumped from #30 to #21. “Evaluating time/space complexity”

increased in rank even though the average importance dropped by a few tenths of a point.

“Networking and communication” had the largest drop in the Round 3 results moving from #22

to #28. Like our industry results, we did not have identical participation in the Round 3 survey,

so having a high or low value respondent in Round 2 not fill out Round 3 can cause some of

these small mean moves.

If we focus on our Round 2 top ten, we only have three moves to note in this list: “testing

and debugging” dropped from #3 to #5, “control structure” increased from #5 to #2, and

“persistence” stepped from #9 to #7.

105

5.6.1 Discussion

Having the Round #3 results show mostly minor changes, like our industry results, shows

confidence that our final list does reach some level of consensus among our academic experts. In

our top twelve items, we now only have three professional skills, but both #13 and #14 are

professional skills that just missed the cut. It still holds true that our industry group appears to

rate professional skills as more important than academic experts.

5.7 Industry/academic gap analysis

While our method called out running t-test and ANOVA statistics to compare the results,

these small data sets of ordinal data did not produce any interesting results. The t-test results

basically highlighted every mean difference in our comparison. Problem solving, for example,

has mean of 4.48 for the industry group and 4.61 for the academic group. This gave us a t-test

significance of 0.62 and a Cohen’s d of -0.200 which rejects the hypothesis that the variances are

the same. The ANOVA test also generated high significance. As this is not helpful to evaluate

our gap data, we simplified our analysis to look at the top ten ranked items and the delta rank

between groups.

5.7.1 Where industry and academic experts agree

If we review the top 10 list from each expert groups, we can find three areas where we

have strong agreement.

106

Figure 5.10 Industry and academic Round 3 top-ten comparison

We have several items which seem to be important for both groups.

• Problem solving (Industry #1, Academic #3)

• Fundamentals of programming (Industry #2, Academic #1)

• Testing and debugging (Industry #5, Academic #5)

These items provide some common ground for these two groups to consider whether or

not we should invest more work in reaching higher levels of agreement. Without much deep

thought, the three that have the most agreement do not seem very surprising. “Problem solving”

is one of the fundamental skills for all engineers. “Fundamentals of programing”, which we

would need some future work to define this crisply, seems to talk to the minimum required

knowledge to understand how to program. “Testing and debugging” tied at #5 in both groups,

which makes sense as this is the only way to know you have a program that is doing what you

planned. In many ways, every programming assignment in a CS1 course should have some level

107

of all three of these required to be successful. This will form the core of our first

recommendation.

5.7.2 Second tier results, key professional skills

We also have a few items that are important to one group and not as important to the

other group.

• Communication (Industry #4, Academic #10)

• Teamwork and collaboration (Industry #7, Academic #13)

• Lifelong learning (Industry #8, Academic #13)

• Developing good program design (Industry #11, Academic #9)

• Data structures (Industry #19, Academic #10)

• Writing programs (Industry #23, Academic #3)

From our review of literature, we expected “teamwork and collaboration” as well as

“communication” to be in this list. As we called out in proclaiming our hypothesis #1 true, these

were top-ten for our industry group but just out of our top-ten for our academic group. Our abet

professional skill of “lifelong learning” also fared better amount our industry experts than our

academic experts. While the mean from both groups would place these areas as “important”, we

must understand, and consider improving, why we have this disconnect between our groups. Our

hypothesis is further solidified by noting that three of the Academic areas which were not in the

academic list were all more detailed knowledge areas.

On the flip side, we had three items which were in the top-ten on our academic list that

were out of the top-ten for our industry group. “Developing a good program design” was close

enough to be considered an agreement. “Data structures” were clearly not as important to our

industry group, and “writing programs” was much lower. We would consider that “writing

108

programs” and “testing and debugging” are almost foils of each other. Without the 1st, there is

not much you can do on the 2nd. This is a disconnect on the industry side that needs to be better

understood. If you had a candidate who showed up for an industry and could show he excelled at

“problem solving”, “fundamentals of programming”, and “testing and debugging”, but had no

experience “writing programs”, we do not think they would be offered a job. It might be assumed

that our industry experts folded the “writing programs’ into “fundamentals if programming” at

some level, but without future work to clarify this we cannot base any of our recommendations

on that result.

We have several areas which were completely absent from the other expert groups list.

There was also one academic professional skill, “persistence”, which also did not appear in the

industry results. Was this an oversite by the industry group? Similarly, the industry items of

“accountable”, “attention to detail”, “ethical”, and “passionate” were not mentioned in the

academic group. Future work could be designed to target some of these important differences.

If we focus on professional skills, we do see that academics do rate these areas lower than

their industry counterparts. If we adjust for that, we see five skills considered important by both

groups. If we add the four skills which were in the industry’s top ten which were not listed by

our academic experts, we have nine items which could be considered important.

109

Table 5.8 Highest rated professional skills

Item Industry

Rank

Academic

Rank

Problem solving 1 3

Accountable 2 none

Communication 4 10

Attention to detail 6 none

Teamwork and collaboration 7 13

Ethical 8 none

Lifelong learning 8 12

Passionate 8 none

Persistence none 7

This list will form the foundation for our second recommendation.

5.7.3 Comparison of low ranked items between expert groups

With how our survey was structured, our phase one questions focused on items that were

important. This means that the final ranked-ordered list showed those areas on the bottom which

were simply not as important as the items on the top. As we mentioned in our review of the

importance mean, none of these items were “not important”. This means the value of looking at

the bottom end of our ranked list is not as valuable as the top ranked items. However, there are

some learnings that are suggested by these results. Here is the list of the bottom eleven items.

110

Figure 5.11 Industry and academic Round 3 bottom-eleven comparison

Only three of these matched, and the differences in rank were minor: “tools”, “how

computers work”, and “operating systems”. Academics had two items that were ranked slightly

higher than on the industry list: “designing algorithms”, and “code reviews”. Industry had three

items that were ranked higher by the academics: “object-oriented programming”, “multiple

languages”, and “single language”. But even the “code reviews” ranking by the academics only

reached rank #16.

The biggest take away was how many items were in each list that were not even in the

survey for the other group. There were five items that were on the industry list that did not even

make the cut for the academic list, and six items on the academic side that did not make the

industry list. Two possible areas of future work could be undertaken to build stronger consensus.

First, a Delphi survey which included equal numbers of industry and academic experts would be

valuable to see how these different experts would rank items together. Second, a survey could be

constructed with a research question asking, “what items are taught in engineering programming

111

courses which are least useful for new hires to master”. The focus of this question would

produce a better list of items that might be seen in the classroom which were considered not-

important, especially to our industry experts.

While this result is not as strong as our other results, our third recommendation is drawn

from this information.

112

CHAPTER VI

CONCLUSION

We began this work outlining the challenges seen from introductory programming (CS1)

as one of the first courses in the engineering degree program. While research on CS1 difficulties

as well as pedagogical improvements show some promise, we proposed that aligning CS1

teaching outcomes with increased academic focus on professional skills may help improve

understanding of engineering as a career. This has the promise of improving morale and

performance in courses like CS1. However, there is no current research which ranks traditional

knowledge areas along with professional skill areas. This dissertation has been a first step to

begin this investigation and analysis.

To investigate this link between knowledge and professional skill areas, we sought to

gather understand of experts from industry and academia. To assess these groups, we conducted

two three round Delphi survey to build consensus ranked lists. We then were able to compare the

results from each expert group.

Our first hypothesis predicted a gap between these two groups when discussing

programming skills for new hire engineers.

• H1: Academic experts and industry experts will have one or more gaps regarding

critical knowledge and professional skill areas required for programming in an

industry engineering position.

To investigate this hypothesis, we had two primary research questions that formed the

basis of our Round 1 Delphi survey:

113

• RQ1: According to industry experts, what are the most important knowledge and

professional skills to consider for an industry programmer?

• RQ2: According to academic experts, what are the most important knowledge and

professional skills to consider for an industry programmer?

Based on the results presented in previous chapters, our hypothesis was shown to be true.

While there are areas of agreement between where our industry and academic expert groups, our

academic experts mentioned more knowledge areas and less professional skills in their survey.

When our academic and industry group had a matching professional skill, the academics

generally rated that skill lower in their listings. Specific examples will be provided in our key

findings section below.

With our two consensus-based lists of important knowledge and professional skill areas,

we analyzed these lists side by side to address our third research question:

• RQ3: What is the gap between industry and academic experts in their answers to

these questions?

This question combines initial research on knowledge from syllabi work of Becker and

Fitzpratrick [14] and extends through the industry professional skills research of Groeneveld

[20]. With our gap analysis, we have a foundation to addressing our final research question:

• RQ4: Is there knowledge or a set of skills which should be emphasized or

deemphasized in a CS1 curriculum which could give students a better ability to

know whether engineering is a degree they want to pursue?

While our research does not fully answer this final question, our recommendations

section below will discuss several importing items supported by our analysis.

114

6.1 Review of our industry and academic individual results

From our survey results, we discovered how our industry experts rated many professional

skills as important, which academic experts rated more knowledge areas at the top of their

ranked list.

6.1.1 Industry results

Our industry results highly rated professional skills as shown by the listing in Table 6.1.

Eight of the “top ten” items were professional skills. While several of these were predicted by

prior literature, “accountable”, “attention to detail”, and “passionate” were new categories called

out by our experts. Overall, 41% of the 37 areas ranked by the industry experts were professional

skills.

Table 6.1 Top industry results (from Table 4.7)

Category Area Rank Mean

Problem solving Skill 1 4.58

Accountable Skill 2 4.46

Fundamentals of programming Knowledge 2 4.46

Communication Skill 4 4.38

Testing and debugging Knowledge 4 4.38

Attention to detail Skill 6 4.29

Teamwork and collaboration Skill 7 4.21

Ethical Skill 8 4.17

Lifelong learning Skill 8 4.17

Passionate Skill 8 4.17

6.1.2 Academic results

Our academic experts placed higher importance on knowledge areas as shown by the

listing in Table 6.2. Only three professional skills made the top 11, “problem solving”,

115

“persistence”, and “communication”. The academic experts highest rated professional skill,

“persistence”, was unique to these experts, not showing up in either literature or our industry list.

These top knowledge items strongly confirm the findings of Becker and Fitzpratrick [14]. The

top four Becker results (“writing programs”, “testing and debugging”, “control structures and

logic”, and “problem solving”) made the top five on our academic expert’s list. Only 26% of the

35 academic areas were professional skills.

Table 6.2 Top academic results (from Table 5.5)

Category Area Rank Mean

Fundamentals of programming Knowledge 1 4.76

Control structures and logic Knowledge 2 4.67

Problem solving Skill 3 4.62

Writing programs Knowledge 3 4.62

Testing and debugging Knowledge 5 4.57

Comprehending programs Knowledge 6 4.52

Developing-and coding to-specifications Knowledge 7 4.38

Persistence Skill 7 4.38

Developing good program design Knowledge 9 4.29

Communication Skill 10 4.10

Data structures Knowledge 10 4.10

6.2 Key findings between our industry and academic experts

From the results described in sections 6.1.1. and 6.1.2, we notice many differences

rankings. While professional skills made up 41% of our industry expert’s list, our academic

experts only identified professional skills in 26% of their items. To make recommendations, our

comparative analysis of all industry and academic panel results identified several areas overlap

between the two groups. These are critical as these overlaps will provide the basis of our

following recommendations.

116

In three areas, the final rank in both groups was near the top and closely matched:

• Problem solving (Industry #1, Academic #3)

• Fundamentals of programming (Industry #2, Academic #1)

• Testing and debugging (Industry #4, Academic #5)

These items are common ground. As almost all programming, at its simplest, is writing code to

solve a particular problem, we were not surprised that “problem solving” was near the top of

both lists. To be an effective programmer, you must have mastery of the “fundamentals of

programming”. “Testing and debugging”, which also appeared often in our literature review,

plays a significant role in programming. Any good coder needs to be able to test and debug code.

While “problem solving” is a professional skill, the other items are knowledge-based areas. This

common ground between our two expert groups will be foundational to our recommendation

section which follows.

We had five other areas which had some common ground.

• Communication (Industry #4, Academic #10)

• Teamwork and collaboration (Industry #7, Academic #13)

• Lifelong learning (Industry #8, Academic #13)

• Developing good program design (Industry #11, Academic #9)

• Data structures (Industry #19, Academic #10)

While the agreement is not as strong in these areas, there is enough support that these should be

included in our recommendations.

Finally, in addition to the eight areas where we have some common ground on

importance, we also identified eight knowledge areas that rated near the bottom of both of our

expert’s lists.

117

• Tools (Industry #27, Academic #31)

• How computers work (Industry #29, Academic #NA)

• Operating systems (Industry #29, Academic #31)

• Designing algorithms (Industry #25, Academic #25)

• Object oriented programming (Industry #31, Academic #19)

• Multiple languages (Industry #34, Academic #21)

• Single language (Industry #35, Academic #21)

• Code reviews (Industry #16, Academic #30)

These items are all knowledge areas. There are some differences in ranking between the two

groups, but neither group ranked any of these higher than #16.

With this collection of areas which have both high and low rank, we can present our

recommendations.

6.3 Recommendations for engineering-based computer programming courses

As we began in our introduction, we believe increasing the focus on professional skills in

programming courses will have positive impacts on motivation and retention. From our results,

we present three recommendations that work into this overall goal. First, we highlight what is

working and should remain foundational moving forward. Second, we detail the highest rated

professional skills which should be considered for integration into existing curriculums. Third,

we suggest lower rated knowledge areas which could be deemphasized to make room for new

content.

118

6.3.1 Recommendation #1: Continue to emphasize the importance of problem solving,

fundamentals of programming, and testing and debugging in all engineering

programming courses.

These three areas, which include one professional skill and two knowledge areas, showed strong

support with both of our expert groups. As these were also in the top five items of Becker’s

research, this is not a new recommendation. It is encouraging to note that our results clearly

reconfirm that these items, which are already a focus of many of the syllabi that Becker

reviewed, exist today. Indeed, if there was a way to deepen or strengthen the focus of these three

areas it should be considered. Industry managers could include specific questions seeking a

candidate’s mastery of these three items. Academics could use these three items to focus and

reenforce the teaching objectives through the course material.

6.3.2 Recommendation #2: Find new ways to instruct, highlight, and assess important

professional skills.

From our results, our industry experts highly rated professional skills. This seems to align

with the increased focus in this area from accreditation boards. These professional skills, as a

critical part of industry jobs, represent a significant side of what is needed to be successful in

engineering jobs. While the importance of knowledge cannot be discounted, as emphasized by

Recommendation #1, student understanding and practice of professional skills would give them a

more complete view of what engineering feels like in practice.

To find which professional skills are the most like candidates for consideration, we focus

on the professional skills from the top ten of both industry and academic lists. “Problem solving”

would be #1 on this list, but it is covered in Recommendation #1. The additional eight areas are

shown in the next table.

119

Table 6.3 Professional skills to emphasize in degree, programming, and individual classes

(from Table 5.8)

Item Industry

Rank

Academic

Rank

Accountable 2 none

Communication 4 10

Attention to detail 6 none

Teamwork and collaboration 7 13

Ethical 8 none

Lifelong learning 8 12

Passionate 8 none

Persistence none 7

We will address these in three different groups.

First, we have a group of three professional skills that have support from literature as well

as general support among both of our expert groups: “communication”, “teamwork and

collaboration”, and “lifelong learning”. While academic experts rated these lower than several

other knowledge areas, there is enough overlap to consider codifying these as key elements of

engineering and programming courses.

Second, the area “accountable”, “ethical”, “passionate”, and “persistent” present an

extremely interesting group of professional skills. While “ethical” is found in current research

such as the ABET criterion guidelines, the others were unique to this study. Industry came up

with “accountable” and “passionate” and ranked them highly during their Delphi survey.

Third, academics added an area outside of our professional skills research and ranked it at

#7 in their final list. “Persistent” does sound like a skill that would be useful for students as well

as career engineers. As this represents new items which have not been well researched, we

believe this presents us with an additional professional skill area which merits further research.

120

Distilling these eight items from our Delphi ranked lists of industry and academic expert

groups, along with our gap analysis, present the most significant finding from this research. We

hope this may provide some needed focus to drive future work investigating how these could be

included in future teaching objectives and analyzed to discover if these professional skills could

have a notable impact on student performance and retention.

6.3.3 Recommendation #3: Deemphasize less important knowledge areas to make room

for additional focus on professional skills.

Any addition to current curriculum would require having some candidate items which

could be deemphasized or dropped from the existing course load. While our open-ended Delphi

questions clearly focused on needed knowledge and professional skills, the areas which bubbled

to the bottom of the list would be considered candidates for deemphasizing or removing to make

space for our Recommendation #2. The table below is assembled from the lowest ranked items in

both groups of our Delphi surveys.

Table 6.4 Knowledge areas to deemphasize in degree, programming, and individual classes

Item Industry

Rank

Academic

Rank

Language (specific, single, multiple, scripting) 37,35,34,32 none

Operating systems 29 31

How computers work 29 25

Tools, IDEs 27 31,34

Web development none 35

Pseudocode none 31

Designing algorithms 25 25

In many ways, all of these could be seen as supporting knowledge to programming.

Learning a “language” is required to do programming, but I believe this data suggests that

teaching objectives should not focus on the details of language (syntax, details, etc.). In the same

121

way, having some understanding of “operating systems”, “how computers work”, “Tools, IDEs”,

“web development”, “pseudocode”, and “designing algorithms” may be needed to complete a

simple program, but it should not be the focus. A discussion of how this item could be better

studied is presented in future research.

These three recommendations, supported by our results, present some clear direction for

future research.

6.4 Contributions to the field of Computing Education

As we look at some of the results as well as some of the research and development of

methods, we have contributions that impact educators as well as future researchers in the field.

6.4.1 What does an educator know now?

Teaching is a challenging vocation. Not only must instructors keep up with start of the art

in their field, but they must also be checking and upgrading their teaching methods. As we are

focusing on engineering courses that teach programming, including CS1 courses, we have two

key findings and one critical question that will continue to be relevant as they review and

evaluate their material from year to year.

First, our Recommendation #1 clearly shows that the foundation of engineering courses is

solid. Instructors can be confident that both industry and academic experts agree the core of

programming courses should continue to be problem solving, fundamentals of programming, and

testing and debugging the heart of a programming course. As they consider making future

changes and improvements, these areas should be maintained and strengthened.

Second, or Recommendation #2 gives eight professional skills which are strong

candidates to consider integrating into their courses. While these should all be included through

122

the course of an engineering education, selecting key areas which align with their current

material would likely be a benefit to their students. We believe these professional skills,

particularly in beginning engineering courses like CS1, will help students gain a better

understand of what engineering careers require.

Finally, we believe the simple question “what mix of knowledge and professional skills

will be most valuable to students” will allow an active focus at a broad program level, a course

syllabus level, and even at a week-by-week teaching outcome plan level. Our Recommendation

#3 has some thoughts about what lower-level knowledge items might be deemphasized to make

sure the focus remains on the most important areas, but every educator would need to find the

right balance in their courses and with their individual classes.

These three items, supported by our research, should help provide some clarity for

educators as they look across their courses and their programs.

6.4.2 What does a researcher know now?

As research into the efficacy and application of professional skills continues, we show

XXX areas from our research which should make future studies easier.

First, we have shown with our results that starting with a broader, holistic approach can

provide better ability to compare and analyze results. This applies to expert team selection as

well as looking at knowledge and professional skill areas together. In our expert selection, we

have shown that including both industry and academic experts allows a broader range of

opinions and experiences to be sampled. As both viewpoints are necessary for educational

outcomes, research would be wise to include both areas in future work.

In a similar way, combining knowledge and professional skill areas into one ranked list

allowed us to calculate relative ranks which could not be seen when studying each area

123

separately. As we believe future studies are needed to better define and rank professional skills,

continuing to refine the related knowledge areas is best done concurrently.

Secondly, we have shown two methods which should be extensible to other areas of

research: classification framework, and gap analysis. Our classification framework not only

supported our work, but the framework itself provides a template for future work in many fields.

Building a list of terms from research, following a classification flow, and including a process to

add terms when the original list is not sufficient, show a general method that others could

leverage for different research areas.

When comparing our two survey results, our gap analysis provides a simple yet

instructive comparison between the two different expert groups. While an argument could be

made for research which includes both industry and academic experts in the same group, when

this is not reasonable analysis that follows our model can be useful.

Third, our results produced individual ranked list for each of our groups. These results, as

seen in our final recommendations, can be used to verify and extend our findings. Having a

starting list, like the initial lists we used from sources like Becker and the ABET

recommendations, is useful to launch into similar or extended future research. Our three final

recommendations can directly be reenforced or challenged in future research. At a high level, the

idea that professional skills should be integrated into engineering and programming courses is

clear from our results. We also have called out specific professional skills which might be

candidates for individual attention to discover of they would show statistically significant

improvement in student performance and retention. In our future research section, we will

suggest some specific areas we can see that would be useful extensions of our results.

124

It is our hope that these three contributions will encourage expansion of our methods and

additional work to help further codify how inclusion of professional skills in engineering

programming education could improve both student performance and retention.

6.5 Limitations

While we showed several clear results from our work, we note four limitations which

could impact the reach of this work.

6.5.1 Defining and building a hierarchy of terms

With our category mapping framework and ranking methodology, we left the definition

of our categories open to interpretation to our experts. A good example of where this presents a

problem is around the area “writing programs”. As mentioned earlier, this was ranked #3 by our

academics while ranked #23 by our industry experts. We suggested that the industry experts may

have assumed this would be above a minimum bar or may have lumped the minimum

requirements into “fundamentals of programming”. Without an agreed upon definition, we

cannot understand what this really implies. Several of our categories suffer from this definition

problem to some degree. Future research might take a few key items and work with experts to

build clear definitions.

In the same way, our areas have no hierarchy built into our analysis. For example, can

areas like “data structures” or “file handling” be grouped under “control structure and logic”?

Could “helpful”, “empathetic”, and “humble” be grouped under “teamwork and collaboration”?

Building our terms into a clear hierarchy list may help explain differences where broader terms

in the hierarchy may be rated well above or below more detailed sub-terms.

125

Future research that sought to clarify term definitions might allow for results like ours to

be developed with a little more hierarchy in the terminology as well as uniformity between

different groups.

6.5.2 Diversity across our industry and academic groups.

While we believe we assembled a diverse industry and academic group, there were

limitations which may impact the generally applicability of our results. In our industry group, all

of our experts were from the same fortune 500 company. While we showed a diversity of

experience, hiring involvement, as well as found representatives from four continents, there

might be some general training/hiring/development within one company that might skew these

results away from a general population. Our 33 academic experts were pulled from 27 different

colleges of engineering, but all within the US. In addition, with both our expert groups our

surveys were conducted in English.

While we believe our results are representative of a much broader population, future

research with different groups would be needed to corroborate our results.

6.5.3 Attrition through the survey process

Because if attrition, we ended up with less than 30 completed surveys after Round three.

This can limit the statistical findings. The following table shows these numbers.

126

Table 6.5 Expert survey completion rate

Round Industry

Counts

Industry

Percent

Academic

Counts

Academic

Percentage

Round 1 Start 36 33

Round 1 Completion 31 86% 29 88%

Round 2 Start 31 33

Round 2 Completion 29 94% 24 73%

Round 3 Start 31 33

Round 3 Completion 25 81% 21 64%

For our Round 2 and Round 3 completion numbers, we were short of our 30 completions.

With over 29% attrition amount our industry group and 34% attrition amount our academic

group, we should have begun with at least 38 industry experts and 47 academic experts. This

can have statistical impact to findings; however, we believe the overall impact was minor as

detailed in our results discussion sections.

6.5.4 Clear identification of knowledge areas which could be deemphasized

In our Recommendation #3, we generated a list of items which rated at the bottom of

both our Delphi surveys. While we believe this is generally accurate, our initial list was

searching for items which could be important to new hires in engineering jobs. This means that

every item on our list was considered a possible positive area. The ranking clearly showed these

bottom items were up to two importance points lower in the final ranking. However, if we had

asked an open-ended question like “what are the most taught and least important knowledge

areas in a beginning programming class”, or possibly “what are the most taught programming

knowledge areas in a college engineering degree that are not useful in an industry job”, we may

have gotten a more tightly targeted list. Future work could be done to strengthen the best

knowledge areas to deemphasize according to our Recommendation #3.

127

6.6 Future research

With all research, we build on those that have gone before us and look forward to the

work that will come after. Here are three areas of future research that we hope will flow out of

our three key recommendations.

6.6.1 Professional skills in the classroom

While our results produced some clear recommendations, the obvious next step would be

to design classroom experiments to evaluate integration of each of these professional skills and

measure the impact. Pedagogical and methodological work needs to be done that integrates one

or several of our targeted professional skills into a particular course. Then controlled work would

need to be done to analyze if the integrating of that material has a notable impact on performance

and retention. Some work has been done in this area (assessing problem solving [104]–[106],

professional skills in engineering [107]–[110], etc.), but more is needed.

For our eight recommended professional skills, we need to consider how they could be

best taught and assessed. From our initial review of literature, we outlined several pedagogical

methods from literature. Do methods help teach particular professional skills? Would problem-

based learning be a good way to introduce the skill problem solving? Does team-based learning

do a good job developing teamwork? Most of these pedagogical models still focus on the goal of

teaching knowledge areas. Simply having the professional skill name in the model does not mean

it will work well. For example, team-based learning suffers greatly when there is not equal

participation from all team members. This situation places individuals at odds instead of

fostering teamwork. If teams work well together, it might be a way to help the students simulate,

on a small scale, some of the realities engineers might face when working in industry.

128

We may consider different pedagogical techniques, or possibly just a difference in focus,

around the teaching of professional skills. Could we use interactive class teamwork exercises to

emphasize the importance of teamwork without making this the teaching focus of the class?

Could the professor simply talk about professional skills as they apply to the knowledge items

being learned? A focus on methods for teaching professional skills within the existing

pedagogical methods or with completely new methods could both be pursued.

We look forward to seeing this type of work attempted in the future. In particular, we

believe CS1 is a prime place where critical professional skills could serve to increase student

motivation and allow them to get a better understanding of what an engineering career would

entail.

6.6.2 Fleshing out “fundamentals of programming” and “testing and debugging”

While industry experts clearly rated professional skills as very important, “fundamentals

of programming” was ranked #2 and “testing and debugging” was ranked #4 overall in the

industry list. Among the academic experts, the corresponding ranks were #1 and #5. This shows

a high level of agreement between both expert groups. However, further understanding of these

particular knowledge areas is needed to uncover the underlaying items which make up these

knowledge areas.

6.6.3 Bridging the gap between industry and academics

While our separation of our experts into two groups to build two consensus lists to

compare was intentional, the results show several gaps and ranking differences that we have no

data to explain. Future Delphi surveys could be completed which strove to build a single group

combining industry and academic experts. While there may need to be a better definition of

129

terms or additional rounds to achieve consensus, this would serve to remove some of the

ambiguity that exist in our data when one group had a ranked category that did not even show up

on the other groups list.

We do not believe this would change our critical results or our recommendations, but it

would help provide a more complete picture of the cross-group differences.

6.7 Closing remarks

In engineering education, how do we help prepare students for their future? At the lowest

level, this happens uniquely for each individual student and involves friends, family, teachers,

staff, experiences, and opportunities. Every path is different. It is also true that no one can jump

forward in time to know for sure that the path they are taking will end up exactly where they

wanted to go. We all simply make the best choices we can along the way, and work to adjust if

we find ourselves somewhere we did not want to be.

In light of these factors, teaching students is a challenging task. There is never one simple

way that works for all teachers or all students. Understanding some of the complexities and

limitations of the academic environment is important. Most engineering students will end up in

industry positions. This means teachers must also strive to understand the complexities and

limitations of the industry positions for which they are preparing their students for.

Our research attempted to bring some understanding to the gap between industry and academic

expectations in the specific area of engineering programming education. It is hoped this can help

guide deeper understanding on both sides. Our three recommendations provide a base framework

we hope is thought provoking to educators. It is hoped that encouraging deeper integration of

critical professional skills in our engineering courses, programming courses, and even the

130

introductory CS1 course can be something that helps students develop a better understanding of

engineering careers and how they might integrate into that world.

131

REFERENCES

[1] Y. Bosse and M. A. Gerosa, “Why is programming so difficult to learn?,” ACM

SIGSOFT Software Engineering Notes, vol. 41, no. 6, pp. 1–6, Jan. 2017, doi:

10.1145/3011286.3011301.

[2] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory programming,” ACM

SIGCSE Bulletin, vol. 39, no. 2, p. 32, Jun. 2007, doi: 10.1145/1272848.1272879.

[3] A. Petersen, M. Craig, J. Campbell, and A. Tafliovich, “Revisiting why students drop

CS1,” in Proceedings of the 16th Koli Calling International Conference on Computing

Education Research - Koli Calling ’16, 2016, pp. 71–80. doi: 10.1145/2999541.2999552.

[4] A. Baist, A. P.-V. J. I. P. Teknik, and undefined 2017, “Analysis of Student Difficulties

in Computer Programming,” jurnal.untirta.ac.id, Accessed: Jun. 12, 2020. [Online].

Available: http://www.jurnal.untirta.ac.id/index.php/VOLT/article/view/2211

[5] L. Porter and B. Simon, “Retaining nearly one-third more majors with a trio of

instructional best practices in CS1,” SIGCSE 2013 - Proceedings of the 44th ACM

Technical Symposium on Computer Science Education, pp. 165–170, 2013, doi:

10.1145/2445196.2445248.

[6] L. Porter, C. Bailey Lee, and B. Simon, “Halving fail rates using peer instruction,” p.

177, 2013, doi: 10.1145/2445196.2445250.

[7] B. B. Morrison and J. A. Preston, “Engagement,” ACM SIGCSE Bulletin, vol. 41, no. 1,

pp. 342–346, Mar. 2009, doi: 10.1145/1539024.1508990.

[8] S. Russell, “Automated Code Tracing Exercises for CS1,” Computing Education Practice

2022, pp. 13–16, Jan. 2022, doi: 10.1145/3498343.3498347.

[9] P. M. Phothilimthana and S. Sridhara, “High-coverage hint generation for massive

courses: Do automated hints help CS1 students?,” Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE, vol. Part F128680, pp. 182–187,

Jun. 2017, doi: 10.1145/3059009.3059058.

[10] K. M. Ala-Mutka, “A Survey of Automated Assessment Approaches for Programming

Assignments,” Computer Science Education, vol. 15, no. 2, pp. 83–102, Jun. 2005, doi:

10.1080/08993400500150747.

132

[11] Simon et al., “Automated assessment in CS1,” Conferences in Research and Practice in

Information Technology Series, vol. 52, pp. 189–196, 2006.

[12] A. Pears et al., “A survey of literature on the teaching of introductory programming,”

ITiCSE-WGR 2007 - Working Group Reports on ITiCSE on Innovation and Technology

in Computer Science Education, pp. 204–223, Dec. 2007, doi:

10.1145/1345443.1345441.

[13] B. A. Becker and K. Quille, “50 Years of CS1 at SIGCSE: A Re-view of the Evolution of

Introductory Programming Education Research,” Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 2019, doi: 10.1145/3287324.

[14] B. A. Becker and T. Fitzpatrick, “What Do CS1 Syllabi Reveal About Our Expectations

of Introductory Programming Students,” Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 2019, doi: 10.1145/3287324.

[15] A. Clear, J. Impagliazzo, A. S. Parrish, M. Zhang, J. Impagliazzo, and M. Zhang,

“Computing Curricula 2020,” SIGCSE 2019 - Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, pp. 653–654, Feb. 2019, doi:

10.1145/3287324.3287517.

[16] A. Luxton-Reilly, “Learning to program is easy,” Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE, vol. 11-13-July-2016, pp. 284–289,

Jul. 2016, doi: 10.1145/2899415.2899432.

[17] C. G. P. Berdanier, “A hard stop to the term ‘soft skills,’” Journal of Engineering

Education, vol. 111, no. 1. John Wiley and Sons Inc, pp. 14–18, Jan. 01, 2022. doi:

10.1002/jee.20442.

[18] M. Minnes, S. G. Serslev, and O. Padilla, “What Do CS Students Value in Industry

Internships?,” ACM Transactions on Computing Education (TOCE), vol. 21, no. 1, Mar.

2021, doi: 10.1145/3427595.

[19] Charlotte Ruhl, “Bloom’s Taxonomy of Learning Classification System,” May 24, 2021.

https://teachersupport.info/blooms-taxonomy/ (accessed Apr. 23, 2022).

[20] W. Groeneveld, J. Vennekens, K. Aerts, and K. Leuven, “Identifying Non-Technical

Skill Gaps in Software Engineering Education: What Experts Expect But Students Don’t

Learn,” ACM Transactions on Computing Education (TOCE), vol. 22, no. 1, pp. 1–21,

Oct. 2021, doi: 10.1145/3464431.

[21] A. Luxton-Reilly and Andrew, “Learning to Program is Easy,” in Proceedings of the

2016 ACM Conference on Innovation and Technology in Computer Science Education -

ITiCSE ’16, 2016, pp. 284–289. doi: 10.1145/2899415.2899432.

[22] A. Yadin and Aharon, “Reducing the dropout rate in an introductory programming

course,” ACM Inroads, vol. 2, no. 4, p. 71, Dec. 2011, doi: 10.1145/2038876.2038894.

133

[23] R. Medeiros, … G. R.-I. T. on, and undefined 2018, “A systematic literature review on

teaching and learning introductory programming in higher education,”

Ieeexplore.Ieee.Org, pp. 1–14, 2018.

[24] F. Y. Assiri, “Recommendations to improve programming skills of students of computer

science,” in Proceedings of 2016 SAI Computing Conference, SAI 2016, Aug. 2016, pp.

886–889. doi: 10.1109/SAI.2016.7556084.

[25] J. Coffey, “Relationship between design and programming skills in an advanced

computer programming class,” Journal of Computing Sciences in Colleges, vol. 30, no. 5,

pp. 39–45, 2015.

[26] J. M. Wing, “Computational thinking,” Commun ACM, vol. 49, no. 3, pp. 33–35, 2006,

doi: 10.1145/1118178.1118215.

[27] K. Brennan and M. Resnick, “New frameworks for studying and assessing the

development of computational thinking.”

[28] D. Barr, J. Harrison, and L. Conery, “Computational Thinking: A Digital Age Skill for

Everyone.,” Learning & Leading with Technology, vol. 38, no. 6, pp. 20–23, 2011,

Accessed: Feb. 05, 2022. [Online]. Available: http://csta.acm.org.

[29] S.-C. Kong and H. Abelson, “Computational Thinking Education,” Computational

Thinking Education, p. 382, 2019, doi: 10.1007/978-981-13-6528-7.

[30] P. J. Denning, “Remaining Trouble Spots with Computational Thinking,” Commun ACM,

vol. 60, no. 6, pp. 33–39, Jun. 2017, doi: 10.1145/2998438.

[31] V. J. Shute, C. Sun, and J. Asbell-Clarke, “Demystifying computational thinking,” Educ

Res Rev, vol. 22, pp. 142–158, Nov. 2017, doi: 10.1016/J.EDUREV.2017.09.003.

[32] M. Tedre and P. J. Denning, “The long quest for computational thinking,” ACM

International Conference Proceeding Series, pp. 120–129, Nov. 2016, doi:

10.1145/2999541.2999542.

[33] C. Angeli and M. Giannakos, “Computational thinking education: Issues and challenges,”

Comput Human Behav, vol. 105, p. 106185, Apr. 2020, doi:

10.1016/J.CHB.2019.106185.

[34] Y. Li, “Teaching programming based on Computational Thinking,” Proceedings -

Frontiers in Education Conference, FIE, vol. 2016-November, Nov. 2016, doi:

10.1109/FIE.2016.7757408.

[35] S. Gross, M. Kim, J. Schlosser, C. Mohtadi, D. Lluch, and D. Schneider, “Fostering

computational thinking in engineering education: Challenges, examples, and best

practices,” IEEE Global Engineering Education Conference, EDUCON, pp. 450–459,

2014, doi: 10.1109/EDUCON.2014.6826132.

134

[36] N. A. of E. NAE, Educating the Engineer of 2020. Washington, D.C.: National

Academies Press, 2005. doi: 10.17226/11338.

[37] L. Miller, L.-K. Soh, V. Chiriacescu, E. Ingraham, and D. F. Shell Melissa Patterson

Hazley, “Integrating Computational and Creative Thinking to Improve Learning and

Performance in CS1,” Proceedings of the 45th ACM technical symposium on Computer

science education, 2014, doi: 10.1145/2538862.

[38] X. Tang, Y. Yin, Q. Lin, R. Hadad, and X. Zhai, “Assessing computational thinking: A

systematic review of empirical studies,” Comput Educ, vol. 148, p. 103798, Apr. 2020,

doi: 10.1016/J.COMPEDU.2019.103798.

[39] R. P. Y. Lai, “Beyond Programming: A Computer-Based Assessment of Computational

Thinking Competency,” ACM Transactions on Computing Education, vol. 22, no. 2, pp.

1–27, Jun. 2022, doi: 10.1145/3486598.

[40] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties in introductory

programming: A literature review,” ACM Transactions on Computing Education, vol. 18,

no. 1. Association for Computing Machinery, Oct. 01, 2017. doi: 10.1145/3077618.

[41] Y. Qian, S. Hambrusch, A. Yadav, S. Gretter, and Y. Li, “Teachers’ Perceptions of

Student Misconceptions in Introductory Programming,” Journal of Educational

Computing Research, vol. 58, no. 2, pp. 364–397, Apr. 2020, doi:

10.1177/0735633119845413.

[42] C. Schulte and J. Bennedsen, “What do teachers teach in introductory programming?,”

ICER 2006 - Proceedings of the 2nd International Computing Education Research

Workshop, vol. 2006, pp. 17–28, 2006, doi: 10.1145/1151588.1151593.

[43] ABET, Criteria for Accrediting Engineering Programs, November 2. Baltimore, MD

21201: ABET, 2020. [Online]. Available: www.abet.org

[44] ABET, “Computing Accreditation Commission CRITERIA FOR ACCREDITING

COMPUTING PROGRAMS,” 2019.

[45] ENAEE, “EUR-ACE ® Framework Standards and Guidelines (EAFSG).”

[46] I. E. A. IEA, World Federation of Engineering Organizationa, and unesco, “International

Engineering Alliance Graduate Attributes and Professional Competencies,” 2021.

[Online]. Available: http://www.ieagreements.org

[47] T. J. Mcgill and S. E. Volet, “Title: A conceptual framework for analyzing students’

knowledge.” [Online]. Available: http://eds.a.ebscohost.com/eds/delivery?sid=85d39948-

40e7-4195...

135

[48] M Schoeman (University of South Africa), “Exploring infusing graduateness in an

introductory programming module in an ODeL environment,” in digiTAL 2021

Conference Proceedings, 2021, pp. 178–188. doi: 10.13140/RG.2.2.32529.56167.

[49] M. (Stellenbosch U. Bester, “Academics’ conceptions and orientations of graduate

attributes in applied design programmes at a university of technology,” Stellenbosch :

Stellenbosch University, 2014. Accessed: Dec. 26, 2021. [Online]. Available:

https://scholar.sun.ac.za:443/handle/10019.1/86447

[50] Y. Chetty, “Graduateness and employability within the higher education environment: A

focused review of the literature,” in Developing student graduateness and employability:

Issues, provocations, theory and practical application, 2012, pp. 5–24.

[51] H. Ngambi, “Cultivating the RARE Graduate,” in Developing Student Graduateness and

Employability: Issues, provocations, theory and practical guidelines, 2012, pp. xix–xx.

[52] M. Exter, S. Caskurlu, and T. Fernandez, “Comparing Computing Professionals’

Perceptions of Importance of Skills and Knowledge on the Job and Coverage in

Undergraduate Experiences,” ACM Transactions on Computing Education (TOCE), vol.

18, no. 4, Nov. 2018, doi: 10.1145/3218430.

[53] P. L. Li, A. J. Ko, and J. Zhu, “What Makes A Great Software Engineer?,” in

Proceedings - International Conference on Software Engineering, Aug. 2015, vol. 1, pp.

700–710. doi: 10.1109/ICSE.2015.335.

[54] O. Helmer, “Analysis of the Future: The Delphi Method,” RAND Corporation, Santa

Monica, California, no. March, 1967.

[55] P. Galanis, L. S. Fish, and D. M. Busby, “The Delphi method,” in Faculty Publications -

BYU Scholars Archive, vol. 35, no. 4, BETA Medical Publishers Ltd, 2005, pp. 238–253.

doi: 10.4324/9781315728513-10.

[56] T. J. Gordon, “The Delphi Method,” Futures research methodology, vol. 2, no. 3, pp. 1–

30, 1994.

[57] F. Hasson, S. Keeney, and H. McKenna, “Research guidelines for the Delphi survey

technique,” J Adv Nurs, vol. 32, no. 4, pp. 1008–1015, Oct. 2000, doi: 10.1046/j.1365-

2648.2000.t01-1-01567.x.

[58] M. Turoff and H. Linstone, The Delphi method-techniques and applications. 2002.

[59] M. Turoff and H. A. Linstone, “The Policy Delphi,” The Delphi Method: Techniques and

Applications, vol. 2, no. 2, pp. 80–96, 2002.

[60] S. Keeney, F. Hasson, and H. McKenna, “Consulting the oracle: Ten lessons from using

the Delphi technique in nursing research,” J Adv Nurs, vol. 53, no. 2, pp. 205–212, 2006,

doi: 10.1111/j.1365-2648.2006.03716.x.

136

[61] N. J. Shariff, “Utilizing the Delphi Survey Approach: A Review,” Journal of Nursing &

Care, vol. 04, no. 03, pp. 246–251, 2015, doi: 10.4172/2167-1168.1000246.

[62] R. E. Taylor and L. L. Judd, “Delphi method applied to tourism.,” Delphi method applied

to tourism., pp. 95–98, 1989.

[63] B. Garrod, A. F.-T. research methods: Integrating, and undefined 2005, “Revisiting

Delphi: the Delphi technique in tourism research,” books.google.com.

[64] A. A. Olsen, M. D. Wolcott, S. T. Haines, K. K. Janke, and J. E. McLaughlin, “How to

use the Delphi method to aid in decision making and build consensus in pharmacy

education,” Curr Pharm Teach Learn, vol. 13, no. 10, pp. 1376–1385, Oct. 2021, doi:

10.1016/J.CPTL.2021.07.018.

[65] D. Menke, S. Stuck, and S. Ackerson, “Assessing Advisor Competencies: A Delphi

Method Study,” NACADA Journal, vol. 38, no. 1, pp. 12–21, 2018, doi:

10.12930/nacada-16-040.

[66] M. J. Scott, “A Concept Inventory for Functional Reasoning in Engineering Design,”

2019.

[67] S. Blair and N. P. Uhl, “Using the Delphi Method to Improve the Curriculum,” Canadian

Journal of Higher Education, vol. 23, no. 3, pp. 107–128, 1993, doi:

10.47678/cjhe.v23i3.183175.

[68] A. J. Magana, “Modeling and Simulation in Engineering Education: A Learning

Progression,” Journal of Professional Issues in Engineering Education and Practice, vol.

143, no. 4, 2017, doi: 10.1061/(ASCE)EI.1943-5541.0000338.

[69] R. A. Streveler, B. M. Olds, R. L. Miller, and M. A. Nelson, “Using a delphi study to

identity the most difficult concepts for students to master in thermal and transport

science,” ASEE Annual Conference Proceedings, pp. 4447–4454, 2003, doi: 10.18260/1-

2--12592.

[70] K. W. Lamm, N. L. Randall, and F. Diez-Gonzalez, “Critical food safety issues facing the

food industry: A delphi analysis,” J Food Prot, vol. 84, no. 4, pp. 680–687, Apr. 2021,

doi: 10.4315/JFP-20-372/449189/CRITICAL-FOOD-SAFETY-ISSUES-FACING-THE-

FOOD.

[71] L. F. Graham and D. L. Milne, “Developing basic training programmes: A case study

illustration using the delphi method in clinical psychology,” Clin Psychol Psychother,

vol. 10, no. 1, pp. 55–63, Jan. 2003, doi: 10.1002/CPP.353.

[72] W. H. Middendorf, “Modified Delphi Method of Solving Business Problems.,” IEEE

Trans Eng Manag, vol. EM-20, no. 4, pp. 130–133, 1973, doi:

10.1109/TEM.1973.6448448.

137

[73] V. Rajhans, S. Rege, U. Memon, and A. Shinde, “Adopting a modified Delphi technique

for revisiting the curriculum: a useful approach during the COVID-19 pandemic,”

Qualitative Research Journal, vol. 20, no. 4, pp. 373–382, Oct. 2020, doi: 10.1108/QRJ-

05-2020-0043/FULL/HTML.

[74] A. Sourani and M. Sohail, “The Delphi Method: Review and Use in Construction

Management Research,” http://dx.doi.org/10.1080/15578771.2014.917132, vol. 11, no. 1,

pp. 54–76, Jan. 2015, doi: 10.1080/15578771.2014.917132.

[75] N. Mehta, P. Verma, N. Seth, and N. Shrivastava, “Identification of TQM criterions for

engineering education using Delphi technique,” International Journal of Intelligent

Enterprise, vol. 2, no. 4, pp. 325–352, 2014, doi: 10.1504/IJIE.2014.069075.

[76] J. Jones, G. Belcher, and K. Elliott, “Identifying Technical Competencies for

Architecture and Construction Education using the Delphi Method,” Career and

Technical Education Research, vol. 46, no. 1, pp. 3–15, Jul. 2021, doi:

10.5328/CTER46.1.3.

[77] D. Varona and L. F. Capretz, “Using the DELPHI Method for Model for Role

Assignment in the Software Industry,” IECON 2021 – 47th Annual Conference of the

IEEE Industrial Electronics Society, pp. 1–7, Oct. 2021, doi:

10.1109/IECON48115.2021.9589957.

[78] K. K. Lilja, K. Laakso, and J. Palomki, “Using the Delphi method,” PICMET: Portland

International Center for Management of Engineering and Technology, Proceedings, no.

1999, 2011.

[79] D. Skulmoski, Gegory J. (Zayed University, F. T. (University of C. Hartman, and J.

(University of C. Krahn, “The Delphi Method for Graduate Research,” Journal of

Information Technology Education, vol. 6, pp. 93–105, 2007, doi: 10.1007/3-540-47847-

7_10.

[80] F. Lestari, I. Kusumanto, S. Hasri, and Akmaluhadi, “Independent campus on industrial

engineering undergraduate program in Indonesia: A delphi method,” IEEE International

Conference on Industrial Engineering and Engineering Management, vol. 2020-Decem,

pp. 1083–1087, Dec. 2020, doi: 10.1109/IEEM45057.2020.9309800.

[81] S. Iqbal and L. Pipon-Young, “The Delphi method: Susanne Iqbal and Laura Pipon-

Young with a step-by-step guide,” Archives of Hellenic Medicine, vol. 35, no. 4, pp. 564–

570, 2018, doi: 10.4324/9781315728513-10.

[82] B. K. Khalaf and Z. B. M. Zin, “Traditional and Inquiry-Based Learning Pedagogy: A

Systematic Critical Review,” International Journal of Instruction, vol. 11, no. 4, pp. 545–

564, 2018, Accessed: Mar. 12, 2022. [Online]. Available:

https://eric.ed.gov/?id=EJ1191725

138

[83] H. G. Schmidt, S. M. M. Loyens, T. van Gog, and F. Paas, “Problem-based learning is

compatible with human cognitive architecture: Commentary on Kirschner, Sweller, and

Clark (2006),” Educ Psychol, vol. 42, no. 2, pp. 91–97, 2007, doi:

10.1080/00461520701263350.

[84] S. Olena, T. Iryna, S. Olena, and S. Serhii, “Implementing Competency-Based Education

for the Engineering Specialties’ Students,” Proceedings of the 25th IEEE International

Conference on Problems of Automated Electric Drive. Theory and Practice, PAEP 2020,

Sep. 2020, doi: 10.1109/PAEP49887.2020.9240850.

[85] G. Durand, C. Goutte, N. Belacel, Y. Bouslimani, and S. Léger, “A diagnostic tool for

competency-Based program engineering,” ACM International Conference Proceeding

Series, pp. 315–319, Mar. 2018, doi: 10.1145/3170358.3170402.

[86] M. D. Mckinney and D. Mckinney, “Improving Pass Rates by Switching from a Passive

to an Active Learning Textbook in CS0,” in ASEE’S Virtual Confrence: At Home with

Engineering Education, Jun. 2020, p. 16.

[87] J. H. Berssanette and A. C. de Francisco, “Active learning in the context of the

teaching/learning of computer programming: A systematic review,” Journal of

Information Technology Education: Research, vol. 20, pp. 201–220, 2021, doi:

10.28945/4767.

[88] S. Freeman et al., “Active learning increases student performance in science, engineering,

and mathematics,” Proc Natl Acad Sci U S A, vol. 111, no. 23, pp. 8410–8415, Jun. 2014,

doi: 10.1073/PNAS.1319030111/SUPPL_FILE/PNAS.1319030111.ST04.DOCX.

[89] G. Gonzalez, “A systematic approach to active and cooperative learning in CS1 and its

effects on CS2,” Proceedings of the Thirty-Seventh SIGCSE Technical Symposium on

Computer Science Education, pp. 133–137, 2007, doi: 10.1145/1121341.1121386.

[90] S. Hartikainen, H. Rintala, L. Pylväs, and P. Nokelainen, “The Concept of Active

Learning and the Measurement of Learning Outcomes: A Review of Research in

Engineering Higher Education,” Education Sciences 2019, Vol. 9, Page 276, vol. 9, no. 4,

p. 276, Nov. 2019, doi: 10.3390/EDUCSCI9040276.

[91] J. Bergmann and A. Sams, Flip Your Classroom: Reach Every Student in Every Class

Every Day - Jonathan Bergmann, Aaron Sams - Google Books. 2012. Accessed: Mar. 31,

2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=-

YOZCgAAQBAJ&oi=fnd&pg=PR7&dq=+flip+your+classroom&ots=AGghQJmokh&si

g=JFvlCpecJH-WB6rJEK3eIhkq0ro#v=onepage&q=flip%20your%20classroom&f=false

[92] G. Akçayır and M. Akçayır, “The flipped classroom: A review of its advantages and

challenges,” Comput Educ, vol. 126, pp. 334–345, Nov. 2018, doi:

10.1016/J.COMPEDU.2018.07.021.

139

[93] Z. Huang, A. Peng, T. Yang, S. Deng, and Y. He, “A Design-Based Learning Approach

for Fostering Sustainability Competency in Engineering Education,” Sustainability 2020,

Vol. 12, Page 2958, vol. 12, no. 7, p. 2958, Apr. 2020, doi: 10.3390/SU12072958.

[94] P. A. Kirschner, J. Sweller, and R. E. Clark, “Why minimal guidance during instruction

does not work: An analysis of the failure of constructivist, discovery, problem-based,

experiential, and inquiry-based teaching,” Educ Psychol, vol. 41, no. 2, pp. 75–86, Mar.

2006, doi: 10.1207/S15326985EP4102_1.

[95] O. Chernikova, N. Heitzmann, M. Stadler, D. Holzberger, T. Seidel, and F. Fischer,

“Simulation-Based Learning in Higher Education: A Meta-Analysis:,”

https://doi.org/10.3102/0034654320933544, vol. 90, no. 4, pp. 499–541, Jun. 2020, doi:

10.3102/0034654320933544.

[96] V. Najdanovic-Visak, “Team-based learning for first year engineering students,”

Education for Chemical Engineers, vol. 18, pp. 26–34, Jan. 2017, doi:

10.1016/J.ECE.2016.09.001.

[97] M. Homero and G. Murzi, “Team-Based Learning Theory Applied to Engineering

Education: A System-atic Review of Literature Team-Based Learning Theory Applied to

Engineering Education: A Systematic Review of Literature,” ASEE Annual Conference

and Exposition, Conference Proceedings, pp. 24.1175.2-24.1175.12, 2014.

[98] P. Lasserre, “Adaptation of Team-Based Learning on a First Term Programming Class,”

Proceedings of the 14th annual ACM SIGCSE conference on Innovation and technology

in computer science education - ITiCSE ’09, 2009, doi: 10.1145/1562877.

[99] G. Sidhu, S. Srinivasan, and N. Muhammad, “Challenge-Based and Competency-Based

Assessments in an Undergraduate Programming Course,” International Journal of

Emerging Technologies in Learning, vol. 16, no. 13, pp. 17–28, 2021, doi:

10.3991/ijet.v16i13.23147.

[100] R. Anson and J. A. Goodman, “A Peer Assessment System to Improve Student Team

Experiences,” http://dx.doi.org/10.1080/08832323.2012.754735, vol. 89, no. 1, pp. 27–

34, Jan. 2013, doi: 10.1080/08832323.2012.754735.

[101] G. Norman, “Likert scales, levels of measurement and the ‘laws’ of statistics,” Advances

in Health Sciences Education, vol. 15, no. 5, pp. 625–632, 2010, doi: 10.1007/s10459-

010-9222-y.

[102] G. M. Sullivan, A. R. Artino, and Jr, “Analyzing and Interpreting Data From Likert-Type

Scales,” J Grad Med Educ, vol. 5, no. 4, p. 541, Dec. 2013, doi: 10.4300/JGME-5-4-18.

[103] A. Joshi, S. Kale, S. Chandel, and D. Pal, “Likert Scale: Explored and Explained,” Br J

Appl Sci Technol, vol. 7, no. 4, pp. 396–403, 2015, doi: 10.9734/bjast/2015/14975.

140

[104] N. Mourtos, N. DeJong Okamoto, and J. Rhee, “Defining, teaching, and assessing

problem solving skills,” 7th UICEE Annual Conference on Engineering Education, vol.

Mumbai, India, no. 9-13 February, pp. 1–5, 2004.

[105] A. K. Veerasamy, D. D’Souza, R. Lindén, and M. J. Laakso, “Relationship between

perceived problem-solving skills and academic performance of novice learners in

introductory programming courses,” J Comput Assist Learn, vol. 35, no. 2, pp. 246–255,

Apr. 2019, doi: 10.1111/JCAL.12326.

[106] C. Lertyosbordin, S. Maneewan, and D. Srikaew, “Components and Indicators of

Problem-solving Skills in Robot Programming Activities,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 9, pp. 132–140, 2021, doi:

10.14569/IJACSA.2021.0120917.

[107] A. Mohan, D. Merle, C. Jackson, J. Lannin, and S. S. Nair, “Professional skills in the

engineering curriculum,” IEEE Transactions on Education, vol. 53, no. 4, pp. 562–571,

Nov. 2010, doi: 10.1109/TE.2009.2033041.

[108] T. J. Siller, A. Rosales, J. Haines, and A. Benally, “Development of Undergraduate

Students’ Professional Skills,” Journal of Professional Issues in Engineering Education

and Practice, vol. 135, no. 3, pp. 102–108, Jun. 2009, doi: 10.1061/(ASCE)1052-

3928(2009)135:3(102).

[109] L. J. Shuman, M. Besterfield-Sacre, and J. McGourty, “The ABET ‘professional skills’ -

Can they be taught? Can they be assessed?,” Journal of Engineering Education, vol. 94,

no. 1, pp. 41–55, 2005, doi: 10.1002/J.2168-9830.2005.TB00828.X.

[110] Å. Cajander, M. Daniels, R. Mcdermott, and B. R. von Konsky, “Assessing Professional

Skills in Engineering Education,” 2011.

[111] H. J. Passow, “Which ABET competencies do engineering graduates find most important

in their work?,” Journal of Engineering Education, vol. 101, no. 1, pp. 95–118, 2012,

doi: 10.1002/J.2168-9830.2012.TB00043.X.

[112] M. E. Armstrong et al., “Knowledge, Skills, and Abilities for Specialized Curricula in

Cyber Defense,” ACM Transactions on Computing Education (TOCE), vol. 20, no. 4,

Nov. 2020, doi: 10.1145/3421254.

[113] S. Chidthachack, M. A. Schulte, F. D. Ntow, J.-L. Lin, and T. J. Moore, “Engineering

Students Learn ABET Professional Skills: A Comparative Study of Project-Based-

Learning (PBL) versus Traditional Students,” Mar. 2021, doi: 10.18260/1-2-1153-36216.

141

APPENDIX A

ROUND 1: DELPHI SURVEY OPENENDED AND CLASSIFICATION QUESTIONS

142

A.1 Delphi Questions

• Q1: What knowledge, skills, or characteristics should new hires in programming

positions possess? (please be detailed)

o (Long answer)

• Q2: What experiences are helpful to develop into a good programmer? (please be

detailed)

o (Long answer)

143

A.2 Classification Questions – Industry Experts

Computer technologies can be divided in many ways. Here is one diagram and

description:

• Q3: Where do you spend most of your coding time (check all that apply)?

144

o (checkboxes)

• Q4: How involved are you with hiring?

o (pulldown)

• Q5: How many interviews have you been involved in in the last year?

o (pulldown – 0 through 10+)

• Q6: How involved are you with training/mentoring new hires?

o (pulldown)

• Q7: What languages do you spend the most time in (select all that apply)?

o (checkboxs – many)

• Q8: If you spend most of your time in another language(s), list here?

o (short answer)

• Q9: How much of your current job involves coding?

o (pulldown – 0 to 100%)

• Q10: How would your rank your skill level?

o (pulldown)

• Q11: In 1-2 sentences, explain why you chose this ranking.

o (short answer)

• Q12: How many years have you been this skill level?

o (pulldown – 0 to >10)

A.3 Classification Questions – Academic Experts

• Q3: (IDENTICAL) Where do you spend/target most of your coding/teaching time

(check all that apply)?

o (checkboxes)

• Q4: What level of engineering/computer science programming courses do you

teach (check all that apply)?

145

o (Checkboxes – Beginning programming “CS1”, advanced programming,

embedded programming, architecture, advanced topics, other)

• Q4a: Briefly describe the “other” type of class you teach?

• Q5: How long have you been teaching?

o (pulldown – 0 to >15)

• Q6: Do you conduct research in programming or programming education?

o Yes/no

• Q6a: Briefly describe your research area.

o (short answer)

• Q7: What languages do you spend the most time in (select all that apply)?

o (checkboxs – many)

• Q8: If you spend most of your time in another language(s), list here?

o (short answer)

• Q9: Do you have industry experience?

o Yes/No

• Q9a: How many years?

• (pulldown – 0 to >10)

146

APPENDIX B

KNOWLEDGE AND SKILL AREAS – CLASSIFICATION FRAMEWORK LISTS

147

B.1 Partial Framework - Knowledge

The following table takes several of the lists from literature and strives to group rank them against each other. As the Becker

list is the longest, with 54 items in ranked order, the other categories are aligned with these. Note that the ABET list has a few items

that do not fall in the Becker list. The final category is an attempt to classify each item against the Mcgill and Volet framework. While

this works for most items, we have a few areas that fall out of the straight programing categories. It would be a stretch to place these

even in the “Strategic-Conditional” category. These are the additional categories added to this list: tools, debugging, professional skill,

background, and advanced topic.

Table B.1 Comparison of knowledge areas from several references [14], [40], [42], [44], [47].

Becker 2019 # of
Results

Schulte
2006

Qian 2017 ABET CS Knowledge Area

Writing programs 112

Substantial coverage of at least one
general-purpose programming
language

Str-Cond

Testing & Debugging code 110 Debugging

Tools, Debugging

Control Structures & logic (if/else etc) 107 Sel&Iter

Syn-Proc

Problem Solving (also things like
computational thinking)

106 ProbSolStrat

Professional skill

Arrays, Lists, dictionaries, vectors,
sets

93 AdvDataStr

Syn-Proc

Variables, assignment, arithmetic
expressions, declarations, data types

91 VarTypes Variables

Syn-Proc

(Object oriented programming) Basic
OOP

89

OOP

Str-Cond

148

Repetition & loops (for/while etc) 81

Loops

Con-Proc

Functions, methods, and procedures 78

Functions

Con-Proc

Designing Algorithms 73 AlgDesign

Algorithms and complexity Con-Proc

File handling & I/O 59

Syn-Proc

Data Structures (general or implied
complex like stacks, queues etc.)

54

DataStructures

Con-Proc

Classes & objects 52 Obj&Class

Con-Proc

Recursion 43 Recursion

Con-Proc

Generating clear documentation 41

Skill

How Computers & computational
systems work & history of computing

38

Exposure to computer architecture
and organization, computer science
theory

Background

Abstraction 37

Study of computing-based systems
at varying levels of abstraction

Con-Proc

Developing good program Design
methodology & styling

34

Str-Cond

Strings 34

Syn-Proc

Searching algorithms 29

Con-Proc

Inheritance 28 Poly&Inheri

Con-Proc

“Fundamentals of Programming” 27

Concepts of programming
languages and software
development

Background

IDE use 27 IDE

Tools

Sorting Algorithms 26

Con-Proc

Program Comprehension 24

Con-Dec

Evaluating Time/Space Complexity 21

Con-Dec

Simple Graphics & GUIs 21

Tools

Polymorphism 20

Con-Proc

Exception Handling 19

Con-Proc

Pointers 19 Ptr&Refs

Syn-Proc

149

Encapsulation 18 Encapsulati
on

Syn-Proc

Teamwork skills & Communication 18

Professional skill

Abstract Classes & Interfaces 13 DesignClass
es

Syn-Proc

Scope of code 12 Scope

Con-Proc

Memory allocation 9

Syn-Proc

Information Representation 6

Syn-Proc

Tracing execution of Program 6

Tools

UML Modelling language 6 UMLClassDi
ag

Advanced Topic

Command Prompt for Compilation
and Execution

5

Tools

Detecting logic errors 5

Debuging

Detecting syntax errors 5

Syn-Dec

Pseudocode 5

Con-Proc

Web Development 5

Advanced Topic

Functional Programming 4

Str-Cond

Code Manipulation 3

Con-Proc

Multi Threading & Concurrency 3

Con-Proc

Coupling & Cohesion concepts 2

Con-Proc

Boolean Logic 1

Background

Induction 1

Background

Information Technology & Data
Science skills

1

Information management Advanced Topic

Security 1

Advanced Topic

Version Control 1

Tools

(Networking and communication)

Networking and communication Advanced Topic

(Parallel and distributed computing)

Parallel and distributed computing Advanced Topic

(Operating systems)

Operating systems Advanced Topic

150

B.2 Partial Framework – Professional Skills

In our review of literature, we did not have a reference that presented a comprehensive list of skills or graduate attributes

similar to the Becker survey. We therefore assembled lists from many of these references to build a superset table similar to the one

above [17], [44], [45], [48], [52], [109], [111]–[113]. The list was then ranked by number of sources that references the same skill.

Table B.2 Comparison of professional skill areas from eight references [17], [44], [45], [48], [52], [109], [111]–[113].

ABET Shortened EUR-ACE Schoeman (ATC21S) Passow 2012 Armstrong

8 Communication Communication and
Team-working

Communication (Working
tactics)

Communication Skill in written communication,
communication with clients,
communication with
management

8 Teamwork and
collaboration

Communication and
Team-working

Cooperation or teamwork
(Working tactics)

Teams Skill in collaborating with the
people you work with

6 Lifelong learning Lifelong Learning Learning to
learn/metacognition--
understanding own thinking
processes (Thinking tactics)

Lifelong learning

5 Problem solving Engineering Analysis,
Engineering Design,
Engineering Practice

Critical thinking problem-solving
(Thinking tactics)

Problem solving

5 Ethical
responsibilities

Personal and social
responsibility (Behavior in the
world)

Ethics

4 Consideration of
public factors

Local and global citizenship
(Behavior in the world)

151

4 Experimentation
and judgement

Making Judgements,
Investigations

Decision-making (Thinking
tactics)

Data analysis

4

Knowledge and
understanding

Math, science &
engineering

Knowledge of OS, Logic, etc

2

Ability to be adaptable

1

Creativity and innovation
(Thinking tactics)

1

Information literacy (Working
tools)

1

Information and communication
literacy (Working tools)

1

Life and career (Behavior in the
world)

1

Design

1

Engineering tools

1

Contemporary
issues

1

Experiments

1

Impact

1

Ability to be curious

1

Skill in stay motivated

(Only five references indicated. The others were completely covered by these existing rows.)

152

B.3 Added Items

From our industry expert classification framework, we added the following items. In our

added items list, we had: 13 industry knowledge items, 13 academic knowledge items, 11

industry professional skills, and 5 academic professional skills. Clearly, the current state of

research was not broad enough to cover everything mentioned by our experts in their open-ended

questions.

• (knowledge) Single Language (7)

• (knowledge) Tools (7)

• (knowledge) Multiple languages (6)

• (knowledge) Unit test (5)

• (knowledge) Program management (5)

• (knowledge) Scripting language (4)

• (skill) Attention to detail (4)

• (skill) Receives feedback well (4)

• (skill) Humble (3)

• (skill) Accountable (3)

• (skill) Helpful (3)

• (knowledge) Computer hardware (3)

• (skill) Passionate (3)

• (skill-academic) Persistence (3)

• (knowledge-academic) Refactoring code (3)

• (knowledge) Code Reviews (2)

• (skill) Big picture (2)

153

• (knowledge) Multithreaded programming (2)

• (knowledge) Specific language (2)

• (knowledge) Imperative programming (2)

• (knowledge-academic) Life cycle (2)

• (skill) Asks for help (2)

• (knowledge-academic) Assembly language (2)

• (skill) Curiosity (1)

• (knowledge) Scientific method (1)

• (skill) Broad experience (1)

• (skill) Asks questions (1)

• (knowledge) Failure analysis (1)

• (knowledge-academic) Internship (1)

• (knowledge-academic) Databases (1)

• (skill-academic) Teachable (1)

• (knowledge-academic) Detailed logical thinking (1)

• (knowledge-academic) Inheriting and extending others’ code (1)

• (skill-academic) Gathering client requirements (1)

• (knowledge-academic) Design a user interface (1)

• (knowledge-academic) Regression testing (1)

• (knowledge-academic) Coding to API (1)

• (skill-academic) Meets deadlines (1)

• (skill-academic) Self-confidence (1)

• (knowledge-academic) Pattern recognition (1)

• (knowledge-academic) Developing-and coding to-specifications (1)

154

• (knowledge-academic) Advanced data structures (heaps, B-trees) (1)

(knowledge-academic) Writing large program (multiple files) (1)

155

APPENDIX C

SURVEY COMPLETION RATES AND BOILERPLATE EMAILS

156

C.1 Delphi survey emails and interactions

Running the Delphi survey proved to be challenging to find participants as well as

encourage them to participate in all three rounds of the survey. Here are some of the key

statistics on participation rates.

Table C.1 Round completion rates for both expert groups

Group Industry Academic

Request Emails 49 71

P1 Start 36 33

P1 Completion 31 29

P2 Start 31 33

P2 Completion 29 24

P3 Start 31 33

P3 Completion 25 21

Participate 73% 46%

P1 Percentage 86% 88%

P1 of total 63% 41%

P2 Percentage 94% 73%

P2 of total 59% 34%

P3 Percentage 81% 64%

P3 of total 51% 30%

For the industry, the total Round 3 completion rate was 51%. For the academic group,

where I did not have personal contact with any of the experts, we were at 30%. This means to

reach our target of 30 completed Round 3 surveys we should have lined up 100 initial contacts.

However, the start to complete ratios are much better, but still the personal contact with the

industry group showed better participation. Of my 36 initial “yes” responses on the industry side,

I had 31, 29, and 25 completed surveys for each round. Of my initial 33 “yes” responses from

my academic side, I had 29, 24, and 21 respondents.

157

From the review of literature, individual communication was highly encouraged, so all

my initial invite messages and follow-up were also one-on-one. While this took a fair about of

time, I do believe my completion rates would have been significantly worse if I had done more

group emails.

C.2 Boilerplate email

For each of the rounds, I build templates to be consistent with my participants. For Round

3, all the communication was one-on-one as the surveys were individual.

C.2.1 Personal industry initial invite to join my expert team

Subject: Looking for your help (personal research)

Hi <name> -- I’m hoping you can help me out! I have been working on my distance PhD in EE,

and I’m currently doing some research on what skills make for a good programmer. With my

professor, we are trying to discover how the skills needed for quality programmer compared to

skills taught in the classroom. As someone who has programming and industry experience, you

would provide a valuable perspective. Can I add you to my survey distribution list?

The commitment would be a total of about an hour spread out over three surveys. There would

be an initial survey (to get what skills and experiences you think are needed to make a good

programmer along with a few background questions), followed by two separate ranking requests.

The time commitment is small, but your input would strengthen my work and help create

consensus on the skills and experiences needed to become a “good” programmer.

Game?

Sincerely, John Hutton

158

C.2.2 Personal “thank you” of someone agrees

Excellent. I’m still getting some details together. Expect an email from me in the next 1-2 weeks.

(The next email will be coming from my university account, which is a @msstate.edu address.

I’ll ping you from work as this may end up caught in a spam filter.)

Many thanks, John

C.2.3 Personal “survey away” email.

Subject: Round 1 survey sent!

Excellent! Thanks again for helping me with my survey! The email will be something like “John

Hutton <noreply@qemailserver.com” from the Qualtrics.com service. It is also possible you may

see communication from my jfh232@msstate.edu account. If you do not get the survey email,

you may need to check your spam filter. Any issues just let me know!

Yours,

C.2.4 Initial Email with Qualtric link (from university email)

Subject: Delphi Survey Round 1 Invitation

Dear <name> -- In the field of programming, matching skills taught in college programming

courses to skills needed to be successful in industry is a difficult task! Even trying to evaluate

what mix of technical and interpersonal skills matter can be challenging.

The survey link here below is part of a Delphi survey to attempt to quantify some of these

details. This survey has two key questions where I ask you to list skills and life experiences that

you feel are needed to make a good programmer. There is no “right” answer here, so please think

about it and list as many items as you think matter. These questions are followed by some quick

background questions that we will use for classifying responses. Your results will be tabulated

with about 40 other people and your individual identity will not be disclosed. This is Round 1.

159

We will send more information along with future surveys, but here are a few details to

give you an idea of what will happen next. After we aggregate all the data, Round 2 will present

you with a list of all the skills from all the survey responses. We will ask you to rank skills.

Finally, in Round 3, we will show you the aggregated rankings versus your ranking and see if

you would like to make any tweaks to your original ranking.

Again, I appreciate your willingness to participate. If possible, I’m hoping to have my 1st round

of surveys completed by Tuesday Dec 7th.

Sincerely, John Hutton

C.2.5 Thanks for completing survey

Subject: Thanks for completing the Round 1 survey!

I appreciate you taking the time to complete the survey. This will really help me out. I have

another batch of “Round 1” surveys to send out, so you should not expect the “Round 2” for 2-4

more weeks.

Sincerely, John Hutton

C.2.6 Round 2 email

Delphi Survey for John Hutton's PhD Research - Round 2

Dear Friends –

It has been much longer than I initially planned to get this Round 2 out to you! However,

the Round 1 results were excellent. Everyone had thoughtful and inciteful things to say and the

final list covered quite a lot of items.

This next pass should be much quicker than the 1st. There are 37 areas I’m asking you to

rank from “Not Important” to “Very Important”. These items range across “traditional”

160

programming items and into many items about professional skills and even personal attitudes

and habits. There are no wrong answers.

Following this message, you will receive another email from Qualtric (email something

like noreply@qemailserver.com). Check your spam if you don’t see this as I have continued to

have spam filters stop these for some people. I would like to have this round completed by 5/2,

so try to schedule the 5-10 minutes when you can.

Sincerely, John Hutton

C.2.7 Round 2 Qualtric Message

Friends –

Here is the Round 2 ranking survey. There are 37 areas to rank. Take a quick pass

through the list (if possible, difficult if you are doing this on the phone) and then try to rank

everything from “Not Important” to “Very Important”. Remember that our target would be

things that would be important in a new hire you were interviewing, or skills needed by a new

hire that would set them on the rode to being an excellent engineer.

There are no wrong answers.

Thanks again for your help throughout this process!

Yours, John Hutton

C.2.8 Round 3 email

Subject: Delphi Survey for John Hutton's PhD Research - Round 3

Dear -

We are I the home stretch! The link below is to my Round 3 survey which is the last. This

may take slightly longer than the Round 2, but it should be relatively quick.

Here is your link:

mailto:noreply@qemailserver.com

161

For a Delphi survey, Round 3 is looking to build consensus. This will never be complete,

but the methodology works like this. This list of items is ranked based on the aggerate statistics

from all the respondents in Round 2. The items go from most highly ranked to least highly

ranked. Each item has the statistical “mean” from the data. A mean of 3.00 means that the

average of all the ratings was equivalent to “moderately important.

Your Round 2 answers will be entered as the starting default for Round 3. Now that the

group data is also present, take a quick look through your responses and pay particular attention

to items where your selection was different from the group statistics. Reconsider that particular

item and consider whether there may be some positive or negative side you might not have

considered. If you decide to move your answer closer to the group answer, that is great. If you

decide to stay where you are or even move further away, that is equally valid. On any item where

you put in some quick, but serious, though, there is a text field under the item where you can

enter comments. If the group had a rating different than yours, you can enter a short section of

why you continue to support your selection. If you change an entry, you can enter what thought

moved you to a change. You do not have to put comments on every question, but the more you

can call out specific details on differences (in particular) the better I will be able to aggerate the

final data and possibly see threads among all of the responses.

If you can finish this survey by Friday (5/20) that would be excellent, but my actual

deadline for this is next Tuesday (5/24).

Thanks again for your help!

Sincerely, John

162

C.2.9 Academic ECE and CS Head Request for help

Subject: Assistance with PhD research in Engineering Programming

(Note: Per our method, we initially reached out to department heads to ask for possible

professors who might agree to join our academic expert group.)

Hi --

Forgive this blind email, but I could use your help. I’m looking for some professors who

teach programming to joining my academic expert team for a Delphi survey I’m conducting for

my PhD research. My name is John Hutton from Mississippi State University, and my research is

striving to build a consensus list of knowledge and professional skill areas that are critical for

engineering and CS programmers. As my academic network is small, I am reaching out to ECE

and CS department heads at several Abet accredited ECE/EE schools hoping they could connect

me with interested professors (but Abet accreditation is NOT required for participation).

Could you help me? If you can provide names of professors who teach CS1 (or other

programming courses), I will reach out to them 1:1 to confirm interest.

Sincerely, John Hutton

C.2.10 Academic Personal

Subject: Re: Assistance with PhD research in Engineering Programming

Hi --

I was given your contact information by <> as someone who might be able to help me.

I’m looking for professors who teach programming to joining my “academic expert” team for a

Delphi survey I’m conducting for my PhD research. My name is John Hutton from Mississippi

State University, and my research is striving to build a consensus list of knowledge and

professional skill areas that are critical for engineering and CS programmers. The commitment

will be around one hours spread across the traditional three rounds of a Delphi method survey.

163

Would you be willing to help me?

Sincerely, John Hutton

C.2.11 Academic Round 1 Qualtric Initial Email

Subject: Delphi Survey Invitation

In the field of programming, matching skills taught in college programming courses to

skills needed to be successful in industry is a difficult task! Even trying to evaluate what mix of

technical knowledge and professional skills to teach can be challenging.

The survey link below is Round 1 of my Delphi survey to attempt to quantify some of

these details. This survey has two key questions where I ask you to list knowledge, skills, and

life experiences that you feel are helpful to make a good programmer. There is no “right” answer

here, so please think about it and list as many items as you think matter. These questions are

followed by some quick background questions that we will use for classifying responses. Your

results will be tabulated with about 30 other people and your individual identity will not be

disclosed.

We will send more information along with future surveys, but here are a few details to

give you an idea of what will happen next. After we aggregate all the data, Round 2 will present

you with a list of all the skills from all the survey responses. We will ask you to rank them.

Finally, in Round 3, we will show you the aggregated rankings versus your ranking and see if

you would like to make any tweaks to your original ranking.

Again, I really appreciate your willingness to participate. If possible, I’m hoping to have

this round of surveys completed by 4/18.

Sincerely, John Hutton

164

C.2.12 Personal email if I fear spam capture!

Subject: Round 1 Survey on-the-way

Hello Friends –

Just a quick note from my school email to let you know that your survey has been queued

up and should be in your inbox 30-60 minutes after this message arrives. I have already had four

people figure out that their school spam filter caught the survey message with the link. If you do

not see a 2nd message (will be from an email like noreply@qemailserver.com as this is generated

by the Qualtrix service).

Thanks again for being a part of my academic team.

John

C.2.13 Academic Round 2 email

Subject: Delphi Survey for John Hutton's PhD Research - Round 2

Dear Friends –

The Round 1 results are completed! Thanks for all the effort you put into the open-ended

questions. We have analyzed these answers and generated a list of 35 categories that you will be

ranking in our Round 2 survey. This should be quicker than the Round 1 as most of my prior

group were able to complete the ranking in under 5 minutes. I’m asking you to rank from “Not

Important” to “Very Important”. These items range across “traditional” programming items and

into many items about professional skills and even personal attitudes and habits. There are no

wrong answers.

Following this message, you will receive another email from Qualtric (email something

like noreply@qemailserver.com). Check your spam if you don’t see this as I have continued to

have spam filters stop these for some people. I would like to have this round completed by 6/4. I

know we will be fighting some summer plans and vacations, but please try to complete this as

mailto:noreply@qemailserver.com
mailto:noreply@qemailserver.com

165

you are able. I hope to turn around Round 3 in a few days after these results are compiled. It is a

ranking check, so also should be in the 5-minute range.

Thanks again for being a part of my research!

Sincerely, John Hutton

C.2.14 Aca Round 2 Qualtric Message

Subject: Delphi Survey for John Hutton's PhD Research - Round 2

Friends –

Here is the Round 2 ranking survey. There are 35 areas to rank. Take a quick pass

through the list (if possible, difficult if you are doing this on the phone) and then try to rank

everything from “Not Important” to “Very Important”. Remember that our target would be

things that would be important for a graduate going into a job interview situation. There are no

wrong answers.

Thanks again for your help throughout this process!

Yours, John Hutton

C.2.15 Aca Round 2 email

Subject: Delphi Survey for John Hutton's PhD Research - Round 3

Dear –

Home stretch! Thanks again for your time so far. Our Round 3 should be relatively quick.

Your Round 2 answers will be pre-populated into the ranking matrix. However, this time, the

matrix is listed in group mean result order. The highest ranked item first and the lowest ranked

item last. Consider your response versus the group statistics. If you are significantly higher or

lower than the group, consider if this might be more (or less) important than your first ranking.

166

There is a text field under every item where you can enter a short comment. If you make a

change, or if you stay at a delta from the group, you can put a statement about why.

Survey Link:

Once again, thanks for your help! My goal is to have this round done by next Friday

(6/24). I know we will have some vacations, etc. that will prevent this from working for

everyone, but try to take a few minutes if you can.

Note: If you did not fill out the Round 2 survey, you will not have any default answers. I

would still love to have your feedback on these items.

Sincerely, John Hutton

	Comparing importance of knowledge and professional skill areas for engineering programming utilizing a two group Delphi survey
	Recommended Citation

	TITLE PAGE
	COPYRIGHT PAGE
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	1.1 Introduction
	1.2 Brief history of CS1 course content
	1.3 Defining knowledge and skills
	1.3.1 Knowledge areas
	1.3.2 Professional skills

	1.4 Should professional skills be added to engineering programming curricula?
	1.4.1 Industry
	1.4.2 Academia
	1.4.3 Understanding gaps between industry and academia

	1.5 Problem statement

	CHAPTER II
	2.1 Current state of CS1 courses
	2.2 Research on knowledge
	2.2.1 Computational thinking
	2.2.2 Additional research on knowledge

	2.3 Research on skills
	2.4 History of Delphi Technique
	2.5 Pedagogical methods
	2.5.1 Traditional
	2.5.2 Competency-Based
	2.5.3 Active learning
	2.5.4 Flipped classroom
	2.5.5 Inquiry-based
	2.5.5.1 Problem-based, Research-based, Design-based
	2.5.5.2 Simulation-based
	2.5.5.3 Team-based

	2.5.6 Assessments
	2.5.6.1 Challenge-based assessment
	2.5.6.2 Competency-based assessment
	2.5.6.3 Peer assessment

	2.5.7 Pedagogical methods summary

	CHAPTER III
	3.1 Classification framework
	3.1.1 Knowledge areas
	3.1.2 Professional skill areas
	3.1.3 Classification framework

	3.2 Delphi Survey
	3.2.1 Developing Delphi research questions
	3.2.2 Defining panelists and panel size
	3.2.2.1 Fortune 500 company programmers
	3.2.2.2 Professors of introductory programming classes

	3.2.3 Self-classification questionnaire
	3.2.4 Delphi Rounds
	3.2.4.1 Delphi Round 1
	3.2.4.2 Delphi Round 2 – Individual ranking
	3.2.4.3 Delphi Round 3 – Group classification

	3.2.5 Industry/Academic gap analysis

	CHAPTER IV
	4.1 Industry experts
	4.2 Expert classification breakdown
	4.2.1 Coding area
	4.2.2 Hiring involvement
	4.2.3 Number of interviews
	4.2.4 Training involvement
	4.2.5 Main coding language
	4.2.5.1 Other languages

	4.2.6 Percentage of time coding
	4.2.7 Self-ranking skill level
	4.2.7.2 Explain your ranking

	4.2.8 Years at skill level
	4.2.9 Classification summary and discussion

	4.3 Round 1 results
	4.3.1 Classification examples
	4.3.1.1 Example one – concise response
	4.3.1.2 Example two – descriptive with additional details

	4.3.2 Round 1 area “hit-list”
	4.3.3 Discussion

	4.4 Delphi Round 2 results
	4.4.1 Comparison between Round 2 and Round 1 results
	4.4.2 Discussion

	4.5 Delphi Round 3 results
	4.5.1 Discussion

	4.6 Implications

	CHAPTER V
	5.1 Academic experts
	5.2 Expert classification breakdown
	5.2.1 Coding area
	5.2.2 Courses taught
	5.2.3 Years teaching
	5.2.4 Conducts research
	5.2.5 Main coding language
	5.2.6 Industry experience
	5.2.6.1 Years of industry experience

	5.3 Classification summary
	5.4 Round 1 results
	5.4.1 Round 1 area “hit list”
	5.4.2 Discussion

	5.5 Academic Round 2 analysis
	5.5.1 Academic hit-list to Round 2 results deltas
	5.5.2 Discussion

	5.6 Academic Round 3 analysis
	5.6.1 Discussion

	5.7 Industry/academic gap analysis
	5.7.1 Where industry and academic experts agree
	5.7.2 Second tier results, key professional skills
	5.7.3 Comparison of low ranked items between expert groups

	CHAPTER VI
	6.1 Review of our industry and academic individual results
	6.1.1 Industry results
	6.1.2 Academic results

	6.2 Key findings between our industry and academic experts
	6.3 Recommendations for engineering-based computer programming courses
	6.3.1 Recommendation #1: Continue to emphasize the importance of problem solving, fundamentals of programming, and testing and debugging in all engineering programming courses.
	6.3.2 Recommendation #2: Find new ways to instruct, highlight, and assess important professional skills.
	6.3.3 Recommendation #3: Deemphasize less important knowledge areas to make room for additional focus on professional skills.

	6.4 Contributions to the field of Computing Education
	6.4.1 What does an educator know now?
	6.4.2 What does a researcher know now?

	6.5 Limitations
	6.5.1 Defining and building a hierarchy of terms
	6.5.2 Diversity across our industry and academic groups.
	6.5.3 Attrition through the survey process
	6.5.4 Clear identification of knowledge areas which could be deemphasized

	6.6 Future research
	6.6.1 Professional skills in the classroom
	6.6.2 Fleshing out “fundamentals of programming” and “testing and debugging”
	6.6.3 Bridging the gap between industry and academics

	6.7 Closing remarks

	REFERENCES
	APPENDIX A
	A.1 Delphi Questions
	A.2 Classification Questions – Industry Experts
	A.3 Classification Questions – Academic Experts

	APPENDIX B
	B.1 Partial Framework - Knowledge
	B.2 Partial Framework – Professional Skills
	B.3 Added Items

	APPENDIX C
	C.1 Delphi survey emails and interactions
	C.2 Boilerplate email
	C.2.1 Personal industry initial invite to join my expert team Subject: Looking for your help (personal research)
	C.2.2 Personal “thank you” of someone agrees
	C.2.3 Personal “survey away” email. Subject: Round 1 survey sent!
	C.2.4 Initial Email with Qualtric link (from university email) Subject: Delphi Survey Round 1 Invitation
	C.2.5 Thanks for completing survey Subject: Thanks for completing the Round 1 survey!
	C.2.6 Round 2 email Delphi Survey for John Hutton's PhD Research - Round 2
	C.2.7 Round 2 Qualtric Message
	C.2.8 Round 3 email Subject: Delphi Survey for John Hutton's PhD Research - Round 3
	C.2.9 Academic ECE and CS Head Request for help Subject: Assistance with PhD research in Engineering Programming
	C.2.10 Academic Personal Subject: Re: Assistance with PhD research in Engineering Programming
	C.2.11 Academic Round 1 Qualtric Initial Email Subject: Delphi Survey Invitation
	C.2.12 Personal email if I fear spam capture! Subject: Round 1 Survey on-the-way
	C.2.13 Academic Round 2 email Subject: Delphi Survey for John Hutton's PhD Research - Round 2
	C.2.14 Aca Round 2 Qualtric Message Subject: Delphi Survey for John Hutton's PhD Research - Round 2
	C.2.15 Aca Round 2 email Subject: Delphi Survey for John Hutton's PhD Research - Round 3

