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ABSTRACT The Internet of Things (IoT) paradigm has matured and expanded rapidly across many disciplines. Despite these 

advancements, IoT networks continue to face an increasing security threat as a result of the constant and rapid changes in the 

network environment. In order to address these vulnerabilities, the Fog system is equipped with a robust environment that 

provides additional tools to beef up data security. However, numerous attacks are persistently evolving in IoT and fog 

environments as a result of the development of several breaches. To improve the efficiency of intrusion detection in the Internet 

of Things (IoT), this research introduced a novel tunicate swarm algorithm that combines a long-short-term memory-recurrent 

neural network. The presented model accomplishes this goal by first undergoing data pre-processing to transform the input 

data into a usable format. Additionally, attacks in the IoT ecosystem can be identified using a model built on long-short-term 

memory recurrent neural networks. There is a strong correlation between the number of parameters and the model's capability 

and complexity in ANN models. It is critical to keep track of the number of parameters in each model layer to avoid over- or 

under-fitting. One way to prevent this from happening is to modify the number of layers in your data structure. The tunicate 

swarm algorithm is used to fine-tune the hyper-parameter values in the Long Short-Term Memory-Recurrent Neural Network 

model to improve how well it can find things. TSA was used to solve several problems that couldn't be solved with traditional 

optimization methods. It also improved performance and shortened the time it took for the algorithm to converge. A series of 

tests were done on benchmark datasets. Compared to related models, the proposed TSA-LSTMRNN model achieved 92.67, 
87.11, and 98.73 for accuracy, recall, and precision, respectively, which indicate the superiority of the proposed model. 

 

INDEX TERMS Data security, Deep learning, Fog computing, Internet of Things, Intrusion detection, 

Tunicate swarm algorithm. 
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I. INTRODUCTION 

Exponential growth in the standard utilization of electronic 

services and applications has prompted gigantic advances in 

broadcast communications organizations and the development 

of the idea of the Internet of Things (IoT). An IoT is arising in 

an interchangeable worldview in which gadgets fill in as items 

or "things" that can detect their current circumstances, interface 

with one another, and trade information on the Internet [1]. The 

Internet of Things (IoT) worldview has recently been used in 

establishing smart conditions, for example, brilliant urban 

communities and smart homes with various application spaces 

and related administrations [2]. The objective of creating such 

brilliant conditions is to make human existence more useful and 

agreeable by tackling difficulties connected with the living 

climate, energy utilization, and modern necessities [3]. It can be 

seen objectively in the significant growth of available IoT-

based administrations and applications across various 

organizations. As security will be a fundamental supporting 

component of most IoT applications, IoT intrusion 

identification frameworks will also be created to support the 

interchanges powered by such IoT advances. Fig. 1 

demonstrates the types of IoT security attacks. 

Considering the security estimates, it is fundamental to foster 

a security instrument for an IoT environment. An information-

arrangement security system should be engaged to forestall 

unapproved access to information sources from malignant 

clients. It is fundamental to center on information secrecy and 

honesty, which significantly decreases the genuine security 

dangers in an IoT environment. Ordinary security instruments are 

created in light of cryptographic strategies, and they aren't 

broadly embraced for the IoT climate because of the enormous 

volume of information. The dangers should be related to in a base 

time frame that will decrease the issues in the organization, and 

traditional security models require more opportunity to handle 

such an enormous measure of information to recognize the 

dangers [4]. Unapproved admittance to information for a brief 

period is adequate for a malignant client to acquire secret 

information, and the change of such information has an enormous 

effect on the client. So it is fundamental to recognize an interloper 

in an IoT organization. Implementing IDS is important [2]. 

Intrusion detection frameworks identify gatecrashers and secure 

the organization and information by preventing unapproved 

clients from entering. With the restriction of fuel sources, 

carrying out IDS is a complicated cycle [5]. If this is too 

complicated, a central intrusion detection system could be used. 

This system, which monitors the organization as well as other 

hubs far away, looks for intrusions and tells you about them [6]. 

 In recent years, advancements in artificial intelligence (AI) 

have been used to further develop IoT IDS. For example, AI and 

deep learning strategies have been used to further develop IoT 

IDS. The current necessity is to do a state-of-the-art, careful 

scientific classification and a basic survey of this new work [7]–

[12]. Various related investigations applied different AI and 

profound learning procedures through different datasets to 

approve the improvement of IoT IDS. Yet, it's as yet not 

satisfactory which dataset, AI, or profound learning methods are 

more successful for building a proficient IoT IDS. In addition, 

some IDS strategies don't take into account how long it takes to 

build and test IoT IDSs, even though this is a key factor in the 

viability of "online" IDSs [13]. 

 

Figure 1. Types of IoT security attacks 
 

The objective of this paper is to develop a novel tunicate 

swarm algorithm with a Long Short-Term Memory-Recurrent 

Neural Network for intrusion detection in the IoT environment. 

As a result of this research, we have developed a unique tunicate 

swarm algorithm combined with a Long Short-Term Memory-

Recurrent Neural Network (TSA-LSTMRNN) for intrusion 

detection on the Internet of Things (IoT). The TSA-LSTMRNN 

model that has been given is primarily intended to detect the 

presence of assaults. As a result, the data preparation performed 

by the presented model is necessary to transform the incoming 

data into a format that can be used. In addition, the LSTMRNN 

model is used for the identification and classification of threats in 

the Internet of Things environment, among other things. The 

TSA is used to properly fine-tune the hyper-parameter values 

involved in the LSTMRNN model to improve the detection 

outcomes of the model, and this is done in order to improve the 

detection outcomes of the model. 

Therefore, the main contributions of this paper are as follows. 

 For threat detection in the IoT environment, a TSA-

LSTMRNN enabled deep-learning-driven solution is 

proposed that is highly cost-effective and scalable. 

 In IoTs, the LSTMRNN classifier is used for effective 

threat detection; 

 For enhancing the LSTMRNN model, the TSA 

algorithms is used for adapting its hyper-parameters; 

 The proposed mechanism is compared to existing 

literature works for a better performance evaluation 

under the used data set for verification purposes; 

 Finally, 10 fold cross-validation was used in this study 

to demonstrate the unbiasedness of our findings; 

 The results of the evaluation show that the proposed 

mechanism is capable of multiclass detection and 
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outperforms in terms of detection accuracy and 

computational complexity. 

The rest of this paper is arranged as follows. The related work 

and recent literature reviews are discussed in Section 2. The 

LSTM and TSA algorithms are introduced in Section 3 as 

preliminary. In section 4, the proposed model is discussed in 

detail. The simulation results based on the TSA-LSTMRNN 

algorithm and the comparison with the other algorithms are 

analyzed in Section 5. Finally, the research and future work of 

this paper are summarized in Section 6. 

 
II. RELATED WORK 

This section introduces the recent literature on anomaly 

detection. Roy et al. [14] presented an IDS which employs ML to 

efficiently identify anomalies and cyberattacks in resource-

limited IoT networks. Utilizing a set of optimizations that include 

dimensionality reduction, extracting multi-collinearity, and 

sampling, their method could recognize the vital features to 

identify intrusion with minimum training time and data. In [15], 

they proposed an IDS based on the concept of the Exact Greedy 

Boosting ensemble model for device application in the fog node 

due to precise recognition of malicious activity and protection of 

crucial structures. Liu et al. [16] presented a particle swarm 

optimization-based gradient descent (PSO-LightGBM) for the 

IDS. In their study, PSO-LightGBM was utilized for extracting 

the characteristics of the information and inputting them to a one-

class SVM (OCSVM) for discovering and identifying malicious 

information. The UNSW-NB15 data set is employed for 

verifying the IDS. Tharewal et al. [17] introduced a near-end 

optimization technique for the IIoT-IDS-based This approach 

integrates DL observation ability with reinforcement learning 

(RL) decision-making ability to enable effective detection of 

various types of cyber-assault on the IIoT. De Souza et al. [18] 

introduced a two-step technique for identifying and detecting 

intrusions. The initial phase implements a traffic analysis with 

Extra Tree binary classification. The events recognized as 

intrusive are analyzed in the next phase by an ensemble method 

comprised of RF, DNN, and Extra Tree. 

As a result, a number of forensic frameworks for the Internet 

of Things (IoT) have been developed [19]–[22]. ProbeIoT and 

FIF-IoT, two models that handle the acquisition of evidence from 

IoT devices in a forensically sound fashion to ensure integrity and 

chain of custody without infringing on users' privacy, were 

proposed by Hossain et al. [21] and Hossain et al. [20]. FSAIoT 

is a framework for collecting state data from IoT devices 

introduced by Meffret et al. [19]. Following that, Cebe et al. [22] 

built a Block4Forensic acquisition model that was specifically 

tailored for the collection of vehicle data. Probe-IoT, FIF-IoT, 

and Block4Forensic are all based on the blockchain scheme. An 

open, distributed public ledger was set up for Probe and FIF-IoT, 

while Block4Forensic relied on a fragmented ledger to decrease 

storage requirements for its ledger. Information regarding IoT 

devices and their interactions with other network entities is kept 

in the blockchain in all of the aforementioned cases. FSAIoT, on 

the other hand, makes use of local networks with centralized 

controllers to keep track of device states and data flows. 

There is evidence that many traditional machine learning 

algorithms do not separate the difficult work of intrusion 

detection; identifying anomalous data and preprocessing the data 

set are both complex and time-consuming processes [21]–[23]. 

When used with traditional machine-learning classification 

models to speed up preprocessing, deep learning [24] can map 

features to a more multidimensional and easily distinguishable 

feature space because it has already learned the non-linear 

mixture of features from the original data set, so it can do this 

better. 

Meanwhile, some researchers have tested their methodology 

using the botnet viral data set. Using feature selection in [26], it 

is able to reduce the number of features needed to detect IoT bots 

with more accuracy while still allowing for interpretable findings 

to be produced by a decision tree for modern intrusion detection. 

It is possible to identify botnet-related distributed denial of 

service (DDoS) attacks using a detection method based on 

anomalous traffic and a deep automated encoder [27], [28]. 

Anomaly detection can considerably improve the detection 

accuracy of aberrant traffic, according to experiments. According 

to [29], and improved deep learning method, the cloud-based 

LSTM model makes use of more powerful computing resources 

to execute tasks like anomaly detection. Each assault is treated as 

aberrant traffic to be separated from regular traffic and 

implemented several binary classification tasks, even though they 

take numerous network attacks into account. 

As discussed, although much effort has been dedicated to solve 

anomaly detection in the IoT environment, the noted algorithms 

suffer from the following limitations and challenges. 

 Because of the advancement of sensor monitoring 

technologies, low-cost solutions, and high impact in a 

variety of application domains, anomaly detection has 

gotten a lot of attention from the research community 

in the last few years. 

 While monitoring physical spaces and objects, sensors 

generate a large amount of data. These massive data 

streams can be analyzed to uncover unhealthy habits. 

It has the potential to reduce functional risks, avoid 

problems that aren't visible, and prevent system 

downtime. 

 Defining the boundaries between normal and 

abnormal behavior is difficult. A few anomalies are 

available to train models. Real-life abnormal behavior 

is rare compared to normal behavior. In avionics 

systems, we have a lot of normal flight data, but 

unusual data is rare. In many applications, it's difficult 

or impossible to generate anomalous behavior due to 

resource waste or system constraints. 

 The majority of models used in anomaly detection are 

based on time series patterns observed in the wild. An 

anomaly is defined as anything that doesn't fit the 

mound. Detecting anomalies in historical data, 

performing real-time analyses, and forecasting 
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unusual behavior in an IoT environment have all been 

accomplished by researchers. As part of our research, 

it's important to look at how the Internet of Things 

(IoT) is creating new ways to find, analyze, and predict 

anomalies. 

 To meet these challenges, it is important to give clear 

information about the methods that have been 

developed and how they should be used in different 

situations. 

In this study, a novel tunicate swarm algorithm with long-term 

short-term memory-recurrent neural network for ID in the IoT 

environment was developed. The presented TSA-LSTMRNN 

model majorly intends to identify the presence of attacks. In order 

to achieve this, the presented model initially undergoes data 

preprocessing to transform the input data into a useful format. 

Besides, the LSTMRNN model is utilized for the identification 

and classification of attacks in the IoT environment. The TSA is 

applied to properly adjust the hyper-parameter values involved in 

the LSTMRNN model for improving the detection outcomes. A 

series of experimental analyses are performed on benchmark 

datasets. 
III. PRELIMENARIES 

To train with sequence data, the most popular model is the 

Recurrent Neural Network (RNN). When trained with a large 

step size, the standard RNN has issues. The vanishing problem 

and RNN's formalization are briefly discussed in this section. 

To remedy this, we'll go over something called "Long-Short 

Term Memory." 

A. RECURRENT NEURAL NETWORK 

A feed-forward neural network has been extended to include 

recurrent neural networks (RNNs). An RNN's cyclic 

connections allow it to simulate complex sequences more 

effectively than feedforward networks. X, H, and Y are used to 

signify a series of inputs, a hidden vector, and an output vector. 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇) provides the input sequence. Hidden vector 

sequence (𝐻 = (ℎ1, ℎ2, … , ℎ𝑇)) and output vector sequence 

(𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑇)) with 𝑡 = 1  to T are calculated in a 

standard RNN as follows: 

ℎ𝑡 = 𝜎(𝑊𝑥ℎ𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)                                       (1) 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦                                                                (2) 

 

where 𝑊 is a weight matrix and b is a bias component, and 

function 𝜎 is a nonlinearity function. 

The RNN protocol for dealing with a variable-length 

sequence input is Back Propagation Training Time (BPTT) 

[30]. Models are built using data initially in BPTT. Then, each 

time step's output error gradient is recorded. The RNN is 

difficult to train, yet when using the BPTT algorithm, it causes 

the gradient to explode or vanish. This issue was brought up and 

resolved by Bengio et al. in [31]. 

B. LONG SHORT TERM MEMORY 

A recurrent neural network classifier known as Long Short-

Term Memory (LSTM) LSTM cells is shown in Fig. 2 [32]. We 

also go over the equations for calculating the three gates' values 

and the current state of the cell. 

Figure 2. Long Short Term Memory Cell 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)                            (3) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)                         (4)  

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑐𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)                   (5)  

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)                             (6)  

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)                                                                   (7)  

𝑓, 𝑖, 𝑐, 𝑜 are the forget gate, input gate,  cell state and output 

gate and 𝜎 refer to the logistic sigmoid function. Weight 

matrices for peephole interconnections are designated as 

𝑊𝑐𝑖 ,𝑊𝑐𝑜 𝑎𝑛𝑑𝑊𝑐𝑓. The information flow in LSTM is controlled 

by three gates (𝑖, 𝑓, 𝑜). The ratio of input is determined by the 

input gate. This ratio affects the equation used to calculate cell 

state (5). The prior memory ℎ𝑡−1 is either passed through the 

forget gate or it isn't. It is determined in the equation (3) and 

utilized in the equation (4) to determine the ratio of the prior 

memory. Passing or rejecting data from the memory cell is 

determined by an input gate. Eq. (6) demonstrates how this 

procedure works. The three gates of the LSTM allow us to 

address the vanishing and bursting gradient problems. The 

recurrent hidden layer in LSTM-RNN architecture is replaced 

by an LSTM cell. 

C. TUNICATE SWARM ALGORITHM 

Tunicates are cylindrical-shaped animals that have one of 

their two ends open, and they travel through the water with a 
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jet-like velocity [33]. It is possible for them to look for food in 

the sea, even if they have no prior knowledge of where to find 

it. The tunicates' jet-like propulsion and swarm intelligence are 

the basis for the TSA optimization technique. When it comes to 

TSA's optimization dilemma, the food supply serves as the best 

answer. Some conditions must be met in order to accurately 

depict TSA jet propulsion movements. Two things must happen 

before anything else can happen: First of all, the tunicates need 

to avoid confrontation, and second of all, they need to keep 

moving towards their best search agent. Finally, they need to 

remain near that agent. The swarm intelligence of the other 

tunicates in the mathematical model is used to update their 

positions in relation to the optimal solution. According to [29], 

the mathematical system is specified as follows [33]:  

Condition 1: There must be no conflicts among search 

agents 

No conflict between search agents can be avoided by 

employing the following vector to compute their respective 

positions [33][34]. 

𝐴 =
�⃗�

�⃗⃗⃗�
                                                                                             (8) 

�⃗� = 𝑐2 + 𝑐3 − �⃗�                                                                         (9) 

�⃗� = 2∗𝑐1                                                                                      (10)  

where the gravitational force is denoted by �⃗� and �⃗� is the 

change in temperature of the water flow in the deep ocean. To 

calculate the social forces, represented by vector �⃗⃗⃗�, between 

tunicates, we use the following formula: 𝑐3, 𝑐2 and 𝑐1 are 

random variables whose values range from 0 to 1. 

�⃗⃗⃗� = ⌊𝑃𝑚𝑖𝑛 + 𝑐1 ∗ 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛⌋                                           (11)  

𝑃minand 𝑃maxrepresent the initial and subordinate speeds, 

respectively, of social interaction. In most cases, 1 and 4 are the 

default numbers for them. 

Condition 2: Orientation towards optimal search agent 

According to [33], this phase of optimization requires 

ensuring that the tunicate is moved in a specific direction. 

𝑷𝑫⃗⃗⃗⃗⃗⃗⃗ = |𝑭𝑺⃗⃗⃗⃗⃗⃗ − 𝒓𝒂𝒏𝒅 ∗ 𝑷𝒑(𝒙)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|                                                    (12) 

Where the current iteration is denoted by 𝑥, the distance 

between the food source and search agent is denoted by the 

vector 𝑃𝐷⃗⃗⃗⃗ ⃗⃗ , location of search agents is represented by 𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 

the position of food source is referred by 𝐹𝑆⃗⃗ ⃗⃗⃗ and in a range from 

zero to one, the value of a random variable 𝑟and  is used. 

Condition 3: moving in the direction of the best search 

agent: 

In order to accomplish this, search agents are reordered as 

follows [34]: 

𝑃𝑝(𝑥
′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {

𝐹𝑆⃗⃗ ⃗⃗ ⃗ + 𝐴 ∗ 𝑃𝐷⃗⃗⃗⃗ ⃗⃗ , if 𝑟and ≥ 0.5

𝐹𝑆⃗⃗ ⃗⃗ ⃗ − 𝐴 ∗ 𝑃𝐷⃗⃗⃗⃗ ⃗⃗ , if 𝑟and ≤ 0.5
                                (13) 

 

𝑃𝑝(𝑥
′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ represents the search agent's current location in 

relation to the food supply. The first best two solutions are 

stored and used to change the placements of other tunicates in 

order to replicate swarm behavior. Mathematically, this is what 

a swarm looks like: 

𝑷𝒑(𝒙 + 𝟏)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =
𝑷𝒑(𝒙)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑷𝒑(𝒙+𝟏)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝟐+𝒄𝟏
                                                        (14) 

The important steps to demonstrate the flow of the original 

TSO are presented below for clarification of the TSO. The TSO 

algorithm's flowchart is shown in Fig. 3 [34]. 

1 Set the initial population of tunicates �⃗⃗�𝑝 to its default 

value.  

2 Set the parameter's initial value and the maximum 

number of iterations.  

3 Every exploration agent's fitness value should be 

calculated.  

4 Finally, the best-fitting agent is inspected in the search 

space provided after evaluating its fitness.  

5 Explore agents should be upgraded. It is time to put the 

newly enhanced agent back in his or her place of 

origin.  

6 Calculate the fitness cost of a more advanced search 

agent. 

7 The best answer 𝑋best  is stored and �⃗⃗�𝑝 is upgraded when 

the prior solution is no longer optimal. 
 
IV. DESIGN OF TSA-LSTMRNN MODEL 
 

In this study, a novel tunicate swarm algorithm with 
LSTMRNN for ID in the IoT environment is proposed. The 
presented TSA-LSTMRNN model applies the LSTMRNN 
model for the identification and classification of attacks in 
the IoT environment. To improve the detection outcomes of 
the LSTMRNN model, the TSA is applied to properly adjust 
the hyper-parameter values involved in it. Fig. 4 showcases 
the overall process of the TSA-LSTMRNN technique. 

A. PREPROCESSING PHASE  

The quality of the data used in data mining operations 
must be high in order to achieve a high level of performance 
at a cheap cost. Anomaly type characteristics will be 
converted to numeric in the preprocessing step.  

1) Missing values: 

Many of the variables in most datasets are missing, 
necessitating the handling of missing values in order to 
improve accuracy. The mode method is used to replace the 
empty value with the attribute's maximum frequency when 
a value is lacking. Attributes can be univariate, monotonous 
in their missing values, or arbitrary. If at least three 
attributes have missing values, the model is said to be 
monotonous. If the missing values are of random 
characteristics, then it is arbitrary [45]. 
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Figure 3. Flowchart of TSO algorithm 

 

2) Data normalization: 

There are numerous approaches to data normalization. 
Keep the data in a range for each input feature in order to 
reduce the neural network's preference for one feature over 
another. Training time can be reduced by normalizing data 
such that all features are trained at once. It is particularly 
beneficial for modelling applications when the inputs are 
often on a wide range of scales. The features or outputs are 
rescaled using the Min-Max normalizing method from one 
range of values to another. Most of the time, the features are 
rescaled to fall between 0 and 1 or -1 and 1. It is common to 
perform the rescaling by applying a linear interpretation 

formula like: 

𝒙𝒊
′ = ((𝒎𝒂𝒙

𝒕𝒂𝒓𝒈𝒆𝒕
− 𝒎𝒊𝒏

𝒕𝒂𝒓𝒈𝒆𝒕
)𝒙

(𝒙𝒊−𝒎𝒊𝒏
𝒗𝒂𝒍𝒖𝒆

)

(𝒎𝒂𝒙
𝒗𝒂𝒍𝒖𝒆

− 𝒎𝒊𝒏
𝒗𝒂𝒍𝒖𝒆

)
+𝒎𝒊𝒏

𝒕𝒂𝒓𝒈𝒆
)  (15) 

where (maxvalue  − minvalue  ) = 0. when (maxvalue  − 
minvalue  ) = 0 for a feature, it shows that that feature in the 

data has a constant value. Feature values having a constant 
value should be deleted from the data set because they do 
not contribute any useful information to the neural 
network. Min-max normalization maintains the same range 
of values for each feature when it is applied. The advantage 
of using min-max normalization is that it keeps all of the 
data's relationships intact. 
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Figure 4. The proposed TSA-LSTMRNN model 

 

B. PROCESS INVOLVED IN LSTMRNN MODEL 

The presented TSA-LSTMRNN model applied the 
LSTMRNN model for the identification and classification of 
attacks in the IoT environment. LSTM is introduced for 
solving the issue of gradient vanishing by making novel 
path wherein the gradient flow is implemented for a 
protracted duration. Firstly, input, output, and forget gates 
are the main key utilized for managing data flows. Once 
thereisaninput,aforgetgatechooseslong‐termmemory
data for removing the cell, and retrieving the input is noted 
in protracted memory by allotting a weight for each 
individual. In forward propagation, the input gate is utilized 
for estimating to allow the received memory unit. The 
output gate suggests the activation time. In the event of 
backpropagation, the output gate defines during input gate 
and error flow measurement whereas assigning the flow 
out of memory unit. Now, 𝑜𝑡 , 𝑓𝑡 , 𝑖𝑡 , and 𝑐𝑡  determines the cell 

vector, output, forget, and input gates similarly. An LSTM is 
defined below [35], [36]: 
𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖𝑐𝑡−1 + 𝑏𝑖) (16) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓𝑐𝑡−1 + 𝑏𝑓)                      (17) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜𝑐𝑡−1 + 𝑏𝑜)(18) 
𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐𝑐𝑡−1 + 𝑏𝑐)(19) 
ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡)                        (20) 

Whereas 𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜 , and 𝑊𝑐shows the input connection 

along with recurrent connection of the input, forget, output 
gates, and cell, next 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑜, and 𝑈𝑐  are determined by 

peephole connection. 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 , and 𝑏𝑐indicates the bias 

weight. 𝜎(∙) represent a sigmoid function. 𝑇𝑎𝑛ℎ(∙) and 𝜎(∙) 
indicate gate activation function.  

Here, LSTM-RNN was employed to classify the financial 
position of the information. The LSTM-RNN using LSTM 
hidden layer was designed. The count of units hidden for 
each hidden layer is carefully chosen on a trial-and-error 
basis. The resulting layer is comprised of 5 neurons to 
categorize 4 kinds of sound and defects regions. The sample 
information is distributed into validation and training sets 
for encompassing an LSTM-RNN. Henceforth, the trained 
performance is minimal that denotes under-fitting. It turns 
out to be very complex while the sum total of hidden layers 
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is improved. Maximal training performance with minimum 
validation performance characterizes that a system is 
overfitting. Consequently, the LSTM-RNN method 
experiences training with huge areas. The training loss is 
minimized. 

C. HYBER-PARAMETERS TUNING USING TSA 

For improvising the detection outcomes of the 
LSTMRNN model, the TSA is applied to properly adjust the 
hyper parameter values involved in it. The TSO was 
encouraged by the abnormal actions of tunicates in ocean, 
particularly, the SI and jet drive of foraging process. An 
arithmetical technique of jet propulsion is innovative in 3 
limits [34]: follows the location of maximal qualified agent, 
remaining nearby the optimum agent, and avoids conflicts 
among the exploration agents. For avoiding inter agent 
conflicts while looking for an optimum position, the novel 
agent position is assessed as follows: 

𝐴 =
�⃗�

�⃗⃗⃗�
                                   (21) 

�⃗� = 𝑐2 + 𝑐3 − �⃗�       (22) 

�⃗� = 𝑐1  ∙  �⃗�.           (23) 

Here  �⃗� specifies the gravity force, 𝐴 represents a vector 
of agent location, 𝑐1, 𝑐2 and 𝑐3 characterizes 3 arbitrary 

amounts and𝐹⃗⃗⃗⃗  indicates the water flow in the deep ocean. 
The social forces amongst the agents are stored in a vector 

�⃗⃗⃗�, as: 

�⃗⃗⃗� = [𝑃𝑚𝑖𝑛 + 𝑐1 ⋅ 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛].          (24) 
In which  𝑃min = 1 and 𝑃max = 4 defines the 1st and 

2nd subordinates, representative of the speed of emerging 
social connection. Consequently, make certain that no 
conflict occurs amongst adjacent agents, the optimum 
position of optimum agent is estimated as: 

𝑃𝐷⃗⃗⃗⃗ ⃗⃗ = |𝑋𝑏𝑒𝑠𝑡 − 𝑟𝑟𝑎𝑛𝑑 ⋅ 𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|(25) 

In the equation, the vector 𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ has the location of the 

tunicate in iteration 𝑥. 𝑃𝐷⃗⃗⃗⃗ ⃗⃗  save the length amongst the 
optimal agent and food origin, 𝑋𝑏𝑒𝑠𝑡  specifies optimum 
position, and 𝑟𝑟𝑎𝑛𝑑, characterizes a stochastic value within 

[0,1] For guarantying that searching agent is close to the 
optimum agent, its positions are estimated as follows: 

𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {
𝑋𝑏𝑒𝑠𝑡 + 𝐴 ⋅ �⃗⃗�𝐷, 𝑖𝑓𝑟𝑟𝑎𝑛𝑑 ≥ 0.5

𝑋𝑏𝑒𝑠𝑡 − 𝐴 ⋅ �⃗⃗�𝐷, 𝑖𝑓𝑟𝑟𝑎𝑛𝑑 < 0.5
(26) 

 Now, 𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ represents the upgraded location in 

iteration 𝑥 relative to the optimum scored position 𝑋𝑏𝑒𝑠𝑡 . 
For modeling the swarming behaviors of tunicate, the 
location of the existing agent is upgraded according to the 
location of 2 agents: 

𝑃𝑝(�⃗� + 1) =
𝑃𝑝(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑃𝑝(𝑥+1)

2+𝑐1
               (27) 

Algorithm 1 shows the overall TSA process. 
For better exploration and exploitation [37], TSA 

requires time complexity for jet propulsion and swarm 

behavior. As a result, the TSA algorithm's overall time 
complexity is defined as: 

TSA = O (Max iterations * n* d * N)                             (28)  
To find the most optimal food source for tunicate, n, d, 

and N are used to define population size, jet propulsion, and 
swarm behavior, respectively. 
 
V. EXPERIMENTAL RESULTS 

A. DATASET DESCRIPTION   

The TSA-LSTMRNN model's performance is tested using 
the KDD Cup99 Dataset [38], which contains data in five 
categories: DoS, R2L, normal, U2R, and Probe. 

Many studies have used the KDD Cup99 dataset to 
evaluate the performance of IDS. Even though the dataset is 
outdated, it is still helpful to examine the IDS models. 
Because the same dataset yields a plethora of performance 
measurement findings. We choose the KDD Cup99 dataset 
primarily for this reason. 

The dataset contains 4,898,431 network traffics, each 
with 41 unique attributes. In addition, there are 22 distinct 
types of attacks. Table I categorizes the assaults. When a 
DoS attack is launched, the target servers' resources are 
depleted, preventing any service from being provided. It is 
possible to gain remote access to a computer without 
authorization when using an R2L attack. An attack known 
as U2R aims to gain control of the system's superuser 
privileges. The purpose of a probing attack is to determine 
whether the targeted server is vulnerable. 

We utilize KDD Cup9910 percentage data for testing 
and training because the original dataset has an excessive 
number of records. The data proportion of the attacks, on 
the other hand, leans heavily toward denial-of-service 
attacks. Only 1% of the population is made up of the rest. 
Figure 2 depicts the situation. IDS will be trained unjustly as 
a result. Thus, DoS assaults are easy to identify, but other 
attacks remain undetected. 

B. PERFORMANCE METRICS 

One-half of the data is used to train the model, and the 
other half is used to test the model's predictions on the data. 
For testing, the data out from the second portion is used (30 
percent of the time). Six performance metrics are used to 
analyze and validate the proposed model. 
Sensitivity,  Precision, Accuracy, and F-Measure [34], [39] is 
an examples of one of these characteristics. Contrast 
matrices quantify the performance of classification 
algorithms by assessing performance metrics. 
Methodological performance was evaluated using the 
following metrics. 

True Positive (TP): This denotes instances of correctly 
classified positive outputs. 

True Negatives (TN): These denote instance of correctly 
classified negative output. 
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TABLE I 

CATEGORY OF THE ATTACKS 

Category Attacks 

DoS   back, land, neptune, pod, smurf, teardrop 

R2L 
  ftp-write, guess-passwd, imap, multihop, phf, spy, warezclient,   
warezmaster 

U2R   buffer-overflow, loadmodule, perl, rootkit 

Probe   ipsweep, nmap, portsweep, satan 

 

 

Figure 5. KDD Cup9910 dataset categories of attacks 

We use the term "False positive" (FP) for negative 
outcomes that are wrongly deemed positive. Good events 
that were incorrectly labelled as negative in the report are 
known as false negatives (FN). For an image to be 
considered accurate in a database, it must have coordinates 
that are very similar to the database's actual value.  

Accuracy measures are very near to the true value and 
are processed as a give perfect of the outcomes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (29)  

To be sensitive, a person is said to be sensitive, as in the 
adjective "sensitive." Sensitivity or recall is the ability to 
correctly recognize people who are suffering from a specific 
disease (True Positive Rate). As a result, the following can 
be said: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (30) 

People who don't have the condition can be correctly 
identified with a test that has excellent specificity (True 
Negative Rate). The following is what it means by that 
definition: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (31) 

Accuracy is measured by the Predictive Value (PPV) or 
Precision. We arrived to this conclusion using the following 
formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (32) 

It is possible to determine the harmonic mean of recall 
and precision using the following formula: 

𝐹 − Measure = 2 ×
 Recall × Precision 

 Recall + Precision 
 (33) 

Algorithm# 1 Tunicate Swarm Algorithm (TSA) 

Input ←  Tunicate population �⃗⃗⃗�𝒑 

Output  ←    Optimal fitness value 𝑭𝑺⃗⃗⃗⃗⃗⃗  

procedure TSA 

   Initialize the parameters �⃗⃗⃗�, �⃗⃗⃗�, �⃗⃗⃗�, �⃗⃗⃗⃗�, and Maxiterations 

   Set 𝑷𝐦𝐢𝐧 ← 𝟏 

   Set 𝑷𝐦𝐚𝐱 ← 𝟒 

   Set Swarm ← 𝟎 

   while (𝒙 < 𝐌𝐚𝐱 𝒙iterations ) do 

       for 𝐢 ← 𝟏 to 2 do  

              𝑭𝑺⃗⃗⃗⃗⃗⃗ ← ComputeFitness (�⃗⃗⃗�𝒑) 

             𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒓and ← Rand () 

             �⃗⃗⃗⃗� ← ⌊𝑷𝐦𝐢𝐧 + 𝒄𝟏 × 𝑷𝐦𝐚𝐱 − 𝑷𝐦𝐢𝐧⌋ 

             �⃗⃗⃗� ← 𝟐 × 𝒄𝟏 

            �⃗⃗⃗� ← 𝒄𝟐 + 𝒄𝟑 − �⃗⃗⃗� 

             �⃗⃗⃗� ← �⃗⃗⃗�/�⃗⃗⃗⃗� 

             𝑷𝑫⃗⃗⃗⃗⃗⃗⃗ ← 𝐀𝐁𝐒(𝑭𝑺⃗⃗⃗⃗⃗⃗ − 𝒓and × 𝑷𝒑(𝒙)) 

             𝐢𝐟(𝒓and ≤ 𝟎. 𝟓) then 

                    Swarm ← 𝑺 warm +𝑭𝑺⃗⃗⃗⃗⃗⃗ + �⃗⃗⃗� × 𝑷𝑫⃗⃗⃗⃗⃗⃗⃗  
              else 

                   Swarm ← 𝑺 warm + 𝑭𝑺⃗⃗⃗⃗⃗⃗ − �⃗⃗⃗� × 𝑷𝑫⃗⃗⃗⃗⃗⃗⃗ 
            end if 

       end for 

      𝑷𝒑(⃗𝒙) ← 𝑺 warm /(𝟐 + 𝒄𝟏) 

      Swarm ← 𝟎 

      Update the parameters �⃗⃗⃗�, �⃗⃗⃗�, �⃗⃗⃗�, and �⃗⃗⃗⃗�  

      𝒙 ← 𝒙 + 𝟏 
   end while 

   return 𝑭𝑺⃗⃗⃗⃗⃗⃗   

End procedure 

Procedure ComputeFitness (�⃗⃗⃗�𝒑) 

           for 𝐢 ← 𝟏 to 𝐧 do  

               𝑭𝑰𝑻[𝒊] ← Fitness Function (𝑷𝒑(𝒊, : ) 

           end for 

𝑭𝑰𝑻𝒑best 
← 𝐁𝐄𝐒𝐓(𝑭𝑰𝑻𝒑[ ]) 

            return 𝑭𝑰𝑻𝒑best 
 

End procedure 

 Procedure BEST (𝑭𝑰𝑻𝒑) 

           Best ← 𝑭𝑰𝑻𝒑[𝟎] 

           for 𝐢 ← 𝟏 to 𝐧 do 

                  𝐢𝐟(𝑭𝑰𝑻𝒑[𝒊] < 𝑩𝒆𝒔𝒕) then  

                  Best ← 𝑭𝑰𝑻𝒑[𝒊]  

                  end if  

           end for 

           return Best 

End procedure 
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C. PERFORMANCE COMPARISON 

Fig. 6 illustrates a set of three confusion matrices 
generated by the TSA-LSTMRNN model on applied dataset. 
On entire dataset, the TSA-LSTMRNN model has recognized 
9451 samples under normal class, 7380 samples under DoS, 
2497 samples under Probe, 2241 samples under R2L class, 
and 169 samples under U2R class. Meanwhile, on 70% of 
training dataset, the TSA-LSTMRNN technique has 
recognized 6618 samples under normal class, 5174 
samples under DoS, 1731 samples under Probe, 1551 
samples under R2L class, and 114 samples under U2R class. 
Eventually, on 30% of testing dataset, the TSA-LSTMRNN 
method has recognized 2833 samples under normal class, 
2206 samples under DoS, 766 samples under Probe, 690 
samples under R2L class, and 55 samples under U2R class. 

Table II and Fig. 7 investigate brief classification 
outcomes of the TSA-LSTMRNN model on test dataset. The 
experimental outcomes indicated that the TSA-LSTMRNN 
model has resulted in maximum performance. For instance, 
with entire dataset, the TSA-LSTMRNN model has attained 
average 𝑎𝑐𝑐𝑢𝑦 of 98.57%, 𝑝𝑟𝑒𝑐𝑛 of 85.59%, 𝑟𝑒𝑐𝑎𝑙  of 

92.80%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 87.73%. Concurrently, with 70% of 

training dataset, the TSA-LSTMRNN technique has reached 
average 𝑎𝑐𝑐𝑢𝑦 of 98.50%, 𝑝𝑟𝑒𝑐𝑛 of 84.97%, 𝑟𝑒𝑐𝑎𝑙  of 

92.92%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 87.17%. Simultaneously, with 30% of 

testing dataset, the TSA-LSTMRNN approach has reached 
average 𝑎𝑐𝑐𝑢𝑦 of 98.73%, 𝑝𝑟𝑒𝑐𝑛 of 87.11%, 𝑟𝑒𝑐𝑎𝑙  of 

92.67%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 89.01%.   
Fig. 8 reports the precision-recall curve analysis of the 

TSA-LSTMRNN model under entire dataset. The figures 
indicated that the TSA-LSTMRNN model has resulted in 
effectual outcomes under all five classes.  

TABLE II 

TSA-LSTMRNN RESULTS ANALYSIS 

Class Labels Accuracy Precision Recall F-Score 

Entire Dataset 

Normal 98.19 98.46 97.32 97.89 

Dos 98.90 97.76 98.95 98.35 

Probe 98.09 93.49 90.67 92.06 

R2L 98.86 96.64 92.57 94.56 

U2R 98.81 41.63 84.50 55.78 

Average 98.57 85.59 92.80 87.73 

Training (70%) 

Normal 98.11 98.47 97.14 97.80 

Dos 98.87 97.62 98.99 98.30 

Probe 97.92 93.01 89.69 91.32 

R2L 98.83 96.46 92.43 94.40 

U2R 98.77 39.31 86.36 54.03 

Average 98.50 84.97 92.92 87.17 

Testing (30%) 

Normal 98.37 98.44 97.76 98.10 

Dos 98.99 98.09 98.88 98.48 

Probe 98.49 94.57 92.96 93.76 

R2L 98.91 97.05 92.87 94.91 

U2R 98.91 47.41 80.88 59.78 

Average 98.73 87.11 92.67 89.01 

 

 

Figure 6. Confusion matrix of TSA-LSTMRNN technique with different three 
datasets 

 

 

Figure 7. Result analysis of TSA-LSTMRNN technique with distinct 
measures and datasets 
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FIGURE 8. Precision-recall analysis of TSA-LSTMRNN technique under 
entire dataset 

 
Fig. 9 showcases the precision-recall curve analysis of 

the TSA-LSTMRNN approach under 70% of training dataset. 
The figures exposed that the TSA-LSTMRNN technique has 
resulted in effectual outcomes under all five classes.  

Fig. 10 defines the precision-recall curve analysis of the 
TSA-LSTMRNN method under 30% of testing dataset. The 
figures indicated that the TSA-LSTMRNN model has 
resulted in effectual outcomes under all five classes.  

 

 

Figure 9. Precision-recall analysis of TSA-LSTMRNN technique under 70% 
of training dataset 

 

 

Figure 10. Precision-recall analysis of TSA-LSTMRNN technique under 30% 
of testing dataset 

 
TABLE III 

COMPARATIVE ANALYSIS OF TSA-LSTMRNN WITH LITERATURE 

Methods Precision Recall Accuracy 

Ada Boost Model 96.10 85.55 91.07 

Logistic Regression 

Model 
93.01 83.09 90.93 

Quadratic Discriminant 

Analysis 
93.04 83.20 91.75 

Linear Discriminant 

Analysis 
91.56 82.13 92.54 

Gaussian NB Model 87.94 87.09 88.11 

TSA-LSTMRNN 98.73 87.11 92.67 

 

For ensuring the supremacy of the TSA-LSTMRNN 
model, a comparative study with existing methods is made 
in Table III [40]. Fig. 11 (a) investigates the comparison 
study of the TSA-LSTMRNN model with recent models. The 
figure indicated that the Gaussian NB model has resulted in 
lower precision of 87.94%. In line with, the LR, QDA, and 
LDA models have accomplished moderately improved 
precision of 93.01%, 93.04%, and 91.56% respectively. 
Though the Adaboost model has resulted in reasonable 
precision of 96.10%, the presented TSA-LSTMRNN model 
has outperformed the other methods with maximum 
precision of 98.73%. 

Fig. 11 (b) examines the comparison study of the TSA-
LSTMRNN model with recent models. The figure referred 
that the Gaussian NB model has resulted in lower recall of 
87.09%. Along with that, the LR, QDA, and LDA models have 
accomplished moderately improved recall of 83.09%, 
83.20%, and 82.13% respectively. In addition, the Adaboost 
model has resulted in reasonable recall of 85.55%, the 
presented TSA-LSTMRNN model has outperformed the 
other methods with maximal recall of 87.11%. 
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Figure 11. Analysis of TSA-LSTMRNN approach with recent algorithms 

Fig. 11 (c) inspects the comparison study of the TSA-
LSTMRNN model with recent models. The figure indicated 
that the Gaussian NB model has resulted in lower accuracy 
of 88.11%. Also, the LR, QDA, and LDA models have 
accomplished moderately improved accuracy of 90.93%, 
91.75%, and 92.54% correspondingly. But, the Adaboost 
model has resulted in reasonable accuracy of 91.07%, the 
presented TSA-LSTMRNN model has outperformed the 
other methods with maximum accuracy of 92.67%.  

After observing the above mentioned tables and 
discussion, it can be ensured that the TSA-LSTMRNN 
technique has been able reasonable performance over the 
other methods.  

As can be seen in the table, the proposed model is 
evaluated in comparison to a number of other models, some 
of which are the Ada Boost Model, the Logistic Regression 
Model, the Quadratic Discriminant Analysis, the Linear 
Discriminant Analysis, and the Gaussian NB Model, 
respectively that can be applied in our practical section. The 
TSA-LSTMRNN model outperforms every other model that 
was investigated and evaluated, making it the clear winner 
of this round of comparisons. The TSA-LSTMRNN model is 

put through a series of experimental evaluations using 

benchmark datasets. The results of these analyses show that the 

TSA-LSTMRNN model possesses superior properties. When 

compared to previous models, the TSA-LSTMRNN model that 

was proposed had superior results in terms of accuracy 

(92.67%), recall (87.11%), and precision (98.73%). One of the 

shortcomings of the model that was proposed is that it can 
only be utilized with datasets that contain a non-uniform 
distribution of class labels. This is one of the limitations of 
the model. In addition to that, there is a rule that states that 
no metaheuristic algorithm can solve all problems. Because 
of this rule, the TSA is unable to consistently guarantee the 
best performance. This rule was made to take into account 
the fact that no metaheuristic algorithm can solve all of the 
problems in the world. 
VI. CONCLUSION 
 

As a result of this research, a novel TSA-LSTMRNN 
model for detecting the presence of attacks in the IoT 
environment has been developed. As a result, the data 
preprocessing performed by the presented model is used to 
convert the input data into a format that can be used. In 
addition, the LSTMRNN model is used for the identification 
and classification of attacks in the Internet of Things 
environment, as previously stated. The TSA is used to 
properly adjust the hyper-parameter values involved in the 
LSTMRNN model to improve the detection outcomes of the 
model. A series of experimental analyses are carried out on 
benchmark datasets, with the results demonstrating that 
the TSA-LSTMRNN model has superior characteristics. In 
terms of accuracy (92.67%), recall (87.11%), and precision 
(98.73%), the proposed TSA-LSTMRNN model did better 
than other models. In the future, feature selection models 
can be used to improve the performance of the proposed 
model. Moreover, new metaheuristic algorithms can be 
used for better performance with new datasets. For 
anomaly detection, a new hybrid algorithm may be useful 
for algorithm exploration and exploitation. 
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