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A B S T R A C T

We present a systematic study of geometric volume of fluid (VOF) methods provided in the gVOF and
TwoPhaseFlow packages, which include algorithms that are among the most accurate proposed in recent
years. In addition to contributing to their further validation, the main purpose is to evaluate, in terms of
accuracy and efficiency, the relative advantages of the advection and reconstruction algorithms used in the
two packages (mainly, FMFPA-CLCIR and isoAdvector-plicRDF, respectively), and to investigate the suitability
of combining them. Since TwoPhaseFlow is available in OpenFOAM, gVOF was also coupled with this open
source CFD toolbox to maintain the same conditions in common solvers when obtaining and comparing their
results, including discretization schemes, tolerances and meshes. For the same reason, identical computational
resources were also maintained. The use of a common software and hardware framework that guarantees
strictly the same simulation conditions overcomes many of the limitations and uncertainties of comparisons
made in previous studies. Several reconstruction and advection tests are presented, showing the differences
between the algorithms in terms of accuracy, as measured by several error norms, and in terms of efficiency, as
measured by CPU times consumed. Simulations of the rise of a bubble and the impact of a drop on a pool were
also performed, in which the VOF methods were coupled to the same solver of the Navier–Stokes equations,
and the results obtained with the two combinations of algorithms FMFPA-CLCIR and isoAdvector-plicRDF are
compared with each other and, in the case of the second test, with our own experimental results. The relative
advantages and limitations of the analyzed algorithms are discussed, and it is suggested that a combination
of isoAdvector for advection and CLCIR for reconstruction can provide a good compromise between accuracy
and efficiency.
1. Introduction

Numerical simulation of free-surface and interfacial flows, which
generally involves solving the Navier–Stokes equations together with
an interface tracking method, is an active field of research. Different
interface tracking methods have been developed over the years, but,
in particular, the volume of fluid (VOF) method has received special
attention due to several advantages, especially its good volume conser-
vation capability compared to that of other methods. The various VOF
methods developed have improved in accuracy and efficiency over time
(see, e.g., [1–4]), and have been adapted for use on arbitrary convex
or nonconvex meshes [5,6].
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The open source CFD toolbox OpenFOAM [7] has become a widely
used software for interfacial flow simulation due to its relative sim-
plicity of use and its wide diffusion among the scientific community.
Initially, OpenFOAM had only an algebraic VOF method implemented,
based on the flux corrected transport technique, developed by Boris and
Book [8] and later improved by Zalesak [9], and usually referred to
as MULES because it also uses the multidimensional universal limiter
with explicit solution to keep the volume fraction solution bounded.
However, in recent years several authors have contributed to extending
the capabilities of the software in this field of research. Albadawi et al.
[10] implemented a coupled level-set volume of fluid (CLSVOF) method
in OpenFOAM making use of the MULES advection scheme for volume
vailable online 11 November 2022
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fraction advection. Cifani et al. [11] implemented a piecewise linear
interface calculation (PLIC)-based VOF method in OpenFOAM using
the advection algorithm proposed by Puckett et al. [12]. They used
the volume fraction gradient for interface orientation calculation along
with the analytical method of Scardovelli and Zaleski [13] to solve
the problem of forcing volume conservation in PLIC positioning, thus
limiting the application of the VOF method to rectangular 2D and 3D
meshes only. They also coupled the VOF method with the OpenFOAM
solver of the Navier–Stokes equations, and conducted several advec-
tion tests and simulated a rising bubble problem. Roenby et al. [5]
developed the isoAdvector method, which is based on an isosurface
concept for interface reconstruction and volume fraction advection.
They carried out several advection tests, obtaining good results in terms
of volume conservation, boundedness and efficiency. They released the
code as an OpenFOAM extension [14]. Dai and Tong [15] used the
isoAdvector advection algorithm along with several analytical PLIC-
positioning algorithms for 2D unstructured polygonal meshes, and then
extended the algorithms to arbitrary convex polyhedral cells [16]. They
performed interface reconstruction tests on single cells and simulated
2D and 3D incompressible multiphase flow problems.

Dianat et al. [17] implemented a CLSVOF method in OpenFOAM.
They used the algorithms presented by Ahn and Shashkov [18] for
interface reconstruction and the MULES algorithm of OpenFOAM for
interface advection, while the interface orientation was calculated
through the gradient of the level-set function. This methodology was
validated for hexahedral and tetrahedral meshes using several ad-
vection tests and coupled with OpenFOAM’s Navier–Stokes equations
solver to simulate the impact of a drop on a solid surface. Following
this work, Skarysz et al. [19] introduced an iterative PLIC-positioning
method valid for convex cells, which is based on the decomposition
into tetrahedral cells for the volume calculation of the truncated poly-
hedron. Haghshenas et al. [20] also implemented a CLSVOF method
in OpenFOAM. More recently, Scheufler and Roenby [21] proposed,
among other schemes, an iterative interface reconstruction scheme,
plicRDF, based on reconstructing a distance function using the ap-
proach proposed by Cummins et al. [22], which significantly reduces
reconstruction errors and improves the overall performance of the
VOF method, achieving second-order convergence for CFL numbers
below 0.2 for all mesh types. This approach was validated using
several reconstruction and advection tests. The authors also released
the code on the OpenFOAM platform [23]. On the other hand, the gVOF
package [6] consists of several geometric VOF methods for arbitrary
structured or unstructured meshes with convex or non-convex cells. The
algorithms included are based on multidimensional unsplit advection
and PLIC schemes. One of the purposes of the software is to facilitate
the use of accurate and efficient geometric unsplit VOF methods in
computational fluid dynamics codes.

All these methods and others published over the years are usually
compared with each other on the basis of the results reported by the
authors. In fact, the methods under study in the present work have
already been compared in different papers with several other recent
methods, and even with each other (see, e.g., [6]). Unfortunately, it is
not common to find exactly the same conditions in the tests performed,
resulting in a lack of consistency in the results to be compared. How-
ever, it is sometimes possible to perform the tests and directly obtain
the results for the desired conditions since the corresponding codes are
publicly available. This is the case in this work, in which we carry out
a consistent and systematic comparison between different algorithms
of the gVOF and VoFLibrary (included in TwoPhaseFlow [24,25])
packages, focusing on their accuracy and efficiency. We use the same
computational resources in the tests performed with the different al-
gorithms under comparison, including compiling optimizations flags,
as well as all parameters, tolerances and discretization schemes in
the common solvers used in the numerical simulations. In addition to
achieving the main objective of carrying out a rigorous and systematic
2

comparison of the considered methods as described above, the present
work improves the completeness of the validation and comparison tests
between algorithms of the gVOF and TwoPhaseFlow packages carried
out in [6]. To this end, the advection and reconstruction algorithms
under study are compared independently and not only coupled with
each other; three different mesh types are considered; the performances
of the methods under parallel execution are preliminarily compared;
hydrodynamic tests, in addition to canonical tests with prescribed
velocity field, are used to compare the results; and some of the tests
presented here are more comprehensive than in [6] (e.g., regarding
the analysis of the influence of the CFL number in the translation
test or the three-dimensional character of the shearing flow test). On
the other hand, the present work focuses, as a first step, only on the
methods indicated above, although it would be desirable to extend
it in the future to include other advanced advection and reconstruc-
tion methods, following the same strategy of implementing them in a
common simulation framework. The computational aspects related to
the implementation of the VOF methods considered in the OpenFOAM
framework, as well as the meshes employed and the conditions used
for testing, are presented in Section 2. In Section 3, we show several
reconstruction tests, comparing the accuracy and computational time
for each algorithm. Next, in Section 4, we show several advection tests
with prescribed velocity fields. Finally, in Section 5, we present results
for some incompressible flow problems, where the VOF methods are
coupled to a Navier–Stokes equations solver.

2. Numerical methods

2.1. Computational details

Different algorithms of the two geometric VOF packages considered
are compared in this work: the isoAdvector advection algorithm pro-
posed by Roenby et al. [5] and the reconstruction algorithms described
by Scheufler and Roenby [21], used in combination with isoAdvector,
and several reconstruction and advection algorithms used in gVOF [6].
Since isoAdvector and the accompanying reconstruction algorithms
have been developed in the OpenFOAM framework, gVOF has also been
coupled within this framework for ease of comparison, as mentioned
above. The gVOF package incorporates, among others, the reconstruc-
tion algorithms CLCIR, ELCIR, LLCIR (conservative, extended and local
level-contour interface reconstruction, respectively) and LSGIR (least-
squares gradient interface reconstruction), along with the EMFPA and
FMFPA (edge-matched and face-matched flux polygons/polyhedra ad-
vection) algorithms, all of which are extensively described in [6,26,27].
The package uses the libraries VOFTools [28–30] and isoap [31] to
perform geometric operations on arbitrary polyhedra. These libraries,
as well as the advection and reconstruction algorithms of gVOF, are
written in FORTRAN, and they are compiled together as a single shared
library for use with OpenFOAM, which is written in C++. In addition,
the OpenMP application programming interface is used to parallelize
this library and improve computational efficiency on shared-memory
architectures. The communication between the FORTRAN shared li-
brary and the OpenFOAM solvers is done through wrapper functions
and several loops within the OpenFOAM code to update variables such
as volume fraction, among others.

In the tests performed in this work, meshes of three different types
and various resolutions are used. Hexahedral meshes are generated
with the OpenFOAM’s blockMesh utility. Unstructured tetrahedral
meshes are generated with the open source tetGen v1.5 [32] mesh
generator and then converted to the OpenFOAM mesh format using
tetgenToFoam. For 2D cases, gmsh v4.4.1 and gmshToFoam are
used to construct triangular meshes. Irregular polyhedral meshes are
generated using OpenFOAM’s polyDualMesh tool, starting from a
tetrahedral mesh previously obtained with tetGen v1.5. Since, for a
given cell, its resulting faces may not necessarily be planar, every face
is triangulated by joining its vertex centroid with two consecutive face

vertices. To maintain the same conditions in all simulations, and for
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the sake of consistency when comparing results, we have not used any
procedure to selectively check if a given face is planar or not. For
2D polygonal meshes, gmsh v4.4.1 is used along with the polyD-
ualMesh and extrudeMesh tools and, since the resulting cells are
convex planar polygons, no triangulation is needed. Table A.1 shows
the characteristics of the 3D meshes considered in the advection and
reconstruction tests. The size of hexahedral meshes is given by the
number of cells in each spatial direction, 𝑛, and therefore the total
number of cells is calculated as 𝑛3. However, the total number of cells
of tetrahedral and irregular polyhedral meshes is approximately equal
to that of their equivalent hexahedral meshes.

In the drop impact test of Section 5.2 we use an octree graded, stati-
cally refined mesh generated with snappyHexMesh, which consists of
a root mesh that is iteratively refined to a certain maximum refinement
level in predefined regions. Different regions with four refinement
levels are superimposed on the root mesh, as described below, keeping
the same finest resolution near the interface.

It should be noted that the accuracy of the volume fraction ini-
tialization method determines to a considerable extent the accuracy
of the test results. The initialization error is defined as the difference
between the volume enclosed by the exact interface and the initialized
volume. To maintain consistency in comparisons by ensuring the same
initialization error, we use in all tests the volume fraction initializa-
tion procedure described in [33] and extended to arbitrary convex
and nonconvex cells in [29,34], respectively. We have found that
this procedure yields an error significantly smaller than OpenFOAM’s
setAlphaField tool, although the latter is usually faster when the
simulation is performed on a single core.

In all reconstruction and advection tests with prescribed velocity
field, a tolerance for the volume fraction of 10−12 is used (a cell is
considered to be an interfacial cell if 10−12 < 𝐹 < 1− 10−12, where 𝐹 is
the volume fraction). When also solving the Navier–Stokes equations,
the tolerance value for the volume fraction is set to 10−8 in order to
reduce the effects of the velocity field not being exactly divergence-
free. All simulations were performed on an Intel Xeon W with 96 GB
of DDR4-2500 MHz and 28 cores. For the distributed memory paral-
lelization with Message Passing Interface (MPI) used by OpenFOAM
and TwoPhaseFlow, computation times are highly dependent on the
domain decomposition used in the parallelization, and therefore all
reconstruction and advection tests where computation time is measured
are performed on a single core. For non-prescribed velocity tests, all
available cores are used in all simulations, with the corresponding
parallelization algorithm used for each method, as mentioned above,
resulting in less favorable execution conditions for the gVOF algorithms
and thus lower speedup.

At the current development stage, isoAdvector-plicRDF is available
with OpenMPI via OpenFOAM to run on thousands of cores, whereas
CLCIR and FMFPA are currently limited in scaling by the shared
memory size of OpenMP systems.

2.2. Coupling with the Navier–Stokes equations

We consider viscous, incompressible, unsteady flows of two immis-
cible fluids with constant, uniform properties separated by an interface,
for which the governing equations can be written as

∇ ⋅ 𝐮 = 0, (1)

𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝∗ − 𝐠 ⋅ 𝐱∇𝜌 + ∇ ⋅ {𝜇[∇𝐮 + (∇𝐮)T]} + 𝐟𝑣, (2)

where 𝐮 is the velocity vector, 𝜌 the density, 𝜇 the dynamic viscosity,
𝐠 the gravity vector, 𝐱 the position vector, 𝑝∗ = 𝑝 − 𝜌𝐠 ⋅ 𝐱 the modified
pressure, 𝑝 the pressure, and 𝐟𝑣 any body force per unit volume. The
evolution of the interface is described by the VOF approach, using any
of the different methods studied in this work. The fluid properties are
calculated as
3

𝜌 = 𝜒𝜌𝑙 + (1 − 𝜒)𝜌𝑔 , 𝜇 = 𝜒𝜇𝑙 + (1 − 𝜒)𝜇𝑔 , (3)
where the 𝑙 and 𝑔 subscripts denote liquid and gas, respectively, and
𝜒 is an indicator function, which is continuous everywhere except at
the interface, where it jumps from zero to one and whose evolution is
described by the advection equation
𝜕𝜒
𝜕𝑡

+ ∇ ⋅ (𝜒𝐮) = 0. (4)

In the tests of Section 4, this equation will be solved with different
prescribed velocity fields.

The continuum surface force (CSF) method [35] is used to reproduce
the effect of the surface tension by including in 𝐟𝑣 the body force per
unit volume

𝐟𝜎 = 𝜎𝜅∇𝐹 , (5)

where 𝐹 is the discretized value of 𝜒 over cell 𝛺,

𝐹 = 1
𝑉𝛺 ∫𝛺

𝜒 d𝑉 , (6)

𝜎 the surface tension coefficient, and 𝜅 the interface curvature, defined
s

= −∇ ⋅
(

∇𝐹
|∇𝐹 |

)

(7)

(the minus sign is a convention to make the interface normal point from
the 𝐹 = 1 fluid to the 𝐹 = 0 fluid).

A common feature of the interface advection algorithms used in
isoAdvector and gVOF (the main ones in the latter being the EMFPA
and FMFPA mentioned above) is that they use face-centered velocities
for volume fraction advection, which are obtained from the volumetric
fluxes through the faces. In addition, the EMFPA and FMFPA algorithms
require the use of cell-vertex velocities, which are obtained from in-
terpolation from the cell faces using the inverse distance weighting
method.

The input data for the tests performed and the data corresponding to
most of the figures and tables presented in the paper, along with links to
the versions of the gVOF and TwoPhaseFlow packages and to programs
to generate the non-hexahedral meshes used in the simulations are
publicly available in [36].

3. Reconstruction tests

To compare the accuracy of the reconstruction procedures, the
following error, defined as the volume between the exact interface and
its approximate representation, is used:

𝐸rec =
∑

𝑖
(𝑉𝑖,exact∖𝑉𝑖,rec) ∪ (𝑉𝑖,rec∖𝑉𝑖,exact ), (8)

where 𝑉𝑖,exact , 𝑉𝑖,rec ∈ R3 are the exact and reconstructed liquid volumes
in cell 𝑖, respectively, and the sum is over all cells. The evaluation of
Eq. (8) is performed using the VOFTools subroutine initf3d [34],
called from the gVOF subroutine recerr [6], which gives a precise
value of 𝐸rec when a very accurate volume fraction initialization pro-
cedure is used to calculate 𝑉𝑖,exact , such as that described in [33] and
used in the present work. For the sake of clarity in the presentation
of the results, the reconstruction algorithms compared in this section
are only CLCIR and ELCIR [27], and gradAlpha and plicRDF [21],
which yield results that are among the best in terms of combined accu-
racy and efficiency provided by the algorithms included in gVOF and
TwoPhaseFlow, respectively. The plicRDF algorithm determines how
many iterations, up to a maximum set at 5, it needs to reach conver-
gence using a criterion based on the calculated residuals. To compare
the computational efficiency of the algorithms, we also measure the
CPU time consumed in the interface reconstruction, 𝑡rec.

A sphere of radius 0.325 is reconstructed in a unit domain. To
avoid artificial regularity of the results due to mesh dependence, the
sphere is centered at (0.525, 0.464, 0.516) [27]. Fig. 1 shows the

reconstruction error and the CPU time consumed for the algorithms
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Fig. 1. Reconstruction error, 𝐸rec, and CPU time consumed, 𝑡rec, obtained in the sphere reconstruction test using different mesh types and sizes.
onsidered as a function of mesh resolution (measured in cells per
phere radius, cpr), obtained with hexahedral, tetrahedral and irregular
olyhedral meshes (note that volume errors need not be normalized
hen using a unit domain). The number of cells of the unstructured
eshes is approximately equal to that of the corresponding hexahedral
eshes. As shown in Fig. 1(a), for hexahedral meshes the CLCIR and
licRDF algorithms show the best results in terms of reconstruction
rror and convergence, which are practically coincident with each
4

ther for all mesh resolutions. ELCIR shows a second-order convergence
and reconstruction errors similar to those of CLCIR and plicRDF for
low and medium mesh resolutions, while gradAlpha has a first-order
convergence, showing the largest 𝐸rec values. In terms of computa-
tional efficiency, plicRDF shows the largest values for the CPU time
consumed, an order of magnitude higher than those obtained with
the CLCIR algorithm for almost all mesh resolutions. The gradAlpha
algorithm gives a similar reconstruction time to CLCIR for high mesh
resolutions, although at low mesh resolutions it is 35% longer, and

ELCIR gives the lowest 𝑡rec.
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For tetrahedral meshes (Fig. 1(b)), CLCIR and plicRDF give almost
identical reconstruction errors. ELCIR and gradAlpha give very similar
error and order of convergence, the latter lower than the remaining two
algorithms. In this case, ELCIR also takes the shortest time to recon-
struct the interface for all mesh resolutions, while plicRDF requires the
longest times, again an order of magnitude greater than those required
by CLCIR.

On irregular polyhedral meshes (Fig. 1(c)), CLCIR and plicRDF give
similar results for low mesh resolutions, although for higher resolutions
plicRDF shows lower reconstruction errors than CLCIR due to the
reduction in convergence order of the latter. gradAlpha is now the
fastest method, although it gives the largest errors for medium-high
mesh resolutions. CLCIR requires slightly less reconstruction time than
plicRDF for the finest mesh and, although for coarser meshes CLCIR
is faster than plicRDF, the large difference shown for the other mesh
types is now reduced to only 35%.

The above comparisons have been repeated for the hollow sphere re-
construction test of Liovic et al. [37], giving rise to practically identical
trends in results and conclusions.

In an analysis performed to identify the possible causes that make
plicRDF significantly slower than CLCIR, it has been found that the
most time consuming step in plicRDF is the resolution of the volume
conservation enforcement (VCE) problem to position the PLIC from
the volume fraction value in the cell. Although, due to the iterative
nature of plicRDF, it is difficult to compare in a straightforward manner
the performance of the methods used to solve the VCE problem by
plicRDF and CLCIR, a preliminary study of CPU time consumption has
been carried out. For this purpose, we used the 3D deformation flow
test described in the next section, in which the interface normal in
plicDRDF is estimated from the previous time step (note that, in a
reconstruction test, the lack of a proper estimation of the interface
normal would penalize this method with an even greater increase
in CPU time consumed). It has been found that, for example, for a
hexahedral mesh of size 𝑛 = 64, the method used by plicRDF to solve
he VCE problem consumes about 60% of 𝑡rec, while the methods used

by CLCIR, i.e., the one proposed in [13] for hexahedral meshes and
CIBRAVE [38] for meshes of other types, only consume about 6% and
28%, respectively. This is mainly because the CPU time consumed by
the method used by plicRDF for the VCE problem is about 85 and
14 times (taking into account the average number of iterations in
plicRDF) higher than those consumed by the method proposed in [13]
and CIBRAVE, respectively. Although the use of the latter methods in
plicRDF would reduce 𝑡rec by a factor of about 2.5, plicRDF would still
consume about 3 times more CPU time than CLCIR. The above figures
may obviously change depending on the type and size of the mesh and
the type of test.

4. Advection tests

In this section, three pure advection tests are used to evaluate
the relative accuracy and efficiency of the algorithms under analysis.
Among the gVOF algorithms, FMFPA is chosen as the advection al-
gorithm in the comparison due to its better computational efficiency,
although EMFPA could be used for better accuracy in certain situations.
The differences in CPU time consumed by EMFPA and FMFPA are due
to the larger number of truncation operations and the longer time spent
by the flux polyhedra construction step required by the former (e.g., in
the 3D deformation flow test presented below for a hexahedral mesh
of size 𝑛 = 64, truncation operations and flux polyhedra construction
in EMFPA are 1.9 and 1.7 times, respectively, slower than in FMFPA,
whereas differences in accuracy are only about 2% for 𝐸𝑔). For the
reconstruction step, the CLCIR algorithm is used due to the better
overall performance shown in the previous section. In combination
with the isoAdvector advection scheme, the plicRDF reconstruction
5

algorithm is chosen due to its better results compared to those of T
the remaining algorithms analyzed by Scheufler and Roenby [21], as
reported by these authors.

The geometric error is estimated with an 𝐿1 error norm defined as

𝐸𝑔 =
∑

𝑖
𝑉𝑖|𝐹𝑖 − 𝐹𝑒,𝑖|, (9)

here 𝑉𝑖 is the volume of cell 𝑖, and 𝐹𝑖 and 𝐹𝑒,𝑖 are the calculated
nd exact volume fractions, respectively, at the final instant of the test,
= 𝑇 . The order of convergence can be determined from

=
ln[𝐸𝑔(2𝑛)∕𝐸𝑔(𝑛)]

ln(1∕2)
, (10)

where 𝐸𝑔(𝑛) and 𝐸𝑔(2𝑛) are the errors obtained using meshes with 𝑛3

and (2𝑛)3 cells, respectively.
The volume conservation error is quantified as

𝐸vol = |

∑

𝑖
𝑉𝑖

(

𝐹𝑖 − 𝐹𝑒,𝑖
)

|, (11)

where the volume fractions are obtained, again, at instant 𝑡 = 𝑇 . The
boundedness of the solution for the fluid volume fraction at instant 𝑡 is
measured by the error

𝐸(𝑡)
bound = max

{

𝐸(𝑡−𝛥𝑡)
bound ,max

[

|min
𝑖

(

𝑉𝑖 𝐹
(𝑡)
𝑖

)

|,max
𝑖

(

𝑉𝑖(𝐹
(𝑡)
𝑖 − 1)

)]}

, (12)

where 𝛥𝑡 is the time step, and 𝐹 (𝑡)
𝑖 the calculated volume fraction in cell

𝑖 at instant 𝑡. This definition allows us to estimate the unboundedness
of the solution throughout the entire simulation time.

To compare the computational efficiency of the algorithms, we
measure the advection time, 𝑡adv, defined as the average CPU time
consumed per advection step, and the reconstruction time introduced in
Section 3, 𝑡rec, which is now defined as the average CPU time consumed
per reconstruction step. We also define the total CPU time per time step,
𝑡tot , as the summation of the advection and reconstruction times.

An essential point when comparing the performance of different
advection algorithms is the need to maintain the same criteria for the
choice of the time step depending on how the CFL number is defined.
In OpenFOAM, the CFL number is calculated as

CFL = 𝛥𝑡max
𝑖

(

1
2

∑

𝑓 |𝐮𝑓,𝑖 ⋅ 𝐒𝑓,𝑖|
𝑉𝑖

)

, (13)

where the term 1
2
∑

𝑓 |𝐮𝑓,𝑖 ⋅ 𝐒𝑓,𝑖| is the volumetric flux through cell 𝑖
uch that CFL = 1 corresponds to a situation where the cell volume, 𝑉𝑖,
s exactly replaced for the time step 𝛥𝑡. A first approach is to specify a
aximum value of the CFL number and calculate an adaptive time step

rom Eq. (13), then using a procedure that avoids unstable oscillations
y limiting the increase of each new time step.

Instead of calculating a value of the quantity in parentheses of
q. (13) for each computational cell and then selecting the maximum
alue obtained over the entire domain, another possible approach
ould be to define a CFL number as follows:

FL = 𝛥𝑡max
[ max𝑓 |𝑢|
min𝑖 (𝛥𝑥)

,
max𝑓 |𝑣|
min𝑖 (𝛥𝑦)

,
max𝑓 |𝑤|

min𝑖 (𝛥𝑧)

]

, (14)

where 𝑢, 𝑣, and 𝑤 are the components of the velocity vector at face 𝑓 ,
𝐮𝑓 , and 𝛥𝑥 = 𝑥max − 𝑥min, 𝛥𝑦 = 𝑦max − 𝑦min, and 𝛥𝑧 = 𝑧max − 𝑧min are
the maximum cell sizes in the 𝑥, 𝑦, and 𝑧 directions, respectively, in a
Cartesian coordinate system (note that the mesh is not required to be
aligned with the reference system). Note that the face for which |𝑢| is

aximum may not correspond to the cell for which 𝛥𝑥 is minimum, just
s it may occur in the two other directions. The new time step would
e calculated in this case from Eq. (14), also subsequently limiting the
ncrease of each new time step.

Both approaches may give similar time step sizes under certain
onditions, e.g., when there is only one non-zero velocity component
n a hexahedral mesh, but, in general, Eq. (13) is more restrictive due
o the flux averaging, yielding smaller time step sizes than Eq. (14).

he question then arises as to which criterion would be preferable to
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use. The alternative option of using a non-adaptive but fixed time step
would not be consistent between different tests, as it would imply very
different CFL numbers for different velocity fields, and therefore we
opt to use an adaptive time step, with a prefixed maximum value of
CFL. Furthermore, in all advection tests in this section the CFL limiting
time step criterion will be applied only in cells close to the interface
(parameter maxAlphaCo in OpenFOAM). Finally, since isoAdvector
convergence is only first order for high CFL numbers [21], we choose
to use the more restrictive OpenFOAM definition of CFL given by
Eq. (13). Keep in mind, however, that this choice may contribute to
overlooking isoAdvector’s limitations in dealing with moderately high
CFL numbers. Nevertheless, these are not related with the isoAdvector
advection concept but to certain situations in which during a time step
the interface enters a cell that was not initially labeled as an interface
cell. Work on this issue is in progress [39].

The way the CFL number is defined must be emphasized when
analyzing the performance of the advection algorithms of VOF-type
methods. Depending on the velocity field used in each test, the differ-
ences in the errors obtained due to differences in the time step sizes
obtained with various criteria can be almost an order of magnitude,
which clearly highlights a lack of consistency in some comparisons
between advection algorithms reported in the literature.

In the isoAdvector method, we set the parameter nAlphaBounds
equal to 5, thereby redistributing fluid from cells with out-of-bounds
volume fractions to preserve volume conservation [5]. This volume
redistribution is accomplished by applying a conservative bounding
step five times per advection–reconstruction step. Besides, isoAdvector
offers the possibility to use a non-conservative bounding step to force
the volume fraction value of unbounded cells, but we prefer to keep this
option disabled. In FMFPA and especially in EMFPA, the way the flux
polyhedra are constructed results in greatly reducing the over/underlap
between them, so instead of using special algorithms to redistribute the
very small fluid volumes that cause the volume fraction to be outside
the 0 and 1 bounds, the volume fraction is simply adjusted by making
𝐹 ← max[min(𝐹 , 1.0), 0.0] [6].

.1. Simple translation

The main purpose for doing this simple test was to analyze the influ-
nce of the CFL number on the algorithms accuracy. A sphere of radius
.25 centered at (0.25, 0.25, 0.25) is translated in a steady, uniform
low with velocity components (1, 1, 1) for time 𝑇 = 0.5, in a cubic

domain of size 1 × 1 × 1. Fig. 2 shows the geometric error obtained
with FMFPA-CLCIR and isoAdvector-plicRDF on hexahedral meshes of
different sizes, as a function of CFL number. At high CFL numbers,
the error obtained with isoAdvector-plicRDF is significantly larger than
that obtained with the FMFPA-CLCIR algorithms for all mesh sizes,
with the difference increasing as the mesh resolution increases. As the
CFL number decreases, the error tends to a constant value for each
method, dependent on the mesh resolution, as indicated by Harvie and
Fletcher [40]. For 𝑛 = 10 and 𝑛 = 20, the error provided by FMFPA-
CLCIR at low CFL numbers is 11%–14% lower than that obtained with
isoAdvector-plicRDF whereas for 𝑛 = 40 the error of the latter is 11%
ower than that of the former. For the finest mesh resolution, both
lgorithm combinations give similar geometric error.

It should be noted that the definition of the CFL number given by
q. (13) used in this work results in higher errors with the gVOF algo-
ithms than those reported, for example, in [31], where the definition
f Eq. (14) was used. This is because the latter yields larger time step
izes, for which the geometric error obtained with the gVOF algorithms
s reduced. This trend in the geometric error was explained by Harvie
nd Fletcher [40], who argued that, as the time step size decreases
nd more time steps are required to complete a simulation of given
uration, more interface reconstruction steps (one per time step) are
erformed. Since each reconstruction step introduces a discrete amount
6

f error, if the number of reconstructions is increased so does the i
total error introduced in the simulation. On the other hand, the error
obtained with the isoAdvector algorithm does not follow this trend. On
the contrary, it decreases with decreasing time step size, which suggests
that the error introduced by the advection step dominates over the
reconstruction error for high CFL numbers.

Fig. 3 shows the 𝐿1 error norm obtained for different mesh types
nd three CFL numbers as a function of mesh resolution. Fig. 3(a)
hows the error obtained on hexahedral meshes, for which the differ-
nces between the two algorithm combinations considered are more
vident. The convergence rate of isoAdvector-plicRDF increases as the
FL number decreases, reaching second order for CFL = 0.1 over
he entire range of mesh resolutions represented, whereas the con-
ergence of FMFPA-CLCIR is of second order for all mesh resolutions
nd CFL numbers considered. These differences in convergence rates
n hexahedral meshes translate into large differences in error for high
esh resolutions and higher CFL numbers in the range considered, of

bout two orders of magnitude for CFL = 1. For tetrahedral meshes
Fig. 3(b)), the results are less dependent on the CFL number, and both
lgorithm combinations show second-order convergence over the entire
ange of CFL numbers. However, for low CFL numbers at high mesh res-
lutions, FMFPA-CLCIR yields higher errors than those obtained with
soAdvector-plicRDF. For irregular polyhedral meshes (Fig. 3(c)), both
lgorithm combinations give very similar errors for low CFL numbers
nd high mesh resolutions, while for the coarsest mesh FMFPA-CLCIR
ields slightly lower errors. For CFL = 1, isoAdvector-plicRDF gives
lower error for the coarsest mesh, while, as the mesh resolution

ncreases, FMFPA-CLCIR gives lower errors.

.2. 3D deformation flow

The well-known benchmark test introduced by Enright et al. [41]
onsists of a sphere of radius 0.15 initially centered at (0.35 0.35 0.35)
ithin a unit cubic domain, which deforms in a solenoidal velocity field
iven by

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 2 sin2(𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) cos(𝜋𝑡∕𝑇 ),

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = − sin(2𝜋𝑥) sin2(𝜋𝑦) sin(2𝜋𝑧) cos(𝜋𝑡∕𝑇 ),

(𝑥, 𝑦, 𝑧, 𝑡) = − sin(2𝜋𝑥) sin(2𝜋𝑦) sin2(𝜋𝑧) cos(𝜋𝑡∕𝑇 ),

(15)

here a period 𝑇 = 3 is used.
Table 1 shows the errors and CPU times measured for the two

lgorithm combinations compared in the test. The CPU times provided,
ãdv, 𝑡rec and 𝑡tot , are relative to the lowest total time, which in this
ase is 𝑡tot = 23.9 ms, obtained with the isoAdvector-plicRDF method
n a hexahedral mesh with 𝑛 = 32. For all mesh types and sizes, the
1 error norm obtained with FMFPA-CLCIR is always lower than that
btained with isoAdvector-plicRDF except for the coarsest polyhedral
esh, for which isoAdvector-plicRDF yields a 3.7% lower error. The
ifferences for the other mesh types and sizes range from the 4.9%
ower error obtained with FMFPA-CLCIR for tetrahedral meshes with
= 32 to the 56.3% lower error also obtained with FMFPA-CLCIR

or hexahedral meshes with 𝑛 = 256. For hexahedral and tetrahedral
eshes, as the mesh resolution increases, so do the differences in

eometric error due to the higher order of convergence of FMFPA-
LCIR, although both algorithm combinations achieve second-order
onvergence. For irregular polyhedral meshes, the differences between
he two combinations considered decrease, with their convergence rates
ecoming almost equal for 𝑛 = 128. This behavior might be attributed to
better performance of the reconstruction step of isoAdvector-plicRDF
n this type of mesh.

The errors in volume conservation for hexahedral meshes are
round 10−13 − 10−15 for isoAdvector-plicRDF while for FMFPA-CLCIR
re close to machine precision 10−14 − 10−16. For the other two mesh
ypes, FMFPA-CLCIR yields errors that, although small (≲10−6), are sev-
ral orders of magnitude larger than those obtained with

−12
soAdvector-plicRDF (≲10 ). The boundedness error obtained with
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Fig. 2. 𝐿1 error norm obtained in the translation test using hexahedral meshes of four different sizes, as a function of the CFL number.

Fig. 3. 𝐿1 error norm obtained in the translation test on three different mesh types with three different CFL numbers, as a function of mesh resolution.
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Table 1
Errors and CPU times (relative to the lowest 𝑡tot = 23.9 ms) obtained in the 3D deformation flow test using a CFL = 0.5 and different mesh types and resolutions.

Algorithms 𝑛 𝐸𝑔  𝐸vol 𝐸bound 𝑡tot 𝑡adv 𝑡rec
Hexahedral meshes

FMFPA-CLCIR 32 6.49e−03 – 5.20e−17 1.27e−18 1.94e+00 1.78e+00 1.55e−01
isoAdvector-plicRDF 32 7.97e−03 – 8.73e−16 2.17e−17 1.00e+00 1.82e−01 8.18e−01

FMFPA-CLCIR 64 2.07e−03 1.65 7.98e−17 8.01e−19 9.90e+00 9.16e+00 7.46e−01
isoAdvector-plicRDF 64 3.02e−03 1.40 5.94e−15 2.01e−09 5.57e+00 1.43e+00 4.14e+00

FMFPA-CLCIR 128 4.31e−04 2.26 4.16e−17 5.55e−19 5.68e+01 5.32e+01 3.66e+00
isoAdvector-plicRDF 128 7.06e−04 2.10 1.88e−14 1.60e−10 3.56e+01 1.26e+01 2.31e+01

FMFPA-CLCIR 256 6.13e−05 2.81 9.28e−15 2.93e−19 3.75e+02 3.53e+02 2.19e+01
isoAdvector-plicRDF 256 1.06e−04 2.74 1.72e−13 1.92e−11 2.41e+02 1.08e+02 1.33e+02

Tetrahedral meshes

FMFPA-CLCIR 32 1.33e−02 – 6.98e−06 1.12e−08 1.76e+01 1.70e+01 5.37e−01
isoAdvector-plicRDF 32 1.39e−02 – 1.30e−15 4.89e−06 1.88e+00 2.29e−01 1.65e+00

FMFPA-CLCIR 64 4.23e−03 1.65 3.29e−06 3.05e−10 7.79e+01 7.51e+01 2.83e+00
isoAdvector-plicRDF 64 5.86e−03 1.25 2.48e−15 1.18e−06 1.97e+01 2.90e+00 1.68e+01

FMFPA-CLCIR 128 9.39e−04 2.17 3.35e−07 2.11e−10 3.97e+02 3.80e+02 1.68e+01
isoAdvector-plicRDF 128 1.46e−03 2.00 4.67e−15 1.26e−07 1.26e+02 2.34e+01 1.03e+02

FMFPA-CLCIR 256 1.58e−04 2.57 2.16e−07 9.49e−11 2.69e+03 2.56e+03 1.32e+02
isoAdvector-plicRDF 256 3.62e−04 2.02 2.62e−15 1.87e−08 1.12e+03 2.45e+02 8.77e+02

Irregular polyhedral meshes

FMFPA-CLCIR 32 1.05e−02 – 2.52e−07 8.87e−09 5.67e+01 5.4e+01 2.71e+00
isoAdvector-plicRDF 32 1.01e−02 – 6.52e−16 4.48e−07 9.12e+00 3.02e+00 6.10e+00

FMFPA-CLCIR 64 3.57e−03 1.56 3.12e−09 4.47e−09 2.80e+02 2.59e+02 2.05e+01
isoAdvector-plicRDF 64 4.17e−03 1.28 1.63e−16 5.49e−08 1.62e+02 3.90e+01 1.23e+02

FMFPA-CLCIR 128 6.23e−04 2.52 4.32e−08 2.38e−08 1.49e+03 1.35e+03 1.41e+02
isoAdvector-plicRDF 128 6.95e−04 2.59 2.12e−16 8.78e−09 8.02e+02 2.75e+02 5.26e+02
a
t
c

𝑛
a
t
t
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FMFPA-CLCIR is several orders of magnitude lower than that obtained
with isoAdvector-plicRDF except for 𝑛 = 128. In terms of computational
efficiency, isoAdvector-plicRDF consumes less total CPU time, 𝑡tot , than
MFPA-CLCIR for the three types of meshes. The differences in 𝑡tot
etween the two algorithm combinations decrease with increasing
esh resolution for tetrahedral meshes and, albeit only slightly, for
exahedral meshes, while for irregular polyhedral meshes they tend
o decrease with mesh resolution up to a certain level of refinement,
nd then increase slightly with further refinement. On hexahedral
eshes, the time consumed by advection is of the same order for both

lgorithm combinations for the finest meshes and up to one order of
agnitude higher for FMFPA-CLCIR for the coarsest grid, whereas the

ime consumed by the reconstruction step is much less for FMFPA-
LCIR, probably due to the iterative nature of the plicRDF algorithm.
hese trends are similar, although more pronounced for polyhedral
nd, particularly, tetrahedral meshes.

The large increase in CPU time consumed by the FMFPA algorithm
n tetrahedral and irregular polyhedral meshes is mainly due to the
ace advection flux calculation procedure, although the reasons are
ifferent for each mesh type. In this algorithm, fluid advection is
erformed using face flux polyhedra, which are first constructed using
he interpolated velocities at the cell nodes and then truncated with
he reconstructed interface at the cell and at the neighboring cells
urrounding the face. Therefore, if the number of neighboring cells
ontaining the interface increases, the number of truncation operations
ill also increase. For an internal tetrahedral cell, the average number
f neighbor cells is between 74 and 78 for the mesh sizes considered in
his test (see Table A.1), while for a hexahedral cell this number is only
6 and does not depend on size. Therefore, as the number of interfacial
ells increases with mesh refinement, so does the number of truncations
nd, consequently, the advection time. Conversely, since isoAdvector
oes not perform such truncation operations for the calculation of
luxes at faces, the time consumed by the advection step is considerably
ess. This is the main advantage and strength of isoAdvector.

For the irregular polyhedral meshes considered in this test, the
8

verage number of neighbor cells per internal cell is 15, whereas the s
verage number of faces and points per internal cell varies from 40.8
o 41.4 and from 77.7 to 78.8, respectively, which is a large increase
ompared to hexahedral (𝑛𝑓,𝑖𝑛 = 6 and 𝑛𝑝,𝑖𝑛 = 8) or tetrahedral

meshes (𝑛𝑓,𝑖𝑛 = 𝑛𝑝,𝑖𝑛 = 4). Then, in a polyhedral cell, the number of
truncations of the polyhedron of a given face is substantially less than
in the other two types of meshes since the number of neighbor cells is
considerably less than in the latter, but, as the number of flux polyhedra
is highly increased due to the large number of faces, the total number
of truncation operations is increased. This increase in the average
number of faces per polyhedral cell also increases the time consumed
by the isoAdvector algorithm, since it is based on the calculation of the
area described by the interface-face intersection movement within the
considered time interval.

Figs. 4 and 5 show the PLIC interfaces obtained with the two
algorithm combinations under comparison for the intermediate (𝑡 = 1.5)
and final (𝑡 = 3) instants of the test, where the differences in the
geometric error shown in Table 1 are difficult to see with the naked
eye.

Although it is difficult to compare the performance of the algorithms
in parallel execution due to the use of OpenMP in gVOF and MPI in
TwoPhaseFlow, the reduction in CPU time consumed by the reconstruc-
tion and advection algorithms and the resulting variations in errors
can at least be evaluated separately for each parallelization interface.
For this purpose, we performed simulations in which the number of
threads (gVOF) or processors (TwoPhaseFlow) was increased from 1
to 20. In the case of isoAdvector-plicRDF, we used a simple geometric
decomposition of the domain of the form (𝑛proc,𝑥, 𝑛proc,𝑦, 𝑛proc,𝑧), where
proc,𝑚 is the number of processors for direction 𝑚, which was kept in
ll simulations as (1, 1, 𝑛proc). Fig. 6 shows an example of the results for
he CPU time consumed and speedup as a function of the number of
hreads or processors, obtained for this test with a hexahedral mesh of
ize 𝑛 = 128. Note that the speedup is very similar for the advection and
econstruction steps in FMFPA-CLCIR up to 6 threads, and above this
alue the reconstruction step scales faster up to 20 threads, reaching a
aximum speedup of about 7. For isoAdvector-plicRDF, the advection
tep always has a better speedup compared to the reconstruction step.
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Fig. 4. PLIC interfaces for the 3D deformation flow test at 𝑡 = 1.5 (green and orange) and 𝑡 = 3 (blue and yellow) for different mesh types and resolutions. Results obtained with
CFL = 0.5 for FMFPA-CLCIR and isoAdvector-plicRDF.
However, the maximum speedup is reached for about 16 processors for
the advection step, while for the reconstruction step it is reached for
20 processors. This behavior may be due to the domain decomposition
method used and the processor distribution chosen, i.e., there may
be different methods and/or processor distributions that may provide
better results in terms of speedup but without ensuring smooth changes
between the number of processors used. As far as variations in errors
due to parallel execution are concerned, they are negligible in the case
9

of FMFPA-CLCIR, and only minimal oscillations in the error 𝐸bound and
even smaller for 𝐸vol from 8 processors onwards are observed in the
case of isoAdvector-plicRDF.

4.3. 3D shearing flow

In this test, proposed by Liovic et al. [37], a sphere of fluid of radius
0.15, initially centered at (0.5, 0.75, 0.25) in a domain of size 1 × 1 × 1,
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Fig. 5. Same results as in Fig. 4, but for irregular polyhedral meshes and different mesh resolutions.
is deformed in the velocity field defined as

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = sin2(𝜋𝑥) sin(2𝜋𝑦) cos(𝜋𝑡∕𝑇 ),

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = − sin2(𝜋𝑦) sin(2𝜋𝑥) cos(𝜋𝑡∕𝑇 ),

𝑤(𝑥, 𝑦, 𝑧, 𝑡) =
{

1 − 2
[

(𝑥 − 0.5)2 + (𝑦 − 0.5)2
]1∕2}2

cos(𝜋𝑡∕𝑇 ),

(16)

during a period 𝑇 = 3.
Table 2 shows the errors and CPU times consumed for the two

algorithm combinations under comparison. The times are also pro-
vided here in values relative to those obtained in the simulation that
yielded the lowest total time, which in this test corresponds to the one
performed with the isoAdvector-plicRDF method using a hexahedral
mesh of size 𝑛 = 32, for which 𝑡tot = 21.8 ms. For all mesh types
and sizes, the 𝐸𝑔 error measure obtained with FMFPA-CLCIR is always
lower than with isoAdvector-plicRDF, with differences ranging from
1.2% for the polyhedral mesh of size 𝑛 = 128 to 68.9% for the
finest tetrahedral mesh. Both algorithm combinations achieve second-
order convergence, or are very close to it, on hexahedral and irregular
polyhedral meshes. For tetrahedral meshes, isoAdvector-plicRDF does
not reach second-order convergence while FMFPA-CLCIR does. The
isoAdvector-plicRDF volume conservation errors are all near machine
precision, while the FMFPA-CLCIR errors are in the range 10−5 − 10−9,
whereas the boundedness error is relatively similar for both algorithm
combinations on all mesh types and sizes, generally smaller for FMFPA-
CLCIR, except for 𝑛 = 32 and 64 on the hexahedral mesh and 𝑛 = 128
on the polyhedral mesh.

The trends in computational efficiency and order of magnitude of
the total CPU time are similar to those of the previous test. However,
the differences between the two algorithm combinations under com-
parison are now less significant, particularly for tetrahedral meshes.
This is attributed to the smaller number of interfacial cells in the 3D
shearing flow test, which mainly affects the advection CPU time con-
sumed. The differences in 𝑡tot decrease with increasing mesh resolution
for tetrahedral meshes, while for hexahedral and irregular polyhedral
meshes they tend to decrease with mesh resolution up to a certain level
of refinement (higher for the former), and then increase with further
refinement. Again, isoAdvector gives remarkably low values of 𝑡adv and
CLCIR low values of 𝑡 .
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Figs. 7 and 8 depict the PLIC interfaces obtained in this test, where
the differences in the geometric error shown in Table 2 are again
difficult to see with the naked eye.

5. Two-phase flow tests

5.1. Single bubble rising

This test case was described by Hysing et al. [42] and recently used
by Gamet et al. [43] in the validation of several reconstruction schemes
along with the isoAdvector advection algorithm. A bubble of gas with
physical properties 𝜌𝑔 = 1 kg m−3 and 𝜇𝑔 = 0.1 Pa s, of initial diameter
𝐷0 = 0.5m, rises along the positive 𝑧 direction in a liquid of properties
𝜌𝑙 = 1000 kg m−3 and 𝜇𝑙 = 10 Pa s. The surface tension coefficient
𝜎 = 1.96 N m−1 and the gravity acceleration 𝐠 = (0, 0,−0.98) (m s−2).
Simulations in 2D and 3D geometries were performed, with the bubble
center initially placed at (𝐷0, 𝐷0) and (𝐷0, 𝐷0, 𝐷0), within computa-
tional domains of sizes 2𝐷0 × 4𝐷0 and 2𝐷0 × 2𝐷0 × 4𝐷0, respectively.
Square, triangular and polygonal meshes of sizes 𝑛 = 40, 80, 160, 320,
and 640, where 𝑛 is the number of cells in the 𝑥 direction, generated
as described in Section 2.1, are considered in the 2D simulations. For
the 3D test, only a hexahedral mesh with 𝑛 = 80 is considered, and
generated with the snappyHexMesh tool by imposing on a root mesh
of size 10 × 10 × 20 a cylindrical region of diameter 1.4𝐷0 centered
at the bubble center, with its axis parallel to the 𝑧 direction, located in
the range 0.4𝐷0 ≤ 𝑧 ≤ 3.7𝐷0.

The discretization and numerical schemes used in this test are the
same for all the combinations of advection–reconstruction algorithms.
Following the work by Gamet et al. [43], the Crank–Nicolson scheme
with a blending coefficient of 0.9 is used for temporal discretization.
This coefficient sets the weight to blend the Crank–Nicolson scheme
with the first-order implicit Euler scheme. For the gradient terms, the
Gauss scheme is selected, and for the convective term, a TVD scheme
with a Sweby limiter function is used. As for the boundary conditions,
the lateral walls are considered as slip walls, while the top and bottom
boundaries are defined as no-slip walls. For the pressure and volume
fraction, the zero normal gradient boundary condition is used on all
the walls.
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Fig. 6. CPU time consumed and speedup as a function of the number of (a) threads (FMFPA-CLCIR) and (b) processors (isoAdvector-plicRDF), obtained in the 3D deformation
flow test with a hexahedral mesh of size 𝑛 = 128.
To solve the Navier–Stokes equations, the PISO algorithm with the
omentum predictor step and 3 iterations is used with a single non-

rthogonal corrector step for triangular and polygonal meshes. The
ondition CFL < 0.075 is used for all meshes and resolutions, although
study of the influence of this condition on square meshes has been

arried out, as shown below. For the solution of the linear systems of
quations, the GAMG is used for the Poisson pressure equation, whereas
or the momentum equation an iterative solver with a DIC smoother is
elected.

To quantitatively compare the results obtained with the two al-
orithm combinations under comparison, bubble velocity, circularity
2D), and sphericity (3D) are computed. The bubble velocity is cal-
ulated as a weighted average over the whole domain, using the gas
olume fraction as weight, following

𝑏 =
∑

𝑖 𝐮𝑖 (1 − 𝐹𝑖)𝑉𝑖
𝑉𝑏

, (17)

where 𝐮𝑖 is the velocity, 𝐹𝑖 the volume fraction, 𝑉𝑖 the volume of cell
𝑖, and 𝑉𝑏 the bubble volume, calculated as 𝑉𝑏 =

∑

𝑖(1 − 𝐹𝑖)𝑉𝑖.
Circularity and sphericity are calculated as

[𝑉𝑏∕(𝜋𝛥𝑦)]1∕2

𝐴𝑏∕(2𝜋𝛥𝑦)
and

[3𝑉𝑏∕(4𝜋)]2∕3

𝐴𝑏∕(4𝜋)
(18)

espectively, where 𝛥𝑦 is the mesh size in the direction perpendicular
o the 𝑥𝑧 plane where the flow is studied in the 2D simulations, and 𝐴𝑏
he bubble area. The latter quantity is obtained from the 0.5-isosurface
11
area, which is calculated using the isosurface extraction algorithm
available in the isoap library [31] along with the triangulation of this
surface to calculate the total bubble area as the summation of the areas
of the resulting triangles.

Fig. 9 shows the bubble rise velocity, 𝑢𝑏, as a function of time,
calculated from the results obtained from a 2D simulation with a square
mesh of size 𝑛 = 160. As the CFL number decreases, the velocity
converges to the same solution for both algorithm combinations with
almost no difference. Furthermore, it can be seen that the difference
between the solutions for the two smallest CFL numbers is very small;
for example, the maximum velocities for those CFL numbers differ by
less than 1% for FMFPA-CLCIR. Thus, these results indicate that using
the condition CFL < 0.075 versus CFL < 0.0375 does not result in a
significant decrease in accuracy, while the time step size is increased
by a factor of 2.

Fig. 10 shows the time evolution of the bubble rise velocity and
circularity for different 2D mesh types and sizes, and Fig. 11 shows the
0.5-isosurfaces for the three finest mesh sizes at the final instant of the
test. For square meshes, isoAdvector-plicRDF yields slightly higher ve-
locities for coarser meshes, but as mesh size is increased, both algorithm
combinations produce very similar results. Differences in circularity are
slightly clearer but, as mesh is refined, both combinations also converge
to very similar solutions. For 𝑛 = 40, the secondary bubbles detach
almost at the same time (𝑡 ≈ 2.64 ms) in both combinations. The
overall agreement can also be seen in Fig. 11(a), where the shape of

the bubble is very similar for both combinations at all resolutions. This
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Table 2
Errors and CPU times (relative to the lowest 𝑡tot = 21.8 ms) for the 3D shearing flow test using a CFL = 0.5, for different mesh types and resolutions.

Algorithms 𝑛 𝐸𝑔  𝐸vol 𝐸bound 𝑡tot 𝑡adv 𝑡rec
Hexahedral meshes

FMFPA-CLCIR 32 3.51e−03 – 7.03e−07 1.17e−08 1.90e+00 1.74e+00 1.66e−01
isoAdvector-plicRDF 32 4.49e−03 – 9.18e−16 1.51e−09 1.00e+00 2.00e−01 8.00e−01

FMFPA-CLCIR 64 9.69e−04 1.86 8.53e−08 8.90e−10 9.95e+00 9.15e+00 7.98e−01
isoAdvector-plicRDF 64 1.28e−03 1.81 5.59e−15 3.14e−10 5.77e+00 1.56e+00 4.21e+00

FMFPA-CLCIR 128 2.37e−04 2.03 1.03e−08 6.93e−11 6.00e+01 5.58e+01 4.23e+00
isoAdvector-plicRDF 128 3.24e−04 1.98 2.84e−14 2.26e−10 5.55e+01 1.99e+01 3.56e+01

FMFPA-CLCIR 256 5.42e−05 2.13 1.08e−09 4.65e−12 4.06e+02 3.79e+02 2.68e+01
isoAdvector-plicRDF 256 7.69e−05 2.07 8.06e−14 5.69e−11 2.82e+02 1.25e+02 1.57e+02

Tetrahedral meshes

FMFPA-CLCIR 32 6.18e−03 – 1.90e−05 1.19e−08 1.38e+01 1.34e+01 3.67e−01
isoAdvector-plicRDF 32 8.68e−03 – 6.85e−16 4.12e−06 2.21e+00 2.82e−01 1.93e+00

FMFPA-CLCIR 64 1.54e−03 2.01 6.50e−07 3.98e−10 6.03e+01 5.80e+01 2.34e+00
isoAdvector-plicRDF 64 2.86e−03 1.60 1.95e−15 6.25e−07 1.63e+01 2.85e+00 1.34e+01

FMFPA-CLCIR 128 4.03e−04 1.93 8.92e−09 8.49e−11 3.16e+02 3.03e+02 1.35e+01
isoAdvector-plicRDF 128 9.29e−04 1.62 4.12e−15 5.86e−08 1.31e+02 2.61e+01 1.05e+02

FMFPA-CLCIR 256 1.04e−04 1.95 1.94e−09 5.33e−11 1.77e+03 1.69e+03 8.45e+01
isoAdvector-plicRDF 256 3.34e−04 1.47 7.62e−16 3.85e−09 1.22e+03 2.71e+02 9.52e+02

Irregular polyhedral meshes

FMFPA-CLCIR 32 5.35e−03 – 9.61e−08 2.79e−09 4.56e+01 4.15e+01 4.10e+00
isoAdvector-plicRDF 32 5.93e−03 – 5.27e−16 4.26e−07 1.00e+01 2.99e+00 7.05e+00

FMFPA-CLCIR 64 1.57e−03 1.77 4.57e−09 1.92e−10 2.22e+02 2.02e+02 1.98e+01
isoAdvector-plicRDF 64 1.64e−03 1.85 3.99e−16 4.76e−08 1.98e+02 5.32e+01 1.45e+02

FMFPA-CLCIR 128 4.18e−04 1.91 2.72e−08 3.31e−08 1.41e+03 1.25e+03 1.60e+02
isoAdvector-plicRDF 128 4.22e−04 1.96 9.15e−15 4.62e−09 8.69e+02 2.91e+02 5.78e+02
t
t
m

implies that, for square meshes, the results are not very dependent on
the advection–reconstruction algorithms compared here, but depend
mainly on other factors such as the PISO algorithm settings or the
schemes used to discretize the Navier–Stokes equations.

For triangular meshes, the differences in rise velocity and circu-
larity are now more evident in Fig. 10(b). For all mesh resolutions,
isoAdvector-plicRDF yields a higher value of the rise velocity from
about 𝑡 = 0.7 ms. For 𝑛 = 160, the results obtained with both
algorithm combinations are very similar, but for the remaining sizes
they do not coincide as well as in square meshes. Note the worse
convergence with mesh refinement of the results obtained with both
FMFPA-CLCIR and isoAdvector-plicRDF when using meshes of this type
with respect to square meshes. In the time evolution of circularity, the
isoAdvector-plicRDF method gives higher values for all mesh resolu-
tions. The coincidence in the results provided by the two algorithm
combinations for 𝑛 = 160 in Fig. 10(b) is also apparent in the shape
of the 0.5-isosurface shown in Fig. 11(b). For 𝑛 = 320 and 640, the two
combinations predict interface shapes that are slightly different from
each other and show more apparent asymmetry than for square meshes.

For polygonal meshes (Fig. 10(c)), the differences between the two
algorithm combinations considered in the bubble rise velocity are now
very small for all mesh resolutions, and for 𝑛 = 640 both combinations
give almost indistinguishable solutions. However, in the time evolution
of circularity, at low resolutions and after 𝑡 = 2.5 ms, the results are
slightly different, although the results of both algorithm combinations
follow the same trend. If attention is now focused on the isosurface
contours depicted in Fig. 11(c), it can be seen that, although the results
are again very similar, usually FMFPA-CLCIR gives rise to more evolved
secondary bubbles, i.e., bubbles that appear to detach a few moments
earlier than in the results provided by isoAdvector-plicRDF.

Figs. 12 and 13 show the results obtained with the 3D hexahedral
mesh and 𝑛 = 80. The rise velocity time evolution (Fig. 12(a)) shows
that, again, both algorithm combinations yield very similar solutions,
although after about 𝑡 = 0.5 s the velocity obtained with isoAdvector-
plicRDF is slightly higher, with the opposite occurring after 𝑡 = 3 s.
12

Fig. 13 shows the 0.5-isosurfaces at different instants, which have been t
extracted with ParaView [44] for visualization purposes. Only a half
of the bubble is represented for each algorithm combination in order
to show more clearly the differences between their numerical results.
From 𝑡 = 1 s to 𝑡 = 2.5 s, both algorithm combinations yield very similar
results. At instant 𝑡 = 3s, the holes that appear in the bubble tail are due
to the lack of mesh resolution. The undulations observed at the lower
part of the tail, which remain at 𝑡 = 3.5 s, are very similar in the results
of both algorithm combinations, as is the shape of the tail break. The
top part of the bubble shows almost no difference in the two results.
These findings are consistent with the evolutions of the rise speed and
circularity, which are very similar.

5.2. Drop impact on a deep pool

The test consists of the impact of a water drop of initial diame-
ter 𝐷0 = 2.8 mm on a deep pool of the same liquid at a velocity
𝑈 = 1.5m s−1. The experimental results used for comparison were
obtained using the equipment used in [45,46] to record the images.
The Weber and Froude numbers are We = 88 and Fr = 82. In the
numerical simulation, the pool has an initial depth of 4.5𝐷0 and the
drop center is initially placed at (0, 0, 5.1𝐷0) (coordinate origin located
on the symmetry axis, at the bottom of the tank), with the drop
almost in contact with the free surface to avoid possible differences in
the velocity impact between both methods. Taking advantage of the
symmetry of the problem, only a quarter of the physical domain is
solved using a computational domain of size 7𝐷0 ×7𝐷0 ×7𝐷0, which is
discretized by a root mesh of 14 × 14 × 14 cells that is statically refined.
Two contiguous graded octree patches with four refinement levels are
superimposed on the root mesh. One is cylindrical, of diameter 3.57𝐷0,
with its axis coincident with the 𝑧-axis, extending across the region
2.14𝐷0 ≤ 𝑧 ≤ 6.43𝐷0. The second patch horizontally extends the region
of maximum refinement of the first, over a region 3.93𝐷0 ≤ 𝑧 ≤ 5.36𝐷0,
o the domain boundaries, and matches the root mesh above and below
his region using the same graded refinement. The maximum equivalent
esh resolution is 16 cpr, which is maintained around the interface
hroughout the simulation.
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Fig. 7. Same results as in Fig. 4, but for the 3D shearing flow test.
To simulate a quarter of the drop impact problem, the boundaries
normal to the 𝑥 and 𝑦 directions passing through the coordinate origin
are considered as symmetry planes. The remaining boundaries are
considered as walls, with a no-slip boundary condition for the velocity.
For the volume fraction and pressure, the corresponding gradients
normal to the walls are set to zero. For the discretization of gradient
terms, the Gauss scheme is used, whereas for the convective terms
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a TVD scheme is preferred, based on the central differencing and
upwind schemes, related through a Sweby limiter function. For the
temporal discretization, the first-order implicit Euler scheme is chosen.
To solve the systems of algebraic equations, the GAMG solver with a
DIC smoother is used for the pressure and velocity terms. To solve the
Navier–Stokes equations, the PISO algorithm with three corrections is
used, and the condition CFL < 0.5 is set for the calculation of the



Computers and Fluids 250 (2023) 105725A. Esteban et al.
Fig. 8. Same results as in Fig. 7, but for irregular polyhedral meshes and different mesh resolutions.
Fig. 9. Time evolution of the bubble rise velocity obtained with different CFL numbers on a 2D square mesh of size 𝑛 = 160. Comparison between isoAdvector-plicRDF and
FMFPA-CLCIR.
variable time step. The tolerance for the volume fraction is set to 10−6

in the two algorithm combinations compared here.
Fig. 14 shows a comparison between experimental results and

the numerical results obtained with FMFPA-CLCIR and isoAdvector-
plicRDF, for which the 0.5-isosurfaces are plotted in blue and yellow,
respectively. The sequence of images shows the trapping process of
an air bubble during the contraction of the crater-shaped cavity, due
to the propagation of capillary waves along the side walls of the
cavity that converge at its bottom [47]. The retraction of the air
filament after the bubble pinch-off results in a thin Worthington jet
that quickly breaks into a series of small droplets (the first droplet
emerging from the crater is observed in the snapshot for 𝑡 = 20.6 ms,
and the last droplet detaches at 22.6 ms, as seen in the video included
as supplementary material). The jet then thickens as the crater collapse
evolves. The forming droplet observed at 29.8 ms does not subsequently
14
detach. Reasonable repeatability was found despite the sensitivity of
the experimental results to impact conditions, which mainly affects the
size and number of ejected droplets and the degree of verticality of their
trajectory, but also the size of the trapped bubble and the Worthington
jet.

As far as the main objective of this test is concerned, which is to
compare the results of the two combinations of algorithms considered,
a high degree of agreement is observed. Slight differences are observed
in the bubble detachment, although in both cases practically the same
pinch-off instant is predicted, coinciding with that observed experi-
mentally in the case of isoAdvector-plicRDF and delayed by 0.2 ms
in the case of FMFPA-CLCIR, and in the shape of the Worthington
jet. The retraction of the air filament after the bubble pinch-off pre-
dicted by FMFPA-CLCIR produces a higher momentum in the detached
bubble that causes it to reach a greater depth, which agrees slightly
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Fig. 10. Bubble rise velocity and circularity as a function of time obtained with FMFPA-CLCIR and isoAdvector-plicRDF on different 2D mesh types and sizes. The insets show a
detailed view of the last instants.
better with the experimental observation. The numerical results show
a thicker jet than that experimentally observed. Note that the initial
thin jet formation and droplet ejection occur on much smaller spatial
and temporal scales than the other processes involved in the droplet
impact, which would require a very refined computational mesh for a
detailed simulation of such phenomena. Nevertheless, the generation
of droplets, although in a number of two and of smaller size than those
observed in the experimental images, can be seen, albeit with difficulty,
from the 20.4 ms instant in the FMFPA-CLCIR results included in the
15

upplementary video.
The small differences found in the results obtained with the two
combinations of algorithms for the tests in this section are also rela-
tively small in other two-phase flows with a similar level of complexity.
As the level of complexity increases, the relative accuracy and effi-
ciency of the models become progressively more relevant and may
produce more appreciable differences depending on the mesh reso-
lution used. In any case, we believe that in general the reasonable
agreement of the results is very remarkable and significant, which
constitutes a good point of support to continue improving methods

under development.
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Fig. 11. 0.5-isosurface in the 2D bubble rise test at 𝑡 = 3 ms, obtained on different mesh types and sizes. Comparison between FMFPA-CLCIR (black contours) and isoAdvector-plicRDF
(red contours).
6. Conclusions

Different advection and reconstruction algorithms, among those
included in the gVOF and TwoPhaseFlow packages, have been thor-
oughly and systematically compared and further validated, showing
their relative capabilities and limitations in terms of accuracy and
efficiency on different types of hexahedral, tetrahedral and irregular
16
polyhedral meshes. For this purpose, the algorithms have been tested
in the OpenFOAM framework, which has allowed maintaining the
same comparison conditions, using the same common solvers, nu-
merical settings and boundary conditions implementations. Identical
computational resources have also been used in all simulations.

CLCIR has been found to be about an order of magnitude more
efficient than plicRDF, although both algorithms yield very similar
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Fig. 12. Rise velocity (a) and sphericity (b) as a function of time, obtained with FMFPA-CLCIR and isoAdvector-plicRDF on a 3D hexahedral mesh and 𝑛 = 80. The insets show a
detailed view of the last instants.
Fig. 13. Results for the 0.5-isosurface contours for the 3D bubble test at different instants, obtained with FMFPA-CLCIR (blue) and isoAdvector-plicRDF (yellow) on a hexahedral
mesh and 𝑛 = 80. Only a half of the complete bubble is represented.
results in terms of accuracy on all types of meshes except for fine
irregular polyhedral meshes, where plicRDF performs better in terms of
accuracy. Through several advection tests with prescribed velocity field
for CFL = 0.5, FMFPA-CLCIR has been found to be more accurate than
isoAdvector-plicRDF for all types of meshes and resolutions, although
at a higher computational cost in the advection steps, which contribute
the most to the total CPU time consumed, due to the high number of
17
truncation operations required by FMFPA in the construction of the
flux polyhedra. However, the differences in overall efficiency usually
decrease as the mesh is refined, except particularly in the case of fine
irregular polyhedral meshes. The efficiency of isoAdvector, which is
about an order of magnitude faster than FMFPA, constitutes the main
advantage of the method.
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Fig. 14. Comparison between experimental results and the numerical results obtained with FMFPA-CLCIR (blue) and isoAdvector-plicRDF (yellow) in the deep pool drop impact
test.
The use of isoAdvector for advection in combination with CLCIR for
reconstruction can be a good compromise between accuracy and effi-
ciency, although with limitations for moderate or large CFL numbers,
which may require the use of a more accurate advection algorithm.
It has also been found that, in general, the two combinations of al-
18
gorithms studied, when used coupled to the PISO algorithm to solve
two-phase flows such as the rise of a bubble or the impact of a drop on a
pool, provide relatively similar results in terms of accuracy on different
types of meshes, which may make the combination of isoAdvector with
CLCIR a suitable choice when computational efficiency is a priority.
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Table A.1
Average number of points, faces and neighbor cells per cell (𝑛𝑝, 𝑛𝑓 and 𝑛𝑛) and per internal cell (𝑛𝑝,𝑖𝑛, 𝑛𝑓,𝑖𝑛 and 𝑛𝑛,𝑖𝑛) for the different 3D meshes and sizes used in the reconstruction
and advection tests. The total number of points (𝑛𝑝), faces (𝑛𝑓 ) and cells (𝑛𝑐 ) for each mesh type and size is also provided.

𝑛 𝑛𝑝,𝑖𝑛 𝑛𝑝 𝑛𝑓,𝑖𝑛 𝑛𝑓 𝑛𝑛,𝑖𝑛 𝑛𝑛 𝑛𝑝 𝑛𝑓 𝑛𝑐
Hexahedral meshes

8 8 6 6 26
10 21 1 331 330 1 000
20 23.4 9 261 25 200 8 000
32 24.3 35 937 101 376 32 768
40 24.7 68 921 196 800 64 000
64 25.2 274 625 798 720 262 144
80 25.3 531 441 1 555 200 512 000
128 25.6 2 146 689 6 340 608 2 097 152
160 25.7 4 173 281 12 364 800 4 096 000
256 25.8 16 974 593 50 528 256 16 777 216

Tetrahedral meshes

4 4 4 4
10 67.8 53.1 320 2 271 999
20 73.5 63.4 1 982 17 229 7 981
32 74.8 68.7 6 766 68 636 32 790
40 74.7 69.4 12 979 133 069 63 965
64 76.5 73.2 47 374 536 692 262 139
80 75.1 72.5 93 742 1 056 634 518 135
128 77.3 75.6 352 489 4 245 287 2 097 390
160 75.9 74.4 687 720 8 164 336 4 038 731
256 77.7 76.8 2 687 095 33 443 678 16 620 595

Irregular polyhedral meshes

10 43.3 33.7 82.9 63.3 15.8 11 13 379 36 054 1 012
20 41.9 36.2 79.9 68.5 15.3 12.8 105 620 290 502 8 077
32 41.4 37.4 78.8 70.7 15.1 13.4 432 805 1 195 863 32 756
40 41.3 38.1 78.5 72.1 15 13.4 853 761 2 634 735 64 076
64 41 38.9 78.1 73.9 15 14.1 3 538 197 9 819 651 262 122
80 41 39.3 77.9 74.5 15 14.3 6 929 638 19 247 250 510 961
128 40.8 39.7 77.7 75.5 14.9 14.5 28 523 863 79 293 605 2 086 918
160 40.8 39.9 77.6 75.8 14.9 14.6 57 097 689 158 781 022 4 164 794
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Appendix A. Characteristics of the 3D meshes used in the advec-
tion and reconstruction tests

Table A.1 shows the total number of points, faces and cells for
the meshes considered in the reconstruction and advection tests. The
average number of faces, points and neighbor cells (cells sharing a node
of a given cell) per cell is also provided, as well as the average number
of faces, points and neighbor cells per internal cell, i.e., a cell whose
faces are all internal. The latter distinction between cells allows to show
more clearly the actual number of neighbor cells, faces and points per
cell that are not influenced by the boundary cells.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compfluid.2022.105725.
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