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Concurrent Active Learning in Autonomous Airborne Source Search:
Dual Control for Exploration and Exploitation
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Abstract—A concurrent learning framework is developed for
source search in an unknown environment using autonomous
platforms equipped with onboard sensors. Distinct from the ex-
isting solutions that require significant computational power for
Bayesian estimation and path planning, the proposed solution is
computationally affordable for onboard processors. A new con-
cept of concurrent learning using multiple parallel estimators is
proposed to learn the operational environment and quantify esti-
mation uncertainty. The search agent is empowered with the dual
capability of exploiting current-estimated parameters to track the
source and probing the environment to reduce the impacts of
uncertainty, namely Concurrent Learning based Dual Control for
Exploration and Exploitation (CL-DCEE). In this setting, the control
action not only minimizes the tracking error between future agent’s
position and estimated source location, but also the uncertainty
of predicted estimation. More importantly, the rigorous proven
properties, such as the convergence of CL-DCEE algorithm, are
established under mild assumptions on noises, and the impact
of noises on the search performance is examined. Simulation re-
sults are provided to validate the effectiveness of the proposed
CL-DCEE algorithm. Compared with the information-theoretic ap-
proach, CL-DCEE not only guarantees convergence, but produces
better search performance and consumes much less computa-
tional time.

Index Terms—Autonomous search, dual control, exploration
and exploitation, path planning, source search and estimation.

I. INTRODUCTION

Identifying the sources of airborne release (including chemical,
biological, radiological, and nuclear materials) is one of the most
important tasks in disaster management and environment protection [1].
In the early literature, source term estimation (STE) is mainly supported
by onsite measurement using static sensor networks that are deployed
beforehand in some specific areas of potential risks [1], [2]. This type
of strategy is very costly, and only feasible for high-risk industry, e.g.,
nuclear power plants [3]. Recently, significant research efforts have
been dedicated to the development of dynamic estimation of airborne
release assisted by mobile platforms, for example, autonomous ground
robots [4], [5], [6] and unmanned aerial vehicles (UAVs) [7]. Compared
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with conventional static methods, autonomous search is much more
flexible and cost effective in emergent accident management.

There are various methods dealing with this problem [1], [5]. Among
them, informative path planning (IPP) becomes increasingly popular,
e.g., Infotaxis [6] and Entrotaxis [8]. Vergassola et al. [6] proposed an
informative search approach, referred as Infotaxis, by which the agent
moves to the next position that is expected to minimize uncertainties of
the posterior distribution. Hutchinson et al. [8] developed the Entrotaxis
algorithm that steers the agent to search over the most uncertain area
in the next movement. More recently, some advanced versions of the
abovementioned algorithms have been developed aiming to improve
their robustness, search speed, and accuracy in more complex search
environment, including Infotaxis II [9] and Entrotaxis-jump [10]. Es-
sentially, information-theoretic approaches aim to reduce uncertainties
of estimated source location and unknown environment parameters.
Therefore, the reward function is defined according to the information
gain using some informative measures, for example, entropy, Kullback–
Leibler divergence, variance, and Fisher information matrix [11], [12].

Apart from information-theoretic methods, another main branch
for source seeking is the optimization approach. Stochastic extremum
seeking is employed to direct a nonholonomic unicycle toward the
maximum of an unknown signal field [13]. Simultaneous perturba-
tion stochastic approximation approach is implemented for source
search [14], [15], [16], which can be traced back to the early work
in [17]. In particular, both centralized and distributed coordination al-
gorithms are developed for model-based and model-free source seeking
using network-connected mobile robots in [16]. An adaptive gradient
climbing method is designed for cooperative mobile sensors to seek
the optimizer of environmental field in [18]. It is worth mentioning that
convergence guarantees of those algorithms have been well studied by
leveraging advanced control and stochastic approximation techniques.
In those learning-based control approaches, the unknown parameters
of the environment are passively updated.

Recently, Chen et al. [5] have reformulated the autonomous search
problem from a control-theoretic perspective, referred as Dual Con-
trol for Exploration and Exploitation (DCEE). The ultimate goal of
autonomous search is to design a control strategy that can navigate
the agent to an unknown release in an unknown environment, which is
a well-posed goal-oriented control problem. Distinct from traditional
control settings where operational systems are manipulated by follow-
ing predefined references or setpoints, the autonomous search problem
does not have such a given reference or path that can directly lead the
agent to the source. Instead, the agent is required to explore the opera-
tional environment to learn the source parameters, and at the same time
exploit its belief to move towards the source. This novel dual control
framework achieves a natural balance between the two objectives, and
has demonstrated superior performance in real experiments compared
with model predictive control (MPC) and IPP. Although DCEE offers a
conceptually promising framework in autonomous search, currently it
still suffers from two drawbacks: computational burden and no rigorous
analysis of its properties, such as stability and convergence. IPP and
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DCEE approaches demand massive computational burden imposed by
nonlinear particle filters and optimization-based path planning [8], [19].
More specifically, the Bayesian inference engine is involved in the
optimization loop for IPP since the influence of the control action
on the predicted posterior of the estimated source and environment
parameters is evaluated at each iteration. In IPP and DCEE, the agent’s
movement (path planning) and source estimation (environment ac-
quisition) are strongly coupled: the agent takes actions according to
the current estimation of source parameters and the estimators update
their knowledge by using the concentration collected at the agent’s
new position determined by path planning. This coupling, together
with noisy measurement, environment turbulence, complicated particle
filtering, and optimization involved in the implementation of the search
strategy, makes the rigorous analysis of theoretic properties of these
search strategies quite challenging.

Inspired by the concept of DCEE, we propose a concurrent learning-
based DCEE scheme with multiple estimators that encompasses dual
effects: driving the agent to the believed location by exploiting current
estimation, and reducing uncertainties by exploring the unknown op-
erational environment, which is referred as Concurrent Learning based
Dual Control for Exploration and Exploitation (CL-DCEE) for the
sake of simplicity. The underlying principle of the concurrent learning
scheme advocated in this work is distinct from the classic dual control
in handling the two intricate coupling elements of the system and
the environment. Existing dual control approaches impose a probing
effect on the system itself, for example, state estimation in stochastic
control [20] and parameter estimation in adaptive control [21]. On the
other hand, the dual effect introduced in our formulation is used to
explore the operational environment, as our objective is to acquire a
better understanding of the unknown environment such that the agent
is able to approach the true source location.

Two approaches are proposed to address the two challenges of
computational burden and proven properties. Instead of implementing
computationally demanding particle filtering, an efficient multiesti-
mator scheme is proposed for source and environment learning. The
number of estimators used in CL-DCEE is much smaller than that of
particles required for Bayesian filters in information-theoretic algo-
rithms. These estimators run in parallel from a set of randomly started
initial estimates. There are several fundamental incentives promoting
us to employ multiple concurrent estimators. First, compared with
employing a single estimator, this multiestimator approach provides
a means to quantify uncertainty associated with source estimators,
which is of great importance to empower the search agent with dual
capability of exploration and exploitation. Second, it significantly
improves the performance and robustness over a single estimator. The
performance of a single estimator (such as an observer or learning
machine) is often severely influenced by the initialization and setting
of the individual estimator. To the best of our knowledge, there are
few results on multiestimator-assisted control algorithms. Devising
multiple parallel estimators for the source parameters is conducive to
eliminating undesirable behavior caused by random initialization of an
individual, and also, it allows us to take advantage of a priori probability
density function (PDF) of source parameters. To further reduce the com-
putational load, effective gradient-based optimization algorithms are
utilized to replace the complicated path planning process in the existing
methods. It is shown that by combining these two techniques, we are
able to reduce the computational load by 100 times while significantly
increasing the admissible control set. Most importantly, we establish
theoretical guarantee of convergence of the CL-DCEE algorithm.

In summary, the key contributions are enumerated as follows.
1) A concurrent active learning algorithm with multiple environ-

ment estimators is developed, which achieves a balanced tradeoff

between exploitation of believed source location and exploration of
uncertain environment, that is, simultaneously navigating the agent
to the source and reducing the impacts of uncertainties associated
with the acquired environment knowledge.

2) The convergence of the proposed autonomous search algorithm,
CL-DCEE, is rigorously established under sensor and control
noises, by leveraging a memory-based stochastic approximation
and a gradient-based path planning strategy.

3) The proposed CL-DCEE provides a computationally efficient solu-
tion for autonomous search of airborne source release. Simulation
results are provided to demonstrate the performance of the proposed
method in comparison with information-theoretic approaches. Our
solution shows superior performance with significant reduction in
computational time.

The rest of this article is organized as follows. In Section II, we
formulate the autonomous search problem and develop feasible value
functions for the path planning and estimation. In Section III, CL-DCEE
algorithm is proposed by deploying multiple environment estimators.
Section IV provides simulation results and detailed discussions in
comparison with existing approaches. Finally, Section V concludes this
article.

II. PROBLEM FORMULATION

A. Agent Modelling

The searching agent is considered as a fully autonomous vehicle,
for example, a mobile robot or a UAV, which is equipped with chem-
ical/biological sensors. We assume that the agent has been devised
with a low-level controller that can steer the agent to the desired
position directed by high-level decision-making process. Therefore,
the dynamics of the search agent can be simplified as follows:

pk+1 = pk + uk + wk (1)

where pk = [pk,x, pk,y, pk,z]
T ∈ Ω ⊆ R3 denotes the position of the

searching agent at current step k with Ω being a convex and compact
searching space, uk ∈ U ⊆ R3 is the control action with U being
the admissible set of actions, and wk is the control error. It is worth
mentioning that the admissible setU can be continuous, which is distinct
from the existing results in [4] and [5], where the search is restricted to
certain directions with a fixed step size.

Atmospheric transport and dispersion model (ATDM), governing
the spatial-temporal diffusion of the pollutant materials, is utilized to
predict the concentration in space and time, given the parameters of a
release. We denote true source parameters asΘs = [sT, qr]

T ∈ R4 with
s = [sx, sy, sz]

T ∈ R3 being the position of the source and qr ∈ R+

representing a positive release rate. The dispersion model is given by

M(pk,Θs) =
qr

4πζs1||pk − s‖ exp

[−‖pk − s‖
ζ

]

× exp

[−(pk,x − sx)us cos ρs
2ζs1

]

× exp

[−(pk,y − sy)us sin ρs
2ζs1

]
(2)

where environmental parameters include the wind speed us, wind
direction ρs, diffusivity ζs1, the particle lifetime ζs2, and a composite

coefficient ζ =
√

ζs1ζs2
1+(u2

sζs2)/(4ζs1)
.

Information collection in autonomous search of an airborne release is
mainly from onboard chemical/biological sensors. As the search agent
moves to a new position, concentration measurement will be taken.
The agent is required to remain at current position for a short period
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to obtain a reliable reading, referred as the sampling time. The sensor
reading can be modeled as follows:

z(pk) = M(pk,Θs) + vk (3)

where M is the true chemical concentration, and vk represent additive
Gaussian noises imposed on the sensor readings.

B. Objective Function Construction

The dispersion model in (2) is referred as an isotropic plume
model [6]. There are many other commonly used dispersion models,
such as Gaussian plume [22] and computational fluid dynamics [23].
Nevertheless, the model can be understood as a concentration function
that possesses the highest value at the release center and decreases
monotonically as the increase of the distance to the center (in terms of
expectation). Thus, it can be used to formulate an optimization objective
for the autonomous agent, by taking the position pk as the optimization
variable. Following the convention in optimization theory, the objective
function is defined as follows:

g(pk,Θk) = (M0 −M(pk,Θk))
2 (4)

where M0 is a predefined upper bound of the concentration measure-
ment. It is clear that the optimal solution of (4) is p∗

k = s, where
M(p∗

k,Θs) is maximized.
To estimate the source location s and release rate qr based on

available measurements, we may define an additional value function
taking the source term as the decision variable. Least square methods
can serve for this purpose, given by

f(Θi,pi) = [M(pi,Θi)− z(pi)]
2 (5)

where z(pi) denotes the measured concentration at agent position
pi∀i = 1, . . . , k. The least square function relies on the agent positions
and corresponding sensor readings, which are subject to random noises,
and thereby stochastic gradient descent method will be introduced later
in this article to estimate the source parameters.

III. CONCURRENT LEARNING FOR DUAL CONTROL WITH

EXPLORATION AND EXPLOITATION

A. Framework of Concurrent Learning With Dual Effects

The dual control framework for autonomous source search and
estimation was first introduced by Chen et al. [5] recently. The goal
is to drive the agent towards the believed position of a release and in
the meanwhile reduce uncertainty associated with the estimation of
the target position. Generally speaking, uncertainty is often measured
in a stochastic sense for PDF of a variable. In [8], particle filters are
utilized to estimate the source parameters and the uncertainty associated
with the estimated source target. However, it requires a large number
of particles to support the Bayesian inference engine, which incurs
heavy computational burden. Quantifying the uncertainty is of great
importance, as demonstrated in our previous works [4], [5], [8]. To
alleviate this problem, we, thus, introduce a set of N source term
estimators, and they are initialized according to the prior knowledge
of the source parameters. It is worth emphasizing that the number of
estimators N is much smaller than that of particles in Bayesian filters
as shown later.

The concentration information collected up to time step k is de-
noted by Zk := {z(p1), z(p2), . . . , z(pk)}. Let Θi

k be the STE of
the ith estimator at the kth measurement, and Θ̄k := 1

N

∑N
i=1 Θ

i
k

as the nominal estimation, i.e., the mean, of the source parameters.
The posterior distribution of source estimation can be represented by

ρk|k := p(Θ|Zk) at time k. When the search agent moves to a new po-
sition directed by the control inputuk, the hypothetical posterior distri-
bution of source estimation will be updated as ρ̂k+1|k := p(Θ|Zk+1|k),
where Zk+1|k = {Zk, ẑk+1|k}, and consequently, the future belief of
concentration can be regarded as a random variable conditional on uk,
denoted as ẑk+1|k ∼ p(ẑk+1|k|uk). As a result, the control input uk

will not only affect the future concentration measurement at agent’s new
position, but also affect the belief of future measurement distribution.

Motivated by the abovementioned discussion, the control input uk

should be designed to navigate the agent to the position where the
predicted posterior of the measurement ẑk+1|k is close to the predefined
threshold M0, as defined in g(pk,Θk). Therefore, the conditional cost
function can be formulated as follows:

min
uk∈U

J(uk) = min
uk∈U

EΘ

[
Eẑk+1|k [(M0 − ẑk+1|k)2|Zk+1|k]

]
(6a)

subject to pk+1|k = pk + uk + wk. (6b)

The physical interpretation is based on all the available information,
including priors and available measurements, and we would like the
robot moving to a place where the predicted maximum concentration
is located. This mechanism is behind Chemotaxis, a widely adopted
search strategy in nature from bacteria to human being [24]. We show
that the control action uk, obtained from the optimization problem in
(6), implicitly carries dual effects. We define z̄k+1|k as the nominal
predicted concentration of the future virtual measurements, i.e., the
mean of p(ẑk+1|k|uk), written as follows:

z̄k+1|k := E[ẑk+1|k|Zk+1|k]. (7)

Based on the definition of z̄k+1|k, we can further define z̃k+1|k =
ẑk+1|k − z̄k+1|k. Therefore, the objective function can be reformulated
as follows:

J(uk) = EΘ,ẑk+1|k [(M0 − z̄k+1|k − z̃k+1|k)2|Zk+1|k]. (8)

Expanding (8) leads to

J(uk) = E
[
(M0 − z̄k+1|k)2|Zk+1|k

]
+ E

[
z̃2k+1|k|Zk+1|k

]

− 2E
[
z̃k+1|k(M0 − z̄k+1|k)|Zk+1|k

]

= E
[
(M0 − z̄k+1|k)2|Zk+1|k

]
+ E

[
z̃2k+1|k|Zk+1|k

]
. (9)

In the case of N estimators, we have z̄k+1|k = 1
N

∑N
i=1 ẑ

i
k+1|k,

with ẑik+1|k being the predicted measurement at agent’s future position
pk+1|k based on the ith source estimator Θi

k. Then, the optimization
problem for CL-DCEE can be formulated as follows:

min
uk∈U

J(uk) = min
uk∈U

[
(M0 − z̄k+1|k)2 + Pk+1|k

]
(10a)

Pk+1|k :=
1

N

N∑
i=1

(ẑik+1|k − z̄k+1|k)2 (10b)

pk+1|k = pk + uk + wk. (10c)

Remark 1: According to the definition of Pk+1|k in (10b), it is clear
that Pk+1|k is the predicted variance of ẑik+1|k∀i = 1, . . . , N, given
that each estimator has a uniform weight of 1/N . The value function
in (10a) consists of two parts: the first part exploits current information
by navigating the agent toward the believed position of higher con-
centration, and the second part aims to gather more information by
reducing the variance of future virtual measurements. Recently, how
to balance between exploration and exploitation has aroused extensive
discussions and arguments in many areas, in particular artificial in-
telligence, optimization, and decision making [5], [20]. In some cases,
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artificial weights are introduced on purpose to impose both effects [20].
From the abovementioned formulation process of our framework, a
natural balance between the two effects is derived from a physically
meaningful cost function. Accordingly, our framework eliminates the
requirement for choosing tradeoff weights.

To obtain the variance Pk+1|k, we resort to the classical principle of
predicting variance estimation in extended Kalman filters [25], which
can be formulated as follows:

Pk+1|k = Pk|kF T
k+1F k+1, F i

k+1 =
∂M(pk,Θ

i
k)

∂p
(11)

where Pk|k = 1
N

∑N
i=1(z

i
k − z̄k)

2 denotes current variance of es-

timated measurement, zik = M(pk,Θ
i
k), z̄k = 1

N

∑N
i=1 z

i
k, and

F k+1 = col[F 1
k+1, . . . , F

N
k+1]. It should be noted that the mean and

variance of those variables are calculated by aggregating all elements
in the ensemble.

Now, we can present the gradient-based optimization algorithm for
the STE and path planning. For notational convenience, we will use

y(pk,Θk) = (M0 − z̄k+1|k)2 (12)

to denote the first term in the dual objective (10a). Inspired by the
memory-based regression parameter estimation methods [26], the N
source estimators can be updated according to

Θi
k+1 = Θi

k −
k∑

t=k−q+1

ηt∇̃Θf(Θi
k,pt) ∀i = 1, 2, . . . , N

(13)
where q is a positive integer denoting the number of past measurement
used at thekth iteration, andηt is a constant step size to be designed. The
approximated gradients of the least square function (5) can be written
as

∇̃Θf(Θi
k,pk) = ∇Θf(Θi

k,pk) + μk (14)

whereμk denotes the gradient noises, which can be regarded as a source
of perturbation to the true gradient caused by the sensory noises. The
path planning is given by

pk+1 = pk + uk + wk

uk = − δk[∇py(pk,Θk) +∇pPk+1|k] (15)

where δk is constant step size to be designed, and Θk represents the
collection of all N estimators. Note that ∇py(pk,Θk) and ∇pPk+1|k
are pure predictions without measurement noises. Basically, algorithms
(13) and (15) use gradient descent method to ensure that the agent moves
toward the believed position of a release, and the source estimators
converge to the true parameters that minimize the least square function
in (5).

For convergence analysis, some basic assumptions on the gradient
and control noises are introduced in the following.

Assumption 1: The noise μk in (14) satisfies the following proper-
ties:

E[μk] = 0, E[‖μk‖2] ≤ �2 (16)

where � is a positive constant. The position control error has similar
properties

E[wk] = 0, E[‖wk‖2] ≤ ρ2 (17)

where ρ is a positive constant.
Remark 2: There is an important difference between the traditional

gradient-based search methods, such as in Chemotaxis and the proposed
CL-DCEE algorithm in this study. In the early works (see e.g., [27] and

[28]), mobile robots are equipped with sensors that directly collect the
local gradients of concentration and utilize the measured gradients to
plan their next movement. Clearly, this type of search suffers severely
from sensor errors and turbulent fluctuations, since the next move-
ment is purely determined by instantaneous gradient measurements.
In our framework, the search agent measures local concentration value
and uses all the available information, including priors and available
measurements, to learn the source parameters. Based on the acquired
knowledge of source, the search agent uses model-evaluated gradients
to plan its next movement. This learning process lasts over the entire
period of search, and therefore, an instant sample, subject to noise
and turbulence, will not cause considerable interruption to the path
planning.

B. Convergence Analysis

In this section, we will show that the path planning algorithm (15)
in conjunction with multiple source estimators (13) will lead the agent
to a small neighborhood of the source location s.

Theorem 1: Under Assumption 1, all N source estimators in (13)
converge to a neighborhood of the true position of the release s from
a random initialization set if the learning rate ηt of each estimator is
chosen such that

Γi
k =

∥∥∥∥I4 −
k∑

t=k−q+1

ηtT i
k(t)

∥∥∥∥
2

(18)

satisfies 0 < Γi
k < 1, where T i

k(t) :=
∫ 1

0
∇2

Θf(Θs + τΘ̃
i

k,pt)dτ.
Moreover, the expected mean square errors (mse),E ‖Θi

k −Θs‖2∀i =
1, . . . , N , converge at a geometric rate to a bounded neighborhood of
zero, given by

lim
k→∞

E ‖Θi
k −Θs‖2 ≤ supj∈[1,∞)(

∑j
t=j−q+1 η

2
t �

2)

1− supj∈[1,∞)(Γ
i
j)

. (19)

Proof: It follows from (13) and (14) that

Θi
k+1 = Θi

k −
k∑

t=k−q+1

ηt[∇Θf(Θi
k,pt) + μt]. (20)

Now, let Θ̃
i

k = Θi
k −Θs denote the error of the agent’s estimation

relative to source parameters. Then, substituting Θ̃k into (20) results
in the error dynamics as

Θ̃
i

k+1 = Θ̃
i

k −
k∑

t=k−q+1

ηt[∇Θf
(
Θi

k,pt

)
+ μt]. (21)

To relate the gradient term with Θ̃
i

k, we resort to the mean value
theorem [29]. For a twice-differentiable function H(x) : Rm → R, the
following relation holds, for any a, b ∈ Rm:

∇xH(b) = ∇xH(a) +

[ ∫ 1

0

∇2
xH[a+ τ(b− a)]dτ

]
(b− a).

(22)
Therefore, applying the abovementioned theorem leads to

∇Θf(Θi
k,pt) = ∇Θf(Θs,pt)

+

[ ∫ 1

0

∇2
Θf(Θs + τΘ̃

i

k,pt)dτ

]
Θ̃

i

k. (23)
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Let us denote T i
k(t) :=

∫ 1

0
∇2

Θf(Θs + τΘ̃
i

k,pt)dτ . Consequently,
we have

Θ̃
i

k+1 =

(
I4 −

k∑
t=k−q+1

ηtT i
k(t)

)
Θ̃

i

k −
k∑

t=k−q+1

ηtμt (24)

where ∇Θf(Θs,pt) = 0 has been used. Taking the square of the
Euclidean norm of the error dynamics (24) gives

‖Θ̃i

k+1‖2 =

∥∥∥∥
(
I4 −

k∑
t=k−q+1

ηtT i
k(t)

)
Θ̃

i

k −
k∑

t=k−q+1

ηtμt

∥∥∥∥
2

=

∥∥∥∥
(
I4 −

k∑
t=k−q+1

ηtT i
k(t)

)
Θ̃

i

k

∥∥∥∥
2

+

k∑
t=k−q+1

η2
t ‖μt‖2

− 2

[
(I4 −

k∑
t=k−q+1

ηtT i
k(t))Θ̃

i

k

]T k∑
t=k−q+1

ηtμt.

(25)

Let Qi
k := E ‖Θ̃i

k‖2 denote the expected mse of the variable Θ̃k.
Then, taking the expectation of (25) results in

Qi
k+1 ≤

∥∥∥∥I4 −
k∑

t=k−q+1

ηtT i
k(t)

∥∥∥∥
2

Qi
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where conditions of the gradient noise in Assumption 1 have been
utilized, i.e., μt is a white noise independent of Θi

k with bounded
variance. To guarantee the convergence of the estimators, it is required
that

Γi
k =

∥∥∥∥I4 −
k∑

t=k−q+1

ηtT i
k(t)

∥∥∥∥
2

(27)

within unit circle. Then, we have

lim
k→∞

Qi
k ≤ supj∈[1,∞)(

∑j
t=j−q+1 η

2
t �

2)

1− supj∈[1,∞)(Γ
i
j)

(28)

where limk→∞(
∏k

j=1 Γ
i
j)Q

i
0 = 0 has been applied. In view of (26), it

can be concluded that the estimator mse converges to a small neighbor-
hood of zero at a geometric rate, given by O(supj∈[1,∞) Γ

i
j). �

Remark 3: To ensure that Γi
k in (18) is within unit circle, it is

sufficient to require
∑k

t=k−q+1 T i
k(t) > 0 for a positive integer q under

small learning rate ηt > 0. This is a commonly used condition of persis-
tent excitation in adaptive control and system identification [26], [30].
In essence, at each iterationk, not only current data sample, (pk, z(pk))
is utilized for updating the environment parameter Θk+1 but also past
q − 1 step measurements (pj , z(pj)) for j ∈ {k − q + 1, . . . , k − 1}
are used. This type of technique is motivated by the memory regressor
extension, see [26], to relax the requirement of persistent excitation.
The proposed parameter adaption algorithm in (13) encompasses two
special cases commonly used in existing literature: stochastic gradient
approximation (q = 1) and full batch approximation (q = k). It is worth
noting that increasing the iteration length q can enhance the robustness
and accuracy of the adaption algorithm as the excitation effect will be
more significant, but may also incur additional computational load [31].

Remark 4: Different from existing filtering techniques, such as ex-
tended Kalman filter and Gaussian mixture filter, which usually rely on
process models and stochastic properties of process noises to quantify
the level of estimation uncertainty, the proposed concurrent learning
method uses a hybrid approach that combines both model-based and
model-free techniques. The model-based parallel estimators essentially
yield a distribution of the estimation at each iteration. A model-free
approach is used to calculate the mean and variance of the estimation
based on the distribution of the estimations yielded by these parallel
estimators. Recently, this hybrid model-based and model-free approach
has been proven to be very successful and promising via extensive
simulation and experimental studies [32], [33] in machine learning
community. It takes the advantage of the model-based approaches in
sampling efficiency, but alleviates its inherited model biased error using
a model-free ensemble. However, there is no rigorous result for the
ensemble approach in machine learning community despite its widely
perceived success. Inspired by its success in machine learning, we pro-
pose a hybrid parameter estimation approach consisting of N parallel
gradient-based estimators and an ensemble process. This approach not
only significantly increases the robustness of the parameter estimation
particularly in the presence of intermittent sensor measurement, but
also provides a reliable way to quantify the level of uncertainty of the
current estimation, which is important in realizing the DCEE concept.

Theorem 1 shows the convergence of the estimators, i.e., the esti-
mator will eventually converge using feasible path planning methods,
but the optimality is not guaranteed. Convergence of source estimation
can be achieved as long as the agent keeps collecting information that
fulfils the conditions specified in Theorem 1. In a real search problem,
the search environment is complex and there is limited time/sampling
budget, and therefore, the search agent has to actively plan its path to
quickly approach the source.

Although the path planning and environment acquisition are coupled,
it has been shown that under Assumption 1 source estimators can
converge to true parameters when measurement samples k → ∞. This
important property allows us to employ the well-known separation
principle for the convergence analysis of the overall algorithm. Such
an analytical principle has been widely used to establish the stability of
disturbance observer-based control [34], where design of the controller
is separated from design of the observer. In addition, we will further
analyze the composite search performance (steady-state performance)
in relation to the noise characters.

Theorem 2: Consider a dispersion described by ATDM (2) and
the measurement errors and disturbances satisfy Assumption 1. Let
ηt satisfy the condition specified in Theorem 1. If the step size δk is
designed such that

0 < 2‖I3 − δkLk‖2 < 1 (29)

where Lk :=
∫ 1

0
∇2

py(s+ τ p̃k,Θk)dτ , then the search agent con-
verges to a bounded neighborhood of the source location using the
proposed CL-DCEE. Moreover, the steady-state mse bound between
agent and true source is given by

lim
k→∞

E ‖pk − s‖2 ≤ ν̄2 + �2

1− supj∈[1,∞)(2‖I3 − δjLj‖2) (30)

where ν̄ > 0 denotes the upper bound of the gradient norm of the
estimators’ variance ‖∇pPk+1|k‖.

Proof: According to the path update law (15), we have

pk+1 = pk − δk[∇py(pk,Θk) +∇pPk+1|k] + wk. (31)

Denote p̃k = pk − s as the error of the agent’s position relative to
the source position. Consequently, the error dynamics of p̃k can be
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written as

p̃k+1 = p̃k − δk∇py(pk,Θk)− δk∇pPk+1|k + wk. (32)

Following a similar argument as in Theorem 1, we have

p̃k+1 = (I3 − δkLk)p̃k − δk∇pPk+1|k + wk (33)

where

Lk :=

∫ 1

0

∇2
py(s+ τ p̃k,Θk)dτ. (34)

Then, taking the square of the Euclidean norm for both sides of the
error dynamics (33) leads to

‖p̃k+1‖2 = ‖(I3 − δkLk)p̃k − δk∇pPk+1|k + wk‖2

= ‖(I3 − δkLk)p̃k‖2 + δ2k‖∇pPk+1|k‖2 + ‖wk‖2

+ 2[(I3 − δkLk)p̃k]
Twk − 2δk∇T

pPk+1|kwk

− 2δk[(I3 − δkLk)p̃k]
T∇pPk+1|k. (35)

Let Pk := E ‖p̃k‖2 denote the expected mse between the agent’s posi-
tion and the source location. Taking the expectation of (35) and further
applying the noise conditions in Assumption 1 and (17), we have

Pk+1 ≤ ‖I3 − δkLk‖2Pk + E[δ2k‖∇pPk+1|k‖2] + ρ2

+ E[2[(I3 − δkLk)p̃k]
Twk]− E[2δk∇T

pPk+1|kwk]

+ E[−2δk[(I3 − δkLk)p̃k]
T∇pPk+1|k]

≤ 2‖I3 − δkLk‖2Pk + ρ2 + 2δ2k‖∇pPk+1|k‖2 (36)

where the following three relationships have been applied to derive the
second inequality:

E[2[(I3 − δkLk)p̃k]
Twk] = 0

E[2δk∇T
pPk+1|kwk] = 0

E[−2δk[(I3 − δkLk)p̃k]
T∇pPk+1|k]

≤ ‖δk∇pPk+1|k‖2 + E ‖(I3 − δkLk)p̃k‖2

= δ2k‖∇pPk+1|k‖2 + ‖I3 − δkLk‖2Pk. (37)

In view of the definition of Pk+1|k, it is known that the last term in (36),
2δ2k‖∇pPk+1|k‖2, is a measure of the variance of the estimator error
that is upper bounded by

E ‖Θ̃i

k‖2 ≤ max

{
‖Θ̃i

0‖2,
supj∈[1,∞)(

∑j
t=j−q+1 η

2
t �

2)

1− supj∈[1,∞)(Γ
i
j)

}
(38)

where ‖Θ̃0‖2 is the initial estimation error of the estimators. Note that
the ATDM is a smooth function with respect to the source estimators
Θi

k, and thus, F k+1 is bounded for bounded Θi
k, as in (38). Therefore,

we can always find an upper bound ν̄2 > 0 such that ‖∇pPk+1|k‖2 ≤
ν̄2. Thus,

Pk+1 ≤ (2‖I3 − δkLk‖2)Pk + ν̄2 + �2. (39)

If we choose δk such that (2‖I3 − δkLk‖2) is within unit circle, then
the convergence of (39) is guaranteed.

Now, we analyze the steady-state search performance. It follows
from (39) that:

lim
k→∞

E ‖pk − s‖2 ≤ ν̄2 + �2

1− supj∈[1,∞)(2‖I3 − δjLj‖2) (40)

where limk→∞
∏k

j=1(2‖I3 − δjLj‖2)P0 = 0 has been applied. Sim-
ilarly, it can be obtained from (39) that the agent converges to a

bounded mse in (40) at a geometric rate, given byO(supj∈[1,∞)(2‖I3 −
δjLj‖2)). �

Remark 5: There is a significant difference between the existing dual
control formulation and our framework. Previous studies introduce the
exploration effect on the system for the purposes of state or parameter
estimation [20], [21], whereas in our work, the probing effect is used
to explore the environment (in this case, learn the source location and
release rate). This crucial distinction allows us to learn the unknown
environment by reducing estimation uncertainty. Compared with our
previous work in [5], there are several distinctions in this work.
1) The formulation in (10) is a concentration-driven optimization

problem, whereas [5] uses a position-driven mechanism. From the
traditional search strategies point of view, one relates to Chemotaxis
while another to Infotaxis [1].

2) DCEE [5] uses particle filters for the STE and also for posterior
estimation, which is quite computationally expensive. We moved
away from this framework to reduce computational burden to
make autonomous algorithms easily implemented on mobile sensor
platforms that normally have limited computational resources.

3) The feasible action setΩ can be continuous, whereas only a limited
number of feasible actions can be chosen in [5].

4) In this work, we provide a complete theoretical analysis of the
modified dual control algorithm using gradient descent. On the
other hand, there is no theoretical analysis of the convergence
property of the DCEE in [5].

Remark 6: If we remove the second term Pk+1|k in the path-
planning objective in (10a), then our algorithm reduces to the pure
exploitation strategy, which solely relies on the current estimators of
the source parameters. It should be emphasized that the learning process
of pure exploitation is passive or accidental, since source parameters
are updated when the agent makes full use of current belief. The
probing effect is included in the value function, by which the agent
can actively or deliberately learn the environment. In this sense, our
CL-DCEE framework is closely related to active learning in MPC [20].
Generally speaking, dual control of exploration and exploitation in
an uncertain environment belongs to a much wider class of machine
learning problems, in particular, reinforcement learning [35], [36].

IV. SIMULATION STUDY

In this section, simulation results will be provided to validate the
effectiveness of the proposed algorithms. Since Entrotaxis [8] has
demonstrated better performance compared with other existing meth-
ods, we will use Entrotaxis as a benchmark for the simulation study. It
is worth noting that those informative path planning approaches require
a significant amount of computational power due to the implementation
of the nonlinear Bayesian filtering and the sampling search-based path
planning structure. Detailed settings of the simulation environment can
be found in the extended version of this work [37].

Each algorithm has been repeated 200 times with the same configu-
rations. The obtained mse of the CL-DCEE and Entrotaxis algorithms
are shown in Fig. 1. MSE evaluates the performance of the source
estimators, calculated by E(s̄k − s)2. It is clear that all algorithms can
gradually achieve acceptable estimation of the source position within
limited budgets. Uniform distribution of the source location has been
applied in the initialization process, as it is assumed that there is no prior
information regarding source position. As a result, the initial guess of
the source position is around the center of the search space. In general,
Entrotaxis requires a large number of measurements to update its
particle filter, which leads to a slow acquisition rate of source estimation.
On the other hand, our proposed algorithms allow quick update of the
source estimators by using instantaneous measurements. CL-DCEE
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Fig. 1. MSE between the estimated and true source positions.

Fig. 2. Distance between agent’s position and the true source.

Fig. 3. Performance of CL-DCEE with different number of estimators.

algorithm converges to bounded mse at approximately 1000 s. This
property is helpful in conducting emergent identification of the source
parameters.

Apart from the estimation accuracy, it is also desired that the search
agent can move to the source position, so as to closely monitor the
status of the release or take further remedy actions. In Fig. 2, the
distance between the agent and the source is displayed. A noticeable
phenomenon is that the agent’s position using Entrotaxis is quite
far from the source position. The proposed CL-DCEE can keep the
agent in the neighborhood of the true source, and the steady-state
distances are around 35.96, 20.28, 2.80, 2.36, 2.22, and 1.61 m, for
N = 5, 10, 50, 100, 200, and 1000, respectively.

To show the influence of the number of estimators, we have presented
the average performance using different values ofN , as shown in Fig. 3.
Initially, increasing N can significantly enhance the performance in
terms of estimators’ mse and the agent’s distance to the source (N
ranging from 5 to 50). For N ≥ 50, increasing N is no longer able to
provide much performance improvement (N ranging from 50 to 1000).
Therefore, the proposed CL-DCEE framework does not require a large
number of estimators, and tens of them will be sufficient for autonomous
search problem. It also implies that the number of estimators for the

TABLE I
TIME CONSUMED BY RUNNING DIFFERENT ALGORITHMS FOR 200 TRIALS

ensemble approach should be properly selected to balance estimation
performance and computational complexity.

An important advantage of the proposed method is the computational
efficiency. For clear comparison, we have summarized time consumed
by different algorithms, as given in Table I. The simulations are car-
ried out using MATLAB with a processor of 2.8 GHz Quad-Core
Intel Core i7. It can be seen that our algorithm is much faster than
Entrotaxis. It only consumes less than 1% of the time for Entrotaxis
(N ≤ 100). As a result, CL-DCEE also occupies much less memory
storage since the number of estimators is much smaller. This is a
very important and advantageous feature because processors used on
mobile platforms are usually lower price portable chips that cannot offer
intensive computational power or large memory. Detailed discussions
and more simulation examples can be found in the extended version of
this work [37].

V. CONCLUSION

A computationally efficient solution has been developed for au-
tonomous search of an airborne release with proven properties like
convergence. A new learning framework, inspired by DCEE, has been
formulated to solve this goal-oriented control problem in an unknown
environment with an unknown target. Gradient-based optimization
algorithms have been proposed to estimate the source parameters,
and to plan next movement by formulating suitable value functions.
Theoretical guarantee for convergence and steady-state performance
are analyzed under measurement noises and uncertain turbulence.
From the simulation and experimental studies, the effectiveness of the
proposed solution has been validated. It has been demonstrated that
our algorithm achieves superior performance comparing with IPP, and
it also consumes much less computation time.
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