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Uncomputably complex renormalisation
group flows

James D. Watson 1 , Emilio Onorati1 & Toby S. Cubitt 1

Renormalisation group methods are among the most important techniques
for analysing the physics ofmany-body systems: by iterating a renormalisation
group map, which coarse-grains the description of a system and generates a
flow in the parameter space, physical properties of interest can be extracted.
However, recent work has shown that important physical features, such as the
spectral gap and phase diagram, may be impossible to determine, even in
principle. Following these insights, we construct a rigorous renormalisation
group map for the original undecidable many-body system that appeared in
the literature, which reveals a renormalisation group flow so complex that it
cannot be predicted. We prove that each step of this map is computable, and
that it converges to the correct fixed points, yet the resulting flow is uncom-
putable. This extreme form of unpredictability for renormalisation group
flows had not been shown before and goes beyond the chaotic behaviour seen
previously.

Understanding collective properties andphases ofmany-body systems
from an underlying model of the interactions between their con-
stituent parts remains one of themajor research areas in physics, from
high-energy physics to condensed matter. Many powerful techniques
have been developed to tackle this problem. One of the most far-
reaching was the development by Wilson1,2 of renormalisation group
(RG) techniques, building on early work by others3,4. At a conceptual
level, an RG analysis involves constructing an RG map that takes as
input a description of themany-body system (e.g., a Hamiltonian, or an
action, or a partition function, etc.), and outputs a description of a new
many-body system (a new Hamiltonian, or action, or partition func-
tion, etc.), that can be understood as a “coarse-grained” version of the
original system, in such a way that physical properties of interest are
preserved but irrelevant details are discarded.

For example, the RG map may “integrate out” the microscopic
details of the interactions between the constituent particles described
by the full Hamiltonian of the system. This procedure generates a
coarse-grained Hamiltonian that still retains the same physics at larger
length scales5. By repeatedly applying the RG map, the original
Hamiltonian is transformed into successively simpler Hamiltonians,
where the physics may be far easier to extract. The RG map therefore
produces a dynamic map on Hamiltonians, and consecutive applica-
tions of thismap generate a “flow” in the space of Hamiltonians. Often,

the form of the Hamiltonian is preserved, and the RG flow can be
characterised by the trajectory of the parameters describing the
Hamiltonian.

The development of RG methods has not only allowed sophisti-
cated theoretical and numerical analysis of a broad range of many-
body systems. It also explained phenomena such as universality,
whereby many physical systems, apparently very different, exhibit the
same macroscopic behaviour, even at a quantitative level. This is
explained by the fact that these systems “flow” to the same fixed point
under the RG dynamics.

For many condensed matter systems—even complex strongly
interacting ones—the RG dynamics are relatively simple, exhibiting a
finite number of fixed points to which the RG flow converges.
Hamiltonians that converge to the same fixed point correspond to
the same phase, so that the basins of attraction of the fixed points
map out the phase diagram of the system. However, more compli-
cated RG trajectories are also possible, including chaotic RG flows
with highly complex structure6–10. Nonetheless, as with chaotic
dynamics more generally, the structure and attractors of such
chaotic RG flows can still be analysed, even if specific trajectories of
the dynamics may be highly sensitive to the precise starting point.
This structure elucidates much of the physics of the system11–13. RG
techniques have become one of the most important technique in
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modern physics for understanding the properties of complex many-
body systems.

On the other hand, recent work has shown that determining the
macroscopic properties ofmany-body systems, even given a complete
underlyingmicroscopic description, canbe evenmore intractable than
previously anticipated. In fact, refs. 14–16 showed that this goal is
unobtainable in general: they engineered a quantum many-body
Hamiltonianwhose spectral gap, phase diagrams and anymacroscopic
property characterising a phase are uncomputable. These results
imply that any RG technique which we may apply to this specific sys-
tem in order to characterise the spectrum and other properties is
bound to fail: there can be no RG scheme—or even more broadly, no
algorithm—that can answer the spectral gap problem. Yet, it is unclear
how such a negative result will emerge. In principle, this obstacle may
be because there does not exist an RG map which can compute a
coarse-grained version of an intractable Hamiltonian, or which cannot
retain its macroscopic properties at every iteration, or again whose
fixed points are not well-defined (or do not exist to begin with).

Results
We denote a 2D L × L lattice as Λ(L), and the minimum eigenvalue of a
Hamiltonian H (the ground-state energy) as λ0(H). After some RG
procedure, we denote the renormalised Hamiltonian R(H), and after
k-iterations of the RG procedureR(k)(H). We also denote BðHÞ to be the
set of bounded operators acting on Hilbert space H.

The family of Hamiltonians we will consider is that from ref. 14,
which are a set of translationally invariant, nearest neighbour, 2D spin-
lattice models with open boundary conditions defined on Λ(L). The
Hamiltonians are parametrised by single parameter φ, and hence the
set can be written as fHðφÞgφ2Q. Each lattice site is associated with a
spin system with local Hilbert space of dimension d,Cd . The property
of interest is the spectral gap, which is defined as the energy gap
between the first excited state energy and the ground-state energy.
Importantly, it is shown that as the lattice size goes to infinity, any
Hamiltonian in this family must either have a spectral gap >1/2 or be
gapless. However, determining which case occurs is undecidable.

Our main result is an explicit construction of a renormalisation
group mapping for this Hamiltonian with the following features:

Theorem 1 (Uncomputability of RG Flows (informal)) We con-
struct an RGmap for the Hamiltonian of Cubitt, Pérez–García andWolf14

which has the following properties:
1. The RG map is computable at each renormalisation step.
2. The RG map preserves whether the Hamiltonian is gapped or

gapless, as well as other properties associated with the phase of
the Hamiltonian.

3. The Hamiltonian is guaranteed to converge to one of two fixed
points under the RG flow: one gapped, with low-energy properties
similar to those of an Ising model with field; the other gapless,
with low-energy properties similar to the critical XY-model.

4. The behaviour of the Hamiltonian under the RG mapping, and
which fixed point it converges to, are uncomputable.

The undecidability of the fixed point follows implicitly from the
undecidability of the spectral gap14,15, since the fixed point depends on
the gappedness of the unrenormalised Hamiltonian. Theorem 1
demonstrates that the renormalisation process fails, but not because it
is impossible to construct a well-defined RG mapping: the actual rea-
son is that the trajectory of the Hamiltonian under repeated applica-
tions of the RG mapping is itself uncomputable. Consequently,
determining the fixed point that the trajectory eventually converges to
is itself undecidable. This is despite each individual step of the RG
process being computable.

We note a subtlety in the statement of Theorem 1. It is important
that we are able to explicitly construct the RG scheme, rather than just
prove the existence of such an RG scheme. If only existence were

proven, it would leave open the possibility that finding the RG scheme
is itself an uncomputable task, thus meaning it cannot actually be
determined.

The Cubitt, Pérez–García and Wolf Hamiltonian
Before outlining our RG construction, we review some of the impor-
tant features of the Hamiltonian from refs. 14, 15 used to prove the
undecidability of the spectral gap. The Hamiltonian can be written as:

HðφÞ=HuðφÞ � 1d � 0+1u � Hd � 0+1u,d � Htrivial +Hguard , ð1Þ

where Hd 2 BðHdÞ is a Hamiltonian with a dense spectrum and zero
ground-state energy, Htrivial 2 BðH3Þ is a trivial Hamiltonian also with
zero ground-state energy. Hguard 2 BðHu �Hd �H3Þ applies a large
energetic penalty to states which have support on both Hu �Hd and
H3. All of the undecidable physics is then contained in the part of the
Hamiltonian HuðφÞ 2 BðHuÞ, and it is the ground-state energy of this
Hamiltonian Hu which determines whether the overall Hamiltonian is
gapped or gapless.

History states
To understand the structure of the Hu(φ) ground state, we must first
review how computation can be encoded in Hamiltonians and their
ground states usinghistory states. A quantumTuringMachine (QTM) is
a model of quantum computation based on classical Turing Machines
(TMs). Much like a classical Turing Machine, a QTM consists of a tape
split up into cells, such that the cell is either empty or contains a
symbol from an allowed set. The QTM also has a control head which
moves along the tape. The head updates the tape at each time step
depending on its internal state and the symbol currentlywritten on the
tape. The significant differencewith respect to a classical TM is that the
head and tape of a QTM can be in a superposition of states. The
updates to the QTM and tape configuration are then described by a
transition unitary, U, such that the overall state of the QTM updates as
∣ψ
� ! U∣ψ

�
at each time step.

Given a particular QTM, using a construction of Gottesman and
Irani17, it is possible to encode the evolution of the QTM in the ground
state of a specially constructed 1D nearest neighbour, translationally
invariant Hamiltonian. In particular, the ground state is known as a
history state and it encodes T steps of the QTM computation. Here T is
a predefined and fixed function of the Hamiltonian’s chain length
determined by the particular QTM-to-Hamiltonian mapping. If the
state of the QTM and its tape at time t is ∣ψt

�
, then the history state is

∣Ψhist

�
=

1ffiffiffiffi
T

p
XT
t = 1

∣ti∣ψt

�
: ð2Þ

For the QTM-to-Hamiltonianmapping we are interested in, T is an
increasing function of the history state length, T = T(L) =Ω(2L). Thus,
longer-length history states encode more computational time steps.

The ground state of Hu(φ)
The local Hilbert space which Hu(φ) acts on can further be decom-
posed into a “classical” and “quantum” part:Hu = ðHcÞ�ΛðLÞ � ðHqÞ�ΛðLÞ.
In particular, Hu(φ) can be thought of as acting classically on states in
Hc. Furthermore, Hu(φ) has the useful property that all its eigenstates
are product states across these two parts of the Hilbert space. In par-
ticular, the ground state can be written as ∣Tic � ∣ψ0

�
q where ∣Tic 2

ðHcÞ�ΛðLÞ and ∣ψ
�
q 2 ðHqÞ�ΛðLÞ.

Hu(φ) is designed so that ∣Tic is the ground state of a classical
Hamiltonian based on so-called Robinson tiles. That is, the local basis
states in this part of theHilbert space correspond to particular types of
square tiles with markings on them, and the Hamiltonian enforces
certain configurations of these tiles to be energetically penalised. Thus
∣Tic corresponds to a non-penalised pattern of Robinson tiles. This
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pattern has a self-similar structure of nested squares of increasing size,
with side length 4n + 1,n 2 N18 (see Fig. 1 for a diagram). ∣ψ0

�
q is cou-

pled to ∣Tic such that 1D history states (of the type described in Eq. (2))
appear along the top edge of every square in the pattern. Thus for
every n 2 N, 1D history states of length 4n + 1,n 2 N, appear periodi-
cally across the lattice. Everywhere else in the lattice is in a trivial “filler”
state which has zero energy.

The history states are designed to encode a QTM M which takes
input φ 2 Q in binary (where φ is the input parameter to the Hamil-
tonian), and then either halts or does not halt within the allotted time.
By introducing an additional local penalty term to theHamiltonian, the
individual history states encoding a halting computation receive an
energy penalty, and so the ground state of the whole lattice in the
halting case picks up a positive energy contribution scaling as Ω(L2).
Conversely, in the non-halting case, the ground state of Hu has energy
going as −Ω(L). The overall ground state of the overall Hamiltonian
H(φ) is then either the zero energy ground state ofHtrivial in the halting
case, or the ground state ofHu(φ) in the non-halting case. In the halting
case the ground-state energy scales as λ0(Hu(φ)) =Ω(L2), hence Hu(φ)
has a higher ground-state energy than Htrivial and so the zero energy
ground state of Htrivial is the overall ground state. Otherwise,
λ0(Hu(φ)) = −Ω(L) and we see that the overall ground state is that of
Hu(φ). In the halting case, refs. 14, 15 show that H(φ) is gapped, and in
the non-halting case H(φ) is gapless.

The key point for our purposes is that the overall behaviour of
H(φ) is determined by the ground-state energy of Hu(φ). Since estab-
lishing whether a given universal Turing Machine halts is an undecid-
able problem19, determining which ground state occurs, and thus
whether the Hamiltonian is gapped or gapless, is undecidable.

The block-spin renormalisation group (BRG)
Our RG map is based on a blocking technique widely used in the lit-
erature to study spin systems, often called the Block Spin Renormali-
sation Group (BRG)20–23. Note that this is also sometimes called the
“quantum renormalisation group”, but we will not use this name to
avoid potential confusion. Modifications and variations of this RG
scheme have also been extensively studied24,25.

TheBRG is among the simplestRG schemes. Theprocedureworks
by grouping nearby spins together in a block, and then determining
the associated energy levels and eigenstates of this block by diag-
onalisation. Having done this, high-energy (or otherwise unwanted)
states are removed, resulting in a new Hamiltonian.

As an explicit example, we repeat the review of the RG process in
ref. 21 for the 1D isotropic XY-model defined below as:

H = � J
2

XN�1

i= 1

ðXiXi+ 1 + Y iY i+ 1Þ+B
XN
i = 1

Zi: ð3Þ

We first group terms into blocks of 2:

H = � J
2

XN�1

i odd

ðXiXi+ 1 + Y iY i+ 1Þ �
J
2

XN�1

i even

ðXiXi+ 1 + Y iY i + 1Þ+B
XN
i= 1

Zi ð4Þ

= � J
2

XN�1

i odd

ðXiXi + 1 + Y iY i+ 1Þ+
XN�1

i even

hi ð5Þ

where hi = � J
2 ðXiXi + 1 + Y iY i + 1Þ+BZi +BZi + 1 now contains all terms

acting within the two site blocks. Diagonalising hi gives 4 states with
energies fEð1Þ

0 , Eð1Þ
1 , Eð1Þ

2 , Eð1Þ
3 g in ascending order. We truncate the states

associated with the two higher energies, and keep the lowest two
which we label as ∣0ið1Þ,∣1ið1Þ with energies Eð1Þ

0 , Eð1Þ
1 , respectively. We

now replace this operator with a new operator, acting on a single
block-spin site with the form

ðEð1Þ
0 � Eð1Þ

1 Þ
2

Z ð1Þ
i +

ðEð1Þ
0 + Eð1Þ

1 Þ
2

1ð1Þ: ð6Þ

The between-block interaction now needs to be determined: to
replicate this, we use X = ξ(1)X(1), where ξ(1) can bedetermined by looking
at the matrix elements under the new renormalised block basis, i.e.,
0h ∣ð1ÞX ∣1ið1Þ = ξ ð1Þ 0h ∣ð1ÞX ð1Þ∣1ið1Þ. The two new two-local terms acting on
the block spins are then:

hð1Þ
i,i+ 1 = � Jð1Þ

2

XN=2�1

i odd

ðX ð1Þ
i X ð1Þ

i + 1 + Y
ð1Þ
i Y ð1Þ

i + 1Þ, ð7Þ

where J(1) = ξ(1)2J. By introducing an extra term depending on the iden-
tity, we find a renormalised Hamiltonian:

Hð1Þ = � Jð1Þ

2

XN=2�1

i odd

ðX ð1Þ
i X ð1Þ

i + 1 + Y
ð1Þ
i Y ð1Þ

i + 1Þ+Bð1Þ XN=2
i = 1

Z ð1Þ
i +Cð1Þ XN=2

i = 1

1ð1Þ
i , ð8Þ

whereCð1Þ = ðEð1Þ
0 + Eð1Þ

1 Þ=2. Aftern iterations of theRGmapping,we have
a Hamiltonian

HðnÞ = � Jð1Þ

2

XN=2n�1

i odd

ðX ðnÞ
i X ðnÞ

i + 1 + Y
ðnÞ
i Y ðnÞ

i+ 1Þ+BðnÞ XN=2n
i= 1

Z ðnÞ
i +CðnÞ XN=2n

i= 1

1ðnÞ
i ,

ð9Þ

where the constants are defined by the same procedure: J(n) = ξ(n)2J(n−1),
BðnÞ =Bðn�1Þ + ðEðnÞ

0 � EðnÞ
1 Þ=2, CðnÞ =Cðn�1Þ + ðEðnÞ

0 + EðnÞ
1 Þ=2.

Our RG scheme
We nowwant to construct an RG scheme forH(φ) which preserves the
relevant physical properties. Most notably, whether the Hamiltonian is
gapped or gapless. We will show that in order to preserve the low-
energy properties of this Hamiltonian, we can reduce the analysis to
finding RG schemes for each of the Hamiltonians in Eq. (1). Well-
defined RG schemes exist for Hd,Htrivial,Hguard which preserve their
gaps and ground-state energies, hence the remaining task is finding an
RG scheme for Hu(φ). In particular, we develop an RG scheme which

Fig. 1 | Tiling pattern for the classical ground state ∣Tic. Encoding the ground
state of the classical Hamiltonian into Robinson tiles generates a quasi-periodic
pattern of nested squares. History states are then placed along the top edge of
every square in the pattern.
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maps the following:

R :HuðφÞ � 1d � 0+1u � Hd � 0+1u,d � Htrivial +Hguard

! RðHuðφÞÞ � Rð1Þd � 0+Rð1Þu � RðHdÞ � 0

+Rð1Þu,d � RðHtrivialÞ+RðHguardÞ,
ð10Þ

allowing us to break the problem of finding an overall RG scheme into
finding one for each individual Hamiltonian.

To retain the properties of the overall Hamiltonian, the RG
scheme must maintain the ground-state energy density of Hu(φ) in
both the halting and non-halting cases. We will do this by: (a) preser-
ving the overall self-similar structure of the Robinson tiling and thus
the pattern of the history states appearing in the ground state, (b)
ensuring that the energy contribution of each individual history states
is preserved. Since the history states give the only non-trivial energy
contribution to the ground-state energy ofHu(φ), then this is sufficient
for our purposes.

The RG scheme for Hu(φ)
In order to develop an RG scheme for Hu(φ), we remark that its
eigenstates are product states across ðHcÞ�ΛðLÞ � ðHqÞ�ΛðLÞ. This allows
us to split our RG scheme up further into one part that renormalises
the classical space ðHcÞ�ΛðLÞ and another for the quantum space
ðHqÞ�ΛðLÞ (a rigorous justification of this is given in Section E of the
Supplementary Information).Aswith theBRG,both schemes consist of
a blocking and truncation procedure. We give a flow diagram of the
proof in Fig. 2.

The blocking procedure. The RG scheme proceeds by splitting the
lattice into disjoint 2 × 2 square blocks. The basis states of the indivi-
dual lattice sites within a 2 × 2 block are then combined into a single
site on a new lattice, such that if the initial local Hilbert space dimen-
sion was d, then the new lattice sites have local Hilbert space dimen-
sion d4. Having obtained a new reduced lattice of size L/2 × L/2, we now
wish to reduce the size of the local basis to only include basis states
which contribute to low-energy states.

Truncating the classical space. Since the basis states in the classical
part of the Hilbert space are represented by Robinson tiles, the new
renormalised-basis states correspond to all possible combinations of
these tiles on a 2 × 2 block: we call these “supertiles”. However, a subset
of these bigger tiles can be shown to either have high energy with
respect to the previous Hamiltonian or will be removed at later stages
of the RG process. Thus removing these supertiles will only remove
local basis states which do not contribute to the low-energy states of
the renormalised Hamiltonian. It turns out that each new state in the
renormalised basis can be identified in a one-to-one manner with a
state in the unrenormalised basis, such that the Hamiltonian is of the
same form. Thus, the ground state of the new renormalised Hamilto-
nian on the classical part of the Hilbert space will not only be self-
similar but will generate the same Robinson pattern as the unre-
normalised ground state. A detailed analysis of the RG scheme for this
part of the Hamiltonian is given in Section C of the Supplementary
Information.

Fig. 2 | Flow diagram of the proof. The idea behind our proof construction is to
separate Hu into a classical and a quantum part. The RG scheme for the classical
part is described on the left-hand side of the flow chart, and the right-hand side

shows the RG scheme for the quantum part. The separate classical and quantum
schemes are then combined (see the grey boxes) to create an RG scheme for the
entire Hamiltonian.
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Truncating the quantum space. Finally, we consider the effect of the
blocking procedure on the history state, combining pairs of cells on
the Turing Machine tape. After k-iterations of the blocking, a single
new basis state will contain 2k Turing Machine tape cells on a single
lattice site, where at each iteration, it is possible to further remove
someof the stateswhichweknowmusthavehigh energy. Forexample,
there exist sets of states which are a priori known to be energetically
penalised, e.g., states corresponding to TuringMachine configurations
with two heads next to each other. Such states are known to not
contribute to the ground state, thus they can be removed from the
local Hilbert space in the truncation procedure. We are also able to
discard some states which are guaranteed to evolve into one of these
disallowed states. Furthermore, after iterating the RG procedure
multiple times, there will be entire history states localised to a single
renormalised-basis state.We can then integrate theseout.More details
are given in Section D of the Supplementary Information.

Energy contribution of the integrated out states
We have glossed over some details in the previous section. In parti-
cular, what happens to the energy contributions from the history
states which are integrated out?

When the RG mapping has been applied k times, such that
2k ≥ 4n + 1, then we know that a full history state which would appear in
the ground state of H(φ) is now formed from a superposition of basis
states on a single site. By diagonalising the on-site Hamiltonian, we see
that it now forms the lowest energy state of the local Hilbert space. As
discussed earlier, in the halting case, this history state will pick up
some positive energy, which is known explicitly as per ref. 26, and in
the non-halting case it has exactly zero energy. In order to preserve the
ground-state energy of the overall Hamiltonian, when integrating out
the local basis states, we take the energy contribution of the history
state and add it to a local projector term. This has the effect of intro-
ducing a local energy shift which preserves the overall energy. This is
equivalent to introducing the term CðnÞ1i in the BRG procedure as per
Eq. (9). See Supplementary Information E.1 and E.2 for more details.

This introduces a 1-local term in Hu(φ) which has the form τ2ðkÞ1i

acting on each lattice site iwhere, if the encoded TM is non-halting on
input φ, then τ2(k) = − 2−k∀ k. If the TM halts on input φ then:

τ2ðkÞ=
�2k k < khðφÞ
�2k +Ωð4k�khðφÞÞ k ≥ khðφÞ:

(
ð11Þ

Here, kh(φ) is defined as the following: let Lh 2 f4n + 1gn2N be the
smallest-lengthhistory state forwhich theTMMhaltswhen running on
input φ, then kh is the smallest integer satisfying 2khðφÞ>LhðφÞ. The
behaviour of τ2(k) is fully discussed in Supplementary Information E.7.

We see that after k-iterations, the Hamiltonian R(k)(Hu(φ)) has
ground-state energy which scales as

λ0ðRðkÞðHuðφÞÞÞ=
+ΩðL2Þ ifM halts onφ

�ΩðLÞ ifM is non-haltingonφ:

(
ð12Þ

A crucial feature is that every step of the RG process is explicitly
computable: it is simply a case of blocking together four sites, deter-
mining the renormalised-basis states, and removing subsets of local
basis states which do not contribute to the low-energy subspace. Even
determining whether a given history state contains a halting compu-
tation or not can be done by examining the legitimate evolution
encodedwithin the history state, findingwhether that halts or not, and
then integrating out its energy contribution appropriately. The time
taken is a function of the number of local basis states on each site
which is upper bounded byO(d4k). Thus each step of the RGprocedure
is computable, as claimed in point 1 of Theorem 1.

The RG trajectory
As per Eq. (11), we see that the Hamiltonian has a coefficient which is
exactly −2k in the case the encoded TM does not halt. However, in the
halting case, τ2(k) begins to changebehaviour as soon as the number of
spins that have been blocked together is larger than the length of the
history state needed to encode a halting computation. Thus, the k for
which τ2(k) changes behaviour depends on the length when the Turing
Machine first halts, and hence on the time step at which the Turing
Machine halts. However, as we pointed out before, this quantity is
undecidable in general, and thus determining whether τ2(k) eventually
becomes positive is itself uncomputable.

Furthermore, there are two fixed points associated with the RG
flow. One occurs for τ(k) = −2k which corresponds to a gapless Hamil-
tonian, and the other for τðkÞ ! �2k +Ωð4k�khðφÞÞ, which corresponds
to a gapped Hamiltonian. Since distinguishing between these two
cases is undecidable, our argument immediately yields that:

Corollary 2 Determining whether the Hamiltonian flows to the
gapped or gapless fixed point under this RG scheme is undecidable.

Indeed, the Hamiltonian from ref. 14 has two very different fixed
points: one which at low energies roughly corresponds to a 2D Ising
model and another which corresponds to a critical, gapless XY-model
(further discussion in Section G of the Supplementary Information).

Thus, we have constructed an RG scheme for the Hamiltonian
H(φ) which is computable at every step, but the overall trajectory and
end-point is uncomputable.

Fig. 3 | Chaotic vs Uncomputable RG flow behaviour. In both diagrams, k
represents the number of RG iterations and η represents some parameter char-
acterising the Hamiltonian; the blue and red dots are fixed points corresponding to
different phases. We see that in the chaotic case (a), the Hamiltonians diverge

exponentially in k, according to some Lyapunov exponent. In the undecidable case
(b), theHamiltonians remainarbitrarily close for someuncomputably large number
of iterations, whereupon they suddenly diverge to different fixed points.
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Discussion
In this work, we have shown that a qualitatively new type of RG flow
occurs in many-body Hamiltonians with undecidable spectral gap.
Specifically, we give an explicit construction and analysis a block-spin
RG procedure for the Hamiltonian of ref. 14 whichwe are able to study
analytically and prove that it has the following features: (i) the RGmap
is computable at each renormalisation step; (ii) the RG map preserves
whether the Hamiltonian is gapped or gapless; (iii) the Hamiltonian is
guaranteed to converge to one of two fixed points under the RG flow;
(iv) the behaviour of the Hamiltonian under the RG mapping, the tra-
jectory of the RG flow and which fixed point it converges to are all
uncomputable.

We show that under this RG construction, the Hamiltonian flows
toward one of two RG fixed points: either a gapped Ising-like Hamil-
tonian or a gapless critical XY-like Hamiltonian. Furthermore, the
parameters characterising the Hamiltonian have a trajectory depend-
ing on the halting time of the Turing Machine encoded within the
Hamiltonian. Since the Halting Problem is undecidable and the halting
time uncomputable, the trajectory of the Hamiltonian under the RG
flow—and therefore which fixed point it ultimately converges to—are
uncomputable, even if the parameters of the initial Hamiltonian are
known exactly.

This is a qualitatively new and more extreme form of unpre-
dictability that goes beyond even chaotic RG flows which have been
previously studied. The unpredictability of chaotic systems arises
from the fact that even a tiny difference in the initial system para-
meters—which in practice may not known exactly—can eventually
lead to exponentially diverging trajectories (see Fig. 3). However,
the more precisely the initial parameters are known, the longer it is
possible to accurately predict the trajectory of a chaotic process,
and if the system parameters were known exactly, then in principle
it becomes possible to determine the long-time behaviour of the RG
flow. The RG flow behaviour exhibited in this work is more intract-
able still. Even if we know the exact initial values of all system
parameters, its RG trajectory and the fixed point it ultimately ends
up at is provably impossible to predict. Moreover, no matter how
close two sets of initial parameters are, it is impossible to predict
how long their trajectories will remain close together before
abruptly diverging to different fixed points that correspond to
separate phases (see Fig. 3). Thus, the structure of the RG flow— e.g.,
the basins of attraction of the fixed points—is so complex that it
cannot be computed or approximated, even in principle. We note
that a similar form of unpredictability has previously been seen in
classical single-particle dynamics, in seminal work by Moore27–29,
while our result shows for the first time that this extreme form of
unpredictability can occur in RG flows of many-body systems.

Despite the somewhat artificial Hamiltonian considered here, we
expect the behaviour of the RG scheme here to be generic, in the
following sense. For any well-defined, computable RG scheme for
Hamiltonians with undecidable macroscopic properties, we expect
that at least one coefficient of a relevant operator should have an
uncomputable trajectory. The reasoning is straightforward: the well-
definedness and computability of theRG flow implies that, at each step
of the RG process, we would be able to find each parameter char-
acterising the Hamiltonian after each iteration. However, when the
macroscopic properties of the Hamiltonian are undecidable, we
expect determining which fixed point it flows towards to be an unde-
cidable problem. For there to be no contradiction between these two
statements, the parameters of the Hamiltonian must flow in an
uncomputable manner (otherwise, the entire flow is computable and
we reach a contradiction). As such, the uncomputable behaviour
observed in the RG schemeheremust occur for any RG schemeone can
construct for Hamiltonians whose macroscopic properties are
uncomputable from its microscopic description (note that ref. 16 has
shown that such Hamiltonians can constitute a non-zero-measure

subset of a phase diagram, so do not require arbitrarily precisely tuned
parameters).

Often RG flows are characterised by a set of continuous differ-
ential equations. By the nature of having a discretised lattice and a real
space RG procedure, it is not natural to consider continuous variation
of the parameters in terms of differential equations30. Rather, the RG
relations in this setting are expressed in terms of finite difference
equations, e.g., for a Hamiltonian characterised by a set of parameters
fαigi, such that after the kth RG iteration the coefficients are denoted
fαiðkÞgi, then:

αiðkÞ � αiðk � 1Þ= f iðk, fαjðk � 1Þg
j
Þ: ð13Þ

In the case of the uncomputable RG flows exhibited here,
f iðk, fαjgjÞ will be some function whose behaviour is uncomputable as
we iterate k and the coefficients fαjgj . In the case of τ2(k) for the block-
spin RG scheme, we have constructed in this work, f depends on
whether a given TM halts after a time depending on k. For RG flows
characterised by continuous differential equations, we expect there
should exist RG schemes with uncomputable behaviour that satisfy
analogous differential equations: ∂αi=∂k = f iðk, fαjðk � 1Þg

j
Þ, where f is

again an uncomputable function. In the continuous case, one would
expect similar behaviour to that observed here: a particular parameter
travels along a well-defined trajectory, but at some uncomputable
point abruptly changes its behaviour and diverges from its previous
trajectory.

Naturally, there are limitations on the generality of the conclu-
sions that can be drawn from this work in the sense that the Hamil-
tonian discussed in this work is highly artificial and the RG scheme
reflects this. Indeed, this Hamiltonian has an enormous local Hilbert
space dimension and its matrix elements are highly artificially tuned.
Both of these factors are unlikely to be present in naturally occurring
Hamiltonians. A step towards overcoming this limitation was taken in
ref. 16, where it was shown that Hamiltonians with uncomputable
properties can occupy a non-zero-measure set of the phase diagram,
thus do not depend on arbitrarily precise parameter tuning. As the
Hamiltonians in that work are a development of the
Cubitt–Pérez–García–Wolf Hamiltonian we have studied here, we
expect our results will can readily be extended to this case (and indeed
to the Hamiltonian in ref. 31 which also displays undecidable proper-
ties). However, the Hamiltonians remain highly artificial. Thus an
obvious route for furtherwork is to look formorenaturalHamiltonians
displaying undecidable behaviour and consider RG schemes to
renormalise them.

Furthermore, although the RG scheme is essentially a simple BRG
scheme, the details of our construction and analysis rely on knowledge
of the structure of the ground states. Due to the behaviour of this
undecidable model, any BRG scheme will have to exhibit similar
behaviour to the onewehave analysed rigorously here. But it would be
of interest to find a simpler RG scheme for this Hamiltonian (or other
Hamiltonians with undecidable properties) which is able to truncate
the local Hilbert space to a greater degree, without using explicit a
priori knowledge of the ground state, whose behaviour can still be
analysed rigorously.

It is also worth noting that the Hamiltonian and RG schemes
constructed here could also be used to prove rigorous results for
chaotic (but still computable) RG flows. Indeed, if we modify the
Hamiltonian H(φ) so that instead of running a universal Turing
Machine on inputφ, it carries out a computation of a (classical) chaotic
process (e.g., repeated application of the logistical map), then two
inputs which are initially very close may diverge to completely differ-
ent outputs after some time. By penalising this output qubit appro-
priately, the Hamiltonian will still flow to either the gapped or gapless
fixed point depending on the outcome of the chaotic process under

Article https://doi.org/10.1038/s41467-022-35179-4

Nature Communications |         (2022) 13:7618 6



our RG map, but the RG flow will exhibit chaotic rather than uncom-
putable dynamics.

Data availability
Data sharing not applicable to this article as no datasets were gener-
ated or analysed during this study.

Code availability
An accompanyingMathematica notebook is available at https://gitlab.
com/ucl_cs_quantum/RG_flows_uncomputability.
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