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Abstract: Sea-ice surface roughness (SIR) is a crucial parameter in climate and oceanographic studies,
constraining momentum transfer between the atmosphere and ocean, providing preconditioning for
summer-melt pond extent, and being related to ice age and thickness. High-resolution roughness
estimates from airborne laser measurements are limited in spatial and temporal coverage while
pan-Arctic satellite roughness does not extend over multi-decadal timescales. Launched on the Terra
satellite in 1999, the NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument acquires
optical imagery from nine near-simultaneous camera view zenith angles. Extending on previous
work to model surface roughness from specular anisotropy, a training dataset of cloud-free angular
reflectance signatures and surface roughness, defined as the standard deviation of the within-pixel
lidar elevations, from near-coincident operation IceBridge (OIB) airborne laser data is generated and
is modelled using support vector regression (SVR) with a radial basis function (RBF) kernel selected.
Blocked k-fold cross-validation is implemented to tune hyperparameters using grid optimisation
and to assess model performance, with an R2 (coefficient of determination) of 0.43 and MAE (mean
absolute error) of 0.041 m. Product performance is assessed through independent validation by
comparison with unseen similarly generated surface-roughness characterisations from pre-IceBridge
missions (Pearson’s r averaged over six scenes, r = 0.58, p < 0.005), and with AWI CS2-SMOS sea-ice
thickness (Spearman’s rank, rs = 0.66, p < 0.001), a known roughness proxy. We present a derived
sea-ice roughness product at 1.1 km resolution (2000–2020) over the seasonal period of OIB operation
and a corresponding time-series analysis. Both our instantaneous swaths and pan-Arctic monthly
mosaics show considerable potential in detecting surface-ice characteristics such as deformed rough
ice, thin refrozen leads, and polynyas.

Keywords: surface roughness; sea ice; support vector regression; multi-angle imaging spectroradiometer;
icebridge

1. Introduction

Sea-ice surface roughness (SIR) is a crucial parameter for climate studies, in addition to
more localized navigational applications. Numerous characterisations of surface roughness
exist, principally falling into three categories of descriptors: statistical height, extreme value
height, and textural [1]. In this study, we focus on roughness characterisations based on
the second central moment of elevation probability density functions; consequently, SIR
is defined here as the standard deviation of elevation measurements within a specified
footprint (to a best-fit plane). The roughness of sea ice spans multi-magnitudinal length
scales from microscopic to vertical ridge structures of several metres. In this work, we focus
on the larger end (0.1–10 m) of this spectrum corresponding to the topography resolved by
airborne lidar instruments.
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Surface roughness can be used as a proxy for ice age and thickness, as the surface
morphology of multi-year ice is deformed by convergence and divergence, creating pres-
sure ridges, keels, leads, and sastrugi from wind interactions [2]. Sea-ice roughness is
critical for coastal communities [3] and has commercial implications on the future potential
navigability of the Arctic Ocean [4]. Evolution within the context of rapid climate change
remains uncertain, with future ice predicted to be younger and thinner but also more
dynamic and likely to deform and ridge more in certain regions [5]. As roughness places
constraints on drag coefficients [6], it forms a crucial component of modelling momentum
transfer between the atmosphere and ocean [7]. Sea-ice surface morphology also provides
preconditioning for summer-melt pond formation [8] and, thus, September minimum
extent via ice-albedo feedback [9]. Large-scale sea-ice roughness has been acknowledged
as a potential source of bias for remote-sensing techniques such as radar altimetry retrack-
ing [10]. Yet, high-resolution, multi-decadal, pan-Arctic characterizations of sea-ice surface
roughness remain evasive.

Scatterometers such as QuikSCAT and SMOS have been used extensively to charac-
terise properties of sea ice such as permittivity [11] and ice class (discrimination between
first-year and multi-year ice) [12] from backscatter coefficients, and have been shown to
capture surface-roughness characteristics [13]. SAR imagery has extensively been used to
characterize ice type, including for maritime purposes [14,15], and its use has demonstrated
quantitative skill for the inference of ice thickness [16] and extraction of roughness-related
features such as pressure ridges and rubble fields [17]. More recently, C-band SAR imagery
has been utilised for surface-roughness retrieval at the snow–ice interface [18]. Radar
altimetry can indirectly inform on the roughness within the footprints intercepted by the
beams, as radar echoes are sensitive to the roughness within the footprint of the instrument,
with larger leading-edge widths of the radar echoes an indication of rougher surfaces [10].
Laser altimeters yield a direct estimate of the elevation changes at the resolution of the
instrument. ICESat-2 has been demonstrated to successfully produce measurements of
surface roughness on a pan-Arctic scale [19]; however, it should be noted that this does not
extend to a multi-decadal timescale.

The Airborne Topographic Mapper (ATM) is a laser altimeter which forms part of the
suite of instruments onboard NASA Operation IceBridge (2009–2019). Surface-elevation
measurements are obtained in a conical spiral with a vertical precision of 3 cm and a swath
width of approximately 250 m, variable with survey altitude. IceBridge and other similar
airborne campaigns (e.g., EM-Bird) are constrained to individual campaigns predominantly
around Greenland, the Beaufort Sea, and the Canadian islands and, thus, are limited in
spatial extent and are biased to the Arctic spring.

Multi-angle Imaging SpectroRadiometry (MISR) has been proposed as another promis-
ing technique to characterize sea-ice surfaces and relies on the fact that rougher ice surfaces
are optically backward scattering relative to their smoother counterparts. As such, the
relative proportion of optical backscatter to forescatter can be used to reveal surface char-
acteristics of sea ice. MISR was launched into a geocentric low-Earth sun-synchronous
orbit as part of Terra-1 in December 1999. Radiance spectra are recorded with an array of
nine cameras oriented at regularly spaced angles (±70.5°,±60.0°,±45.6°,±26.1°, 0°) over a
reconnaissance interval of seven minutes, and over three visible light wavelengths (Blue,
446 nm; Green, 558 nm; Red, 672 nm; NIR band, 867 nm) using a push broom scanner with
a CCD (charge-coupled device) array, as illustrated in Figure 1.
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Figure 1. A schematic of the MISR instrument, illustrating near-simultaneous acquisition of multi-
angular reflectance, shown here as referenced to an ellipsoid. The time interval between ‘Time 0’ and
‘Time 1’ (representing the Cf and Ca bands, respectively) is approximately five minutes.

Pixel sampling occurs at either 275 m or 1.1 km, depending on the camera, band, and
operational mode. For bandwidth conservation purposes, only the red band and the An
(0°; nadir) camera have 275 m resolution for all bands (Table 1); activation of the local
mode for 275 m resolution fore and aft cameras in the non-red band is by request only and
the spatial and temporal catalogues for these data products is poor relative to the global
mode products. Terra-1 orbits at an altitude of 705 km and with an inclination of 98.3°
in ascending (northwards) and descending (southwards) passes, such that the extreme
extent of polar coordinates (north of ≈84°) are not covered. The temporal catalogue spans
from March 2000 to present, on a repeat of 16 days with a cycle of 233 unique paths, which
are each split into 180 blocks. The re-imaging interval varies according to latitude, with
more frequent resampling intervals over polar regions (around three days) compared to
the equatorial regions (up to nine days). The use of angular-reflectance signatures from the
MISR instrument as proxies for surface roughness has been applied to land ice [20,21] by
the use of the NDAI (normalised difference angular index), with this illustration of relative
backscatter acting as a proxy for surface roughness.

NDAI =
Ca− C f
Ca + C f

(1)

Ref. [22] proposes a 4D model of surface roughness derived from three components of
MISR angular-reflectance signatures (An, Ca, and Cf ; red) and coincident root mean square
fitted elevation observations to a plane (from IceBridge ATM L2 Icessn Elevation, Slope,
and Roughness [23]). The model uses a modified radius neighbours regression with a
defined sphere of influence of 0.025. During prediction, training incidents within the sphere
of influence of the queried components of the angular reflection signature are aggregated
using a weighted mean of the number of within-pixel IceBridge platelets. This approach
showed some skill in capturing roughness along individual airborne tracks validation
in the form of reserved (not used for model construction) IceBridge tracks with an R2

(coefficient of determination) of 0.52 for an IceBridge track over smooth sea ice, and 0.39
over a track containing rougher ice. This model relies exclusively on spectral features
and does not contain any contextual information, such as relative azimuth or solar zenith.
Moreover, only a limited subset of the available IceBridge campaigns is used to construct
the 4-D model. Finally, whilst the model has been validated on a track-by-track basis,
pan-Arctic applications are potentially uncertain due to the spatial biases intrinsic to the
IceBridge reconnaissance, in that validation in the Russian sector is not possible using
solely IceBridge tracks.
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Table 1. MISR multi-angle imaging characteristics to illustrate the different view angles and resolu-
tions for the nine MISR cameras and four bands, assuming primary operation in global mode.

Camera View Angle Resolution (km)
Blue Green Red NIR

Df +70.5° 1.1 1.1 0.275 1.1
Cf +60.0° 1.1 1.1 0.275 1.1
Bf +45.6° 1.1 1.1 0.275 1.1
Af +26.1° 1.1 1.1 0.275 1.1
An 0.0° 0.275 0.275 0.275 0.275
Aa −26.1° 1.1 1.1 0.275 1.1
Ba −45.6° 1.1 1.1 0.275 1.1
Ca −60.0° 1.1 1.1 0.275 1.1
Da −70.5° 1.1 1.1 0.275 1.1

The utilisation of the near-instantaneous multiple-view-angle sampling of surface
anisotropy from the MISR satellite has shown considerable promise in revealing surface
morphologies, including surface roughness in the cryosphere. In this study, we extend
this to multi-decadal pan-Arctic characterisations of sea-ice surface roughness through
the non-linear regression modelling of angular reflectance signatures to laser altimeter
measurements of surface roughness. Section two provides an overview of both the pre-
processing applied to retrieve georeferenced and cloud-free angular-reflectance signature
components and describes our processing chain for the retrieval of sea-ice surface roughness
from MISR. In the following section, we present an overview of our derived roughness
products, and a regional analysis. This is then followed by a section on product validation
through comparison with independent roughness tracks and also with AWI CS2-SMOS ice
thickness (Alfred Wegener Institute CryoSat-2-Soil Moisture and Ocean Salinity Merged
Sea Ice Thickness [24]), a known roughness proxy.

2. Data and Methods
2.1. Data Products

The data products and versions outlined in Table 2 were implemented for various
described purposes in this work. For each specific product, this table details the data layers
used and defines conventional shorthand notation as well as providing a brief overview
of how each data layer was used. More detailed explanations of the precise processing
applied is outlined in the following sections below.

Table 2. A summary of the data fields, products, and versions used in this study and their respec-
tive purpose.

Data Field Product (Version) Short Name Use

Latitude, Longitude, Elevation

IceBridge ATM L1B Qfit Elevation and
Return Strength (V001) [25]
IceBridge ATM L1B Elevation and
Return Strength (V002) [26]

ILATM1B
To provide observations of
surface roughness for the
construction of training data

Cf *, Af *, An *, Aa *, Ca * MISR Level 1B2 Ellipsoid Data
(V003) [27] MI1B2E

To provide observations of
specular anisotropy used for
model construction and
application for conversion
to roughness

View Azimuth,
Solar Azimuth, Solar Zenith MISR Geometric Parameters V002 [28] MI1B2GEOP

To provide contextual solar
and view geometries
for modelling
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Table 2. Cont.

Data Field Product (Version) Short Name Use

SDCM MISR Level 2 TOA/Cloud Classifier
parameters (V003) [29] MIL2TCCL Cloud masking

ASCM MISR Level 2 TOA/Cloud Height and
Motion parameters (V001) [30] MIL2TCSP Cloud masking

Sea Ice By Ref,
Ice Surface Temperature

MODIS/Terra Sea Ice Extent 5-Min L2
Swath 1km (Version 6) [31] MOD29 Cloud masking and modelling

Latitude, Longitude MODIS Level 1B Geolocation
(Version 6) [32] MOD03 Cloud masking

b19, b5, b13, b16 MODIS Level 1B Calibrated Radiances
(Version 6) [33] MOD021KM Cloud shadow masking

U, V, X, Y
Polar Pathfinder Daily 25 km
EASE-Grid Sea Ice Motion Vectors
(Version 4) [34]

NSIDC-0116 Filtering

Latitude, Longitude, Analysis
sea ice thickness

CryoSat-SMOS Merged Sea Ice
Thickness (v202) [24] AWI CS2-SMOS Validation

Latitude, Longitude, Elevation Pre-IceBridge ATM L1B Qfit Elevation
and Return Strength, (V001) [35] BLATM1B Validation

* Red, NIR, and Green bands.

Ellipsoid-projected top-of-atmosphere (TOA) radiances for all the five view angles
(from MI1B2E), as described in Table 2, were georeferenced and subset to the Arctic region
(blocks 1–45). The MISR Toolkit [36] was employed for georeferencing and block stitching.
Additional layers X and Y were created to describe a geolocation consistent with the
Lambert azimuthal equal area projection associated with the EASE-2 grid (EPSG:6931).
These radiances were then calibrated to TOA BRFs using standardised weighted radiance
calibration via pre-computed factors within the same product and low-quality retrievals
were removed (denoted by an RDQI ≤ 2). Imagery for the red channel and nadir viewing
angle were down-scaled from 275 m resolution to 1.1 km by local mean averaging over a
4× 4 block. From the geometric product (MI1B2GEOP), the azimuth and zenith of the solar
and each viewing angles were extracted to define the orbital geometry, and the relative
azimuth angle for each viewing camera calculated. As the magnitude of the atmospheric
correction is small compared to the reflection from sea ice, and aerosol profiles over the
study period are poorly resolved, atmospheric correction was not applied.

2.2. Cloud Masking

Cloud masking of scenes that include sea ice with high accuracy and coverage remains
a substantial open problem for imagery from almost all EO satellites including the MISR
satellite. Production-level cloud masks from this mission which are applicable to the
cryosphere are of two natures, the Stereoscopically Derived Cloud Mask (SDCM) and
the Angular Signature Cloud Mask (ASCM). The SVM scene classifier is currently at
provisional-quality designation and was used for purposes of comparative illustration only.

The SDCM (Figure 2a) identifies clouds using an algorithm to measure parallax via
camera-to-camera image matching from a combination of viewing angles [37], implemented
to retrieve the altitude of the radiance reflecting layer, as such, pixels are denoted as either
having originated from the surface of the ellipsoid (cloud-free), or from a higher altitude
(both at high and low confidence). The limitations of this method mean that clouds
are only retrieved at an altitude greater than 560 m [38], since below this corresponds
to sub-pixel resolution, and only clouds with a high-enough optical thickness to have
persistent features for a stereo-matching algorithm are detected. Two SDCM products are
currently operational, based on differing stereo-matching algorithms for retrieval of stereo
vectors [39]. In this project, we refer to the more recent SDCM contained in MIL2TCCL
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(TC_CLOUD), except where explicitly referenced. Comparisons with CERES determined
that optimal performance of the SDCM occurs when no retrieval is treated as clear [40].

Figure 2. An illustration of the different cloud masks (a) SDCM, (b) ASCM, (c) SVC, (d) MOD29,
(e) MODIS-derived cloud shadow mask after [41], (f) MOD35; for Orbit O054627 Blocks 20–23 around
Svalbard. Pixels designated as cloud free from each mask are displayed; however, only (c) and
(d) actually implement a sea-ice classifier. For (a): 4 = Near Surface High Confidence, 3 = Near
Surface Low Confidence, 2 = Cloud Low Confidence, 1 = Cloud High Confidence, 0 = No Retrieval
(considered clear); (b): 4 = Clear High Confidence, 3 = Clear Low Confidence, 2 = Cloud Low
Confidence, 1 = Cloud High Confidence, 0 = No Retrieval (considered cloud). In all cases, magenta
denotes a high-confidence positive (considered cloud-free) retrieval, blue a low-confidence positive
retrieval, purple a positive retrieval with no associated confidence interval presented, and red no
retrieval considered positive. WGS 84 / NSIDC EASE-Grid 2.0 North. Generated using Cartopy
and Matplotlib.

The ASCM (Figure 2b) implements a band-differenced angular signature (BDAS)
between the blue and red bands (over sea ice) as a function of viewing angle, with a
comparison against threshold values to determine cloud classification. As such, pixels are
denoted as either cloud or not cloud (both at high and low confidence). This mask performs
well with high-altitude clouds, since the relative contribution of Rayleigh scattering exhibits
a large differential between these two bands, and decreases with the lower path radiance
associated with higher clouds. By comparison with expertly labelled scenes in the Arctic,
the performance of the ASCM is assessed at 76% accuracy with 80% coverage [42].

Another of the suite of instruments on board the Terra-1 platform is the MODIS
(Terra) satellite. The MODIS satellite contains more spectral bands than the MISR sensor
(36 compared to four) over a larger swath width of 2330 km, but only with a single nadir
scan angle. As MISR and MODIS (TERRA) are both onboard the same instrument platform,
there is near-simultaneous acquisition between these two sensors, and so MODIS (Terra)
cloud masks are valid for MISR scenes and vice versa, subject to swath width constraints.
The MOD35 cloud mask (Figure 2f) contains 48 bits to allow the mask to be configured for
a variety of end-use purposes; the displayed mask is high-confidence clear pixels where
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thin cirrus cloud has not been detected. From MOD35-CALIPSO hit rates, MOD35 has
been demonstrated to have an accuracy in excess of 90% for the region of interest [43].
Additionally shown is MOD29 (Figure 2d), a sea-ice surface temperature and extent product.
In MOD29, pixels determined ‘certain-cloud’ by MOD35 are removed, and presence of sea
ice is determined using a combination of NDSI, band thresholding, and a land mask from
MOD03 (a geolocation product).

Visual inspection of multiple scenes demonstrated that MOD29 and the aforemen-
tioned implementation of MOD35 are broadly consistent, except in darker conditions, as
the NDSI is only determined under good light conditions. Both MODIS cloud masks can
exhibit along-track striation artefacts propagated from insufficient quality L1B radiance
retrievals. In this case, ‘no decision’ is returned and in this study we treat such pixels as not
cloud free.

We also implemented a geometry-based cloud-shadow mask proposed by [41] as
similarly modified by [44], defined in Equation (2), requiring four data fields from MODIS-
L1b-calibrated radiances (MOD021KM) (Figure 2e).

ShadowMask = b19 < 0.05 & b5 < 0.15 &
b16
b13

> 0.3 (2)

The mask applied to each MISR scene is given by the addition of the MOD29 mask
(Figure 2d) with the derived cloud shadow mask (Figure 2e). For MISR scenes used to con-
struct the training dataset, any positive retrieval of cloud in the SDCM or ASCM (either high
or low confidence) is also considered as cloud. This differential tolerance to cloud detection
ensures that both the training datasets are as free from noise (misclassified cloud pixels) as
practically possible without unnecessarily constraining some valid output retrievals.

2.3. Regression Modelling

An overview of our workflow for our methodology is outlined in Figure 3. To con-
struct the regression model, we generated a dataset of angular-reflectance signature com-
ponents and contextual features with ground-truth measurements of surface roughness
from IceBridge, where valid GIS intersections between MISR swaths and IceBridge paths
is defined as spatially coincident reconnaissance occurring no more than 36 h apart. As
the MISR angular-reflectance signatures and IceBridge elevation measurements are both
optical sensors, the roughness we are quantifying and correlating corresponds to the
air–snow interface.

IceBridge products pertaining to roughness are available at three product levels; Level
1B Elevation and Return Strength (ILATM1B) consisting of high-resolution individual
elevation shots from the ATM lidar scanner, Level 2 Icessn Elevation, Slope, and Roughness
(ILATM2) where elevation measurements from ILATM1B are aggregated to overlapping
platelets approximately 80 m × 250 m (variable with reconnaissance altitude) with a
three-platelet running mean average for smoothing, and Level 4 Sea Ice Freeboard, Snow
Depth, and Thickness (IDCSI4) consisting of a 40 m gridded product. As the footprints
of the overlapping platelets in ILATM2 are smaller than that of MISR, and IDCSI4 is
experimental after 2013, we derive probability distribution functions (PDFs) of elevations
within coincident 1.1 km MISR pixels from ILATM1B as shown in Figure 4 and take the
standard deviation (σ) as roughness proxy. The criterion used to determine such elevation
shots within a footprint of a given MISR pixel is the Euclidean distance of no more than
half resolution (550 m) multiplied by

√
2 from the pixel centre of the MISR observation,

given all inputs have been projected to the aforementioned equal area projection.
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Figure 3. A process diagram illustrating the workflow method used in model generation. Note that
the model selection, feature selection, and hyper-parameterisation constitutes an iterative process
that converges on a final hyper-parameterised model and feature subset via cross validation and
bias-variance analysis.

Figure 3. A process diagram illustrating the workflow method used in model generation. Note that
the model selection, feature selection, and hyper-parameterisation constitutes an iterative process
that converges on a final hyper-parameterised model and feature subset via cross validation and
bias-variance analysis.

Figure 4. (left) PDFs of elevation used to characterise surface roughness used in training,
(right) within-MISR pixel footprint of elevation measurements. N is the total number of elevation
shots within a footprint; σ is the standard deviation of the elevation measurements, or roughness.
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The standard deviation of the probability distribution functions of elevations yields
spatially coherent roughness measurements for training purposes. We then defined an
empirically derived minimum threshold of 30,000 elevation measurements within a 1.1 km
MISR footprint for the derived roughness to be valid, as some intersections occur obliquely
and, thus, are not representative. NSIDC Polar Pathfinder Daily Sea Ice Motion Vectors
(NSIDC-0116) are used in conjunction with the reconnaissance interval to filter instances
where the magnitude of coarse-resolution (25 km) displacement is in excess of half-a-pixel
resolution. Where the ice motion vector is not retrieved, no filtering is applied, as these
regions correspond to inhomogeneous surface types (ice and land) and are more likely to
contain fast ice. After filtering, we have 19,367 training instances available to us to construct
a regression model.

Prior to modelling, relative azimuth angles were calculated from solar and sensor
azimuths, and solar zenith was encoded using a cosine function. Input features were scaled
to unit variance with removal of the mean and the output feature (roughness) was scaled
via a Box–Cox power transformation towards a normal distribution. Scaling ensures no
single feature dominates the minimisation of an objective function in regression modelling.
In this study, the metrics used for assessment of model performance are the mean absolute
error (MAE) and the coefficient of determination, henceforth referred to as R2.

The processing workflow is implemented in Python. The MisrToolkit was used for
pre-processing of MISR scenes. Machine-learning algorithms and performance assessments
utilize scikit-learn, in conjunction with mlxtend for feature selection and Verde for blocked
k-fold cross validation.

Support vector machines (SVM) are a common type of supervised-learning method
which are employed for classification, regression analysis, and anomaly detection. Support
vector regression, first described by [45], is a type of SVM formulated for regression analysis.
Support vector machines have been used successfully with the MISR satellite on previous
occasions, notably for a scene classification model [46] (Figure 2c) and, in the case of
regression, for the retrieval of leaf area index [47].

When implementing an SVM for classification purposes, the objective is to determine
an n-dimensional hyperplane with a surrounding margin that acts as a decision boundary
in order to separate classes with a maximal margin, or street width, between them. When
implemented for regression purposes, the objective is to determine a similar such hyper-
plane and surrounding margin containing a maximal number of points, which forms a
surface representing a best-fit mapping between the input and output variables.

Let our training dataset be represented by Equation (3), where input vectors are
xi ⊆ Rk and outputs are yi ⊆ R for k features and N training instances given i = 1, . . . , N. x1

...
xN


 y1

...
yN

 (3)

The objective function for minimisation to implement a soft-margin SVR is the convex
optimisation problem given by Equation (4) (subject to Equation (5)) [48], where ‖w‖
is the magnitude of a vector normal to the hyperplane. ε is a tunable hyperparameter
which determines the width of the surrounding margin of the hyperplane such that, in
optimisation, a prediction smaller than ε suffers no penalty, termed the ε insensitive loss
function. ξi and ξ∗i are positive slack variables allowing points to lie outside the surrounding
margin of the hyperplane, thus adding robustness in the case of outliers. Associated with
this is C, another tunable hyperparameter (termed the regularization parameter) controlling
the trade off between error and flatness of the resolved hyperplane, which can be thought
of as a weighting for the slack variables [49].

min
1
2
‖w‖2 + C

N

∑
i=1

ξi + ξ∗i (4)
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Subject to

yi −wTφ(xi) ≤ ε + ξ∗i
wTφ(xi − yi) ≤ ε + ξi

ξi, ξ∗i > 0 (5)

φ(·) is a nonlinear transformation which is used to map xi to a higher dimensional space.
Instead of computing this transformation directly, the kernel trick (Equation (6)) is imple-
mented to perform this transformation implicitly to reduce computational complexity [49].

k(xi, xj) = φ(xi)
Tφ(xj) (6)

We implement a radial basis function kernel (RBF) (also known as a Gaussian function)
(Equation (7))

k(xi, xj) = exp−γ · ‖xi − xj‖2 (7)

This introduces our final hyperparameter, γ, inversely proportional to the vari-
ance of the Gaussian function, which determines the sphere of influence of individual
training instances.

One disadvantage of SVR is that model predictions do not give a probability interval
in prediction, although we can quantify our overall model error through implementation
of the MAE via cross validation. Hyperparameters must be manually yet appropriately
defined to achieve a good model. The fit-time complexity of SVR is between quadratic and
cubic depending on the number of samples; therefore, SVR rapidly becomes impractical to
implement > 104 input samples.

We note that after investigating several regression methodologies in the early develop-
ment of the project, we quickly converged towards the SVR approach as best suited to our
processing. Other tried candidate models (not shown) exhibited a reduced performance
and lower test–train convergence indicative of overfit. In addition, the soft margin SVR
approach gives resistance to noise, such as training pixels incorrectly flagged as clear
when cloudy.

2.4. Cross Validation

Cross validation is an important method to quantify the performance of the predictive
behaviour of a given model. Such assessments quantify how a model will generalize to
new or unseen data and is critical to prevent overfitting. The general principle of this
method is to suppress a proportion of the data used to construct the model, and to use
the suppressed data as an independent dataset to assess model performance. One such
method is known as k-fold cross validation, where a dataset is split into a number of classes,
known as folds, and for every fold, performance is assessed on a model constructed on
the remaining folds. The performance metric from each fold is then averaged to denote
an overall performance or cross-validation score. Underlying spatiotemporal correlations
caused by a dataset comprised of adjacent incidents can introduce bias in cross-validation
scores when using k-fold cross validation. This can result in overestimation of model
performance [50]. Leave-one-group-out (LOGO) cross validation, where the permutation of
split is defined using categorical data for grouping, was considered as a potential alternative
cross-validation scheme with combinations of both the year, or the region (using the NSIDC
regional mask, see Figure A1) in which an observation is considered as the category used for
fold aggregation; however, this approach was rejected due to the formation of unbalanced
classes which caused bias in metric aggregation during cross-validation assessment.

Instead, model performance was assessed using blocked k-fold cross validation, a
scheme that is both respective of spatiotemporal correlations and allows for formation
of balanced classes. A 100 km grid is constructed and overlain on the training data such
that each incident is assigned a membership of a particular block. These blocks are then
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randomly aggregated to form some number of classes, such that the classes contain roughly
equal numbers of training incidents, which are then used to determine the split permutation
(Figure 5). Overall performance is then derived from a mean average of each performance
metric as determined by each fold.

A forward-floating sequential feature-selection scheme was implemented to determine
the optimal features to include in the model. The feature subset is iteratively constructed
by assessing model performance through cross validation on initially each single feature,
with the optimum feature then selected and additional features included on the same
basis. The floating element describes the process where previously included features can
be excluded or replaced at each round if this is found to improve model performance.
Blue bands are excluded from modelling due to uncorrected Rayleigh scattering. To avoid
overfitting from contextual features, some features, such as geolocation information and
redundant orbit parameters, are not included in the feature-selection process. The features
available for modelling were the camera angles Cf, Af, An, Aa, Ca for the red and NIR
bands, solar zenith angle, relative azimuth angle for the aforementioned cameras, and
ice-surface temperature (from MODIS). Presented in Figure 6 is the result of this feature-
selection process. As hyperparameterisation affects the model implemented for feature
selection (γ is particularly sensitive to the number of input features) and, conversely, feature
selection impacts the model implemented for hyperparameterisation, these two processes
should not be thought of as two distinct steps which follow each-other, but rather as a
concurrent process which converges on some combination of both features and defined
hyperparameters for optimal trade off between bias and variance. In Figures 6 and 7, we
present this final model.

Figure 5. A map demonstrating the permutation of split in each fold for five-fold block k-fold cross
validation, using a 100 km block size. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using
Cartopy and Matplotlib.
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Figure 6. Model performance is shown for increasing numbers of features through successive
iterations of our forward-floating sequential feature-selection scheme. The shaded region denotes
±1σ error from fold aggregation. The highest cross-validation performance was found for 10 features,
although there was no increase in performance with increasing features, which plateaued after
approximately seven features.

Figure 7. A coarse grid search cross-validation scheme implemented using blocked k-fold cross
validation. The example shown varies both C and γ for ε = 0.4. The coarse hyper parameters are
denoted by the lowest CV scores at C = 1, γ = 0.1

Model performance with increasing features plateaus after approximately eight fea-
tures, with a maximum at 10 features. These 10 features selected for modelling are Aa, An,
Ca (red channel), An, Af, Ca (NIR channel), solar zenith angle, relative azimuth angle for Ca
and Cf, and ice-curface temperature.

The support vector regression (SVR) analysis chosen requires optimal tuning of the
three hyperparameters, the cost function (C), the insensitive loss (ε), and the kernel pa-
rameter (γ), which together determine the shape of the hyperplane. It is, therefore, critical
for the development of a successful model that appropriate hyperparameters are selected.
Grid-search cross validation describes the process of computing model performance over a
comprehensive range of hyperparameters, termed a grid. This process is performed over
an initially coarse grid of several orders of magnitude (Figure 7) for each hyperparame-
ter. Once the optimal order of magnitude for each hyperparameter is determined from
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the coarse grid, this process is then repeated on a finer grid to determine precisely the
optimal combination of hyperparameters. Hyperparameters of C = 0.8, ε = 0.4, γ = 0.05
were selected.

Learning curves are common tools for quantifying bias–variance trade off in modelling,
in order to prevent overfitting and to identify underfitting. The objective is to compare
how well a particular model generalises to itself (R2 train, or training score) compared with
how well it generalises to unseen data (R2 test, or cross-validation score) over an increasing
fraction of the input data used for model construction. Convergence occurs at the point
where our model has fully generalized to unseen data, indicating that overfitting has been
avoided. The model performance at the point of convergence defines the potential extent
of underfitting.

The learning curve of our model after selection of appropriate hyperparameters and
features as described is presented in Figure 8, illustrating model performance (from blocked
k-fold cross validation, where k = 5) for two metrics (R2, and MAE) for increasing training
fractions in 10% increments of the available data, with shaded ±1σ errors from aggregation
of scores over folds. Whilst the training scores are better (towards 1 for R2, towards 0
for MAE) for lower training fractions, the difference between the training and testing
performance is sizeable, indicating an over-fit and poor generalisation to new data. As
the training fraction increases, the difference between training scores and testing scores
decreases and plateaus at similar values around 12,000 data points for both metrics.

Version November 15, 2022 submitted to Remote Sens. 15 of 29

Figure 8. Learning curves for our regression model at specified hyperparameters and features, for
the coefficient of determination R2 (left) and mean absolute error (right). Demonstrates training
and testing performance (from blocked k fold cross validation, where k = 5) for increasing training
fractions in 10% increments. Highlighted regions demonstrate ±1σ errors from averaging folds.
Performance of testing and training scores exhibits convergence for increasing training fractions.
MAE scores are in the transformed feature space (Box-Cox power transformation)

Fold R2 (Test) R2(Train) MAE (m)
1 0.36 0.55 0.044
2 0.48 0.52 0.041
3 0.32 0.53 0.033
4 0.43 0.54 0.045
5 0.48 0.53 0.041

Mean 0.43 0.53 0.041
Table 3. A demonstration of cross validation performance metrics for each fold and average perfor-
mance for our selected model. Note whilst the cross validation assessment is performed subsequent
to the Box-Cox transform on the output roughness, for this table this transform has been inverted on
the calculated MAE so as to present errors that are intuitively meaningful.

Figure 8. Learning curves for our regression model at specified hyperparameters and features, for
the coefficient of determination R2 (left) and mean absolute error (right). Demonstrates training
and testing performance (from blocked k-fold cross validation, where k = 5) for increasing training
fractions in 10% increments. Highlighted regions demonstrate ±1σ errors from averaging folds.
Performance of testing and training scores exhibits convergence for increasing training fractions.
MAE scores are in the transformed feature space (Box–Cox power transformation)

The cross-validated performance of our model using the specified hyperparameters
and features is given in Table 3. The permutation of split for each fold in cross validation is
illustrated in Figure 5. MAEs presented are transformed into the original parameter space
and exhibit convergence towards the 3 cm error intrinsic to the IceBridge ATM.

Our processing chain was then applied to MISR imagery from 2000–2020 for April, in
order to construct a multi-decadal pan-Arctic-surface-roughness archive. In applying our
model, we flagged and removed any derived measurements of surface roughness where
any feature of the input vector xi lies outside the range of the trained parameter space
denoted by deviations of ±3σ.
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Table 3. A demonstration of cross-validation performance metrics for each fold and average per-
formance for our selected model. Note that whilst the cross-validation assessment was performed
subsequent to the Box–Cox transform on the output roughness, for this table, this transform was
inverted on the calculated MAE so as to present errors which are intuitively meaningful.

Fold R2 (Test) R2 (Train) MAE (m)

1 0.36 0.55 0.044
2 0.48 0.52 0.041
3 0.32 0.53 0.033
4 0.43 0.54 0.045
5 0.48 0.53 0.041

Mean 0.43 0.53 0.041

3. Results

In this section, we present our derived roughness product at the swath level, as
illustrated for three different surface types (smooth, rough, and transitional). The swath-
level product is aggregated by month to a 1 km EASE-2 grid to generate an average product,
and a regional and inter-annual comparison is presented. We begin with an outline of the
aforementioned two production-level roughness products.

We demonstrate our swath-level product through illustration of three scenes, corre-
sponding to three different roughness regimes.

Figure 9a shows a swath in the Russian Arctic, located in the Laptev and East Siberian
Seas, traversing over the New Siberian Islands. This is a particular region of interest due to
the observation of newly formed smooth sea ice and polynya, in addition to the coverage
of fast ice and pack ice. This region along the Russian coast is often described as a sea-ice
factory, as the prevailing northward currents and winds push the ice offshore and promote
winter ice growth [51,52]. It should be noted that, due to the implementation of MOD29 for
surface type classification, both open ocean and clouds are suppressed and so polynyas
are not directly imaged but their extent can be inferred from the swath-level product,
particularly after refreeze.

Figure 9b shows a swath in the East Greenland Sea between Nord and Svalbard, a
region known for the prominence of drift ice, which contributes to a transition between
smooth and rough surface morphologies of drift ice where the transpolar drift and local
outflux of older ice from the North of Greenland converge [53–55] relating to declining
multiyear ice cover. This scene intersects open ocean immediately off the coast north
of Svalbard.

Figure 9c shows a swath over the Central Arctic, extending north of Ellesmere Island,
traversing the rougher, thicker multi-year ice. Seasonal and interannual variability in the
roughness patterns is controlled by the degree of coastal convergence, itself related to
the prevailing wind patterns associated with the Arctic Oscillation [56,57]. This shows
particularly prominent ridge features in the region adjacent to the coast of Ellesmere
Island, in addition to textures consistent with some cloud contamination as the swath
progresses northwards.

An example of the monthly gridded roughness product is provided in Figure 10
for April 2016, demonstrating the monthly gridded roughness (left), and the associated
counts (top right), standard deviations (STD; middle left), and coefficients of variation
(CoV; bottom right). The CoV is the ratio of the roughness STD over its mean value and is
typically larger over regions undergoing rapid drift during the 30-day temporal-averaging
period. Of note are distinct roughness morphologies related to convergence and divergence
associated with the Beaufort gyre, smooth-ice formation in the Laptev and East Siberian
sea, with increased roughness coincident with multi-year ice in the Central Arctic, and the
low-arch system that formed in the Nares strait in spring 2016.

Missing data at high latitudes (north of ≈84°) is intrinsic to all products, due to the
relatively narrow swath width of the MISR sensor combined with the 98° inclination of the
Terra platform. Repeat reconnaissance is maximum in the region adjacent to this ‘pole-hole’,
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with decreasing observations associated with lower latitudes, as illustrated in Figure 9 top-
right (count). Theoretical pan-Arctic coverage is achieved every three days; however, due
to cloud cover and darkness, this is reduced to around seven days for practical purposes.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. A swath-level product (left) for three different orbits which illustrates (a) a smooth, (b) an
intermediate, and (c) a rough scene. For each scene, a histogram (right, bottom) of sea-ice surface
roughness and summary statistics are provided (right, middle) in addition to a pan-Arctic map
illustrating the location of the scene. Dates and times within the summary statistical table refer
to the start of the given orbit. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy
and Matplotlib.

Figure 10. A sample monthly aggregated roughness product for April 2016; mean roughness (left);
number of observations (top right); standard deviation of samples (middle right); coefficient of
variation (bottom right), where CoV = standard deviation of roughness/mean roughness. WGS
84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.
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Using the April monthly averaged roughness product, we generated a multi-annual
mask removing any values from all years which do not constitute a complete time record.
We then implemented the NSIDC Regional Mask Figure A1 to define our regions of interest
for analysis. Two assessments were made, the first presented is roughness distribution by
region (Table 4), the second roughness distribution by year (Table 5).

The roughest region on average (mean) in this study period is the Central Arctic,
although the roughest observations are in the East Greenland Sea. This is consistent
with the expected distribution of multi-year ice, which is more deformed and so rougher.
Additionally towards the rougher end of the spectrum are the Canadian Islands. The
smoothest region is the Barents sea, consistent with the expected distribution of smoother
first-year ice. Towards the smoother end of the spectrum are the Kara Sea and Baffin Bay.
This is consistent with the expected distribution of multi-year ice, which is more deformed
and so rougher [58,59].

The roughest year in this study period was 2000, with average pan-Arctic roughness
of 16.4 cm. The smoothest year was 2008 (10.3 cm).

Table 4. A table showing surface-roughness distributions grouped by Arctic region, for April
2000–2020. Arctic regions are as defined in the NSIDC Regional Mask, illustrated in Figure A1.

Region Roughness (m)
Mean STD Minimum 25% Median 75% Maximum

Baffin Bay 0.105 0.033 0.010 0.081 0.100 0.124 0.447
Barents Sea 0.091 0.029 0.011 0.071 0.088 0.107 0.464
Beaufort Sea 0.120 0.026 0.016 0.104 0.118 0.134 0.356

Canadian Islands 0.129 0.032 0.018 0.108 0.126 0.146 0.457
Central Arctic 0.138 0.028 0.019 0.120 0.135 0.154 0.460
Chukchi Sea 0.117 0.028 0.018 0.099 0.116 0.132 0.404

East Greenland
Sea 0.123 0.033 0.013 0.101 0.121 0.143 0.505

East Siberian Sea 0.115 0.026 0.020 0.100 0.113 0.127 0.345
Kara Sea 0.104 0.029 0.016 0.084 0.101 0.121 0.395

Laptev Sea 0.111 0.024 0.019 0.094 0.110 0.125 0.308

Table 5. A table showing roughness distribution grouped by year, for April 2000–2020.

Year (April) Roughness (m)
Mean STD Minimum 25% Median 75% Maximum

2000 0.164 0.032 0.014 0.147 0.166 0.185 0.481
2001 0.147 0.030 0.018 0.131 0.150 0.164 0.489
2002 0.131 0.032 0.016 0.110 0.132 0.150 0.524
2003 0.120 0.029 0.015 0.102 0.119 0.136 0.469
2004 0.122 0.029 0.013 0.106 0.121 0.138 0.471
2005 0.119 0.027 0.012 0.102 0.121 0.136 0.491
2006 0.119 0.027 0.011 0.104 0.121 0.133 0.397
2007 0.108 0.027 0.013 0.090 0.107 0.123 0.464
2008 0.103 0.026 0.015 0.086 0.103 0.117 0.416
2009 0.114 0.027 0.013 0.097 0.114 0.131 0.467
2010 0.104 0.025 0.014 0.090 0.106 0.119 0.421
2011 0.120 0.028 0.012 0.104 0.121 0.134 0.488
2012 0.106 0.029 0.010 0.089 0.105 0.123 0.447
2013 0.108 0.025 0.013 0.092 0.108 0.122 0.455
2014 0.106 0.029 0.014 0.087 0.104 0.119 0.462
2015 0.114 0.028 0.015 0.096 0.112 0.129 0.458
2016 0.116 0.031 0.015 0.096 0.118 0.133 0.477
2017 0.112 0.030 0.016 0.091 0.112 0.130 0.507
2018 0.111 0.026 0.018 0.095 0.110 0.124 0.454
2019 0.110 0.029 0.010 0.091 0.109 0.126 0.490
2020 0.118 0.030 0.016 0.096 0.117 0.140 0.429
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4. Discussion

To demonstrate the validity of the derived product, we first evaluated our roughness
product against independent LiDAR characterisations of surface roughness consistent with
our training data. We selected four pre-IceBridge [35] aerial campaigns (22 March 2006,
24 March 2006, 25 March 2006, and 27 March 2006) for this purpose. Cross sections of
coincident MISR-derived roughness swaths were extracted, where these were visually
cloud-free and substantive intersection within ±36 h, and subsequently compared with
observations of sea-ice surface roughness for several MISR-derived roughness scenes, as
described in Table 6.

Table 6. Comparative assessment of MISR-derived roughness against a roughness from independent
pre-IceBridge (March 2006) aerial campaigns, where PMCC is product motion correlation coefficient,
p < 0.001 for all scenes except Orbit 33341 where p < 0.005.

Orbit Path Count Date Time Roughness (m) PMCCMean Median STD

33299 90 665 22 March 2006 23:08:21 0.105 0.103 0.027 0.71
33314 97 356 23 March 2006 23:51:36 0.097 0.095 0.012 0.64
33328 88 756 24 March 2006 22:55:59 0.127 0.125 0.024 0.74
33341 63 205 25 March 2006 20:21:29 0.233 0.235 0.035 0.20
33342 79 1259 25 March 2006 22:00:22 0.148 0.141 0.037 0.56
33370 61 95 27 March 2006 20:09:07 0.204 0.213 0.046 0.65

The scene with the greatest intersection is illustrated in Figure 11, which shows a scene
in the Central Arctic, extending northwards from Greenland.

The line of section extends from fast ice immediately off the coast of Greenland
(Figure 11, black) northwards to the edge of the MISR scene (Figure 11, green) traversing
the oldest and roughest ice in the Arctic, and a prominent lead. Good agreement is
demonstrated between derived roughness and pre-IceBridge-derived ground-truth surface-
roughness observations, scene-by-scene comparisons between the predicted and observed
surface roughness exhibit high correlation coefficients (Table 6).

We also evaluated our derived roughness product with known proxies of surface
roughness on a pan-Arctic basis. As sea-ice surface roughness is known to be correlated
with thickness (and age), a comparison between MISR-derived surface roughness and the
AWI CS2-SMOS merged sea-ice thickness product was performed. Sea-ice thickness over
the overlapping temporal interval 01–15 April 2011–2020 were aggregated by year onto an
EASE-2 25 km grid and a roughness product for the same temporal window was generated;
subsequently, a multi-year conservative mask was applied such that grid cells containing
any missing data for any year were excluded from the comparison.

The overall correlation between the derived MISR roughness and AWI CS-2 SMOS-
derived thickness is 0.66; the nature of this correlation is illustrated in Figure 12 as a
bivariate distribution plot. In addition, the correlations between roughness and thickness
exhibits regional and inter-annual variation. Table 7 illustrates these correlations by region
(as defined by the regions as outlined in Figure A1) and two-dimensional scatter plots of a
similar nature to Figure 12 for each region can be located in Figure A2.

Correlations between MISR-derived SIR and AWI CS-2 SMOS thickness are highest
in the Central Arctic, and lowest in the East Siberian sea. This correlation between sea-ice
thickness and roughness has long been established, as discussed in [2], and reflects the
correlated nature of the age, thickness and ridging of the sea-ice surface.
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Figure 11. Swath-level roughness scene with an overlain intersecting IceBridge flight path, and a line
of section. For each scene, a histogram (right, bottom) of sea-ice surface roughness and summary
statistics are provided (right, middle) in addition to a pan-Arctic map illustrating the location of the
scene. Dates and times within the summary-statistics table refer to the start of a given orbit. WGS
84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.

Figure 12. Two-dimensional scatter plot shows a bivariate distribution between MISR-derived
roughness (m) and AWI CS-2 SMOS merged thickness (m) for 01–15 April 2011–2020 and 25 km
resolution. Count density refers to measurements over a 300 × 300 grid over the presented range
(per 1.5 cm of thickness and per mm of roughness). The opaque shaded region represents 95% of the
range, contours for the remaining percentiles are at single increments, and the valid bounds in light
blue. Spearman’s rank correlation coefficient (SRCC) between derived MISR roughness and AWI
CS-2 SMOS thickness is 0.66 (p < 0.001).
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Table 7. Spearman’s rank correlation coefficients (p < 0.001) between MISR-derived SIR and AWI
CS-2 SMOS thickness by region. Correlations above this confidence interval are not reported.

2011 2012 2013 2014 2015 2016 2017 2018 2019

Baffin Bay 0.81 0.59 0.36 0.69 0.83 0.67 0.58 0.5 0.52
East Greenland
Sea 0.64 0.57 0.71 0.67 0.44 0.81 0.63 0.63 0.74

Barents Sea 0.68 0.39 0.7 0.49 0.55 0.57 0.23 0.59 0.49
Kara Sea 0.76 0.7 0.21 0.46 0.48 0.67 0.65 0.37 0.7
Laptev Sea 0.67 0.56 0.71 0.78 0.67 0.68 0.39 0.52 0.8
East Siberian Sea 0.51 0.35 0.21 0.17 0.63 0.25 0.65 0.07 0.44
Chukchi Sea - 0.15 0.29 0.21 0.6 0.21 0.16 0.78 0.46
Beaufort Sea 0.27 0.57 0.43 0.64 0.42 0.53 −0.16 0.43 0.61
Canadian Islands 0.24 0.34 0.27 0.63 0.48 0.64 0.49 0.62 0.63
Central Arctic 0.55 0.87 0.68 0.86 0.83 0.85 0.77 0.6 0.82

5. Conclusions

In this study, we demonstrate that non-linear regression modelling of components of
angular-reflectance signatures from the MISR instrument are correlated with measurements
of surface roughness from laser altimetry, which can be used to generate a multi-decadal
(2000–2020) novel roughness product, allowing for high-resolution (1.1 km) visualisation
of convergence and divergence features (such as ridges and leads) and sea-ice formation.
When re-gridded to a similar spatial and temporal resolution, such as AWI CS2-SMOS
thickness, our derived roughness product is closely correlated (SRCC = 0.66, p < 0.001)
with thickness.

Future extensions of this work include the application of this novel technique for the
retrieval of Antarctic sea-ice surface roughness over the Greenland and Antarctic ice sheets
but also for the broader characterisation of other textured surfaces such as lakes, and sand
dunes. Such work should also focus on expanding the seasonality of this product, such as
through the use of ICESat-II measurements of surface roughness for model generation, or
the implementation of a regression scheme that yields probabilistic estimates of surface
roughness, such as relevance vector machines [60], allowing extrapolation to lower solar
zenith angles with quantifiable errors. As surface roughness provides preconditioning
for summer-melt pond formation, which constitutes a crucial part of ice-albedo feedback,
potential work could include applications related to sea-ice minimum extent forecasting.
The combination of relatively high resolution and good coverage together with novel
information on the roughness and thickness of the sea ice makes this product an ideal
candidate to support operation needs for shipping in the ice-covered Arctic Ocean.

This work also highlights the need for a quantitative study on the comparative perfor-
mance of operational cloud masks on the Terra platform for ice-covered surfaces.
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Abbreviations
The following abbreviations are used in this manuscript:

SIR Sea-ice surface roughness
MISR Multi-angle imaging spectroRadiometer
MODIS Moderate resolution imaging spectroradiometer
OIB Operation IceBridge
CS2 CryoSat-2
SMOS Soil moisture and ocean salinity
SAR Synthetic aperture radar
ATM Airborne topographic mapper
AWI Alfred Wegener Institute
NSIDC National Snow and Ice Data Center
SVR Support vector regression
SVM Support vector machines
SVC Support vector classification
RBF Radial basis function
MAE Mean absolute error
LOGO Leave one group out
NIR Near-infrared
CCD Charge-coupled device
NDAI Normalised difference angular index
NDSI Normalised difference snow index
SDCM Stereoscopically derived cloud mask
ASCM Angular signature cloud mask
BDAS Band differenced angular signature
TOA Top-of-atmosphere
EASE-2 Equal-Area Scalable Earth-2
RDQI Radiometric data quality indicator
STD Standard deviation
CoV Coefficient of variation
SRCC Spearman’s rank correlation coefficient
PMCC Pearson’s product moment correlation coefficient

Appendix A

Appendix A.1. NSIDC Arctic Regional Mask

For regional-based analysis, the spatial extent and nomenclature of Arctic zones used
in this paper are defined in accordance with the NSIDC regional mask, as presented in
Figure A1.

Appendix A.2. Regional Bivariate Distribution Plots between MISR-Derived Surface Roughness
and AWI CS2-SMOS Merged Sea-Ice Thickness

Bivariate distribution plots between MISR-derived surface roughness and the AWI
CS2-SMOS merged sea-ice thickness for each region are presented in Figure A2.

www.cpom.ucl.ac.uk/misr_sea_ice_roughness
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Figure A1. A map of the NSIDC region mask, defining the regions and extents used in this paper.
WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.

Figure A2. Cont.
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Figure A2. Two-dimensional scatter plot shows a bivariate distribution between MISR-derived
roughness (m) and AWI CS-2 SMOS merged thickness (m) for 01–15 April 2011–2020 and 25 km
resolution, for each Arctic region defined in Figure A1. Similar to Figure 12 the count density refers
to measurements over a 300 × 300 grid over the presented range (per 1.5cm of thickness and per mm
of roughness). The opaque shaded region represents 95% of the range, contours for the remaining
percentiles are at single increments, and the valid bounds are in light blue.
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