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Abstract
For hypergraph clustering, various methods have been proposed to define hypergraph 
p-Laplacians in the literature. This work proposes a general framework for an abstract class 
of hypergraph p-Laplacians from a differential-geometric view. This class includes pre-
viously proposed hypergraph p-Laplacians and also includes previously unstudied novel 
generalizations. For this abstract class, we extend current spectral theory by providing 
an extension of nodal domain theory for the eigenvectors of our hypergraph p-Laplacian. 
We use this nodal domain theory to provide bounds on the eigenvalues via a higher-order 
Cheeger inequality. Following our extension of spectral theory, we propose a novel hyper-
graph partitioning algorithm for our generalized p-Laplacian. Our empirical study shows 
that our algorithm outperforms spectral methods based on existing p-Laplacians.

Keywords Spectral clustering · Hypergraph learning · Hypergraph p-Laplacian · Cheeger 
inequality

1 Introduction

Graphs are one of the most widely used data representations for structured data, such as 
social networks (Newman, 2006), web pages (Brin and Page, 1998) and images (Shi and 
Malik, 1997). The graph Laplacian is a linear operator that characterizes the graph. A 
natural discrete optimization problem whose solution characterizes a balanced cluster-
ing is solved in its relaxed form by finding the second eigenvector of the graph Lapla-
cian (Fiedler, 1973; Alon and Milman, 1985; Hagen and Kahng, 1992; Shi and Malik, 
1997; von Luxburg, 2007). The Laplacian has been previously generalized to a nonlin-
ear p-Laplacian in the context of machine learning. Improved performance as a function 
of p was previously demonstrated in various special cases such as  (Bühler and Hein, 
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2009; Bougleux et  al., 2009). The p-Laplacian has previously been motivated from 
the perspective of differential geometry (Zhou and Schölkopf, 2005), as well as from a 
Cheeger inequality perspective (Bühler and Hein, 2009).

Hypergraphs generalize graphs and serve as a natural representation of multi-rela-
tional data. The hypergraph representation has been used to model videos (Huang et al., 
2009), web browsing histories  (Mobasher et al., 2000), recommender engines  (Ghara-
highehi et al., 2021) and cell molecules (Klamt et al., 2009). However, although a hyper-
graph is a natural data representation, generalization from graph Laplacian to hyper-
graph Laplacian is not straightforward. Thus, multiple such generalizations have been 
proposed in the literature (Agarwal et al., 2006; Saito et al., 2018; Hein et al., 2013; Li 
and Milenkovic, 2018). Furthermore, the extension from Laplacian to p-Laplacian may 
take different forms (Saito et al., 2018; Li and Milenkovic, 2018). However, as shown 
in Table 1, although they have a similar structure, some Laplacians miss some key fea-
tures. The objective of this work is to construct a theoretical structure to bring these 
similar but disparate models into one unified framework.

In our unified framework, we define an abstract class of hypergraph p-Laplacians 
that incorporates a number of previously proposed hypergraph p-Laplacians as well as 
previously unstudied novel hypergraph p-Laplacians. This framework builds on a lim-
ited special case previously proposed in Saito et  al. (2018). The overall framework is 
inspired by a differential-geometric analogy from the continuous to the discrete domain. 
Exploiting the differential-geometric connection, we provide a generalized nodal 
domain theorem (see Theorem 9) and a generalized Cheeger inequality (see Theorem 10 
and Corollary  11). These provide a theoretical justification and bounds for using the 
eigenvectors of a hypergraph p-Laplacian to perform partitioning. Exploiting these the-
oretical results, we provide an algorithm for finding an approximation to the second 
eigenvector. We provide an empirical study of this algorithm which shows that our algo-
rithm outperforms a variety of existing hypergraph p-Laplacian based methods.

Table 1  Comparison table for existing methods and ours. star is studied in Zhou et al. (2006), and unnor-
malized clique is studied in Rodriguez (2002) and edge-normalized clique is in Saito et al. (2018)

The tv is first proposed in Hein et al. (2013) and generalized to a submodular hypergraph (Li and Milen-
kovic, 2018). Ours incorporates all of these hypergraph Laplacians. All of these Laplacians have a simi-
lar structure, stated as ⟨� ,Δp�⟩ = Sp(�) (Proposition 4, for star p = 2 since p-Laplacian in a star form 
has not been studied), which gives a foundation of hypergraph cut partitioning algorithm. However, some 
Laplacians have missed some key characteristics in the table. One of the advantages of our abstract class of 
hypergraph Laplacian gives all the features of the existing methods. See the main text for details

star clique tv Submodular Ours

⟨� ,Δp�⟩ = Sp(�) ✓ ✓ ✓ ✓ ✓

p-Laplacian ✓ ✓ ✓ ✓

Nodal domain theorem ✓ ✓

Cheeger inequality ✓ ✓

Clustering algorithm for fixed p ✓ ✓ ✓ ✓ ✓

Clustering algorithm for any p > 1 ✓ ✓
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We highlight five salient contributions of this work. 

1. From a differential-geometric perspective, we define an abstract class of p-Laplacians 
of hypergraphs that can incorporate previously proposed p-Laplacians as well as novel 
unstudied p-Laplacians.

2. We provide theoretical results for our abstract class of p-Laplacians, such as the Nodal 
domain theorem, the Cheeger inequality, and a bound on the relationship between the 
minimum Cheeger cut and the second p-eigenvalue of the p-Laplacian.

3. Exploiting these theoretical results, we propose a convergent hypergraph partitioning 
algorithm with respect to our abstract class of hypergraph p-Laplacians.

4. We demonstrate empirically that our method can improve the performance of the exist-
ing p-Laplacians.

5. Based on our theoretical and empirical observations, we provide guidance on the choice 
of p-Laplacian.

We remark that in the literature, there are a number of special case results  (Zhou et  al., 
2006; Agarwal et  al., 2006; Saito et  al., 2018; Hein et  al., 2013). These prior results 
derive a patchwork of nodal domain theorems, Cheeger inequalities, as well as partition-
ing algorithms for some particular cases of hypergraph p-Laplacians, as shown in Table 1. 
The advantage of the approach here is that we define an abstract class of hypergraph 
p-Laplacians, and both our theory and our partitioning algorithm apply to the complete 
class. Finally, we provide guidance on how to select a particular value of p for hypergraph 
p-Laplacians. All proofs are in appendix sections.

2  Preliminaries

This section reviews the notions of hypergraph and Cheeger inequality.

2.1  Hypergraph notions

We begin with standard definitions and notations of a hypergraph. A hypergraph G = (V
,E,�,�) , where V is a vertex set, an E is an edge set, � is a vector {w(e)}e∈E where w ∶ E → 
ℝ

+ maps each edge with a weight, and � is a vector {�(v)}v∈V , where � ∶ V  → ℝ+ maps each 
edge with a edge weight. The edge set E is a subset of all possible permutation of vertices, 
i.e., E ⊆ ∪|V|

k=1
 ∪{v1,…,vk}⊆V

 {[v�(1),… , v�(k)] ∣ � ∈ Pk} , where Pk denotes the set of permuta-
tions � on {1,… , k} . A hypergraph is connected if there is a path for every pair of verti-
ces. A hypergraph is undirected when the set of edges are symmetric; defining a relation 
∼ between two edges as [v�(1),… , v�(k)] ∼ [v��(1),… , v��(k)] where �, �� ∈ Pk(k = 1,… , n) 
and we denote a set of undirected edges as Eu = E ∕ ∼ . In what follows, we assume that the 
hypergraph G is connected and undirected unless noted. We define the degree of a vertex 
v ∈ V  as d(v) = 

∑
e∈E∶v∈e w(e) , while the degree of an edge e ∈ E is defined as |e| . For the 

benefit of the representation of hypergraph, we define various matrices. Degree matrices 
Dv and De are diagonal matrices whose diagonal elements are degree of vertices and edges, 
respectively. Let We be a diagonal |E| × |E| matrix, whose diagonal elements are weight of 
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edge e. We denote by |V| × |Eu| matrix H is an incidence matrix, whose element h(v, e) = 1 
if vertex v is connected to the edge e, and 0 otherwise. For more details, see Berge (1984).

2.2  Cheeger inequality

This section reviews Cheeger inequality for the standard 2-Laplacian case. Influenced 
by the inequality of the eigenvalue of continuous Laplacian called Cheeger inequality, 
there is existing research on the Cheeger inequality in the discrete domain  (Alon and 
Milman, 1985; Lee et  al., 2014; Tudisco and Hein, 2016). This inequality shows the 
connection between the eigenproblem of Laplacian and a graph cut called as Cheeger 
cut Alon and Milman (1985). This inequality motivates us to use eigenvectors to parti-
tion in the following way. While the discrete optimization problem of finding a subset of 
V that minimizes the Cheeger cut is NP-hard (von Luxburg, 2007), the eigenproblem of 
the graph Laplacian is not NP-hard. Since the Cheeger inequality gives bounds between 
eigenvalues of graph Laplacian and optimal Cheeger cut, the Cheeger inequality can be 
said to guarantee the performance of the eigenproblem compared to the ground truth 
from the original cut problem. This performance guarantee enables us to use eigen-
vectors obtained by less computationally expensive eigenproblem instead of the costly 
ground truth from the discrete cut problem. In other words, the Cheeger inequality 
“connects” Cheeger cut and eigenproblem; the Cheeger inequality shows how much we 
approximate the original graph cut problem by relaxing this into the real-valued eigen-
problem of Laplacian.

We observe the “connection” as follows. Let A ⊂ V  be a set and A be a complement 
of U. The Cheeger cut may be defined as

where vol(A) = 
∑

v∈A d(v) . The Cheeger constant h2 ∶= minA⊂V C(A) is the value of the opti-
mal cut. The Cheeger inequality shows a connection between the eigenvalue of Laplacian 
and the Cheeger constant as

Equation (1) shows how we approximate the Cheeger constant by relaxing the original dis-
crete cut problem into the real-valued eigenproblem of the graph Laplacian. The Cheeger 
inequality guarantees the performance of the cut resulting from algorithms using the sec-
ond eigenvector of Laplacian as follows. Let (B,B) be the cut found by the second eigen-
vector of the Laplacian � , such that ({v ∶ 𝜓(v) ≥ t}, {v ∶ 𝜓(v) < t}) minimizing Cheeger 
cut. Chung (2007) showed that C(B) 

√
2�2 . Therefore, by the upper bound of Eq. (1) we 

observe

which gives a guarantee for the worst case of performance of spectral clustering. This 
motivates us to use spectral methods for graph partitioning problems.

C(U) ∶=
�V(A,A)

min(vol(A), vol(A))
, where �V(A,A)∶=

∑

u∈A,v∈A

w({u, v}),

(1)h2 ≤ √
2�2 ≤ 2

√
h2.

(2)C(B) < 2
√
h2,
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3  Hypergraph p‑Laplacian

This section defines and discusses a hypergraph p-Laplacian and associated 
p-eigenpairs.

3.1  Differential operators: gradient ∇ , divergence div and p‑Laplacian 1p

In this section, we aim to extend various differential operators proposed in Saito et al. 
(2018) to an abstract class of p-Laplacians. We firstly introduce the following two inner 
product spaces H(V) and H(E) of real-valued functions over the vertex set and the 
(directed) edge set respectively,

We next define three operators on these spaces; gradient ∇:H(V) → H (E) , divergence div
:H(E) → H(V) , and p-Laplacian Δp:H(V) → H(E) . These operators are discrete geometric 
analogs to the comparable operators in the continuous differential geometry. In the con-
tinuous domain, for the second differentiable function f, the p-Laplace operator is defined 
as Δ(c)

p
f ∶= div(c)(‖f‖p−2∇(c)f ) , where operators with superscripted by (c) are the stand-

ard continuous calculus ones. In the following, we would like to establish a differential-
geometric framework in a generalized discrete setting analogous to the continuous one to 
define an abstract class of p-Laplacians. The operators div , Δp were introduced in the graph 
setting (Zhou and Schölkopf, 2005; Grady, 2006) and generalized to the hypergraph setting 
in (Saito et al., 2018), whereas a similar formulation of ∇ was given graph and hypergraph 
settings  (Zhou and Schölkopf, 2005; Saito et  al., 2018). The definition that we propose 
below broadly generalizes all previous definitions. We define and discuss its interpretation 
below.

We propose to define the hypergraph-gradient as follows. The definition below is the 
generalization of the definition of gradient over hypergraphs proposed in  Saito et  al. 
(2018).

Definition 1 Let ∇ be an operator ∇ ∶ H(V) → H(E) . A hypergraph-gradient ∇ is

where the operator ∇ and the function c(u, v, e,�) satisfies the following three conditions 
for all e ∈ E and vertices u, v ∈ e;

(3)⟨f , g⟩H(V)∶=
�

v∈V

f (v)g(v)

(4)⟨r, s⟩H(E)∶=
�

e∈E

r(e)s(e)

�e�! , .

(∇�)(e)∶=
∑

u,v∈e

w
1

p (e)c
1

p (u, v, e,�)

(
�(u)

�1∕p(u)
−

�(v)

�1∕p(v)

)
,

(5)|∇(��)| = |�∇(��)|

(6)
∑

u,v∈e

c(u, v, e,�) = c(e)
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This hypergraph-gradient can be intuitively interpreted as follows. The term 
�(u)∕�1∕p(u) − �(v)∕�1∕p(v) can be interpreted as “roughness” (normalized by � ) 
between two vertices. The hypergraph-gradient is a sum of all possible combinations of 
this term for the edge e. Hence, the hypergraph-gradient can be intuitively seen as the 
roughness in one edge, similar to the continuous gradient ∇(c).

The definition of the hypergraph-gradient function depends on a “weighting” func-
tion c(u, v, e,�) . This weighting function can be seen as a coefficient of the difference 
between every pair of vertices. Varying c(u, v, e,�) allows us to model different types of 
hypergraph expansions including but not limited to the star (Zhou et al., 2006) or clique 
expansions (Saito et al., 2018) (see Table 2 for details), i.e., the function c enables the 
following our generalized p-Laplacian framework to be abstract.

We leave a few remarks on equations of gradient Definition  1. First, the gradient 
operator ∇ and the function c has three conditions described as Eqs.  (5), (6) and (7). 
Equation  (5) requires the operator ∇ to be either homogeneous or absolute homoge-
neous. Equation  (6) requires that the summation of the function over all the pairs of 
vertices at an edge e is independent of � . Equation  (7) enforces that the function c1∕p 
is independent of � once we fix one edge and one vertex in the edge. In the follow-
ing, when c is not differentiable, we consider subdifferential instead of derivative. For 
a more detailed discussion on these conditions, see Appendix  1. We normalize � by 
vertex weights � . We call the vertex weights unnormalized when �v = 1 and normalized 
when �(v) = d(v) ,∀v ∈ V  . We observe that the existing unnormalized p-Laplacian such 
as Hein et al. (2013) �(v) = 1 and normalized 2-Laplacian (Zhou et al., 2006; Saito et al., 
2018) when �(v) = d(v).

The following definition of a divergence operator is inspired by an analogy to the 
continuous setting.

Definition 2 A hypergraph divergence is an operator div ∶ H(E) → H(V) which satisfies 
∀� ∈ H(V),∀� ∈ H(E) ⟨�,∇�⟩H(E) = ⟨� ,−div�⟩H(V).

Note that Definition 2 is an analog to the continuous Stoke’s Theorem. Also, we can 
check that div is unique. Intuitively, divergence counts the net flow defined by � on the 
vertex, similarly to the intuition in the continuous domain.

Finally, we propose to define p-Laplacian.

(7)
�c1∕p(u, v, e,�)

��

|||||v
= 0,∀u ∈ e and

�c1∕p(u, v, e,�)

��

|||||u
= 0,∀v ∈ e

Table 2  The relationship 
between a function c(u, v, e,�) 
in hypergraph-gradients and 
Laplacians. We denote e[1] 
by the first vertex of an edge 
e. Also, F ∶ 2|e| → [0, 1] is a 
submodular function, and we 
use rearranged vertices vi so 
that �(v|e|) ≥ … ≥ �(v1) . See 
Sect. 3.4 for the details and all 
the notations

Type c(u, v, e,�)

clique e-n 1∕(|e| − 1) when e[1] = v otherwise 0
clique e-un 1 when e[1] = v otherwise 0
star 1∕|e| when e[1] = v otherwise 0
tv 1 when (u, v) = argmaxu,v 

|�(u)∕�1∕p(u) − �(v)∕�1∕p(v)| 
otherwise 0

sub F(Si)(maxS⊂e(F(S)))
1∕p when u = ui 

and v = ui+1 otherwise 0
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Definition 3 An operator Δp:H(V) → H(E) is a hypergraph p-Laplacian if Δp � ∶= −div 
(‖∇�‖p−2p ∇�).

3.2  p‑Dirichlet sum and p‑Laplacian

This section defines the p-Dirichlet sum, which can be interpreted as energy over the hyper-
graph. Also, we discuss relations between the p-Dirichlet sum and the p-Laplacian. Lastly, we 
discuss how these relations are the foundation of graph partitioning.

Using the norm defined by the Hilbert space in Eq. (4), we define p-Dirichlet sum of � ∈ 
H(V) as

which measures roughness of � over the hypergraph. Hence, it is natural to interpret the 
p-Dirichlet sum as an energy over hypergraph. Later we will use this energy serves as the 
objective function of the hypergraph partitioning.

For the p-Dirichlet sum and p-Laplacian, the following relationships hold;

Proposition 4 Sp(�) = ⟨� ,Δp�⟩H(V).

Proposition 5 
�Sp(�)

��

|||||v
= pΔp�(v).

These relations are important both in the continuous and discrete domains. In the continu-
ous domain, the analog of these relations is fundamental for an important problem on p-Lapla-
cian, called Dirichlet Principle (Courant and Hilbert, 1962); the Dirichlet energy is minimized 
when the Laplace equation is satisfied. For the clustering in the discrete domain, we minimize 
the p-Dirichlet sum. To do so, we consider a problem similar to the Laplace equation, which is 
the eigenproblem of Laplacian. This is how we see an analogy between continuous differential 
geometry and this discrete geometry. In the following, we illustrate this with an example of 
the standard graph 2-Laplacian case. Let L be a standard normalized graph 2-Laplacian L = 
D−1∕2(D − A)D−1∕2 where A is an adjacency matrix, and D is a diagonal degree matrix. This 
Laplacian is computed through our framework if we set hypergraph-gradient as

Note that we put � = {d(v)}v∈V . We then obtain

which corresponds to L� . From Eq. (8), the energy is defined as

(8)Sp(�)∶=‖∇�‖p
p
=
�

e∈E

�∇�(e)�p
�e�! ,

(9)[4](∇�)({u, v}) = w1∕2({u, v})

�
�(u)
√
d(u)

−
�(v)
√
d(v)

�
.

(10)Δ2�(v) = �(v) −
∑

{u,v}∈E

w({u, v})

d1∕2(u)d1∕2
,

(11)S2(𝜓) = ‖∇𝜓‖2
2
=
�

u,v

w({u, v})

�
𝜓(u)
√
d(u)

−
𝜓(v)
√
d(v)

�2

= 𝜓⊤L𝜓 .
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This corresponds to Proposition 4. Differentiating S2(�) by � , we observe

which corresponds to Proposition 5. More detailed steps are explained in Appendix 2. In 
the graph partitioning context, Eqs. (11) and (12) serve as a foundation of the relationship 
between balanced cuts and graph Laplacian. Using these properties and Courtant’s min-
max theorem, we can connect the discrete cut problem into the eigenproblem of Lapla-
cian by the Nodal domain theorem and the Cheeger inequality, as we will see in the next 
sections.

We often see the properties of Propositions 4 and 5 in the graph p-Laplacian (Bühler 
and Hein, 2009; Bougleux et al., 2009). Moreover, also in the hypergraph context, without 
a defining differential geometric setup, we see these properties in the existing hypergraph 
Laplacians, as seen in Table 1 (Zhou et al., 2006; Saito et al., 2018; Hein et al., 2013; Li 
and Milenkovic, 2018). Hence, it is natural to expect that all of the hypergraph Laplacians 
have a similar structure in this sense. However, as we see in Table 1, some Laplacians miss 
some features; particularly, some Laplacians miss the useful nodal domain theorem and 
Cheeger inequality (discussed in Sect.  4). Note that we “borrow” these results from the 
continuous differential geometry. One of the benefits of our abstract Laplacian is to give 
comprehensive analyses to all Laplacians defined from the gradient Definition 1.

3.3  p‑Eigenproblem of p‑Laplacian

Next, we discuss the eigenproblem of this p-Laplacian. Since a p-Laplace operator is non-
linear, we introduce the standard generalization of eigenpair for p-Laplacian (see for exam-
ples of Tudisco and Hein (2016)).

Definition 6 [4] Let �p(x) ∶= |x|p−1 sgn (x) . For p 1 , a hypergraph p-eigenpair, which is a 
pair of p-eigenvalue � ∈ ℝ and p-eigenvector � ∈ H(V) of Δp , is defined by

In the standard Laplacian, one can show the connection between its eigenpair and Ray-
leigh quotient from the matrix theory as well as the continuous analysis. To obtain p-eigen-
pair, we consider the following Rayleigh quotient:

Proposition 7 Consider the Rayleigh quotient for our abstract class of p-Laplacians as

The function Rp has a critical point at �∗ if and only if �∗ is p-eigenvector of Δp . The cor-
responding p-eigenvalue �∗ is given as �∗

p
 = Rp(�

∗) . Moreover, the first p-eigenvalue is 0, 
whose p-eigenvector is M1∕p� , where M is a |V| × |V| diagonal matrix whose diagonal ele-
ment is �v.

(12)
�S2(�)

��
= 2L� ,

(13)(Δp�)(v) = ��p(�(v)),∀v ∈ V .

Rp(�)∶=
Sp(�)

‖�‖pp
,where ‖�‖p∶=

�
�

v

�p(v)

� 1

p

,
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For the standard Laplacians, the first p-eigenvector is equal to c� for unnormalized and 
cD

1∕2
v � for normalized case. For more properties of p-eigenpair, see Appendix 5.

3.4  p‑Laplacians and related regularizers

This section shows that various hypergraph Laplacians and related regularizers can be seen 
as a special case of our framework. We discuss a clique expansion way (Rodriguez, 2002; 
Saito et al., 2018), a star expansion way (Zhou et al., 2006), a total variation way (Hein 
et al., 2013), and a submodular hypergraph way (Li and Milenkovic, 2018).

3.4.1  Clique expansion hypergraph Laplacian (clique)

This approach constructs a graph where a clique replaces every pair of vertices in an origi-
nal edge of a hypergraph. Hypergraph clique 2-Laplacian normalized by a degree of edge 
(clique e-n) is proposed by Saito et al. (2018), and clique 2-Laplacian but edge-unnormal-
ized (clique e-un) is proposed Rodriguez (2002). For those 2-Laplacians, clique Laplacian 
is L = I − D−1∕2 W D−1∕2 , where for the edge-normalized setting W is a matrix whose ele-
ment is w(u, v) = 

∑
uv∈e w(e) ∕ (|e| − 1) and D = Dv and for an edge-unnormalized setting 

w(u, v) =
∑

u,v∈e w(e) and D is a diagonal elements are d(v, v) =
∑

v∈e w(e) . Note that this 
can be seen as hypergraph contraction to graph, represented by W, and L is a standard 
2-Laplacian induced by W.

3.4.2  Star expansion hypergraph Laplacian (star)

 This way constructs a graph by making a new vertex for every edge to form a star. This 
Hypergraph 2-Laplacian can be written as L2,s = I − D−1∕2

v HWeD
−1
e
H⊤D

−1∕2
v  (Zhou et al., 

2006). We remark that this view is also hypergraph contraction to graph, represented by 
adjacency matrix HWeD

−1
e
H⊤ . Note that this Laplacian can be seen as the standard Lapla-

cian if we consider hypergraph as a graph, except for the coefficient 1/2. This coefficient 
difference comes from the nature of this view, as discussed in Saito et al. (2018).

3.4.3  Total variation and submodular p ‑Laplacian (tv/sub)

 The total variation (tv) approach for hypergraph has been considered in a different context 
than the other two (Hein et al., 2013). The TV regularizer is defined as

which is not normalized by a degree of vertex (tv v-un). We here propose normalized total 
variation (tv v-n) p-Laplacian, whose regularizer we define as Sp(�) = 

∑
e w(e) maxv,u∈e 

|�(v)∕d1∕p(v) − �(u)∕d1∕p(u)|p . This TV p-Laplacian is incorporated by the submodular 
p-Laplacian (Li and Milenkovic, 2018). The extensive study by Li and Milenkovic (2018) 
considers hypergraph p-Laplacian in the context of a submodular function, which we refer 
to as sub. For a submodular function F ∶ 2|e| → [0, 1] , associated with edge e, the submod-
ular p-Laplacian is associated with the following energy;

(14)Sp(�) =
∑

e∈E

w(e)max
v,u∈e

|�(v) − �(u)|p,
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by reordering v in e as �(v|e|) ≥ �(v|e|−1) ≥ … ≥ �(v1) , where Si ∶= {vj}
i
j=1

 . Note that 
this form is one form of Lovász extention. By taking F(Si) = 1 for all i, we obtain tv 
p-Laplacian.

3.4.4  Connections between our p‑Laplacian and existing Laplacians

 These Laplacians can be seen as a special case of our abstract Laplacian, defined by Defi-
nition 3, followed by hypergraph-gradient (Definition 1) and hypergraph-divergence (Defi-
nition 2). Table 2 summarizes the corresponding function c(u, v, e,�) in the definition of 
hypergraph-gradient. Edge normalized and unnormalized clique 2-Laplacians in Table 2 
are 2-Laplacians proposed by Saito et al. (2018) and Rodriguez (2002), respectively. Star 
2-Laplacian in Table 2 is equal to the Laplacian proposed by Zhou et al. (2006). The regu-
larizer of unnormalized TV p-Laplacian in Table 2 corresponds one by Hein et al. (2013). 
We also note that all the functions of c(u, v, e,�) satisfy the condition of Definition 1 (see 
Appendix 1). For more discussion, see Appendix 6.

4  Properties of p‑Eigenpair of p‑Laplacian

This section discusses the properties of the p-eigenproblem of our hypergraph p-Laplacian. 
Hence, we aim to establish the theoretical background of spectral clustering using p-Lapla-
cian, such as the nodal domain theorem and the Cheeger inequality. The nodal domain 
theorem is about the bounds of the number of nodal domains, which can be seen as a “divi-
sion”. Using this nodal domain, the Cheeger inequality shows how much p-eigenproblem 
can approximate a minimal graph cut.

4.1  Nodal domain theorem of the p‑Laplacian

This section aims to extend the classical nodal domain theorem to our framework. The 
nodal domain theorem in the discrete domain is developed analogously from the Courant’s 
nodal domain theorem in the continuous domain (Courant and Hilbert, 1962). In the con-
tinuous case, a nodal domain is defined as a region for a function where a sign does not 
change. Therefore, a nodal domain marks the natural division of regions of real values. The 
nodal domain theorem shows a connection between eigenvectors of Laplacian and nodal 
domains; the theorem describes the bounds of the number of nodal domains of eigen-
vectors of Laplacian  (Lindqvist, 2008). The same idea can be established in the discrete 
domain, i.e., a nodal domain is a connected sub-hypergraph where a sign of p-eigenvector 
does not change. This nodal domain can be seen as a “partition” by the p-eigenvector in the 
discrete domain. A next question is “can we obtain a similar bound to the number of this 
nodal domain?”

We begin with the definition of a nodal domain for a hypergraph.

Definition 8 A nodal domain is a maximally connected subgraph A of hypergraph G such 
that for � ∈ H(V) A is either {v ∣ � (v) 0} or {v ∣ � (v) 0}.

(15)Sp(𝜓) =
∑

e∈E

(w(e)max
S⊂V

(F(S))

(|e|−1∑

i=1

F(Si)

(
𝜓(vi+1)

𝜇1∕p(vi+1)
−

𝜓(vi)

𝜇1∕p(vi)

))p

,
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Next, with this definition, we discuss the nodal domain theorem for our hypergraph 
p-Laplacian. The nodal domain theorem for graph Laplacian has been proven in Fiedler 
(1975), generalized to graph p-Laplacian by  Tudisco and Hein (2016), and extended to 
a particular type of hypergraph p-Laplacian  by  Li and Milenkovic (2018). In this line 
of research, we extend these nodal domain theorems to our abstract class of hypergraph 
p-Laplacians as follows;

Theorem 9 Let 0 = �1 �2 ≤ … ≤ �k−1 �k = … = �k+r−1 �k+r ≤ … , be eigenvalues of Δp , and �k 
is an associated eigenvector with �k . Then �k induces at most k + r − 1 nodal domains.

As seen in Theorem 9, the nodal domain theorem studies the structure of p-eigenvectors 
of p-Laplacian; Theorem 9 shows the bound on the number of nodal domains of p-eigen-
vectors. The number of nodal domains matters to Cheeger inequality, which is a theoreti-
cal justification for spectral methods via our p-Laplacian. We will discuss this Cheeger 
inequality next.

4.2  k‑way cheeger inequality

This section establishes the k-way Cheeger inequality for our hypergraph p-Laplacian. 
As we saw in Sect.  2.2, the 2-way Cheeger inequality serves as the connection between 
Cheeger cut and eigenproblem. Moreover, the inequality gives a performance guarantee of 
the relaxed graph partitioning problem. We want to establish such a connection between 
the Cheeger cut and p-eigenproblem of our hypergraph p-Laplacian. For this purpose, we 
aim to generalize this Cheeger inequality to our hypergraph p-Laplacians to achieve spec-
tral partitioning via our p-Laplacian.

We start our discussion from a 2-way Cheeger cut. Let A ⊂ V  be a set and A be a com-
plement of A. The generalized Cheeger cut may be defined as

We call the optimal cut h2 ∶= minA⊂V C(A) as Cheeger constant. Considering the stand-
ard graph, this generalized Cheeger cut becomes the standard Cheeger cut discussed in 
Sect. 2.2. We shall extend this generalized 2-way Cheeger cut to k-way Cheeger cut. Con-
sider disjoint partitioning of V into k sets {Vi}i=1,⋯,k . Then, we define the k-way Cheeger 
constant as

Similarly to the previous studies (Tudisco and Hein, 2016; Li and Milenkovic, 2018), we 
establish k-way Cheeger inequality for our p-Laplacian as follows.

Theorem 10 Let (�k,�k) be a p-eigenpair of Δp , mk be the number of nodal domains of �k . 
Then,

(16)
C(A) ∶=

�V(A,A)

min(vol(A), vol(A))
, where vol(A) =

∑

u∈A

�(v)

�V(A,A)∶=
∑

e∶u,v∈e,u∈A,v∈A

w(e)c(e), c(e) ∶=
∑

u,v∈e

c(u, v, e,�).

(17)hk∶= min
{Vi}i=1,⋯,k

max
j∈{1,…,k}

C(Vj).
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Corollary 11 Let (B,B) be the cut found by the second eigenvector of the p-Laplacian � , 
such that ({v ∶ 𝜓(v) ≥ t}, {v ∶ 𝜓(v) < t}) minimizing Cheeger cut. Then,

Theorem 10 is an extension of the graph Cheeger inequality in terms of three perspec-
tives; graph to hypergraph, 2-way to k-way, and the standard 2-Laplacian to our abstract 
class of p-Laplacians. Following Theorem 10, Corollary 11 is the bound of the relationship 
between the cut obtained by the second p-eigenvector of our abstract class of p-Laplacians 
and the generalized Cheeger constant. Similarly to the classical case in Sect.  2.2, Theo-
rem 10 shows how we approximate the k-way Cheeger constant by relaxing discrete k-way 
cut problem into p-eigenproblem of Δp ; Theorem 10 gives the upper and lower bounds of 
the optimal cut using k-th p-eigenvalue. Moreover, Corollary 11 gives a guarantee for the 
worst case of a 2-way cut obtained by p-eigenvector. These bounds can be said to guaran-
tee the performance of the cut resulting from spectral methods via p-eigenvectors of our 
p-Laplacian. Hence, Theorem 10 and Corollary 11 motivate us to use spectral methods via 
our p-Laplacian for the hypergraph partitioning problem instead of the costly discrete orig-
inal cut problem. This inequality gives the tightest bound when p → 1 . Since the original 
cut problem is NP-hard, the eigenproblem is also an NP-hard problem in this asymptotic 
case. Moreover, by considering the case of the standard graph 2-Laplacian, this inequality 
can be reduced to the classical Cheeger inequality. Also, when k = 2 , this inequality is for 
h2 , which is a 2-way Cheeger cut. Therefore, in the next section, we focus on constructing a 
spectral algorithm for a 2-way partitioning.

Finally, we remark that the discussion on k-way Cheeger cut is a generalization of 
the standard graph 2-way Cheeger inequality of 2-Laplacian  (Alon and Milman, 1985; 
Alon, 1986), k-way Cheeger inequality of 2-Laplacian (Lee et al., 2014), k-way Cheeger 
inequality of graph p-Laplacian  (Tudisco and Hein, 2016), and k-way Cheeger inequal-
ity of p-Laplacian of submodular hypergraph  (Li and Milenkovic, 2018) cases. We also 
note that the proofs for the nodal domain theorem (Theorem 9) and the Cheeger inequal-
ity (Theorem 10) are a natural generalization of the previous studies such as Tudisco and 
Hein (2016) and Li and Milenkovic (2018). Rather than introducing new techniques in the 
proofs, the focus of this work is that we generalize the hypergraph p-Laplacian as much as 
possible where these structures preserve in order to provide a unified framework.

5  Hypergraph partitioning via p‑Laplacian

Sect. 4 shows the guarantee of performance of eigenproblem instead of the NP-hard dis-
crete Cheeger cut problem. Therefore, this section establishes our partitioning algorithm, 
exploiting p-eigenpairs of our hypergraph p-Laplacian.

We firstly discuss a property of p-eigenvectors of Δp . For the p-Laplacian eigenproblem, 
since the p-Laplacian is nonlinear, p-eigenvectors are not necessarily be orthogonal to each 
other. However, we still want a relationship between p-eigenvectors. For this motivation, 
instead of the orthogonality, Luo et al. (2010) proposed p-orthogonality as follows.

(
max

v

d(v)

�(v)

)−(p−1)(hmk

p

)p

≤ �k ≤ min(k, max
e∈E

|e|)p−1hk.

(18)
(

1

maxv d(v)∕𝜇(v)

)p−1(
C(B)

p

)p

< 2h2
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Definition 12 Let Ξp(�) be a vector, whose v-th element is �p(�(v)) . We call � ≠ 0 and 
� ≠ 0 as p-orthogonal if Ξp(𝜓)⊤ Ξp(�) = 0.

In order to analyze this p-orthogonality of our abstract class of p-Laplacians, we recall 
the Taylor expansion, which is often used for approximating functions in physics. For 
example, in the motion of a pendulum, if we approximate functions with respect to the 
amplitude of the angular of the pendulum by Taylor expansion, the motion equation is 
approximated by a simple harmonic motion  (Courant and Hilbert, 1962). The Taylor 
expansion leads an infinite differentiable function f(x) to write as f (x) = f (af ,x) + 

∑∞

n=1
f (n) 

(x − af ,x)∕n! , where af ,x is a constant, and f (n) is a n-th derivative of f. This Taylor expan-
sion is often used to approximate the function. If we consider approximating the function 
by the first order, the remainder (the second or higher terms) can be seen as the approxima-
tion error. For two functions f and g, if the error term can be written as the sum of the sec-
ond or higher terms, i.e., f (x) = g(x) + o2 , where o2 = 

∑
nf+ng≥2,nf ,ng∈ℕ+ �f ,g,nf ,ng (x − af ,x)nf ( x 

− ag,x)ng , and �f ,g,nf ,ng is a coefficient, then we call the function f is equal to g up to the sec-
ond order of Taylor expansion. Using this notion and p-orthogonality, we obtain the 
following;

Theorem 13 Let (�,�� ) and (� , ��) be the p-eigenpairs of Δp . The p-eigenvectors � and � 
are p-orthogonal up to the second order of Taylor expansion with the vertex if �� and �� 
are not equal up to the second order of Taylor expansion.

Theorem 13 tells us that two p-eigenvectors are approximated p-orthogonal, up to the 
second-order of Taylor expansion.

We move our discussion to the second p-eigenpair by considering the Rayleigh quotient. 
In the graph p-Laplacian (Bühler and Hein, 2009) and the clique p-Laplacian case (Saito 
et al., 2018) and also the continuous case (Lindqvist, 2008), the global minimum of a vari-
ant of Rayleigh quotient gives the second p-eigenpair. Similarly to these works, we propose 
to define the following quotient as

where �1 is the first p-eigenvector. This quotient is supported by the following theorem.

Theorem  14 The global solution of Eq.  (19) is given by �∗ = �2 + �∗�1 , where 
�∗ = argmin�‖�2 − ��1‖

p
p , and �2 is the second p-eigenvector.

This theorem shows that we have an exact identification for the second p-eigenpair; 
minimizing Eq. (19) gives the second p-eigenpair of Δp . However, the major disadvantage 
is that Eq. (19) is not convex and hence difficult to obtain the global optimum; optimiza-
tion algorithms applied to Eq.  (19) would give the local optimum instead of the global 
optimum.

Therefore, we next consider a strategy to get a better local optimum for a 2-way hyper-
graph partitioning. The idea to obtain a better optimum is using the exact p-orthogonality 
as a constraint, instead of the constraint “p-orthogonal up the second order”, which each 
pair of p-eigenvectors must obey (Theorem 13). The reason why we use this strategy is 
as follows. Due to the non-convexity of Eq. (19), the solution obtained by an optimization 

(19)R(2)
p
(�)∶=

Sp(�)

min� ‖� − ��1‖
p
p

,
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algorithm can be a local optimum. However, this local optimum is not guaranteed to be 
p-orthogonal up to the second-order to the first p-eigenvector �1 while �2 is so. To gain a 
better optimal solution, we exploit Theorem 13, and we want a constraint that enforces that 
the solution to be p-orthogonal up the second-order to �1 . However, it is difficult to work 
directly with this constraint “p-orthogonal up the second order”. To ease this difficulty, we 
propose to use an exact p-orthogonal condition as a constraint. Thanks to Theorem 13, this 
exact constraint can be seen as an approximated condition by the second order of Taylor 
expansion. We borrow this approximation idea from physics; it is common to approximate 
physical phenomena by the second order of Taylor expansion, such as the explained motion 
of a pendulum case. Following this discussion, we incorporate the exact p-orthogonality as 
a constraint. Then, we consider the optimization problem as,

Since R(2)
p
(��) = R(2)

p
(�) for � ≠ 0 , we can arbitrarily change the scale of � to R(2)

p
(�) . 

Hence, we add the scale constraints to Eq. (20) as

which gives the same global minimum solution as Eq. (20). To solve Eq. (21), we propose 
to apply natural gradient algorithm (Amari, 1998) as shown in Algorithm 1, similarly to 
Luo et al. (2010). If we use a simple gradient method as �J�∕�� , the orthogonal condition 
does not hold for each update. Instead of using this for the update of Algorithm 1, we use 
𝜕J�

𝜕𝜓
− 𝜓(

𝜕J�

𝜕𝜓
)⊤𝜓 so that we can preserve the orthogonal condition in Eq.(21)  (Luo et  al., 

2010). The convergence of this algorithm is also guaranteed (Luo et al., 2010).

6  Related work

This section compares related hypergraph 2-Laplacians and p-Laplacians and partitioning 
algorithms. This section is complementary to Sect. 3.4. While Sect. 3.4 defines the related 
p-Laplacians, this section focuses on discussing the context and explaining the difference 
between ours and existing ones.

One major hypergraph Laplacian is from a clique expansion way (clique). The 
unweighted setting edge-unnormalized 2-Laplacian was proposed in Rodriguez (2002) 
(clique e-un). This 2-Laplacian and Laplacians proposed in other studies (Zien et al., 1999; 
Bolla, 1993; Gibson et  al., 2000) are theoretically equivalent  (Agarwal et  al., 2006). In 

(20)min
𝜓

J(𝜓) = R(2)
p
(𝜓) s.t. Ξp(𝜓)⊤Ξp(𝜓1) = 0.

(21)J�(𝜓) = R(2)
p
(Ξ−1

p
(𝜓)) s.t. 𝜓⊤𝜓1 = 0, ‖𝜓‖2

2
= 1,
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this line of research, 2-Laplacian from a differential geometry viewpoint is proposed (Saito 
et al., 2018). When p = 2 , this Laplacian also can be explained by the clique expansion way 
but normalized by a degree of edge (clique e-n). Moreover, this p-Laplacian is proposed 
based on forming vertex-wise energy (clique e-n-vw)  (Saito et  al., 2018), while ours is 
edge-wise energy. In Saito et al. (2018), the p-energy SVW

p
(�) is defined using the norm of 

the hypergraph-gradient is defined ∇� at vertex v as

This idea comes from the definition of the energy around vertex as ‖∇�(v)‖ and obtains 
total energy by summing up those energies over all vertices. Note that if we assume the 
standard graph, p-Laplacian in Saito et al. (2018) corresponds to a series of graph stud-
ies  (Zhou and Schölkopf, 2005; Bougleux et  al., 2009), which also assume vertex-wise 
energy. On the other hand, ours corresponds to the p-Laplacian, which assumes edge-wise 
energy (Bühler and Hein, 2009; Tudisco and Hein, 2016). Hence, our work does not incor-
porate p-Laplacian proposed in Saito et al. (2018) since the p-Dirichlet sum setting is dif-
ferent. Remark that when p = 2 , our model incorporates CLIQUE E-N-VW by using c in 
Table 2. However, Saito et al. (2018) did not give theoretical analyses such as the nodal 
domain theorem or the Cheeger inequality. Moreover, Saito et al. (2018) did not give a spe-
cific partitioning algorithm exploiting characteristics of p-Laplacian such as p-orthogonal-
ity. Hence, we need to use a general-purpose optimization method for the p-eigenproblem. 
However, such methods do not always leverage the characteristics of p-Laplacian, which 
would possibly lead to better performance in terms of space, time, and accuracy.

Another line of research is in a star expansion way, shown in Sect.  3.4. Zhou et  al. 
(2006) proposed 2-Laplacian based on a lazy random walk view. Agarwal et  al. (2006) 
shows that this 2-Laplacian is theoretically equivalent to Laplacians by studies of  (Zien 
et  al., 1999; Li and Solé, 1996), also further discussed in Ghoshdastidar and Dukkipati 
(2017a).

Other Laplacian is from a total variation way and subsequent submodular way (tv/sub). 
A regularization framework for p ≥ 1 is proposed in Hein et  al. (2013) with hypergraph 
partitioning algorithm for p = 1 , and further explored in Chan et al. (2018). This idea is 
extended to a submodular hypergraph  (Li and Milenkovic, 2018). A submodular hyper-
graph has an objective function of energy using one form of Lovász expansion of a sub-
modular function. Moreover, sub incorporates the inhomogeneous cut proposed by Li and 
Milenkovic (2017), where weights can vary when we partition the edge. Along with this 
new class of hypergraph cut, Li and Milenkovic (2018) proposed partitioning algorithms 
for p = 1 and p = 2. Seeing the definition (Eq. (15)), submodular p-Laplacian describes a 
broad class hypergraph p-Laplacian using submodular function. We also mention the p = 2 
case for submodular cut objective functions are discussed in Yoshida (2019) using the gen-
eral form of Lovász extension. Moreover, a series of research  (Veldt et  al., 2020; Ben-
son et al., 2020) directly defines objective function using submodular function, instead of 
Lovász extension. While submodular models seem flexible, ours are more versatile since 
we do not assume submodularity. The submodular p-Laplacian is a special case of ours as 
long as the conditions in Definition 1 are satisfied. Additionally, our algorithm can address 
arbitrary p, while algorithms from Hein et al. (2013) and Li and Milenkovic (2018) focused 
on the specific p ( p = 1 or p =2).

(22)SVW
p

(�)∶=
�

v∈V

‖∇�(v)‖p,where ‖∇�(v)‖∶=
�

�

e∈E∶e[1]=v

�∇�(e)�2
�e�!

� 1

2

.
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We remark that our framework can address existing 2-Laplacian from clique and star, 
and tv/sub p-Laplacian. Moreover, our partitioning algorithm can work for arbitrary p 1 , 
while those existing algorithms focus on specific p or use a general-purpose optimization 
algorithm without theoretical analyses. We also note that our framework can define a new 
p-Laplacian, which is (but not limited to) normalized TV, shown in Sect. 3.4. However, 
we need to recognize that it is out of the scope of our work to incorporate clique e-n-vw 
p-Laplacian. Moreover, since our framework based on the relationships of Propositions 4 
and 5, our framework does not incorporate a tensor modeled Laplacian for uniform hyper-
graph, where all edges connect the same number of vertices (Cooper and Dutle, 2012; Hu 
and Qi, 2012; Qi, 2013; Hu and Qi, 2015; Chen et al., 2017; Ghoshdastidar and Dukki-
pati, 2017b; Chang et  al., 2020). The reason why we cannot incorporate clique e-n-vw 
p-Laplacian and tensors into our model is that our model is based upon the energy formed 
as Eq. (8), while energies for those two are differently defined. Particularly, we note that 
the difference in the aims between tensor modeled Laplacians and our framework is as fol-
lows; while the tensor modeled Laplacians are the tensor operation, our framework focuses 
on the contraction made by the energy Eq. (8).

Lastly, we comment on p-Laplacians in the continuous domain. The continuous p-Lapla-
cian has a longer history than in the discrete domain. The Dirichlet energy is defined simi-
larly to Eq. (8), and the variation of the energy would give the Laplace equation (Courant 
and Hilbert, 1962). The energy is minimized when the Laplace equation is satisfied. This 
framework extended to arbitrary p-norm, such as Binding and Rynne (2008), and was theo-
retically analyzed in many ways, such as nodal domain theorem and Cheeger inequality. 
We remark that in the continuous case, we can identify the second p-eigenpair similarly to 
Eq. (19), but no exact identification for the third or higher has been found yet (Lindqvist, 
2008). For more comprehensive study, we refer to Lindqvist (2008) and Struwe (2000).

7  Preliminary experiments

Our experiments aim to evaluate our approximation algorithm (Algorithm 1) as a function 
of p and the particular type of hypergraph Laplacians (star, clique, and tv/sub).

Primary Objective of the Experiments. The objective of the experiments is to see if our 
algorithm (Algorithm 1) improves on the existing methods introduced in Sect. 6. Algorithm 1 
has two key “levers”; the choice of the parameter p and the choice of hypergraph Laplacian, i.e., 
the function c in the gradient (Definition 1). On the one hand, in the previous works discussed 
in Sect.  6 the algorithms for hypergraph p-Laplacians were designed for a particular p (e.g., 
p = 1, 2 ) or applied to all p > 1 without theoretical justifications. On the contrary, Algorithm 1 
for our abstract class of hypergraph p-Laplacians works for all p > 1 with theoretical justifica-
tion. Therefore, we provide experiments for a wide range of hypergraph Laplacians for p > 1 
in comparison to existing algorithms. We thus apply Algorithm 1 to five existing hypergraph 
Laplacians (clique e-n, clique e-un, star, tv v-un, and tv v-n) for p > 1 . We compare these to 
the existing fixed p algorithms for particular type of Laplacians. Moreover, since clique e-n has 
a partitioning algorithm using a particular hypergraph p-Laplacian (clique e-n-vw by Saito et al. 
(2018), see Sect. 6 for the definition), we also compare to this. Hence, we compare five instantia-
tions of ours with six previous algorithms as;

• Algorithm 1 for all p > 1 is applied to the five geometries: 
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1. clique e-n: p > 1

2. clique e-un: p > 1

3. star: p > 1

4. tv v-un: p > 1

5. tv v-n: p > 1

• Comparison as six existing algorithms: 

1. clique e-n: p = 2 (Saito et al., 2018)
2. clique e-n-vw: p > 1 (Saito et al., 2018)
3. clique e-un: p = 2 (Rodriguez, 2002)
4. star: p = 2 (Zhou et al., 2006)
5. tv v-un: p = 1 (Hein et al., 2013)
6. tv v-n: p = 1 (Hein et al., 2013)

Note that there are variety of submodular function for sub can be considered, but we 
made tv by Hein et al. (2013) as a representative of the sub group.

Experimental Setup. We build a hypergraph using the method for categorical data-
sets introduced in Zhou et  al. (2006). Each instance in the dataset consists of |E| cat-
egories. The vertices of the hypergraph are the instances. The edges are defined by the 
attribute values. Each attribute value within a given category defines an edge where 
each vertex in the edge corresponds to those instances that share the same attribute 
value. All edges are given weight one. Our experiment is performed on the datasets 
mushroom, cancer, chess, and congress from the UCI repository (Dua and Graff, 2022), 
and two datasets created from 20newsgroups  1 (for short “news”) with two classes (1,2) 
and (3,4). All of these were used in the previous studies (Zhou et al., 2006; Hein et al., 
2013; Saito et al., 2018). We summarize the datasets in Table 3. The value � = 

∑
e∈E |e|

/|E| is the average edge degree. Furthermore, � = 
∑

e∈E |e| ∕ |V| |E| is the average ratio of 
the number of vertices connected by each edge to the total number of vertices, which 
we can recognize as "density" of a hypergraph. In Table 4 we compare 11 instantiations 
of hypergraph p-Laplacians as discussed above. For clique e-n-vw ( p ∈ [1, 3] ) we con-
ducted experiments using the same setting as Saito et al. (2018) as the setting matches 

Table 3  Dataset summary. All the dataset has two classes. The parameter � is the average edge degree 
parameter � ∶= 

∑
e∈E |e|/|E| , and � ∶= 

∑
e∈E |e| ∕ |V| |E| is the average ratio of the number of vertices con-

nected by each edge to the total number of vertices, which we can recognize as "density" of hypergraph

Mushroom Chess Cancer Congress News(1,2) News(3,4)

|V| 8124 3196 699 435 8124 8188
|E| 112 73 90 48 100 100
∑

e∈E �e� 170604 115056 6291 6960 31066 34382
� 1523.25 1576.11 69.9 145 310.66 343.82
� 0.18 0.49 0.10 0.33 0.038 0.042

1 We used the tiny version of the original 20newsgroups available at https:// cs. nyu. edu/ ~roweis/ data/ 
20news_ w100. mat.

https://cs.nyu.edu/%7eroweis/data/20news_w100.mat
https://cs.nyu.edu/%7eroweis/data/20news_w100.mat
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to ours. For our methods we used p ∈ {1.1, 1.2,… , 3.0} ; we limited ourselves to p ≤ 3 
since the Cheeger Inequality (Theorem 10), is progressively looser for larger p values. 
For the free-parameter experiments, we set the starting condition of our algorithm to 
the solution of the corresponding fixed-parameter Laplacian. We used the step size � =
0.01‖�‖1

1
/‖Ω‖1

1
 as done in Luo et al. (2010). For all methods, a second eigenvector was 

hence computed, and we used the k-means objective to determine the “split point” on 
the eigenvector (as was also done in (Zhou et al., 2006; Saito et al., 2018)). We evalu-
ated the performance of our algorithms via their error rate, i.e., (# of errors)/(# of data), 
as used in (Zhou et al., 2006; Hein et al., 2013; Saito et al., 2018).

Overall Results The results are summarized in Table 4. First, looking into our algo-
rithm (Algorithm 1) vs. fixed-parameter algorithms (existing methods, see the perfor-
mances associated with  in Table 3) for five geometries, we see that our methods con-
sistently demonstrate improved performance from existing fixed-parameter methods. 
We also remark that among for clique e-n ours consistently outperforms clique e-n-vw, 
except chess.

Further Discussion A natural question to ask for our algorithm is “which hyper-
graph Laplacian and which p is suitable?”. A further look into our abstract class of 
p-Laplacians can answer this question; the experimental result reveals how the choice 
of p and type of the hypergraph Laplacian are connected to the underlying parameters � 
(average edge degree) and � (density) of the datasets. Although the experiments are pre-
liminary, there seem to be consistent trends that provide guidance on a range of p and 
the type of Laplacian to consider. Further, the experimental guidance is supported by 
the theory given earlier in this manuscript.

Our observation is that the density parameter ( � ) is related to the range of p while the 
the average edge degree parameter ( � ) is connected to the hypergraph Laplacian. The 
density parameter ( � ) indicates the natural range for p. The dataset chess is significantly 
more dense (large � ) than the other datasets. The table indicates that while large p tends 
to work better for the chess dataset, the tendency is that small p improves on large p 
for the non-chess datasets. To understand this, we consider the trade-off between the 
Cheeger inequality (see Theorem (10)) and the p-Dirichlet sum. The Cheeger inequal-
ity is tighter for smaller p; hence, the relaxed objective becomes closer to the discrete 
objective. On the other hand, if we examine the p-Dirichlet sum (see Eq. (8)), one may 
observe that it is a p-norm to p-th power of the hypergraph-gradient. The dimensional-
ity of hypergraph-gradient scales with the graph density ( � ). Hence in the dense case, 
a relatively larger p is needed to induce the same magnitude of change in the p-Dir-
ichlet sum, which is connected to the second p-eigenvector via Rayleigh quotient (see 
Eq.  (14)). The analogous phenomena connecting the choice of p to density have been 
observed in a standard graph such as online graph transduction  (Herbster and Lever, 
2009). Turning to the average edge degree parameter ( � ), we observe the following pre-
liminary indications that suggest how to choose the Laplacian as a function of � . There 
we see on the large � dataset (chess and mushroom) that all tv methods out perform 
star and clique methods of our p-Laplacian whereas for the other smaller � datasets all 
star and clique methods outperform all tv methods. We have provided some guidance 
on the choice of Laplacian and the range of p based on the density � and average edge 
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degree � of the graph. For more detailed experimental results and further discussion, see 
Appendix 12.

We further observe a different behavior than the semi-supervised learning in  (Alam-
gir and Luxburg, 2011; Slepcev and Thorpe, 2019) using the same energy Eq. (8) in the 
standard graph setting. These works deal with the case of semi-supervised learning using 
p-Laplacians of a graph with an asymptotically large number of vertices. In this case, the 
problem does not degenerate into the trivial one when p is large, while the problem does so 
when p is small. However, from these experimental results, we observed a different behav-
ior; small p also works when � is small, as we discussed. This might be because there is a 
structural difference in the use of the p-Laplacian between semi-supervised learning and 
unsupervised learning.

8  Conclusion

This work has considered hypergraph spectral clustering. We have proposed a general frame-
work for hypergraph p-Laplacian and provided theoretical results for our p-Laplacian. We also 
have proposed a convergent hypergraph partitioning algorithm with respect to our abstract 
class of p-Laplacian exploiting theoretical results. Our experiment has shown that our algo-
rithm outperforms the existing spectral clustering algorithms for hypergraph Laplacians. Also, 
we have shown practical guidance on the choice of p-Laplacian.

There are several future directions. A fruitful direction would be to explore if our p-Lapla-
cian can converge to the continuous p-Laplace operator in the limit of infinite data, similarly 
to the graph case (Belkin and Niyogi, 2003) and the hypergraph case (Saito, 2022). Moreo-
ver, similarly to the previous studies (Hein et al., 2013; Saito et al., 2018), semi-supervised 
learning using Sp as a regularizer would be valuable for a future study. Furthermore, while we 
conduct our experiment on a real dataset, it would be interesting to conceive an illustrative 
toy dataset where some hypergraph Laplacian works better than the others or where some p 
works while p = 2 does not. It would also be valuable to study multi-class clustering for arbi-
trary p using higher-order eigenvectors similarly to the standard graph 2-Laplacian case (von 
Luxburg, 2007), as opposed to the methods using recursive one-vs-rest two-class partition-
ing (Bühler and Hein, 2009; Hein et al., 2013). However, unlike the 2-Laplacian matrix, where 
those can be easily obtained, it would be difficult to obtain the third or higher p-eigenpairs 
of p-Laplacian. The reason is that while we know the algebraic identification for the second 
p-eigenpair (Eq. (19)), there have not been such identifications for the higher eigenpairs both 
in the discrete and continuous domain (Lindqvist, 2008).

Appendix

Discussion on the conditions of definition 1

In this section, we discuss the conditions of the operator ∇ and the function c(u, v, e,�) 
by drawing examples. We use the examples listed in Table 2, which is mainly discussed in 
Sect. 3.4.

The first condition
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forces the operator ∇ to be homogeneous or absolute homogeneous. For the examples in 
Table 2, this condition for cliques and star is also obviously satisfied since the functions c 
for cliques and star are independent of � . For the total variation, we obtain

which therefore satisfies the condition Eq. (23). For sub, we compute

and therefore this satisfies the condition.
Secondly, we discuss the first condition, which is

The condition Eq. (26) wants the summation of the function over all the pairs of vertices 
at an edge e to be independent of � . For the examples in Table 2, this condition for cliques 
and star is satisfied since the functions c for cliques and star are independent of � . For the 
total variation, the function c depends on � . However, since the function c for total varia-
tion can be written as

then the summation is

Therefore, the summation of c(u, v, e,�) over u, v is independent of � although c(u, v, e,�) 
is dependent on � . To see sub, we observe that

(23)∇(��) = �∇� or ∇(��) = |�|∇�

(24)

c(u, v, e, ��) =

{
1 ((u, v) = argmaxu,v

|||�
�(u)

�(u)
− �

�(v)

�(v)

|||)
0 (otherwise)

=

{
1 ((u, v) = argmaxu,v|�|

|||
�(u)

�(u)
−

�(v)

�(v)

|||)
0 (otherwise)

=

{
1 ((u, v) = argmaxu,v

|||
�(u)

�(u)
−

�(v)

�(v)

|||)
0 (otherwise)

= c(u, v, e,�),

(25)

(∇𝛼𝜓)(e) =
∑

u,v∈e

w
1

p (e)c
1

p (u, v, e, 𝛼𝜓)𝛼

(
𝜓(u)

𝜇1∕p(u)
−

𝜓(v)

𝜇1∕p(v)

)

=

|e|∑

i=1

𝛼F(Si)max
S⊂e

(F(S))

(
−

𝜓(ui+1)

𝜇1∕p(ui+1)
+

𝜓(ui)

𝜇1∕p(ui)

)

= −𝛼∇𝜓(e),

(26)
∑

u,v∈e

c(u, v, e,�) = c(e).

(27)c(u, v, e,�) =

{
1 ((u, v) = argmaxu,v|�(u) − �(v)|)
0 (otherwise),

(28)
∑

u,v∈e

c(u, v, e,�) = 1.

(29)
∑

u,v∈V

c(u, v, e,𝜓) =

|e|∑

i=1

max
S⊂e

(F(S))F(Si) = c(e)
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which is independent of the order of � and the particular vertices u, v.
The third condition is

which means the function c(u, v, e,�) is constant once we fix e ∈ E and one vertex in the 
edge. From this condition, we obtain

Similarly, we can prove the condition of u. This implies that the function c works as a coef-
ficient for � once we fix v and e, and c is independent of � . Note that if c is not differenti-
able, then we simply change to subdifferentiation as

For examples in Table 2, this condition is also obviously satisfied, since the functions c for 
cliques and star are independent of � . Although the function c for total variation depends 
on � , the function c is constant once we fix one vertex and one edge e. Moreover, this 
implies that the function c satisfies the condition Eq. (31).

More discussion on the p‑Laplacian definition in Sect. 3.1

Proof of propositions 4 and 5

For the convenience of the other proofs, we start our discussion from Eqs. (4) and (5). Equa-
tion (4) can be shown by

Equation (5) can be shown by the following. By differentiating Sp(�) by � at the vertex v, 
we obtain

(30)�c
1

p (u, v, e,�)∕�� ∣v∶v∈e= 0,∀e ∈ E, u ∈ e,

(31)�c
1

p (u, v, e,�)∕�� ∣u∶u∈e= 0,∀e ∈ E, v ∈ e

(32)

�

��
c

1

p (u, v, e,�)�
||||v∶v∈e

=
�

��
c

1

p (u, v, e,�)
||||v∶v∈e

� + c1∕p(u, v, e,�)

= c1∕p(u, v, e,�),∀e ∈ E, u ∈ e.

(33)�c
1

p (u, v, e,�) ∣v∶v∈e∋ 0,∀e ∈ E, u ∈ e,

(34)�c
1

p (u, v, e,�) ∣u∶u∈e∋ 0,∀e ∈ E, v ∈ e.

(35)

⟨� ,Δp�⟩H(V) = ⟨� ,−div‖∇�‖p−2∇�⟩H(V)

= ⟨∇� , ‖∇�‖p−2∇�⟩H(E)

=
�

e∈E∶v∈e

‖∇�‖p−2 (∇�)2(e)

�e�!
= ‖∇�(e)‖p

p
= Sp(�).
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By using Eq. (36), we consider the following equation.

As the summation in Eq. (37) runs over all vertices v ∈ V  , we can reconstruct all pairs of 
vertices in each edge. Therefore,

From this and Eq. (37), we obtain

From Eq. (4) and Proposition (5), we can show that

Basic properties for the definition of the hypergraph‑gradient

The following basic properties of hypergraph-gradient easily follow from the definition.

(36)

𝜕

𝜕𝜓
Sp(𝜓)

||||v
=

𝜕

𝜕𝜓

∑

e∈E

1

|e|! |(∇𝜓)(e)|p
|||||v

=
∑

e∶v∈e

p
1

|e|! |(∇𝜓)(e)|p−1 𝜕

𝜕𝜓
|∇𝜓(e)|

||||v

= p
∑

e∶v∈e

1

|e|! |(∇𝜓)(e)|p−1sgn((∇𝜓)(e))
w1∕p(e)

𝜇1∕p(v)

×

(
∑

u∈e;{v,u}⊆e

c1∕p(v, u, e,𝜓) −
∑

u∈e;{u,v}⊆e

c1∕p(u, v, e,𝜓)

)

(37)

⟨𝜓 ,
1

p

𝜕

𝜕𝜓
Sp(𝜓)⟩H(V)

=
�

v∈V

𝜓(v)
�

e∶v∈e

1

�e�! �(∇𝜓)(e)�p−1sgn(∇𝜓(e))
w1∕p(e)

𝜇1∕p(v)

×

�
�

u∈e;{v,u}⊆e

c1∕p(v, u, e,𝜓) −
�

u∈e;{u,v}⊆e

c1∕p(u, v, e,𝜓)

�

(38)

∑

v∈V

𝜓(v)
∑

e∶v∈e

sgn(∇𝜓(e))
w1∕p(e)

𝜇1∕p(v)

×

(
∑

u∈e;{v,u}⊆e

c1∕p(v, u, e,𝜓) −
∑

u∈e;{u,v}⊆e

c1∕p(u, v, e,𝜓)

)

=
∑

e

|∇𝜓(e)|

(39)

⟨� ,
1

p

�

��
Sp(�)⟩H(V) =

�

e

1

�e�! �(∇�)(e)�p

= ‖∇�‖p
p

= Sp(�)

(40)
1

p

�

��
Sp(�) = Δp�
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Proposition 15 The hypergraph-gradient has the following properties.

Also, hypergraph-gradient is not 0 except Eqs. (41) and (42).

These properties directly follow from the definition of the hypergraph-gradient.

Proof of proposition 7

By differentiating Eq. (14) by � , we can obtain the condition for critical points of Eq. (14) 
as follows;

By Definition 6, we can immediately show that � is an eigenvector of Δp . Moreover the 
eigenvalue � can be obtained by Sp(�)∕‖�‖pp . The last statement can be shown immedi-
ately by the definition.

By the definition of Rayleigh quotient, we immediately have the following property.

Corollary 16 We have Rp(��) = Rp(�) for � ∈ ℝ, � ≠ 0.

For the first p-eigenvector, we compute p-Laplacian by differentiating by � , that is

Then, we obtain

From Eq. (43), the derivative of hypergraph-gradient is independent of � . Therefore, from 
Eq. (46), the p-Laplacian Δp� equals to 0 if ∇�(e) = 0,∀e ∈ E . This means that Δp� = 0 . 
Also, ΔpcM

1∕p� = 0.

(41)(∇cM1∕p)�(e) = �,∀e ∈ E,

(42)(∇�)(e) = �,∀e ∈ E,

(43)�2∇�∕�2�
|||v = 0,∀e ∈ E

(44)Δp� −
Sp(�)

‖�‖pp
�p(�) = 0

(45)pΔp� =
�

��
Sp.

(46)

�

��
pΔp� =

�

��
Sp(�)

=
�

��
‖∇�(e)‖p

p

=
�

��

��

e

�∇�)(e)�p
�e�!

�

= p
�

e

�∇�(e)�p−1
�e�! ×

1

�e�!
�

��
∇�(e)
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As the p-eigenvalue is equal or greater than 0 from Proposition 7, the first p-eigenvector 
is M1∕p� , associated with the first p-eigenvalue 0.

The following corollary follows.

Corollary 17 �

��
Δp�|�=cM1∕p� = 0.

Proof Similarly to the proof of p-eigenvector, we compute

As the second derivative of hypergraph-gradient is 0 from Eq.(43), Δp� = 0 if 
∇�(e) = 0,∀e ∈ E .   ◻

Properties of p‑Eigenpair of p‑Laplacian

In this section, we remark that interesting properties of p-Eigenpair of p-Laplacian.
We firstly remark that the definition of p-eigenpair (Definition 6) leads to existing an infi-

nite number of p-eigenpairs, similarly to the continuous case (Binding and Rynne, 2008).
We move our discussion to a property of multiplicity of first p-eigenvalues.

Proposition 18 Suppose that hypergraph G is a union of k independent and connected 
hypergraphs Gi ( i = 1,… , k ), i.e, G =

⋃k

i=1
Gi where Gj ∩ Gl = ∅, for, j ≠ l . Then, k 

equals to the multiplicity of eigenvalue 0 of Δp.

The following corollary follows from this proposition.

Corollary 19 The second p-eigenvalue of Δp is greater than 0, if a hypergraph G is 
connected.

To analyze critical point of Eq.  (14), Index theory  (Struwe, 2000) is useful. We use 
Krasnoselskii genus  (Struwe, 2000) � for a set A, that is defined as �(A)∶=0 if A = � , 
�(A)∶= inf{k ∈ �+ ∣ ∃ odd continuous h ∶ A → �k�{0} , and �∶=∞ when no such h exists 
∀j ∈ �+ . In this context, this genus is a generalized concept of dimension of A. Since 
Rp(��) = Rp(�) by Corollary  16, to consider the p-eigenpair of p-Laplacian, we can 
limit our interest to Sp∶={� ∣ ‖�‖pp = 1} . From the results in discrete case (Chang, 2016; 
Tudisco and Hein, 2016; Li and Milenkovic, 2018) and continuous case (Lindqvist, 2008), 
we obtain the following proposition, which is a generalized Rayleigh min-max theorem.

(47)

p
�

��
Δp� =

�2

�2�
Sp(�)

=
�

��
p
∑

e

|∇�(e)|p−1
|e|! ×

1

|e|!
�

��
∇�(e)

= p(p − 1)
∑

e

|∇�(e)|p−2
|e|! ×

(
1

|e|!
�

��
∇�(e)

)2

+ p
∑

e

|∇�(e)|p−1
|e|! ×

1

|e|!
�2

�2�
∇�(e)
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Proposition 20 Consider the set of subsets 𝜁k(Sp) = {A ⊂ Sp ∣ A = −A, closed , 𝛾(A) ≥ k} . 
The sequence defined as

gives a critical point of Rp(�) , whose corresponding � and �k constitute a p-eigenpair of 
Δp.

Similarly to the Rayleigh min max theorem, this proposition yields the sequence 
of p-eigenpairs. Moreover, for a standard Laplacian of standard graph, this reduces into 
Rayleigh min-max theorem. However, similarly to the continuous p-Laplacian the-
ory (Lindqvist, 2008), we do not know if this sequence yields exhaustive p-eigenpairs.

Proof of proposition 18

As we observe Rp(�) ≥ 0 from the definition, we can show that all the p-eigenvalues are 
non-negative. We denote by �Gi

 a vector whose size of vector is the number of vertices of G 
and fill 1 to the elements corresponds to Gi and else 0. By using this notation, we show that 
Δp(cM

−1∕p�Gi
) = 0 for all i = 1,… , k , which shows that those vectors are p-eigenvector 

and corresponding p-eigenvalues are 0. From the definition of p-Laplacian, those are the 
only p-eigenvectors whose p-eigenvalues are 0. The above shows that the multiplicity of 
p-eigenvalues of 0 equals to the number of independent components.

Proof of proposition 20

We start the proof by introducing a classical notion of locally Lipschitz.
Definition 21 A function g ∶ Sp → ℝ is locally Lipschitz when for each x ∈ Sp , 
there exists a neighborhood Nx of x and a constant C depending on Nx such that 
�g(x�) − g(x)� ≤ C‖x� − x‖2∀x� ∈ Sp ∩Nx.

Here we obtain the following observation.

Lemma 22 Rp(�)|Sp
 is locally Lipschitz.

Proof 
From Eq.(49), if we choose Nx as the space where ‖𝜓 � − 𝜓‖p < ‖𝜓 � − 𝜓‖2 , e.g., 
|𝜓 � − 𝜓| < 1 , then we can conclude Rp(�)|Sp

 is locally Lipschitz.   ◻

(48)𝜆k = min
A⊂𝜁k(S

n
p
)
max
𝜓∈A

Rp(𝜓)

(49)

�����

Sp(�
�)

‖� �‖pp
−

Sp(�)

‖�‖pp

�����
=
�����

Sp(�
�)‖�‖pp − Sp(�)‖� �‖pp

‖� �‖pp‖�‖pp

�����

≤ sup� �∈Nx∩Sp
Sp(�

�)

inf� �∈Nx∩Sp
‖� �‖2pp

∣ ‖� �‖p
p
− ‖�‖p

p
�

≤ sup� �∈Nx∩Sp
Sp(�

�)

inf� �∈Nx∩Sp
‖� �‖2pp

( sup
� �∈Nx∩Sp

p‖� �‖p
p
)�‖� �‖p − ‖�‖p�

≤ sup� �∈Nx∩Sp
Sp(�

�)

inf� �∈Nx∩Sp
‖� �‖2pp

( sup
� �∈Nx∩Sp

p‖� �‖p
p
)‖� � − �‖p
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Next, we introduce the classical result of Lunsternik–Schinirelman theorem.

Theorem 23 [Struwe (2000)] Suppose function g ∶ Sp → ℝ is a locally Lipschitz, then

yields a sequence of critical values of g.

By applying Theorem 23 to Rp , we can show that the sequence in Eq. (20) yields a criti-
cal values of Rp , which are p-eigenvalues of p-Laplacian.

Discussion on table 2

We discuss how Table. 2 connects to the existing Laplacians, by splitting the discussion by 
clique, star, and total variation Laplacians.

We note that all the functions in Table 2 satisfies the conditions of Definition 1, which is 
discussed in Sect. A.

Clique Laplacians

The hypergraph-gradient for edge-normalized Laplacian is given as

and edge-unnormalized Laplacian can be written as

To show that the function c for clique can induce existing clique Laplacian, we only con-
sider when p = 2 , and �(v) = d(v) . The following proposition directly shows that Saito’s 
2-Laplacian is our 2-Laplacian for clique setting.

Proposition 24 Let e be e = { v1, … , v|e| } . Then if we choose hypergraph-gradient operator 
∇ ∶ H(V) → H(E) for Saito et al. (2018) as

The induced 2-Laplacian correspond to 2-Laplacians proposed by Saito et al. (2018). If we 
choose the same hypergraph-gradient but omitted denominator 

√
�e� − 1 , then the induced 

2-Laplacian corresponds to Rodriguez’s Laplacian.

This also shows that Rodriguez 2-Laplacian is our edge-unnormalized clique 
2-Laplacian.

(50)𝜆k = min
A⊂𝜁k(S

n
p
)
max
x∈A

g(x)

(51)(∇�)(e) =
w1∕p(e)

(|e| − 1)1∕p

|e|∑

i=1

(
�(vi)

�1∕p(vi)
−

�(v1)

�1∕p(v1)

)
,

(52)(∇�)(e) = w1∕p(e)

|e|∑

i=1

(
�(vi)

�1∕p(vi)
−

�(v1)

�1∕p(v1)

)
.

(53)(∇�)(e)∶=

√
w(e)

√
�e� − 1

�e��

i=1

�
�(vi)√
d(vi)

−
�(v1)√
d(v1)

�
.
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The 2-Laplacians L are given as

where for an edge-normalized setting W is a matrix whose element is w(u, v) = 
∑

uv∈e w(e) ∕ 
(|e| − 1) and D = Dv and for an edge-unnormalized setting w(u, v) =

∑
u,v∈e w(e) and D is a 

diagonal matrix whose element d(v, v) =
∑

v∈e w(e).
In Saito et al. (2018), they used the different energy setup for p-Laplacian, as discussed 

in Sect.  6. However, when p = 2 , Saito’s 2-Laplacian matches our clique normalized 
2-Laplacian. Actually, in the case of p = 2 , we obtain

Therefore, given Saito et al. (2018) has the same structure of different geometry, we can 
directly apply their proof to our setting in the case of p = 2.

Star Laplacian

The given hypergraph-gradient for star Laplacian can be written as

Here, we show that this hypergraph 2-Laplacian also can be seen from the same frame-
work. Similarly to the clique Laplacians, the following proposition follows.

Proposition 25 Let e be {v1,… , v|e|} = e . Then if we choose hypergraph-gradient operator 
∇ ∶ H(V) → H(E) for as

this induces star expansion 2-Laplacian.

We can compute 2-Laplacian in the same manner as Saito et al. (2018), with a slight 
change of denominator of hypergraph-gradient from 

√
�e� − 1 to 

√
�e� . The 2-Laplacian 

induced from the hypergraph-gradient Eq. (57) can be computed as

where Ws is a matrix whose element ws(u, v) =
∑

u,v∈e w(e)∕�e� . We can show that Eq. (58) 
satisfies the condition of Laplacian, in the same manner as the proof for Proposition 9 in 
Saito et al. (2018).

(54)L = I − D−1∕2WD−1∕2,

(55)

SS
2
� =

∑

v∈V

∑

e∈E∶e[1]=v

1

|e|! |(∇�)(e)|2

=
∑

e∈E

1

|e|! |(∇�)(e)|2

= S2(�)

(56)(∇�)(e) =
w1∕p(e)

(|e|)1∕p
|e|∑

i=1

(
�(vi)

�1∕p(vi)
−

�(v1)

�1∕p(v1)

)
.

(57)(∇�)(e)∶=

√
w(e)

√
�e�

�e��

i=1

�
�(vi)√
d(vi)

−
�(v1)√
d(v1)

�
,

(58)L = I − D−1∕2
v

WsD
−1∕2
v

,
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Total variation and submodular Laplacian

The hypergraph-gradient for total variation is written as

We show that total variation method in Hein et al. (2013) can be seen as a special case of 
our framework.

Proposition 26 Let �(v) = 1,∀v ∈ V  . The Total Variation Regularizer defined as

is p-Dirichlet Sum, if we choose hypergraph-gradient as Eq. (59).

This is obvious from the definition of p-Dirichlet energy by Eq.  (8), which is called 
regularizer in Hein et al. (2013).

The hypergraph-gradient for sub is for

By definition, the energy can be written as

which is Eq. (15).

Proof of theorem 9

Most of the proof can be done in the similar manner as graph (Tudisco and Hein, 2016; 
Li and Milenkovic, 2018), while we need to change from the the graph p-Laplacian 
in (Tudisco and Hein, 2016) and hypergraph p-Laplacian in (Li and Milenkovic, 2018) to 
our framework p-Laplacian. We firstly denote by �|A(v) for a set A ⊂ V  as

We start to prove the following lemma to prove Theorem 9.

Lemma 27 For a set A ⊂ V ,

Proof Since hypergraph-gradient is a first degree polynomial of � from Definition 2, for 
cv ∈ ℝ we can write hypergraph-gradient as

(59)(∇�)(e) = w1∕p(e)max
v,u∈e

(
�(u)

�1∕p(u)
−

�(v)

�1∕p(v)

)
.

(60)Sp(�) = w(e)

(
max
u,v∈e

||||
�(v)

�1∕p(v)
−

�(u)

�1∕p(u)

||||

)p

(61)∇𝜓(e) = (w(e)max
S⊂e

(F(S)))1∕p
|e|∑

i=1

F(Si)

(
𝜓(ui+1)

𝜇1∕p(ui+1)
−

𝜓(ui)

𝜇1∕p(ui)

)
.

(62)Sp(𝜓) =
∑

e∈E

w(e)max
S⊂e

(F(S))

( |e|∑

i=1

F(Si)

(
𝜓(ui+1)

𝜇1∕p(ui+1)
−

𝜓(ui)

𝜇1∕p(ui)

))p

,

(63)�|A(v) =
{

�(v) v ∈ A

0 v ∉ A

(64)
⟨

�

��
∇�(e),�|A

⟩
= ∇�|A(e).
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By Eq. (65),

which ends the proof.   ◻

We move to prove the following lemma.
Lemma 28 Denote �,� be a p-eigenpair of p-Laplacian Δp . Let A1(�),… ,Am(�) is a 
nodal domains induced from � ∈ H(V) , and � ′ be the vector � � ∈ F(�) , where F(�) is a 
nodal space induced from � . Then, S(� �) ≤ �‖� �‖pp

Proof We consider the vector f =
∑m

i=1
�i��Ai

 , where �i is a constant. From the definition 
of nodal domains, each edge e intersects at most two nodal domains with different signs. 
Therefore, �|e∩Ai

= �|e for any e ∈ E and for any nodal domain Ai , and �|e∩Ai
= sgn(�i)y|e 

for any e ∈ E and for any nodal domain Ai . We divide edges into two classes according to 
the number of nodal domains intersected by each edge as follows.

 Note that E1 ∪ E2 = E . Then, since ∇�(e) = ∇�|Ai
(e) if Ai ∩ e = � and ∇�(e) = 0 

for those i such that Ai ∩ e = � and simpler version of Hölder’s inequality 
(
∑n

i=1
�xi�)p ≤ np−1

∑n

i=1
�xi�p , we have

Moreover, we have

(65)∇�(e) =
∑

v

cv�(v).

(66)
⟨

�

��
∇�(e),�|A

⟩
=
∑

v

cv,��|A(v) = ∇�A(e),

(67)E1 = {e ∣∶ |{e ∩ Ai}| ≤ 1}

(68)E2 = {e ∣∶ |{e ∩ Ai}| = 2}

(69)

Sp(f ) =
∑

e∈E

|∇f (e)|p

=
∑

e∈E1

∑

i

|�i|p|∇�|Ai
(e)||∇�(e)|p−1 +

∑

e∈E2

(
∑

i

|�||∇�|Ai
(e)|

)p

(70)

�‖f‖p
p
=
�

i

��i�p�‖��Ai
‖p
p

=
�

i

��i�p⟨��Ai
,Δp�⟩H(V)

=
�

i

��i�p
�

v

��Ai
(v)Δp�(v)

=
�

i

��i�p
�

v

��Ai
(v)

�

e∶v∈e

1

�e�! �∇�(e)�p−1 �

��
∇�(e)

=
�

i

��i�p
�

v

�

e∶v∈e

1

�e�! �∇�(e)�p−1 �

��
∇�(e)��Ai

(v)

=
�

i

��i�p
�

e

∇��Ai
(e)�∇�(e)�p−1
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From Eqs. (69) and (70), we have

The last equality follows from Lemma 3.7 in Tudisco and Hein (2016).   ◻

Now we prove Theorem 9. Suppose that �k has multiplicity r and associated eigenvector 
� . As functions �|A1

,… ,�|Am
 are linear independent of the definition of a nodal domain, 

�(F ∩ Sp) ≤ m . From Lemma  28, ∀� � ∈ F ∩ Sp we have Rp(�
�) ≤ Rp(�) = �k . Also, 

F ∩ Sp ∈ Fm(Sp) . Hence,

From Eq. (72) �m ≥ �k and m ≥ k + r − 1 . This concludes the proof.

Proof of theorem 10

We begin our discussion by the following lemma.

Lemma 29 Let A = Span(�V1
… , �Vk

) . Choose a vector � ∈ A ∩ Sp and suppose that it 
can be written as ‖�‖pp = 1 and � =

∑
i �iM

1∕p�Vi
 . Then,

Proof As A is a k-way partition, Vi ∩ Vj = � . Therefore, we obtain

   ◻

Firstly, we prove the upper bound of the inequality. Without loss of generality, we 
limit our interest to ‖�‖pp = 1 . If we set � =

∑
i �iM

1∕p�Vi
 , then we obtain

(71)

Sp(f ) − �‖f‖pp =
∑

e∈E2

((

∑

i
|�||∇�|Ai

(e)|

)p

−

(

∑

i
|�i|

p
∑

e
∇�|Ai

(e)|∇�(e)|p−1
))

=
∑

e∈E2

(

|�i1 |∇�|Ai1
(e) + |�i2 |∇�|Ai2

(e)
)p

+
(

|�i1 |
p∇�|Ai1

(e) + |�i2 |
p∇�|Ai2

(e)
)

×
(

∇�|Ai1
+ ∇�|Ai2

)

≥ 0.

(72)�m = min
A∈Fm(Sp)

max
� �∈A

Rp(�
�) ≤ max

�∈F∩Sp

Rp(�
�) ≤ �k.

(73)
∑

i

|�i|pvol(Vi) = 1.

(74)

1 = ‖�‖p
p

=
�

i

‖�iM1∕p�Vi
‖p
p

=
�

i

��i�pvol(Vi)
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From �∇M1∕p�Vi
�pp ≤ ∑

e∈ViVi
c(e)w(e) = �vol(Vi,Vi) and Lemma 29, Eq. (75) can be tight-

ened as

Next, we prove the lower bound. The proof of the lower bound depends on the following lemma.

Lemma 30 For any vectors � ∈ H(V) , and p ≥ 1 , there exists � ≥ 0 such that 
Θ(x, 𝜃) = {u ∶ 𝜓(u) > 𝜃} satisfies

where �∶=maxv d(v)∕�(v).

Proof We denote by �p element-wise p-th power. Then, we obtain

(75)

Rp(�) =
�

e

‖∇�‖p
p

=
�

e

�

i

�
p

i
‖∇(M1∕p�Vi

)‖p
p

≤ �

e

min(k, �e�)p−1
�

i

���p‖∇(M1∕p�Vi
)‖p

p

≤ min(max �e�, k)
�

i

���p
�

e

‖∇(M1∕p�Vi
)‖p

p

(76)

Rp(�) ≤ min(max �e�, k)
�

i

���p�vol(Vi,Vi)

≤ min(max �e�, k)
∑

i ���p�vol(Vi,Vi)∑
i ���pvol(Vi)

≤ min(max �e�, k)hk.

(77)Rp(M
1∕p�) ≥ (�)p−1

(
c(V)

p

)p

,

(78)

S1(M�p) =
∑

‖∇(M�p)‖

=
∑

e

∑

u,v∈e
w(e)c(u, v, e,�)|�p(u) − �p(v)|

≤
∑

e

∑

u,v
w(e)pc(u, v, e,�)|�(u) − �(v)|

×max (�(u),�(v))p−1

≤ p

((

∑

e

∑

u,v
w(e)pc(u, v, e,�)|�(u) − �(v)|

)p) 1
p

×

(

∑

e

∑

u,v∈e
max (�(u),�(v))p

)
p−1
p

≤ pS
1
p
p (M1∕p�)

(

∑

v
dv�p(v)

)
p−1
p

≤ p�1−1∕pR
1
p
p (�)‖M1∕p�‖

p−1
p
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Moreover, we get

From Eq.(79), the left hand side of Eq. (77) can be rewritten as

Hence, the following inequality holds for the set Θ∗ = {v ∶ 𝜓p(v) > 𝜃∗} where �∗ is the 
minimizer.

This concludes Lemma 30.   ◻

Suppose �k has a corresponding eigenvector � that induces the strong nodal domains 
A1,A2,… ,Am . From Lemma 28, we have � ≤ Rp(�

�∕����
) . Moreover, from Lemma 30, 

for any i(i = 1,… ,m) , there exists a set Bi ⊂ Ai such that

Therefore,

(79)

S1(M𝜓p) =
∑

e∈E

∑

u,v∈e

w(e)c(u, v, e,𝜓)|𝜓p(u) − 𝜓p(v)|

=
∑

e∈E

∑

u,v∈e;𝜓p(u)−𝜓p(v)>0

w(e)c(u, v, e,𝜓)∫
𝜓(u)

𝜓(v)

d𝜃

= ∫
∞

0

∑

e∈E

w(e)
∑

u,v∈e∶𝜓p(u)−𝜓p(v)>𝜃

c(u, v, e,𝜓)d𝜃.

(80)

S1(M𝜓p)

‖M𝜓‖pp

=
∫ ∞

0

∑
e∈E

∑
u,v∈e;𝜓p(u)−𝜓p(v)>𝜃 w(e)c(u, v, e,𝜓)d𝜃

∫ ∞

0

∑
𝜓p(v)>𝜃 𝜇(v ∶ 𝜓p(v) > 𝜃)d𝜃

≥ inf
𝜃>0

∑
e∈E w(e)

∑
u,v∈e;𝜓p(u)−𝜓p(v)>𝜃 c(u, v, e,𝜓)

𝜇(v ∶ 𝜓p(v) > 𝜃)

= inf
𝜃>0

𝜕vol({v ∶ 𝜓p(v) > 𝜃}, {v ∶ 𝜓p(v) > 𝜃})

vol({v ∶ 𝜓p(v) > 𝜃})

= inf
𝜃>0

C({v ∶ 𝜓p(v) > 𝜃})

(81)

Rp(M
1∕p�) =

Sp(M
1∕p�)

‖M1∕p�‖pp

≥
�

S1(M�p)

‖M1∕p�‖pp
1

pp�p−1

�

=

�
1

�

�p−1�
c(Θ∗)

p

�p

(82)Rp(M
1∕p���

) ≤
(
1

�

)p−1(
c(Bi))

p

)p
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Proof of corollary 11

Let us start with the following lemma.

Lemma 31 Let � ∈ H(V) be orthogonal to � . Then there is � � ∈ H(V) and ∀v ∈ V� �(v) ≥ 0 
with at most |V|∕2 non-zero entries such that

Moreover, ∀t satisfying 0 < t ≤ maxv 𝜓
�(v) , the set B = {v ∶ � �(v) ≥ t} is one of the set 

obtained by � , such that ({v ∶ 𝜓(v) ≥ t}, {v ∶ 𝜓(v) < t}) minimizing Cheeger cut.

Proof Firstly, we observe that

since Sp(M
1∕p(� + c�)) = Sp(M

1∕p�) and 
‖M1∕p(� + c�)‖ = ‖M1∕p(�)‖ + ‖cM1∕p�‖ ≥ ‖M1∕p�‖.

Let m be the median value of � , and set �m∶=� − m� . Then R(𝜓m) < R(𝜓) , and median 
of �m is zero, which means �m has at most |V|∕2 positive entities and at most |V|∕2 nega-
tive entities. We decompose �m as follows;

where �m+(v) = �m(v) if �m(v) is positive and otherwise set 0, and �m−(v) = −�m(v) if 
�m(v) is negative and otherwise set 0. We remark that �m+ and �m− are non-negative, 
orthogonal to each other, and have at most |V|∕2 non-zero entities. The cut defined by the set 
{v ∶ �m+ ≥ t},∀t is one of the cut obtained by � , such that ({v ∶ 𝜓(v) ≥ t}, {v ∶ 𝜓(v) < t}) 
minimizing Cheeger cut, since we can obtain the same cut by considering

Similarly, cut defined by the set {v ∶ �m− ≥ t},∀t is one of the cut obtained by � , such that 
({v ∶ 𝜓(v) ≥ t}, {v ∶ 𝜓(v) < t}) minimizing Cheeger cut.

We move on to show that at least one of psim+ or psim− has Rayleigh quotient equal to or 
smaller than Rayleigh quotient of �m , by showing the following

(83)

�k ≥ Rp(M
1∕p���

)

≥ max
i

(
1

�

)p−1(
c(Bi))

p

)p

≥ min
Bi

max
i

(
1

�

)p−1(
c(Bi))

p

)p

≥
(
1

�

)p−1(
hm

p

)p

(84)Rp(M
1∕p� �) ≤ Rp(M

1∕p�).

(85)R(M1∕p(� + c�)) ≥ R(�),

(86)�m = �m+ − �m−,

(87)({v ∶ 𝜓(v) ≥ t + m}, {v ∶ 𝜓(v) < t + m}).
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This concludes the proof.   ◻

By combining lemma 30 and lemma 31, we can say a stronger statement than Corollary 11.

Corollary 32 Let � ∈ H(V) be orthogonal to M1∕p� , and let (B,B) be the cut found by � , 
such that ({v ∶ 𝜓(v) ≥ t}, {v ∶ 𝜓(v) < t}) minimizing Cheeger cut. Then

This concludes the proof of Corollary 11.

Proof of theorem 13

By definition, for all v ∈ V

where �� and �� are eigenvalues associated with � and � , respectively. Then, for all v ∈ V  
we obtain

By summing up over all v ∈ V  and taking difference of both side of Eqs. (92) and (93), we 
compute

By applying Taylor expansion at aΔp�
M1∕p� to Δp� , at aΔp�

M1∕p� to Δp� at a�(�) to �p(�) , 
and at a�(�) to �p(�) in right hand side of Eq. (94), we obtain

(88)

Rp(M
1∕p�m) =

Sp(M
1∕p�m)

‖M1∕p�m‖p

≥ Sp(M
1∕p�m+) + Sp(M

1∕p�m−)

‖M1∕p�m+‖p + ‖M1∕p�m−‖p

=
Rp(M

1∕p�m+)‖M1∕p�m+‖ + Rp(M
1∕p�m−)‖M1∕p�m−‖

‖M1∕p�m+‖p + ‖M1∕p�m−‖p

≥ min(Rp(M
1∕p�m+),Rp(M

1∕p�m−))

(89)Rp(M
1∕p�) ≥ (�)p−1

(
c(B)

p

)p

(90)Δp�(v) = ���p(�(v))

(91)Δp�(v) = ���p(�(v)),

(92)Δp�(v)�p(�(v)) = ���p(�(v))�p(�(v))

(93)Δp�(v)�p(�(v)) = ���p(�(v))�p(�(v)).

(94)

(�� − ��)
∑

v∈V

�p(�(v))�p(�(v))

=
∑

v∈V

(Δp�(v)�p(�) − Δp�(v)�p(�(v)))
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By Proposition 7 and Corollary 17, Eq.  (95) is

which concludes the proof.

Proof of theorem 14

Before we start a proof, let us motivate the discussion by considering p = 2 . Let �1 be 
a first eigenvector either M1∕p� , then ⟨�1,�2⟩ = 0 for the second eigenvector �2 , and we 
observe

Using this equation, the Rayleigh quotient to get the second eigenvector �2 can be written 
as

This inspires Eq. 19.
Let us start our proof by proving �2 ≥ infRp(�). Let �2 be a p-eigenvec-

tor corresponding to the second p-eigenvalue �2 . As 
∑

v 𝜉p(𝜓2(v)) = �⊤𝛿𝜓2 = 0 , 
the norm ‖�2 − c�‖ is convex in c is minimized when c = 0 . Moreover, 
�2 = Rp(�2) = Sp(�2)∕‖�2‖

p
p = Sp(�2)∕minc ‖�2 − c‖pp = R(2)

p
(�2) . Hence, 

�2 ≥ infR(2)
p
(�2).

Second, we prove �2 ≤ infRp(�). From the definition of R(2)
p

 , we can easily check 
that R(2)

p
(a� + b) = R(2)

p
(�) . Let �∗ be �∗ = argminR(2)

p
(�) , and consider the space 

A = {(a�∗ + b)} . As �∗ ≠ c� , �(A ∩ Sp) = 2 . From Proposition 7, we obtain

(95)

(�� − ��)
∑

v∈V

�p(�(v))�p(�(v)) =

∑

v∈V

(Δp(aΔp�
M1∕p�)(v)

+ Δ
�

p
(aΔp�

M1∕p�)(v)(�(v) − aΔp�
�1∕p(v)) + o2,Δp,�

)

× (�p(a�(�)) + ��
p
(a�(�))(�(v) − a�p(�)) + o2,�p(�))

−
∑

v∈V

(Δp(aΔp�
M1∕p�)(v)

+ Δ
�

p
(aΔp�

M1∕p�)(v)(�(v) − cΔp�
) + o2,Δp�

)

× (�p(a�(�)) + ��
p
(a�(�))(�(v) − a�p(�)) + o2,�p(�))

(�� − ��)
∑

v∈V

�p(�(v))�p(�(v))

= o2,

‖�2‖22 = ‖�2 − (⟨�1,�2⟩∕�V�)�1‖22 = min
�∈ℝ

‖�2 − ��1‖22

(96)�2 = argmin�∈H(V)

S2(�)

min� ‖� − ��1‖22
.
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As we have �2 ≥ infRp(�) and �2 ≤ infRp(�) , we obtain �2 = Rp(�).

Since the global minimum is �2 , then

(97)

�2 ≤ max
�∈A∩Sp

Sp(�)

= max
a,b

Sp(a�
∗ + b)

‖a�∗ + b‖pp

= max
a,b

Sp(a�
∗)

‖a�∗ + b‖pp

= max
a

Sp(a�
∗)

minb ‖a�∗ + b‖pp
= R(2)

p
(�∗)

Table 5  The detailed results of hypergraph partitioning for various p 

best p = 1.1 p = 1.5 p = 2 p = 2.5 p = 3.0

mushroom clique e-n 0.1188 ( p = 1.1) 0.1188 0.4719 0.4791 0.4796 0.4796
clique e-un 0.1211 ( p = 1.1) 0.1211 0.1967 0.1460 0.4793 0.4788
star 0.1113 ( p = 1.1) 0.1113 0.1278 0.2189 0.4796 0.4791
tv v-un 0.1083 ( p = 1.1) 0.1083 0.4796 0.4796 0.4796 0.4798
tv v-n 0.1083 ( p = 1.1) 0.1083 0.4798 0.4796 0.4446 0.4796

cancer clique e-n 0.0243 ( p = 1.7) 0.0272 0.0253 0.0286 0.1288 0.1531
clique e-un 0.0358 ( p = 2.2) 0.0801 0.0930 0.2117 0.3462 0.3433
star 0.0286 ( p = 1.1) 0.0286 0.0286 0.0401 0.3433 0.3448
tv v-un 0.1960 ( p = 1.1) 0.1960 0.2632 0.2546 0.3419 0.3433
tv v-n 0.2489 ( p = 1.6) 0.4612 0.3090 0.2661 0.3433 0.3462

chess clique e-n 0.4765 ( p = 2.1) 0.4768 0.4981 0.4765 0.4778 0.4781
clique e-un 0.4768 (p = 2.2) 0.4950 0.4950 0.4772 0.4775 0.4775
star 0.4759 ( p = 1.3) 0.4865 0.4781 0.4781 0.4781 0.4778
tv v-un 0.4659 ( p = 2.6) 0.4966 0.4740 0.4775 0.4778 0.4784
tv v-n 0.4643 ( p = 2.7) 0.4912 0.4734 0.4778 0.4775 0.4671

congress clique e-n 0.1172 ( p = 1.5) 0.1264 0.1172 0.1241 0.1448 0.3287
clique e-un 0.1195 ( p = 1.5) 0.1218 0.1287 0.1379 0.1241 0.3885
star 0.1195 ( p = 2.3) 0.1287 0.1310 0.1333 0.1241 0.1333
tv v-un 0.1862 ( p = 1.2) 0.1839 0.2598 0.2828 0.3218 0.3241
tv v-n 0.1839 ( p = 1.5) 0.1908 0.1839 0.2736 0.2966 0.2529

news(1,2) clique e-n 0.2390 ( p = 1.1) 0.2390 0.2587 0.2906 0.2400 0.2490
clique e-un 0.2493 ( p = 1.7) 0.2507 0.2516 0.2511 0.4330 0.4330
star 0.2411 ( p = 2.4) 0.2477 0.4324 0.2477 0.4323 0.4330
tv v-un 0.2701 ( p = 1.1) 0.2701 0.4356 0.3015 0.3016 0.3017
tv v-n 0.2672 ( p = 1.5) 0.2672 0.4334 0.3029 0.3015 0.3028

news(3,4) clique e-n 0.2146 ( p = 1.1) 0.2146 0.2167 0.2173 0.2186 0.2174
clique e-un 0.3272 ( p = 1.1) 0.3272 0.3507 0.3447 0.3481 0.3474
star 0.2162 ( p = 1.7) 0.2183 0.2356 0.2169 0.2170 0.2170
tv v-un 0.2701 ( p = 1.4) 0.4378 0.3274 0.3274 0.4305 0.4340
tv v-n 0.3275 ( p = 1.4) 0.4544 0.3274 0.3274 0.4340 0.4305
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Note that we use Sp(� + �1) = Sp(�) . Therefore, we can see �∗ = �2 + �∗�1 , where 
� = argmin�‖�2 − ��1‖

p
p.

Additional experimental results

We first mention that our experiment was run on mac mini with Intel i7 and 32GiB 
RAM. Table  5 shows the detailed results of the hypergraph partitioning experiment. 
This is a further evidence of a trade-off between Cheeger inequality and natural intui-
tion of p from Eq. (8), discussed in Sect. 7. However, the difference of the performance 
between the best p and the others varies; sometimes the contribution of p is small while 
sometimes p makes the large difference. Also, you can see the further evidence that 
E-N-VW outperfoms the other method in chess, while looking at the other datasets, 
there we see on the large � dataset (mushroom) that all TV methods out perform star 
and clique methods whereas for smaller � all star and clique methods outperform all TV 
methods.
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