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One Sentence Summary: Using single-cell genomic profiling, we characterize the epithelial and 

immune correlates of environmental enteropathy (EE). 

 

 

 



 

Abstract: Environmental enteropathy (EE) is a subclinical condition of the small intestine that is 

highly prevalent in low- and middle-income countries. It is thought to be a key contributing factor 

to childhood malnutrition, growth-stunting, and diminished oral vaccine responses. While EE has 

been shown to be the by-product of recurrent enteric infection, its full pathophysiology remains 

unclear. Here, we mapped the cellular and molecular correlates of EE by performing high-

throughput single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE in 

Lusaka, Zambia (8 HIV-negative, 3 HIV-positive), 6 adults without EE in Boston, USA, and 2 

adults in Durban, South Africa, which we complemented with published data from 3 additional 

individuals from the same clinical site. By leveraging these data to reanalyze previously-defined 

bulk-transcriptomic signatures of reduced villus height and decreased plasma LPS levels in EE, 

we found that these signatures may be driven by an increased abundance of surface mucosal cells 

– a gastric-like subset previously implicated in epithelial repair in the gastrointestinal tract. In 

addition, we determined cell subsets whose fractional abundances associate with EE severity, 

small intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with 

those from three control cohorts, we identified dysregulated WNT and MAPK signaling in the EE 

epithelium and increased pro-inflammatory cytokine gene expression in a T cell subset highly 

expressing a transcriptional signature of tissue-resident memory cells in the EE cohort. Altogether, 

our work illuminates epithelial and immune correlates of EE, and nominates cellular and molecular 

targets for intervention. 

 
 

 
 

 
 

 
 

 
 

 



Main Text: 
INTRODUCTION 
 

Environmental enteropathy (EE) is a subclinical condition of the small intestine that is driven by  

environmental enteropathogen exposure (1). Also referred to as Environmental Enteric 

Dysfunction (EED), EE impacts millions of children and adults around the world and is associated 

with stunted growth, neurocognitive impairment, reduced oral vaccine efficacy, and increased risk 

of metabolic syndrome (2–4). Water, sanitation, and hygiene (WASH) interventions for preventing 

EE have proven ineffective, and ongoing work is assessing alternative therapeutic interventions 

(5). However, development of effective treatments has been hindered by a limited understanding 

of the underlying mechanisms of EE.  

 

Pathologically, EE in the proximal small intestine is characterized by reduced villus height, greater 

crypt depth, and increased microbial translocation (1, 2, 6). However, in a study of Zambian 

children with EE and non-responsive growth stunting over time, reduced villus height was 

associated with decreased microbial translocation (7). A bulk transcriptomic study of Zambia 

children with enteropathy showed that genes differentially upregulated in biopsies with reduced 

villus height were downregulated in biopsies from participants increased microbial translocation 

(8). These studies suggest that EE is an adaptive response to potentially lethal enteropathogen 

exposure that comes at the cost of reduced absorptive capacity and impaired growth.  

 

Histological analyses of EE have revealed increased abundance of lymphocytes, reduced goblet 

cell numbers, and altered Paneth cell morphology (6). Low plasma levels of tryptophan in children 

with growth stunting (9) and the amelioration of villus blunting in Zambian adults given amino 

acid supplementation suggest that amino acid deficiency plays a role in EE (10). Bulk 

transcriptomic studies of EE duodenal biopsies have revealed increased expression of NADPH 

oxidases, chemokines, mucins, matrix metalloproteases, interferon stimulated genes, and 

antimicrobial genes including LCN2, DUOX2, and DUOXA2 (11, 12). While previous work has 

lacked the single-cell resolution required to localize these changes to specific epithelial and 

immune cell subsets, application of single-cell RNA-sequencing (scRNA-seq) could help to 

resolve comprehensively the cellular and molecular changes that underlie EE pathophysiology 

(13). 



 

Here, we applied the Seq-Well S3 platform for massively-parallel scRNA-seq (14) to characterize 

small intestinal biopsies from 11 adults from a community in Zambia where EE is known to be 

ubiquitous (15). Across these individuals, we profiled 27 biopsies spanning 3 small intestinal 

regions, HIV-positive and HIV-negative patients, and a range of EE severity scores. In addition, 

by comparing EE biopsies with those from control groups from South Africa and the USA, we 

found that EE was associated with upregulated WNT and downregulated MAPK signaling within 

the epithelium, as well as increased pro-inflammatory cytokine gene expression in a T cell subset 

highly expressing a transcriptional signature of tissue-resident memory cells. Altogether, our data 

provide insight into the epithelial and immune correlates of EE, suggesting several therapeutic 

targets for further investigation. 

 
RESULTS  

 
scRNA-seq of the proximal small intestine with and without EE 

We collected 27 small intestinal biopsies from 11 Zambian volunteers with varying levels of EE 

severity (8 HIV-negative, 3 HIV-positive) (Fig. 1A, Table S3). For all 11, we profiled the 

duodenal bulb and distal duodenum; for a subset, we also collected jejunal samples (Table S1, 

S2). Due to the widespread prevalence of EE in Zambia and a lack of existing screening methods 

to identify patients without EE, we could not obtain control biopsies from participants without EE 

in Zambia. Thus, as controls, we profiled samples from 5 adults recruited from a gastrointestinal 

unit in Durban, South Africa (2 of which we profiled and 3 for which data were publicly available) 

(16, 17) as well as two cohorts of patients in Boston, USA where EE can safely be assumed not to 

occur (Table S1, S2). We note that EE is often contextualized to health by either comparing 

intermediate EE with severe EE (8), or by comparing EE patients to control cohorts in the United 

States or the United Kingdom (6). The validity of these international comparisons is supported by 

the environmental nature of EE and the resolution of EE in Peace Corps volunteers upon 

repatriation to the United States (18).  

 

In total, we analyzed 26,556 high quality single-cell transcriptomes across 38 samples from the 

Zambian, U.S., and South African cohorts (Fig. 1B). After data pre-processing, UMAP 



visualization of the entire dataset revealed differences in cellular distribution by patient cohort, 

intestinal region, and HIV status (Fig. 1c). To identify cellular subsets, we applied an existing 

pipeline for iterative clustering of cell subsets to the Zambian and U.S. datasets (19). Next, we 

integrated this data with the South African data to account for potential batch effects (20). These 

analyses revealed that the expected major cell types were represented in almost all biopsies and 

that epithelial cells were the most abundant major cell type (Fig. 1D). Along with more standard 

QC metrics (Fig. S1-S4), this indicated consistent sample quality. In total, we identified 48 detailed 

cellular subsets that varied in abundance across samples (Fig. 1E, Fig. S1-S4, Table S4) (13, 21, 

22).  

 

Surface mucosal cells expressing DUOX2 in the EE epithelium 

When identifying cell subsets, we noticed a similarity between the marker genes of surface 

mucosal cells (a cell subset most commonly found in the distal stomach) and existing gene 

signatures of reduced villus height and decreased plasma LPS levels in EE (Fig. S5A) (8, 23). 

Relative to all other cell subsets, surface mucosal cells were significantly enriched for both gene 

signatures (p < 1015, Wilcoxon test) (Fig. 2A, B, Fig. S5B, C). In addition, the genes in these 

signatures overlapped with surface mucosal cell marker genes and three antimicrobial genes 

(DUOX2, DUOXA2, LCN2) recently identified as histological markers of EE (Fig. 2C, D) (12, 

23). Thus, our data suggest these bulk gene signatures may have been driven by an increase in 

surface mucosal cell abundance. In our data, the vast majority of surface mucosal cells came from 

duodenal bulb samples of patients with EE (Fig. S2C). In these tissues, surface mucosal cell 

fractional abundances were significantly correlated (Permutation test, p < 0.05) with those of the 

stem cycling subset and the Ent ANXA2 PTMA subset which highly expressed marker genes of 

dedifferentiating enterocytes (PTMA) (24) and wound associated epithelial cells (ANXA2) (Fig. 

2E) (25). To further examine potential relationships between these cell subsets that co-occurred 

with surface mucosal cells, we inferred differentiation trajectories for the epithelial cells in our 

dataset with PAGA (Fig. 2F) (26) The wound healing-like epithelial subsets and surface mucosal 

cells all lay in between mature enterocyte and stem cell subsets in the inferred differentiation 

hierarchy. Running the RNA velocity package Velocyto produced similar results (Fig. S5D, E) 

(27). In addition, immunohistochemical staining revealed that DUOX2 localized to the villus tip 

in blunted villi (Fig. 2G, Fig. S6). Together, these results suggest that surface mucosal cells occur 



at the villus tip in EE and are associated with the presence of intermediate wound healing-like cell 

populations. Furthermore, we observed that surface mucosal cells uniquely expressed MUC5AC–

a marker of H. pylori infection (Fig. S5A, Table S4) (28). Applying the metagenomic 

classification tool Kraken 2, we found that relative to the control cohort samples, 6 samples from 

4 participants in the EE cohort contained significantly higher levels of H. pylori mapping reads 

(Fig. S5). These samples were predominantly from the duodenal bulb (Fig. S5G). Thus, the 

presence of surface mucosal cells in EE may be associated with H. pylori infection.  

 

Cellular correlates of intestinal region, disease severity, and HIV infection in EE 

We next identified cell subsets whose fractional abundance shifted across intestinal region within 

HIV-negative EE patients (Fig. 3A). Duodenal bulb samples were enriched for surface mucosal 

cells, mucosal neck cells, and enterocytes highly expressing ANXA2, FABP1, and CD55, as well 

as three T cell subsets expressing markers of immune activation (IL17A, CXCR4, GZMA) (29, 30). 

Distal duodenal samples were enriched for enterocytes, goblet cells, and stem cells highly 

expressing OLFM4.  

 

We then mapped the correlates of histologically determined EE severity in eleven biopsies (Fig. 

3B,C;  Supplementary Methods; Table S5) (6). In the epithelium, greater severity was associated 

with lower fractional abundances of the mature enterocyte and stem OLFM4 subsets, as well as 

higher fractional abundances of immature enterocytes. In the immune compartment, greater 

severity associated with a higher abundance of two T cell subsets expressing markers associated 

with inflammation in the intestine (GZMA and CD6) (29) and one T cell subset with high 

expression of MALAT1 and the lowest median number of UMIs of all T cell subsets, which together 

suggest that this subset may represent low quality pre-apoptotic cells (Fig. S2D) (31). In line with 

past findings, plasma cells abundances decreased with EE severity (32). These results suggest that 

severe EE is associated with an intermediate-like epithelial phenotype and inflammatory 

lymphocyte subsets.  

 

Next, we sought to characterize the impact of antiretroviral-treated HIV infection on EE pathology. 

We found that HIV-positive samples displayed higher EE severity than HIV-negative samples 

(Wilcoxon test, p = 0.034) (Fig. S7A). Examining the shifts in cell subset fractional abundances 



with HIV infection, we found known features of HIV biology including decreased fractional 

abundances of CD4hi T cells  and increased fractional abundances of gd T cells highly expressing 

the HIV co-receptor CXCR4  (Fig. S7B, C) (16). In addition, within duodenal bulb samples, HIV 

pathology associated with increased fractional abundances of enterocytes highly expressing 

ANXA2, FABP1, and CD55, suggesting that HIV pathology may contribute to the presence of this 

wound healing-like subset within the duodenal bulb (Fig. S7D).  

 

Epithelial correlates of EE 

We next sought to identify features that distinguished HIV-negative EE distal duodenal samples 

from matched samples from participants in South Africa and the USA. While histology was not 

available for the South African dataset, H&E staining of a duodenal biopsy from a separate patient 

at the same clinical site revealed features of EE, including villus blunting, goblet cell depletion, 

and Paneth cell depletion, but no signs of inflammation (Fig. S8A). To investigate whether samples 

from this site displayed features of EE, we performed a pairwise comparison of the fractional 

abundances of all cell subsets between the three geographical locations in this study (Fig. S8B-D). 

Relative to the U.S. cohorts, both the Zambian and South African cohorts displayed two 

characteristic features of EE: reduced goblet cell and increased plasma cell fractional abundances 

(6). However, plasma cells and T cell subsets expressing markers of inflammation (IL17A, GZMA) 

were increased in fractional abundance in the Zambia EE cohort relative to the South African 

cohort (29), suggesting that not all features of EE were present in the South African samples. Thus, 

we took two approaches to identify the distinguishing attributes of confirmed EE in the Zambian 

cohort. First, we compared the Zambian cohort to all control cohorts. Then, we compared the 

Zambian cohort with confirmed EE to only the U.S. cohorts in case our previous analysis was 

confounded by potential features of EE in the South African cohort.  

 

Comparing the fractional abundances of epithelial cells from patients with confirmed EE with 

those from all other cohorts, we found an enrichment of stem OLFM4 cells, foveolar precursor 

cells, and enterocytes co-expressing APOA4 and ALPI in EE, as well as reduced fractional 

abundance of EEC K cells (Fig. 4A). Differential expression analysis between epithelial cells in 

EE and control cohorts revealed compartment-wide upregulation of genes (PIGR, CCL25) 

involved in antibody transport and lymphocyte recruitment, among others (Fig. 4B,C Table S6) 



(33, 34). EE epithelial cells also highly expressed CTNNB1, a key component of WNT/ß-catenin 

signaling. In agreement, PROGENy analysis suggested increased WNT signaling in all three stem 

cell subsets and decreased MAPK signaling in cycling stem cells and stem OLFM4 cells in EE 

(Fig. 4D) (35). To help corroborate and extend these findings, we immunohistochemically stained 

Zambian EE and U.S. control samples for ß-catenin. We found that ß-catenin stained at higher 

intensity in the EE epithelium (Fig. S9). In addition, tuft cells in EE highly expressed ALOX5AP 

(which is involved in inflammation via leukotriene biosynthesis (36)) and SERPINA1 (which 

encodes ɑ-1-antitrypsin (AAT), a biomarker of epithelial damage in EE (5)) (Fig. 4C). Finally, 

comparison of our data to past intestinal scRNA-seq datasets revealed no evidence for 

“colonification” of the small intestine in EE and showed limited overlap between the genes 

upregulated in EE and ulcerative colitis (UC). (Fig. S10).  

 

Immune correlates of EE 

Next, we compared cell proportions of immune cells between the Zambian cohort with confirmed 

EE and all control cohorts. This revealed that EE samples were enriched for CD8hi T cells highly 

expressing MALAT1 and gd T cells highly expressing GZMA (Fig. 5A). Consistent with previous 

findings, plasma cells were increased in EE relative to non-EE cohorts (Fig. S10C) (32). 

Conducting differential expression analyses, we found that the majority of significant gene 

expression changes in EE immune cells occurred within the T cell compartment (Fig. 5B, Fig. 

S11A-C). Out of all T cell subsets, T CD8 CD69hi cells displayed the most differentially expressed 

genes between EE and controls, including upregulation of effector-like genes (IFNG, CCL5, IL32) 

in EE and downregulation of genes (IL7R, CXCR4) promoting memory T cell formation after 

infection (37, 38) (Fig. 5C, Table S6). As CD69 is a potential marker for T cell tissue residency, 

we scored all T cells subsets on a gene signature of tissue resident memory T cells and found that  

the T CD8 CD69hi subset scored highest (adjusted p = 4.98*10-78, one sided Wilcoxon test) (Fig. 

5D) (39). Scoring all T CD8 CD69hi cells on T cell activation signatures, we found that relative to 

controls, cells in this subset from EE scored higher for signatures of cytotoxicity and cytokine 

production (Fig. 5E) (40). In agreement, immunohistochemical staining revealed more cells 

positive for Granzyme B in EE samples relative to controls (Fig. S12). Nominating putative ligand-

receptor interactions between cellular subsets using NicheNet, we found potentially increased 

IFNg signaling in the EE epithelium stemming from IFNg production by T cells, especially the T 



CD8 CD69hi cells. (Fig. S13) (41). Altogether, our data reveal immune correlates of EE that may 

contribute to pathogenesis and reduced oral vaccine efficacy. 

 

Evidence of reduced epithelial proliferation in EE relative to the U.S. cohorts 

Finally, we compared only the Zambian EE and U.S. cohorts. Differential expression analysis 

revealed that EE samples displayed compartment-wide downregulation of genes (KLF4, ATF3, 

FOS, and JUN) involved in epithelial proliferation, IL-22 signaling, and goblet cell development 

(Fig. 6A) (42–44). Consistently, the EE samples displayed lower fractional abundances of goblet 

cells and ILC3s (producers of IL-22), as well as higher fractional abundances of gd T cells 

(negative regulators of IL-22 production in mice fed a low protein diet) (Fig. S8B) (45, 46). 

Furthermore, gene set enrichment analysis (GSEA) revealed enrichment of the Reactome signature 

for response of EIF2AAK4 and GCN2 to amino acid deficiency in the epithelial cells (Fig. 6B, 

Table S8). In addition, goblet cells from patients with confirmed EE upregulated markers for lower 

crypt goblet cells suggesting that EE goblet cells have a more immature phenotype (Fig. 6C) (47). 

Furthermore, EE stem cells scored significantly lower on a gene signature of cycling human cells, 

and displayed lower PROGENY scores for the pro-proliferative EGFR, MAPK, and PI3K 

pathways (Fig. 6D-E, Table S8) (48). Upstream transcription factor activity inference with 

DoRothEA revealed reduced activation of ATF2 and ATF4 broadly across the epithelium, 

consistent with reduced IL-22 signaling (Fig. S14A, Table S9) (49). In sum, our results suggest 

that relative to the U.S. controls, the EE epithelium is characterized by reduced proliferation, IL-

22 signaling, and goblet cell development. However, within the EE cohort, EE severity scores 

correlated with cycling scores in stem cells (Fig. S1B). Intriguingly, this suggested that although 

EE patients as a whole display lower levels of epithelial proliferation relative to U.S. controls, 

more severe EE leads to relatively higher epithelial proliferation than less severe EE. 

 

DISCUSSION  
 
Here, we profiled EE with the Seq-Well S3 platform for scRNA-seq. We thereby identified a cell 

subset – surface mucosal cells – which highly expressed DUOX2 and whose gene expression 

pattern matched existing bulk gene signatures of reduced villus height and reduced plasma LPS 

concentrations in EE. In addition, our dataset revealed variations in cell subset fractional 



abundance by small intestinal region, HIV infection, and EE severity, as well as epithelial and 

immune subsets differing between EE and control samples. Altogether, our work re-contextualizes 

past bulk-transcriptomic studies of EE and maps the cellular correlates of EE pathology. 

 

The presence of surface mucosal cells highly expressing DUOX2 in EE may reflect remodeling of 

the epithelium into an intermediate wound healing-like state. Dedifferentiation of mature cells 

could facilitate repair of the epithelial barrier and reduce microbial translocation at the expense of 

reducing surface area and absorptive capacity, explaining why reduced nutrient absorption in EE 

is associated with decreased microbial translocation (7). This process may be due, in part, to H. 

pylori: as H. pylori gastritis has been shown often to be associated with duodenal colonization in 

children (50), H. pylori infection may explain why previous studies have found high levels of 

DUOX2 transcripts in the distal duodenum of some children with EE, whereas our study found 

DUOX2 expressing surface mucosal cells in the duodenal bulb (which is closest to the stomach 

where most H. pylori infection occurs) but not the distal duodenum of adults with EE.  

 

Comparison to all control cohorts illuminated the epithelial and immune cell correlates of EE. 

Increased abundances of immature epithelial cell subsets, increased WNT/ß-catenin signaling, and 

decreased MAPK signaling suggested that the EE epithelium is biased towards an immature 

phenotype. Furthermore, Tuft cells upregulated genes involved in promoting and responding to 

inflammation (51). In addition, we found lower relative abundances of T cells expressing a 

transcriptional signature of tissue-resident memory T cells, but those cells had elevated expression 

of inflammatory cytokines (including IFNg) in EE, suggesting that while these cells are present in 

a lower abundance in EE, they may be chronically activated. This, in turn, may lead to immune 

exhaustion and impaired responses to new immune stimuli, which may contribute a hindered 

response to oral vaccines (52). While IFNg is often viewed as a pro-inflammatory cytokine in acute 

inflammation, numerous studies have demonstrated that in chronic inflammation, IFNg can 

produce tolerogenic effects, which would be consistent with reduced oral vaccine efficacy in EE 

(53).  

 

Additionally, we compared EE to only the U.S. cohorts to account for potential confounding 

features of moderate EE in the South African cohort. Relative to the U.S. cohorts, the EE 



epithelium was characterized by decreased epithelial proliferation and changes in cell subset 

fractional abundances, consistent with decreased IL-22 signaling (45, 46, 54). This is in line with 

work that found decreased abundances of transcripts from pro-proliferative pathways  in the feces 

of Malawian children with EE (55), as well as work showing that during Cryptosporidium infection 

protein malnutrition leads to reduced turnover of intestinal epithelial cells (56). Consistently, 

reduced epithelial proliferation in EE relative to the U.S. cohorts was associated with GSEA 

enrichment of a response to amino acid deficiency and reduced goblet cell abundances–whose 

differentiation can be induced by tryptophan (57). This agrees with work demonstrating decreased 

tryptophan metabolism in Pakistani children with EE and work showing that amino acid 

supplementation ameliorates villus blunting in adults with EE (10, 12). Thus, amino acid 

deficiency may lead to hypoproliferative signaling in the EE epithelium characterized by reduced 

stem cell proliferation and goblet cell abundance. One intriguing aspect of this hypoproliferative 

signaling is that it stands in stark contrast to the hyperproliferative signaling observed in Crohn’s 

disease, which is of particular interest as limited evidence suggests lower rates of IBD in countries 

where EE is endemic (16, 49).  

 

However, when comparing within the EE cohort, more severe EE was positively associated with 

stem cell proliferation. This may be due to the interplay of malnutrition and infection. The reduced 

dietary quality in the population of Zambian adults we studied may impose a proliferative 

constraint on enteropathy, leading to reduced stem cell turnover relative to intestinal homeostasis. 

However, individuals with more severe EE may have more proliferation than others in response to 

infective and inflammatory drivers. This discrepancy between our within and across country 

analyses is congruent with past work which found similar discrepancies, highlighting the necessity 

of comparing to an outgroup to fully understand the pathophysiology of EE (32, 58). Follow-up 

mechanistic studies are needed to clarify the role that malnutrition and infection play in epithelial 

proliferation in EE. 

 

It is important to recognize that our study has several inherent limitations. We were not able to 

include a non-EE control group of age-matched adults in Lusaka, Zambia. Thus, we cannot rule 

out the possibility that the observed differences between EE patients and the U.S. and South 

African cohorts are due to unobserved variables that differed between these patient populations, 



especially the high burden of enteropathogens in tropical settings. In addition, our findings are 

primarily correlative due to the associative nature of measuring mRNA expression and the 

difficulties associated with mechanistic follow-up validation in humans. This is further limited by 

the lack of available tissue for histological analysis of samples from the South African cohort. As 

we saw few stromal cells in our scRNA-seq dataset, our tissue dissociation was likely biased 

against this subset and future work will be needed to characterize these cells in EE. In addition, 

the inflamed small intestinal epithelium and lamina propria are highly heterogenous environments 

containing several relatively rare cell types such as Paneth cells, and a variety of immune subsets 

which we did not have sufficient power to analyze in great detail. Furthermore, the HIV status of 

the participants from the U.S. cohorts was not determined. Additionally, we did not screen EE 

patients for Celiac disease and we cannot completely rule out the possibility that some patients 

may have had Celiac disease; however, we note that in Zambia the staple diet is maize (a gluten 

free food) and that past studies of EE in Zambian adults have found no evidence of Celiac disease 

(59). Also, pediatric EE may differ from EE in adults, which calls for future studies in pediatric 

cohorts. Finally, as EE is an endemic condition in low- and middle-income countries across the 

globe, it will be necessary to validate our results in cohorts with EE from geographic locations 

other than Zambia. 

 

Examining our work as a whole, a potential picture of EE pathogenesis emerges. Relative amino 

acid deficiency due to a low-quality diet may lead to reduced epithelial proliferation and 

differentiation towards goblet cells, which would diminish anti-microbial mucosal defense, 

leading to increased pathogen-mediated damage of the enterocyte. This may then lead to epithelial 

remodeling towards an intermediate wound healing-like phenotype associated with the presence 

of surface mucosal cells. In addition, enteropathogen mediated damage would further exaggerate 

the pathogen-induced IFNg response and may explain the observed pro-inflammatory polarization 

of CD8 CD69hi T cells in our data. Together, these findings nominate several therapeutic axes for 

inducing healthy epithelial proliferation and immune efficacy in EE. 

 

 

 
 



MATERIALS AND METHODS 
Study design 

Adult volunteers were recruited from a disadvantaged community in Lusaka, Zambia, in which we 

have carried out previous studies of environmental enteropathy (7, 11). All volunteers gave 

written, fully informed consent. The study was approved by the University of Zambia Biomedical 

Research Ethics Committee (reference 006-11-15, dated 12th January 2016). From July 2018 to 

August 2018, volunteers underwent endoscopy with a Pentax 2990i gastroscope or a Pentax 

VSB2990i enteroscope, in the endoscopy unit of the University Teaching Hospital, Lusaka, under 

sedation with diazepam and pethidine. Duodenal tissue was collected from eosinophilic 

esophagitis (EoE) patients undergoing surveillance gastroscopy at Massachusetts General Hospital 

(MGH), Boston. Informed consent was obtained from EoE patients under a protocol approved by 

MGH. Resection samples were obtained from patients undergoing duodenal resection for 

pancreatic cancer (but in whom no local spread was apparent) in accordance with MGH IRB 

guidance under Mass General Brigham Protocol 2010P000632. Informed consent was obtained 

from participants recruited into this study at the Inkosi Albert Luthuli Central Hospital in Durban, 

South African. No randomization or blinding was done in this study. No power analyses were 

conducted due to the observational nature of this study and the lack of pre-existing scRNA-seq 

datasets of EE. The number of samples used is presented in the figures, supplementary figures, 

and supplementary tables. 

 

Biopsy handling, immunohistochemical staining, and tissue digestion 

Biopsies from the patients with environmental enteropathy were collected into normal saline, then 

orientated under a dissecting microscope, fixed in buffered formal saline, and processed to 3µm 

sections for haematoxylin/eosin staining. These sections were scanned using an Olympus VS120 

scanning microscope, measured for average villus height (VH) and crypt depth (CD) ,  and scored 

for EE severity using a recently published methodology (6). Duodenal bulb samples from EE 

patients were stained for DUOX2 protein and distal duodenal samples from EE patients and from 

normal tissue obtained from Mass General Brigham were stained for ß-catenin and GZMB protein; 

for more details see supplementary methods. Biopsies from EE, EoE, resection, and South African 

patients were dissociated into single-cell suspensions using a modified version of a previously 

published protocol (21). For further detail see the supplementary methods. 



 

 

Single-cell RNA-sequencing with Seq-Well S3:  

Please refer to the supplementary methods for further detail. Briefly, the epithelial and lamina 

propria layers of the biopsies were dissociated into single-cell suspensions. Then, single-cells were 

loaded onto a functionalized polydimethylsiloxane (PDMS) array preloaded with uniquely-

barcoded mRNA capture beads (Chemgenes; MACOSKO-2011-10), and sequencing libraries 

were obtained and sequenced on an Illumina Next-Seq. Sequencing read alignment and 

demultiplexing was performed on the cumulus platform using snapshot 6 of the Drop-seq pipeline 

(48), resulting in a cell barcode by UMI digital gene expression (DGE) matrix. QC was performed 

to remove low quality cell barcodes and doublet cells. Bam files from sequencing were classified 

with Kraken2 to find metagenomic mapping reads. To identify cell subsets, we adopted an existing 

pipeline for automated iterative clustering of single-cell data that has been shown to identify batch 

effects without collapsing distinct rare cell types (19). We applied this pipeline to the data from 

the EE and U.S. cohorts. To correct for batch effects between data collected in different 

laboratories, we integrated our data with the South African dataset (20). All subsets were scored 

on gene signatures of reduced villus height and decreased and plasma LPS signatures from Chama 

et al. (8) using the AddModuleScore function in Seurat and a Wilcoxon test was used to assess 

significance. Epithelial trajectories were inferred with PAGA (26). RNA velocity trajectories were 

inferred with velocyto  (27). 

 

Analyses examining variation within samples from the EE cohort 

To assess the epithelial subsets associated with surface mucosal cells in duodenal bulb samples 

from EE patients, we calculated the Pearson correlation between the fractional abundances of all 

epithelial subsets within these subsets. We then hierarchically clustered the resulting correlations 

with the ComplexHeatMap R package. Changes in the relative abundances of cell subsets by 

differing HIV infection status and small intestinal region were detected by a leave-one-out 

approach in order to avoid identifying patient specific effects using a Fisher’s exact test. Cell 

subsets significantly associated with histological EE severity were identified by running Dirichlet 

Regression. Further details are provided in the supplementary methods. 

 



Comparison of distal duodenal samples from HIV-negative EE and control cohorts 

Distal duodenal samples from HIV-negative patients iwth EE were compared to matched samples 

from control cohorts. We sought to identify biological features driven by variation in EE biology 

relative to the control cohorts (as opposed to identifying biology that distinguished only one cohort 

from EE). Thus, in all subsequent analyses we required that results pass the following two criteria: 

1) Result significant when comparing EE vs all control cohorts 2) Result displayed the same 

direction of change between EE and each control cohort. Further details are provided in the 

supplementary methods. 

 

Statistical analysis 

The statistical test used for each comparison is denoted in the corresponding figure legend. Tests 

were conducted in R, and a Benjamini-Hochberg adjusted p value  of 0.05 was used for 

significance. 
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Figure 1: Single-cell RNA-sequencing of the small intestine with and without EE. 

A, H&E imaging of the small intestine with intermediate and severe EE. Intestinal villi with normal 

morphology (left image) and with severe blunting (right image) are highlighted in boxes. 

B, Experimental workflow: small intestinal biopsies from the duodenal bulb, distal duodenum, and 

jejunum were obtained via endoscopy or tissue resection, dissociated into cells, loaded onto a Seq-

Well array, processed for single-cell sequencing, and analyzed.  

C, UMAP visualization by patient cohort and intestinal region for all 26,556 high quality cells 

from 38 samples and 22 patients. 

D, Fractional abundances of major cell types amongst all single cells analyzed per sample.  
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E, Expression of marker genes for final cell subsets. Dot size represents the fraction of a cell subset 

(rows) expressing a given gene (columns). Dot hue represents the scaled average expression by 

gene column. For clarity, dots for genes expressed in 5% or less of cells within a given subset are 

not shown. 
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Figure 2: Surface mucosal cells uniquely express DUOX2 and are associated with a wound 

healing-like phenotype 

A, Violin plot of a module score generated from genes upregulated in EE samples with reduced 

villus height (VH) in Chama et al. (8) (***, p < 0.001; Wilcoxon test). 

B, Violin plot of a module score generated from genes upregulated in EE samples wwith decreased 

plasma LPS concentrations in Chama et al. (8) (***, p < 0.001; Wilcoxon test). 

C, Dot plot of cell subset marker genes that overlapped with the genes used to generate the module 

scores in panel A 

D, Dot plot of cell subset marker genes that overlapped with the genes used to generate the module 

scores in panel B. 

E, Hierarchically clustered heatmap of the Pearson correlations between the fractional abundances 

of epithelial cells within duodenal bulb samples from patients with EE. Cell subsets significantly 

correlated with surface mucosal cells are highlighted with a black circle (Permutation testing, p < 

0.05). Cell subsets weakly correlated with surface mucosal cells are highlighted with a grey circle 

(0.05 < p < 0.1; Permutation testing). 

F, PAGA trajectory visualization of epithelial subsets. 

G, H&E (purple) and immunohistochemical staining for DUOX2 protein (brown) on an EE biopsy 

from the duodenal bulb.  

 



Figure 3: Cell subsets associated with intestinal region and histologically determined EE 

severity  

A, Cell subsets enriched in duodenal bulb and distal duodenal samples from HIV-negative EE 

patients (*, adj. < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001, Fisher’s exact test).  

B, Hierarchically clustered heatmap of HIV-negative EE epithelial cell subset relative abundance 

Pearson correlations with component scores of the total EE histological severity score (*, adj. p < 

0.05; **, adj. p < 0.01,; ***, adj. p < 0.001; Dirichlet regression). 
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C, Hierarchically clustered heatmap of HIV-negative EE immune cell subset relative abundance 

Pearson correlations with component scores of the total EE histological severity score. (*, adj. p < 

0.05; **, adj. p < 0.01; ***, adj. p value < 0.001; Dirichlet regression). 

 

 

 
Figure 4: The epithelium of EE is characterized by increased WNT signaling, and decreased 

MAPK signaling. 

A, Cell subsets with significant shifts in relative abundances between EE and all control cohorts. 

(*, adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001; Fisher’s exact test). 

B, Genes differentially expressed in the epithelial compartment in EE relative to all control 

cohorts. Horizontal and vertical dashed lines respectively refer to an adjusted p value threshold of 

0.01 and a log fold change threshold of 0.1.  
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C, Genes differentially expressed in EE relative to all control cohorts within specific cellular 

subsets. Horizontal and vertical dashed lines respectively refer to an adjusted p value threshold of 

0.01 and a log fold change threshold of 0.1. 

D, PROGENy pathway prediction scores for epithelial cells in EE relative to controls 

 

 

 

Figure 5: EE is associated with a shift towards activated T cell phenotypes 

A, Cell subsets with significant shifts in relative abundances between EE and all control cohorts 

(*, adj. p< 0.05; **, adj. p < 0.01; ***, adj. p < 0.001; Fischer’s exact test). 

B, Genes differentially expressed in the T & NK cell compartment in EE relative to all control 

cohorts. Horizontal and vertical dashed lines respectively refer to an adjusted p value threshold of 

0.01 and a log fold change threshold of 0.1. 
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C, Genes differentially expressed in in EE relative to all control cohorts within specific cellular 

subsets. Horizontal and vertical dashed lines respectively refer to an adjusted p value threshold of 

0.01 and a log fold change threshold of 0.1. 

D, Module scores for a tissue resident memory T cell signature in EE relative to all  control cohorts.  

E, T cell activation signatures enriched in T CD8 CD69hi cells from EE patients relative to all 

control cohorts. Proliferation: adj. p = 3.2*10-04, Cohen’s D effect size = 0.32. CD8 Cytotoxic: adj. 

p = 6.2*10-25, Cohen’s D effect size = 0.95. CD8 Cytokine: adj. p = 2.3*10-23, Cohen’s D effect 

size = 0.90 

 

 



 
Figure 6: Evidence of reduced proliferation in the EE epithelium relative to U.S. cohorts 

A, Genes differentially expressed in the epithelial compartment in EE relative to the U.S. cohorts. 

Horizontal and vertical dashed lines respectively refer to an adjusted p value threshold of 0.01 and 

a log fold change threshold of 0.1.  

B, Gene set enrichment analysis of genes upregulated in epithelial compartment cells in EE relative 

to the U.S. cohorts. 
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C, Genes differentially expressed in EE relative to the U.S. cohorts within specific cellular subsets. 

Horizontal and vertical dashed lines respectively refer to an adjusted p value threshold of 0.01 and 

a log fold change threshold of 0.1. 

D, Module scores for cell cycle genes in EE and U.S. cohorts in all cells from stem cell subsets. 

E, PROGENy pathway prediction scores for epithelial cells in EE relative to U.S. cohorts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTARY MATERIALS 
 
SUPPLEMENTARY MATERIALS AND METHODS 
Tissue digestion for scRNA-seq  

Single-cell suspensions were obtained using a modified version of a previously published protocol (22), described 

below in detail. Biopsies were rinsed in 30 mL of ice cold HBSS, then transferred to 10 mL of epithelial cell solution 

(HBSS, 10 mM EDTA, Pen / Strep, 10 mM HEPES, 2% FCS) and incubated for 15 minutes at 37 degrees Celsius at 

120 rpm. Samples were transferred to sit on ice for 10 minutes and then vortexed for 10 seconds, after which the tissue 

was rinsed in 30 mL HBSS before being transferred to1 mL of epithelial digestion mix (2% FCS, 10 mM HEPES. 

Pen/Strep, 20 ug/ml gentamicin, 100 ug/mL liberase TM, 100 ug/mL DNAse I) in a 1.5 mL Eppendorf tube and spun 

down at 800g for 2 minutes and resuspended in TrypLE express enzyme [ThermoFisher 12604013] for 5 minutes at 

37 degrees Celsius followed by gentle trituration with a P1000 pipette and spun down at 800 g for 2 minutes. Next, 

after aspiration, the pellet was resuspended in ACK lysis buffer [ThermoFisher A1049201] and put on ice for 3 

minutes. Cells were then spun down at 800g for 2 minutes and resuspended in 1 mL of epithelial cell solution and 

placed on ice for 3 minutes before triturating with a P1000 pipette. Cells were then filtered into a new Eppendorf tube 

through a 40 uM cell filter [Falcon/VMR 21008-949]. The epithelial cell fraction–which passed through the filter– 

was spun down at 800g for 2 minutes and then resuspended in 200 mL and put on ice, while the tissue remaining on 

the filter was added to 5 mL of enzymatic digestion mix at 37 degrees Celsius for 30 minutes at 120 rpm, after which 

it was quenched with 80 uL of 0.5M EDTA) and placed on ice for 5 minutes. Samples were typically fully dissociated 

at this step and after gentle trituration with a P1000 pipette filtered through a new 40 uM strainer into a new 50 mL 

conical tube and rinsed with HBSS to 30 mL total volume, and spun down at 400g for 10 minutes. All but 1 mL was 

then aspirated off of the 50 mL conical, after which the pellet was resuspended in this 1 mL, which was then transferred 

to a 1.5 mL Eppendorf. This was spun down at 800g for 2 minutes and then resuspended in 1 mL of ACK lysis butter 

and put on ice for 3 minutes. Cells were then spun down at 800 g for 2 minutes and resuspended in 200 mL of epithelial 

cell solution and placed on ice, produced the lamina propria cell fraction. The lamina propria and epithelial fractions 

were then counted using a hemocytometer. 

 

Single-cell RNA-seq with Seq-Well S3 experimental details 

We used Seq-Well S3, for our single-cell profiling, for which full methods are available on the Shalek Lab website 

(www.shaleklab.com). Briefly, 16,000 cells (8,000 from the epithelial fraction from tissue digestion and 8,000 from 

the lamina propria fraction from tissue digestion) were loaded onto a functionalized polydimethylsiloxane (PDMS) 

array preloaded with ~80,000 uniquely-barcoded mRNA capture beads (Chemgenes; MACOSKO-2011-10). The 

array was then sealed with a hydroxylated polycarbonate membrane with pore sizes of 10 nm, thereby enabling buffer 

exchange (and thereby cellular lysis and mRNA transcript hybridization to beads) while retaining biological molecules 

confined within each well. Beads were then removed from each well, reverse transcribed, treated with Exonuclease I 

(New England Biolabs; M0293M), and mixed with 0.1 M NaOH for 5 minutes at room temperature to denature the 

mRNA-cDNA hybrid product on the bead. Second strand synthesis was then performed with a PCR mastermix (40 

uL 5x maxima RT buffer, 80 uL 30% PEG8000 solution, 20uL 10 mM DNTPS, 2uL 1 mM dn-SMART oligo, 5 uL 



Klenow Exo-, and 53 ul of DI ultrapure water) which was incubated with the beads for 1 hour at 37 ºC with end over 

end rotation. PCR amplification was then preformed using KAPA HiFi PCR Mix (Kapa Biosystems KK2602). After 

PCR amplification whole transcriptome products were isolated via two rounds of SPRI purification using Ampure 

Spri beads (Beckman Coulter, Inc.) at both 0.6x and 0.8x volumetric ratio. Sequencing libraries were then generated 

using the Nextera Tagmentation method on a total of 800 pg of pooled cDNA library per sample. This product was 

then purified via two rounds of SPRI at 0.6 and 0.8x ratios, producing library size with an average distribution of 500-

750 base pairs, as determined using the Aligent hsD1000 Screen Tape System (Aligent Genomics). Arrays were 

sequenced on an Illumina Next-Seq at the Ragon Institute. The read structure was paired end, with read 1 starting at 

a custom read 1 primer containing 21 bases with a 12 bp cell barcode and an 8 bp unique molecular identifier (UMI) 

and read 2 consisting of 50 bases containing transcript information. Sequencing read alignment and demultiplexing 

was performed on the Terra platform (https://app.terra.bio) using snapshot 6 of the Drop-seq pipeline resulting in a 

cell barcode by UMI digital gene expression (DGE) matrix. 

 

Data QC and clustering overview 

Prior to clustering, the DGE matrices were filtered to remove cellular barcodes with less than 250 unique genes, with 

more than 50,000 UMIs, with over 50% of UMIs mapping to mitochondrial genes, and identified as doublets via the 

Scrublet algorithm (60) (which was ran separately for each Seq-Well array). Due to the multiple intestinal regions 

sampled and multiple patient cohorts in this study, different samples contained different distributions of cell types. In 

particular, unique subsets of cells were present in duodenal bulb samples, in samples from HIV-positive individuals, 

and in samples from uninvolved tissue from patients with pancreatic cancer. We tested the Seurat V3 integration 

approach (21) to see if we could correct for batch effects between samples while preserving differences driven by 

biology (i.e. differences driven by the region of the tissue sampled or the disease state of the patient). Initial testing 

revealed that integration incorrectly merged biologically distinct cell types in the duodenal bulb with secretory lineage 

cells from the second part of the duodenum and the jejunum. Furthermore, integration removed differences in 

clustering driven by HIV status that were seen without integration, indicating that integration may have been over 

correcting the dataset and minimizing biological differences driven by disease biology. Thus, rather than running an 

integration method for batch correction, we adopted an existing pipeline for automated iterative clustering of single-

cell data (pipeline described in detail in the next methods section) that has been shown to identify batch effects without 

collapsing distinct rare cell types (20).  

 

Workflow for iterative clustering 

1. We ran the clustering pipeline on the full filtered DGE matrix and manually identified base clusters with co-

expression of known mutually exclusive cellular lineage markers and removed these base clusters that 

correspond to doublet populations. 

2. We ran the clustering pipeline separately on the epithelial, T and NK cell, B cell, myeloid, and stromal cellular 

compartments, generating a hierarchical tree of clusters for each compartment. 



3. Known lineage specific genes (15,22) were used to annotate cell types on the clustering tree. The genes used 

to annotate each subset are available alongside the genes differentially upregulated in each subset in 

Supplementary Table 4. If sub clusters of a cluster did not have lineage defining genes as marker genes, then 

the cell type designation was made at the parent cluster. In over 95%, cell type designations were made at 

the first or second level of clustering, and lower tiers of clusters (representing transcriptional differences 

within a cell type) were not annotated as cell types. In some cases, multiple sub clusters expressed marker 

genes for one cell type and were all given that cell type designation. For example, within an epithelial cluster 

composed of secretory lineage cells, two clusters that highly expressed TFF3 and CLCA1 were merged as 

one final goblet cell type. 

4. Finally, in one instance, we performed batch correction by identifying populations of cells with high 

expression of known lineage markers that formed separate sub clusters in the hierarchical clustering tree due 

to transcriptional differences between disease states and merging the clusters with common high expression 

of a lineage marker back together. This correction was only carried out on stem cells highly expressing 

OLFM4 and LGR5, where the clustering pipeline split a tier 1 cluster of stem cells by disease specific 

expression changes in the AP-1 signalling pathway at tier 2 before splitting by the co-expressed stem marker 

genes LGR5 and SMOC2 at tier 3, producing two separate LGR5hi sub clusters at tier 3 with differing levels 

of AP-1 signalling activation. These two sub clusters were merged together as the Stem OLFM4hi LGR5hi 

cell type. Furthermore, although APOA1 and APOA4 are markers for mature enterocytes near the villus tips 

(61), we chose to not merge a cluster of enterocytes predominantly from pancreatic cancer resection samples 

that exhibited high expression of APOA1 and APOA4 with a different cluster of enterocytes expressing 

APOA1 and APOA4 as enterocyte sub types lie on a transcriptional gradient and these two clusters displayed 

distinctly different expression of ALPI–another marker for mature villus enterocytes– which raised the 

possibility that these enterocyte clusters were biologically distinct. We thus did not merge these cell types. 

 
Iterative clustering pipeline 

Starting with our filtered DGE matrix, cells were iteratively clustered with the following unbiased pipeline built using 

the Seurat R package  and adopted from (20). For each starting cluster, normalization and variable gene selection were 

conducted with SCtransform then dimensional reduction was carried out by running PCA. For starting clusters with 

less than 500 cells, the number of PCs was chosen with the JackStraw function in Seurat, while for runtime 

considerations, for starting clusters with more than 500 cells, the number of PCs was chosen as the elbow on the PCA 

variance explained plot. Cellular neighbors were calculated using a k.param of 0.5*(number of cells)^0.5. Next 

clustering was carried out at 40 resolutions evenly spaced between 0.2 to 0.8, and the average silhouette width across 

cells was calculated for each resolution. After calculating a histogram of the average silhouette scores with (num 

resolutions)/1.2 bins, the resolution in the top bin of silhouette scores with the smallest average silhouette score in that 

bin was chosen as the final silhouette score, thereby creating a bias towards under clustering the data. Next, marker 

genes were calculated for each sub cluster generated with the final resolution using the Wilcoxon test with pre-test 

thresholds that each gene must have an average log fold change of at least 0.025 between clusters and be expressed in 

at least 0.2 percent of cells in the cluster that it is a marker for. For each sub cluster, this clustering pipeline was 



iteratively repeated until sub clusters were reached that did not have at least 10 marker genes with at least an adjusted 

p value of 0.01 and an average log fold change of 0.2. Altogether, this pipeline generated a hierarchical tree of clusters 

which then used in conjunction with known lineage markers to annotate cell types as described above. The final 48 

cell types  included: 23 epithelial subsets – inclusive of 3 stem cell subsets, 1 subset highly expressing BEST4, 1 

secretory precursor subset, 1 goblet cell subset, 1 Paneth cell subset, 1 tuft cell subset, 6 enteroendocrine subsets, 1 

surface mucosal cell subset (high expression of TFF1  and MUC5AC), 1 mucosal neck cell subset (high expression of 

TFF2 and MUC6), one foveolar precursor subset, and 6 enterocyte subsets, two of which highly expressed ANXA2 (a 

marker of intestinal epithelial cells engaged wound healing (26)) and either FABP1 or PTMA (markers of 

dedifferentiating intestinal cells in a murine model system (25)); 16 T & NK cellular subsets – consisting of 5 CD8hi 

T cell, 2 CD4hi T cell, 2 gd T cell, 3 NK cell, 1 ILC3, and 3 T cell subsets respectively defined by interferon genes, 

mitochondrial genes, and cell cycle genes; 6 myeloid subsets – inclusive of macrophages, CD14 monocytes, CD16 

monocytes, dendritic cells, mast cells, and eosinophils; 2 B cell subsets – plasma cells and MS4A1 (i.e., CD20) 

expressing B cells; and, one stromal cell type, endothelial cells. 

 

Analyses characterizing surface mucosal cells and associated cell populations 

Gene signatures for reduced villus height and decreased and plasma LPS signatures in Chama et al. (6) were obtained 

by aggregating all genes positively differentially expressed in these conditions in this study. Module scores were 

generated with the AddModuleScore function in Seurat with default parameters. Cell subsets were then scored for the 

modules, a Wilcoxon test was used to assess significance, and effect sizes were calculated with Cohen’s D. Prior to 

PAGA analysis, nearest neighbor graph was calculated in Scanpy with neighbors = ceiling(0.5(number of epithelial 

cells)^0.5)). PAGA and Velcyto analyses were otherwise ran with default parameters. 

 

Identifying cell subsets with significant changes in relative abundance by HIV infection status and small 

intestinal region 

Changes in the relative abundances of cell subsets by differing HIV infection status and small intestinal region were 

detected by a leave-one-out approach in order to avoid identifying patient specific effects using a Fisher’s exact test. 

For each comparison (HIV positive vs negative, intestinal region A vs other intestinal regions, etc.), across all patients, 

a Fisher’s exact test was used to identify subsets with significant changes in relative abundance (adjusted p value < 

0.05). We then repeated this analysis with each patient left out and only cell subsets that were significant in all analyses 

were included in the final results. 

 

Identifying cell subsets varying with histological EE severity across all HIV-negative patients in the Zambian 

cohort  

Cell subsets significantly associated with histological severity from the Zambian cohort were identified by running 

Dirichlet Regression, which allows for testing for differences in cell subsets along a continuous dependent variable, 

with the R package DirichletReg. Across all HIV-negative samples, relative abundances were regressed against the 

total EE histological severity score and small intestinal region, and an adjusted p value was generated for the 



association between EE severity and the relative abundance of each subset. Other cell subsets co-varying with the 

significantly associated subsets from Dirichlet regression were visualized by calculating the Pearson correlation 

between all subset relative abundances across patients and then hierarchically clustering the resulting correlations with 

Ward’s method using the ComplexHeatmap R package. To identify cell subsets significantly associated with surface 

mucosal cells, sample labels were permuted 10,000 times and the Pearson correlations of each subset with surface 

mucosal cells were recalculated to form null distributions for the association between each cell type and surface 

mucosal cells. Original Pearson correlation values within the top 5% of values of the respective null distribution for 

each cell subset were designated as significant correlations. 

 

Further details for analyses identifying biological features that distinguish HIV-negative EE from U.S. control 

cohorts 

 

Compositional testing: Cell subset differences were calculated using the leave-one-out approach described to identify 

changes in HIV status and intestinal region. 

 

Differential expression: Differentially expressed genes for each cell subset and for the epithelial and immune 

compartments as a whole were found with a Wilcoxon test implemented in the Seurat FindAllMarkers function with 

the minimum log-fold change threshold set to 0.1 and the minimum percent of cells within a subset expressing a gene 

set to 0.025. 

 

PROGENy: PROGENy scores for signalling pathway activities were calculated using the progeny R package using 

500 genes to generate the model matrix and all other parameters set to default as suggested by the tutorial vignette for 

applying PROGENy to scRNA-seq data. 

 

DoRothEA: DoRothEA scores for upstream transcription factor activities were calculated using the dorothea R 

package following the parameters suggested in the Bioconductor vignette for applying DoRothEA to scRNA-seq data. 

 

Module scoring: To identify changes in proliferative capacity in stem cells in EE relative to stem cells in the U.S. 

control cohorts, we examined a list of genes previously identified as upregulated in cycling human cells(10). To score 

for a signature of tissue residency in T and NK cells, we used a previously identified signature(11) for tissue resident 

memory T cells consisting of the genes CD69, ITGAE, ITGA1, IL2, IL10, CXCR6, CXCL13, KCNK5, RGS1, CRTAM, 

DUSP6, PDCD1, and IL23R. T cell signatures for activation were obtained from a previous scRNA-seq atlas of T cell 

activation(12). For all gene signatures, module scores were generated with the AddModuleScore function in Seurat 

with default parameters. Cell subsets were then scored for the modules, a Wilcoxon test was used to assess 

significance, and effect sizes were calculated with Cohen’s D. 

 



Comparison with large intestine gene signature from the cut cell at atlas.: Intestinal scRNA-seq data from adults was 

downloaded from https://www.gutcellatlas.org and the Find Markers function with default parameters in Seurat was 

used to find genes upregulated in the large intestine vs the small intestine (62).  

 

Comparison with Ulcerative colitis gene signature from Smillie et al (21): A gene signature comparing the inflamed 

colon with ulcerative colitis was obtained from the supplemental information in Smillie et al. 

 

Predicting ligand-receptor interactions with NicheNet 

NicheNet signatures for changes in ligand-receptor interactions between EE and the control cohorts were generated 

from the differentially expressed genes generated as described above. All other parameters in NicheNet were kept the 

same as in the NicheNet tutorial “Perform NicheNet analysis starting from a Seurat object”. 

 

Metagenomic mapping of H. pylori reads with Kraken2 

Bam files from sequencing were classified using Kraken2 with the following Terra pipeline from the Broad institute: 

https://dockstore.org/workflows/github.com/broadinstitute/viral-pipelines/classify_kraken2:master?tab=files. The 

following inputs were used. Kraken2_db_tgz: "gs://pathogen-public-dbs/v1/kraken2-broad-20200505.tar.zst”. 

Krona_taxonomy_db_tgz: "gs://pathogen-public-dbs/v1/krona.taxonomy-20200505.tab.zst”. The outputted results 

for the samples were then aggregated across all bacterial species using the merge_metagenomics pipeline on the 

Terra platform from the Broad institute: https://viral-pipelines.readthedocs.io/en/latest/merge_metagenomics.htmls 
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Fig. S1. Characterization of epithelial subsets. 
A, UMAP visualization of epithelial subsets 

B, Heatmap of the top five marker genes (Wilcoxon test) of each epithelial subset 

C, Fraction of cells in each subset from each patient cohort; from HIV-positive vs. HIV-negative 

patients; and from each intestinal region. 

D, Violin plots by cell subset of the number of unique molecular identifiers (UMIs) per cell and 

the number of unique genes detected per cell. 
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Fig. S2. Characterization of T and NK cell subsets. 
A, UMAP visualization of epithelial subsets 

B, Heatmap of the top five marker genes (Wilcoxon test) of each T and NK cell subset 

C, Fraction of cells in each subset from each patient cohort; from HIV-positive vs. HIV-negative 

patients; and from each intestinal region.  

D, Violin plots by cell subset of the number of unique molecular identifiers (UMIs) per cell and 

the number of unique genes detected per cell. 
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Fig. S3. Characterization of B cell, myeloid, and stromal subsets. 
A, UMAP visualization of epithelial subsets 

B, Heatmap of the top five marker genes (Wilcoxon test) of each B cell, myeloid, and stromal cell 

subset 

C, Fraction of cells in each subset from each patient cohort; from HIV-positive vs. HIV-negative 

patients; and from each intestinal region.  

D, Violin plots by cell subset of the number of unique molecular identifiers (UMIs) per cell and 

the number of unique genes detected per cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

A B

0

2500

5000

7500

EE
_1
B

EE
_1
D
EE
_2
B
EE
_2
D
EE
_3
B
EE
_3
D
EE
_4
B
EE
_4
D

EE
_5
B

EE
_5
D
EE
_6
B

EE
_6
D
EE
_6
J

EE
_7
B

EE
_7
D
EE
_7
J

EE
_8
B
EE
_8
D

EE
_8
J

EE
_H
IV_

1B

EE
_H
IV_

1D

EE
_H
IV_

1J

EE
_H
IV_

2B

EE
_H
IV_

2D

EE
_H
IV_

3B

EE
_H
IV_

3D

EE
_H
IV_

3J

Eo
E_
1D

Eo
E_
2D

Eo
E_
3D

Re
se
ctio

n_
1D

Re
se
ctio

n_
2D

Re
se
ctio

n_
3D

So
uth
_A
fric
a_
1D

So
uth
_A
fric
a_
2D

So
uth
_A
fric
a_
3D

So
uth
_A
fric
a_
4D

So
uth
_A
fric
a_
5D

N
um

be
r o

f u
ni

qu
e 

ge
ne

s 
pe

r c
el

l

Sample

0

10000

20000

30000

40000

50000

EE
_1
B

EE
_1
D
EE
_2
B
EE
_2
D
EE
_3
B
EE
_3
D
EE
_4
B
EE
_4
D

EE
_5
B

EE
_5
D
EE
_6
B

EE
_6
D
EE
_6
J

EE
_7
B

EE
_7
D
EE
_7
J

EE
_8
B
EE
_8
D

EE
_8
J

EE
_H
IV_

1B

EE
_H
IV_

1D

EE
_H
IV_

1J

EE
_H
IV_

2B

EE
_H
IV_

2D

EE
_H
IV_

3B

EE
_H
IV_

3D

EE
_H
IV_

3J

Eo
E_
1D

Eo
E_
2D

Eo
E_
3D

Re
se
ctio

n_
1D

Re
se
ctio

n_
2D

Re
se
ctio

n_
3D

So
uth
_A
fric
a_
1D

So
uth
_A
fric
a_
2D

So
uth
_A
fric
a_
3D

So
uth
_A
fric
a_
4D

So
uth
_A
fric
a_
5D

Sample

N
um

be
r o

f U
M

Is
 p

er
 c

el
l



Fig. S4. Number of genes and UMIs per cell across samples. 

A, Violin plot of number of genes per cell across samples 

B, Violin plot of number of UMIs per cell across samples 
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Fig. S5. Characterization of surface mucosal and dedifferentiation-like subsets. 

A, Expression of mucin and trefoil factor genes distinguishing Surface mucosal, mucosal neck, 

and goblet cell subsets. Dot size represents the fraction of a cell subset (rows) expressing a given 

gene (columns). Dot hue represents the scaled average expression by gene column.  

B, Violin plot scoring all subsets on a module score generated from genes differentially 

upregulated in bulk RNA-sequencing of samples with EE and reduced villus height (VH) in Chama 

et al. Surface mucosal cells were enriched for this signature relative to all other subsets (***, p < 

0.001; Wilcoxon test) 

C, Violin plot scoring all subsets on a module score generated from genes differentially 

upregulated in bulk RNA-sequencing of samples with EE and decreased plasma LPS 

concentrations in Chama et al. Surface mucosal cells were enriched for this signature relative to 

all other subsets (***, p < 0.001, Wilcoxon test) 

D, Velocyto results grouped by epithelial differentiation trajectory identified in Figure 2e 

E, Velocyto results grouped by epithelial subset 

F, Violin plots by participant cohort of the number of H. pylori reads detected by metagenomic 

alignment with Kraken2 in the sequencing reads from each sample (T-test: *,adj. p < 0.05; **, adj. 

p < 0.01; ***, adj. p < 0.001).. 

G, Violin plots by intestinal region of the number of H. pylori reads detected by metagenomic 

alignment with Kraken2 in the sequencing reads from each sample from participants in the 

Zambian EE cohort (T-test: *,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. S6. Immunohistochemical staining for DUOX2 protein. 

A, H&E images (purple, H&E) that stained positive for DUOX2 (brown, DUOX2) from duodenal 

bulb samples from participants in the Zambian EE cohort 

B, H&E images (purple, H&E) that did not stain positive for DUOX2 (brown, DUOX2) from 

duodenal bulb samples from participants in the Zambian EE cohort 
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Fig. S7. Variation in EE biology associated with HIV infection. 

A, EE HIV-positive samples had significantly higher total EE histological severity scores than EE 

HIV-negative samples (p < 0.05; Wilcoxon test). 

B, Cell subsets with a significant change in fractional abundance between HIV-positive and HIV-

negative samples across all EE samples (*,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001). 

C, Cell subsets with a significant change in fractional abundance between HIV-positive and HIV-

negative samples within EE samples from each intestinal region (*,adj. p < 0.05; **, adj. p < 0.01; 

***, adj. p < 0.001). 

D, Within only HIV-positive EE samples, cell subsets with a significant change increase in 

fractional abundance in each intestinal region (*,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 

0.001). 
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Fig. S8. Samples from South African participants display features of EE. 

A, H&E staining from a biopsy taken from a participant at the same clinical site in South Africa 

where the participants in this study were profiled. 

B, Cell subsets with significant shifts in relative abundances between the Zambian EE cohort and 

both U.S. cohorts (*,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001; Fischer’s exact test). 

C, Cell subsets with significant shifts in relative abundances between the Zambian EE cohort and 

the South African cohort (*,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001; Fischer’s exact 

test). 

D, Cell subsets with significant shifts in relative abundances between the South African cohort and 

both U.S. cohorts (*,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001; Fischer’s exact test). 
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Fig. S9. Immunohistochemical staining for ß-catenin. 

A, H&E (purple) images stained for ß-catenin (brown) from distal duodenal biopsies from HIV-

negative participants with EE 

B, H&E (purple) images stained for ß-catenin (brown) from normal intestine from the U.S.  
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Fig. S10. Contextualizing EE epithelial cells with existing intestinal scRNA-seq signatures. 

A, Violin plots of module scores for a set of genes enriched in the large intestine relative to the 

small intestine for all HIV-negative distal duodenal samples from each  participant cohort. 

B, Scatterplot of the genes differentially expressed in the EE epithelium relative to all three control 

cohorts and the genes differentially expressed in the large intestine with ulcerative colitis relative 

to the healthy large intestine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. S11. Analysis of B cells and myeloid cells between EE and controls. 

A, Cell subsets with significant shifts in relative abundances between EE and control cohorts 

(*,adj. p < 0.05; **, adj. p < 0.01; ***, adj. p < 0.001; Fischer’s exact test). 

B, Genes differentially expressed in all B cells in EE relative to controls. 

C, Genes differentially expressed in all myeloid cells in EE relative to controls. 
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Fig. S12. Immunohistochemical staining for GZMB protein.  

A, H&E (purple) images stained for GZMB (brown) from distal duodenal biopsies from HIV-

negative participants with EE 

B, H&E (purple) images stained for GZMB (brown) from normal intestine from the U.S.  
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Fig. S13. NicheNet analysis of cell-cell signaling. 

A, Pearson correlation between ligand NicheNet ligand response signatures and the differential 

gene expression signature in each subset. 

B, Expression levels of the genes for NicheNet ligands in all cell subsets. 

C, Log-fold change of the NicheNet ligands in all cell subsets. 
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Fig. S14. Epithelial signaling changes in the EE cohort relative to the U.S. cohorts. 

A, Transcription factors with DoRothEA predicted activity varying between EE and controls (adj. 

p < 0.05).  

B, Heatmap of Pearson correlations between PROGENY pathway scores and EE histological 

severity among EE patients. 

C, Pearson correlation between EE histological severity and proliferation module score within 

stem cell subsets from EE patients. 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 
 

 
 
 
 
 
 
 

 



SUPPLEMENTARY TABLES 
 

Tables S1-S9 have been uploaded as excel files in the Auxiliary Supplementary Materials section 

 

Table S1. Clinical characteristics of donors of intestinal biopsy samples. 

Table S2. Patient cohort, intestinal region, and HIV infection status of participants.  

Table S3. Villus morphometry for EE distal duodenal samples. 

Table S4. Marker genes for all subsets. 

Table S5. Histological severity scores for EE biopsies with matched histology. 

Table S6. Genes differentially expressed in EE relative to control cohorts. 

Table S7. KEGG, REACTOME, and PID pathway analysis. 

Table S8. PROGENY pathway activation scores. 

Table S9. Transcription factors with upstream activity predictions from DoRothEA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


