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ABSTRACT 
 This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and inslab subduction earthquakes recorded 

in Chile. A total of ~7000 ground-motion records from ~1700 events are used to train the GGMM. Unlike common ground-motion models 

(GMM), which generally consider individual ground-motion intensity measures such as spectral acceleration at a given period, the proposed 

GGMM is a data-driven framework that coherently uses recurrent neural networks (RNN) and hierarchical mixed-effects regression to output a 

cross-dependent vector of 35 ground-motion intensity measures (IM). The IM vector includes geomean of Arias intensity, peak ground velocity, 

peak ground acceleration, and significant duration, and RotD50 spectral accelerations at 32 periods between 0.05 to 5 seconds (denoted as 

𝑆𝑎(𝑇)). The inputs to the GMM include six causal seismic source and site parameters. The statistical evaluation of the proposed GGMM shows 

that the proposed framework results in high prediction power with coefficient of determination 𝑅2  > 0.7 for most IMs while maintaining the 

cross-IM dependencies. Furthermore, it is observed that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared 

to two state-of-the-art Chilean GMMs (on average 0.2 higher 𝑅2). 

 

Introduction 
Motivated by Fayaz et al. [1], this study proposes an recurrent-neural-network- (RNN) and mixed-effects-regression- based 

GGMM specifically for the earthquakes recorded in Chile (subduction environment). A total of ~7000 ground motion records 

from ~1750 events are used to train a data-driven RNN model that uses six source and site parameters (including fault slab 

mechanism (𝐹), magnitude (𝑀𝑤), closest rupture distance (𝑅𝑟𝑢𝑝), Joyne-Boore distance (𝑅𝐽𝐵), soil shear-wave velocity 

(𝑉𝑠30), and hypocentral depth (𝑍ℎ𝑦𝑝) to predict a vector of 35 IMs (denoted as IM hereafter), including geomean of Arias 

intensity (𝐼𝑎), peak ground velocity (𝑃𝐺𝑉), peak ground acceleration (𝑃𝐺𝐴), significant duration (𝐷5−95) (denoted as 𝐼𝑎𝑔𝑒𝑜𝑚
, 

𝑃𝐺𝑉𝑔𝑒𝑜𝑚, 𝑃𝐺𝐴𝑔𝑒𝑜𝑚, and 𝐷5−95𝑔𝑒𝑜𝑚
, respectively), and RotD50 spectral acceleration at 32 periods between 0.05 to 5 seconds 

(for 5% damped oscillator; denoted as 𝑆𝑎(𝑇)).The proposed GGMM is a general tool that can be helpful for various 

applications such as: 1) multi-IM-based record selection for time-history structural analysis; 2) the assessment of geotechnical 

structures, where the parameters of interest are commonly not the spectral coordinates 𝑆𝑎(𝑇), but other IMs, such as 𝑃𝐺𝑉 

[2], 𝐼𝑎 [3]; 3) analysis and validation of simulated ground motions [4–7]; 4) vector-valued PSHA [8], etc. 
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Ground-Motion Database 

As indicated previously, this study uses a set of ~7000 two-component ground-motion acceleration time series from ~1700 

seismic events available in the SIBER-RISK strong motion database [9]. The locations of these events are shown in Figure 

1a, and the corresponding 𝑀𝑤 − 𝑅𝑟𝑢𝑝 metadata is presented in Figure 1b. In terms of the two mechanisms, i.e., interface 

and inslab, ~5000 ground motion records are from interface events, and ~2000 ground motion records are from intraslab 

events. As observed from Figure 1(b), the records include events with 𝑀𝑤  ranging from 3.7 to 8.8, while 𝑅𝑟𝑢𝑝 ranges from 

15 to 300 km. The statistical details of the other event parameters obtained from the metadata include i) 0.9 ≤ 𝑅𝐽𝐵 ≤ 298.2 

km; ii) 2 ≤ 𝑍ℎ𝑦𝑝 ≤ 213 km; and iii) 108 ≤ 𝑉𝑠30 ≤ 2127 m/s.  

 

          

(a)          (b) 

Figure 1.  Earthquake events: (a) epicenters; and (b) 𝑀𝑤 − 𝑅𝑟𝑢𝑝 metadata. 

 

 Generalized Ground Motion Model  
 

Mean model using Recurrent Neural Networks 

Similar to Fayaz et al. [1], this study employs long-short-term-memory (LSTM)-based RNNs to predict the considered IM 

vector and model their sequence-dependent behavior which means that the values are related to each other [10]. The neural 

network structure is trained with cross-validation using randomly selected 80% of the total dataset. The remaining 20% of 

the dataset is used as the test set, which is not used in the training of the RNN. The RNN structure is trained using six seismic 

source and site parameters, including 𝐹, 𝑀𝑤, 𝑅𝑟𝑢𝑝, 𝑅𝐽𝐵, 𝑉𝑠30,and 𝑍ℎ𝑦𝑝 (collectively denoted as 𝛉). The parameter 𝐹 is 

inputted as a one-hot vector with [1,0] for the interface mechanism and [0,1] for the inslab mechanism. These features 

basically describe the physical mechanism of the earthquake source (i.e., 𝐹, 𝑀𝑤, 𝑍ℎ𝑦𝑝) and the site characteristics (i.e., 

𝑅𝑟𝑢𝑝, 𝑅𝐽𝐵, 𝑉𝑠30). Also, as it is well known fact that unlike traditional machine learning and statistical models, neural 

networks don’t need explicit feature engineering as the weights of the neurons are automatically optimized through gradient 

descent depending on the sensitivity of the target variables with respect to the input features. 

 

 The prediction power of the trained RNN is analysed by comparing the measured and predicted values of the IM vector 

through the coefficient of determination 𝑅2. The 𝑅2 for the 32 periods of 𝑆𝑎(𝑇) and the other three IMs are shown in 

Figures 2a and 2b, respectively. It can be observed from the figures that in most cases the 𝑅2 is above 0.7 except for 

𝐷5−95,𝑔𝑒𝑜𝑚 and 𝑆𝑎(𝑇) for very short periods of less than 0.5 seconds for both train and test sets. This is because subduction 

ground motions tend to have very high variabilities for 𝑆𝑎(𝑇) for shorter periods and significant duration, which makes any 

pattern recognition very difficult in such cases. As an example, Montalva et al. [11] indicates a total standard deviation (in 

log-space) close to 0.86 for the short period domain (natural periods < 0.5s) and 0.79 for natural periods between 0.5-2.5s. 

The 𝑅2 values are also observed to be very close between the test and train sets, showing that the trained RNN is not 

overfitting the data and is capable of modelling IMs for the ground motions that are not used to train the model (i.e., the test 

set). It should be noted that the RNN framework is not only trained to possess good prediction power for each IM but also 



maintains the internal cross-dependencies within IM.  

 

              
(a)            (b) 

Figure 2.  𝑅2 for: a) 𝑆𝑎(𝑇); and b) 𝐼𝑎,𝑔𝑒𝑜𝑚, 𝑃𝐺𝑉𝑔𝑒𝑜𝑚, and 𝐷5−95,𝑔𝑒𝑜𝑚 

 

Covariance Matrices for Residuals 

Due to the hierarchical structure of the ground motions arising from multiple recordings of the same event at different 

stations and recordings from different events at the same stations, the residuals between the true log-scaled 𝐈𝐌𝑖𝑗 vector and 

RNN-predicted log-scaled 𝐈𝐌̂𝑖𝑗 vector are used to compute 35 values of between-event and within-event variabilities for ith 

event and jth recording. This is done by fitting a mixed-effects regression [12] model to the residuals as given in Equation 1 

where 𝜂𝑖 represents between-event variability with 𝚻𝟐 variance matrix for the 35 IMs (with 𝜏2
𝑘 for kth IM in the IM 

vector), 𝜀𝑖𝑗 represents within-event variability with 𝚽2 variance matrix for the 35 IMs (with 𝜙2
𝑘
 for kth IM in the IM vector 

) and 𝒄𝟎 represents any pending bias in the residuals for the 35 IMs. 𝒄𝟎 was observed to be very close to zero (failing the 

regression hypothesis t-test at 5% significance level [13]) and hence dropped in the overall analysis. Also, empirical Pearson 

correlations are computed for the residuals of 𝐈𝐌 vector, which are then used to convert the between-event and within-event 

variance matrices into their respective covariance matrices. The independent variances and the correlation structure (only 

for 32-period 𝑆𝑎(𝑇) spectrum) of the residuals are presented in Figures 3a and 3b, respectively. It is assumed that the 

correlation structure for 𝜀𝑖𝑗 and 𝜂𝑖 is the same. In summary, the overall RNN framework is developed for log-scaled mean 

predictions, and the residuals are used to construct between-event and within-event covariance matrices. The overall model 

(i.e., mean and covariances) is called the generalized ground motion model (GGMM). 

𝐈𝐌𝑖𝑗 − 𝐈𝐌̂𝑖𝑗 = 𝒄𝟎 + 𝜂𝑖(𝟎, 𝚻𝟐) + 𝜀𝑖𝑗(𝟎, 𝚽2) (1) 

  
(a)     (b) 

Figure 3. a) Between- and Within- Event Variances; and b) Residual Correlation Structure 

 

Comparison against other Chilean GMMs 

In this section, the spectral prediction of the proposed mean GGMM (i.e., RNN predictions) is compared against two popular 

state of the art GMMs utilized in Chile, i.e., (Montalva et al. [10]; Idini et al. [11]), denoted as MBR16 and IRRP17, 

respectively). However, both the GMMs were originally developed for the estimation of the geometric mean spectrum 



(𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎). As mentioned earlier, in this study 𝑅𝑜𝑡𝐷50𝑆𝑎 has been considered due to its popularity in the earthquake 

engineering community because of its unbiased nature and non-dependence on the orientation of sensors. Hence, to provide 

a fair comparison between the proposed GGMM and existing GMMs, it is essential to convert the 𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎 predictions 

into 𝑅𝑜𝑡𝐷50𝑆𝑎 without addition of any additional variability. Figure 4a presents the ratios of the 𝑅𝑜𝑡𝐷50𝑆𝑎 and 

𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎 for all the ~7000 Chilean subduction ground motions for the 32 periods used in this study. It can be observed 

that while the mean ratios for all periods lie very close to 1, the ratios can go as high as ~3 and as low as ~0.75. Hence, 

𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎-based GMM cannot be directly used for 𝑅𝑜𝑡𝐷50𝑆𝑎 estimates. Therefore, the mean predictions of the used 

GMMs (i.e., MBR16 and IRRP17) (denoted as 𝜇𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎
) are converted to 𝑅𝑜𝑡𝐷50𝑆𝑎 with no additional variability. 

This is done by using Equation 2. By computing the product in Equation 2, no variability is added to the mean estimates of 

the GMM and leads to the mean GMM estimates of 𝑅𝑜𝑡𝐷50𝑆𝑎 (denoted as 𝜇𝑅𝑜𝑡𝐷50𝑆𝑎
). This is equivalent to the GMMs 

developed for 𝑅𝑜𝑡𝐷50𝑆𝑎 having the same variance and errors that are associated with the GMM 𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎.  

 

𝜇𝑅𝑜𝑡𝐷50𝑆𝑎
 = 𝜇𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎

 ×
True 𝑅𝑜𝑡𝐷50𝑆𝑎

True 𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎
⁄  (2) 

  
(a)                (b) 

Figure 4.  a) Ratio of 𝑅𝑜𝑡𝐷50𝑆𝑎 and 𝐺𝑒𝑜𝑚𝑒𝑎𝑛𝑆𝑎; and b) 𝑅2 GGMM vs.GMMs 

 

 Figure 4b shows the comparison of the two GMMs and the GGMM estimates using the coefficient of determination 

𝑅2. It is observed that for all periods, the proposed GGMM leads to better goodness of fit and performs better than the other 

two GMMs. The two GMMs are very close in their prediction power, with IRRP17 having a slight edge for longer periods. 

It can be further observed that the proposed GGMM, on average, leads to 0.2 higher 𝑅2 than the other two GMMs. Hence, 

it can be quickly concluded that the proposed GGMM performs statistically better than both GMMs (i.e., MBR16 and 

IRRP17) while maintaining the internal cross-dependencies between the spectral accelerations at various periods, which is 

not present in the GMM estimates. 

Conclusions 
The RNN- and mixed-effects-regression- based GGMM proposed herein offers a robust seismic hazard-consistent tool for 

the Chilean subduction environment that can be used for several purposes, including structural and geotechnical design 

and analysis (e.g., ground motion selection using multi-objective IM criteria), risk- and reliability-based decision-making 

(where hazard consistent IMs are required), validation of artificial/simulated ground motion records (by checking if the 

simulated ground motions comply with a set of possible IM vector corresponding to causal parameters), etc. Tools, such 

as the GGMM model, will provide the users (both academic and professional engineers) a practical tool capable of 

estimating different IMs without the necessity to generate complicated routines to link the different tools that currently 

exist for the hazard consistent assessment. The GGMM will allow the users to use simple deterministic estimates of a 

seismic source and site parameters to generate a probabilistic distribution of the corresponding IM vector. The proposed 

GGMM can also be easily re-trained with new ground motion records or extended to a larger IM vector and can be 

appended to a seismic hazard analysis toolbox. Finally, GGMM proposed here has shown better goodness of fit regarding 

common GMMs, while at the same time it can predict another hazard consistent IMs (e.g., as 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝑃𝐺𝑉𝑔𝑒𝑜𝑚, 𝑃𝐺𝐴𝑔𝑒𝑜𝑚, 

and 𝐷5−95𝑔𝑒𝑜𝑚
) 
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