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Abstract

Recent biotechnological advances have led to a wealth of biological network data. Topo-

logical analysis of these networks (i.e., the analysis of their structure) has led to break-

throughs in biology and medicine. The state-of-the-art topological node and network

descriptors are based on graphlets, induced connected subgraphs of different shapes (e.g.,

paths, triangles). However, current graphlet-based methods ignore neighbourhood infor-

mation (i.e., what nodes are connected). Therefore, to capture topology and connectivity

information simultaneously, I introduce graphlet adjacency, which considers two nodes

adjacent based on their frequency of co-occurrence on a given graphlet. I use graphlet

adjacency to generalise spectral methods and apply these on molecular networks. I show

that, depending on the chosen graphlet, graphlet spectral clustering uncovers clusters en-

riched in different biological functions, and graphlet diffusion of gene mutation scores

predicts different sets of cancer driver genes. This demonstrates that graphlet adjacency

captures topology-function and topology-disease relationships in molecular networks.

To further detail these relationships, I take a pathway-focused approach. To enable

this investigation, I introduce graphlet eigencentrality to compute the importance of a

gene in a pathway either from the local pathway perspective or from the global network

perspective. I show that pathways are best described by the graphlet adjacencies that

capture the importance of their functionally critical genes. I also show that cancer driver

genes characteristically perform hub roles between pathways.

Given the latter finding, I hypothesise that cancer pathways should be identified by

changes in their pathway-pathway relationships. Within this context, I propose pathway-

driven non-negative matrix tri-factorisation (PNMTF), which fuses molecular network

data and pathway annotations to learn an embedding space that captures the organisation

of a network as a composition of subnetworks. In this space, I measure the functional

importance of a pathway or gene in the cell and its functional disruption in cancer. I

apply this method to predict genes and the pathways involved in four major cancers. By
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using graphlet-adjacency, I can exploit the tendency of cancer-related genes to perform

hub roles to improve the prediction accuracy.



Impact statement

Graphlet adjacency is an important work that redefines the neighbourhood of a node in a

network based on structural patterns in its connectivity. So far, I used graphlet adjacency

as a basis for generalising traditional spectral methods to account for pattern specific in-

teractions (see Chapters 3 and 4, or papers (Windels et al., 2019) and (Windels et al.,

2022)). The introduction of graphlet adjacency has led to new lines of research: (1) gen-

eralising network embedding algorithms, such as spring embedding, multidimensional

scaling and coalescent embedding, to account for connectivity patterns (thesis work of

Daniel Tello, 3rd-year PhD Student, University of Barcelona, paper in preparation) and

(2) defining new Natural Language Processing (NLP) inspired matrix representations of

networks that also account for connectivity patterns (thesis work of Alexandros Xenos,

3rd year PhD student, Polytechnic University of Catalonia, paper in preparation). In the

closing notes of this thesis, I list further extensions to the presented methods, includ-

ing improvements in graphlet counting and defining alternative notions of graphlet based

connectivity. Graphlet adjacency also forms the basis of a grant proposal I submitted in

Belgium at the Reasearch Foundation Flanders for Post-Doc funding. Lastly, graphlet

adjacency is part of the methods and know-how that are being transferred to a graphlet

technologies based start-up, via the ERC proof of concept grant 957488 of Professor

Nataša Pržulj.

I apply Pathway-driven non-negative matrix factorisation (PNMTF) to identify can-

cer implicated pathways based on the extent that their interactions with other pathways

change in cancer. With this, I effectively introduce a new paradigm in cancer pathway

analysis, as conventional approaches identify cancer-related pathways based on their in-

ternal rewiring. A current limitation of the PNMTF model is that it only allows to predict

genes as cancer related if they are pathway annotated. To overcome this limitation, in the

closing notes of the thesis, I redefine PNMTF as a subspace clustering algorithm, which

learns the assignment of nodes to subnetworks, i.e., de novo pathways.
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Chapter 1

Introduction

1.1 Motivation and objectives
Biology is flooded with large scale “omic” data. Genomic, proteomic, transcriptomic and

other data are typically modelled as networks (also called graphs). In molecular networks,

nodes usually represent genes or proteins and edges represent interactions or relationships

between them, such as physical interactions between the proteins (PPI), genetic interac-

tions (GI), or co-expressions (COEX) (Stark et al., 2006; Okamura et al., 2015).

Topological analysis of these networks, i.e. the analysis of their structure, has led

to breakthroughs in biology and medicine. At the node level, two main categories of

methods exist. Centrality based methods quantify the importance of a node either based

on its connectivity or based on its frequency of occurrence on shortest paths. Ever since

Jeong et al. (2001) showed that perturbing highly connected nodes in PPI networks has

a higher probability of impacting cell viability, these methods have become a major tool

for discovering gene functions and uncovering disease-related genes (e.g., see Wang et al.

(2011); Guo et al. (2016); Asensio et al. (2017)). Graphlet based approaches describe

the local wiring of a network around a node based on its frequency of occurrences on

graphlets, small, connected, induced subgraphs of different ‘shapes’ (i.e., paths, trian-

gles, etc.) (Pržulj et al., 2004). Graphlet based methods have been widely applied to

molecular networks, for instance to predict protein function (Gaudelet et al., 2018) and

to identify age-related genes (Li and Milenković, 2019). Current graphlet approaches

all suffer from the same shortcoming: they ignore node-neighbourhood information, i.e.,

they only capture the structure of the network around a given node, ignoring information

based on the identity of its neighbours or its location in the network.

In the case of molecular networks, it is known that they are also structurally or-

ganised as a composition of pathways, functional subnetworks within the cell that once
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activated lead to a certain product or change within the cell (Vogelstein and Kinzler, 2004;

DeBerardinis and Chandel, 2016). Pathway-focused network analysis approaches are fre-

quently considered to study diseases, as they provide functional context to the observed

gene mutations, which help to identify potential drug targets and determine disease sub-

types (Creixell et al., 2015). Current topological approaches prioritise disease implicated

pathways based on their internal rewiring, i.e., the rewiring of their nodes. To the best

of my knowledge, no approaches exist that take a higher-level view, prioritising disease

implicated pathways based on the rewiring of pathway-pathway interactions.

In this thesis, I aim to study the higher-order structure of networks at the node and

subnetwork level. In particular, I aim to extend graphlet-based methods to take node-

connectivity information into account. Additionally, I take higher-point of view and build

methods that capture the organisation of a network as an organisation of large molecular

subnetworks. I apply these methods to study the functional organisation of molecular

networks, uncover disease mechanisms and disease genes.

1.2 Thesis contributions
In this thesis I introduce new methodologies to study the higher-order topology of net-

works and apply them to solve problems in biology.

Methodological contributions. I built methods to describe and capture the higher-order

topology of networks:

• Chapter 3: To capture the higher-order organisation of nodes in a network, I in-

troduce graphlet adjacency, which considers two nodes connected based on their

frequency of co-occurrence in a given graphlet (induced connected subgraphs of

different ‘shapes’, such as paths and triangles). I use graphlet adjacency to gener-

alise spectral methods spectral embedding and spectral clustering. This work has

been published in (Windels et al., 2019).

• Chapter 4: To capture the topological importance of nodes in a network based on

their higher-order topology, as captured by graphlet adjacency, I introduce graphlet

eigencentrality. For a given graphlet, a node has a high graphlet eigencentrality if it

and its neighbours frequently occur on that graphlet. This work has been published

in (Windels et al., 2022).

• Chapter 5: To capture the organisation of a network as a composition of subnet-



1.3. Thesis outline 4

works, I propose pathways-driven non-negative matrix tri-factorisation (PNMTF),

which fuses network data and prior domain-specific knowledge assigning nodes to

subnetworks in the network. PNMTF allows to measure the topological impor-

tance of nodes and subnetworks in a network and the rewiring of their interactions

between two different network states.

Biological contributions. I apply the developed methods to study the functional organ-

isation of molecular networks and disease mechanisms. I results show that these meth-

ods capture strong topology-function and topology-disease relationships in molecular net-

works:

• Chapter 3: Graphlet adjacency provides complimentary views of the functional

organisation of molecular networks. This is shown for multiple types of molecular

networks, species and functional annotations. These results have been published in

(Windels et al., 2019).

• Chapter 4: Graphlet adjacency allows to predict complementary sets of cancer

implicated genes. This is shown for multiple types of molecular networks. These

results have been published in (Windels et al., 2022).

• Chapter 5: PNMTF allows to predict genes and the pathways involved in four

major cancers based on their functional importance in the healthy cell and their

changing functional relationships in cancer. By combining PNMTF with graphlet

adjacency, the tendency of driver genes to perform hub roles can be exploited to

increase prediction accuracy. Strong literature support is provided for the top pre-

dicted genes, of which six are predicted as potential cancer-specific drug targets.

1.3 Thesis outline
The thesis is outlined as follows:

Chapter 2: In this chapter I present relevant concepts from molecular biology, net-

work science and machine learning. Further, I provide an overview of biological network

data, model network data and network analysis methods. In particular, I focus on graphlet

based methods and spectral analysis. I also present key machine learning based data-

integration approaches that have been used in cancer precision medicine, with the main fo-

cus on non-negative matrix factorization (NMF) and non-negative matrix tri-factorization

(NMTF). This chapter is based on (Malod-Dognin et al., 2019a).
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Chapter 3: In this chapter I introduce graphlet-adjacency, which I use to generalise

spectral embedding, spectral clustering and spectral diffusion. Through spectral cluster-

ing and enrichment analysis, I show that different graphlet adjacencies capture comple-

mentary biological function. I explain the complementarity of biological functions cap-

tured by different graphlet adjacencies by showing that they capture different local topolo-

gies in model networks. Finally, by diffusing pan-cancer gene mutation scores based on

different Graphlet Laplacians, I find complementary sets of cancer related genes. Hence,

I demonstrate that Graphlet Laplacians capture topology-function and topology-disease

relationships in biological networks. This chapter is based on (Windels et al., 2019).

Chapter 4: In this chapter I build on the previously defined graphlet adjacency to

define graphlet eigencentrality. I apply this method to further investigate the relationships

between the topological features of genes in molecular networks as captured by graphlet

adjacencies and their biological functions, taking a more descriptive pathway-based ap-

proach. I show that pathways are best described by the graphlet adjacencies that capture

the importance of their functionally critical genes. I also show that cancer driver genes

characteristically perform hub roles between pathways. This chapter is based on (Windels

et al., 2022).

Chapter 5: In this chapter I introduce pathway-driven non-negative tri-matrix fac-

torisation (PNMTF), which learns the organisations of pathways in the healthy cell. Build-

ing on the observation that cancer drivers perform hub-roles between pathways, I apply

PNMTF to predict cancer pathways based on their changing pathway interactions in can-

cer. From the set of genes involved in the prioritised pathways, I prioritise genes impli-

cated in cancer. By combining PNMTF with graphlet adjacency, I can better capture the

hub-roles of genes and increase the prediction accuracy.

1.4 List of publications
Major results of this thesis have either been published in peer-reviewed journals. Below

is a list of published articles.

Publications:
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lar cancer mechanisms through pathway-driven data integration. Bioinformatics,

btac493.



Chapter 2

Background

In this thesis, I study the higher-order structure of molecular networks. In this chapter, I

introduce key concepts from biological network analysis, spectral theory, data-integration

applied machine learning and pathway focused approaches to study cancer disease mech-

anism, that are extensively used throughout this work.

The machine learning algorithms presented throughout this chapter are exclusively

examples of unsupervised learning or semi-supervised learning, i.e., they uncover pat-

terns in the data without or with incomplete prior knowledge of those patterns. In con-

trast, supervised learning learns to predict an A priori known class label for each data

point. In network-biology applications however, such labels are typically not available or

incomplete. After all, the nature of network biology is hypothesis generating or explo-

rative, aiming to uncover disease mechanisms, patient subtypes, etc. Hence, supervised

learning approaches fall outside of the scope of this chapter.

2.1 Network analysis

Network analysis studies the relationship between different discrete entities, such as

genes, patients or drugs, through their representation as networks. Below, I first define

the different biological networks subject of this thesis (Section 2.1.1). Then, I define dif-

ferent network centrality measures, which are used to describe different notions of the

importance of a node in a network (Section 2.1.2). Next, I define different classical net-

work descriptors that measure different key structural properties of a network (Section

2.1.3). I then go on to define graphlet-based node descriptors and network descriptors,

which are the current state-of-the-art (Section 2.1.4). Finally, I define theoretical model

networks that are frequently used to study biological networks (Section 2.1.5).
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2.1.1 Biological data and their network representation

Biology is flooded with large-scale “omic” data. Genomic, transcriptomic, proteomic,

metabolomic and other data are typically modelled as networks (also called graphs). In

this thesis I will focus on gene-based interaction networks, illustrated in Figure 2.1, that

capture different types of relationships (represented by unweighted and undirected edges)

between genes or proteins (represented by nodes).

• A protein-protein interaction (PPI) network consists of proteins (nodes) and phys-

ical bindings (edges). PPI networks are an example of a molecular interaction net-

work, in which nodes represent molecules and edges represent the molecules that

physically bind (Gligorijević and Pržulj, 2015). As proteins are encoded by genes,

often gene notations are used for proteins. Firstly, this allows for easy integration

and comparison with other gene-based interaction networks. Secondly, this allows

for the computation of context specific PPI networks, e.g. for a given tissue or dis-

ease, by inducing the set of context specific expressed genes on the set of nodes in

the generic PPI network (see for example (Kotlyar et al., 2019)). Key PPI databases

include BioGRID (Oughtred et al., 2019) and IID (Kotlyar et al., 2019).

• A co-expression (COEX) network captures which genes (nodes) are typically co-

expressed (edges), i.e. have a very similar expression pattern under different ex-

perimental conditions. A COEX network is an example of a similarity network, in

which nodes are connected if they are functionally or structurally similar. Creating a

COEX network is a two-step process. First, a pairwise similarity score is computed

between all the genes, based on their expression values under different experimental

conditions. Usually, the Pearson Correlation Coefficient (PCC) is used. Next, some

thresholding strategy is applied. For instance, one strategy is to connect each gene

to the top 1% of genes that have the most correlated expression levels. A different

approach would be to connect all gene pairs that show statistically significantly cor-

related gene expression levels. It should be clear that depending on the similarity

metric and thresholding strategy used, COEX networks of vastly different topology

could be generated based on the same gene-expression dataset. A key database for

gene co-expression data is the COXPRESdb database (Obayashi et al., 2019).

• A genetic interaction (GI) network captures the relations between genes (nodes) of

which their simultaneous mutation has measurable effect on the cell’s phenotype
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(edges). If the simultaneous mutation of two genes has a positive (negative) effect

on the cell viability, statistically significantly larger than expected from their indi-

vidual mutation, the genes have a positive (negative) genetic interaction (Costanzo

et al., 2010). Note that the genes part of a genetic interaction do not necessarily

physically interact. Rather, they are functionally associated and are therefore an

example of a functional association network. Genetic interactions can be found in

the BioGRID database (Oughtred et al., 2019).

I denote a networks as H = (V,E), where V is the set of n nodes in the network, and E is

the set of edges (West, 2001). The adjacency of all nodes in network H is represented by

an n× n symmetric adjacency matrix A, where the entries Auv are 1 if nodes {u,v} ∈ V

are connected by an edge in E (i.e. are ‘adjacent’) and 0 otherwise. For a given node u, its

(direct) neighbourhood, Nu, is defined as the set of nodes in the network it is connected

to by an edge: Nu = {v : euv ∈ E ∨ evu ∈ E}. The degree of a node u, ku, is equal to the

number of nodes in its neighbourhood: ku = |Nu|.

Figure 2.1: Molecular networks in human. From left to right, a breast cancer specific human
PPI, COEX and GI network. This Figure is adapted from Figure 1 in (Malod-Dognin
et al., 2019b).

2.1.2 Node centrality

Ever since Jeong et al. (2001) showed that perturbing highly connected nodes in PPI

networks is more likely to impact cell viability, node centrality measures, which measure

different notions of topological importance of a node in a network, have become a major

tool for discovering gene functions and uncovering disease-related genes (e.g. see Wang

et al. (2011); Isik et al. (2015); Guo et al. (2016); Asensio et al. (2017)). Below I focus

on four major node centrality measures. Similar concepts can also be considered from the

edge point of view. For more details, I refer the reader to Newman (2010).

Centrality measures can be classified into two categories. The first category of cen-

trality measures quantifies the importance of a node based on its connectivity.

• The degree centrality considers highly connected nodes to be the most important
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nodes in the network. As such, the degree centrality of a node is synonymous for its

degree: it is its number of neighbours in the network, or equivalently, the number of

edges in the network including the node. Formally, the degree centrality, of a node,

u ∈V , is:

DC(u) = |Nu|=
n

∑
v=1

Auv. (2.1)

• The eigencentrality is a more sophisticated version of the degree centrality, which

considers the most important nodes to be the nodes that are highly connected to

other highly connected nodes in the network. Formally, the centrality of a node

u ∈ N, ECu, is defined as the average of the centralities of its m neighbours:

EC(u) =
1
λ

m

∑
v=1

EC(v)Auv, (2.2)

where λ is a constant. More detail into the intuition behind the eigencentrality and

its computation is provided in chapter 2.2 on spectral theory.

The second category of centrality measures quantifies the importance of a node based

on network paths. A path in a network is the sequence of node and edges traversed when

following edges from one to another across the network, without revisiting the same nodes

or edges. The length of a path is equal to the number of edges traversed. The shortest path

between a pair of nodes is a path such that the number of edges and nodes traversed is

minimal. The graph geodesic distance between a pair of nodes is the length of the shortest

path between them. Note that the shortest path between a pair of nodes in a network is

not necessarily unique.

• The closeness centrality considers a node to be central in the network if it is nearby

to all other nodes in the network. Formally, the closeness centrality a node, u ∈V ,

is equal to the reciprocal of the average distance of u to every other node in the

network:

CC(u) =
1

∑
n
v=1 d(u,v)/n

, (2.3)

were d(u,v) is the distance between u and v.

• The betweenness centrality measures the amount of control u has on the flow of

information in the network. Formally, the betweenness centrality of a node u is the

fraction of shortest paths between all nodes in the network on which u occurs over
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all shortest paths in the network:

BC(u) =
s,t∈V

∑
σ(s, t|u)
σ(s, t)

, (2.4)

where σ(s, t) is the number of shortest paths in the network from node s to node t,

and σ(s, t|v) is the number of those paths that include node u.

Per definition, these different centrality measures capture different but related notions of

centrality. For instance, Figure 2.2 shows that the different centrality measures presented

are statistically significantly correlated in an Erdős-Rènyi (ER) random network (see Sec-

tion 2.1.5, (Erdős Paul and Rényi Alfréd, 1959)). The strength of the correlations between

these different centrality measures depends on the topology or wiring pattern of the global

network on which these centrality measures are applied (Oldham et al., 2019).

DC EC CC BC
DC 0.93 0.94 0.95
EC 0.92 0.76
CC 0.84
BC

Figure 2.2: Different centrality measures are related. I present the pairwise Spearman Rank
Correlation between the different presented centrality measures (columns and rows),
applied on an Erdős-Rènyi random network of 5,000 nodes and 625,000 edges. All
centrality measures are highly correlated, as the minimum correlation found is 0.76
and all correlations are statistically significant at the 1% significance level.

2.1.3 Classical network descriptors

Network descriptors summarize the global structure of a network. Here I list global net-

work descriptors frequently used to describe and compare networks.

• The density of a network is the ratio of the total number of edges in the network

over the potential number of edges in the network: |E|
(n(n−1))/2 . Equivalently, it is the

probability that a randomly selected pair of nodes in the network is connected.

• At the node level, the local clustering coefficient is defined as the number of edges

between its neighbours over the possible number of edges between them: CC(U) =

|evw:v,w∈Nu,evw∈E|
(du(du−1)/2) . It quantifies how close the neighbours of a given node are to being

a clique. The global clustering coefficient is defined as the average of the local

clustering coefficient over all nodes. It is a measure of the extent to which nodes in

a network tend to cluster together. Equivalently, it reflects the likelihood that a pair

of nodes interact given that they share a common neighbour.
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• The average path length is the mean geodesic distance between all pairs of nodes

in the network. If a network has a small average path length and high clustering

coefficient, it is considered to be small-world. In this case, nodes are expected to

share neighbours so that most nodes can be reached from every other node by a

traversing only small number edges. A related measure is the network diameter,

which is equal to the length of the longest shortest path in the network.

• The degree distribution is the distribution of node degrees over all nodes. It is sum-

marized as a vector of counts, i.e. the kth value is the number of nodes that have

degree k. Many networks, including PPI networks, display a scale-free degree dis-

tribution, where some nodes, called hubs, have many more connections than other

nodes in the network. Formally, a network is scale-free if its degree distribution

follows a power law: P(k)∽ k−γ , with the constant γ typically ranging from 2 to 3

in real-world scale-free networks (Jeong et al., 2001; Broido and Clauset, 2019).

2.1.4 Capturing and quantifying network topology with graphlets

Current state-of-the-art node descriptors and network descriptors are based on graphlets:

small, connected, non-isomorphic, induced sub-graphs of a large network (Pržulj et al.,

2004). Graphlet based methods have been applied to predict protein function (Gaudelet

et al., 2018) and identify age-related genes (Li and Milenković, 2019) based on their

interaction patterns in PPI networks.
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Figure 2.3: Illustration of graphlets and graphlet degree vector. A: All graphlets with up to
4 nodes, labeled G0 to G8. B: A dummy network H. The 15 automorphism orbits are
differently shaded and labeled (from 0 to 14) within each graphlet. C: The graphlet
degree vector of node ‘a’ in the example network, H, and its relationship to graphlet
counts. Node ‘a’ touches graphlet G0 once on orbit 0, via edge a-b. Node ‘a’ touches
graphlet G1 twice, each time at orbit 1, via paths a-b-c and a-b-e. This figure is taken
from (Windels et al., 2019).

I illustrate graphlets in Figure 2.3-A. Within each graphlet, automorphism orbits are

groups of nodes such that node-permutations within the orbit (i.e. swapping them) pre-

serves the structure of the graphlet (Pržulj, 2007), as illustrated by differently shaded

nodes in Figure 2.3-A. The graphlet degree vector (GDV) quantifies the local topology

of a node as a vector of counts of how many times it touches each graphlet at a particular

automorphism orbit (Milenković and Pržulj, 2008), as illustrated in Figure 2.3-C. Rep-

resentational learning is an alternative approach for computing vectors that capture the

local topology nodes in a network. For instance, node2vec learns a mapping of nodes to

a low-dimensional space of features that maximizes the likelihood of preserving network

neighborhoods of nodes (Grover and Leskovec, 2016). However, unlike GDV’s, which

describe the local topology in terms of orbit counts, these learned features are not readily

interpretable.

Two graphlet based network descriptors exist. The graphlet degree distribution gen-
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eralizes the degree distribution. It is the joint distribution of the graphlet counts over all

nodes for each of the different graphlets (Pržulj, 2007). Alternatively, the Graphlet Cor-

relation Matrix (GCM) summarizes network topology as an 11 × 11 symmetric matrix

comprising the pairwise Spearman’s correlations between 11 non-redundant orbit counts

over all nodes in the network (Yaveroǧlu et al., 2014).

Because of biotechnological capturing limitations and human biases, biological net-

works are globally noisy and locally less noisy, so methods designed to capture the local

structure of the data have been shown to generally outperform global methods (Roweis

and Saul, 2000; Wu and Scholkopf, 2006). As graphlets are used to capture local wiring

patterns, graphlet-based methods have also been shown to be robust to noisy data. For in-

stance, when using GDVs on PPI networks to predict protein functions, similar predictive

performance is measured on less complete PPI networks (Milenković and Pržulj, 2008).

When clustering different types of molecular networks of different sizes (i.e., complete-

ness) based on their GCD distance, the networks are grouped by their molecular type

rather than their size (Yaveroǧlu et al., 2014).

2.1.5 Model networks

To provide insight into the organisational principles and evolution of molecular networks,

their topology is usually compared to that of theoretical models. Below I list some of the

key model networks used today.

• The Erdős-Rènyi random networks (ER) represent uniformly distributed random

interactions (Erdős Paul and Rényi Alfréd, 1959). ER networks are generated by

fixing the number of nodes to n, and by randomly adding edges between uniformly

chosen pairs of nodes (out of the n(n−1)/2 possible pairs of nodes) until the density

is the same as that of the real network.

• The generalized random model (ER-DD) is an extension of ER model, where the

distribution of the degrees of nodes in the generated network mimic the one of

an input network (Newman, 2009). ER-DD networks are generate by assigning

connection capacities (stubs) to the n nodes of the network, and then adding edges

between nodes that have available stubs uniformly at random while reducing the

available stubs of the newly connected nodes after each edge addition.

• The random geometric model (GEO) represents proximity relationships between

uniformly distributed points in a space (Penrose, 2003). GEO networks are gen-



2.1. Network analysis 15

erated by uniformly distributing n points (nodes) in 3-dimensional space and by

connecting nodes by edges if the Euclidean distances between the corresponding

points are lower than or equal to threshold r, which is set so to obtain the edge

density that similar to that of the real network.

• The Geometric with gene duplication model (GEO-GD) is a geometric model in

which the dispersion of nodes is no longer uniformly random, but according to a

duplication rule, mimicking the gene duplication process in evolution (Pržulj et al.,

2010). GEO-GD network are generated starting from a seed network (i.e. a single

edge) to which the duplication process is applied: a randomly chosen parent node is

duplicated, and the new node is randomly placed at a distance smaller than or equal

to 2r (where r is the same distance threshold as in GEO model). This duplication

process iterates until the required number of nodes is generated, after which edges

are created following the GEO model rules so as to achieve the requested edge

density.

• The Barabási-Albert scale-free model network (SF-BA) (Barabási and Albert,

1999) are characterized by a scale-free topology, meaning the networks have a de-

gree distribution that follows a power law (Barabási and Albert, 1999). SF-BA net-

works are generated starting from small seeds (one edge), to which nodes are added

based on the “rich-gets-richer” principle: new nodes are attached to existing nodes

of the network with a probability based on that of the nodes in the underlying real

network. Scale-free networks are considered to be robust to the random failure of

nodes, yet vulnerable to failures of hub-nodes. Firstly, this is because the likelihood

that a hub-node is affected is relatively low. Secondly, even when a high degree

node is removed, as SF-BA networks are small world, other high degree nodes are

expected to be nearby. Therefore, removing a high degree node is not expected to

significantly impact the connectedness of the network (Cohen et al., 2000).

• The scale-free model network mimicking gene duplication and mutation events

(SF-GD) is a scale-free model that mimics the gene duplication and gene diver-

gence processes from evolution (Vazquez et al., 2001). SF-GD networks are gener-

ated starting from a small seed network (one edge), which is grown through iterative

duplication and divergence events. In each iteration, a randomly selected existing

node, v, is duplicated into a new node, u. This new node is connected to all of the
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neighbours of v and may be connected to v itself with probability p. Divergence

is achieved by considering all of the shared neighbours of u and v, and removing

a connection with probability q (chosen to mimic the edge density of the real net-

work) for either u or v.

• The stickiness-index model network (Sticky) (Pržulj and Higham, 2006) assumes

that the higher the degree of two nodes, the higher the probability that they are

neighbours. A Sticky network is generated starting from n disconnected nodes,

to which randomly stickiness index values are assigned (proportional to the node

degrees of the input real network). Then, the probability of connecting two nodes

is equal to the product of their stickiness indexes.

• The popularity-similarity-optimization (PSO) model is a geometric model that aims

to model how popular nodes tend to gain and lose in popularity over time and how

similar nodes are typically more likely to be connected (Papadopoulos et al., 2012).

Nodes are generated one by one (simulating time) and placed on a hyperbolic disk

at a given angular coordinate (i.e. the direction from the centre of the disk) and

radial coordinate (i.e. the distance from the centre of the disk). Newly generated

nodes are connected to already existing nodes based on a given probability that is

controlled by temperature parameter T . When T = 0, newly generated nodes are

likely to be connected to nearby nodes, leading to a clustered network structure.

When T is 1, newly generated nodes are as likely to connect to nearby nodes as to

nodes far away, leading to an unclustered network structure. The radial coordinate

models popularity behaviour. This is because nodes are generated progressively

more towards the outer rim of the disk. Therefore, by the end of the network gen-

eration process, the nodes that have been there the longest and thus had the most

opportunities of gaining connections, are near near the centre of the disk. Addition-

ally, the average distance to all other nodes in the disk is the lowest in the centre,

so early generated nodes are also more probable to connect because they are more

likely to be nearby another node (if T < 1). The angular coordinate models node

similarity behaviour: similar nodes find themselves on the same direction on the

disk and are more likely to be connected.

• The nonuniform popularity-similarity optimization (nPSO) model extends the PSO

model to model community structure in a network (Muscoloni and Cannistraci,
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2018). To do so, the angular coordinate of a newly generated node is sampled from

a Gaussian mixture model with C components (replacing the uniform distribution

used in the original PSO model), where C is the number of communities.

Comparing real-world networks to these models provides insight into their evolution

and structure, as these model networks have known structural properties. For instance,

the clustering coefficient an ER network is equal to its density, e.g. the probability that a

pair of nodes in the network is connected. SF-BA networks a scale-free distribution and

are robust to the random deletion of nodes. As the clustering coefficient of PPI networks

is higher than that of an ER network of similar size and density, one can infer that nodes

in PPI networks do not connect randomly. Furthermore, as PPI networks are shown to

be scale-free, they are therefore assumed to be similarly robust to random node deletions

like SF-BA networks (Vazquez et al., 2004).

As a consequence, one of the first steps in the analysis of a real-world network is

often to identify the model network it is the most similar in structure to, a process re-

ferred to as model fitting. For a given real-world network, the best fitting model network

is the one to which it has the lowest topological distance. The current state-of-the-art net-

work distance measure is GCD11 (Yaveroǧlu et al., 2015), which measures the distance

between a pair of networks as the euclidean distance between their GCM’s (see Section

2.1.4) (Yaveroǧlu et al., 2014). Of key importance is the fact that GCD11 does not require

the assumption of an underlying model network (as for real networks a proper model is

often not known) and does not require the alignment of the nodes of the networks whose

distance is being measured (which is computationally expensive) (Yaveroǧlu et al., 2017).

2.2 Spectral graph theory
I recall that adjacency of all nodes in network H(V,E) is represented by an n×n symmet-

ric adjacency matrix A, where the entries Auv are 1 if nodes {u,v} ∈V are connected by an

edge (i.e. are ‘adjacent’) and 0 otherwise. A related network representation is the Lapla-

cian matrix, which is defined as L = D−A, where D is the diagonal matrix such that Duu

is equal to the degree of node u. Both the adjacency matrix and the Laplacian matrix are

diagonalisable, i.e. for each of them there exists a basis such that when multiplying them

by this basis they are diagonal. This follows from the Spectral Theorem:

Theorem 1 (Spectral Theorem). If M is an n× n symmetric matrix, then there exists an
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orthogonal matrix U and a diagonal matrix Λ such that:

MU = ΛU. (2.5)

The values on the diagonal of Λ are called the eigenvalues of M. The column vectors

of U are known as the eigenvectors of M. Computing the eigenvectors and eigenvalues of

a matrix is known as performing eigendecomposition.

It turns out that the eigenvectors and eigenvalues of both the adjacency matrix and

Laplacian matrix capture many different topological properties of the underlying network

H. The study of relating the eigenvectors or eigenvalues of the Laplacian or adjacency

matrix of a given graph to certain topological properties is known as spectral graph theory

(see (Chung and Graham, 1997) for an extensive overview to the topic). Here, I present

different network analysis tools that make use of spectral theory and that have been ap-

plied throughout this thesis: spectral clustering (Section 2.2.1), spectral diffusion (Section

2.2.2), spectral embedding (2.2.3) and eigencentrality (2.2.4).

2.2.1 Spectral clustering

Spectral clustering refers to the class of algorithms that identify groups of densely con-

nected nodes in a network based on the eigendecomposition of its Laplacian matrix (Von

Luxburg, 2007). This is because the eigenvectors of the Laplacian naturally uncover the

clusters present in the network. Here, I will provide an intuition to why this is the case.

Additionally, I will explain how spectral clustering relates to graph-cut algorithms, which

identify groups of densely connected nodes in a network by cutting the network into in-

creasingly smaller densely connected components. For a more rigorous yet accessible

introduction to the subject, I refer the reader to (Vidal et al., 2016).

Assume a network H, consisting out of k components. In this case, the network’s

corresponding Laplacian matrix will have k eigenvectors in its null space (i.e. there exist

k eigenvectors corresponding to the eigenvalue 0). These k vectors are cluster indicator

vectors, assigning each the n nodes of the network to one of the k components. This prop-

erty is illustrated in Figure 2.4. When small perturbations make the network connected,

as illustrated in Figure 2.5, it can be shown that the k eigenvectors corresponding to the

smallest non-zero eigenvalues can still uncover the “true” underlying clustering of the

network (Davis and Kahan, 1970). In practice, K-means clustering is applied on the first

k eigenvectors to extract a clustering of the nodes, see Algorithm 1. This algorithm is
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Figure 2.4: Laplacian eigenvectors capture the component structure of a disconnected net-
work. Left: a disconnected dummy network H. Right: the first two eigenvectors of
the Laplacian of H. The first (second) eigenvector assigns nodes A, B, C, (D, E, F) to
the same cluster, capturing the fact that they form a disconnected component together.
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
0.5 0.3 0.2 A
0.5 0.5 0 B
0.5 0.5 0 C
0.5 0.2 0.3 D
0.5 0 0.5 E
0.5 0 0.5 F

Figure 2.5: Laplacian eigenvectors capture the clustering structure of a connected network.
Left: a connected dummy network H ′. H ′ is a lightly perturbed version of the network
H in Figure 2.4, with an edge added between nodes A and D. Right: the first three
eigenvectors of the Laplacian of H ′. The first eigenvector assigns all nodes to the
same component, i.e. the fully connected network. The second (third) eigenvector
assigns nodes A, B, C, (D, E, F) to the same cluster, capturing the original component
structure of H, despite the small perturbation.

what is generally referred to when spectral clustering. Applying spectral clustering using

the symmetrically normalized Laplacian is known as normalized spectral clustering.

Spectral clustering can also be considered as a graph-cut algorithm. The minimum-

cut problem considers clustering the nodes of a graph by cutting the graph into d graph

partitions whilst minimizing the number of edges being cut. However, in many networks

often the cheapest cuts would be to remove the individual nodes that are only connected

to the network by a single edge, resulting in clusters containing only a single node. To

achieve a more balanced clustering, ratio-cut problem normalises each graph cut by the

number of nodes in each cut (Hagen and Kahng, 1992). Alternatively, the normalised-

cut problem normalises each cut by the degree of the nodes in the cut (Ng et al., 2002).

Spectral clustering and normalised spectral clustering respectively approximately solve

the ratio-cut problem and the normalised cut problem. As such, next to basis vectors

and cluster indicator vectors, the eigenvectors of the Laplacian can also be interpreted as

graph-cuts.
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Algorithm 1 Spectral clustering
Input Number of clusters, d, the Laplacian matrix, L , of an network, H, with n

nodes.

Output d clusters of the n nodes of H.

1: Compute the d eigenvectors of L associated with its d smallest eigenvalues: U =

[u1, . . . ,ud] ∈ Rn×d .

2: Normalize U so that each column has unit norm.

3: Cluster the n points {u}n
u=1 into d groups using K-means.

2.2.2 Network diffusion

Network diffusion refers to a family of related techniques, which propagate information

on nodes through the network. Here I focus on the diffusion kernel. The diffusion kernel is

often called the ‘heat kernel’, as it can be viewed as describing the flow of heat originating

from the nodes across the edges of a graph with time. In network biology nodes typically

represent genes and ‘heat’ on a node represents experimental measurements. For a set of

n nodes these measurements are encoded in vector P0 ∈ Rn. Information is diffused as

follows: P = HP0, where H is a diffusion kernel. The diffusion kernel, Hk
α , is defined as

the matrix exponential of the Laplacian matrix (Kondor and Lafferty, 2002):

Hα = e−αL , (2.6)

where the parameter α ∈R controls the level of diffusion. Hα can be computed as follows:

Hα =
n

∑
i=1

uieαλiuT
i , (2.7)

where ui is the I-th normalized eigenvector of the Laplacian and λi its corresponding

eigenvalue.

Many popular bioinformatics software packages are based on network diffusion. For

instance, given a molecular network and a set of genes differentially expressed in disease,

HotNet identifies significantly altered subnetworks in disease (Reyna et al., 2018). Given

a molecular network and a set of genes of interest, GeneMANIA identifies genes in the

network that are related (i.e., intertwined) with the genes of interest (Franz et al., 2018).
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2.2.3 Spectral embedding

Spectral Embedding projects a network in a low-dimensional space, placing nodes closely

together in that latent space if they are part of the same network neighbourhood. Here, I

present the Laplacian Eigenmap embedding algorithm (Belkin and Niyogi, 2003) so that

two nodes are embedded close in space if they frequently share the same neighbour. Given

an unweighted network G with n nodes, a low dimensional embedding, Y = [y1, ...,yn] ∈

Rd×n, is computed so that if nodes u and v are adjacent, then y(u) and y(v) are close in

the d-dimensional space by solving:

minimize
Y

n

∑
u=1

n

∑
v=1

A(u,v)∥yu −yv∥2

subject to : Y D111 = 000 and Y DY T = I,

(2.8)

where A is the adjacency matrix of G and D is the degree matrix of G. The columns of Y

are found as the generalized eigenvectors associated with the second 1 to (d+1) smallest

generalized eigenvalues solving YL = ΛY D, where Λ is the diagonal matrix with the

generalized eigenvalues along its diagonal.

2.2.4 Eigencentrality

I recall that the eigencentrality is a more sophisticated version of the degree centrality,

which considers the most important nodes to be the nodes that are highly connected to

other highly connected nodes in the network. Formally, the eigencentrality of a node

u ∈V , EC(u), is defined as the average of the eigencentralities of its n neighbours:

EC(u) =
1
λ

n

∑
v=1

AuvEC(v), (2.9)

where λ is a constant. This equation in matrix form:

Ac = λc, (2.10)

where c is the vector of centralities, c = (c1,c2, . . .). From this it is clear that c is an

eigenvector of A. Additionally, for c to be interpretable as a centrality measure, it is

necessary for all entries to be non-negative. Per the ‘Perron–Frobenius theorem’, it can

be proven that the eigenvector corresponding to the largest eigenvalue contains only non-

negative entries.

1Assuming the network is one large connected component.
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It should be noted that the eigencentrality is not a useful measure on direct networks.

The underlying cause is the fact that eigencentrality of nodes having only outgoing con-

nections would be zero. This is problematic as nodes with (potentially many) incoming

edges coming solely from nodes with a centrality of zero, would also have a centrality of

zero. To solve this issue, the Katz-centrality (KC) adds some ‘free’ centrality, βu, to each

one of the nodes: KC(u) = α ∑
n
v=1 AuvKC(V )+βu. Another related extension for directed

networks is the Page-rank-centrality (PR). To take into account how important a given

node is from the perspective of its neighbours, the centrality of its neighbours is weighted

by that neighbours number of outgoing edges: PR(u) = α ∑
n
v=1 AuvPR(v)/dout

v +βu.

2.2.5 Laplacian alternatives: k-path Laplacian and Vicus

The standard Laplacian captures direct connectivity between nodes in a network. To

capture the influence of long-range interactions between nodes, Estrada (2012) proposed

the k-path Laplacian by generalizing the concepts of adjacency and degree. The k-path

Laplacian defines a pair of nodes u and v to be k-adjacent if the shortest path distance

between them is equal to k. Analogously, k-path degree, degk(u), generalizes the concept

of the degree to the number of length k shortest paths that have node u as an endpoint.

The k-path Laplacian, L P
k , is defined as:

L P
k (u,v) =


−1 if d(u,v) = k

degk(u) if u = v

0 otherwise.

(2.11)

Vicus is an alternative to the Laplacian that captures the intricacies of a network’s

local structure (Wang et al., 2017) based on network label diffusion. Label diffusion is

defined as P = BQ, where the n×d matrix Q assigns the n nodes of network G to one of

d possible labels (for labeled nodes), B is an n×n diffusion matrix, and the reconstructed

matrix P is an n×d matrix used for predicting labels for unlabeled nodes. To give Vicus

its ‘local’ interpretation, the label diffusion process determining B is constrained to diffuse

information of each node only to its direct neighbourhood (see next paragraph). Under

given assumptions and defining Vicus as L V = (I −BT )(I −B), it was shown that Q

can be learned as the eigenvectors of L V . As Q captures the local connectivity between

nodes that is implied by the ‘localized’ diffusion matrix B and can be computed as the

eigenvectors of L V , Vicus is interpreted as a Laplacian matrix.
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The label diffusion matrix, B, is defined as follows. The authors of Vicus modified

the diffusion process slightly from the original, in the sense that diffusion is limited to the

direct neighborhood of each node to give Vicus its ‘local’ characteristics (instead of the

diffusion process being applied over the entire graph at once). Formally, they define for

each node u a local K ×K adjacency matrix Wu, which is the sub-matrix of the adjacency

matrix A limited to u and its K − 1 neighbours, N(u). Then, Su is defined as the row-

normalized transition matrix of Wu:

Su(v, t) =
Wu(v, t)

∑
K
l=1Wu(v, l)

. (2.12)

Matrix βu encodes the label diffusion for u and its direct neighbours βu = (1−α)(I −

αSu)
−1, where α controls the level of label diffusion. Label diffusion matrix, B, of G is

defined as:

B(u,v) =


βu(u,v)

1−βu(u,u)
if v ∈ N(u)

0 otherwise.
(2.13)

Vicus has been applied to protein module discovery and ranking of genes for cancer sub-

typing (Wang et al., 2017).

2.3 The different types of data-integration methods
In recent years rapid biological advancements have flooded biology with new large-scale

data on different biological entities (genes, patients, drugs, etc.) and the relations between

them (Gligorijević et al., 2016a). As these data provide complementary views on the same

biology, data integration methods have been proposed in order to simultaneously mine

these heterogeneous data and provide system levels insight not achievable from analysis of

these network data individually. Here, I briefly describe the underlying principles of key

machine learning approaches used to integrate biological data, including: Network-based

data integration (Section 2.3.1), Bayesian data integration (Section 2.3.2), Kernel-based

data integration (Section 2.3.3), Neural network based approaches (Section ??). However,

the core of this section focusses on non-negative matrix factorization based approaches

(Section 2.3.4).

2.3.1 Network-based data integration

Network-based methods offer simple ways to integrate different network data. For homo-

geneous integration of d different networks H1 = (V,E1), H2 = (V,E2), . . . , Hd = (V,Ed),
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that share the same set of nodes, V , but have different sets of edges (Ei,1≤ i≤ d) connect-

ing their nodes, the simplest network based data integration consist of taking the union of

all networks, i.e. Hunion = (V,
⋃

i Ei) (Dutkowski et al., 2013) (illustrated in Figure 2.6).

However, this simple approach does not consider varying noisiness and incompleteness

of the different datasets, as all input networks contribute equally to the integrated model.

TP53

OTDUD5

CELA2B

TP53BP2

TP53BP1

MDM4

CREBBP

ANAPC4

(A) Protein-protein interactions

TP53

OTDUD5

CELA2B

TP53BP2

TP53BP1

MDM4

CREBBP

ANAPC4

(B) Co-expression

TP53

OTDUD5

CELA2B

TP53BP2

TP53BP1

MDM4

CREBBP

ANAPC4

(C) Union

Figure 2.6: Illustration of network-based integration. Part of the local interactions arround
protein TP53 (a tumor suppressor protein that regulates cell division by preventing
cells from growing and dividing in an uncontrolled way), as taken from STRING
database (Szklarczyk et al., 2014). A: The protein-protein interactions between the
proteins. B: The proteins that are co-expressed. C: The union of the two networks
presented.

To overcome this limitation, another approach consists of considering the adjacency

matrices of each network, Ai,1 ≤ i ≤ d, and combining them using a linear combination:

Aunion = ∑i wiAi, where wi ≥ 0 is the weight associated to network Ni so that the quality

of the integrated model is optimized (Mostafavi et al., 2008; Chen et al., 2013). Finding

weights wi requires solving a system of linear equations, which will assign lower weights

to “less contributing” networks. More advanced methods use message passing theory

(Pearl, 2014) to iteratively update the input networks, making them more similar to each

other after each iteration, until they converge to a single, integrated model (Wang et al.,

2014a).

In heterogeneous network integration, nodes and edges of different types are joint

into a single large network. Earlier network based approaches for heterogeneous in-

tegration (e.g. of networks having different sets of nodes and edges) often requires a

preliminary step in which all networks are projected on a set of common nodes (Davis

and Chawla, 2011; Sun et al., 2014), resulting in information loss. More advanced ap-

proaches, called network propagation methods, can directly integrate heterogeneous data

using diffusion processes that spread information along the edges of the networks (Guo

et al., 2011; Huang et al., 2013).

Recently, heterogeneous network integration has seen a revival as part of deep learn-
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ing frameworks. In this context, heterogeneous networks have been rebranded as knowl-

edge graphs, so called as they represent all the knowledge of a given domain (Ehrlinger

and Wöß, 2016). For instance, Decagon is a graph convolutional neural network trained

to predict drug combinations’ side effects (Zitnik et al., 2018). It is trained on a knowl-

edge graph (i.e., a single large heterogeneous network) of protein–protein interactions,

drug–protein target interactions and drug–drug interactions (i.e., polypharmacy side ef-

fects).

2.3.2 Bayesian approaches

A Bayesian network is a probabilistic graphical model that represents a set of random

variables and their conditional dependencies. A Bayesian network is based on a directed

acyclic graph (DAG, see chapter 3) in which nodes represent variables and in which a

directed edge from node y to node x represents the conditional probability between x and

y. The conditional probability between x and y is denoted by p(x|y) and is the probability

of x given the value of y. A Joint Probability Distribution (JPD) of a Bayesian network

having n nodes, x = {x1,x2, . . . ,xn}, is:

p(x|θ) =
n

∏
i=1

p(xi|Pa(xi)), (2.14)

where Pa(xi) are the ancestor of xi in the Bayesian network, and θ = {θ1, θ2, . . . , θn} are

the model’s parameters that define the JPD. Not only does the Bayesian network capture

the structure of the data, but also its sparsity also eases the computation of the JPD over

the whole set of random variables. I.e., the number of parameters that are needed to

characterize the JPD is reduced in the Bayesian network representation (Needham et al.,

2007; Ben-Gal, 2008).

Constructing a Bayesian networks requires (1) learning the network’s wiring pat-

terns, which is called structure learning, and (2) learning the parameters of its JPD,

which is called parameter learning (Needham et al., 2007; Ben-Gal, 2008). Structure

learning consist of identifying the statistical dependencies (represented by edges in the

DAG) between the variables. Because the number of possible wirings in a network is

super-exponential in its number of nodes, learning the Bayesian network that best repre-

sents a dataset is an NP-hard problem for which heuristic algorithms have been proposed

(Needham et al., 2007). Once the structure and the parameters of a Bayesian network

have been learned, it can be used for inference (prediction) about its variables. For ex-
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f: FOXE1e: GLI

c: SHHb: SUFU d: GLI2

a: GLI3

Figure 2.7: Bayesian Network: example of a gene regulatory network. The presented
Bayesian network encodes part of the regulatory relations of GLI proteins (in pink),
which are transcription factors whose mutations are involved in many congenital mal-
formations. In this sparse representation, the expression of a gene depends only on
its parents: e.g. the expression of SHH (c) only depends on GLI3 (a), so the condi-
tional probability distribution of c is p(c|a). The joint probability distribution of the
Bayesian network is: p(a,b,c,d,e, f ) = p(a)p(b)p(c|a)p(d|c)p(e|b,c,d)p( f |d).

ample, with a Baysian network representing the regulatory interactions between genes (as

illustrated in Figure 2.7), one can ask for the likelihood of a gene to be expressed given

the expression status of the other genes. Note that exact inference, which requires the

summation of the JPD over all possible values of unknown variables, is also an NP-hard

problem (Cooper, 1990) for which approximate solutions have been proposed (Ben-Gal,

2008).

While Bayesian networks have been successfully used to integrate biological data

(e.g. for gene regulatory network inference (Zhu et al., 2008), or for cancer prognosis

prediction (Gevaert et al., 2006)), they suffer from the following limitations. First, in the

structure learning, their sparse representation only captures the most important associa-

tions between the variables, discarding all other weaker associations. Second, the directed

acyclic graph representation does not allow for loops, which are important components

of biological networks (e.g. for representing control and feed-back loops). Finally, as al-

ready mentioned, their computational complexity limits the usage of Bayesian networks

to small datasets.

2.3.3 Kernel-based methods

Kernel-based methods are machine learning approaches for pattern analysis. A kernel-

based approach works by embedding the original data from its original input space, X ,

into a higher dimensional space, called the feature space, F , in which the analysis is

performed (see illustration in Figure 2.8).

F is a vector space in which data points are represented by vectors, called fea-
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Φ 

=  2   =  3 χ

Figure 2.8: Illustration of kernel-based methods. To simplify a classification problem of data-
points in input space X = R2, a kernel function φ is used to map X into a higher
dimensional feature space F = R3, in which the two clusters of datapoints are easily
separated by a plane.

ture vectors. The embedding of X in F is represented by a kernel matrix (Schölkopf

et al., 2004), K , which is a symmetric, positive semi-definite matrix whose entries

Ki, j = k(xi,x j) represent the similarities between any two data points xi and x j, which

are computed as the inner product between their representations φ(xi) and φ(x j) in the

feature space:

k(xi,x j) = ⟨φ(xi),φ(x j)⟩, (2.15)

where φ maps data points from X to F (Schölkopf et al., 2004; Borgwardt, 2011). In

practice, only the definition of the kernel function k(xi,x j) is required.

In kernel-based approaches, a network is frequently represented by using a diffusion

kernel (see Section 2.2.2), where entries of the diffusion kernel quantify the closeness

between any two nodes in the network. Alternatively, in relation to the graphlet based

descriptors presented in Section 2.1.4, a network can be represented by a graphlet kernel

(Vacic et al., 2010), in which a node xi of the network is represented by its graphlet

degree vector, GDV (xi) in the feature space F . The kernel matrix is then computed from

the following graphlet-based kernel function:

k(xi,x j) = ⟨GDV (xi),GDV (x j)⟩, (2.16)

To integrate multiple network datasets, kernel data-fusion (Yu et al., 2013) consists

of representing all network data in the same feature space and in linearly combining the

corresponding kernel matrices before analysis. Kernel matrices are then mined using

traditional statistical and machine learning methods, such as support vector machines

(SVMs) (Vapnik and Vapnik, 1998), principal component analysis (PCA) (Jolliffe, 1986)
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and canonical correlation analysis (CCA) (Hardoon et al., 2004) to produce clusterings,

rankings, principal components and correlations.

While kernel-based approaches have been used to integrate biological data (e.g. for

cancer prognosis prediction (Daemen et al., 2007), or for drug repurposing (Napolitano

et al., 2013)), they suffer from the following limitations. First, there is no guideline for

choosing the right kernel function to best represent a given dataset. This short-coming is

partially overcome by multiple kernel learning approaches, in which one linearly com-

bines several kernel representations of the same dataset, each capturing different notions

of similarity between the nodes of the network (Wang et al., 2014b). Second, kernel data-

fusion implies to transform, or project all network datasets into the same feature space,

which may results in information loss.

2.3.4 Data integration with non-negative matrix factorization

Non-negative matrix factorization (NMF) is a machine learning method for clustering and

dimensionality reduction. In NMF, a network is represented by a non-negative matrix,

A ∈ Rn1×n2 , the adjacency matrix of the network. As illustrated in Figure 2.9, this matrix

is approximated by the product of two lower-dimensional, non-negative matrix factors,

U ∈ Rn1×k and V ∈ Rk×n2 , where k ≪ min(n1,n2) (Lee and Seung, 1999):

A ≃UV. (2.17)

k

n
1

n
1

k

n2n2

  A U V

Figure 2.9: Illustration of NMF. In NMF, n1 × n2-dimensional matrix A (e.g. the adjacency
matrix of a dataset) is decomposed into the product of two lower dimensional matrix
factors, U and V , where k ≪ min(n1,n2).

In NMF, setting the rank parameter k ≪ min(n1,n2) provides dimensionality reduc-

tion (Cichocki et al., 2009). NMF gained particular interest because of its relationship

with k-means clustering (Ding et al., 2005). From a clustering point of view, the non-

negative matrix A represents n1 datapoints (e.g. n1 patients) by their n2 dimensional fea-

ture vectors (e.g, for each patient, a vector representing the expression levels of n2 genes),
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this matrix is factorized into two matrices U and V , where U is the cluster indicator ma-

trix, which assigns the n1 datapoints into k clusters, and where V represents the cluster

centroids (Ding et al., 2005). (From a dimensionality reduction point of view, V is also

called a base matrix, as it represents the k-dimensional space defined by the cluster cen-

troids.) Note that the role of U and V can be exchanged, making V the cluster indicator

matrix assigning the n2 datapoints (e.g. genes) into k clusters, and making U represent the

cluster centroids. Extracting clusters from V can be done with a procedure such as “hard

clustering” (Zass and Shashua, 2005), in which each data point i is assigned to cluster

j, 1 ≤ j ≤ k, such that Ui, j is the maximum value in row i (e.g. j = argmaxk
j=1 Ui, j).

Note that to improve clustering interpretation, one can add an orthogonality constraint

on a cluster indicator matrix (e.g. for the n1 datapoints, UTU = I, where I is the iden-

tity matrix), resulting in so-called Orthogonal NMF (Ding et al., 2006). It can happen

that some datapoints (features in this context) do not contribute to the clustering. For

instance, genes being expressed across all patients are uninformative when clustering pa-

tients based on gene expression. To identify the relevant features, a useful strategy is to

compute the mutual information (between each input feature and the matrix factor (Kim

and Park, 2007).

Apart from clustering, another important property of NMF is the completion prop-

erty. Namely, after solving NMF, the reconstructed matrix Â =UV features new entries,

not observed in A, but emerging from the latent factors. (As opposed to observable fac-

tors, latent factors are factors that are not directly observed but are rather inferred.) Here,

U and V are latent representations for dimension n1 and n2 respectively (e.g. patients and

genes).

NMF was extended into Non-negative Matrix Tri-Factorization (NMTF) (Ding et al.,

2006) (illustrated in Figure 2.10). In NMTF, an n1 × n2 matrix, A, which describes the

relationships between two types of objects (e.g. the relationships between n1 patients and

their n2 genes), is decomposed as the products of three non-negative, lower dimensional

matrix factors:

A ≃USV T , (2.18)

where U ∈ Rn1×k1 is the cluster indicator matrix of the objects of type 1 (grouping the n1

objects of type 1 into k1 clusters), V ∈Rn2×k2 is the cluster indicator matrix of the objects

of type two (grouping the n2 objects of type 2 into k2 clusters), and where S ∈ Rk1×k2 is

the compressed representation of A that relates the clusters in U to the clusters in V .
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Figure 2.10: Illustration of NMTF. In NMTF, Matrix A (e.g. the adjacency matrix of a dataset)
is decomposed as the product of three low-dimensional matrix factors, U , S and V ,
where k1,k2 ≪ min(n1,n2).

NMTF is a co-clustering approach, which means that one can extract from U clusters

that group together objects of type 1 according to their relationships with objects of type

2, while extracting from V clusters that group together objects of type 2 according to their

relationships with the objects of type 1. Such clusters can be extracted from U and V using

the same hard-clustering procedure as described for NMF. Similar to NMF, NMTF can

be used for matrix completion: after decomposition, the reconstructed matrix Â =USV T

features new entries, not observed in data matrix A, which can be used for prediction.

2.3.5 Heterogeneous data integration with NMTF

Similar to NMF, NMTF can use both simultaneous decompositions and graph regulariza-

tion penalties to integrate homogeneous and heterogeneous datasets. Given the NMTF

of a single matrix A1,2 representing the relationships between objects of types 1 and 2,

which is decomposed as the product of three matrix factors: A1,2 ≃ G1S1,2GT
2 , any new

dataset can be simultaneously decomposed with A1,2 as long as it relates to at least one

of the object types that is already in the decomposition. E.g., A2,3, which represents the

relationships between objects of types 2 and 3, can be simultaneously decomposed with

A1,2 as A2,3 ≃ G2S2,3GT
3 , while sharing the cluster indicator matrix of the objects of types

2, G2, across the two decompositions. In this way, NMTF can be used to simultaneously

decompose any combination of datasets. Furthermore, graph regularization penalties can

be added so that each cluster indicator matrix, Gi, can benefit from the prior knowledge

encoded in a network between nodes of type i (represented by Laplacian matrix Li). A

generic formulation of this problem is:

f = min
Gi≥0∀i,Si, j≥0∀i, j

∑
i ̸= j

||Ai, j −GiSi, jGT
j ||2F +∑

i
αitr(GT

i LiGi) (2.19)

Thus, NMTF provide a principled framework for data integration. For instance, as il-

lustrated in Figure 2.11, NMTF has been used in the patient specific data-fusion (PSDF)
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Figure 2.11: PDF as an example of heterogeneous integration with NMTF. In the patient spe-
cific data-fusion (PDF) framework, somatic mutation profiles (XMP) and drug target
interactions (TI) are simultaneously decomposed as the product of three matrix fac-
tors. Both decompositions share the same cluster indicator matrix of genes, G2 (in
blue), which allows learning from all datasets. The cluster indicator matrix, G2, is
constrained by a graph regularization penalty to favour grouping together genes that
interact in a molecular interaction network. Similarly, the cluster indicator matrix
G3 is constrained to favour grouping together drugs that are chemically similar.

framework (Gligorijević et al., 2016b) in the context of cancer precision medicine. In

PSDF, somatic mutation profiles (that represent relationships between patients and their

mutated genes) and drug target interactions (that represent relationships between genes

and the drugs that target their protein products) are simultaneously decomposed while

sharing the cluster indicator matrix of genes (G2 in Figure 2.11). PSDF uses graph regu-

larization constraints so that the cluster indicator matrix of genes favors grouping together

genes that interact in a molecular interaction network and that the cluster indicator ma-

trix of the drugs favors grouping together drugs that are chemically similar. On serous

ovarian cancer patients’ data, the patient specific data-fusion framework allows for simul-

taneously uncovering patient subtypes having statistically significantly different disease

outcomes, predicting novel cancer-related genes and predicting drugs for potential drug-

repurposings.

2.3.6 Homogeneous data integration with NMTF

Like NMF, NMTF can be used for data integration of different types of networks that

share the same set of nodes. This approach is taken in the iCell project, a side project

on which I collaborated during my PhD (Malod-Dognin et al., 2019b). In this project,

we integrate molecular network data for a healthy and cancerous cell to learn a latent

network representation for both cell states. We call such a latent network an integrated



2.3. The different types of data-integration methods 32

cell or ‘iCell’. Intuitively, by fusing the different types of molecular data, we aim to learn

a latent network representation that better captures the cell’s functional organisation than

the constituent molecular networks individually. We identify cancer driver genes as those

genes that have the biggest change in wiring between both iCells.

To create a pair of iCells, we first collect gene expression data for a given tissue

type in a healthy and a diseased state and generic molecular network data: protein-protein

interaction (PPI) networks, co-expression (COEX) networks and genetic interaction (GI)

networks. Then, to create tissue and state-specific molecular networks, we take the sub-

networks induced by the gene expression data on three types of networks. Next, for both

tissue states, NMTF is applied to integrate these network data, as illustrated in Figure

2.12. Finally, to extract a latent network representation, i.e., an iCell, we interpret the

cluster indicator matrix G1 as an embedding of the genes in a latent space that captures

the molecular organisation of the tissue (an assumption we confirm through cluster and

enrichment analysis). For both tissue states, we extract a k-nearest neighbour network

from the latent space, measuring the distance between all genes in the latent space as

D = G1GT
1 , and connecting each gene with its 100 nearest neighbours in the latent space.

To identify cancer-related genes, we first observe that they tend to be always ex-

pressed, i.e., both when the cell is in a healthy and a diseased state. Then, for the always

expressed genes, we quantify their wiring in both iCells using the graphlet degree vector

(GDV) (see Section 2.1.4). Finally, we identify cancer-related genes as the always ex-

pressed genes with the biggest euclidean distance between their GDVs in a healthy and

cancerous iCell. For details, see (Malod-Dognin et al., 2019b).

I build on these results in chapter 5. There, I integrate pathway data and molecular

network data to learn a latent representation of a healthy and diseased cell. Analogous

to the iCell project, I first show that by integrating both types of data I can learn a latent

representation that better captures the functional organisation of the healthy and diseased

cell. Further, I identify cancer related pathways and genes by comparing the latent repre-

sentation of the healthy and diseased cell. In contrast to the iCell project, however, I do

this based on geometric properties of the learned latent space, rather than explicitly cre-

ating latent network representations for each cell state and computing changes in wiring

patterns.
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Figure 2.12: iCell as an example of Homogeneous integration with NMTF. NMTF is applied
to integrate PPI, COEX and GI data. The cluster indicator matrix G1 is interpreted as
an embedding of the genes in the combined latent space spanned by {S1,S2,S3}, the
latent representations of the individual PPI, COEX and GI networks. An integrated
latent network representation for the underlying tissue is created by computing the
pairwise cosine distances between all genes in the embedding space spanned by G1
and connecting each gene to its k nearest neighbours.

2.4 Pathway focused approaches to study cancer disease

mechanism

Cancer is a genetic disease in which the accumulation of genetic mutations leads to the

uncontrolled proliferation of tumour cells (Vogelstein and Kinzler, 2004; Vogelstein et al.,

2013). Specifically, mutations to cancer driver genes lead to the reprogramming of cellu-

lar pathways: functional subnetworks within the cell that once activated lead to a certain

product, or a change within the cell through a series of consecutive interactions (Vogel-

stein and Kinzler, 2004; DeBerardinis and Chandel, 2016). This causes the cell to gain

and lose functions that enable tumour growth and metastatic dissemination, such as gain-

ing the ability to sustain proliferative signalling and resisting cell death, whilst losing the

ability to respond to growth suppressors (Hanahan and Weinberg, 2011). To gain insight

into the mechanisms underlying cancer, often pathway-based methods are considered, as

they provide functional context to the observed gene mutations. This, in turn, helps to

generate testable hypotheses, to identify drug targets and to determine tumour subtypes

(Creixell et al., 2015). Furthermore, pathway-based approaches offer a higher level point

of view to uncover functional changes in cancer than the gene level. For instance, clini-

cally similar cancer patients could have different sets of mutated genes, but have similar

perturbed pathways (Vogelstein et al., 2013).

All network-based pathway-focused approaches identify cancer implicated as those

most (internally) perturbed by cancer driven gene expression changes. One can however

distinguish two major classes of network-based pathway-focused approaches for studying

cancer. Pathway-topology-based (PTB) measure the impact of gene expression changes
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on a given pathway taking the topological importance of the genes to the pathway into

account. Intuitively, if a gene has many interactions in the pathway (i.e. is topologically

important), it is assumed to be important to the pathways normal functioning (i.e. is

functionally important). So, changes in gene’s expression should have a larger or lesser

impact on a pathway’s perturbation score dependent on its topological importance. As

PTB methods consider pathways in isolation, i.e. gene perturbations outside the pathway

do not affect its score, and current pathway annotation data is very incomplete, they are

prone to producing large amounts of false negatives (Ogris et al., 2017).

Crosstalk-enrichment (CE) methods acknowledge that pathways are part of a larger

network. Given a large-scale network, CE methods prioritise pathways based on their

association, i.e. crosstalk, with a set of differentially expressed genes. For instance,

ANUBIX scores a given pathway by computing its edge-overlap with the subnetwork in-

duced by a set of differentially expressed genes on the large-scale network and comparing

this against the overlap that is expected by chance (Castresana-Aguirre and Sonnhammer,

2020).

2.5 Conclusion
In this chapter, I presented basic concepts from network analysis, spectral theory, data-

integration applied machine learning methods and pathway-focused cancer analysis ap-

proaches. I highlighted that the Laplacian matrix, which underlies all spectral methods,

captures the general connectivity structure of a network, i.e., what nodes are adjacent.

Conversely, graphlets capture the wiring of a network around a node, but do not cap-

ture adjacency information. So, in Chapter 3, I combine both methods to define graphlet

adjacency, which simultaneously captures connectivity information and topological infor-

mation. In this background chapter, I also explained how pathway-focused approaches are

often used to provide additional biological insight, as they are more descriptive. Hence,

in Chapter 4, I take pathway focused approach to provide more biological insight into the

results from chapter 3. Lastly, I also explained that methods aiming to identify cancer

pathways do so by prioritising those pathways most internally perturbed in cancer. How-

ever, pathways do not operate in isolation in the cell. Therefore, in chapter 5, I integrate

PPI data and pathway data using NMTF, to identify cancer pathways and genes, not based

on their individual perturbation but on the extent their interactions with other pathways

and genes change in cancer. There, graphlet adjacency is used to increase prediction

accuracy.
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Graphlet Laplacian

The Laplacian matrix is the basis of many network integration and analysis frameworks,

as it captures the global connectivity structure of the network (graph) (see Sections 2.2

and 2.3). All Laplacian based applications are based on the same underlying principle of

guilt by association, inferring information on a given node based on its neighbours. How-

ever, graphlet-based approaches infer information on a given node based on the shape of

its interaction pattern, typically independent of the identity of its neighbours (see Sec-

tion 2.1.4). Therefore, to combine graphlet-based topological information and network

neighbourhood information, I generalize the Laplacian to the Graphlet Laplacian by con-

sidering a pair of nodes to be ‘adjacent’ if they simultaneously touch a given graphlet.

Below, through cluster enrichment analysis and diffusion of pan-cancer gene mutation

scores, I demonstrate that Graphlet Laplacians capture topology-function and topology-

disease relationships in biological networks. This analysis is summarised in Figure 3.1.

1. Data Collection

Molecular networks
(PPI, COEX, GI)

Functional annotations
(GO ontology)

Disease genes
(IntOGen, pan cancer)

2. Compute 
Graphlet Laplacians

G0 G1 G2 G3 G4 G5 G6 G7 G8

3.A Cluster enrichment 
analysis (GO)

3.B Cancer gene
predictions

Figure 3.1: Chapter workflow summary. Step 1: collection of networks, GO annotations, can-
cer drivers and pan-cancer scores. Step 2: computation of graphlet laplacians for the
different networks. Step 3.A: clustering of the graphlet laplacians. GO enrichment
analysis to evaluate the function captured. Step 3.B: diffusion of pan-cancer scores.
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Chapter impact
This chapter has lead to the following contributions:

Publications:

Windels, S. F. L., Malod-Dognin, N., and Pržulj, N. (2019). Graphlet Laplacians

for topology-function and topology-disease relationships. Bioinformatics, 35(24),

5226–5234.

Methodological contributions:

To capture the higher-order organisation of nodes in a network, I introduce graphlet

adjacency, which considers two nodes connected based on their frequency of co-

occurrence in a given graphlet (induced connected subgraphs of different ‘shapes’,

such as paths and triangles). I use graphlet adjacency to generalise spectral methods

spectral embedding and spectral clustering.

Biological contributions:

Graphlet adjacency provides complimentary views of the functional organisation of

molecular networks. I show this for multiple types of molecular networks, species

and functional annotations.

Software and data analysis:

The graphlet adjacency counter, as well as the data and scripts to perform

the analysis presented in this chapter, have been made publicly available at:

www.cs.ucl.ac.uk/staff/natasa/graphlet-laplacian .
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3.1 Methods and data

3.1.1 Graphlet Laplacian definition

Here, I generalize the concept of the Laplacian (see Section 2.2) to that of a Graphlet

Laplacian by generalizing the definitions of adjacency and degree to ones based on

graphlets (see Section 2.1.4). First, I define two nodes u and v of G to be graphlet-

adjacent with respect to a given graphlet, Gk, if they simultaneously touch Gk. For the

example network presented in Figure 3.2-B, I find that nodes a and b are graphlet-adjacent

w.r.t. graphlet G1 twice, as G1 can be induced on the dummy network twice: via paths

a-b-c and a-b-e, each time including both nodes a and b. Similarly, nodes a and c and

nodes a and e are graphlet adjacent only once, w.r.t. graphlet G1. Given this extended

definition of adjacency, I define the graphlet based adjacency matrix as:

Ak(u,v) =

ak
uv if u ̸= v

0 otherwise,
(3.1)

where ak
uv is equal to the number of times nodes u and v are graphlet-adjacent w.r.t graphlet

Gk. Analogously, the graphlet degree generalizes the node degree as the number of times

node u touches graphlet Gk. I extend the degree matrix to the Graphlet Degree matrix for

graphlet Gk,

Dk(u,v) =

dk
u if u = v

0 otherwise,
(3.2)

where dk
u is the number of times node u touches graphlet Gk. For an underlying graphlet

Gk, I define the Graphlet Laplacian L G
k , as:

L G
k = Dk − (Ak/θ). (3.3)

where θ = size(Gk)−1. As opposed to the Laplacian simply capturing for each node its

neighbours, the Graphlet Laplacian L G
k captures for each node how strongly (i.e. fre-

quently) each node is connected in the shape of Gk with each of the other nodes. L G
0 and

L G
1 are illustrated in Figure 3.2-C. Finally, note that the Graphlet Laplacian for graphlet

G0, L G
0 , is equivalent to the standard Laplacian, L .
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(A)
G0 G1 G2 G3 G4 G5 G6 G7 G8

(B)

H:

abc

ed

(C)
AG0 =


a b c d e
0 1 0 0 0 a
1 0 1 0 1 b
0 1 0 1 0 c
0 0 1 0 1 d
0 1 0 1 0 e

 AG1 =


a b c d e
0 2 1 0 1 a
2 0 3 2 3 b
1 3 0 2 2 c
0 2 2 0 2 d
1 3 2 2 0 e


Figure 3.2: An illustration of graphlets and graphlet adjacencies. A: All graphlets with up

to 4 nodes, labelled G0 to G8. B: Example network H. C: The graphlet adjacency
matrices AG0 and AG1 for graphlets G0 and G1 of the example network H, shown
in panel B. The off-diagonal elements correspond to the number of times two nodes
touch a given graphlet together. AG0(a,b) = 1, as a and b form G0 once. AG1(a,b) = 2,
as a and b form G1 twice, via paths a-b-c and a-b-e.

3.1.2 Graphlet Laplacian properties

To allow for an easy interpretation of the Graphlet Laplacian for each graphlet, Gk, I intro-

duce the two-step transformation function, T , which maps graph G to its Graphlet Lapla-

cian representation: T (G,Gk) =L G
k . First, T converts G = {V,E} to a weighted network

G′ = {V,E ′}, where the weight of each edge (u,v) in G′ corresponds to ak
uv/(size(Gk)−1)

measured in G. Next, T converts G′ to its standard Laplacian representation. This shows

that the Graphlet Laplacian can be interpreted as the Laplacian of an undirected weighted

network. Therefore, the Graphlet Laplacian retains the following key properties of the

Laplacian:

• The Graphlet Laplacian, L G
k , is symmetric and positive semi-definite.

• The smallest eigenvalue is 0 and the corresponding eigenvector is the constant vec-

tor 1. corresponding to the eigenvector

• The Graphlet Laplacian has n non-negative, real-valued eigenvalues: 0 = λ k
1 ≤

λ k
2 , . . . ,λ

k
n .

• The multiplicity of the eigenvalue 0 equals the number of connected components in
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G′, which I refer to as graphlet based components.

3.1.3 Data

Real biological network data collection

I create five unweighted and undirected networks based on three types of generic molec-

ular interactions in human and baker’s yeast (S. cerevisiae). I collect validated protein-

protein interactions (PPIs, validated using Two-hybrid or Affinity Capture based methods)

from BioGRID version 3.5.178 to form PPI networks, where nodes represent genes and

edges represent physical interactions between their protein products (Stark et al., 2006).

I collect gene co-expression (COEX) scores from COXPRESdb version 7.3 (Okamura

et al., 2015) to build COEX networks, where nodes represent genes and edges represent

pairs of genes being co-expressed. I consider each gene to be co-expressed with its top

1% highest scoring co-expressed genes. For yeast, I collect experimentally validated ge-

netic interactions (GIs) from BioGRID version 3.5.178 (Stark et al., 2006). I exclude the

human GI network from the analysis, as only a limited number of GIs is available. Basic

network statistics of these networks are provided in table 3.1.

Nodes Density Diam.
PPI yeast 5,881 0.0055 6
PPI human 17,380 0.0019 9
COEX yeast 5,363 0.0129 4
COEX human 15,373 0.0131 4
GI yeast 5,634 0.0273 6

Table 3.1: Network statistics. The columns ‘nodes’, ‘Density’ and ‘Diameter’ respectively
report the number of nodes, density and diameter of each of the molecular networks
(first column).

Random model network generation

I generate ten networks containing 2,000 nodes at edge density of 1.5% (to mimic the bi-

ological networks), for each of the following widely used seven random network models:

Erdős-Rènyi random graphs (ER) (Erdős Paul and Rényi Alfréd, 1959), generalized ran-

dom graphs with the degree distribution matching to the input graph (ER-DD) (Newman,

2010), Barabási-Albert scale-free networks (SF-BA) (Barabási and Albert, 1999), scale-

free networks that model gene duplication and mutation events (SF-GD) (Vazquez et al.,

2001), geometric random graphs (GEO) (Penrose, 2003), geometric graphs that model

gene duplications and mutations (GEO-GD) (Pržulj et al., 2010), and stickiness-index

based networks (Sticky) (Pržulj and Higham, 2006). As the real biological networks have



3.2. Results 40

power-law degree distributions(Jeong et al., 2001; Tong et al., 2004), the set of model

networks contains four types of networks with power-law degree distribution: ER-DD,

SF-BA, SF-GD and Sticky. The GEO and GEO-GD random network models are gener-

ated using 3-dimensional space. A summary on the basic properties of these networks

and how to generate them can be found in Section 2.1.5.

Functional annotations

I collect experimentally validated functional annotations from the Gene Ontology (i.e.,

evidence codes ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, ‘IEP’), that assign genes to biologi-

cal process annotations (GO-BP), cellular component annotations (GO-CC) and molecu-

lar function annotations (GO-MF) (Ashburner et al., 2000; Gene Ontology Consortium,

2017).

Cancer gene annotations

I collect the pan-cancer gene mutation frequency scores computed by Leiserson et al.

(2015) for the purpose of detecting of pan-cancer disease modules. Leiserson et al.

(2015) collected raw pan-cancer mutation data, such as SNV’s, indels and CNA’s, from

the TCGA database (Kandoth et al., 2013). These data were filtered to exclude statis-

tical outliers and include only the samples (corresponding to a patient) for which SNV

and CNA data were available. The resulting data set contains mutations on 11,565 genes

across 3,110 patients in cancers across 20 different tissues. Additionally, I collect the sets

of known cancer driver genes in all available tissues from IntOGen (Gonzalez-Perez et al.,

2013) and Cosmic (Futreal et al., 2004).

3.2 Results
I investigate the potential usage of Graphlet Laplacians to analyse network data via em-

bedding, clustering and network diffusion experiments. I consider Graphlet Laplacians

for graphlets with up to four nodes. I compare the results to the state-of-the-art Lapla-

cian matrices: the standard Laplacian, the k-path Laplacian and Vicus. I consider path

lengths up to three for the k-path Laplacian, corresponding to the maximum size of the

considered graphlets underlying the Graphlet Laplacian. I set Vicus’ diffusion parameter

to 0.9, as this value is recommended in the original paper (Wang et al., 2017) and leads

to the largest number of enriched functions (see Section 3.2.2). For each network, the

numbers of clusters, d, is determined using the rule of thumb: d =
√

n/2 (Kodinariya

and Makwana, 2013). In the Supplementary Section A.1, I present the justification for
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this approach, based on inspection of the spectra of different Laplacian matrices of each

network.

3.2.1 Graphlet Laplacians capture different local topology

While the standard Laplacian simply captures the direct neighbourhoods of nodes and can

be used to cluster densely connected nodes together, the graphlet-based neighbourhood

captured by the Graphlet Laplacian allows for clustering of nodes that strongly partici-

pate in a given graphlet of interest. Because different graphlets capture different local

topologies around nodes in a network (e.g., G3 involve paths while G8 involves cliques),

clusters obtained by using different Graphlet Laplacian are expected to possess different

topological features, which I assess as follows.

To assess if two graphlet Laplacians, L G
i and L G

j , capture different topologies, I

apply each Laplacian to cluster nodes in a network using Graphlet Laplacian based spec-

tral clustering. The resulting clusters are used to partition the network into two sets of

sub-networks, by inducing the sub-networks from each clustering. L G
i and L G

j capture

different topologies if the corresponding sets of sub-networks have significantly different

topology, which I measure by the overlap of two distributions: the distribution of GCD-11

distances between the sub-networks produced from L G
i with the sub-networks produced

from L G
j and distribution of GCD-11 distances between the sub-networks produced from

L G
i (see Section 2.1.4). The two Graphlet Laplacians capture statistically significantly

different topologies if the Wilcoxon-Mann-Whitney U-test (MWU) between the two dis-

tributions of distances is lower than or equal to 5% (see Figure 3.3 for the case of L G
0

and L G
4 ). For each type of model network and pairwise combination of graphlet Lapla-

cian, I perform this test ten times and report the least significant p-value for each pairwise

comparison of Graphlet Laplacian based sub-networks in Figure 3.4. In general, clusters

obtained from different Graphlet Laplacians are typically statistically significantly topo-

logically different at the 5% significance level. This is true across all of the biological

networks and most of the model networks, with some exceptions in geometric models

which are known to have homogeneous structure.



3.2. Results 42

0 1 2 3 4 5
GCD11 distance

0

25

50

75

100

125

150

175

Co
un

t

GCD11( G
4 , G

4 )
GCD11( G

4 , G
0 )

Figure 3.3: Comparison of topological distance distributions between sub-networks cap-
tured by two different Graphlet Laplacians in the human PPI network. The
distribution of GCD-11 distances between the sub-networks from L G

0 (in blue) is sta-
tistically significantly different from the distribution of GCD-11 distances between
the sub-networks from L G

0 and the sub-networks from L G
4 (in red) with MWU p-

values <5%. This means thatL G
0 and L G

4 capture different topologies in the human
PPI network.
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Figure 3.4: Graphlet Laplacians capture different topologies in model networks, as measured by GCD-11. Panels A-H show the p-values of the Mann-Whitney U
tests, testing for topological difference between sub-networks captured by different Graphlet Laplacians in model networks (ER, ER-DD, GEO, GEO-GD,
SF and Sticky).
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3.2.2 Different Graphlet Laplacians capture complementary sets of

biological functions

In addition to showing that Graphlet Laplacians capture different local topology, I assess

their capacity to capture biological functions. To informally visualize this, I perform

spectral embedding. I focus on the embedding of the yeast GI network, for which I use

14 core biological process annotations defined by Costanzo et al. (2016). I illustrate the

spectral embedding of the symmetrically normalized L G
3 Graphlet Laplacian in Figure

3.5.

It is clear that the spectral embedding of L G
3 correctly groups and separates the bio-

logical processes of ‘nuclear cytoplasmic transport’, ‘metabolism / mitochondria’, ‘Golgi

/ endosome / vacuole sorting’ and ‘Chrom. seg. / kinetoch. / spindle / micro tub.’.

I compare the spectral embeddings of the yeast GI network based on all graphlet

Laplacians, Vicus and the k-path laplacian, in Figure 3.6. It is clear spectral embedding

based on Vicus and the standard Laplacian fails to find any grouping at all, placing all of

the nodes in the same dense cluster. Embeddings based on L P
2 and L P

3 succeed in sepa-

rating different genes into different clusters, but without grouping them in a biologically

meaningful way.

Next, I quantify how well the different graphlet Laplacians capture the functional

organisation of the different molecular network. I apply Graphlet Laplacian based spec-

tral clustering for each graphlet on the set of human molecular networks and assess the

functional enrichments in terms of the percentage of clusters enriched and the total num-

ber of annotations enriched (Figures 3.7 and 3.8, respectively). Additionally, I create a

baseline to validate the statistical significance of the enrichment results. I perform the

same experiment 100 times with randomized GO-annotations. I do this by swapping the

sets of gene annotations in the molecular networks such that no gene has its original set

of annotations.

I observe that both in human and yeast and irrespective of the GO annotation type

(BP, MF or CC), clusterings based on all Graphlet Laplacians but L G
4 tend to be of similar

quality as those based on the standard Laplacian or Vicus, both in terms of the percentage

of clusters enriched as well as total number of annotations enriched. k-path Laplacians

L P
2 and L P

3 capture almost little function in PPI networks, as indicated by the low per-

centages of clusters enriched and few enriched GO-BP annotations found. I additionally

observe that for each network and annotation type, there is always at least one Graphlet
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Figure 3.5: Capturing biological functions with Graphlet Laplacian L G
3 . 2D spectral embed-

ding of the yeast GI network using the Graphlet Laplacian for G3. Points represent
genes and are color-coded with 14 core biological process annotations defined by
Costanzo et al. (2016).

Laplacian that shows a larger number of the total number of enriched annotations than Vi-

cus. Hence, I conclude that Graphlet Laplacian based spectral clustering creates clusters

that are at least as relevant as those achieved applying any other Laplacian matrix. This is

true for all of the molecular networks for Gene Ontology BP, MF and CC annotations.

Having established that Graphlet Laplacian based clusters capture biological func-

tions, I quantify the overlap in their enriched functions. To measure the overlap between

two sets, I use the Jaccard index, which is defined as the norm of the intersection of the

two sets over the norm of their union. For each type of annotation, I calculate the Jaccard

Index between the sets of enriched functions corresponding to each Graphlet Laplacian.

Results are presented for GO-BP, GO-MF and GO-CC in Figures 3.9, 3.10 and 3.11,
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Figure 3.6: Graphlet Laplacians capture Gene Ontology biological process annotations in
the yeast GI network. Panels A-K show the Spectral Embedding of the yeast GI
network using different Laplacian matrices. Colour coding of the genes (represented
by dots in the panels) is given in Figure 3.5.
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Figure 3.7: Percentage of enriched clusters. Panels A, B and C show for the set of human and
yeast molecular networks (color-coded), the percentage of clusters enriched in GO
BP, MF and CC annotations, respectively, with clusters obtained based on spectral
clustering using different Laplacian matrices (x-axis).

respectively. For all networks and over the different annotation types, I observe that clus-

terings based on different Graphlet Laplacians lead to different sets of enriched clusters,

with the average Jaccard Index over all Graphlet Laplacians ranging from a minimum of
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Figure 3.8: Number of functions enriched per network and per Laplacian. Panels A, B
and C show for the set of human and yeast molecular networks (color-coded), the
total number of enriched GO BP, MF and CC annotations, respectively, with clusters
obtained based on spectral clustering using different Laplacian matrices (x-axis).

0.27 for GO-BP annotations in the human PPI network, to a maximum of 0.43 for GO-

CC annotations in the yeast COEX network. For all three different types of annotations, I

observe that clusterings of PPI and COEX networks based on L G
4 ,L P

2 and L P
3 are very
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distinctly enriched from the clusterings based on other Laplacian matrices. In the case

of L P
3 , this is also true when clustering the yeast GI network. I conclude that different

Graphlet Laplacians capture complementary sets of biological functions.

(A)


V 0.

90 
G 3


G 6

P 1


G 0


G 2


G 8


G 1


G 5


G 7

P 3


P 2


G 4

V0.90

G3

G6

P1

G0

G2

G8

G1

G5

G7

P3

P2

G4

La
pl

ac
ia

n 
m

at
rix

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

in
de

x

PPI Yeast GO-BP

(B)


P 1


G 0


G 5


G 8


G 2


G 7


V 0.
90 
G 6


G 1


G 3

P 2


P 3


G 4

P1

G0

G5

G8

G2

G7

V0.90

G6

G1

G3

P2

P3

G4

La
pl
ac
ia
n 
m
at
rix

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ja
cc
ar
d 
in
de
x

PPI Human GO-BP

(C)


P 3


G 8

P 1


G 0


G 7


V 0.

90 
G 2

P 2


G 5


G 4


G 6


G 1


G 3

P3

G8

P1

G0

G7

V0.90

G2

P2

G5

G4

G6

G1

G3

La
pl

ac
ia

n 
m

at
rix

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d 

in
de

x

COEX Yeast GO-BP

(D)


P 3


P 2


P 1


G 0


G 5


G 8


G 7


V 0.

90 
G 2


G 4


G 6


G 1


G 3

P3

P2

P1

G0

G5

G8

G7

V0.90

G2

G4

G6

G1

G3

La
pl

ac
ia

n 
m

at
rix

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d 

in
de

x

COEX Human GO-BP

(E)


G 6


G 7


V 0.

90 
G 1


G 3


G 5

P 1


G 0


G 2


G 8


G 4

P 2


P 3

G6

G7

V0.90

G1

G3

G5

P1

G0

G2

G8

G4

P2

P3

La
pl

ac
ia

n 
m

at
rix

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d 

in
de

x

GI Yeast GO-BP

Figure 3.9: GO-BP enrichment overlap. Panels A-E show the overlap in enriched GO-BP anno-
tations applying spectral clustering based on different Laplacian matrices (x-axis and
y-axis) on the set of molecular networks (panel heading). Overlap is measured using
the Jaccard Index.
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Figure 3.10: GO-MF enrichment overlap. Panels A-E show the overlap in enriched GO-MF an-
notations applying spectral clustering based on different Laplacian matrices (x-axis
and y-axis) on the set of molecular networks (panel heading). Overlap is measured
using the Jaccard Index.
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Figure 3.11: GO-CC enrichment overlap. Panels A-E show the overlap in enriched GO-CC an-
notations applying spectral clustering based on different Laplacian matrices (x-axis
and y-axis) on the set of molecular networks (panel heading). Overlap is measured
using the Jaccard Index.

3.2.3 Different Graphlet Laplacians capture complementary sets of

pan-cancer driver genes

Laplacian based approaches towards predicting cancer related genes are based on guilt

by association: genes that tend to be connected to frequently mutated genes are used
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as cancer gene predictions. Here I show that by considering the different shapes (i.e.

graphlets) by which genes can be connected to frequently somatically mutated genes,

complementary cancer mechanisms can be captured.

I do this by diffusing (see section 2.2.2) the gene mutation frequency scores (see sec-

tion 3.1.3) on the human PPI and COEX networks based on different Graphlet Laplacian

matrices. Network diffusion is a method underlying many of the different approaches

of cancer gene prioritization (Cowen et al., 2017). I prioritize genes as potential cancer

related genes according the highest diffused score first. I measure the quality of these

scores using the area under the Precision-Recall (PR) curve and the area under the Re-

ceiver Operator Characteristic (ROC) curve. I assume a gene is correctly classified as a

cancer related gene if it is known to be a cancer driver gene in at least one type of cancer in

the intOGen cancer driver database (see section 3.1.3). When applying network diffusion,

diffusion parameter α is set to 0.5 and 0.6 on the PPI and COEX network, respectively,

as these values provided the highest area under the PR and ROC curve for each type of

Laplacian matrix considered. Results are presented in Figure 3.12.

For the human PPI network, I find that the area under the ROC curve for all Laplacian

matrices is higher than the expected score of 0.5 in the case of random predictions, as for

each one of them the area under the ROC curve is at least 0.73. I observe that both in

therms of area under the PR and ROC, Vicus and k-path Laplacian provide slightly worse

scores than any Graphlet Laplacian.

For the human COEX network, I observe that all Laplacians again provide an area

under the ROC curve better than random, the lowest area under the ROC curve being asso-

ciated with the k-path Laplacian for paths of length three. However, differences between

different Laplacian matrices are negligible.

Finally, when comparing the same Laplacian matrix in both networks, I observe

that the accuracy is typically a couple of percentage points higher in the PPI network. I

conclude that different Graphlet Laplacian matrices provide cancer driver gene scores of

the same or better quality than the standard Laplacian and other alternative matrices.

In Figure 3.13, for the PPI and COEX network, respectively, I evaluate the overlap

between the top hundred highest ranking cancer related genes per Laplacian, measured

using the Jaccard Index.

For the PPI network, I observe five clusters of different Laplacian matrices producing

similar sets of cancer driver genes scores. Importantly, diffusions based on three sets

of Graphlet Laplacians (L G
{2,5,7}, L G

{1,3,4,6} and L G
{8}) provide gene scores dissimilar to
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Figure 3.12: Cancer gene prediction accuracy comparison. For the human PPI network (top)
and COEX network (bottom), I show the accuracy for predicting cancer related genes
applying Graphlet Laplacian based diffusion, measured using the area under the
ROC curve (left) and the area under the PR curve (right), respectively. For each
Laplacian and measure (ROC and PR), the area under the curve is given in the leg-
end.

those achieved using the standard Laplacian (the average Jaccard Index of each gene

cluster with the clusters obtained by the standard Laplacian based scores being 0.79, 0.87

, 0.65, respectively). In contrast, the highest scoring genes based on k-path Laplacians

L P
{2,3} overlap greatly with those based on the standard Laplacian ( the average Jaccard

Index being 0.93). Vicus based diffusion provides cancer driver gene scores dissimilar

from all other Laplacian matrices.

For the COEX network, I observe six clusters of different Laplacian matrices asso-

ciated with similar sets of cancer driver genes scores. Importantly, diffusions based on

three sets of Graphlet Laplacians (L G
{2,6,7}, L G

{5} and L G
{8}) provide gene scores dissimi-

lar to those achieved using the standard Laplacian (the average Jaccard Index of each gene

cluster with the clusters obtained by the standard Laplacian based scores being 0.85, 0.85

and 0.76, respectively). Conversely, the highest scoring genes based on L G
{1,3,4} overlap

greatly with those based on the standard Laplacian (the average Jaccard Index being 0.91).

Vicus and k-path Laplacian based diffusion provides cancer driver gene scores dissimilar
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Figure 3.13: Complementarity of cancer driver gene scores. Panels A and B show the over-
lap between the top 100 highest ranking cancer driver genes computed using net-
work diffusion based on different Laplacian matrices, in the human PPI network and
COEX network, respectively.

from all other Laplacian matrices.

I conclude that Graphlet Laplacian based diffusion can be used to find complemen-

tary sets of cancer driver genes.

3.3 Conclusion
In this chapter, I introduce graphlet adjacency for unweighted and undirected networks to

simultaneously capture graphlet-based topological information and neighbourhood mem-

bership information. I demonstrate that they can straightforwardly be plugged into current

Laplacian based network analysis methods widely used in systems biology, using spectral

clustering, spectral embedding and network diffusion as example applications.

Through the generalized spectral embedding and spectral clustering methods on real

and model networks, I show that different Graphlet Laplacians capture sub-networks hav-

ing distinct local topologies and that are enriched in different, but complementary sets

of biological annotations. Finally, I show that the generalized network diffusion of pan-

cancer gene mutation scores resulted in complementary sets of cancer related genes for

gene prioritization dependent on the underlying graphlet. In all the tested applications,

the Graphlet Laplacians perform as good as and often better than k-path and Vicus Lapla-

cians, while being directly interpretable.



Chapter 4

Graphlet eigencentralities capture novel

central roles of genes in pathways

The previous chapter introduced the graphlet adjacency, a graphlet-based generaliza-

tion of the regular adjacency to capture the higher-order wiring patterns in local net-

work neighbourhoods. I showed that graphlet adjacency captures topology-function and

topology-disease relationships in biological networks through cluster enrichment analy-

sis and pan-cancer gene mutation scores diffusion. A question that arises is what exactly

is captured by graphlet-adjacencies in these contexts. Therefore, I perform a more de-

scriptive pathway-focused analysis to investigate further the relationships between the

topological features of genes participating in molecular networks, as captured by graphlet

adjacencies, and the biological functions and disease mechanisms they capture. I intro-

duce a new graphlet-based definition of eigencentrality, graphlet eigencentrality, to iden-

tify pathways and cancer mechanisms described by a given graphlet adjacency. I show

that pathways are best described by the graphlet adjacencies that capture the importance

of their functionally critical genes. I also show that cancer driver genes characteristically

perform hub roles between pathways. This analysis is summarised in Figure 4.1.

Chapter impact
This chapter has lead to the following contributions:

Publications:

Windels, S. F. L., Malod-Dognin, N., and Pržulj, N. (2022). Graphlet eigencentral-

ities capture novel central roles of genes in pathways. PLoS One, 35(24), 5226–

5234.
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Methodological contributions:

To capture the topological importance of nodes in a network based on their higher-

order topology, as captured by graphlet adjacency, I introduce graphlet eigencen-

trality. For a given graphlet, a node has a high graphlet eigencentrality if it and its

neighbours frequently occur on that graphlet.

Biological contributions:

Pathway-based graphlet eigencentralities allow to accurately predict which genes

participate in a given pathway. Pathway-based graphlet eigencentralities based on

graphlets that capture hub-roles allow for an accurate prediction of cancer related

genes.

Software and data analysis:

The data and scripts to perform the analysis presented in this chapter have been

made publicly available at: https://gitlab.bsc.es/swindels/graphlet eigencentrality .

1. Data Collection

Molecular networks
(PPI, COEX, GI)

Pathway annotations
(Reactome ontology)

Disease genes
(IntOGen, pan cancer)

2. Compute 
Graphlet 

adjacencies

G0 G1 G2 G3 G4 G5 G6 G7 G8

4.A Pathway
membership 

prediction

3. Compute 
centrality

of genes in
pathways

AUC

4.B Cancer gene 
prediction

AUC

G0 G1 G2 G3 G4 G5 G6 G7 G8

Figure 4.1: Chapter workflow summary. Step 1: collection of networks, pathway annotations
and cancer drivers. Step 2: computation of graphlet adjacencies. Step 3: computation
of gene-pathway centralities based on different graphlet eigencentralities. Step 4: use
the centrality scores to predict: A) pathway membership, B) cancer related genes.
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4.1 Methods
Network centrality measures quantify the importance of a node in a network (see Section

2.1.2). I first extend eigencentrality, which considers a node as important if it clusters

with other highly clustered nodes (see Section 2.2.4), to graphlet eigencentrality (Section

4.1.1). Next, I explain how I use graphlet eigencentralities to measure the centrality of

a gene in a pathway, or its pathway centrality. I can measure pathway centrality from

the pathway perspective (the centrality of the genes is computed on the genes known to

participate in the pathway, see Section 4.1.2), or from the global network perspective (the

centrality of the genes is computed on the full network before inducing the set of nodes

corresponding to genes participating in the pathway, see Section 4.1.2). Finally, I explain

how I use pathway centrality to predict which genes participate in a given pathway (see

Section 4.1.3).

4.1.1 Graphlet eigencentrality

Graphlets are small, connected, non-isomorphic, induced subgraphs of a large network

(Pržulj et al., 2004). Two nodes u and v of H are considered graphlet adjacent with respect

to a given graphlet, Gi, if they simultaneously touch Gi (Windels et al., 2019). Given this

extended definition of adjacency, the graphlet based adjacency matrix is defined as:

AGi(u,v) =

cGi
uv/θGi if u ̸= v

0 otherwise,
(4.1)

where cGi
uv is equal to the number of times the nodes u and v are graphlet adjacent w.r.t.

graphlet Gi and θGi is equal to the number of nodes in graphlet Gi minus 1. I generalize

normalised eigencentrality to graphlet eigencentrality by replacing A with the normalised

graphlet adjacency matrix, ÃGi , in equation 2.10:

ÃGicGi = λGicGi, (4.2)

4.1.2 Pathway centrality

I aim to measure the centrality of the set of genes that participate in a given pathway. I can

do this from the pathway perspective, which I will refer to as ‘Local pathway centrality’,

or from the perspective of the entire network, which I will refer to as ‘Global pathway

centrality’.
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Local pathway centrality

I take the submatrix of the adjacency matrix of the full network corresponding to the m

genes participating in the pathway, to create the m×m dimensional local adjacency matrix

P. Then, for a given underlying graphlet Gi, I compute the corresponding graphlet adja-

cency matrix, PGi , and compute the normalised graphlet eigencentrality applying equation

4.2.

Global pathway centrality

For a given underlying graphlet Gi, I compute the global graphlet eigencentrality vector,

cGi , on the normalised graphlet adjacency matrix, ÃGi , applying equation 4.2. Then, I take

the subvector of the global eigenvector corresponding the m to genes participating in the

pathway , cGi , to determine their pathway centrality.

4.1.3 Predicting pathway participation

Pathways are functional subgraphs in which a group of genes work together to perform a

given biological function. I assume that for a pathway to perform its function, each gene

is important. So, I consider a pathway to be described by a given graphlet adjacency if

the topology captured by it correctly recognises that all genes in the pathway as impor-

tant. To evaluate which pathways are described by a given graphlet adjacency, I use local

and global pathway centrality eigencentralities to predict which genes belong to a given

pathway, as described below. I consider the pathways for which I achieve the highest pre-

diction accuracies as being described by that graphlet adjacency; as for those pathways I

can best distinguish between the genes are relevant w.r.t. the pathway and those are not.

To show this approach captures biological signal, I compare the prediction accuracy to

that of the label propagation algorithm GeneMANIA, (Franz et al., 2018).

Given a molecular network and graphlet adjacency, I apply for each pathway ten

iterations of 5-fold cross-validation, where I predict which genes participate in it based

on their pathway-based graphlet eigencentrality. I evaluate prediction performance per

pathway. That is, for each pathway and fold, I randomly hold out 20% of the genes

known to participate in the pathway to form the positive examples in the test-set. The

negative examples in the test-set are all genes in the full network that directly interact

with one of the m (i.e., 80%) of the remaining genes known to participate in the pathway.
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Prediction based on local pathway centrality

For each gene in the test set, I compute how central it would be in the pathway if it were

to participate in it. That is, for each gene in the test set, I induce the nodes corresponding

to the gene and the m remaining genes known to participate in the pathway on the full

network to define a local (m+ 1)× (m+ 1) dimensional adjacency matrix P, based on

which I compute the local pathway centrality of the gene (see Section 4.1.2). In this way,

the centrality of each gene in the test set is based on local pathway topology, avoiding

taking into account the ‘noise’ coming from interactions with nodes outside the pathway.

Prediction based on global pathway centrality

For a given pathway, the underlying graphlet and a given fold, I compute the global

pathway-based graphlet eigencentralities for all the genes in the test set (see Section

4.1.2). I consider genes with a higher global pathway-based graphlet eigencentrality to be

more likely to be participating in the pathway.

GeneMANIA

GeneMANIA is a supervised approach that uses a label propagation algorithm to predict

gene annotations (see Section 2.2.2). I choose to compare against GeneMANIA as it:

(1) is one of the few gene annotation predictors that, like pathway eigencentrality, can

be trained using only positive examples and (2) allows for sampling annotations at the

pathway level rather than at the gene level (i.e. 20% of the genes of each pathway can

be held out, instead of holding out 20% of the pathway annotated genes), such that when

applying 5-fold cross-validation, all pathways have exactly 20% of the nodes withheld.

4.1.4 Predicting cancer-related genes

I hypothesise that cancer-related genes play central roles in pathways and hence can be

predicted based on their pathway based graphlet eigencentralities. For each pathway and

graphlet adjacency, I directly use global or local graphlet eigencentrality to rank the genes

participating in a given pathway, assuming that genes with a higher eigencentrality are

more likely to be cancer-related. For each pathway, I consider the set of known cancer

driver genes participating in the pathway as the set of true positives. As here the approach

is unsupervised (i.e. I do not use the information of which genes are known cancer drivers

when computing pathway centralities), no cross-fold validation is needed.
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4.1.5 Evaluating prediction performance

I evaluate prediction performance on a per pathway and per graphlet adjacency basis

using the area under the precision-recall curve (AUC-PR) and the area under the receiver

operating characteristic curve (AUC-ROC), which are defined as follows.

For a given prediction, the true positive rate (TPR) is the number of correctly pre-

dicted true positives (i.e., the genes correctly predicted as part of the pathway or to be

cancer driver genes) over all known true positives (i.e., all genes known to be part of the

pathway or all cancer drivers in the pathway). The false positive rate (FPR) is defined

as the number of genes falsely predicted as positive (i.e., the genes falsely predicted to

be participating in a pathway or to be cancer driver genes). The ROC curve sets out the

relationship between the TPR and FPR for predicting pathway participation at various

cut-offs. The AUC-ROC is used as a single number summary of the ROC curve, as a

measure of prediction accuracy.

Similarly, for a given prediction, the precision is defined as the number of correctly

predicted true positives (i.e., the number of genes correctly predicted to participate in

the pathway, or the number of genes correctly predicted as cancer drivers) over the total

number of genes in the prediction set (e.g., the known genes participating in the pathways

and the genes they are directly connected with outside the pathway, or the all genes known

to participate in the pathway). Recall is synonymous to the TPR, defined above. The

precision-recall curve sets out the relationship between the precision and recall at various

cut-offs. The area under the PR curve is then used as a single number summary of the

precision-recall curve, as a measure of prediction accuracy.

To be able to identify the pathways or cancer mechanisms that are exceptionally

well captured by a given graphlet adjacency, I define the normalized AUC-PR. For each

graphlet adjacency and a given prediction task, I normalize the distribution of AUC-PR

scores over all pathways by subtracting the median and dividing by the mean absolute

deviation.

Assigning ancestor annotations to pathways

The Reactome Ontology is a collection of 23 direct acyclic graphs (dags), where nodes

represent pathway annotations and directed edges represent ‘is a’- relationships. I anno-

tate each pathway with its ancestor terms found 1 step away from the root node of the

corresponding dag. That is, to annotate a given pathway with its ancestor(s), I first find

that pathway in the Reactome dag, from there trace the Reactome Ontology dag upwards
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(against the direction of the ‘is a’ relationships) until I reach the pathway annotation(s)

that is(are) one step away from the root node(s), and use the annotations corresponding to

these nodes as ancestor annotations.

Pathway set enrichment

To assess if a set of pathways is statistically significantly enriched by pathways sharing

ancestor annotations, I apply the hyper-geometric test. That is, I consider a set of path-

ways as a ‘sampling without replacement’ experiment, in which each time I find a given

ancestor or GO-term annotation, I count that as a ‘success’.

The probability of observing the same or higher enrichment (i.e. successes) of the

given annotation purely by chance is equal to:

p = 1−
X−1

∑
i=0

(
K
i

)(
M−K
N − i

)
/

(
M
N

)
. (4.3)

where N is the number of ancestor annotated pathways in the pathway-set, X is the

number of pathways annotated with the given ancestor annotation in the pathway, M is

the number of ancestor annotated pathways pathways and K is the number of pathways

annotated with the given ancestor over all pathways in the pathway-set. An ancestor

annotation is considered to be statistically significantly enriched if its enrichment p-value

is lower than or equal to 5% after application of the Benjamini and Hochberg correction

for multiple hypothesis testing.

4.1.6 Data

Biological networks

I reuse the biological networks collected in the previous chapter, see Section 3.1.3 for

details.

Annotation data

I collect pathway annotation data assigning genes to pathways, from the Reactome path-

way ontology (Jassal et al., 2019). For each of the five molecular networks, I create a

set of pathway networks by inducing the gene set of each pathway on the network. For

each molecular network, I consider those pathways that form a connected subgraph of a

size of at least 10 and up to 100 nodes when induced on the full network. The number of

pathways considered per molecular network is summarized in Table 4.1. The distribution

of pathway sizes for each of the molecular networks is shown in Figure 4.2.
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No. of pathways

PPI yeast All 187
PPI human All 969
PPI human Disease 92
PPI human Non-disease 877
COEX yeast All 141
COEX human All 712
COEX human Disease 68
COEX human Non-disease 644
GI yeast All 241

Table 4.1: Number of pathways considered for each molecular network.
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Figure 4.2: Distribution of pathway sizes per molecular network. Each box plot represents
the distribution of the pathway sizes for each of the molecular networks (x-axis) con-
sidering all pathways, non-disease pathways and disease pathways (colour) in the
Reactome ontology.

I reuse the 586 cancer driver annotations collected in the previous chapter from the

intOGen database (Gonzalez-Perez et al., 2013). I consider a gene to be a cancer driver if

it is a known cancer driver in at least one cancer type.

4.2 Results and discussion

4.2.1 Graphlet adjacencies describe topologically and biologically

distinct pathways

First, I validate that graphlet adjacencies can capture topological relationships between

the nodes in a pathway by evaluating pathway participation prediction accuracy (Section

4.2.1). Then, I show that the pathways that are described by the same graphlet adjacency,

share biological functional similarities that are different dependent on the graphlet adja-
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cency considered (Section 4.2.1). I conclude this section with a case study, where I focus

on the ‘Receptor mediated mitophagy’ pathway and explain why some graphlet adjacen-

cies best capture the topological-functional relationships between nodes in the pathway

(Section 4.2.1).

Graphlet adjacency captures pathway specific topology

I assess if graphlet adjacencies capture pathway topological signal by evaluating the per-

formance of graphlet eigencentrality for the purpose pathway participation prediction. In

Figure 4.3, I observe that regardless of the underlying graphlet adjacency and molecu-

lar network type, the local approach and GeneMANIA consistently perform better than

random (AUC-ROC=0.5), achieving median AUC-ROC scores higher than 0.6. This, ex-

cept in the yeast GI network, where GeneMANIA performs close to random and in the

yeast PPI network, where the local approach performs close to random when applied on

graphlet adjacency ÃG4 . The global approach performs as by random when applied on

graphlet adjacencies for ÃG1 , ÃG2 and ÃG8 in PPI and GI networks, with median AUC-

ROC scores around 0.5. Given that the ratio of positive examples in each test-set is only

0.15 on average, AUC-PR is a better measure for comparison. In terms of AUC-PR, I

observe that the local approach consistently outperforms the global approach, as well as

GeneMANIA. To explain this result, I found that each pathway annotated gene partici-

pates in 6 pathways on average. Furthermore, on average, these 6 pathways are descen-

dants of 2 (of the 23) different root nodes of the pathway ontology. This implies that from

the perspective of the global network, pathways are intertwined, even functionally very

distinct ones, making it harder to predict if a gene participates in a pathway or not. The

local approach, however, considers each pathway as an individual entity, disentangled

from the rest of the network. This validates the intuition that, from the perspective of the

pathway, all genes participating in it are important.

Next, to validate that different graphlet adjacencies best capture different sets of

pathways, I compare the set of top-scoring pathways of each graphlet adjacency. I will be

referring to the pathways for which I achieve the highest prediction accuracy considering

a given graphlet adjacency as described by that graphlet adjacency.

Formally, for each graphlet adjacency, I consider those pathways with a normalised

AUC-PR score larger than 3.0 (in analogy to the 99.7% confidence interval for variables

following a standard normal distribution) to be described by that graphlet adjacency. On

average, 55 pathways are found to be described by a graphlet adjacency. By measuring



4.2. Results and discussion 64

A)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-R
O

C

GeneMANIA Local eigencentrality Global eigencentrality

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-P
R

GeneMANIA Local eigencentrality Global eigencentrality

B)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-R
O

C

GeneMANIA Local eigencentrality Global eigencentrality

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-P
R

GeneMANIA Local eigencentrality Global eigencentrality

C)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.2

0.4

0.6

0.8

1.0

AU
C

-R
O

C

GeneMANIA Local eigencentrality Global eigencentrality

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

AU
C

-P
R

GeneMANIA Local eigencentrality Global eigencentrality

D)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-R
O

C

GeneMANIA Local eigencentrality Global eigencentrality

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

AU
C

-P
R

GeneMANIA Local eigencentrality Global eigencentrality

E)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.2

0.4

0.6

0.8

1.0

AU
C

-R
O

C

GeneMANIA Local eigencentrality Global eigencentrality

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

AU
C

-P
R

GeneMANIA Local eigencentrality Global eigencentrality

Figure 4.3: Pathway participation prediction accuracy in different molecular networks. I
show the pathway participation prediction accuracy measured using AUC-ROC (left)
and AUC-PR (right), for three methods (see legend), applied on different graphlet
adjacencies (x-axis), in the yeast PPI network (A), hyman PPI network (B), yeast
COEX network (C), human COEX network (D), yeast GI network (E). Each box
plot represents the distribution of prediction accuracies over all pathways using the
indicated method and graphlet adjacency.
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the pairwise overlap between the set of pathways described by the different graphlet ad-

jacencies, I find that the average of the Jaccard indices is 0.17. I conclude that graphlet

adjacencies capture pathway topologies that are different and described by the underlying

graphlet.

Graphlet adjacencies for different graphlets captures complementary

groups of functionally related pathways

Having shown that graphlet adjacencies capture pathway topologies, I assess if any

graphlet adjacency describes functionally similar pathways and compare the biological

functions captured by different graphlet adjacencies.

To assess if a given graphlet adjacency captures similar pathways, I annotate each

pathway with its second level ancestors, i.e. annotations in the second most general level

of the pathway ontology, one step away from the root nodes (see Section 4.1.5) and per-

form pathway set enrichment analysis (see Section 4.1.5).

In the bar charts at the top of Figure ?? , I observe that in all five of the molecular

networks, each graphlet adjacency describes pathways that are enriched in at least one an-

cestor annotation. This means that in all five of the molecular networks, different graphlet

adjacencies describe pathways that are functionally similar in terms of the types of an-

cestor annotations. For instance, the set of pathways described by graphlet adjacency ÃG3

in the yeast PPI network, is enriched in pathways related to ‘Signaling by GPCR’ (9 out

of 59 pathways are descendants of this ancestor, adjusted p-value 2.23E−5), ‘Transmis-

sion across Chemical Synapses’ (9 out of 59 pathways are descendants of this ancestor,

adjusted p-value 2.23E−5 ) and ‘Platelet activation, signalling and aggregation’ (6 out

of 59 pathways are descendants of this ancestor, adjusted p-value 7.61E−23). There is

one exception to this conclusion in the yeast COEX network, where the set of pathways

described by graphlet adjacency AG1 is not enriched in any ancestor annotations, meaning

these pathways are not statistically significantly similar in terms of the type of pathways

they represent.

For the set of yeast molecular networks, in the heat maps presented in panels A,

C and E, I generally find very low overlap between the functional annotations enriched

in the pathway sets described by different graphlet adjacencies. The lowest overlap in

terms of enriched functional annotations is achieved in the COEX network, where the

average Jaccard index between the ancestors enriched in the pathways described by two

different graphlet adjacencies 0.11. The highest overlap in terms of enriched functional
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annotations is achieved in the PPI network, where the average Jaccard index between

ancestors enriched in the pathways described by two different graphlet adjacencies is 0.20.

For the set of human molecular networks, in the heat maps presented in panels B and D,

I generally find low overlap between the ancestor annotations enriched in the pathway

sets described by different graphlet adjacencies. The lowest overlap is achieved in the PPI

network, where the average Jaccard index between the ancestors enriched in the pathways

described by two different graphlet adjacencies 0.17. The highest average overlap is

achieved in the human COEX network, where the average Jaccard index between the GO-

BP terms enriched in the pathways described by two different graphlet adjacencies 0.40.

I conclude that, pathways described by different graphlet adjacencies are functionally

different in terms of the ancestor annotations in which they are enriched.

Case study: Receptor mediated mitophagy

‘Receptor Mediated Mitophagy’ (RMM) is a degradation process in the cell focused on

the degradation of damaged mitochondria. I found the pathway to be highly described by

graphlet adjacency ÃG6 (normalised AUC-PR 5.98) and not described by ÃG0 (normalised

AUC-PR 0.04) in the yeast PPI network, and will be focusing on this pathway to explain

why some graphlet adjacencies better capture some pathways than others.

In Figure 4.5 I show the spring embedding of RMM based on normalised graphlet

adjacencies ÃG0 and ÃG6 . For graphlet adjacency ÃG0 , the RMM pathway is com-

posed of two densely connected modules, the control mechanism (genes CSNK2A,

CSNK21, CSNK2B, SRC) and the phagophore formation process (genes ATG5, ATG12,

MAP1LCA, MAP1LCB, ULK1), which interact through a single hub gene, FUNDC1.

This is unfavourable for prediction, as a gene would be predicted to be part of the pathway

if it is densely connected with just one of the two clusters. Graphlet adjacency ÃG6 , how-

ever, does capture the fact that, through hub node FUNDC1, all the genes in the control

mechanism and the phagophore formation process are functionally related (i.e. executing

the RMM process), as both groups of genes are now highly connected. This also better

captures the pathway from a topological perspective, as genes predicted to be part of the

pathway would have to interact (in the form of graphlet G6) with all pathway members.

I conclude that graphlet adjacency allows to describe the functional organization of the

pathway.
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Figure 4.4: Functional similarity between pathways described by different graphlet adja-
cencies. For the yeast PPI network (A), human PPI network (B), yeast COEX net-
work (C), human COEX network (D) and yeast GI network (E), I show a clustered
heat map of the Jaccard similarity indices between the sets of ancestor annotations
enriched in the sets of pathways described by different types of graphlet adjacencies.
Above each heat map, a bar-chart indicates the number of ancestor annotations en-
riched in the pathways described by each corresponding graphlet adjacency.
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Figure 4.5: Graphlet adjacency ÃG6 captures RMM functional organisation Spring embed-
ding of RMM based on normalised graphlet adjacency ÃG0 (left) and ÃG6 (right),
where nodes represent genes (red) and edges represent weighted normalised graphlet
adjacency (see legend). Graphlet G6 is indicated in purple in the spring embedding
based on G0, connecting genes CSNK2A1, CSNK2A2, FUNDC1 and ATG12. The
subnetwork obtained by inducing these same nodes is also indicated in purple in
the spring embedding based on graphlet adjacency ÃG6 . Although only connected
via FUNDC1 when considering regular adjacency, ATG12 is directly connected to
CSNK2A1 and CSNK2A2 in the spring embedding based on graphlet adjacency ÃG6 ,
illustrating how graphlet adjacencies capture functionally relevant indirect relation-
ships between nodes.

4.2.2 Graphlet adjacency based pathway centrality captures comple-

mentary cancer mechanisms

Here, I illustrate how graphlet eigencentralities enables to relate specific local wiring pat-

terns of genes in a pathway with their individual biological function. I focus on predicting

cancer driver genes. I first verify that cancer-related genes play central roles in pathways

(Section 4.2.2). Then, I show that the set of cancer driver genes recognised for playing

central roles in pathways are different based on the graphlet adjacency considered (Sec-

tion 4.2.2). To explain this, I illustrate it with a case study, where I show why graphlet

adjacency ÃG6 best captures the central roles of cancer driver genes, TP53 and RB1, in the

‘Formation of Senescence-Associated Heterochromatin Foci’ pathway (Section 4.2.2). In

this part of the study, I consider all non-disease specific pathways in Reactome.
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Cancer related genes play central roles in pathways, as captured by their

graphlet eigencentrality

I assess if cancer driver genes tend to have central positions in pathways by performing the

following analysis. For each pathway, I predict its genes to be cancer-related according

to their pathway centrality. I consider the set of cancer driver genes provided by intOGen

as the set of true positives (Section 4.1.6).

For the PPI network, I observe that local and global graphlet eigencentralities ap-

proaches perform better than the expected AUC-ROC of 0.5 in case of random prediction

accuracy, with median AUC-ROC scores over all pathways typically over 0.60, for each

of the different underlying graphlets. I observe that global graphlet eigencentrality consis-

tently outperforms local graphlet eigencentrality. To explain this, I perform an MWU test

comparing the distribution of the number of pathways each cancer driver genes occurs in,

with the distribution of the number of pathways each non-cancer driver gene occurs in. I

find that, in the human PPI network, cancer driver genes occur on average in almost twice

as many pathways as non-cancer driver genes (10.56 compared to 6.07), which is statis-

tically significantly different with a p-value of 5.19E−20. Therefore, while cancer genes

tend to have a central role in pathways (as indicated by the local graphlet eigencentrali-

ties), the results also suggest that they play a more critical role in the crosstalk between

the pathways regulating the cell (as indicated by global graphlet eigencentralities). These

results are in line with the existing literature, as cancer driver genes have been shown to

have a statistically significantly higher betweenness centrality than other genes in the PPI

network (Iakoucheva et al., 2002). Looking for specific examples of cancer driver genes

playing a role in cancer through crosstalk, I find, for instance, that the crosstalk between

cancer driver STAT3 and the p53/RAS signaling pathway controls cancer cell metastasis

(Liang et al., 2019). Similarly, crosstalk between p53 and the IGF-1R/AKT/mTORC1

pathway can lead to chemo resistance (Davaadelger et al., 2016).

I find similar results in the COEX network. In the COEX network, I observe that

only global graphlet eigencentrality based on ÃG1 , ÃG3 , ÃG4 and ÃG6 performs better than

the expected AUC-ROC of 0.5 in case of random prediction accuracy, achieving median

AUC-ROC scores over all pathways of at least 0.60. For these graphlet adjacencies, I

achieve a median AUC-PR 0.23 in all four cases. Again I observe that the global approach

greatly outperforms the local approach in terms of median AUC-PR as well as median

AUC-ROC. I validate that cancer driver genes occur in statistically significantly more
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Figure 4.6: Cancer-related gene prediction accuracy. For the human PPI network (A) and the
human COEX network (B), I show the distribution of cancer-related gene prediction
accuracies over all pathways as box plots, measured using AUC-ROC (left, y-axis)
and AUC-PR respectively (right,y-axis), applying local and global graphlet eigencen-
trality (colour, see legend), applied on different types of graphlet adjacencies (x-axis),
in the human PPI network. A dashed red line at 0.5 indicates the expected AUC-ROC
in case of random performance.

pathways than non-driver genes. As before, I apply a one sided Mann–Whitney U test in

which I compare the distribution the number of pathways driver genes occur in, with the

distribution of the number of pathways non-driver genes occur in. Doing so, I achieve

a significant p-value 3.44E−13. On average, cancer driver genes occur in 6.31 different

pathways, whereas non cancer driver genes occur in only 4.64 different pathways.

I conclude global eigencentrality is the best approach for finding pathways in which

cancer-related genes play a central role.

I consider the study of how cancer related genes interact between pathways as future

work and will be focussing on illustrating how graphlet eigencentralities capture pathway

mechanisms within pathways.

Different graphlet adjacencies allow for the discovery of different cancer-

related genes.

First, I focus on those pathways described by central cancer driver genes, i.e. those

pathways for which I achieve a normalized AUC-PR score larger than 3 applying local

graphlet eigencentralities. Additionally, I determine for each pathway a set of correctly



4.2. Results and discussion 71

predicted cancer-related genes. For each pathway, I determine the threshold such that

the F1 score for predicting cancer drivers in that pathway is maximal and consider all the

known cancer driver genes with a centrality score higher than this threshold as correctly

predicted cancer-related genes. In Figure 4.7, I show the pairwise Jaccard indices between

the sets of correctly predicted genes uncovered based on different graphlet adjacencies.

With an average Jaccard index of 0.30 in the human PPI network and 0.45 in the human

COEX network, I conclude that different graphlet adjacencies describe the role in cancer

of different sets of cancer related genes.
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Figure 4.7: The overlap between correctly predicted cancer genes in pathways based on dif-
ferent graphlet eigencentralities. For the human PPI (A) and the human COEX
network (B), a clustered heat map of the Jaccard similarity indices between the sets
of correctly predicted cancer genes found in pathways described by central driver
genes based on different types of graphlet adjacencies. At the top of each heat map,
the bar-chart indicates the number of correctly predicted genes corresponding to each
graphlet adjacency.

Case study: Formation of Senescence-Associated Heterochromatin Foci

(FSAHF)

The formation of senescence-associated heterochromatin foci (FSAHF), contributes to

senescence (permanent interruption of cell division) by repressing the expression of

proliferation-promoting genes through reorganisation of chromatin (Narita et al., 2003).

Cellular senescence plays a vital role in permanently restricting the propagation of dam-

aged and defective cells and forms a natural tumour-suppressor mechanism. I found the

cancer mechanism in the FSAHF pathway to be described by graphlet adjacency ÃG6

(normalised AUC-PR 3.2) and poorly described by ÃG0 (normalised AUC-PR −0.56). I
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Figure 4.8: Graphlet adjacency ÃG6 captures centrality of cancer driver genes in the FSAHF
pathway. Spring embedding of FSAHF based on normalised graphlet adjacency
ÃG0 (left) and ÃG6 (right), where nodes represent non-cancer-related genes (red) and
known cancer driver genes RB1 and TP53 (yellow), and edges represent weighted
normalised graphlet adjacency (see legend). Graphlet G6 is indicated in translucent
purple in the spring embedding based on G0, connecting genes RB1, TP53, HMGA2
and CABIN1. The subnetwork obtained by inducing these same nodes is also indi-
cated in translucent purple in the spring embedding based on graphlet adjacency ÃG6 .
Although only connected via HMGA2 when considering regular adjacency, TP53 and
RB1 are directly connected to CABIN1 in the spring embedding based on graphlet
adjacency ÃG6 , illustrating how graphlet adjacencies can capture functionally relevant
indirect relationships between nodes.

will be focusing on this pathway to explain how graphlet adjacencies can capture different

cancer mechanisms in pathways.

In Figure 4.8, I show the spring embedding of the SAHF formation pathway-based

on normalised graphlet adjacency ÃG0 and ÃG6 . From the perspective of graphlet adja-

cency ÃG0 , cancer drivers RB1 and TP53 do not play a central role in this pathway, as

they appear peripheral to the other nodes in the pathway. The mediating role of TP53 and

RB1 trough hub node HMGA2 is well captured by graphlet adjacency ÃG6 , connecting

them with all nodes in the pathway. Additionally, through literature curation, I find that

HMGA2, the most central node in the pathway according to graphlet adjacency ÃG6 and

predicted as cancer-related in Section 4.2.2, is also a driver of tumour metastasis (Mor-

ishita et al., 2013). I conclude that graphlet eigencentrality enables considering different

notions of the centrality of genes in pathways, allowing the capturing of different func-
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tional roles of genes in pathways. As centrality measures are widely used to uncover

disease-related genes and graphlet eigencentrality captures notions of centrality different

from those based on regular adjacency, graphlet eigencentrality opens up the opportunity

of uncovering novel disease related genes.

4.3 Conclusion
In this chapter, I introduce graphlet eigencentrality, which captures different notions of

the centrality of nodes in a network. I apply it on measuring the centrality of genes in

pathways, enabling a detailed investigation of how different graphlet adjacencies capture

different biological functions. I apply this method at two levels: from the local pathway

perspective or the global network perspective.

I apply graphlet eigencentralities to identify pathways described by different graphlet

adjacencies, i.e. all genes participating in a pathway are also important from the topolog-

ical perspective. To do so, I use graphlet eigencentralities to predict which genes belong

to a given pathway, considering the pathways for which I achieve the highest prediction

accuracies as being described by that graphlet adjacency. I find that local pathway-based

graphlet eigencentralities well predict which genes participate in a given pathway, out-

performing state-of-the-art predictor GeneMANIA. To explain this result, I show that

pathways, even when functionally unrelated, show large amounts of overlap (see Section

4.2.1). As the local approach considers each pathway as an individual entity disentangled

from the full network, it is able to best capture the topological essence of a pathway. I go

on to show that pathways that are described by a given graphlet adjacency are biologically

functionally similar in terms of the ancestral, GO-BP, GO-CC and GO-MF terms in which

they are enriched, and that these functional similarities depend on the graphlet adjacency.

I illustrate these results by a case study of the ‘Receptor mediated mitophagy’ pathway,

where I show how graphlet adjacency ÃG6 captures the hub-role of FUNDC1, allows to

capture the functional organisation of the pathway.

Secondly, I apply graphlet eigencentrality at predicting cancer-related genes in

pathways. I observe that global graphlet eigencentrality consistently outperforms local

graphlet eigencentrality. To explain this result, I show that cancer driver genes partic-

ipate in statistically significantly more pathways than non-cancer-related genes. There-

fore, while cancer genes tend to have central roles in pathways (as indicated by local

graphlet eigencentralities), the results also suggest that they play a more essential role in

the crosstalk that occurs between pathways to regulate the cell (as indicated by the global
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graphlet eigencentralities). This is a key insight, as it indicates that pathway-focused ap-

proaches for studying cancer should focus on the interactions between pathways, although

most current state-of-the-art approaches focus on their individual differential expression

or rewiring. In chapter 5, I build on this observation to predict cancer implicated pathways

based on their changing pathway-pathway interactions.

Additionally, I show that cancer genes that can be uncovered by their pathway cen-

trality are different depending on the graphlet eigencentrality. I illustrate these results by a

case study of the FSAHF pathway, where I show how graphlet adjacency captures the cen-

tral roles of cancer driver genes, RB1 and TP53. I conclude that graphlet eigencentralities

capture different functional roles of genes in and between pathways.



Chapter 5

Pathway-driven NMTF captures the

reorganisation of pathways in cancer

In chapter 3, I introduced graphlet adjacency, a graphlet based generalization of regular

adjacency designed to capture the higher order wiring of nodes in local network neigh-

bourhoods. I showed that graphlet laplacians capture topology-function and topology-

disease relationships in biological networks. Subsequently in chapter 4, I took a more

descriptive pathway focused approach to investigate how different graphlet adjacencies

capture different biological functions and disease mechanisms. I showed that different

graphlet adjacencies better capture the different functional roles of genes in pathways.

During the pathway focused analysis, I observed that driver genes characteristically per-

form hub roles between pathways. Therefore, I hypothesise that cancer pathways should

be identified by changes in their pathway-pathway relationships, which is the focus of this

chapter.

In this chapter, to learn an embedding space that captures the relationships between

pathways in a healthy cell, I propose pathway-driven non-negative matrix tri-factorisation

(PNMTF). I apply PNMTF to predict 15 genes and pathways involved in four major

cancers, predicting 60 gene-cancer associations in total, covering 28 unique genes. To

further exploit driver genes’ tendency to perform hub roles, I model the network data us-

ing graphlet-adjacency, which considers nodes adjacent if their interaction patterns form

specific shapes (e.g., paths or triangles). I find that the predicted genes rewire pathway-

pathway interactions in the immune system and provide literary evidence that many are

druggable (15/28) and implicated in the associated cancers (47/60). I predict six drug-

gable cancer-specific drug targets.

This analysis is summarised in Figure 5.1.



76

1. Data Collection

PPI networks

Pathway annotations
(Reactome ontology)

Disease genes
(Intogen, cancer scores)

2. Compute Graphlet 
adjacency

G0 G1 G2 G3 G4 G5 G6 G7 G8

3. Data integration 5. Within pathway 
cancer gene prediction 

Path 1
Path 2

Path …
∼ X

4. Cancer pathway 
prediction

Figure 5.1: Chapter workflow summary. Step 1: collection of the PPI network, Reactome path-
ways and cancer drivers. Step 2: computation of graphlet adjacencies. Step 3: inte-
grate a graphlet adjacency and the entire pathway ontology. Step 4: predict cancer
pathways. Step 5: predict cancer genes in cancer pathways.

Chapter impact
This chapter has lead to the following contributions:

Publications:

Windels, S. F. L., Malod-Dognin, N., and Pržulj, N. (2022). Identifying cellu-

lar cancer mechanisms through pathway-driven data integration. Bioinformatics,

btac493.

Methodological contributions:

To capture the organisation of a network as a composition of subnetworks, I pro-

pose pathways-driven non-negative matrix tri-factorisation (PNMTF), which fuses

network data and prior domain-specific knowledge assigning nodes to subnetworks

in the network. PNMTF allows to measure the topological importance of nodes

and subnetworks in a network and the rewiring of their interactions between two

different network states.

Biological contributions:

PNMTF allows to predict genes and the pathways involved in four major cancers

based on their functional importance in the healthy cell and their changing func-

tional relationships in cancer. By combining PNMTF with graphlet adjacency, I

can exploit the tendency of driver genes to perform hub roles and increase predic-

tion accuracy. I provide strong literature support for the top predicted genes, of
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which I prioritise six as potential cancer-specific drug targets. These results are in

submission.

Software and data analysis:

PNMTF, as well as the data and scripts to perform the analysis presented in this

chapter, have been made publicly available at: gitlab.bsc.es/swindels/pnmtf .
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5.1 Methods

To capture the higher-order organisation encoded by graphlet adjacencies in a lower-

dimensional space, I define the baseline model Global-NMTF (see Section 5.1.1). Then, I

extend the NMTF model to Pathway-driven NMTF to benefit from the known functional

organisation of pathways in Reactome (see Section 5.1.1). Finally, to identify pathways

and genes implicated in cancer, I define the embedding based centrality and moving dis-

tance measures, which respectively measure the (topological) importance of a pathway

or gene and how much the their functional relationships change between a healthy to a

diseased state (see Sections 5.1.2 and 5.1.2).

5.1.1 NMTF models

To capture the functional organisation of the cell as an embedding space, I define the

baseline NMTF model called Global NMTF (GNMTF) (see Section 5.1.1). Then, I extend

the NMTF model to benefit from the known functional organisation of pathways (see

Section 5.1.1). The solvers for both models are presented in Supplementary Section ??.

Global NMTF (GNMTF) model: a basic approach to learning the organi-

sation of the healthy cell

To learn an embedding space that captures the higher-order functional organisation of a

healthy (control) cell as captured by a given graphlet adjacency matrix, ÃGi , which de-

composes ÃGi as the product of three non-negative matrix factors, Un×d,Sd×d and V n×d:

ÃGi ≈USV T . This corresponds to solving the following optimisation problem:

min
U,S,V≥0

8

∑
i=0

∥∥∥ÃGi −USV T
∥∥∥2

F
, s.t.: V TV = I, (5.1)

where F denotes the Frobenius norm. I interpret V as an orthogonal basis that captures

the functional organisation of the cell as captured by ÃGi , and E = US as embedding all

genes in common space V . Each row of E corresponds to the embedding of a gene, which

I denote g⃗, in the space spanned by V . Then, analogous to NLP, where sentences can be

represented by the average embedding of their constituent words (Le and Mikolov, 2014),

I define the embedding of a pathway, which I denote p⃗, as the average embedding of its

genes: p⃗ = 1
|mp| ∑g⃗∈mp g⃗, where mp is the set of gene embeddings for genes in a given

pathway p.
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Pathway-driven NMTF (PNMTF) model: improved learning of the organ-

isation of the healthy cell

I extend GNMTF model to benefit from the known functional organisation of pathways

in Reactome. PNMTF learns a latent representation for each pathway and an embedding

space that organises these discrete latent representations. Specifically, how each pathway

p interacts within the healthy cell is encoded by taking the rectangular submatrix, H |mp|×n
p ,

induced by the |mp| genes in the pathway and n genes in the cell on ÃGi . Then, PNMTF

simultaneously decomposes the Hp-matrices for all of the r pathways in Reactome into r

pairs of non-negative latent matrices U |mp|×1
p and S1×d

p and one orthogonal non-negative

latent matrix V d×n: Hp ≈ UpSpV T for all p ∈ [1,r]. This corresponds to solving the

following optimisation problem:

min
Up,Sp,V≥0

r

∑
p=1

∥∥Hp −UpSpV T∥∥2
F , s.t.: V TV = I, (5.2)

Ep = UpSp is interpreted as embedding the genes of pathway p in the orthogonal

space spanned by V . Each row of Ep corresponds to the embedding of a gene in the (func-

tional) context of a given pathway p, which I denote by g⃗p. Analogous to the GNTMF

model, I define the embedding of a pathway p as the average embedding of its genes:

p⃗ = 1
|mp| ∑g⃗p∈mp g⃗p, where mp is the set of gene embeddings for genes in pathway p.

Extending PNMTF: learning representations for cancer-affected pathways

To enable the identification of pathways whose functional relationships change the most

in cancer (see Section 5.1.2), the aims is to learn how cancer-affected pathways change

their interactions with other pathways. To do so, I fix the basis of the common space V

learned in Eqn 5.2 based on the control PPI network, and solve PNMTF based on the case

(cancer) PPI network to learn a second latent representation for each pathway, this time

in a diseased state.

5.1.2 NMTF scores for cancer predictions

To identify pathways and genes implicated in cancer, I define three heuristics based on

PNMTF pathway and gene embeddings.
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NMTF centrality

Here I define how to measure the topological importance of a pathway or gene based on

its embedding. To do so, I take inspiration from the eigencentrality, which considers a

node important if it is highly connected to other highly connected nodes, i.e, if it is part

of a cluster of nodes in the network. For a formal definition, see Section 2.1.2.

In NMTF, the left and right latent matrices’ rows can also be interpreted as cluster-

indicator vectors, where the entity corresponding to the row is assigned to the cluster

corresponding to the column containing the highest valued entry. Therefore, following

the proposition that an entity is considered central if it is part of one or more clusters, I

measure the centrality of a pathway or gene by the Euclidean norm of its embedding:

NMTF centrality(E⃗) =
∥∥∥E⃗

∥∥∥
2
, (5.3)

where E⃗ is the embedding of a healthy pathway (i.e. P⃗) or gene (i.e. G⃗) (see Section

5.1.1).

Moving distance

Here I define the moving distance, which measures how a pathway’s or gene’s functional

relationships change when moving from a healthy to a diseased state. To do so, I take the

Manhattan distance between a pathway’s or gene’s embedding in a healthy and diseased

state (see Sections 5.1.1 and 5.1.1):

moving distance(E⃗1, E⃗2) =
∥∥∥E⃗1 − E⃗2

∥∥∥
1
, (5.4)

where E⃗1 and E⃗2 are the embeddings of a pathway or gene in a healthy and cancerous

state, respectively (see Sections 5.1.1 and 5.1.1).

Hybrid score

I use the geometric mean to combine the centrality and moving distance:

hybrid(E⃗1, E⃗2) =

√
NMTF centr.(E⃗1)∗mov.dist.(E⃗1, E⃗2), (5.5)

where E⃗1 and E⃗2 are the embeddings of a pathway or gene in a healthy and cancerous

state, respectively (see Sections 5.1.1 and 5.1.1).
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5.1.3 Measuring prediction accuracy

I apply three different NMTF-scores to predict cancer implicated pathways and genes in

Sections 5.2.2 and 5.2.3, respectively. As wet-lab validation is expensive, we are predom-

inantly interested in the top-scoring entities that are highly likely to be cancer implicated

for both types of predictions. So, for both types of predictions, I consider the set of top-

scoring entities as a prediction and use the Matthew Correlation Coefficient (MCC) to

measure the prediction accuracy:

MCC = T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

, (5.6)

where T P is he number of true positives, T N is the number of true negatives, FP is the

number of false positives and FN is the number of false negatives. For pathway focused

predictions, I use the set of known ‘cancer pathways’ in Reactome as the set of true

positives (see Section 5.1.4). For gene focused predictions, I use the set of known cancer

drivers in COSMIC as the set of true positives (see Section 5.1.4). The MMC ranges from

-1 to 1, where 1 indicates a perfect prediction, 0 indicates random performance and -1

indicates an inverse prediction.

5.1.4 Data

Case and control protein-protein interaction (PPI) networks

I create four pairs of case and control PPI networks (i.e. cancerous and healthy), one pair

for each of the four cancers considered. First, I create a generic PPI network by combin-

ing the experimentally validated PPI, only those captured using Two-hybrid or Affinity

Capture based methods, from BioGRID version 4.4.197 (Stark et al., 2006) and the PPI

from Reactome (Jassal et al., 2019). Then, I overlay the RNA-SEQ gene expression data

for four cancer cell lines and their corresponding control tissue from the Human Protein

Atlas, on the generic PPI network (Uhlén et al., 2015). Prostate cancer (cell line PC-3),

lung cancer (cell line A549), colon cancer (cell line CACO-2) and ovarian cancer (cell

line EFO-21) are considered. Basic network statistics are presented in Tables 5.1 and 5.2.
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Nodes Edges Density

Lung Case 11,635 274,202 0.41%
Lung Control 13,590 311,754 0.34%
Colon Case 11,298 267,833 0.42%
Colon Control 13,480 316,247 0.35%
Prostate Case 11,651 275470 0.41%
Prostate Control 13,654 312,201 0.33%
Ovary Case 12,027 286,596 0.40%
Ovary Control 12,626 288,960 0.36%

Table 5.1: Details case and control PPI networks. The number of nodes, the number of edges
and the density (columns 1-3, respectively), for each of the case and control PPI net-
works (rows).

Node overlap Edge overlap

Lung 0.78 0.80
Colon 0.78 0.80
Prostate 0.79 0.79
Ovary 0.81 0.80

Table 5.2: Overlap between case and control networks. For each case and control network
(rows), the overlap in terms of nodes and edges measured using the Jaccard Index
(columns).
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The Reactome Pathway Ontology

The Reactome Ontology is a collection of 23 directed acyclic graphs (DAG’s), encoding

the relationships between 2,516 pathway annotations from the most generic to the most

specific (Jassal et al., 2019). For each of the four pairs of case and control networks,

I determine the set of pathways that induce a subnetwork of at least 10 and up to 100

nodes on either of the networks. The number of pathways per pair of networks (case and

control) is presented in Table 5.4.

No. of pathways
Coverage of nodes

in union of
case and control PPI

Lung 1,025 5,266 / 14,118 (37.30%)
Colon 1,027 5,269 / 13,908 (37.88%)
Prostate 1,024 5,227 / 14,096 (37.09%)
Ovary 1,002 5,100 / 13,627 (37.43%)

Table 5.3: Pathway statistics. For each of the four tissues considered (rows), I indicate the num-
ber of pathways considered (column 1) and how many genes they annotate in the union
of the case and control network for the corresponding tissue.

Cancer annotation data

For the pathways and genes considered for each cancer type (see Sections 5.1.4 and

5.1.4), I collect cancer annotation data. At the pathway level, I collect ‘cancer pathway’-

annotations from Reactome, which indicate if a given pathway is considered to be a cancer

pathway. At the gene level, I collect driver genes from the COSMIC database (Tate et al.,

2019). I consider a gene to be a cancer driver if it is a known cancer driver in at least

one cancer type, with strong evidence (i.e., ‘Tier 1’) in the literature. Also, I collect a

set of tissue-specific prognostic genes from the Pathology Atlas (Uhlen et al., 2017). The

number of cancer pathways, driver genes and prognostic genes per cancer are presented

in Table 5.3.

Cancer pathways Driver genes Prognostic genes

Lung 61 652 614
Colon 61 647 575
Prostate 61 647 152
Ovary 61 632 475

Table 5.4: Cancer annotation data statistics. For each tissue, the number of cancer pathways,
driver genes and prognostic genes considered.



5.2. Results and discussion 84

5.2 Results and discussion
I apply PNMTF to uncover novel pathways and genes involved in lung, colorectal,

prostate and ovarian cancer. Specifically, for a given cancer type, I construct a case and

a control network, representing a cancerous and a healthy cell (see Section 5.1.4). For

the case and control networks, I compute the different graphlet adjacency matrices for

graphlets up to four nodes (see Section 3.1.1). Then, for a given graphlet adjacency, I

learn the higher order functional organisation of the healthy cell as an embedding space

using PNMTF, into which I embed pathways and genes (see Section 5.1.1). Next, in

this same space, I also compute embeddings for pathways and genes of a cancer affected

cell, by fixing the basis trained for the control cell and solving PNMTF for the case PPI

network (see Section 5.1.1). Finally, having computed a pair of embeddings for each

pathway and gene based on the cell’s healthy and cancerous state, I apply three NMTF-

scores: NMTF centrality, moving distance and hybrid score (see Section 5.1.2) to predict

their cancer relatedness.

In my analysis, I first validate that PNMTF captures the functional organisation of

pathways in the cell (Section 5.2.1). Then I show that using the NMTF-scores I can

prioritise pathways and genes implicated in cancer (Sections 5.2.2 and 5.2.3). Finally,

for each of the four cancers, I validate the top 15 predicted cancer genes and pathways

involved in the literature (i.e., predicting 60 cancer-specific gene-pathway pairs in total,

see Section 5.2.4).

5.2.1 PNMTF captures the functional organisation of the cell de-

scribed by the Reactome pathway ontology

First, I validate that PNMTF best captures the functional organisation of pathways in the

healthy (control) cell, compared to GNMTF (essentially a standard NMTF model). To

do so, for a given control network and graphlet adjacency, I train PNMTF and GNMTF

(see Sections 5.1.1 and 5.1.1), embed all pathways in the shared space V and apply ag-

glomerative hierarchical clustering on their pairwise Euclidean distances. Then, I confirm

that pathway embeddings based on PNMTF form better separable and more functionally

coherent clusters than those based on GNMTF.

Intrinsic quality of pathway-clusters in space: cophenetic correlation

For a given network and graphlet adjacency, to measure if the pathway embeddings form

dense and well-separable clusters in the embedding space (i.e. have high intrinsic cluster-
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ing quality), I first embed all pathways in shared space, apply agglomerative hierarchical

clustering and measure the intrinsic quality of the hierarchical clustering using the cophe-

netic correlation (i.e. the Pearson correlation between the cosine distance between two

pathways and the height in the linkage tree where their corresponding branches meet).

I present the results for lung cancer based on graphlet adjacency ÃG1 in Figure 5.2. I

observe that the agglomerative clustering uncovers a better separable clustering when ap-

plying PNMTF than GNMTF (cophenetic correlation 86.5% vs 66%).

A) B)

Figure 5.2: PNMTF best captures the functional organisation of pathways in the healthy
lung cell. (A) and (B) show a clustered heat map of the pairwise cosine distances
between all pathway embeddings in the shared space V learned based on graphlet
adjacency ÃG1 by GNMTF and PNMTF, respectively. For each heat map, the colour
bar under the hierarchical tree on the top indicates the 65 pathway clusters.

Results averaged over the four control networks across all graphlet adjacencies are

presented in Figure 5.3. I observe that, with the exception of when based on graphlet

adjacency ÃG5 , PNMTF outperforms GNMTF (average cophenetic correlation 89% com-

pared to 83%). The best intrinsic clustering quality, averaged over the 4 control networks,

is measured based on graphlet adjacency ÃG8 using PNMTF at 96%. I conclude that as

PNMTF based pathway embeddings show the clearest clustering structure in the embed-

ding space.

Extrinsic quality of pathway-clusters in space: enrichment analysis

For a given network and graphlet adjacency, to measure how well both methods group

functionally related pathways, I extract 65 clusters from both hierarchical clusterings (I

determine this is the optimal number of clusters applying an elbow method in Supple-

mentary Section B.1), and check their enrichment in pathway ancestors, less specific
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Figure 5.3: PNMTF best captures the functional organisation of pathways in the cell. For
GNMTF and PNMTF, I present the cophenetic correlation averaged over the four
tissues (y-axis) for the pathway embeddings. The distance between pathways is mea-
sured using ‘cosine distance’. Hierarchical clustering is performed using ‘average
linkage’.

pathways higher up in the Reactome ontology (see ancestor-pathway enrichment in the

previous chapter, Section 4.1.5). The results averaged over the four control networks

across the different graphlet adjacencies are presented in Figure 5.4. Averaged over the

four control networks, I observe that pathway clusters in the shared space trained using

PNMTF are at least as much or more enriched in ancestor annotations as pathway clus-

ters using GNMTF; this is true across all graphlet adjacencies in terms of percentage of

clusters enriched (on average 94% compared to 89%), percentage of ancestor pathway

annotations enriched (on average 94% compared to 84%) and percentage of pathways

with at least one ancestor enriched (on average 76% compared to 72%). This means that

PNMTF outperforms GNMTF in capturing the functional organisation of pathways as

described by Reactome.

In conclusion, compared to GNMTF, PNMTF based pathway embeddings form clus-

ters that are better separable (indicated by the high cophenetic correlation coefficient) and

more functionally coherent (indicated by the high percentage of ancestor enriched clus-

ters), hence I conclude that PNMTF better captures the functional organisation of path-

ways in the (healthy) cell than the standard GNMTF model.

5.2.2 PNMTF identifies pathways implicated in cancer

Having validated that PNMTF captures the functional organisation of pathways in the

healthy cell, I assess if the three NMTF-scores, centrality, moving distance and hybrid

score (defined Sections 5.1.2-5.1.2) can be used to prioritise pathways implicated in can-
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Figure 5.4: Pathway clustering ancestor enrichment analysis. For the GNMTF model and PN-
MTF model, I apply ancestor enrichment analysis on the pathway clusters and report:
the percentage of clusters that contain at least one enriched ancestor annotation, the
percentage of ancestor annotations that are enriched in at least one cluster and the
percentage of pathways that have at least one ancestor annotation enriched.
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cer. Specifically, for a given NMTF-score, cancer and graphlet-adjacency, I measure the

Matthews Correlation Coefficient (MCC) using the set of known cancer pathways in Re-

actome as a gold standard and a set of top-scoring pathways for each method as pre-

dictions for pathways implicated in cancer (see Section 5.1.3). To determine the set of

top-scoring pathways for each cancer type, graphlet-adjacency and NMTF-score, I apply

an elbow method. The results are presented in Supplementary Figure B.2. As all three

NMTF-scores plateau beyond 100 pathways, regardless of the cancer type and graphlet

adjacency, I consider the top 100 highest scoring pathways as the prediction set for path-

ways implicated in cancer. Applying a hypergeometric test, I find that this set of pathways

is enriched in Reactome cancer pathways (least significant p-value ≈ 4.67e-08). Addi-

tionally, I acknowledge that many pathways not labelled as cancer pathways in Reactome

might overlap with cancer-mechanisms. For that reason, I also consider the ratio of driver

genes in a pathway as an indication of a its engagement in cancer. Then, to evaluate a

given pathway prediction method, I measure the Spearman rank correlation between this

ratio and a pathway’s score.

First, I compare the results for all different graphlet adjacencies, averaged over the

four cell types, in Figure 5.5. I observe that in terms of MCC (Fig. 5.5.A), the best

performance is achieved when using the moving distance and regular adjacency (0.244),

just outperforming the hybrid score with graphlet adjacencies AG1,AG3, and AG6 (0.237,

0.220 and 0.233, respectively). Looking at the correlation results (Fig. 5.5.B), I find

that the hybrid score with graphlet adjacencies AG1 , AG3 , and AG6 greatly outperform the

moving distance with regular adjacency (0.421, 0.443 and 0.461, compared to 0.312).

Based on these results, I chose to focus on graphlet adjacencies AG0, AG1, AG3 and AG6

for the comparison against the state-of-the-art in the main paper.

Next, I compare the results based on these top-scoring graphlet adjacencies and those

based on pathway prediction methods ‘ORA’ (which despite its simplicity is still widely

used) and ‘ANUBIX’ (a state-of-the-art crosstalk enrichment method), see Figure 5.6. I

can not compare against FCS and PTB methods as they require multiple case and con-

trol samples for a given cancer type. Firstly, I observe that in terms of MCC (see Figure

5.6.A), the best performance is achieved using the moving distance and regular adjacency

(0.244), just outperforming hybrid score with graphlet adjacencies AG1,AG3, and AG6

(0.237, 0.220 and 0.233, respectively). All of NMTF-scores outperform ORA (-0.054)

and ANUBIX (0.032). This renders the PNMTF scores more practical for further down-

stream analysis (i.e., gene focused predictions) than ORA and ANUBIX, as the top ranked
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(A)

(B)

Figure 5.5: Comparing cancer pathway prediction accuracy for different NMTF-scores
across graphlet adjacencies. Sub-plots (A) and (B) respectively show the MCC
and rank-correlation scores for predicting Reactome cancer pathways. From left to
right, I compare results for PNMTF based on different graphlet adjacencies (x-axis)
and different NMTF-scores (legend).

pathways are more likely to be cancer related. Looking at the correlation results (see Fig-

ure 5.6.B), I find that the hybrid score based on graphlet adjacencies AG1,AG3, and AG6

greatly outperform the moving distance with regular adjacency (0.42, 0.443 and 0.461,

compared to 0.363). I also observe ANUBIX scores drastically better in terms of cor-

relation (0.302) than in terms of MMC, which indicates that ANUBIX is able to rank

pathways according to their likely involvement in cancer in general, although the set of

top 100 highest ranked pathways is not particularly enriched in cancer pathways. I con-

sider the hybrid score-based on graphlet adjacency AG1 as the best approach, as it is only

marginally behind the moving distance with AG0 , the best method in terms of MMC,

but greatly outperforms this method in terms of rank correlation. Finally, I note that the

highest scoring graphlet adjacencies, AG1 ,AG3, and AG6 happen to be based on graphlets

capturing betweenness and hubness, suggesting that cancer-related pathways tend to have
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hub-roles. This is in line with the previous results, where I observed that cancer driver

genes occur in statistically significantly more pathways than non-driver genes (Windels

et al., 2022).

(A)

PNMTF AG0 PNMTF AG1 PNMTF AG3 PNMTF AG6
Baseline

0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

M
C

C

centrality
moving_distance

hybrid
ORA

ANUBIX

(B)

PNMTF AG0 PNMTF AG1 PNMTF AG3 PNMTF AG6
Baseline

0.1
0.0
0.1
0.2
0.3
0.4
0.5

C
or

re
la

tio
n

centrality
moving_distance

hybrid
ORA

ANUBIX

Figure 5.6: PNMTF identifies pathways implicated in cancer. Sub-plots (A) and (B) show the
MCC and rank-correlation scores for predicting Reactome cancer pathways, respec-
tively. From left to right, I present the results for PNMTF based on different graphlet
adjacencies (x-axis) and different NMTF-scores (legend), against the state-of-the-art
(far right).

To further validate the hybrid score captures cancer-implicated pathways, I present

the top 10 highest scoring pathways in each of the four tissues, using the hybrid score

based on graphlet adjacency AG1 , in Tables 5.5 to 5.8. I observe, for each of the four

tissues, that between 5 and 7 out of 10 pathways are cancer pathways. For all four tissues,

I observe that all top 10 pathways are related to the RAS-MAPK pathway, which trans-

duces extracellular signals to the cell nucleus, regulating cell growth, cell division and

cell repair. The RAS-MAPK pathway is frequently associated with oncogenesis, tumour

progression and drug resistance, and is a frequent subject of therapeutic studies (Braicu

et al., 2019). Given that a high ratio of prioritised pathways is a known cancer pathway

and the fact that the prioritised pathways are involved in mechanisms known to be rewired

in cancer, I am confident that the remaining prioritised pathways that are not known as

cancer pathways could be indeed cancer related.
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Rank Pathway Known can-
cer pathway

1 Constitutive Signaling by EGFRvIII ✓

2 Signaling by EGFRvIII in Cancer ✕

3 Signaling by ERBB2 ECD mutants ✓

4 GAB1 signalosome ✕

5 PI3K events in ERBB2 signaling ✕

6 HSF1 activation ✕

7 Constitutive Signaling by Ligand-Responsive EGFR Cancer
Variants

✓

8 Signaling by Ligand-Responsive EGFR Variants in Cancer ✓

9 SHC1 events in EGFR signaling ✕

10 Signaling by ERBB2 KD Mutants ✓

Table 5.5: Top 10 highest scoring pathways in lung cancer. The table ranks pathways ac-
cording to their hybrid score using PNMTF based on graphlet adjacency AG1 . The final
column indicates if the pathway (2nd column) is a known cancer pathway in Reactome.

Rank Pathway Known can-
cer pathway

1 Constitutive Signaling by EGFRvIII ✓

2 Signaling by EGFRvIII in Cancer ✓

3 HSF1 activation ✕

4 Signaling by ERBB2 ECD mutants ✓

5 Constitutive Signaling by Ligand-Responsive EGFR Cancer
Variants

✓

6 Signaling by Ligand-Responsive EGFR Variants in Cancer ✓

7 Signaling by FGFR4 in disease ✓

8 Signaling by FGFR3 fusions in cancer ✓

9 Downstream signaling of activated FGFR4 ✕

10 Role of LAT2/NTAL/LAB on calcium mobilization ✕

Table 5.6: Top 10 highest scoring pathways in colon cancer. The table ranks pathways ac-
cording to their hybrid score using PNMTF based on graphlet adjacency AG1 . The final
column indicates if the pathway (2nd column) is a known cancer pathway in Reactome.

5.2.3 PNMTF identifies genes implicated in cancer

Having shown that NMTF-scores can identify pathways implicated in cancer, I move on to

find cancer-related genes within the set of 100 top-scoring pathways for each cancer type.

To identify a set of top scoring genes, I apply an elbow method to the three NMTF-scores:

centrality, moving distance and hybrid score (defined Sections 5.1.2-5.1.2). The results

are presented in Supplementary Figure B.3. I observe that the gene scores plateau beyond

the top 100 scoring genes, hence I choose to focus on the top 100 highest scoring genes

in the previously identified set of top 100 highest scoring pathways (see Supplementary

Section B.4). Then, I measure the MCC score using the set of top-scoring genes as a
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Rank Pathway Known can-
cer pathway

1 Signaling by EGFRvIII in Cancer ✓

2 Constitutive Signaling by EGFRvIII ✓

3 HSF1 activation ✕

4 Signaling by ERBB2 ECD mutants ✓

5 Constitutive Signaling by Ligand-Responsive EGFR Cancer
Variants

✓

5 Signaling by Ligand-Responsive EGFR Variants in Cancer ✓

7 GAB1 signalosome ✕

8 Constitutive Signaling by Overexpressed ERBB2 ✓

9 Downstream signaling of activated FGFR4 ✕

10 Signalling to RAS ✕

Table 5.7: Top 10 highest scoring pathways in prostate cancer. The table ranks pathways
according to their hybrid score using PNMTF based on graphlet adjacency AG1 . The
final column indicates if the pathway (2nd column) is a known cancer pathway in
Reactome.

Rank Pathway Known can-
cer pathway

1 Signaling by EGFRvIII in Cancer ✓

2 Constitutive Signaling by EGFRvIII ✓

3 GAB1 signalosome ✕

4 Signaling by ERBB2 ECD mutants ✓

5 Transcriptional regulation by the AP-2 (TFAP2) fam. of TF. ✕

6 Signaling by EGFR in Cancer ✓

7 Downstream signaling of activated FGFR3 ✕

8 Retrograde neurotrophin signalling ✕

9 Constitutive Signaling by Ligand-Responsive EGFR Cancer
Variants

✓

10 Signaling by Ligand-Responsive EGFR Variants in Cancer ✓

Table 5.8: Top 10 highest scoring pathways in ovarian cancer. The table ranks pathways
according to their hybrid score using PNMTF based on graphlet adjacency AG1 . The
final column indicates if the pathway (2nd column) is a known cancer pathway in
Reactome.

prediction and the driver genes in COSMIC as the gold standard (see Section 5.1.4). I

compare PNMTF for graphlet adjacency ÃG1 against: PNMTF with regular adjacency,

graphlet eigencentrality for ÃG1 (which predicts cancer genes based on their topological

importance, see Section 5.1.2) and network diffusion for ÃG1 (which predicts genes as

cancer related if they are in the network neighbourhood of differentially expressed genes,

see Section 2.2.2. I tune diffusing parameter α to 1.9, as it leads to the highest MCC

scores when ranging α from 0.1 to 2.0 in increments of 0.1). The results are presented in

Figure 5.7.
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I observe that by using PNMTF based on ÃG1 and by using the hybrid score heuris-

tic, I achieve the highest score (average MCC of 0.18). This implies that cancer-related

genes are best predicted when they are simultaneously of high importance in the control

(healthy) networks (i.e. have a high centrality) and have a large shift in functional relations

between case and control (i.e. have a high moving distance). Additionally, I observe that

by considering the higher-order topology of pathways, as captured by ÃG1 , to take advan-

tage of cancer drivers performing hub-roles between pathways, I manage to increase the

performance compared to regular adjacency by 40% (average MCC with hybrid heuristic

of 0.12). Lastly, I observe that the hybrid score outperforms graphlet eigencentrality and

diffusion (average MCC of 0.09 and 0.10). Given that hybrid scores greatly outperforms

the baseline methods, I conclude that PNMTF allows to predict cancer-related genes with

high accuracy, whilst indicating the pathways involved. In the next section, I investigate

these results more in detail and perform literature validation.
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Figure 5.7: PNMTF identifies genes implicated in cancer. From left to right, I present the MCC
scores for predicting cancer-related genes using PNMTF based on graphlet adjacen-
cies ÃG1 and ÃG1 (x-axis) using different NMTF-scores (colour-coded, see legend),
and compare against the state-of-the-art (far right)

5.2.4 Case study: identifying most rewired genes in changing

pathway-pathway interactions in lung cancer

I showed that by applying PNMTF-scores consecutively at the pathway and gene level,

I can predict cancer implicated pathways and cancer implicated genes within those path-

ways (see Sections 5.2.2 and 5.2.3). In other words, PNMTF allows to predict cancer

implicated genes, whilst predicting for each gene the main pathway involved. Next, I

validate in the literature the top 15 predicted genes in section 5.2.3 based on the hybrid

PNMTF-score with graphlet adjacency AG1 . To validate a predicted gene-cancer associa-

tion in the literature, I first consider a gene to have a known role in cancer if it is listed in
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the COSMIC cancer driver database or if any wet-lab experiment demonstrates it has one

of the following properties in the cancer:

1. enhances/diminishes susceptibility to anti-cancer agents,

2. promotes cell proliferation and cell survivability,

3. promotes migration and invasion,

4. inhibits tumour genesis (i.e. has a suppressor role).

Note that differential expression is not accepted as evidence. For genes that I can not

validate, I consider whether they are prognostic in the given cancer per the Pathology

Atlas (Uhlen et al., 2017) and if they are implicated in other cancer(s) based on wet-lab

experiments or the COSMIC cancer driver database.

Here, I discuss the results for lung adenocarcinoma (see Table 5.9). For the other

cancers, see Suppl. Tables B.1-B.3.
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Rank Symbol Pathway Validation in
Lung Adenocarcinoma Prognostic Validation in

non-lung cancer Drugability Immune
System

1 GRB2 SHC-mediated cascade: FGFR2 PMID: 26693065 (2, 3, mouse model) Approved ✕

2 CSK Phosphorylation of CD3 and TCR zeta chains PMID: 11054667 (colon cancer, 4, in vitro) Trial ✓

3 PTPN11 PD-1 signaling PMID: 25730908 (2,3, mouse model) ✕ ✓

4 FYN Dectin-2 family PMID: 21371426 (3, in vitro) Trial ✓

5 HSP90AA1 Attenuation phase COSMIC (non-Hodgkins lymphoma) Trial ✕

6 PIK3R1 RHOF GTPase cycle PMID: 24550137 (1, mouse model) Trial ✕

7 EGFR Transcriptional reg. by the AP-2 family of TF PMID: 20979469 (1, patient data) Approved ✕

8 SRC FCGR activation PMID: 17200208 (1, in vitro) Approved ✓

9 GNB1 G beta:gamma signalling through PI3Kgamma ✕ ✕

10 MYC Transcriptional reg. by the AP-2 family of TF PMID: 19551151 (2,3, mouse model) Trial ✕

11 CUL1 Prolactin receptor signaling PMID: 33478195 (4, in vitro) ✕ ✓

12 XPO1 Extra-nuclear estrogen signaling PMID: 27680702 (1, in vitro) Trial ✕

13 HNRNPH1 Signaling by FGFR2
PMID: 29362363
(Rhabdomyosarcoma, 2, mouse model) Trial ✕

14 GNG2 G-protein beta:gamma signalling PMID: 24660107 (melanoma, 4, in vitro) ✕ ✕

15 LYN Dectin-2 family PMID: 23866081 (1, in vitro) Approved ✓

Table 5.9: Validation of top-scoring genes in lung cancer. The table ranks the top 15 genes and corresponding pathways according to their hybrid score in lung cancer
using PNMTF based on graphlet adjacency AG1 . Genes in black have literature support for their role in Lung Adenocarcinoma (PubMed IDs or references to
COSMIC are given in the column ‘Validation in Lung Adenocarcinoma’). Genes without literature validation, i.e. predictions, are highlighted in blue. For
predicted genes, additional literary evidence highlights their potential role in cancer. Firstly, I provide the p-values for genes that statistically significantly
impact patient survival in Lung Adenocarcinoma based on Kaplan Meier survival curves in the column ‘Prognostic’. Secondly, when available, I provide
PubMed IDs or references to COSMIC for ‘predicted’ genes that have a proven role in cancers other than Lung Adenocarcinoma in the column ‘Validation
non-lung cancer’. In the column ‘Druggability’, I indicate which genes are a known drug target for at least one approved drug or one drug in clinical trial
according to DrugBank (Wishart et al., 2018). In the column ‘Immune System’, I indicate which pathways are immune system pathways according to
Reactome.
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First, I validate that the hybrid score prioritises genes with hub-roles between path-

ways. I apply a Man-Whitney U (MWU) test to confirm that the prioritised genes, i.e.

the top 15 genes based on the hybrid score (see Table 5.9, column 2), participate more

frequently in the set of prioritised pathways (see Table 5.9, column 3) compared to the

remaining, non-prioritised genes in those pathways. The MWU test yields a significant

result (the prioritised genes participate on average in 2.0 of the prioritised pathways com-

pared to 1.4 for the remaining, non-prioritised genes, p-value ≈ 2.22e-04). Therefore, as

the prioritised genes occur more frequently in the prioritised pathways, they are the genes

connecting those pathways, validating the approach. Moreover, this result is not observed

when applying PNMTF on regular adjacency, highlighting that graphlet-adjacency G1

enables the capturing of hub-roles of potential cancer drivers. Further, I validate in the

literature that 11/15 (73%) of the prioritised genes are implicated in lung cancer (see

Suppl. Table 5.9, column 4). For the four unvalidated genes: CSK, HSP90AA1, HN-

RNPH1 and GNG2, I find strong web-lab evidence in the literature that they are involved

in other cancers (see Table 5.9, column 6). I find that HSP90AA1 is a known cancer driver

in non-Hodgkins lymphoma (COSMIC), HNRNPH1 supports cancer-cell proliferation in

rhabdomyosarcoma (Li et al., 2018) and CKS and GNG2 have tumour suppressing roles

in colon cancer and melanoma, respectively (Nakagawa et al., 2000; Yajima et al., 2014).

Moreover, I find that 11/15 (73%) of the prioritised genes are known drug targets, includ-

ing CSK, HSP90AA1 and HNRNPH1 (see Suppl. Table 5.9 , column seven).

Next, I focus on the associated prioritised pathways, which serve as a functional con-

texts to the gene predictions (see Table 5.9, column three). From the network perspective,

I observe that the union of the prioritised pathways induces on both the case and control

PPI network a connected sub-network that is denser than expected by chance (both p-

values ≈ 1.00e-4, based on bootstrapping, obtained by sampling 10,000 sets of pathways

that are of size within the range of those in the prioritised pathway list). This indicates

that the prioritised pathways are likely functionally related (as they are overlapping in

the PPI network) and that the method is capturing an underlying disease-related signal

(as the pathways are more intertwined than expected by chance). Further, I validate that

the hybrid score prioritises pathways based their altered pathway-pathway interactions

rather than their internal perturbation. To do so, I assess if the prioritised pathways have

significantly more edges rewired (i.e., added or deleted) that connect them to the other

prioritised pathways compared to the number of edges they have rewired within them, by

applying a hypergeometric test. I find that edges between pathways are twelve times more
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rewired (p-value ≈ 3.40e-19), validating the method.

From a functional perspective, I find that the prioritised pathways are enriched in

Reactome ‘Immune System’ pathways (pathways ranked 2, 3, 4, 8 and 15 in Suppl. Table

5.9, p-value ≈ 2.31e-2). Furthermore, the remaining pathways can easily be related to the

immune system. For instance, pathways 9 and 14 are downstream of GCPR signalling,

which regulates T-cell immunity (Wang, 2018). Pathway 12, ‘Receptors for oestrogens

signalling’, regulates immune system pathways, as well as immune cell development (Ko-

vats, 2015). These results are in line with the cancer literature, as immune system rewiring

is necessary for cancer cells to evade immunological response and to enable them to abuse

inflammatory responses as a source for bioactive molecules (e.g., growth factors) (Hana-

han and Weinberg, 2011). Combined with the results at the gene level, I conclude that

PNMTF uncovers a cancer induced rewiring of the proteins linking immune system path-

ways in lung cancer.

I obtain similar results across all four cancers, see Suppl. Section B.6. When con-

sidering the top 15 predicted genes for the four cancers collectively, I can validate 47/60

(78%) of these gene-cancer associations in the literature. I show that the genes involved

in the 13 unvalidated gene-cancer associations are implicated in other cancers. As the top

15 predicted genes across the four cancers overlap, which is expected as cancers can share

the same disease mechanisms, I predict 28 unique genes in total. Of these genes, 15/28

(54%) are known drug targets (see Suppl. Tables 5.9-B.3, column 7). As six of the 13

unvalidated gene-cancer associations involve druggable genes, I suggest them as cancer-

specific drug targets: CSK, HSP90AA1 and HNRNPH1 for lung cancer, HSP90AA1 for

colon cancer and prostate cancer, and HNRNPH1 for ovarian cancer. At the pathway

level, I find that the hybrid score uncovers a cancer-induced rewiring of the proteins con-

necting pathways involved in the immune system in colon and prostate cancer.

5.3 Conclusion
In this chapter, I suggest PNMTF, which learns an embedding space that captures the func-

tional organisation of pathways in a cell. In this embedding space, I define two heuristics,

NMTF centrality and moving distance, which measure the importance and disruption of

functional relationships of a pathway or gene in cancer, respectively. I apply these heuris-

tics to predict cancer implicated pathways and genes in four cancers. Additionally, I

exploit cancer genes tending to perform hub roles between pathway interactions by con-

sidering graphlet-based higher-order topologies that encode hub roles. I find that PNMTF
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uncovers a cancer-induced rewiring of the genes linking pathways involved in the im-

mune system for three out of the four cancers. This is in line with the literature, where the

immune system’s rewiring is considered a hallmark of cancer. Finally, I provide literary

evidence indicating the top predicted genes are likely involved in cancer and find many

are known drug targets, allowing me to predict six druggable cancer-specific drug targets.

Further, this analysis opens up multiple research questions:

1. To uncover emerging (disappearing) functional relationships in cancer and thus pro-

vide insight into cancer development, it could be interesting to see what pathways

become (less) central and form new (no longer form) dense clusters in cancer.

2. To enable a de novo pathway analysis I propose to extend PNMTF as a subspace-

clustering algorithm, as explained next.

3. As Reactome pathway annotations only cover 37% of the genes in the PPI network,

PNMTF ignores 63% of the human genes when predicting cancer implicated genes.

Therefore, to extend the coverage of the gene predictions, I suggest to extend the

PNMTF model as a subspace clustering model, so that rather than taking the as-

signment of genes to pathways as a prior input, PNMTF model would learn the

assignment of genes to subspaces, which I would interpret as de novo pathways. I

discuss this suggestion in detail in the closing notes of the thesis, see Section 6.2.3.

4. To provide insight in how different drugs affect pathways in cancer, gene-drug data

could be integrated in the PNMTF model.

5. Lastly, PNMTF can be applied outside of biology, when the input data is a network

and domain knowledge categorising the nodes. For instance, PNMTF could be

applied on trade networks, where nodes are countries and edges are the value of the

trade between them, while trade agreements form a prior grouping of the nodes.



Chapter 6

Conclusions

In this chapter, I summarise the results and contributions presented in this thesis, both in

terms of methodology and biological aspects. Further, having briefly touched on future

research directions at the end of chapters 3 and 4, here I provide more in-depth detail on

some of the key suggested methodological improvements.

6.1 Summary of thesis achievements
Systems biology is flooded with large scale “omics” data, typically modelled as networks.

This abundance of network data started the fields of network biology, allowing the elu-

cidation of molecular mechanisms of a broad range of diseases, such as rare Mendelian

disorders (Smedley et al., 2014), cancer (Leiserson et al., 2015), and metabolic diseases

(Baumgartner et al., 2018). In this thesis, I focus on studying the higher-order organisa-

tion of molecular networks at the node-level (genes) and at the sub-graph level (pathways).

In chapter 3, to study the higher-order organisation of networks at the node-level,

I introduce graphlet adjacency, which considers a pair of nodes to be adjacent if they

simultaneously touch a given graphlet. I demonstrate that graphlet adjacency captures

topology-function and topology-disease relationships in molecular networks. In partic-

ular through graphlet-generalized spectral clustering of model networks and biological

networks, I show that different Graphlet Laplacians capture different local topologies.

By applying graphlet-generalized spectral embedding, I demonstrate that Graphlet Lapla-

cians capture biological functions as well. I quantify this through graphlet-generalized

spectral clustering analysis. I show that Graphlet Laplacians are not only as biologi-

cally relevant as alternative Laplacian matrices, but also capture complementary biolog-

ical functions. Finally, by graphlet-generalized diffusing of pan-cancer gene mutation

scores on the human PPI network, I show that Graphlet Laplacians capture complemen-

tary disease mechanisms.
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In chapter 4, to further investigate the relationships between the topological features

of genes in molecular networks in human and yeast, as captured by graphlet adjacen-

cies, and the biological functions of the genes, I build more descriptive pathway-based

approaches. Specifically, I extend eigencentrality to graphlet eigencentrality, to study the

importance (centrality) of genes in pathways, either from the local pathway perspective

or the global perspective of the entire network.

First, I identify the pathways that are described by each graphlet adjacency, i.e.

all genes participating in a pathway are also captured as topologically important by the

graphlet adjacency, using graphlet eigencentralities to predict which genes belong to a

given pathway. I consider the pathways for the highest prediction accuracies are achieved

as being described by that graphlet adjacency. I show that the pathways that are described

by a given graphlet adjacency, are functionally similar, implying that each graphlet ad-

jacency uncovers different pathway topology and function relationships. I illustrate this

relationship by means of a case study in the ‘Receptor Mediated Mitophagy’ pathway,

where I show how, unlike regular adjacency, graphlet adjacencies capture the relevance of

all genes in the pathway.

Second, considering different graphlet adjacencies, from the local and global per-

spective, uncovers complementary sets of cancer driver genes (known to be drivers in at

least one type of cancer) that are described by playing central roles in pathways and the

crosstalk between them. This suggests that by considering different graphlet eigencentral-

ities, one can capture different functional roles of genes in and between pathways. I illus-

trate this relationship by means of a case study, this time in the ‘Formation of Senescence-

Associated Heterochromatin Foci’-pathway, where I show how, unlike regular adjacency,

graphlet adjacencies capture the central roles of cancer driver genes TP53 and RB1. This

result shows that, as centrality measures are widely used to uncover disease-related genes

and graphlet eigencentrality captures notions of centrality different from those based on

regular adjacency, graphlet eigencentrality opens up the opportunity of uncovering novel

disease related genes.

In chapter 5, I study the higher-order organisation of functional sub-graphs in a net-

work. In particular, I prioritise cancer-implicated pathways whilst simultaneously provid-

ing insight into the key genes involved, in four cancer types: lung cancer and colorectal

cancer, respectively the deadliest cancer types, and prostate cancer and ovarian cancer,

the most prevailing gender-specific cancer types (Sung et al., 2021).

To do so, I introduce pathway-driven non-negative matrix factorization (PNMTF),
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which learns the functional organisation of a healthy cell by decomposing ‘healthy’ cu-

rated pathways, encoded as induced subgraphs of a control PPI network. In this space, I

define pathway and gene embeddings, based on the pathways in a healthy and diseased

state (represented by the subgraphs induced by curated pathways on control and case PPI

network). Based on these embeddings, I define ‘NMTF centrality’, which measures the

functional importance of a pathway or gene as the norm of its healthy embedding and

the ‘moving distance’, which measures the disruption of a pathway’s or gene’s functional

relationships, as the distance between its healthy and cancerous embedding.

I validate that PNMTF captures the functional organisation of pathways in the cell:

embedding all pathways in the common space I find that their embeddings form easily

separable clusters that are functionally coherent. Then, I show that pathways or genes

with high centralities and moving distances are likely to be cancer-related; effectively

identifying cancer-related pathways and genes not based on their (internal) perturbation

in cancer, but based on their functional relationships with other pathways and genes in the

cell. Additionally, I show that higher-order topologies based on graphlets that allow for

capturing different hubness properties, such as occurrence on shortest-paths, improve the

prediction accuracy, indicating that they improve the capturing of cancer mechanisms. Fi-

nally, I consider the top 50 predicted cancer genes for each cancer type and validate 59/65

of the uniquely predicted genes through literature curation. I present a case study for lung

cancer, where I confirm through literature investigation that the only non-validated gene,

SLC47A1, and the corresponding pathway on which its score is based, ‘SLC-mediated

transmembrane transport’ (not a known cancer pathway), are potentially cancer-related.

6.2 Methodological extensions

6.2.1 Alternative notions of higher-order topology

Graphlet-adjacency quantifies the association between two nodes based on how frequently

they form a given graphlet. However, alternative notions that capture higher-order infor-

mation could be considered. Currently, our group is generalising the clustering coefficient

based on graphlets, defining the graphlet clustering coefficient. Building on this work, I

define the graphlet clustering matrix below.

For a given node, the clustering coefficient measures the extent to which its neigh-

bours cluster together, i.e. a tend to form triangles. Formally, the clustering coefficient of

a node is defined as the ratio of the number of edges between its neighbours over the pos-
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sible number of edges between them (see Section 2.1.3). Alternatively, from a graphlet

perspective, the clustering coefficient can be defined as as the number of times a node

touches orbit 3 (i.e. forms a triangle), over the number of times it touches orbit 2 (i.e. is

at the centre of a wedge) (see Section 2.1.4 for an illustration on orbits).

To extend regular adjacency, graphlet adjacency defines two nodes u and v of a net-

work G to be graphlet-adjacent based on how frequently they simultaneously touch a

given graphlet Gk. Analogously, I define clustering adjacency, which considers a node

v to be cluster-adjacent to a node u, based on how much v contributes to the clustering

coefficient of u, i.e. how many times u and v form triangles together (i.e., count for orbit

3) relative to the total number of wedges u participates in (i.e., orbit count 2). Note that

orbit count o3 is equivalent to graphlet count G2, as graphlet G2 only has a single orbit.

Given this extended definition of adjacency, I define the graphlet clustering matrix

as:

AC(u,v) =

o3
uv/o2

u if u ̸= v

0 otherwise,
(6.1)

where o3
uv is the number of times nodes u and v simultaneously touch orbit 3 and o2

u the

number of times node u touches orbit 2. I illustrate the clustering adjacency matrix for a

toy network and compare it to graphlet adjacency for graphlet G2 in Figure 6.1. Note that

AC, unlike AG2 , is not a symmetric matrix. Additionally, the entries of AC automatically

scale between 0 and 1, absolving the need to normalise the adjacency matrix. It should be

clear that by considering different pairs of orbits, alternative graphlet clustering matrices

can be defined, allowing to capture different notions of clustering connectivity patterns.

6.2.2 Faster graphlet counting

The current graphlet adjacency counter is based on the relatively inefficient graphlet

counter of GraphCrunch 2, which counts graphlets through brute force enumeration

(Kuchaiev et al., 2011). When considering four node graphlets, for each of the n nodes

in the network I perform a breadth-first search three nodes deep, counting the formed

graphlets along the way. So, if d is the maximal degree in the network, the time complex-

ity of the counting algorithm is O(nd3). In practical terms, the counter takes one day to

compute for the human PPI network and five days for the human COEX network. So, the

current counter is impractical for larger or denser networks than those considered in this

thesis.

To speed up computations, I suggest taking inspiration from the Orbit Counting Al-
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(A)

H:

a

b

c d

(B)
AG2 =


a b c d
0 2 1 1 a
2 0 1 1 b
1 1 0 0 c
1 1 0 0 d

 AC =


a b c d
0 2/3 1/3 1/3 a

2/3 0 1/3 1/3 b
1/2 1/2 0 0 c
1/2 1/2 0 0 d


Figure 6.1: An illustration comparing graphlet adjacency AG2 (triangle) to clustering adja-

cency. A: Example network H. B: The adjacency matrices AG2 and AC for the
example network H, shown in panel (A). In the case of AG2 , the off-diagonal elements
correspond to the number of times two nodes touch graphlet G2 (triangle) together.
For AC, the off-diagonal elements corresponds to the ratio of same counts, divided by
the number time the node corresponding to the row touches orbit o2 (i.e., is at the cen-
ter of a wedge). For instance, AG2(a,b) = 2, as a and b form G2 twice, via triangles :
a-b-c and a-b-d. AC(a,b) = 2/3, as a touches o2 three times: at the centre of wedges
c-a-d, c-a-b and b-a-d.

gorithm (Orca) (Hočevar and Demšar, 2014). To count four-node graphlets, the authors of

Orca provide ten redundancy equations, linear relationships between the eleven different

orbit counts (see Section 2.1.4 for an illustration on orbits). Therefore, the counts for only

one type of orbit need to be computed to make this a determined system, such that all

other orbit counts can be inferred. Then, the authors suggest a novel heuristic for count-

ing four-node cliques, i.e. graphlet G8, that takes advantage of these rarely occurring in

biological networks, as they are typically sparse. Although the theoretical time complex-

ity of Orca is still O(nd3), in practice, it is a lot faster than GraphCrunch 2 (Hočevar and

Demšar, 2014). In practice, the Orca counter takes less than ten minutes to compute the

GDVs for the human PPI or COEX network. So, I suggest extending the Orca redundancy

equations to be applicable for the graphlet adjacency counter to enable graphlet-adjacency

based higher-order network analysis for larger networks

6.2.3 Uncovering de novo cancer pathways with NMTF based sub-

space clustering

In chapter 5, I propose PNMTF to identify cancer implicated pathways and the genes

involved. Pathway based approaches, such as PNMTF, rely on a set of predefined cu-

rated pathways that have a well defined function within the cell. This has the benefit of

leading to highly interpretable results which in turns supports to the creation of testable

hypotheses. However, curated pathway annotations are very incomplete, meaning that

pathway-based approaches cover only a subset of the human proteins. For instance, I
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find that the curated pathway database Reactome only covers 37% of all human proteins

with known PPI (Jassal et al., 2019; Oughtred et al., 2019). To counter this issue, de novo

pathway based methods aim at identifying significantly perturbed subnetworks in disease,

avoiding the need for a set of pre-defined pathways. Note that, unlike biological pathways,

de novo pathways lack an a priori known function. For instance, given a large biological

interaction network, KeyPathwayMiner extracts connected subnetworks enriched in dif-

ferentially expressed genes in cancer and interprets them as functional modules or de novo

pathways (Alcaraz et al., 2016). Similarly, Hierarchical HotNet diffuses somatic muta-

tion scores that quantify for each gene how likely it is to be somatically mutated in cancer

on a protein-protein interaction (PPI) network. After diffusion, neighbourhoods enriched

in frequently mutated genes are predicted as being cancer-related modules or ‘pathways’

(Reyna et al., 2018). To enable a de novo pathway analysis I propose to extend PNMTF

as a subspace-clustering algorithm, as explained next.

In classical clustering, each data points is assigned to a given cluster based on all

of its features. Sub-space algorithms on the other hand learn for each data point multi-

ple multivariate latent feature representations, which can be based on all or a subset of

all features in the data. Data points are then segmented based on those learned features,

meaning that for a given data point, irrelevant features can be ignored. For instance, clas-

sical k-means iteratively learns cluster centroids (as points in a global space) and assigns

each individual data point to the nearest centroid. Note that in K-means, the centroid is

computed as the average of all data points assigned to it, so all features are taken into

account. It’s subspace generalisation, K-subspaces, iteratively learns cluster subspaces

(hyperplanes in a global space) and assigns points to the nearest subspace (Vidal, 2011).

As the name entails, each individual subspace does not need to cover the entire global

space, i.e. the learned hyperplanes can be based on only a subset of the features in the

data. A synthetic example is given in Figure 6.2, where data points visibly lie on differ-

ent hyperplanes. A classical clustering algorithm, such as k-means, would have issues

correctly segmenting data points that lie near the intersection of one or more clusters.

Subspace clustering algorithms would correctly segment those data points, as they learn

the features that are relevant to segmenting them: the axes of the hyperplanes.

PNMTF can be extended as a sub-space clustering problem by decomposing an ad-

jacency matrix An×n into m pairs of non-negative latent matrices Un×dp
p and Sdp×d

p and

one orthonormal non-negative latent matrix V n×d: A ≈ ∑
m
p=0UpSpV T . This corresponds

to solving the following objective function
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Figure 6.2: Illustration of the merits of subspace clustering. Show is a sample dataset with four
clusters, each in two dimensions with the third dimension being noise. Points near
the intersection of two clusters would confuse many traditional clustering algorithms.
Additionally, only subspace clustering algorithms would (correctly) ignore the noise
in the third dimension. This image is taken from (Parsons et al., 2004)

min
Up,Sp,V≥0,∀p∈[0,m[

∥∥∥∥∥A−
m

∑
p=0

UpSpV T

∥∥∥∥∥
2

F

, s.t.: V TV = I. (6.2)

Here, each matrix Un×dp
p is a latent subspace, that can be projected in the common

space V by multiplying it with Sp. The time complexity of solving this optimisation

problem is O(mn2dp). Note that each matrix Up covers all nodes in the network, so a

post-processing step is needed to decided if a gene is assigned to one or more subspaces.

Having assigned all the genes to one or more sub-spaces, can interpret each sub-space Up

as a latent de novo pathway and use the NMTF centrality and moving distance to predict

cancer implicated de novo pathways and identify genes involved.
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Pržulj, N. (2007). Biological network comparison using graphlet degree distribution. In

Bioinformatics, volume 26, pages 177–183.
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Supplement A

Graphlet Laplacian

A.1 Determining number of clusters, d
When applying Graphlet Laplacian based spectral clustering, the number of clusters, d,

needs to be determined for each of the molecular networks. I determine d by using the

rule of thumb: d =
√

n/2 (Kodinariya and Makwana, 2013). The intuition behind this

heuristic is that it provides a ‘reasonable number’ of clusters relative to the size of the

network. I validate this approach by inspecting the spectra of the networks. In Section

2.2.1, I explained how the eigenvectors of a Laplacian solve an approximation to the

ratio-cut problem, in which a graph is partitioned into similarly sized partitions whilst

minimizing the numbers of edges being cut. Additionally, the eigenvalues corresponding

to those eigenvectors related to the number of edges cut, as their value provides an upper-

bound on the graph-cut suggested by the eigenvector (Mohar, 1997). In Supplementary

Figure A.1 I present the first 100 eigenvalues of different Graphlet Laplacians for each

network. For each network I indicated the number of clusters d by means of a vertical

line. I observe that typically beyond the dth eigenvalue, the curves of each spectrum are

relatively flat, i.e. λi+1 −λi ≈ 0. Hence, clustering beyond d clusters is not warranted, as

there is little motivation to choose one additional graph-cut over another.
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Figure A.1: Spectra of molecular networks. Panel A shows the legend for subsequent panels.
Panels B-F show the graph spectra of the Graphlet Laplacians (L G

i ), k-path Laplacian
(L P

2 and L P
3 ) and Vicus (L V

0.90), for the set of molecular networks (PPI and COEX
for yeast and human, GI for yeast). For each network, the suggested number of
clusters, d, is indicated by a vertical line. Beyond the dth eigenvalue, the spectrum is
flat.
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Pathway-driven NMTF captures the

reorganisation of pathways in cancer

B.1 Solving GNMTF
Below, I detail how GNMTF is solved using multiplicative update rules, and how the

solver is initialised using Singular Value Decomposition (SVD).

B.1.1 GNMTF Multiplicative update rules

The algorithm to solve GNMTF is presented below in Algorithm 2.

Algorithm 2 Multiplicative update rules GNMTF
Initialise U, S, V using SVD (see Supplementary Section B.1.2)
for all t = 0,1, . . . , tlimit −1, or until St+1 = St , U t+1 =U t and V t+1 =V t do

St+1
p = St

p ⊙

√
((U t

p)
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++(U t
pSt

p)
−

((U t
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−+(U t

pSt
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;
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p =U t
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p(S
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;

V t+1 =V t ⊙
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p )TU t+1St+1)−

(AT
pGi

U t+1St+1)−+(V t(St+1)T (U t+1)TU t+1St+1)+
;

Return the last computed (U,S,V );

B.1.2 GNMTF initialisation

To initialise U, S, and V, a truncated SVD is applied on graphlet adjacency matrix ÃGi ,

for the d largest singular values:

WΣZT = SV D(ÃGi), (B.1)
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where W and ZT are n× d dimensional matrices of which the columns are respectively

the d left and right singular vectors of ÃGi , and Σ is a d × d diagonal matrix with the d

largest singular values of ÃGi on the diagonal.

The columns of U are based on the columns of W . Specifically, the jth column vector

of U , U [ j], is initialised based on the jth column vector of W , W [ j]. To do so, W [ j] is split

into two non-negative vectors: W [ j]+, which is a copy of W [ j] with all negative values

set to 0, and W [ j]−, which is a copy of W [ j] where all positive values are set to 0 and all

negative entries are set to their absolute value. Either W [ j]+ or W [ j]− is assigned to U [ j],

depending on which one has the highest euclidean norm. Analogously, V is initialised

based on Z. S is simply initialized by matrix Σ.

B.2 Solving PNMTF
Below, I detail how PNMTF is solved using multiplicative update rules, and how the

solver is initialised using Singular Value Decomposition (SVD).

B.2.1 PNMTF multiplicative update rules

The algorithm used to solve PNMTF is presented below in Algorithm 3.

Algorithm 3 Multiplicative update rules PNMTF
Initialise U, S, V using SVD (see Supplementary Section B.2.2)
for all t = 0,1, . . . , tlimit −1, or until St+1 = St , U t+1 =U t and V t+1 =V t do

St+1
p = St

p ⊙

√
((U t

p)
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pSt
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−
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;

Return the last computed (U,S,V );

B.2.2 PNMTF initialisation

The initialisation of PNMTF is analogous to that of GNMTF. To initialize Up for a given

pathway p, a truncated SVD is applied on graphlet adjacency matrix HpGi , for the dp

largest singular values:

WΣZ = SV D(HpGi). (B.2)
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The columns of Up are initialised based on the columns of W . Specifically, the jth

column vector of Up, Up[ j], is initialised based on the jth column vector of W , W [ j]. To

do so, W [ j] is split into two non-negative vectors: W [ j]+, which is a copy of W [ j] with all

negative values set to 0, and W [ j]−, which is a copy of W [ j] where all positive values are

set to 0 and all negative entries are set to their absolute value. Either W [ j]+ or W [ j]− is

assigned to Up[ j], depending on which one has the highest euclidean norm. Sp is simply

initialized by matrix Σ.

To initialize V , a truncated SVD is applied on normalized graphlet adjacency matrix

AGi , computed for the d components corresponding to the d largest singular values:

WΣZ = SV D(ÃGi). (B.3)

V based is initialised based on Z using the same procure applied to initialize V in GNMTF.

B.3 Determining number of clusters, d

The aim is to extract clusters of pathways from the PNMTF and GNMTF based hierar-

chical clusterings of pathways so that subsequently I can validate that pathways embed-

ded/clustered together are functionally related (see Supplementary Section 5.2.1). To that

end, for both GNMTF and PNMTF, a threshold that defines the number of clusters to be

extracted from the hierarchical tree of pathways. To determine the optimal threshold, I cut

the tree at different heights, such that the number of exacted clusters, k, varies from 25 to

100. For each value of k, I compute the corresponding silhouette score, which measures

how well separated the extracted clusters are as a measure of intrinsic clustering quality.

Results for PNMTF and GNMTF based on the different graphlet adjacencies are shown

in Supplementary Figure B.1.

For PNMTF, I find that the silhouette scores are non-decreasing and plateau from

65 clusters onwards for all graphlet adjacencies, except for ÃG4 and ÃG5 . For GNMTF, I

find that the silhouette scores do not climb and plateau as for PNMTF but rather remain

stable regardless of the value of k (except for graphlet adjacencies ÃG2 and ÃG8). This

is because the pathway embeddings do not form easily separable clusters in space with

GNMTF. Therefore, for both methods, I cut the tree such that I achieve 65 clusters.
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Figure B.1: Determining the optimal number of pathways to extract. For PNMTF (top) and
GNMTF (bottom), the silhouette scores (y-axis) extracting k (x-axis) clusters of path-
ways from the embedding spaces, based on different graphlet adjacencies (colour,
legend).
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Figure B.2: Determining a threshold for identifying top-scoring pathways through an elbow
method. For each of the three different measures (legend), the pathway scores
(y-axis) are sorted in descending order (x-axis), averaged over four cell types and
graphlet adjacencies (represented as error bands). A vertical purple line indicates the
top 100 highest ranked pathways.

B.4 Identifying the set of top-scoring pathways: defining

a threshold
Here, I want to define for each of the different NMTF scores applied at the pathway

level, a threshold to select top-scoring pathways. To do so, for each of the three different

NMTF-scores, graphlet adjacency and tissue, I compute the pathway scores and sort them

in descending order. I present the results per NMTF-score, i.e., averaged over the different

tissues and graphlet adjacencies, in Supplementary Figure B.2.

The narrow error bands, representing the 95% confidence interval across different

tissues and graphlet adjacencies, indicate that the trends across different graphlet adja-

cencies are similar, allowing to pick a single threshold that holds for all graphlet adjacen-

cies. I choose to consider the top 100 pathways as the set of pathways predicted to be

implicated in cancer, as that is where the centrality score, which also underlies the hybrid

score, flattens out (see purple line).

B.5 Identifying the set of top-scoring genes: defining a

threshold
Here, I aim to define for each of the NMTF scores applied at the gene level, a threshold

to select the top-scoring genes that participate in pathways that are in the set of 100 top-

scoring pathways. I focus on graphlet adjacency AG1 , as I show it best captures cancer
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Figure B.3: Determining a threshold for identifying top-scoring genes using an elbow
method. Limited to the top 100 highest scoring pathways, for each of the three
different NMTF-scores (legend) based on graphlet adjacency AG1 , the gene scores
(y-axis), averaged over four cancer types (represented as error bands), in descending
order (x-axis).

mechanisms at the pathway level in Section 5.2.2

Specifically, for each of the three NMTF-scores and four different tissues, I compute

the gene scores for the genes participating in the top 100 highest scoring pathways and

rank them in descending order. Results averaged over the four tissues are presented in

Supplementary Figure B.3. I choose to consider the top 100 highest ranked genes (purple

vertical line) as the set of predicted cancer-related genes, as from there all three NMTF-

scores plateau.

B.6 Gene-level validation
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Rank Symbol Pathway Validated in colon cancer Prognostic Validation in non-colon cancer Drugability Immune
System

1 GRB2 CD28 dependent Vav1 pathway PMID: 12134161 (3, in vitro) Approved ✓

2 PTPN11 PD-1 signaling PMID: 32467571 (4, in vitro) ✕ ✓

3 PIK3R1 RND3 GTPase cycle COSMIC Trial ✕

4 CSK Phosphorylation of CD3 and TCR zeta chains PMID: 20010872 (3, in vitro) Trial ✓

5 TRAF2
TNF receptor superfamily mediating
non-canonical NF-kB pathway 9.31e-4 PMID: 28667915 (1, in vitro) ✕ ✓

6 SRC FCGR activation COSMIC Approved ✓

7 HSP90AA1 HSF1 activation COSMIC (non-Hodgkins lymphoma) Trial ✕

8 LMNA Meiotic synapsis PMID: 22301279 (prostate, 2,3, in vitro) ✕ ✕

9 EGFR GRB2 events in EGFR signaling PMID: 15863375 (1, in vivo) Approved ✕

10 XPO1 Extra-nuclear estrogen signaling PMID: 26603256 (1, mouse model) Trial ✕

11 CUL1 Prolactin receptor signaling PMID: 29475926 (2, patient data) ✕ ✓

12 PTPRJ Phosphorylation of CD3 and TCR zeta chains PMID: 12089527 (2, mouse model) ✕ ✓

13 FN1 p130Cas linkage to MAPK signaling for integrins PMID: 29274284 (2, 3, in vitro) Approved ✕

14 BIRC3
TNF receptor superfamily mediating
non-canonical NF-kB pathway 9.35e-4

COSMIC (leukemia, non-Hodgkins lymphoma,
mantele cell lymphoma, multiple myeloma) ✕ ✓

15 GNB1 G beta:gamma signalling through PI3Kgamma PMID: 25485910 (leukemia, 1, in vitro) ✕ ✕

Table B.1: Validation of top-scoring genes in colon cancer. The table ranks the top 15 genes and corresponding pathways according to their hybrid score in colon
cancer using PNMTF based on graphlet adjacency AG1 . Genes in black have literature support for their role in colon cancer (PubMed IDs or references to
COSMIC are given in the column ‘Validation in colon cancer’). Genes without literature validation, i.e. predictions, are highlighted in blue. For predicted
genes, additional literary evidence highlights their potential role in cancer. Firstly, the p-values for genes that statistically significantly impact patient survival
in colon cancer based on Kaplan Meier survival curves are provided in the column ‘Prognostic’. Secondly, when available, PubMed IDs or references to
COSMIC for ‘predicted’ genes that have a proven role in cancers other than colon cancer are provided in the column ‘Validation non-colon cancer’. The
column ‘Druggability’ indicates which genes are a known drug target for at least one approved drug or one drug in clinical trial according to DrugBank
(Wishart et al., 2018). The column ‘Immune System’ indicates which pathways are immune system pathways according to Reactome.
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Rank Symbol Pathway Validated in prostate cancer Prognostic Validated in non-prostate cancer Drugability Immune
System

1 HSP90AA1 Binding and Uptake of Ligands by Scavenger Receptors COSMIC (non-Hodgkins lymphoma) Trial ✕

2 GRB2 SHC-mediated cascade:FGFR2 PMID: 17372910 (1, mouse model) Approved ✕

3 SHC1 Interleukin-2 signaling PMID: 29462661 (3, in vitro) ✕ ✓

4 PTPN11 PD-1 signaling PMID: 21442024 (2, mouse model) ✕ ✓

5 PIK3R1 Interleukin-7 signaling
PMID: 20530665 (liver cancer, 4, mouse model)
+ downregulated in prostate cancer ✕ ✓

6 TRAF2
TNF receptor superfamily mediating
non-canonical NF-kB pathway PMID: 28667915 (1, in vitro) ✕ ✓

7 SRC Nuclear signaling by ERBB4 PMID: 14662770(2, mouse model) 1.63e-4 Approved ✕

8 LMNA Diseases of programmed cell death PMID: 22301279 (2,3, in vitro) ✕ ✕

9 EGFR
Transcriptional regulation by the AP-2 family
of transcription factors PMID: 32574928 (1, in vitro) Approved Approved

10 NTRK1 Signalling to RAS PMID: 17143529 (1, in vitro) Approved ✕

11 HMGB1 Regulation of TLR by endogenous ligand PMID: 31410208 (3, in vitro) Trial ✓

12 UBE2I SUMOylation of intracellular receptors PMID: 30631151 (3, in vitro) ✕ ✕

13 PRC1 RHO GTPases activate CIT PMID: 31327655 (3, in vitro) ✕ ✕

14 TLR4 Regulation of TLR by endogenous ligand PMID: 18092352 (2, in vitro) Approved ✓

15 BIRC3
TNF receptor superfamily mediating
non-canonical NF-kB pathway PMID: 31511829 (2, in vitro) ✕ ✓

Table B.2: Validation of top-scoring genes in prostate cancer. The table ranks the top 15 genes and corresponding pathways according to their hybrid score in colon
cancer using PNMTF based on graphlet adjacency AG1 . Genes in black have literature support for their role in prostate cancer (PubMed IDs or references to
COSMIC are given in the column ‘Validation in prostate cancer’). Genes without literature validation, i.e. predictions, are highlighted in blue. For predicted
genes, additional literary evidence highlights their potential role in cancer. Firstly, the p-values for genes that statistically significantly impact patient survival
in prostate cancer based on Kaplan Meier survival curves are provided in the column ‘Prognostic’. Secondly, when available, PubMed IDs or references to
COSMIC for ‘predicted’ genes that have a proven role in cancers other than prostate cancer are provided in the column ‘Validation non-prostate cancer’.
Te column ‘Druggability’ indicates genes that are a known drug target for at least one approved drug or one drug in clinical trial according to DrugBank
(Wishart et al., 2018). The column ‘Immune System’ indicates which pathways are immune system pathways according to Reactome.
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Rank Symbol Pathway Validated in ovarian cancer Prognostic Validated in non-ovarian cancer Drugability Immune
System

1 GRB2 Signal attenuation PMID: 32754300 (1, mouse model) Approved ✕

2 TRIM25 Ovarian tumor domain proteases PMID: 32826889(2, mouse model) ✕ ✕

3 PTPN11 Signaling by Leptin PMID: 28814887 (3, in vitro + mouse model) ✕ ✕

4 HSP90AA1 Attenuation phase PMID: 23135731 (1, 2, in vitro) Trial ✕

5 SRC RUNX2 regulates osteoblast differentiation PMID: 27526105 (1, in vitro) Approved ✕

6 EGFR GRB2 events in ERBB2 signaling PMID: 22416774 (1, review paper) Approved ✕

7 PIK3R1 RHOF GTPase cycle PMID: 30755611 (1, mouse model) Trial ✕

8 YWHAB Frs2-mediated activation PMID: 30535456 (3, mouse model) Trial ✕

9 LMNA Diseases of programmed cell death PMID: 30384980 (4, in vitro) Trial ✕

10 XPO1 Extra-nuclear estrogen signaling PMID: 27649553 (1, mouse model) ✕ ✕

11 UBE2I SUMOylation of intracellular receptors PMID: 30631151 (prostate, 3, in vitro) ✕ ✕

12 HNRNPH1 Signaling by FGFR2 PMID: 34295818 (leukemia, 2, mouse model) Trial ✕

13 MYC Transcriptional regulation by the AP-2 (TFAP2) fam. of TFs PMID: 8314536 (1, in vitro) 7.52e-4 Trial ✕

14 FN1 p130Cas linkage to MAPK signaling for integrins PMID: 34093898 (3, in vitro) Approved ✕

15 SYK Interleukin-2 signaling PMID: 29643476 (1, 3, in vitro) Trial ✕

Table B.3: Validation of top-scoring genes in ovarian cancer. The table ranks the top 15 genes and corresponding pathways according to their hybrid score in colon
cancer using PNMTF based on graphlet adjacency AG1 . Genes in black have literature support for their role in ovarian cancer (PubMed IDs or references to
COSMIC are given in the column ‘Validation in ovarian cancer’). Genes without literature validation, i.e. predictions, are highlighted in blue. For predicted
genes, additional literary evidence highlights their potential role in cancer. Firstly, the p-values for genes that statistically significantly impact patient survival
in ovarian cancer based on Kaplan Meier survival curves are provided in the column ‘Prognostic’. Secondly, when available, PubMed IDs or references
to COSMIC for ‘predicted’ genes that have a proven role in cancers other than ovarian cancer are provided in the column ‘Validation non-ovarian cancer’.
The column ‘Druggability’ indicates which genes are a known drug target for at least one approved drug or one drug in clinical trial according to DrugBank
(Wishart et al., 2018). Thee column ‘Immune System’ indicates which pathways are immune system pathways according to Reactome.
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