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Abstract

The thesis presents methods for the variational calculation of fine and hyperfine

resolved rovibronic spectra of diatomic molecules, as part of the ExoMol and Ex-

oMolHD projects. The theory of these methods has been fully discussed. The

corresponding algorithms have been implemented based on previous works of the

ExoMol Group. The line lists of two molecules, NO and VO has been calculated,

which validates the proposed methods.

Nitric oxide is one of the principal oxides of nitrogen, which plays a significant

role the investigations of our atmosphere and astrophysics. Due to its importance,

the radical has been investigated in numerous theoretical and experimental works.

However, there is no NO ultraviolet line list in well-known databases. A major

issue in generating a UV line list for NO results from the difficulty of modelling

the valence-Rydberg interaction between its B 2Π and C 2Π states. To address the

problem, a spectroscopic model has been proposed to resolve the energy structures

of B 2Π and C 2Π coupled states. Based on the model, an accurate line list, called

XABC, has been computed, which covers the pure rotational, vibrational and rovi-

bronic spectra of 14N16O.

Vanadium monoxide is also an open shell diatomic system. Its dominating iso-

topologue 51V16O has non-zero nuclear spin, I = 7/2. The interaction between the

spin of unpaired electrons and the nuclear spin yields a very pronounced hyperfine

structure. The widely used effective Hamiltonian method for hyperfine structure is

not applicable to give accurate line list of VO, as the interactions between the elec-

tronic states of VO reshape its line positions and intensities. This thesis presents

a variational algorithm for the calculation of hyperfine structure and spectra of di-



IV

atomic molecules. The hyperfine-resolved IR spectra of VO has been computed

from first principles, considering necessary nuclear hyperfine coupling curves.



Impact Statement

• The vibrational method for nuclear hyperfine structure presented in Chapter 3

is useful for the assignment and prediction of high-resolution spectra of di-

atomic molecules.

• The adiabatic coupling scheme presented in Chapter 4 can be used for cal-

culating rovibronic spectra of other molecules (not limited to diatomic ones)

whose electronic states interact, generating avoided-crossing structures in po-

tential energy curves/surfaces.

• The IR-VIS-UV NO line list calculated in Chapter 5 gives more comprehen-

sive references for astronomical spectroscopy and other hot applications, e.g.

monitoring pollutants by laser absorption spectroscopy in combustion pro-

cesses. Scientist may find more applicable transitions in the UV regions for

laser induced fluorescence spectroscopy of NO.

• The development of VO spectroscopic model in Chapter 6 demonstrates

the standard procedures of predicting nuclear hyperfine spectra of diatomic

molecules. We will further improve the spectroscopic model and generate

a comprehensive rovibronic line list including more electronic states of VO,

which is expected to be used to analyse high-accuracy astronomical spectra.





Acknowledgements

I am immensely grateful to Jonathan Tennyson and Sergey Yurchenko for their kind

support during my PhD programme. I would like to thank every ExoMoller I have

met on my way as well, for your suggestions, for your encouragement, for your

Good Mornings ...





Contents

1 Introduction 1

1.1 Molecular spectroscopic databases . . . . . . . . . . . . . . . . . . 1

1.2 Motivation for variational calculation of diatomic spectra . . . . . . 4

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Background 9

2.1 Linear variational method . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 List of angular momenta . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Irreducible spherical tensor operators . . . . . . . . . . . . . . . . . 13

2.4 The non-relativistic molecular Hamiltonian . . . . . . . . . . . . . 17

2.5 The separation of nuclear and electronic motion . . . . . . . . . . . 18

2.6 Rovibronic fine structure of diatomic molecules . . . . . . . . . . . 19

2.7 The program Duo . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Variational Calculation of Hyperfine-resolved Rovibronic Spectra of

Diatomic Molecules 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The hyperfine structure Hamiltonian . . . . . . . . . . . . . . . . . 31

3.4 Matrix elements of the hyperfine structure . . . . . . . . . . . . . . 33

3.4.1 Primitive matrix elements of the hyperfine structure . . . . . 33



X

3.4.2 Parity conserved matrix elements under the rovibronic

wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Solution for the hyperfine structure . . . . . . . . . . . . . 40

3.5 Line strength of the hyperfine transitions . . . . . . . . . . . . . . . 41

3.6 Numerical verification . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 A Spectroscopic Model for the Lowest Four Doublet States of NO 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Theoretical study of the low-lying electronic states of NO . . . . . . 54

4.2.1 Active space and basis set . . . . . . . . . . . . . . . . . . 55

4.2.2 CASSCF calculation . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 MRCI calculation . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 MARVEL analysis of the rovibronic energy levels of 14N16O . . . . 60

4.4 Refinement of curves for 14N16O . . . . . . . . . . . . . . . . . . . 67

4.4.1 Calculation setup . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Refinement results of the A 2Σ+ state . . . . . . . . . . . . . 68

4.4.3 Refinement results of the B 2Π - C 2Π coupled states . . . . 71

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 A Line List for the Lowest Four Doublet States of NO 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Transition dipole moments . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Range of calculation . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 A 2Σ+ state . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 B 2Π-C 2Π coupled states . . . . . . . . . . . . . . . . . . . 84

5.3 Line list calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Absorption spectra . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



XI

6 A Variational Model for the Hyperfine Resolved Spectrum of VO in its

Ground Electronic State 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Quartet states . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 Interaction of doublet states with the X 4Σ− state . . . . . . 100

6.2.3 Electron spin dipolar coupling and nuclear hyperfine cou-

pling curves . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Ab initio results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 X 4Σ− potential energy curve . . . . . . . . . . . . . . . . . 101

6.3.2 Potentials of A 4Π and 1 2Σ+ . . . . . . . . . . . . . . . . . 103

6.3.3 Spin-orbit couplings . . . . . . . . . . . . . . . . . . . . . 104

6.3.4 Electron spin dipolar coupling . . . . . . . . . . . . . . . . 105

6.3.5 Nuclear hyperfine couplings . . . . . . . . . . . . . . . . . 106

6.4 Infrared spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Spectroscopic model . . . . . . . . . . . . . . . . . . . . . 108

6.4.2 Hyperfine matrix elements . . . . . . . . . . . . . . . . . . 110

6.4.3 Hyperfine eigenstates and transitions . . . . . . . . . . . . . 111

6.4.4 Transition intensities and lifetime . . . . . . . . . . . . . . 113

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Summary and Outlook 121

7.1 Summary of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Modules for hyperfine structure . . . . . . . . . . . . . . . 122

7.2.2 Line list of NO . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.3 Line list of VO . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 124





List of associated publications

• Chapter 3: Qianwei Qu, Sergei N. Yurchenko, and Jonathan Tennyson∗, “A

method for the variational calculation of hyperfine-resolved rovibronic spec-

tra of diatomic molecules”, J. Chem. Theory Comput., 18(3): 1808–1820,

2022.

• Chapter 4: Qianwei Qu, Bridgette Cooper, Sergei N. Yurchenko, and

Jonathan Tennyson∗, “A spectroscopic model for the low-lying electronic

states of NO”, J. Chem. Phys., 154(7): 074112, 2021.

• Chapter 5: Qianwei Qu, Sergei N. Yurchenko, and Jonathan Tennyson∗, “Ex-

oMol molecular line lists – XLII: Rovibronic molecular line list for the low-

lying states of NO”, Mon. Not. Roy. Astron. Soc., 504(4): 5768-5777,

2021.

• Chapter 6: Qianwei Qu, Sergei N. Yurchenko, and Jonathan Tennyson∗, “A

variational model for the hyperfine resolved spectrum of VO in its ground

electronic state”, J. Chem. Phys., 157(12): 124305, 2022.

https://doi.org/10.1021/acs.jctc.1c01244
https://doi.org/10.1021/acs.jctc.1c01244
https://dx.doi.org/10.1063/5.0038527
https://dx.doi.org/10.1093/mnras/stab1154
https://dx.doi.org/10.1093/mnras/stab1154
https://dx.doi.org/10.1063/5.0105965




List of Figures

2.1 Variational calculation of diatomic fine structure. DMC is short for

dipole moment curve. PEC is short for potential energy curve. . . . 23

3.1 Flowchart showing the structure of a Duo hyperfine calculation. Ex-

isting modules are given by black rectangles while new modules are

denoted by red rectangles. PEC is short for potential energy curve

and TDM is short for transition dipole moment. . . . . . . . . . . . 28

3.2 Hund’s case (aβ) angular momenta coupling scheme. R is the rota-

tional angular momentum of bare nuclei. . . . . . . . . . . . . . . . 29

4.1 The band systems of NO involved in this thesis and their names.

The γ, β and δ systems mainly cover the UV transitions of NO.

Jenkins et al. recorded many visible lines from the B 2Π state to

higher vibrational levels of the X 2Π state, e.g., those of the β(3,16)

band [1]. The high-accuracy IR transitions of the Heath(0,0) band

were measured by Amiot and Verges [2]. For a comprehensive band

system diagram, see the work of Cartwright et al. [3] . . . . . . . . 54

4.2 NO PECs calculated by Shi and East [4]. The states of interest are

indicated by solid curves. Here, 2 2Π is the B 2Π to C 2Π PEC while

3 2Π is the C 2Π to B 2Π PEC. . . . . . . . . . . . . . . . . . . . . . 56



XVI

4.3 The PECs in the active space of [(8,3,3,0)− (2,0,0,0)] with the

basis set of aug-cc-pVTZ. (a) Two 2Π states averaged CASSCF

calculation starting from 0.9 Å. (b) Three 2Π states averaged

CASSCF calculation starting from 0.9 Å. (c) Two 2Π states aver-

aged CASSCF calculation starting from 1.3 Å. . . . . . . . . . . . . 57

4.4 The PECs of the X 2Π, A 2Σ+, B 2Π, C 2Π, D 2Σ+ and L′ 2Φ states,

obtained by CASSCF & MRCI+Q calculation starting from 1.06 Å

to both sides in the active space [(8,3,3,0) − (2,0,0,0)] with the

aug-cc-pV5Z basis set. The third 2Π curve and the L′ 2Φ curve

in panel (a) were manually switched in panel (c) on the right of

1.2 Å, according to the value of Lz, shown in panel (b). The phase

of Lz, in the Cartesian representation, is random. To distinguish

different electronic states, the yellow curve in panel (b) is smoothed

for internuclear distances less than 1.1 Å. The X 2Π state is not

shown in the panel as the Lz values obtained are all −i. . . . . . . . 59

4.5 Vibronic structure of the MARVEL analysis. The vertical solid

lines in green, blue and red illustrate the bands of γ, β and δ sys-

tems, respectively. The vertical dash line in purple represents the

Heath(0,0) band. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 The differences between the A 2Σ+ state MARVEL energies cor-

responding to 20VeFe and those obtained from the sources of Ta-

ble 4.2. The average energy shift is 0.43 cm−1. . . . . . . . . . . . . 66

4.7 A 2Σ+, B 2Π and C 2Π state energy levels generated by MARVEL

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Energy difference of the X 2Π state between MARVEL result in this

thesis and the RITZ result in the work of Sulakshina and Borkov [5]. 67



XVII

4.9 The ab initio and refined PECs of the A 2Σ+, B 2Π and C 2Π states

as well as the refined B - C interaction term W(R). (a) diabatic and

(b) adiabatic representations. The refined potential curves in panel

(b) are calculated using Eqs. (4.10) and (4.11). The ab initio curves

are shifted using empirical Te values. . . . . . . . . . . . . . . . . . 69

4.10 The spin-orbit coupling curves of the B 2Π state. . . . . . . . . . . . 74

4.11 Fitting residuals of the (a) A 2Σ+ state, and (b) B 2Π - C 2Π coupled

states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.12 Residuals against uncertainties of the (a)A 2Σ+ state, and (b) B - C

coupled states with vibrational states given in the bars. . . . . . . . 77

4.13 Calculated and observed energy levels of the B(v = 13) - C(v = 2)

coupled series. The right hand panel is a blow up of the avoided

crossing between the states which gives a clearer view of the Λ -

doubling splittings and the difference between the quantum num-

bers given by MARVEL and Duo. . . . . . . . . . . . . . . . . . . 78

5.1 The band systems of NO involved in this thesis and their names.

For a comprehensive diagram, see Ref. [3]. . . . . . . . . . . . . . 82

5.2 (a) Ab initio and refined PECs as well as vibrational wavefunctions

and (b) corresponding transition dipole moments, µ(·). In panel (a),

the wavefunctions are plotted in arbitrary units. 2 2Π is the adia-

batic C 2Π to B 2Π state and 3 2Π is the adiabatic B 2Π to C 2Π state.

In panel (b), ‘Fitted µ(C−X)’ is a quadratic polynomial which was

fitted to the values of red and blue circles it passes through. ‘Em-

pirical µ(A−X)’ was calculated with the parameters determined in

Ref. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Calculated absorption intensities at 295 K compared with the values

given in Ref. [7]. As the fine-structure doublets for more than half

the transitions were not resolved in the experiment, all doublets are

removed by averaging the positions of the two lines and adding their

intensities, for both measured and calculated transitions. . . . . . . 84



XVIII

5.4 Eigenvalue curves of Eq. (5.1) . . . . . . . . . . . . . . . . . . . . 85

5.5 Energy differences between the results of Duo and SPFIT/SPCAT

for J ≤ 60.5, v ≤ 20 states of X 2Π. . . . . . . . . . . . . . . . . . . 88

5.6 The uncertainties assigned to the calculated energies of A 2Σ+, B 2Π

and C 2Π in cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Uncertainties assigned to the energy levels of X 2Π state in cm−1.

The values are consistent with the recent HITEMP Uncertainty

Codes given for NO [8]. . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Partition function calculated using the XABC state energies in com-

parison with the TIPS values of Ref. [9]. The red curve illustrates

the relative difference between them. . . . . . . . . . . . . . . . . . 90

5.9 14N16O cross sections below 63000 cm−1 calculated using the

XABC line list and a Gaussian lineshape function with a HWHM

of 1 cm−1: (a) Calculated cross sections of NO at different temper-

atures; (b) X 2Π– X 2Π, γ, β and δ cross sections at 2000 K. . . . . . 91

5.10 Calculated lifetimes of (a) X 2Π, (b) A 2Σ+, and (c)&(d) B 2Π-C 2Π

coupled states. The lifetimes of the two lowest states (X 2Π, v = 0,

J = 1/2, Ω = 1/2, e/ f ) are respectively infinity and 2.3× 1014 s−1

and are omitted from panel (a). The vertical dot-dash lines in panels

(b), (c) and (d) indicate the first dissociation limit of NO. panel (d)

is a blow up of panel (c). . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Calculated absorption intensities of the NO γ(3,0) band at 295 K

compared with the published values [7]. As no spin-rotational fine

structure was observed in the experiment, the wavelengths of the

calculated doublets are averaged and their intensities summed, to

also give blended lines. . . . . . . . . . . . . . . . . . . . . . . . . 94



XIX

5.12 Calculated absorption intensities for the β(6,0) band at 295 K in

comparison with the values given by Yoshino et al. [7]. The line

intensities of this band are weak and the experiment only resolved

the Λ-doublets of high J lines in the P11 and R11 branches. To

achieve higher signal-noise ratio, we averaged the wavelengths of

the e and f doublets and added up their intensities to create blended

transitions for all branches. . . . . . . . . . . . . . . . . . . . . . . 95

5.13 Calculated cross section of the NO β(v′,0) (v′ = 6 to 0 from left

to right) bands of at 295 K in comparison with the data from LIF-

BASE. The spectrum was computed assuming a Gaussian profile

with a half-width-at-half-maximum (HWHM) of 0.2 cm. The rela-

tive spectrum simulated by LIFBASE is normalised to the peak of

the β(6,0) band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.14 Calculated absorption intensities of the δ(1,0) band at 295 K in

comparison with the intensities published by Yoshino et al. [7].

This is a strong band and most of the Λ-doublets were resolved

in the experiment. To allow comparisons of the fine-structure, we

evenly divided the measured intensities of any blended lines to cre-

ated effective e/ f transitions. . . . . . . . . . . . . . . . . . . . . . 96

6.1 MRCI+Q potential energy curves of the X 4Σ− state calculated with

aug-cc-pVnZ basis sets and the estimated one at the complete basis

set limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Fitted PECs corresponding to two different extrapolation formulae

as shown in the legend. The bottom panels show the energy differ-

ence between the two curve. . . . . . . . . . . . . . . . . . . . . . 103

6.3 Calculated potential energy curves of the quartet states (left) and

doublet states (right) of VO. The curves for the A 4Π and 1 2Σ+

states were fitted with EMO functions. . . . . . . . . . . . . . . . . 104



XX

6.4 The calculated spin-orbit coupling curves (left) and zero field split-

ting curve due to the spin-spin coupling (right) of VO which were

fitted with polynomials. . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 The calculated Aiso and Adip
zz curves of the X 4Σ− state which were

fitted with polynomials. . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 The calculated nuclear electric quadrupole and nuclear spin-rotation

coupling curves of the X 4Σ− state which were fitted with polynomials.108

6.7 Absolute values of Fermi-contact matrix elements ⟨v|bF(R)|v′⟩ of

X 4Σ− for v ≤ 10 and v′ ≤ 10. . . . . . . . . . . . . . . . . . . . . . 111

6.8 Energy differences between results of Duo and MARVEL analysis

when using ab initio curves. Left: only the Re value of the X 4Σ−

state was shifted to give correct rotational constants. Right: several

other curves were also shifted to reproduce the coupling constants

given in Table 4 of Ref. [10]. . . . . . . . . . . . . . . . . . . . . . 113

6.9 Mixing of energy levels in the F2 series of the X 4Σ− state. . . . . . 115

6.10 Comparison of VO IR cross sections at 2200 K. Left: the cross sec-

tions were calculated with Gaussian profiles whose linewidths are

0.2 cm−1. Right: the cross sections were calculated with Gaussian

profiles of different line widths in a narrow range. ‘Non-hyperfine’

in this and following figures is a short notation which means that

the spectra were simulated without considering nuclear hyperfine

couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 Comparison of the calculated (top and middle) and measured (bot-

tom) transitions near 9.77 cm−1. The line intensities in the top and

middle panels were calculated at 208 K. The middle panel only

shows the strong transitions. The hyperfine resolved line positions

in the bottom panel were measured [10]. . . . . . . . . . . . . . . 117

6.12 Comparison of lifetimes corresponding to the lower rotational levels

of X 4Σ−, v= 0. The J = 0.5 levels which have much longer lifetimes

were not plotted in this figure. . . . . . . . . . . . . . . . . . . . . 118



List of Tables

2.1 Summary of symbols used to represent angular and other related

variables in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Spectroscopic constants for 14N16O used in this chapter. . . . . . . 44

3.2 Comparison of 14N16O line positions and line strengths for calcu-

lated results from Duo and PGOPHER. Hyperfine constants are in

cm−1 and line positions are given in MHz. The line strength, S

[Debye2], has the same definition as that in PGOPHER when the

intensity unit option of PGOPHER, IntensityUnit, is chosen as

HonlLondon and the transition dipole moment is set to 1 Debye. . . 45

3.3 X 2Σ+, v = 0 spectral constants of 24Mg1H determined by Ziurys et

al. [11]. These values were used as the input to PGOPHER. . . . . 46

3.4 Comparison of 24MgH v = 0 hyperfine energies calculated by Duo

and PGOPHER. Only one vibrational contracted basis function∣∣∣X 2Σ+,v = 0
〉

was used in this case. All energies are given in MHz. . 47

3.5 Comparison of 24MgH v = 0 hyperfine energies calculated by

Duo and PGOPHER. Five vibrational contracted basis functions∣∣∣X 2Σ+,v = 0,1,2,3,4
〉

were used in this case. All energies are given

in MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Comparison of 24MgH v = 0 hyperfine line positions. Five vibra-

tional contracted basis functions
∣∣∣X 2Σ+,v = 0,1,2,3,4

〉
were used

in this case. All frequencies are give in MHz. . . . . . . . . . . . . 49



XXII

3.7 Comparison of the line positions and strengths in the R and S

branches of 24MgH v = 0 hyperfine transitions. Line positions

are given in MHz. Five vibrational contracted basis functions∣∣∣X 2Σ+,v = 0,1,2,3,4
〉

were used in this case. The line strength,

S [Debye2], has the same definition as that in PGOPHER when the

intensity unit option of PGOPHER, IntensityUnit, is chosen as

HonlLondon and the transition dipole moment is set to 1 Debye. . . 50

4.1 Comparison of Te values of the MRCI + Q calculation . . . . . . . 59

4.2 Data sources used in the final MARVEL analysis . . . . . . . . . . 60

4.3 Quantum numbers used in the MARVEL analysis . . . . . . . . . . 65

4.4 The optimized EMO parameters of the PECs of A 2Σ+, B 2Π, C 2Π

states and the spin-orbit (SO) coupling within the B 2Π state. . . . . 70

4.5 Optimized Lorentz parameters for the B - C interaction curve. . . . . 73

4.6 Optimized values of the spin-orbit (SO) and spin-rotation (SR) cou-

pling terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Optimized polynomial parameters of the Λ - doubling curves of the

B 2Π and C 2Π states . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Overall comparison of uncertainty and residual. . . . . . . . . . . . 76

4.9 Sample lines extracted from the output .en file of Duo. . . . . . . . 79

5.1 Extract from NO XABC .states file. . . . . . . . . . . . . . . . 89

5.2 Extract from the NO XABC .trans file. . . . . . . . . . . . . . . 91

5.3 Vibronic radiative lifetimes for the A 2Σ+ state. . . . . . . . . . . . 93

5.4 Vibronic radiative lifetimes of B 2Π state . . . . . . . . . . . . . . . 93

6.1 Optimized EMO parameters of the X 4Σ− state. . . . . . . . . . . . 103

6.2 Optimized EMO parameters of the excited states. . . . . . . . . . . 104

6.3 Polynomial coefficients of the ab initio spin-orbit coupling curves. . 105

6.4 Polynomial coefficients of the ab initio zero-field splitting curve

D(R) and the empirical spin-rotation curve γ(R) . . . . . . . . . . . 106

6.5 Polynomial coefficients of the ab initio hyperfine coupling curves. . 108



XXIII

6.6 Polynomial coefficients of the ab initio hyperfine coupling curves. . 108

6.7 The empirical hyperfine coupling constants for v = 0 given in Ta-

ble 4 of Ref. [10] and the calculated diagonal hyperfine matrix el-

ements of v = 0 levels of the X 4Σ− state. All values are given in

MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.8 Final a0 values for four shifted curves: the X 4Σ−-1 2Σ+ spin-orbit

interaction, γ(R), Aiso(R) and Adip
zz (R). . . . . . . . . . . . . . . . . 113

6.9 Sample of the hyperfine-resolved states extracted from the output

file of Duo in the form of an ExoMol states file. . . . . . . . . . . . 114

6.10 Sample of the calculated hyperfine-resolved transitions in the form

of an ExoMol trans file. . . . . . . . . . . . . . . . . . . . . . . . . 115

6.11 Transitions corresponding to |∆J| = 1 · · ·8. . . . . . . . . . . . . . . 119



Chapter 1

Introduction

1.1 Molecular spectroscopic databases

Molecular spectroscopic techniques have been widely used in many applications.

Astronomers identify the atmospheric components of exoplanets from the observed

spectra [12, 13]. Other atmospheric parameters, such as temperature, can be es-

timated from spectral intensities or line shapes [14]. Scientists use spectroscopic

instruments to monitor the concentrations of greenhouse gas and pollutants in the

Earth’s atmosphere [15, 16]. Doctors learn the physical conditions of patients from

spectroscopic diagnoses [17]. Non-invasive spectroscopic techniques give accurate

parameters for flames [18], which help engineers design high-efficiency and low-

emission combustion systems.

The development of spectroscopic techniques depends on accurate complete

spectroscopic databases. For example, high-resolution Doppler-shift spectroscopy

[19] requires a wavelength resolving power of 100000 or better [20]. The complete-

ness plays a significant role as well. Unknown molecules can be identified from the

observed spectrum only if complete line lists of all possible species are given in

prior.

A spectroscopic database consists of spectral line lists of different molecules

and each line list contains spectral lines of a specific molecule. A spectral line can

be described by three important properties, i.e., position, strength and shape. Thus,

spectroscopic parameters which define the three properties are usually stored in line
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lists.

A molecule has unique distribution of energy levels, leading to unique line po-

sitions. The line position is a intrinsic property of a molecule. Unknown species

can be identified from line positions which have a similar function as the finger-

prints. Line positions may shift, e.g., due to the Doppler effect. We always assume

that a line list stores the rest frequencies or wavelengths of a molecule. The line

strength is another intrinsic property. The values of line strengths can be given in

various units, e.g., the Einstein coefficient or the oscillator strength. Line strengths

are not directly observable. They are either calculated or derived from transition

intensities which are temperature dependent. A spectral line usually has a profile

due to broadening effects, which is the line shape property. Calculated or measured

broadening parameters can be stored in a line list and the line shapes are simulated

by reasonable physical models, e.g., the Gaussian and Lorentzian profiles. Exter-

nal broadening mechanisms, e.g., instrument broadening due to the resolution of

instruments, may have observable effects but they are not the components of a line

list.

Note that, the line position and line strength can be mixed by statistical effects

when intermolecular interactions become strong, e.g., in the high-pressure environ-

ments. They are no longer intrinsic properties of a single molecule but statistics

related ones. Besides, we may also use statistical terms, e.g., temperature, to de-

scribe line position and strength related features. For example, hot lines means they

are hardly observed in low-temperature environments, where most molecules pop-

ulate lower-lying energy levels, and hot lines connecting higher energy levels are

weak. A hot line list includes the necessary hot lines of a molecule and can be used

in both low-temperature and high-temperature applications.

The most well-used database for atmospheric studies is HITRAN [21]. HI-

TRAN is mainly designed for conditions of the terrestrial atmosphere, particularly

for temperatures ranging from the surface of the Earth to the stratosphere, and thus

does not contain transitions originating from highlyexited energy levels. The room-

temperature line lists contained in HITRAN are not complete enough for high-
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temperature applications due to the absence of hot transitions, see Yurchenko et al.

[22] for an illustration of this issue. The HITEMP database extends the temperature

range of HITRAN. It was originally released in 1995 and updated in 2010 [23];

HITEMP encompasses many more bands and transitions than HITRAN but only

for H2O, CO2, CO, NO and OH. An systematic update of HITEMP is currently

in progress, see Hargreaves et al. [8]. Nevertheless, the five line lists in the 2010

release of HITEMP were insufficient for the majority of astronomical applications

and are expected to be updated.

The atmospheres of even cool stars, brown dwarfs and most observable exo-

planets are generally much hotter than of the Earth atmosphere. The ExoMol project

was launched as a response to these data needs [24]. The ExoMol database (Exo-

Mol.com) provides line list for spectroscopic studies of hot atmospheres [25] of

exoplanets and other astronomical bodies.

The basic form of the ExoMol database is extensive line lists of molecular

transitions; these are supplemented by partition functions, state lifetimes, cooling

functions, Landé g-factors, temperature-dependent cross sections, opacities, pres-

sure broadening parameter and k-coefficients. The 2020 release of the database was

expanded to consider 80 molecules and 190 isotopologues, and contains over 700

billion transitions [25]. While these spectroscopic data are concentrated at infrared

and visible wavelengths, ultraviolet transitions are being increasingly considered

in response to requests from observers. These numbers are still increasing as we

enrich the database with ‘rolling-updates’ nearly every month.

Besides HITRAN, HITEMP and ExoMol, there are other databases provid-

ing spectroscopic data. GEISA [26] is another room temperature database provid-

ing comprehensive and validated datasets for approximately 50 key atmospheric

molecules. TheoReTS [27] contains hot line lists for 8 polyatomic molecules. Ku-

rucz’s compilation of data [28] is very complete for atomic sources but contains

data only on about 10 diatomic molecules all of which are covered by ExoMol

with higher accuracy. The MoLLIST database [29] of Bernath and coworkers con-

tains empirically derived line lists for about 20 diatomic species. These line lists

https://exomol.com/
https://exomol.com/
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have recently been incorporated into the ExoMol database [30]. The JPL [31] and

CDMS [32] databases, aimed at the cool interstellar medium, provide comprehen-

sive molecular line lists for wavelengths longer than 30 µm. The NASA Ames

Research Center published a series of line lists of molecules, e.g., SO2 [33]. LIF-

BASE [34] contains the the datasets of several important radicals, e.g., OH and NO,

mainly for laser induced fluorescence investigations.

1.2 Motivation for variational calculation of diatomic

spectra
In molecular spectroscopy, we expect the separation between different electronic

states to be much larger than that between vibrational levels within each electronic

state and the separation between vibrational levels is much larger than the separation

between the rotational levels of a molecule. Thus, we can construct a Hamiltonian,

which acts in a reduced space and describes the dominating part of the full Hamil-

tonian with a perturbation procedure to estimate the eigenvalue spectrum. This

Hamiltonian is termed as effective Hamiltonian.

The effective Hamiltonian method is widely used in spectroscopic studies.

Brown and Carrington [35] discussed how to derivean effective Hamiltonian for di-

atomic molecules. Well-known programs, e.g., PGOPHER [36] and SPFIT/SPCAT

[37], calculate spectra from effective Hamiltonians. Standard practice for the effec-

tive Hamiltonian in molecular spectroscopy is to calculate the rotational structure

within a vibrational level. The results of effective Hamiltonian calculations can be

very accurate, especially for the low-J rotational transitions. The spectral constants

also have good physical definitions.

To improve accuracy of the calculated results, higher order corrections can be

introduced into effective Hamiltonians when there are large gaps between the target

energy levels and the perturbed eigenstates. For instance, Haze et al. use sextet-

order centrifugal distortion constants to represent the measured high-J transitions

in the A 2Σ+- X 2Π band system of NO [38]. Nevertheless, effective Hamiltonians

can perform very poorly, especially in the regions where states interact. The hot
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line lists in the ExoMol database always cover these regions. We, thus, turn to the

variational method to give robust and accurate rovibronic spectra. The variational

method constructs the Hamiltonian in a complete (or quasi-complete) space. Com-

plex spectroscopic structures can be represented accurately in the variational basis

set.

In practical applications, effective Hamiltonians are constructed to estimate the

real Hamiltonians and to give spectroscopic constants. The spectroscopic constants

are fitted to the experimental data such that the results are mathematically accurate.

This phenomenological method is usually valid for interpolation but invalid for ex-

trapolation, as the effective Hamiltonian based spectroscopic models are not really

physically accurate. For example, the two dominate factors contributing to spin-

splittings of the X 3Σ−g state of O2 are the spin-spin coupling within its ground state

and the spin-orbit coupling between its X 3Σ−g and b 1Σ+g states [39, 40]. However,

it is common to only consider the spin-spin coupling contribution in experimental

works, e.g. Yu et al. [41], where effective Hamiltonians are used. Excluding one

or more coupling curves may give correct line positions but wrong line intensities

even for the fitted transitions.

In contrast, the variational method can include necessary coupling curves ob-

tained in ab initio calculations, and give a physically meaningful spectroscopic

model. The curves, instead of constants, can be further refined with experimen-

tal data. Thus, the variational method not only gives correct and accurate estimates

for the properly assigned energy levels or transitions, but also reasonable predic-

tions of unknown ones. This feature is very important for generating hot line lists

from models refined by room-temperature data.

The most challenging part of solving quantum mechanical problems using the

variational method is finding good variational basis sets. For instance, to find proper

active space in multi-configuration self-consistent field calculations is very difficult

and one usually need to try different combinations of orbitals and compare the calcu-

lated results with experimental values to give the final choice. Diatomic molecules

are almost perfect systems for variational calculations. First, the vibrational lev-
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els can be accurately determined by using grid base algorithms, e.g., the discrete

variable representation method. Second, the one dimensional problem is usually

not computationally complex and we can get desired accuracy by increasing the

number of vibrational basis functions. In the following chapters, we will see the

power of the variational method in the interpretation of very complicated diatomic

systems.

1.3 Thesis overview

Chapter 2 consists of the theoretical background for the variational calculation in

diatomic spectroscopy. Two mathematical tools, the linear variational method and

the theory of irreducible spherical tensor operators, are introduced in the first place.

The following sections describe the calculation hierarchy used to characterize di-

atomic fine structure. A spectroscopic program, Duo, is introduced.

Chapter 3 covers the method for the variational calculation of hyperfine re-

solved spectra of diatomic molecules based on irreducible spherical tensor opera-

tor algebra. The hyperfine coupling terms considered are Fermi-contact, nuclear

spin-electron spin dipole-dipole, nuclear spin-orbit, nuclear spin-rotation and nu-

clear electric quadrupole interactions. The method for the calculation of hyperfine-

unresolved wavefunctions are given in Chapter 2. The wavefunctions are used

as the variational basis functions, and fully hyperfine-resolved parity-conserved

rovibronic Hamiltonian matrices for a given final angular momentum, F, are con-

structed. Then the Hamiltonians are diagonalized to give hyperfine-resolved ener-

gies and wavefunctions. Electric transition dipole moment curves can then be used

to generate a hyperfine-resolved line list by applying rigorous selection rules. This

approach is tested for NO and MgH, and the results are compared to experiment

and shown to be consistent with those given in the well-used effective Hamiltonian

code PGOPHER.

Chapter 4 mainly discusses the interaction between electronic states of di-

atomic molecules. The rovibronic structure of the A 2Σ+, B 2Π and C 2Π states of

nitric oxide (NO) is studied in this chapter with the aim of producing comprehen-
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sive line lists for its near ultraviolet spectrum. Empirical energy levels for the three

electronic states are determined using a combination of the empirical MARVEL

(Measured Active Rotational-Vibrational Energy Levels) procedure and ab initio

calculations, and the available experimental data are critically evaluated. Ab inito

methods which deal simultaneously with the Rydberg-like A 2Σ+ and C 2Π states,

and the valence B 2Π state are tested. Methods of modeling the sharp avoided cross-

ing between the B 2Π and C 2Π states are tested. A rovibronic Hamiltonian matrix

is constructed using variational nuclear motion program Duo whose eigenvalues are

fitted to the MARVEL energy levels. The matrix also includes coupling terms ob-

tained from the refinement of the ab initio potential energy and spin-orbit coupling

curves. Calculated and observed energy levels agree well with each other, validat-

ing the applicability of our method and providing a useful model for this open shell

system.

In Chapter 5, an accurate NO line list, called XABC, is computed based on the

spectroscopic model built in Chapter 4, which covers its pure rotational, vibrational

and rovibronic spectra. A mixture of empirical and theoretical electronic transition

dipole moments are used for the final calculation of 14N16O rovibronic A 2Σ+ –

X 2Π, B 2Π – X2Π and C 2Π – X 2Π transitions which correspond to the γ, β and δ

band systems, respectively, as well as minor improvements to transitions within the

X 2Π ground state. The work is a major update of the ExoMol NOname line list. It

provides a high-accuracy NO ultraviolet line list covering the complicated regions

where the B 2Π-C 2Π states interact. XABC provides comprehensive data for the

lowest four doublet states of NO in the region of λ > 160 nm (ν̃ < 63 000 cm−1)

for the analysis of atmospheric NO on Earth, Venus or Mars, other astronomical

observations and applications.

In Chapter 6, a variational model for the infra-red spectrum of VO is presented

which aims to accurately predict the hyperfine structure within the VO X 4Σ− elec-

tronic ground state. To give the correct electron spin splitting of the X 4Σ− state,

electron spin dipolar interaction within the ground state and the spin-orbit cou-

pling between the X 4Σ− state and two excited states, A 4Π and 1 2Σ+, are calcu-
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lated ab initio alongside hyperfine interaction terms. Four hyperfine coupling terms

are explicitly considered: the Fermi-contact interaction, electron spin-nuclear spin

dipolar interaction, nuclear spin-rotation interaction and nuclear electric quadrupole

interaction. These terms are included as part of a full variational solution of the

nuclear-motion Schrödinger equation performed using program Duo, which is used

to generate both hyperfine-resolved energy levels and spectra. To improve the ac-

curacy of the model, ab initio curves are subject to small shifts. The energy levels

generated by this model show good agreement with the recently derived empirical

term values. This and other comparisons validate both our model in Chapter 3 and

the developed hyperfine modules in Duo.

Chapter7 summarizes the contents of this thesis and gives potential future

work.

1.4 Data availability
The programs, spectroscopic models and line lists mentioned in this thesis are avail-

able online.

Duo is an open-source software for variational calculations of spectra of di-

atomic molecules [42] , which is available at https://github.com/ExoMol/Duo . Ex-

oCross is an open-source software for generating lifetimes, spectra, partition func-

tion etc. [43], which is available at https://github.com/ExoMol/ExoCross . The

spectroscopic models of NO and VO, and the line list of NO are available at

https://exomol.com .

https://github.com/ExoMol/Duo
https://github.com/ExoMol/ExoCross
https://exomol.com/


Chapter 2

Theoretical Background

2.1 Linear variational method

In a quantum system, the variational principle (also termed as the variation principle

in quantum chemistry books, e.g. Szabo and Ostlund [44]) allows us to calculate an

upper bound for the ground state energy.

Theorem: The variational principle

E0 is the lowest-energy eigenvalue of time independent HamiltonianH , if ψ

is a normalized well-behaved function and satisfy the boundary conditions,

then,

⟨ψ|H|ψ⟩ ≥ E1.

In this equation, W = ⟨ψ|H|ψ⟩ is called the variational integral and |ψ⟩ is

called a trial variation function.

The variational principle is easily proved by expanding |ψ⟩ in terms of the

eigenfunctions of H (see, e.g., Section 8.1 of Levine [45]). Note that, |ψ⟩ is not

necessarily normalized. A more general equation includes a normalization factor,

i.e.
⟨ψ|H|ψ⟩

⟨ψ|ψ⟩
≥ E1. (2.1)

In this thesis, we always assume |ψ⟩ is normalized and our mission is to find the
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minimum of W due to the trial function, i.e. solve the variational problem

min
|ψ⟩

W = ⟨ψ|H|ψ⟩

s.t. ⟨ψ|ψ⟩ = 1.
(2.2)

Here, a widely used method, the linear variational method is introduced, which lays

the theoretical foundation of this thesis.

In the linear variational method, a trial function is chosen as the linear combi-

nation of n linearly independent functions |ϕ1⟩ , · · · , |ϕn⟩, i.e.

|ψ⟩ =

n∑
i=1

ci |ϕi⟩ , (2.3)

and

⟨ψ| =

n∑
i=1

c∗i ⟨ϕi| . (2.4)

The functional minimization problem, i.e. Eq,(2.2), is equivalent to:

min
c

W =
n∑

i=1

n∑
j=1

c∗i c j Hi j

s.t.
n∑

i=1

n∑
j=1

c∗i ck S i j = 1,

(2.5)

where the components of c are the linear combination coefficients; Hi j is short for〈
ϕi
∣∣∣H ∣∣∣ϕ j

〉
; S i j =

〈
ϕi
∣∣∣ϕ j
〉

is called the overlap integral. The constraint optimization

problem can be solved by defining a Lagrange function

L(c,λ) =
n∑

i=1

n∑
j=1

c∗i c j Hi j−λ

 n∑
i=1

n∑
j=1

c∗i c j S i j−1

 , (2.6)

where λ is the Lagrange multiplier. The variation of L with respect to c is set to

zero, i.e.,
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0 = δL =
n∑

i=1

n∑
j=1

δc∗i c j Hi j−λ

n∑
i=1

n∑
j=1

δc∗i c j S i j+

n∑
i=1

n∑
j=1

c∗i δc j Hi j−λ

n∑
i=1

n∑
j=1

c∗i δc j S i j. (2.7)

Then,

n∑
i=1

δc∗i

 n∑
j=1

c j Hi j−λc j S i j

+ n∑
j=1

δc j

 n∑
i=1

c∗i Hi j−λc∗i S i j

 = 0. (2.8)

As Hi j = H∗ji, S i j = S ∗ji and λ is a real number, the second term of Eq. (2.8)

n∑
j=1

δc j

 n∑
i=1

c∗i Hi j−λc∗i S i j

 = n∑
j=1

δc j

 n∑
i=1

ci H ji−λci S ji

∗

=


n∑

j=1

δc j
∗

 n∑
i=1

ci H ji−λci S ji



∗

, (2.9)

is the complex conjugate of the first term of Eq. (2.8). Thus, due to the arbitrariness

of δc∗i , we have
n∑

j=1

c j Hi j−λc j S i j = 0, for i = 1, · · · ,n. (2.10)

All n equations comprise a homogeneous linear system of c, which can be rewritten

in matrix form:

[H−λS]c = 0. (2.11)

It has non-trivial solutions if and only if

det(H−λS) = 0. (2.12)

In this thesis, we use orthonormal basis functions, i.e.,
〈
ϕi
∣∣∣ϕ j
〉
= δi j. Thus, the

overlap matrix decays to an identity matrix, 1. The solutions for the equation

det(H−λ1) = 0,
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λi, i = 1, · · · ,n, are the eigenvalues of H. We can choose a set of orthonormal eigen-

vectors of H as the solutions for c, i.e., {ci | i = 1, · · · ,n}. If the eigenvalues are

arranged in order,

λ1 ≤ λ2 ≤ · · · ≤ λn,

then λ1 gives the upper bound of the ground quantum state because of the reality:

E1 ≤W1 =

n∑
i=1

n∑
j=1

c∗1i c1 j Hi j = c†1 H c1 = λ1 c†1 c1 = λ1. (2.13)

It has been proved [46] that if the bound states of a quantum system are num-

bered in order of increasing energy,

E1 ≤ E2 ≤ · · · ≤ En ≤ · · · , (2.14)

then λi gives the upper bound of Ei,

Ei ≤Wi = λi, for i = 1, · · · ,n. (2.15)

Thus, we can also estimate the energies of the lowest n states of a quantum system

with λi, i = 1, ...,n and the corresponding wavefunctions are

|ψi⟩ =

n∑
j=1

ci j
∣∣∣ϕ j
〉
, for i = 1, · · · ,n. (2.16)

Details of the calculation of rovibronic spectra of diatomic molecules via the vari-

ational method will be given in Section 2.6. In Chapter 3 we will see variational

calculations of hyperfine resolved spectra of diatomic molecules as well. Within

each calculation hierarchy the procedures for a variational calculation can be sim-

ply summarized as:

1. Choose an appropriate basis set;

2. Construct the Hamiltonian matrix H in the representation of the basis set;

3. Diagonalize the matrix and obtain the estimate of energies and wavefunctions
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of the calculated quantum system.

Thus, the linear variational method is implicitly used if a Hamiltonian matrix is

diagonalized to give the eigenstates of a quantum system in the following sections

and chapters.

2.2 List of angular momenta
The angular momenta used and associated quantum numbers in this thesis are listed

in Table 2.1.

Table 2.1: Summary of symbols used to represent angular and other related variables in this
thesis.

Symbol Explanation

S,S total electron spin angular momentum and the corresponding quan-
tum number

Σ projection of S along the internuclear axis
L total orbital angular momentum
Λ projection of L along the internuclear axis

J, J total angular momentum excluding nuclear spin and the correspond-
ing quantum number

Ω, MJ projection of J along the internuclear axis and space-fixed Z axis

I, I nuclear spin angular momentum and the corresponding quantum
number

F,F total angular momentum and the corresponding quantum number
MF projection of F along the space-fixed Z axis

N,N total angular momentum excluding electron and nuclear spin and the
corresponding quantum number

R rotational angular momentum of the bare nuclei

2.3 Irreducible spherical tensor operators
The fine and hyperfine structure of diatomic molecules mainly arises from the inter-

actions between electric or magnetic multipole moments. The theory of irreducible

spherical tensor operators is a powerful tool for analysing the coupling of angular

momenta. This section gives a basic introduction of spherical tensor algebra. See

Edmonds [47] for more details.
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Definition: Irreducible spherical tensor operators

An irreducible tensor operator Tk(T) is a set of 2k+1 operators Tk
p(T) which

transform under rotations of the frame of coordinates as [47]

R(ω)Tk
p(T)R−1(ω) =

∑
p′

Tk
p′(T)D(k)

p′ p(ω),

where ω indicates the rotational Euler angles; R(ω) represents the rotation

transformation corresponding to ω;D(k)
p′ p(ω) is the Wigner rotation matrix.

Then angular momentum itself is an example of a rank-1 spherical tensor op-

erator:

T1
1(J) = −

1
√

2
J+ ,

T1
0(J) = Jz ,

T1
−1(J) =

1
√

2
J− .

When evaluating the matrix elements of spherical tensor operators, we may

rotate the operator and wavefunctions:

〈
η, j,m

∣∣∣Tk
q(T)
∣∣∣η, j′,m′

〉
=
∑

n,n′,p

D
( j)
n,m(ω)∗D(k)

p,q(ω)D( j′)
n′,m′(ω)

〈
η, j,n

∣∣∣Tk
p(T)
∣∣∣η, j′,n′

〉
.

(2.17)

where the Wigner rotation matrix satisfies

D
(k)
p,q(ω)∗ = (−1)p−qD

(k)
−p,−q(ω). (2.18)

Integrating over all ω and dividing by 8π2, the equation gives:

〈
η, j,m

∣∣∣Tk
q(T)
∣∣∣η, j′,m′

〉
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=(−1) j−m

 j k j′

−m q m′


∑
n,n′,p

(−1) j−n

 j k j′

−n p n′

〈η, j,n
∣∣∣Tk

p(T)
∣∣∣η, j′,n′

〉 , (2.19)

where

 j1 j2 j3

m1 m2 m3

 is a Wigner-3 j symbol. This equation indeed gives the well-

known Wigner-Eckart Theorem.

Theorem: The Wigner-Eckart Theorem

For a spherical tensor Tk(T) acting on | j,m⟩,

〈
η, j,m

∣∣∣Tk
p(T)
∣∣∣η′, j′,m′

〉
= (−1) j−m

 j k j′

−m p m′

〈η, j
∥∥∥Tk(T)

∥∥∥η′, j′
〉
,

where
〈
η, j
∥∥∥Tk(T)

∥∥∥η′, j′
〉

is independent of the projection quantum numbers

and called a reduced matrix element [47]. The definition of reduced matrix

element used here is due to Edmonds [47].

The reduced matrix element can be evaluated from one component of the ma-

trix element. For instance,

〈
j,m
∣∣∣T1

0(J)
∣∣∣ j′,m′〉 = (−1) j−m

 j 1 j′

−m 0 m′

〈 j
∥∥∥T1(J)

∥∥∥ j′
〉

= (−1) j−m (−1) j−mm
√

j( j+1)(2 j+1)
〈

j
∥∥∥T1(J)

∥∥∥ j′
〉
. (2.20)

The left-hand-side is easily obtained from the Cartesian operator:

〈
j,m
∣∣∣T1

0(J)
∣∣∣ j′,m′〉 = 〈 j,m∣∣∣JZ

∣∣∣ j′,m′〉 = δ j j′ δmm′m. (2.21)

Then, 〈
j
∥∥∥T1( j)

∥∥∥ j′
〉
= δ j, j′

√
j( j+1)(2 j+1). (2.22)

Without proof, we give some standard results from spherical tensor algebra,

which reveal the coupling schemes of spherical tensor operators [47].
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If j = j1+ j2 and Tk(T1) acts only on j1, then

〈
j1, j2, j

∥∥∥Tk(T1)
∥∥∥ j′1, j′2, j′

〉
= δ j2, j′2

(−1) j1+ j2+ j′+k
√

(2 j+1)(2 j′+1)

 j′1 j′ j2

j j1 k

〈 j1
∥∥∥Tk(T1)

∥∥∥ j′1
〉
, (2.23)

where

 j1 j2 j3

j4 j5 j6

 is a Wigner-6 j symbol.

The scalar product of two spherical tensors of rank k is defined as

Tk(T1) ·Tk(T2) =
∑

p
(−1)p Tk

p(T1)Tk
−p(T2). (2.24)

The following equation decouples the scalar product of two spherical tensors oper-

ating on two angular momenta, T1 and T2, respectively.

〈
j1, j2, j,m

∣∣∣Tk(T1) ·Tk(T2)
∣∣∣ j′1, j′2, j′,m′

〉
= δ j, j′δm,m′(−1) j′1+ j2+ j

 j′2 j′1 j

j1 j2 k

〈 j1
∥∥∥Tk(T1)

∥∥∥ j′1
〉〈

j2
∥∥∥Tk(T2)

∥∥∥ j′2
〉
, (2.25)

where j1 and j2 couple to j and j1, j2, j are corresponding quantum numbers.

In molecular spectroscopy, we often need to transform operators from one co-

ordinate system to another. The rotation of spherical tensor components from the

space-fixed coordinate system where the components of operators are indicated by

p, to the body-fixed system where the components of operators are indicated by q,

is,

Tk
p(T) =

∑
q
D

(k)
p,q(ω)∗ Tk

q(T), (2.26)

The rotational wavefunction of a symmetric top is used for diatomic molecules,
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which is proportional to the conjugate of the Wigner rotation matrix element

|J,Ω,M⟩ =

√
2J+1
8π2 D

(J)
M,Ω(ω)∗. (2.27)

From this equation,

〈
J,Ω,M

∣∣∣∣D(k)
p,q(ω)∗

∣∣∣∣J′,Ω′,M′〉
=(−1)M−Ω

√
(2J+1)(2J′+1)

 J k J′

−Ω q Ω′


 J k J′

−M p M′

 . (2.28)

The reduced matrix element of the Wigner rotation matrix is

〈
J,Ω,M

∥∥∥∥D(k)
.q (ω)∗

∥∥∥∥J′,Ω′,M′〉 = (−1)J−Ω
√

(2J+1)(2J′+1)

 J k J′

−Ω q Ω′

 . (2.29)

2.4 The non-relativistic molecular Hamiltonian

If we assume the nuclei and electrons to be point masses, then the non-relativistic

Hamiltonian operator of a diatomic molecule is the sum of the kinetic energy of the

nuclei, the kinetic energy of the electrons, the potential energy associated the repul-

sion between the nuclei, the potential energy of the attraction between the electrons

and the nuclei, and the potential energy of the repulsion between the electrons, i.e.,

H = −
ℏ2

2Ma
∇

2
a−
ℏ2

2Mb
∇

2
b

+
∑

i

−
ℏ2

2me
∇

2
i

+
Za Zb e2

4πε0R

+
∑

i

−
Za e2

4πε0rai
+
∑

i

−
Zb e2

4πε0rbi

+
∑

j

∑
i> j

e2

4πε0ri j
,

(2.30)
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where Ma and Mb are the mass of nucleus a and b, respectively; e is the elementary

charge; me is the electron mass; i indicates the i-th electron; Za and Zb are the atomic

number of the nuclei; ε0 is the vacuum permittivity; R is the internuclear distance;

rai and rbi are the distances between the nuclei and the i-th electron; ri j is the dis-

tance between the i-th and j-th electrons. Bound state energies and wavefunctions

are obtained by solving the time-independent Schrödinger equation:

Hψ = Eψ. (2.31)

2.5 The separation of nuclear and electronic motion

Electrons are much lighter than nuclei, and thus, move much faster than nuclei.

Therefore, we may regard the nuclei as fixed and separate the electron wavefunction

and nuclear wavefunction

ψ = ψeψn,

following the well-known Born-Oppenheimer (BO) approximation. The electronic

Hamiltonian is

He =
∑

i

−
ℏ2

2me
∇

2
i +

e2

4πε0

Za Zb

R
+
∑

i

−
Za

rai
+
∑

i

−
Zb

rbi
+
∑

j

∑
i> j

1
ri j

 . (2.32)

The energy solutions of the electronic Schrödinger equation,

Heψe = Eeψe ,

are R-dependent curves, i.e., the potential energy curves (PECs) of a diatomic

molecule are:

Ee(state) = Vstate(R),

where the subscript ‘state’ indicates the electronic states.

The electronic structure of molecules is usually calculated by quantum chem-

istry programs. When considering relativistic effects, electrons gain one of their
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most important properties, spin. Quantum chemistry programs usually treat the

electron spin as an extra degree of freedom besides spatial freedoms in Schrödinger

equation, rather than solving relativistic quantum equations. The calculated PECs

will have both definite spatial symmetry and spin multiplicity.

When the electron spin angular momentum interacts with other angular mo-

menta, extra energy operators are introduced and the degeneracy of electronic states

is lifted. These terms include spin-orbit interaction, spin-spin interaction, spin-

rotation interaction, etc. Quantum chemistry programs can evaluate many of these

electron spin interaction operators and generate R-dependent coupling curves invol-

ing them.

2.6 Rovibronic fine structure of diatomic molecules
In the absence of an external field, we may solve the Schrödinger equation of nu-

clear motion in a body-fixed axis system. After separating out the centre-of-mass

motion and having introduced a body-fixed set of Cartesian axes with origin at the

centre of nuclear mass and with the z-axis along the internuclear direction, the non-

relativistic diatomic Hamiltonian can be divided into four parts

H =He+Hµ+Hv+Hr. (2.33)

We have discuss the electronic Hamiltonian, He, in the previous section. Hµ is the

mass-polarization term given by

Hµ = −
ℏ2

2(Ma+Mb)

∑
i, j

∇i ·∇ j. (2.34)

(2.35)

Hµ is usually small and negligible. Hv and Hr are the vibrational and rotational

Hamiltonians, respectively:

Hv = −
ℏ2

2µ
∂2

∂R2 (2.36)
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Hr =
ℏ2

2µR2 R2, (2.37)

where R is the body-fixed nuclear rotation angular momentum.

In diatomic molecular spectroscopy, apart from the BO approximation, another

good approximation is that the wavefunctions of nuclear vibration and rotation are

separable. Thus, the rotationless Schrödinger equation can be solved independently

for each uncoupled potential energy curve Vstate(R) in the first place, to give rea-

sonable vibrational energy levels, Estate,v, and wavefunctions, ψstate,v, of the specific

electronic state:

[
−
ℏ2

2µ
d2

dR2 +Vstate(R)
]
ψstate,v(R) = Estate,vψstate,v(R) , (2.38)

where v indicates the vibrational quantum numbers. This is a one-dimensional ordi-

nary differential secular equation, which can be solved by well-developed numerical

algorithms e.g., discrete variable representation (DVR) method.

The rotational terms are usually treated as perturbations of the eigenstates of

the vibration. As a consequence, Standard practice for these terms is including them

in effective Hamiltonians. However, rigorously, the vibrational and rotational mo-

tion cannot be separated. Electronic states also interacts with each other. Effective

Hamiltonians are no longer accurate in the region of resonances. The ExoMol group

at UCL, thus, proposed variational models and developed a program Duo [42], for

variational calculation of spectra of diatomic molecules. In Duo, after solving the

vibrational problem Eq.(2.38), a rovibronic Hamiltonian matrix, for each specific

total angular momentum exclusive of nuclear spin, J, and parity, τ, is constructed

using a Hund’s case (a) basis set [48]:

|state,v,Λ,S ,Σ, J,Ω⟩ = |state,Λ,S ,Σ⟩ |state,v⟩ |J,Ω,MJ⟩ , (2.39)

which is decoupled into three parts: (i) the electronic eigenfunction, (ii) the vibra-

tional eigenfunction of Eq. (2.38), and (iii) the rotational eigenfunction of a sym-

metric top. See Table 2.1 for the meanings of the quantum numbers. Note that, Duo
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calculates the spectra of diatomic molecules in field-free environments. Thus, we

do not use MJ to construct the basis set, as the left hand side of Eq. (2.39) indicates.

All the angular momenta are quantized along the body-fixed axes.

The rovibronic Hamiltonian, denoted as H (0), includes the necessary cou-

plings, e.g., the spin-orbit interaction. When evaluating the matrix elements using

the basis functions of Eq. (2.39), the coupling curves are integrated over pairs of

vibrational basis functions:

Cstate′,v′;state,v =
〈
state,v

∣∣∣Cstate′;state(R)
∣∣∣state′,v′

〉
, (2.40)

where C(R) can be either a diagonal coupling curve for a particular electronic state

or an off-diagonal coupling curve between two states.

The basis functions of Eq. (2.39) do not have definite parities. Duo uses linear

combinations of them to define parity-conserved basis functions:

+ :
1
√

2
|state,v,Λ,S ,Σ, J,Ω⟩+

1
√

2
(−1)s−Λ+S−Σ+J−Ω |state,v,−Λ,S ,−Σ, J,−Ω⟩ ,

− :
1
√

2
|state,v,Λ,S ,Σ, J,Ω⟩−

1
√

2
(−1)s−Λ+S−Σ+J−Ω |state,v,−Λ,S ,−Σ, J,−Ω⟩ ,

(2.41)

where s = 1 for Σ− states and s = 0 for all other states. Note that, the parity is

independent of MJ . Each matrix of H (0) constructed using these basis functions

can be diagonalized to give rovibronic energy levels and wavefunctions of a definite

J and parity τ. Let
∣∣∣ϕτ,Jm

〉
be the m-th eigenfunction corresponding to a given J and

parity τ, we have: 〈
ϕτ,Jm
∣∣∣H (0)

∣∣∣ϕτ,Jm′
〉
= δm,m′ E

τ,J
m , (2.42)

where Eτ,J
m is the m-th eigenvalue.

Thanks to the use of complete angular basis sets and the variational method, the

final energies are independent of the coupling scheme used. If enough vibrational

basis functions (determined by the users’ setup), the choice of Hund’s case (a) will

give correct results even for cases where other coupling schemes provide a better

zeroth-order approximation.
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2.7 The program Duo
Duo is a variational nuclear motion program developed for the calculation of rovi-

bronic spectra of diatomic molecules [42] as part of the ExoMol project [49]. The

program LEVEL by Le Roy [50] is also developed for solving the one-dimensional

Schrödinger equation. However, it only provides good treatment to closed-shell

systems. Duo provides explicit treatment of spin-orbit and other coupling terms

and can generate high-accuracy line lists of open-shell diatomic molecules. Duo

has been used to generate many line lists including those for AlO [51], CaO [52],

VO [53], TiO [54], YO [55], and SiO [56], which are provided via the ExoMol

database [25]. Duo was also recently employed to calculate temperature-dependent

photodissociation cross sections and rates [57]. Duo has also been adapted to treat

ultra-low energy collisions as the inner region in an R-matrix formalism [58]; hyper-

fine effects are very important in such collisions. Recently, a new module treating

electric quadrupole transitions has been added to Duo [59], which makes it capable

of predicting spectra for diatomic molecules with no electric dipole moment, e.g.

O2 and N2.

Figure 2.1 demonstrate the procedures to calculate the rovibronic spectra of

diatomic molecule in Duo. Notice that a curve refinement module is also imple-

mented which allows users to fit potential energy and other coupling curves with

measured values with the aim of achieve experimental accuracy.



23

Ab initio calculations 

DMC PEC

Variational calculations

Rovibrational wavefunctions Rovibrational energies

Intensities (Einstein Aif) Line list

Refinement

Figure 2.1: Variational calculation of diatomic fine structure. DMC is short for dipole mo-
ment curve. PEC is short for potential energy curve.





Chapter 3

Variational Calculation of

Hyperfine-resolved Rovibronic

Spectra of Diatomic Molecules

3.1 Introduction

The hyperfine structure of molecules lays the foundation for the studies of many

important areas. The most immediate application is to reveal the properties of the

molecules [60, 61, 62]. Other examples includes laser cooling experiments [63, 64],

astronomical observations [65], and, of course, nuclear magnetic resonance which

has many applications including ones in medicine.

In the absence of external fields, the rotational hyperfine structure results from

interactions between the electric and magnetic multipole moments of the nuclei and

their molecular environments [66]. Due to parity conservation inside the nuclei,

only even electric and odd magnetic multipoles are non vanishing. Although higher

multipole effects are observed in some experiments, the dominant contributions to

the hyperfine structure arise from magnetic dipole and electric quadrupole interac-

tions.

Frosch and Foley[67] performed a pioneering theoretical study of the magnetic

interactions between nuclei and electron spins in diatomic molecules based on the

Dirac equation, see discussion by Brown and Carrington [68]. Bardeen and Townes
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[69] provided the first extensive discussion of the electric quadrupole interactions.

The application of irreducible spherical tensor operators facilitate the evalu-

ation of effective hyperfine Hamiltonian matrix elements [70, 66, 71, 72, 68], al-

though one must still pay attention to anomalous commutation relationships when

coupling angular momenta [73, 74]. Standard practice is to use these matrix el-

ements to solve problems where hyperfine structure is important using effective

Hamiltonians which implicitly use a perturbation theory based representation of

the problem [65, 62]. The effective Hamiltonian of a fine or hyperfine problem is

usually constructed within a particular vibrational state and the rotational coupling

terms are treated as perturbations. The assumptions implicit in this approach are

usually valid because the splitting of the (rotational) energy levels due to hyperfine

effects are generally small compared to the separation between electronic or vibra-

tional states. However, this assumption can fail, such as for example, for Rydberg

states of molecules[75, 76]. The B 2Π – C 2Π avoided crossing structure in NO is

another example of strong electronic state interaction. The perturbative treatment of

this vibronic coupling is difficult: it requires a lot of parameters [77], and is not very

accurate. The interaction between different states leads to significant complications

which are difficult to model using the standard effective Hamiltonian approach.

We present a variational procedure for calculating hyperfine-resolved spectra

of diatomic molecules in this chapter. The new algorithm we design is imple-

mented as new modules in Duo. In general, the most challenging part of solving

quantum mechanical problems using a variational method is finding good varia-

tional basis sets. We show below that Duo gives appropriate basis sets thanks to its

well-designed calculation hierarchy and algorithm. Numerical tests indicates that

the algorithm proposed here can achieve high accuracy for calculation of hyperfine

structure.

3.2 Overview

In this section, we outline our algorithm so that the readers can easily follow the

details given in the following sections. Figure 3.1 gives a graphical representation
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of the algorithm.

We write the Hamiltonian for the problem as

H =H (0)+Hhfs, (3.1)

where H (0) is the rovibronic Hamiltonian which has been discussed in Chapter 2.

Hhfs gives the nuclear hyperfine interaction terms introduced in this chapter. We

emphasize that although this structure is the standard one used in perturbation the-

ory, here we aim for a full variational solution of the whole HamiltonianH .

We program new Duo modules to accomplish the functions denoted by the

red rectangles in Fig. 3.1 for nuclear hyperfine structure calculations. We only con-

sider heteronuclear diatomic molecules with one nucleus possessing non-zero spin

in this thesis. In this case, nuclear spin, I, is coupled with J to give total angular

momentum, F, i.e.,

F = I+ J. (3.2)

To evaluate the matrix elements ofHhfs, we introduce the following primitive basis

functions

|state,v,Λ,S ,Σ, J,Ω, I,F,MF⟩ = |state,Λ,S ,Σ⟩ |state,v⟩ |J,Ω,MJ⟩ |J, I,F,MF⟩ , (3.3)

where the angular momenta I and F are quantized to the space-fixed axes; J is

quantized to both the space-fixed and the body-fixed axes; L and S are quantized to

the body-fixed axes. Without an external field, MF can be omitted:

|state,v,Λ,S ,Σ, J,Ω, I,F⟩ . (3.4)

The basis functions are countable in Duo and thus, can be simply denoted as:

|k, J, I,F⟩ = |k, J⟩ |J, I,F⟩ , (3.5)

where k is a counting number for the basis functions associated with a given J. It is
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Read inputs

Construct and solve the vibrational
Schrödinger equations

Construct the parity conserved 
rovibronic Hamiltonian under
the Hund’s case (𝑎𝑎) basis set 

Calculate matrix elements under 
the vibrational wavefunctions

Diagonalize the rovibronic 
Hamiltonian matrix

Construct primitive hyperfine 
Hamiltonian under the

Hund’s case (𝑎𝑎𝛽𝛽) basis set

Represent the hyperfine 
Hamiltonian under the 

rovibronic wavefunctions

Construct the final 
Hamiltonian matrix

Diagonalize the final 
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Represent the wavefunction under
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transition dipole moment matrix 

under the Hund’s case (𝑎𝑎𝛽𝛽) basis set
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Rovibronic 
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Rovibronic 
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Hyperfine energies
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Hyperfine wavefunctions

Complete Hamiltonian

Hyperfine Hamiltonian

Hyperfine
Hamiltonian

Rovibronic Hamiltonian

Figure 3.1: Flowchart showing the structure of a Duo hyperfine calculation. Existing mod-
ules are given by black rectangles while new modules are denoted by red rect-
angles. PEC is short for potential energy curve and TDM is short for transition
dipole moment.
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Figure 3.2: Hund’s case (aβ) angular momenta coupling scheme. R is the rotational angular
momentum of bare nuclei.

an equivalent representation of Eq. (3.4) and |k, J⟩ is short for Eq. (2.39).

The quantum numbers, J, I and F, satisfy the triangle inequality:

|F − I| ≤ J ≤ F + I. (3.6)

The coupling scheme used is known as Hund’s case (aβ) [67], and is illustrated in

Fig. 3.2. We emphasize that because we use complete angular basis sets, our results

are independent of the coupling scheme used and its choice largely becomes one of

algorithmic convenience.

To obtain a parity-conserved basis set, we rely on the symmetrization proce-

dure given in Eq. (2.41) by making use of the eigenfunctions obtained as solutions

ofH (0),
∣∣∣ϕτ,Jm

〉
, to define the basis functions:

∣∣∣ϕτ,Jm , I,F
〉
=
∣∣∣ϕτ,Jm

〉
|J, I,F⟩ . (3.7)

The parity-conserved rovibronic basis functions, Eq. (3.7), can be represented by

the primitive basis functions, Eq. (3.4) or Eq. (3.5)

∣∣∣ϕτ,Jm , J, I,F
〉
=

∑
k,J1

|k, J1, I,F⟩⟨k, J1, I,F|

 ∣∣∣ϕτ,Jm , J, I,F
〉

=
∑

k

〈
k, J
∣∣∣ϕτ,Jm

〉
|k, J, I,F⟩ , (3.8)

where the coefficients,
〈
k, J
∣∣∣ϕτ,Jm

〉
, have been obtained when calculating rovibronic

fine structure by solving for H (0). The matrix elements of H (0) in this basis func-
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tions are straightforward

〈
ϕτ,Jm , I,F

∣∣∣∣H (0)
∣∣∣∣ϕτ,J′m′ , I,F

〉
= δm,m′ δJ,J′ Eτ,J

m . (3.9)

Therefore constructing the hyperfine-resolved matrix elements

〈
ϕτ,Jm , I,F

∣∣∣∣H (0)+Hhfs

∣∣∣∣ϕτ,J′m′ , I,F
〉
,

just requires the matrix elements ofHhfs,
〈
ϕτ,Jm , I,F

∣∣∣∣Hhfs

∣∣∣∣ϕτ,J′m′ , I,F
〉
.

In practice, we first construct the matrix elements of Hhfs using the primi-

tive basis functions of Eq. (3.4) and then transform to the representation of H (0) of

Eq. (3.7) using a basis transformation. The mathematical and physical details are

discussed in the next two sections. Before that, we outline the algorithm used to

calculate hyperfine-resolved spectra.

As a first step, the hyperfine coupling curves, such as the Fermi contact in-

teraction curves [78], are integrated over the vibrational wavefunctions. Duo uses

these vibrational matrix elements to compute the hyperfine matrix elements within

a Hund’s case (aβ) basis set, Eq. (3.4), and constructs a Hamiltonian matrix for each

specific total angular momentum, F. Next, the matrix, corresponding to Hhfs is

constructed in the representation of Eq. (3.7). After this step, the hyperfine matrix

elements are parity conserved. Combining the rovibronic energies and hyperfine

matrix elements, Duo constructs the complete Hamlitonian matrix, correspond-

ing to H , for each given value of F and τ. Diagonalizing this matrix gives the

hyperfine-resolved energy levels and corresponding wavefunctions in the represen-

tation of Eq. (3.7). Finally, the eigenfunctions are transformed back to the Hund’s

case (aβ) representation of Eq. (3.4) as this representation is more convenient to use

for hyperfine-resolved intensity calculations, for analysis of wavefunctions and to

assign quantum numbers to hyperfine states.
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3.3 The hyperfine structure Hamiltonian

We investigate the field-free hyperfine structure of diatomic molecules in which

only one of the nuclei possess nuclear spin, and consider five nuclear hyperfine

terms:

Hhfs =HFC+HIL+Hdip+HIJ+HEQ. (3.10)

They are, respectively, the Hamiltonians of the Fermi contact interaction, the nu-

clear spin-orbit interaction, the nuclear-spin–electron-spin dipole-dipole interac-

tion, the nuclear-spin–rotation interaction and the nuclear electric quadrupole in-

teraction. These Hamiltonians have the following definitions [68, 72]:

HFC =
∑

i

8π
3

gS gN µBµN
µ0

4π
δ(r1i) I ·Si, (3.11)

HIL =
∑

i

2gN µBµN
µ0

4π
I · Li

r3
1i

, (3.12)

Hdip =
∑

i

gS gN µBµN
µ0

4π

Si · I
r3

1i

−
3(Si · r1i)(I · r1i)

r5
1i

 , (3.13)

HIJ = cI(R) I · J, (3.14)

HEQ =
∑
i,n

−
e2

4πϵ0

r2
n

r3
i

∑
p

(−1)pC(2)
p (θi,ϕi)C

(2)
−p(θn,ϕn). (3.15)

The constants, e, gS , µB, gN , µN and µ0, are the elementary charge, the free electron

spin g-factor, the electron Bohr magneton, the nuclear spin g-factor, the nuclear

magneton and the vacuum permeability, respectively. I is the spin of the nucleus of

interest (defined as nucleus 1), r1i is the relative position between the i-th electron

and nucleus 1, Si is the spin of the i-th electron, Li is the orbit angular momentum of

the i-th electron, and δ(·) is the Dirac delta function. In Eq. (3.14), we introduce the

nuclear spin-rotation interaction constant, cI(R), which is a function of internuclear

distance. Section 8.2.2(d) of Brown and Carrington [68] and Miani and Tennyson

[79] define the nuclear spin-rotation tensor and how it can be reduced to a con-

stant for a diatomic molecule. In Eq. (3.15), C(2)
p is the modified rank-2 spherical
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harmonic:

C(2)
p (θ,ϕ) =

√
4π
5

Y (2)
p (θ,ϕ). (3.16)

where Y (2)
p (θ,ϕ) is the standard spherical harmonic; (ri, θi,ϕi) and (rn, θn,ϕn) are the

positions of the i-th electron and the n-th proton, respectively.

The first four hyperfine Hamiltonians, given by Eqs. (3.11) – (3.14), are nu-

clear magnetic dipole terms resulting from the interactions between the magnetic

dipole moment given by nuclear spin and magnetic fields due to the motion of nu-

clei or electrons. The nuclear electric quadrupole Hamiltonian arises from the inter-

action between the nuclear electric quadrupole moment and the electric field inside

a molecule. The nuclear spin-rotation interaction is usually much weaker than the

other four hyperfine terms (if non-zero). See Table 1 of Broyer et al. [71] for the

order of magnitude of the hyperfine terms.

To aid the evaluation of matrix elements, the hyperfine Hamiltonians can be

written as scalar products of irreducible tensor operators [68]:

HFC =
∑

i

8π
3

gS gN µBµN
µ0

4π
δ(r1i)T1(I) ·T1(Si), (3.17)

HIL =
∑

i

2gN µBµN
µ0

4π
1

r3
1i

T1(I) ·T1(Li), (3.18)

Hdip =
∑

i

−
√

10gS gN µBµN
µ0

4π
T1(I) ·T1(Si,C(2)), (3.19)

HIJ = cI(R)T1(I) ·T1(J), (3.20)

HEQ = −eT2(∇E) ·T2(Q), (3.21)

where Tk(·) indicates a rank-k tensor. All the tensors here are defined in space-fixed

frame. The two tensors in Eq. (3.21) defining the gradient of electric field and the

nuclear quadrupole moment are, respectively:

T2(∇E) = −
1

4πε0

∑
i

e
r3

i

C(2)(θi,ϕi), (3.22)

eT2(Q) = e
∑

n
r2

nC(2)(θn,ϕn). (3.23)
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3.4 Matrix elements of the hyperfine structure

3.4.1 Primitive matrix elements of the hyperfine structure

In this section, primitive matrix elements of the hyperfine structure are initially eval-

uated in the representation of Eq. (3.4). We do not consider hyperfine couplings be-

tween different electronic states when evaluating primitive matrix elements, which

are, thus, diagonal in the electronic state and electron spin, i.e.,

state = state′, S = S ′,

in the bra-ket notation, and immediately we have

|Λ| =
∣∣∣Λ′∣∣∣.

As F = J + I, we can initially decouple the representation of |J, I,F,MF⟩ in

Eq. (3.3) to uncoupled ones. Taking the Fermi contact term as an example, the

non-vanishing matrix element on the primitive basis functions for MF = M′F is

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HFC
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+F+I

I J′ F

J I 1

〈I∥∥∥T1(I)
∥∥∥I〉× 8π

3
gS gN µBµN

µ0

4π

×

〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥∥∥∥∥∑i

δ(r1i)T1(Si)

∥∥∥∥∥∥∥state,v′,Λ′,S ,Σ′, J′,Ω′
〉
, (3.24)

where

 j1 j2 j3

j4 j5 j6

 is the Wigner-6 j symbol. The projection of nuclear spin is

quantized to the space-fixed axes, and thus, the reduced matrix element of T1(I) is

〈
I
∥∥∥T1(I)

∥∥∥I〉 = √I(I+1)(2I+1) . (3.25)

The projection of electron spin is quantized to the body-fixed axes. To evaluate the

second reduced matrix element in Eq. (3.24), the electron spin spherical tensor is
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rotated from the space-fixed frame to the body-fixed frame in which the components

of tensors are denoted by q:

〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥∥∥∥∥∑i

δ(r1i)T1(Si)

∥∥∥∥∥∥∥state,v′,Λ′,S ,Σ′, J′,Ω′
〉

=

〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥∥∥∥∥∑i

δ(r1i)
∑

q
D

(1)
.q (ω)∗ T1

q(si)

∥∥∥∥∥∥∥state,v′,Λ′,S ,Σ′, J′,Ω′
〉

=
∑

q
(−1)J−Ω

 J 1 J′

−Ω q Ω′

 √(2J+1)(2J′+1)δΛ,Λ′

×

〈
state,v

∣∣∣∣∣∣∣
〈
state,Λ,S ,Σ

∣∣∣∣∣∣∣∑i

δ(r1i)T1
q(si)

∣∣∣∣∣∣∣state,Λ′,S ,Σ′
〉∣∣∣∣∣∣∣state,v′

〉
, (3.26)

where si is the spin of the i-th electron in the body-fixed system, D(k)
m′,m(ω) is a

Wigner rotation matrix and

 j1 j2 j3

m1 m2 m3

 is a Wigner-3 j symbol. The electron

tensor operators, T1
q(si), do not directly act on the electronic part of Hund’s case (a)

basis. We may replace the electron spin operators with an effective one:

8π
3

gS gN µBµN
µ0

4π

〈
state,Λ,S ,Σ

∣∣∣∣∣∣∣∑i

δ(r1i)T1
q(si)

∣∣∣∣∣∣∣state,Λ,S ,Σ′
〉

=
〈
state,Λ,S ,Σ

∣∣∣bF(R)T1
q(S)
∣∣∣state,Λ,S ,Σ′

〉
, (3.27)

where S is the total spin. Requiring Σ = Σ′, the Fermi contact interaction curve can

be defined as [78]:

bF(R) =
8π
3

gS gN µBµN
µ0

4π

〈
state,Λ,S ,Σ

∣∣∣∣∣∣∣∑i

δ(r1i)
T1

0(si)

Σ

∣∣∣∣∣∣∣state,Λ,S ,Σ
〉
, (3.28)

where T1
0(si)/Σ represents the projection operator for each electron i (see

Eq. (7.152) of Brown and Carrington [68]). Based on Eqs. (3.24) to (3.28), we

finally get:

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HFC
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
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= (−1)J′+F+I

I J′ F

J I 1

 √I(I+1)(2I+1) . . .

×

[∑
q

(−1)J−Ω

 J 1 J′

−Ω q Ω′

 √(2J+1)(2J′+1) . . .

× (−1)S−Σ

 S 1 S

−Σ q Σ′

 √S (S +1)(2S +1) . . .

×δΛ,Λ′
〈
state,v

∣∣∣bF(R)
∣∣∣state,v′

〉]
. (3.29)

Other hyperfine matrix elements can be evaluated analogusly.

For the nuclear spin-orbit term, we are only interested in the diagonal matrix

elements of Λ

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HIL
∣∣∣state,v′,Λ,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+F+I

I J′ F

J I 1

 √I(I+1)(2I+1) . . .

× (−1)J−Ω

 J 1 J′

−Ω 0 Ω

 √(2J+1)(2J′+1) . . .

×δΣ,Σ′ Λ
〈
state,v

∣∣∣a(R)
∣∣∣state,v′

〉
. (3.30)

The non-diagonal couplings between different electronic states via T1
±1(L) are not

considered here. The diagonal nuclear-spin–orbit interaction curve is defined as

[78]:

a(R) = 2gN µBµN
µ0

4π

〈
state,Λ,S ,Σ

∣∣∣∣∣∣∣∑i

1
r3

1i

T1
0(li)
Λ

∣∣∣∣∣∣∣state,Λ,S ,Σ
〉
, (3.31)

where li is the orbital angular momentum of the i-th electron defined in the body-

fixed frame.

The nuclear spin-electron spin dipole-dipole interaction is somewhat compli-
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cated. With the definition (see Appendix 8.2 of Brown and Carrington [68]):

T1
q(si,C(2)) =

∑
q1,q2

−
√

3(−1)q T1
q1

(si)
C(2)

q2 (θ1i,ϕ1i)

r3
1i

 1 2 1

q1 q2 −q

 , (3.32)

where (r1i, θ1,i,ϕ1,i) are the spherical polar coordinates of electron i relative to nu-

cleus 1, we shall give two kinds of matrix elements. For the term diagonal in Λ, i.e.

q2 = 0 and q = q1:

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣Hdip
∣∣∣state,v′,Λ,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+F+I

I J′ F

J I 1

 √I(I+1)(2I+1) . . .

×

[∑
q

(−1)J−Ω

 J 1 J′

−Ω q Ω′

 √(2J+1)(2J′+1) . . .

× (−1)q
√

30

1 2 1

q 0 −q

 (−1)S−Σ

 S 1 S

−Σ q Σ′

 √S (S +1)(2S +1) . . .

×
1
3
〈
state,v

∣∣∣c(R)
∣∣∣state,v′

〉]
, (3.33)

The diagonal nuclear-spin–electron-spin dipole-dipole interaction constant curve is

defined as [78],

c(R) = 3gS gN µBµN
µ0

4π

〈
state,Λ,S ,Σ

∣∣∣∣∣∣∣∑i

C(2)
0 (θ1i,ϕ1i)

r3
1i

T1
0(si)

Σ

∣∣∣∣∣∣∣state,Λ,S ,Σ
〉
.

(3.34)

For the off-diagonal terms of Hdip in Λ and Λ′ which satisfy q2 = ∓2, i.e. q1 = ±1

and q = ∓1, we have

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣Hdip
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+F+I

I J′ F

J I 1

 √I(I+1)(2I+1) . . .
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× (−1)J−Ω

 J 1 J′

−Ω ∓1 Ω′

 √(2J+1)(2J′+1) . . .

×

√
S (S +1)−Σ(Σ ±1)

∓
√

2

〈
state,v

∣∣∣d(R)
∣∣∣state,v′

〉
, (3.35)

The off-diagonal nuclear-spin–electron-spin dipole-dipole interaction constant

curve is defined as [78],

d(R) = −
√

6gS gN µBµN
µ0

4π
. . .

×

〈
state,Λ,S ,Σ

∣∣∣∣∣∣∣∑i

C(2)
∓2(θ1i,ϕ1i)

r3
1i

∓
√

2T1
±1(si)

√
S (S +1)−Σ(Σ ±1)

∣∣∣∣∣∣∣state,Λ′,S ,Σ′
〉
.

(3.36)

The case of the nuclear spin-rotation interaction is much simpler, as it is not

necessary to rotate T1(J) to the body-fixed axis system:

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HIJ
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+F+I

I J′ F

J I 1

 √I(I+1)(2I+1) . . .

× (−1)J−Ω

 J 1 J′

−Ω 0 Ω

δΛ,Λ′ δΣ,Σ′ δJ,J′
√

J(J+1)(2J+1) . . .

×
〈
state,v

∣∣∣cI(R)
∣∣∣state,v′

〉
. (3.37)

To evaluate the matrix elements for the electric quadrupole interaction, we

decouple the inner product of second rank irreduciable tensors:

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HEQ
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+I+F

 I J F

J′ I 2

〈I∥∥∥−eT2(Q)
∥∥∥I〉 . . .

×
〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥T2(∇E)
∥∥∥state,v′,Λ′,S ,Σ′, J′,Ω′

〉
. (3.38)
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The electric quadrupole reduced matrix element is non-zero only if I ≥ 1; it can be

evaluated as

〈
I
∥∥∥−eT2(Q)

∥∥∥I〉 = −eQ
2

 I 2 I

−I 0 I


−1

. (3.39)

where eQ is the nuclear electric quadrupole moment, see Cook and De Lucia [66]

or Appendix 8.4 of Brown and Carrington [68]. The values of Q for various atoms

were collected by Pyykkö [80]. The reduced matrix element of the gradient of

electric field is

〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥T2(∇E)
∥∥∥state,v′,Λ′,S ,Σ′, J′,Ω′

〉
=
∑

q
(−1)J−Ω

 J 2 J′

−Ω q Ω′

 √(2J+1)(2J′+1)δΣ,Σ′ . . .

×
〈
state,v

∣∣∣∣〈state,Λ,S ,Σ
∣∣∣T2

q(∇E)
∣∣∣state,Λ′,S ,Σ′

〉∣∣∣∣state,v′
〉
. (3.40)

The diagonal and off-diagonal R-dependent constants of the gradient of electric field

are respectively defined as (see Eqs. (7.159) and (7.163) of Brown and Carrington

[68]):

q0(R) = −2
〈
state,Λ,S ,Σ

∣∣∣T2
0(∇E)

∣∣∣state,Λ,S ,Σ
〉
, (3.41)

q2(R) = −2
√

6
〈
state,Λ,S ,Σ

∣∣∣T2
±2(∇E)

∣∣∣state,Λ′,S ,Σ
〉
. (3.42)

Note that sometimes q0 is denoted as q1, see e.g. Eq. (2.3.76 a) of Hirota [81]. We

follow the convention of Brown and Carrington [68] and preserve the variable q1

for the nuclear electric quadrupole coupling constant between different electronic

states arising from T2
±1(∇E) which will be the subject of future work. Finally, the

diagonal matrix elements of nuclear electric quadrupole coupling are

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HEQ
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
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= (−1)J′+I+F

 I J F

J′ I 2


 I 2 I

−I 0 I


−1

. . .

× (−1)J−Ω

 J 2 J′

−Ω 0 Ω

 √(2J+1)(2J′+1)δΣ,Σ′ δΛ,Λ′ . . .

×
1
4
〈
state,v

∣∣∣eQq0(R)
∣∣∣state,v′

〉
, (3.43)

while the off-diagonal ones are:

〈
state,v,Λ,S ,Σ, J,Ω, I,F

∣∣∣HEQ
∣∣∣state,v′,Λ′,S ,Σ′, J′,Ω′, I,F

〉
= (−1)J′+I+F

 I J F

J′ I 2


 I 2 I

−I 0 I


−1

. . .

× (−1)J−Ω

 J 2 J′

−Ω ±2 Ω′

 √(2J+1)(2J′+1)δΣ,Σ′ . . .

×
1

4
√

6

〈
state,v

∣∣∣eQq2(R)
∣∣∣state,v′

〉
. (3.44)

As we only consider the hyperfine interactions within a particular electronic

state in this thesis, the off-diagonal matrix elements arising from d(R) in Eq. (3.36)

and q2(R) in Eq. (3.42) only contribute to the Λ - doubling terms of Π states.

3.4.2 Parity conserved matrix elements under the rovibronic

wavefunctions

Recall the short notation of Hund’s case (aβ) basis in Eq. (3.5), |k, J, I,F⟩ and the

basis functions we defined in Eq. (3.7),
∣∣∣ϕτ,Jm , I,F

〉
, the hyperfine matrix elements

under the basis set can be expanded as

〈
ϕτ,Jm , I,F

∣∣∣∣Hhfs

∣∣∣∣ϕτ,J′m′ , I,F
〉

=

〈
ϕτ,Jm , I,F

∣∣∣∣∣∣∣∣
∑

k,J1

|k, J1, I,F⟩⟨k, J1, I,F|

Hhfs

∑
k′,J2

∣∣∣k′, J2, I,F
〉〈

k′, J2, I,F
∣∣∣
∣∣∣∣∣∣∣∣ϕτ,J′m′ , I,F

〉
=
∑
k,J1

∑
k′,J2

〈
ϕτ,Jm , I,F

∣∣∣k, J1, I,F
〉〈

k, J1, I,F
∣∣∣Hhfs

∣∣∣k′, J2, I,F
〉〈

k′, J2, I,F
∣∣∣∣ϕτ,J′m′ , I,F

〉
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=
∑

k

∑
k′

〈
ϕτ,Jm , I,F

∣∣∣k, J, I,F〉〈k, J, I,F∣∣∣Hhfs
∣∣∣k′, J′, I,F〉〈k′, J′, I,F∣∣∣∣ϕτ,J′m′ , I,F

〉
.

(3.45)

We can rewrite the basis transformation into the matrix format:

Hτ,F
hfs =

(
Φτ,F
)†

HF
hfs Φ

τ,F . (3.46)

〈
ϕτ,Jm , I,F

∣∣∣∣Hhfs

∣∣∣∣ϕτ,J′m′ , I,F
〉
, ⟨k, J, I,F|Hhfs|k′, J′, I,F⟩ and

〈
k′, J′, I,F

∣∣∣∣ϕτ,J′m′ , I,F
〉

are

the matrix elements of Hτ,F
hfs , HF

hfs and Φτ,F , respectively, and,

〈
k′, J′, I,F

∣∣∣∣ϕτ,J′m′ , I,F
〉
=
〈
k′, J′
∣∣∣∣ϕτ,J′m′
〉
.

3.4.3 Solution for the hyperfine structure

The final Hamiltonian which is constructed from summation of the rovibronic and

hyperfine matrices

Hτ,F = H(0),τ,F +Hτ,F
hfs , (3.47)

where H(0),τ,F is the matrix of H (0) (see Eq. (3.9) for the matrix elements). Diag-

onalizing the parity-conserved matrix of each F results in the energies and wave-

functions associated with the hyperfine structure:

Eτ,F =
(
Uτ,F
)†

Hτ,F Uτ,F . (3.48)

The eigenfunction matrix Uτ,F is represented in the parity-conserved rovibronic

basis set defined in Eq. (3.7), which is, however, not very useful for quantum number

assignments and wavefunction analysis. For these purposes, the wavefunctions can

be transformed back in the representation of Hund’s case (a) basis set and the final

wavefunction matrix is

Ψτ,F =Φτ,F Uτ,F . (3.49)
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Here, we denote the countable rovibronic wavefunctions considering nuclear hyper-

fine interaction as ∣∣∣ψτ,Fm

〉
, (3.50)

such that 〈
ψτ,Fm
∣∣∣H ∣∣∣ψτ,Fm′

〉
= δm,m′ E

τ,F
m , (3.51)

where Eτ,F
m is the corresponding eigenvalue of

∣∣∣ψτ,Fm

〉
.

The basis transformation procedures from Eq. (3.45) to Eq. (3.49) reveal the

key feature of our variational method which involves accounting for the contribution

of every basis function to the final eigenstates. Finally, only F, τ, and counting

number m are good quantum numbers.

3.5 Line strength of the hyperfine transitions
In the absence of an external field, the line strength of a nuclear spin resolved rovi-

bronic transition is defined by[66]

S (m, τ,F↔ m′, τ′,F′)

=
∑

p,MF ,MF′

∣∣∣∣〈ψτ,Fm ,MF

∣∣∣∣T1
p(µ)
∣∣∣∣ψτ′,F′m′ ,MF′

〉∣∣∣∣2

=
∣∣∣∣〈ψτ,Fm

∥∥∥T1(µ)
∥∥∥ψτ′,F′m′

〉∣∣∣∣2
 ∑p,MF ,MF′

∣∣∣∣∣∣∣∣
 F 1 F′

−MF p MF′


∣∣∣∣∣∣∣∣
2

=
∣∣∣∣〈ψτ,Fm

∥∥∥T1(µ)
∥∥∥ψτ′,F′m′

〉∣∣∣∣2 (3.52)

We initially evaluate the reduced matrix elements of the electric dipole moment in

the representation of Eq. (3.4) and then calculate the reduced line strength matrix

elements by matrix multiplication:

τ,F Dτ′,F′ = (Ψτ,F)† F DF′Ψτ′,F′ , (3.53)

where F DF′ and τ,F Dτ′,F′ are the reduced transition dipole moment matrices in the

representation of Eq. (3.4) and Eq. (3.50) respectively. The following equations give
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the elements of F DF′ , i.e.
〈
k, J, I,F

∥∥∥T1(µ)
∥∥∥k′, J′, I,F〉.

As F = J + I and T1(µ) commutes with I,

〈
state,v,Λ,S ,Σ, J,Ω,MJ , I,F

∥∥∥T1(µ)
∥∥∥state′,v′,Λ′,S ′,Σ′, J′,Ω′,MJ′ , I,F′

〉
= (−1)J+I+F′+1

√
(2F +1)(2F′+1)

J′ F′ I

F J 1

 . . .
×
〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥Tk(µ)
∥∥∥state′,v′,Λ′,S ′,Σ′, J′,Ω′

〉
. (3.54)

Rotating the spherical tensor to the body-fixed frame gives:

〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥Tk(µ)
∥∥∥state′,v′,Λ′,S ′,Σ′, J′,Ω′

〉
=

〈
state,v,Λ,S ,Σ, J,Ω

∥∥∥∥∥∥∥∥
1∑

q=−1

D
(1)
.q (ω)∗ T1

q(µ)

∥∥∥∥∥∥∥∥state′,v′,Λ′,S ′,Σ′, J′,Ω′
〉

=

1∑
q=−1

(−1)J−Ω
√

(2J+1)(2J′+1)

 J 1 J′

−Ω q Ω′

 . . .
×
〈
state,v,Λ,S ,Σ

∣∣∣T1
q(µ)
∣∣∣state′,v′,Λ′,S ′,Σ′

〉
. (3.55)

The matrix element
〈
state,v,Λ,S ,Σ

∣∣∣T1
q(µ)
∣∣∣state′,v′,Λ′,S ′,Σ′

〉
is the same as the one

used for the calculation of rovibronic transition intensities excluding nuclear spin in

Duo [42],

〈
state,v,Λ,S ,Σ

∣∣∣T1
q(µ)
∣∣∣state′,v′,Λ′,S ′,Σ′

〉
=
〈
state,v

∣∣∣µq(R)
∣∣∣state′,v′

〉
, (3.56)

where µq(R) is the electric dipole moment curve represented in the body-fixed frame

which can be obtained from ab initio calculation.

For electric dipole moment transitions parity has to be changed and thus fol-

lows the selection rule:

τ : +⇔− (3.57)
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The selection rules on F comes from the Wigner-6 j symbol of Eq. (3.54):

∆F = −1,0,1; and F , 0 if ∆F = 0. (3.58)

The hyperfine Hamiltonian mixes wavefunctions with different J; as a result,

electric dipole ‘forbidden’ lines with |∆J| > 1 are observable. For example, when

I = 1/2, we can observe electric dipole transitions of O and S branches (∆J = ±2),

even if they might be much weaker than the transitions of P, Q and R branches.

3.6 Numerical verification
To illustrate and validate our new hyperfine modules, we calculate hyperfine-

resolved rotational spectra for electronic and vibrational ground state of 14N16O

and 24Mg1H. While both 16O and 24Mg have nuclear spin zero; 14N has I = 1 and
1H has I = 1/2 which allows us to test different coupling mechanisms. For this

purpose we compare the results of our Duo calculations with of PGOPHER [82]

using the same model for each calculation. PGOPHER obtains the energy levels

and spectra from effective Hamiltonians given appropriate spectral constants. In

contrast, Duo takes in coupling curves and performs variational calculations. To get

consistent inputs between the two codes it was necessary to simplify the treatment

used by Duo.

For 14N16O we approximate the Duo solution by using only one contracted

vibrational basis function, i.e.,
∣∣∣X 2Π,v = 0

〉
which ensures that we avoid any

hyperfine-induced interaction between different vibrational states. In PGOPHER,

we used values for the rotational constant, B0, and spin-orbit coupling constant ma-

trix, A0, computed using Duo:

B0 =

〈
X 2Π,v = 0

∣∣∣∣∣∣ ℏ2

2µR2

∣∣∣∣∣∣X 2Π,v = 0
〉
, (3.59)

A0 = 2
〈
X 2Π,v = 0

∣∣∣CSO(R)
∣∣∣X 2Π,v = 0

〉
, (3.60)

where µ is the reduced mass of 14N16O and CSO(R) is the spin-orbit coupling curve.

Note that, for spin-orbit interaction, the coupling curve, CSO(R), describes the cou-
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Table 3.1: Spectroscopic constants for 14N16O used in this chapter.

Constants Values [cm−1]
B0 1.69608401
A0 120

pling energies, while the constant, A, is defined by the splitting energies. Thus, A

is defined by twice the matrix element. The NO X 2Π potential energy curve used

by Duo was taken from Wong et al. [83]. CSO(R) was assigned an artificial con-

stant CSO(R) = 60cm−1 and the transition dipole moment was set to 1 Debye. Our

adopted values for B0 and A0 are given in Table 3.1.

For this analysis, the hyperfine coupling was chosen using artificial curves

much greater than experimental values. By including only one hyperfine constant

at a time, we test the affects of particular hyperfine interactions. The results are

compared in Table 3.2. Note that, PGOPHER uses nuclear spin-electron spin con-

stants, b, defined by Frosch and Foley [67], rather than bF. They are related by the

dipole-dipole constant, c,

bF = b+
c
3
. (3.61)

Duo achieves excellent agreement with PGOPHER for the calculation of both the

line positions ν and line strengths S . The slight differences are due to rounding

errors. As we did not include Λ - doubling terms in our calculation the wavenumbers

corresponding to bF, a, eQq0 and cI in the first and second columns of the same F =

0.5 (or in the third and fourth columns, F = 1.5) of Table 3.2 are the same. Hyperfine

interactions only split the transitions of different F in the first and third columns (or

in the second and fourth columns). In contrast, the wavenumbers obtained with

eQq2 or d included are different from each other even for the same values of F due

to the hyperfine contribution to both Λ - doubling and hyperfine splitting.

We also tested the code for an I = 1/2 case by calculating pure rotational tran-

sitions within the v = 0, X 2Σ+ state of 24MgH, again using a unit electric dipole

moment curve. This is a rather realistic case, as the input spectral constants to

PGOPHER listed in Table 3.3 were determined by the observed transitions[11]. As

for the input to Duo, the potential energy curve was shifted from an empirically-
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Table 3.2: Comparison of 14N16O line positions and line strengths for calculated results
from Duo and PGOPHER. Hyperfine constants are in cm−1 and line positions
are given in MHz. The line strength, S [Debye2], has the same definition as that
in PGOPHER when the intensity unit option of PGOPHER, IntensityUnit, is
chosen as HonlLondon and the transition dipole moment is set to 1 Debye.

Number 1 2 3 4

Upper
F′ 0.5 0.5 1.5 1.5
τ′′ − + − +

J′′ 1.5 1.5 1.5 1.5

Lower
F′′ 0.5 0.5 0.5 0.5
τ′′ + − + −

J′′ 0.5 0.5 0.5 0.5

b = 0.1
νDuo 148343.21846 148343.21846 147225.55589 147225.55589
νPG 148343.21850 148343.21850 147225.55590 147225.55590

c = 0.3
S Duo 0.60757296 0.60757296 0.77125182 0.77125182
S PG 0.60757300 0.60757300 0.77125180 0.77125180

a = 0.1

νDuo 151349.03162 151349.03162 151956.77196 151956.77196
νPG 151349.03160 151349.03160 151956.77200 151956.77200

S Duo 0.58421238 0.58421238 0.72433238 0.72433238
S PG 0.58421240 0.58421240 0.72433240 0.72433240

eQq0 = 0.1

νDuo 149591.09156 149591.09156 150930.88155 150930.88155
νPG 149591.09160 149591.09160 150930.88160 150930.88160

S Duo 0.59805081 0.59805081 0.73432902 0.73432902
S PG 0.59805080 0.59805080 0.73432900 0.73432900

cI = 0.1

νDuo 145827.72503 145827.72503 150324.61190 150324.61190
νPG 145827.72500 145827.72500 150324.61190 150324.61190

S Duo 0.59221720 0.59221720 0.74027149 0.74027149
S PG 0.59221720 0.59221720 0.74027150 0.74027150

eQq2 = 0.1

νDuo 150346.43930 150302.88914 150307.21201 150342.05212
νPG 150346.43930 150302.88910 150307.21200 150342.05210

S Duo 0.59221687 0.59221668 0.74027121 0.74027140
S PG 0.59221690 0.59221670 0.74027120 0.74027140

d = 0.1

νDuo 150329.98859 150332.52077 149133.39987 151532.62042
νPG 150329.98860 150332.52080 149133.39990 151532.62040

S Duo 0.59210956 0.59211520 0.75214574 0.72851989
S PG 0.59210960 0.59211520 0.75214570 0.72851990
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determined one [84, 85] to reproduce the B0 constant given in Table 3.3, i.e.

B0 =

〈
X 2Σ+,v = 0

∣∣∣∣∣∣ ℏ2

2µR2

∣∣∣∣∣∣X 2Σ+,v = 0
〉

(3.62)

The curves of spin-rotation and hyperfine couplings were defined as:

γ(R) = γ0, (3.63)

bF(R) = b0+
c0

3
, (3.64)

c(R) = c0. (3.65)

Note that the contribution of D0 is not allowed for when only one contracted basis

function is used in Duo. Just like the Bv constant, Duo does not use rotational

constants, Dv, Hv, etc., either and introduction of these centrifugal distortion would

require manipulation of the potential energy curves which are beyond the scope of

this thesis. Nevertheless, Duo still gives hyperfine splittings which are consistent

with PGOPHER, see the comparison in Table 3.4, because D0 uniformly shifts the

hyperfine energy levels within the same N rotational levels, where N is the quantum

number corresponding to N which is defined as:

N = J −S. (3.66)

Table 3.3: X 2Σ+, v = 0 spectral constants of 24Mg1H determined by Ziurys et al. [11].
These values were used as the input to PGOPHER.

Constants Values [MHz]
B0 171976.1782
D0 10.6212
γ0 790.809
b0 306.277
c0 4.792

We then allowed for the effect of vibrational coupling in Duo by increasing

contracted vibration bases was set to five functions, i.e.,
∣∣∣X 2Σ+,v = 0,1,2,3,4

〉
. As

shown in Table 3.5, vibrational coupling from higher vibrational states automati-
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Table 3.4: Comparison of 24MgH v = 0 hyperfine energies calculated by Duo and PGO-
PHER. Only one vibrational contracted basis function

∣∣∣X 2Σ+,v = 0
〉

was used in
this case. All energies are given in MHz.

No. F τ J N EDuo EPG Difference
1 0 + 0.5

0
-230.9057 -230.9057 0.0000

2 1 + 0.5 76.9686 76.9686 0.0000
3 1 − 0.5

1

343117.2196 343074.7347 42.4849
4 0 − 0.5 343236.9188 343194.4339 42.4849
5 1 − 1.5 344238.9505 344196.4655 42.4850
6 2 − 1.5 344424.5699 344382.0849 42.4850

cally introduces centrifugal distortion to the v = 0 state and improves the accuracy

of the calculation, compared with the lower rotational levels in Table 3.4. The poten-

tial energy and spin-rotation curves are not very accurate here, and thus for higher

rotational levels, we still got obvious energy differences in Table 3.5, and frequency

differences in Table 3.6.

Finally, we list two calculated S branch (∆J = 2) transitions in the second and

fourth rows of Table 3.7. These hyperfine-induced transitions are much weaker than

the two R branch (∆J = 1) transitions in the first and third rows.

3.7 Conclusion

We demonstrate an algorithm for the calculation of hyperfine structure of diatomic

molecules based on a variational treatment of nuclear motion. Nuclear magnetic

dipole coupling terms including Fermi-contact, nuclear-spin–electron-spin dipole-

dipole interaction, nuclear spin-orbit, nuclear spin-rotation, and nuclear electric

quadrupole interaction terms are considered in our calculation. New modules for the

hyperfine structure calculation are added to the flexible variational nuclear-motion

package Duo [42].

Based on the eigenfunctions and eigenvalues of J, a parity-conserved rovi-

bronic Hamiltonian matrix of particular total angular momentum, F, is constructed

and diagonalized. The hyperfine wavefunctions are finally represented using a

Hund’s case (aβ) basis set. Hyperfine-resolved line lists for diatomic molecules

can be computed depending on the hyperfine energy levels and wavefunctions. To
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Table 3.5: Comparison of 24MgH v = 0 hyperfine energies calculated by Duo and PGO-
PHER. Five vibrational contracted basis functions

∣∣∣X 2Σ+,v = 0,1,2,3,4
〉

were
used in this case. All energies are given in MHz.

No. F τ J N EDuo EPG ∆E
1 0 + 0.5 0 -230.9058 -230.9057 -0.0001
2 1 + 0.5 0 76.9686 76.9686 0.0000
3 1 − 0.5 1 343074.6047 343074.7347 -0.1300
4 0 − 0.5 1 343194.3039 343194.4339 -0.1300
5 1 − 1.5 1 344196.3356 344196.4655 -0.1299
6 2 − 1.5 1 344381.9550 344382.0849 -0.1299
7 2 + 1.5 2 1030229.8178 1030230.9249 -1.1071
8 1 + 1.5 2 1030363.5553 1030364.6624 -1.1071
9 2 + 2.5 2 1032168.8370 1032169.9441 -1.1071

10 3 + 2.5 2 1032341.1483 1032342.2554 -1.1071
11 3 − 2.5 3 2060535.9577 2060540.0064 -4.0487
12 2 − 2.5 3 2060675.3485 2060679.3973 -4.0488
13 3 − 3.5 3 2063276.7730 2063280.8218 -4.0488
14 4 − 3.5 3 2063443.5527 2063447.6015 -4.0488
15 4 + 3.5 4 3433222.1380 3433231.9781 -9.8401
16 3 + 3.5 4 3433364.6194 3433374.4596 -9.8402
17 4 + 4.5 4 3436759.8067 3436769.6469 -9.8402
18 5 + 4.5 4 3436923.5400 3436933.3802 -9.8402
19 5 − 4.5 5 5147267.6517 5147285.8407 -18.1890
20 4 − 4.5 5 5147412.0861 5147430.2751 -18.1890
21 5 − 5.5 5 5151599.9592 5151618.1483 -18.1891
22 6 − 5.5 5 5151761.7609 5151779.9499 -18.1890
23 6 + 5.5 6 7201400.1636 7201426.5351 -26.3715
24 5 + 5.5 6 7201545.9449 7201572.3164 -26.3715
25 6 + 6.5 6 7206525.9256 7206552.2971 -26.3715
26 7 + 6.5 6 7206686.3922 7206712.7637 -26.3715
27 7 - 6.5 7 9594096.6941 9594124.3704 -27.6763
28 6 - 6.5 7 9594243.4608 9594271.1371 -27.6763
29 7 - 7.5 7 9600015.2023 9600042.8786 -27.6763
30 8 - 7.5 7 9600174.6909 9600202.3672 -27.6763
31 8 + 7.5 8 12323585.3054 12323594.8594 -9.5540
32 7 + 7.5 8 12323732.8245 12323742.3785 -9.5540
33 8 + 8.5 8 12330296.1028 12330305.6568 -9.5540
34 9 + 8.5 8 12330454.8439 12330464.3979 -9.5540
35 9 - 8.5 9 15387847.1770 15387798.6594 48.5176
36 8 - 8.5 9 15387995.2894 15387946.7718 48.5176
37 9 - 9.5 9 15395349.9512 15395301.4336 48.5176
38 10 - 9.5 9 15395508.1024 15395459.5848 48.5176
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Table 3.6: Comparison of 24MgH v= 0 hyperfine line positions. Five vibrational contracted
basis functions

∣∣∣X 2Σ+,v = 0,1,2,3,4
〉

were used in this case. All frequencies are
give in MHz.

No. N′ J′ F′ N′′ J′′ F′′ νDuo Measured [11] [86]
1 1 0.5 1 0 0.5 1 342997.636 342997.763(050)
2 1 0.5 0 0 0.5 1 343117.335 343117.463(050)
3 1 0.5 1 0 0.5 0 343305.510 343305.646(050)
4 1 1.5 1 0 0.5 1 344119.367 344119.497(050)
5 1 1.5 2 0 0.5 1 344304.986 344305.125(050)
6 1 1.5 1 0 0.5 0 344427.241 344427.362(050)
7 2 1.5 2 1 0.5 1 687155.213 687157.17(17)
8 2 1.5 1 1 0.5 0 687169.251 687171.00(17)
9 2 2.5 3 1 1.5 2 687959.193 687959.54(19)

10 2 2.5 2 1 1.5 1 687972.501 687972.66(17)
11 3 2.5 3 2 2.5 3 1028194.809 1028202.5(10)
12 3 2.5 2 2 2.5 2 1028506.511 1028514.2(10)
13 3 3.5 4 2 2.5 3 1031102.404 1031104.29(21)
14 3 3.5 3 2 2.5 2 1031107.936 1031104.29(21)
15 4 3.5 4 3 3.5 4 1369778.585 1369797.0(10)
16 4 3.5 3 3 3.5 3 1370087.846 1370107.5(10)
17 4 3.5 4 3 2.5 3 1372686.180 1372700.06(98)
18 4 3.5 3 3 2.5 2 1372689.271 1372700.06(98)
19 4 4.5 5 3 3.5 4 1373479.987 1373485.81(55)
20 4 4.5 4 3 3.5 3 1373483.034 1373485.81(55)
21 6 5.5 6 5 4.5 5 2054132.512 2054170.48(71)
22 6 5.5 5 5 4.5 4 2054133.859 2054170.48(71)
23 6 6.5 7 5 5.5 6 2054924.631 2054944.05(82)
24 6 6.5 6 5 5.5 5 2054925.966 2054944.05(82)

test the new module, we calculate the hyperfine structure of the v = 0, X 2Σ+ state

of 24MgH. The results of Duo and PGOPHER show excellent agreement for both

line positions and line strengths. The Duo code and the input file used for 14N16O

and 24MgH are available at https://github.com/ExoMol/Duo .

Our newly developed methodology builds a bridge between calculations of

electronic motion and nulcear motion of diatomic molecules which makes it possi-

ble to calculate nuclear magnetic dipole and electric quadruple hyperfine structure

effects from first principles. Some hyperfine coupling constants considered in this

chapter may be calculated by quantum chemistry programs e.g., DALTON [87] and

CFOUR [88]. It is also possible to evaluate them manually after obtaining elec-

https://github.com/ExoMol/Duo
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Table 3.7: Comparison of the line positions and strengths in the R and S branches of 24MgH
v = 0 hyperfine transitions. Line positions are given in MHz. Five vibrational
contracted basis functions

∣∣∣X 2Σ+,v = 0,1,2,3,4
〉

were used in this case. The line
strength, S [Debye2], has the same definition as that in PGOPHER when the
intensity unit option of PGOPHER, IntensityUnit, is chosen as HonlLondon
and the transition dipole moment is set to 1 Debye.

No. 1 2 3 4
F′ 2 2 3 3
τ′ + + - -
J′ 2.5 2.5 3.5 3.5

F′′ 1 1 2 2
τ′′ - - + +

J′′ 1.5 0.5 2.5 1.5
νDuo 687972.5015 689094.2323 1031107.9360 1033046.9552
νPG 687973.4786 689095.2094 1031110.8777 1033049.8969

S Duo 1.7558441 0.0053314 2.8371019 0.0014804
S PG 1.755851 0.0053315 2.837127 0.0014805

tronic wavefunctions [78]. We will discuss the ab initio calculation of hyperfine

coupling constants in Chapter 6.



Chapter 4

A Spectroscopic Model for the

Lowest Four Doublet States of NO

4.1 Introduction

Nitric oxide (NO) is one of the principle oxides of nitrogen. It plays a significant

role in the nitrogen cycle of our atmosphere [89, 90] but also causes problems of

air pollution and acid rain [91, 92, 93]. Therefore, scientists are devoting increasing

attention to reducing NO in combustion processes [94, 95]. NO is a biological

messenger for both animals and plants [96, 97, 98] but it may be harmful or even

deadly as well [99, 100]. Nitric oxide (NO) is widely distributed in the universe.

The molecule was observed in the atmosphere of Venus [12] and Mars [101], where

it is one of the emission sources of the UV nightglow [102, 103]. Gerin et al.

detected transitions of NO in the dark clouds L134N [104] and TMC1 [105]. Halfen

et al. reported their analysis of transitions of N2O to NO in the core region of the

Sagittarius B2 and evaluated the N/O chemical network [106]. The first detection

of extragalactic NO helps us to understand the chemistry of galaxy NGC 253 [107].

NO has yet to be detected in the atmosphere of an exoplanet but is thought likely to

be important in the atmospheres of rocky exoplanets [108]. The detection of NO in

the astronomical objects relies on knowledge of the corresponding spectral lines of

the molecule so accurate NO line list plays significant role in the processes.

The importance of NO has aroused the interest of academia and industry since
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it was prepared by van Helmont in the 17th century [109] and then studied by Priest-

ley in 1772 [110]. In numerous theoretical and experimental works, there are large

number of spectroscopic investigations, as spectra provide a powerful weapon to

reveal the physical and chemical properties of the molecule. For instance, as a sta-

ble open shell molecule, the electronically excited Rydberg states of NO have been

extensively studies, see the paper of Deller and Hogan [76] and references therein.

The spectrum of NO was also of great value in many applications, such as temper-

ature measurements by laser induced fluorescence [111, 112].

The ExoMol project [24] computes molecular line lists studies of exoplanet

and (other) hot atmospheres. The ExoMol database was formally released in 2016

[113]. The most recent 2020 version [25] covers the line lists of 80 molecules and

190 isotopologues, totaling 700 billion transitions. It includes an accurate infrared

(IR) line list of NO, called NOname, which contains the rovibrational transitions

within the ground electronic state [114]. The rovibronic transitions of NO in the

ultraviolet (UV) region are not included in NOname. These bands are strong, atmo-

spherically important and have been observed in many studies [115, 116, 7]. There

is no NO UV line list in well-known databases such as HITRAN [117] and GEISA

[26] either.

Luque and Crosley have investigated spectra of diatomic molecules over a long

period [118, 6, 119]. Based on their works, they developed a spectral simulation

program, LIFBASE [34], providing a database of OH, OD, CH etc., and NO as well.

LIFBASE contains the positions and relative probabilities of UV transitions in four

spectral systems of NO, i.e., γ (A 2Σ+ to X 2Π), β (B 2Π to X 2Π), δ (C 2Π to X 2Π)

and ϵ (D 2Σ+ to X 2Π) systems. The upper vibrational energy levels for B 2Π and

C 2Π of NO in LIFBASE are limited to below v= 7 and v= 1, respectively. However,

the observed β and δ transitions corresponding to higher upper vibrational energy

levels are even stronger [120, 7]. There is a need to develop a comprehensive UV

line list for NO to cover these band systems. To do this one first needs to construct a

spectroscopic model which requires overcoming a number of theoretical difficulties.

A major issue in generating a UV line list for NO results from the difficulty
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of modelling the interaction between B 2Π and C 2Π states, which is caused by

the particular electronic structure of NO. To understand this fifteen-electron sys-

tem one must analyse the electron configuration of these states from the perspective

of molecular orbitals. On one hand, excitation of inner paired electrons to higher

valence orbitals leads to valence states such as the B 2Π state. On the other hand,

the outermost unpaired electron may be excited to Rydberg orbitals, yielding a se-

ries of Rydberg-like states such the A 2Σ+ or C 2Π state. These Rydberg states lie

close in energy to the valence ones. Furthermore, as NO+ has a shorter equilibrium

bond length than NO [121], Rydberg states tend to be lower in energy at short bond

lengths, R, while valence states are lower at larger R. Thus, in NO, Rydberg-valence

interactions are densely distributed in the neighbourhood of the equilibrium bond

length of its ground state, where large Franck-Condon factors exist. The B 2Π -

C 2Π interaction is the lowest one and has attracted the most attention. As described

by Lagerqivst and Miescher [115], the two states show a strong and extended mu-

tual perturbation. They proposed a ‘deperturbation’ method to explain the vibra-

tional and rotational perturbation of B 2Π - C 2Π interaction. Further analysis was

made by Gallusser and Dressler [77], who set up a vibronic interaction matrix of

five 2Π states and fitted the eigenvalues of the matrix to experimental data in the

determination of RKR potential curves and off-diagonal electronic energies. As

a consequence, they predicted vibrational states of the B 2Π electronic state up to

v = 37.

In this chapter, we present a method based on directly diagonalizing a rovi-

bronic matrix to resolve the energy structures of B 2Π - C 2Π coupled states. This

matrix is based on the use of full variational solution of the rovibronic nuclear mo-

tion Hamiltonian rather than perturbation theory. This method is general and can be

used to predict spectra, for example at elevated temperatures.

In addition to the vibronic matrix elements (e.g., spin doublets) considered

in the previous studies, more fine structure terms, such as Λ - doubling and spin-

rotational coupling, are used to construct the rovibronic matrix. The eigenvalues

of the matrix are fitted to rovibronic energies obtained using a MARVEL (mea-
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Figure 4.1: The band systems of NO involved in this thesis and their names. The γ, β and
δ systems mainly cover the UV transitions of NO. Jenkins et al. recorded many
visible lines from the B 2Π state to higher vibrational levels of the X 2Π state,
e.g., those of the β(3,16) band [1]. The high-accuracy IR transitions of the
Heath(0,0) band were measured by Amiot and Verges [2]. For a comprehensive
band system diagram, see the work of Cartwright et al. [3]

sured active rotation-vibration energy levels) procedure [122, 123] analysis of the

observed NO IR/visible/UV transitions to ensure a quantitatively accurate result.

Figure 4.1 summarizes the band systems involved in our MARVEL analysis. The

objective functions were constrained with the ab initio curves produced using MOL-

PRO 2015 [124] to avoid overfitting problems. The above procedures are also ap-

plied to the A 2Σ+ state of NO to get a self-consistent description of the doublet

electronic states up to and including C 2Π.

The model in this chapter forms the foundation of our study on the generation

of the UV line list of NO in the next chapter. The modeling of the B 2Π - C 2Π

coupling paves the way for the investigations of molecules with similar avoided

crossing structures, e.g., NO3 [125].

4.2 Theoretical study of the low-lying electronic

states of NO
Complete active space self-consistent field (CASSCF) and multireference config-

uration interaction (MRCI) calculations were performed in the quantum chemistry
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package MOLPRO 2015 [126] to get the potential energy and spin-orbit curves of

the X 2Π, A 2Σ+, B 2Π and C 2Π states. A major issue in the calculation is achieving

a balance between representations of the Rydberg, A and C, states and the valence,

X and B, states. Figure 4.2 presents an overview of the low-lying PECs and illus-

trates the importance of the C 2Π– B 2Π Rydberg – Valence avoided crossing.

The history of high quality CI calculations for the excited states of NO can

be tracked back to 1982, when Grein and Kapur reported their work on states with

minimum electronic energies lower than 6.58 eV [127]. Several years later, a com-

prehensive theoretical study on NO was presented and discussed by de Vivie and

Peyerimhoff [128]. The results of this paper were further improved by Shi and East

in 2006 [4]. More accurate curves were obtained with extended basis set and ac-

tive space in the recent works of Cheng et al. [129, 130]. Recently, the spin-orbit

coupling in the ground state of NO was studied by Silva et al. [131]. Although

the previous works [127, 132, 133, 128, 134, 135, 4, 129] provide us with strong

inspiration, the task is still challenging due to the interactions between the Rydberg

and valence states of NO.

4.2.1 Active space and basis set

For heteronuclear diatomic molecules, MOLPRO executes calculations in four ir-

reducible representations a1, b1, b2 and a2 of the C2v point group. Here, we use

[(n1,n2,n3,n4)− (n′1,n
′
2,n
′
3,n
′
4)] to represent occupied orbitals excluding closed or-

bitals, i.e. the calculation active space. A typical active space for the lower elec-

tronic state calculations of NO is [(8,3,3,0)− (2,0,0,0)], as suggested by Shi and

East [4]. Although only a few of the PECs are of direct interest here, we had to

include extra states to achieve correct calculation. We also adjusted the active space

to get smooth curves.

A Dunning aug-cc-pV(n)Z basis set [136] was used in both CASSCF and

MRCI calculations. This basis set has an additional shell of diffuse functions com-

pared to the cc-pV(n)Z basis set, which benefits the calculation of Rydberg states.

Too many diffuse functions, e.g., those of the d-aug-cc-pV(n)Z basis set, may have

negative effects on the calculation because of the overemphasis of the Rydberg
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Figure 4.2: NO PECs calculated by Shi and East [4]. The states of interest are indicated by
solid curves. Here, 2 2Π is the B 2Π to C 2Π PEC while 3 2Π is the C 2Π to B 2Π

PEC.

states relative to the valence states.

4.2.2 CASSCF calculation

Our calculations started with a [(8,3,3,0)− (2,0,0,0)] active space in which the

interactions between the Rydberg and valence states are inescapable. However,

representing the avoided crossing points caused by C 2Π and the valence 2Π states

is a huge obstacle. panel (a) of Fig. 4.3 shows the behavior of B - C interaction near

1.18 Å. The potential energy curve (PEC) of C 2Π suddenly jumps to that of B 2Π,

producing discontinuity in the PEC of X 2Π too. To get the exited states, we used

the state average algorithm but the average energy of the two 2Π states changed

when traversing the crossing point of C 2Π and B 2Π.

A valid way to smooth the curves is to increase the number of averaged states.

For example, the discontinuities near 1.18 Å disappears when introducing a third 2Π

state in CASSCF calculation, as shown in panel (b) of Fig. 4.3. Nevertheless, similar

phenomenon arise when the third state comes across the L 2Π state. Alternatively,
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Figure 4.3: The PECs in the active space of [(8,3,3,0)− (2,0,0,0)] with the basis set of
aug-cc-pVTZ. (a) Two 2Π states averaged CASSCF calculation starting from
0.9 Å. (b) Three 2Π states averaged CASSCF calculation starting from 0.9 Å.
(c) Two 2Π states averaged CASSCF calculation starting from 1.3 Å.

smooth curves can be obtained in a limited active space. For example, we can get a

continuous curves of the C 2Π state in the active space [(6,3,3,0)− (4,1,1,0)] from

0.9 Å to 1.28 Å.

We always started a new CASSCF iteration from the orbitals of a nearby ge-

ometry to stabilize and accelerate the calculation. The PECs in panels (a) and (b)

of Fig. 4.3, are obtained by increasing the internuclear distance from 0.9 Å to 1.3 Å.

Interestingly, with a initial geometry at 1.3 Å, reversing the calculation direction

gives a completely different result in the same active space, i.e., two smooth valence

PECs of the X 2Π and B 2Π states in panel (c) of Fig. 4.3. Due to the limitation of

nonlinear programming, CASSCF iterations may fall into local minima. To get the

target states, the numerical optimization must be properly initialized. For the NO

molecule, the iterations which begin with valence orbitals usually end with valence

orbitals but it is uncertain for those begin with Rydberg orbitals. The results imply

that there are at least two kinds of local minima in the ab initio calculation of NO

with MOLPRO: pure valence orbitals (corresponding to panel (c) of Fig. 4.3) and

Rydberg-valence hybrid orbitals (corresponding to panels (a) and (b) of Fig. 4.3).

To verify the conjecture: initializing a calculation of two 2Π states averaged with
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the CASSCF orbitals of the X 2Π state in the single state calculation, one can get

almost the same curves as those in panel (c) of Fig. 4.3, starting from 0.9 Å.

In Section 4.4, we use diabatic potentials in modeling the interaction between

the B 2Π and C 2Π states. We describe the curves as ‘adiabatic’ if they contain the

B - C avoided crossing feature, e.g., those in panel (b) of Fig. 4.3. If not, we call the

curves ‘diabatic’, e.g., those in panel (c) of Fig. 4.3.

4.2.3 MRCI calculation

Although consuming many more computational resources, the MRCI calculation in

MOLPRO is straightforward. MOLPRO automatically takes the CASSCF orbitals

as the references and performs an internally contracted configuration interaction

calculation based on single or double excitation. The spin-orbit coupling terms

were also produced. To compensate the error brought by a truncated configuration

interaction expansion, the energies were modified by a Davidson correction, i.e., a

MRCI+Q calculation. panel (a) of Fig. 4.4 demonstrates the results of CASSCF &

MRCI+Q calculations of the X 2Π, A 2Σ+, B 2Π, C 2Π, D 2Σ+ and L′ 2Φ states, in

the [(8,3,3,0)− (2,0,0,0)] active space with the aug-cc-pV5Z basis set.

In the CASSCF routine, the projection of angular momentum of a diatomic

molecule on its internuclear axis, Λ, can be assigned to specify the expected states.

However, the MRCI routine does not have this the option and always finds the low-

est energy states of the same spin. As a result, the PECs of C 2Π and L′ 2Φ exchange

with each other at their crossing point although the avoided crossing principle is not

applicable for the two states, as shown by the blue curve in panel (a) of Fig. 4.4. It

is feasible to calculate and output the Λ quantum numbers (technically, Lz, which is

defined as a non-diagonal matrix element between two degenerate components, e.g.〈
Πx
∣∣∣L̂z
∣∣∣Πy
〉
) in MRCI calculations, which helps to distinguish the C 2Π, L′ 2Φ and

L 2Π states. The blue and yellow curves on the right of their crossing point were

manually switched, as shown in panel (c) of Fig. 4.4, according to their Λ quan-

tum numbers shown in panel (b). The Te values of A 2Σ+, B 2Π and C 2Π states are

compared with those calculated by Shi and East in Table 4.1.

The PECs in Fig. 4.4 range from 1.0 Å to 1.26 Å. The curves were deliberately



59

-129.8

-129.75

-129.7

-129.65

-129.6

-129.55

-129.5

-129.45

-129.4

1 1.1 1.2 1.3

(a)

X
C - B
B - C - L'
L' - C
A
D

1 1.1 1.2 1.3
-129.8

-129.75

-129.7

-129.65

-129.6

-129.55

-129.5

-129.45

-129.4
(c)

X
C - B
B - C
L'
A
D

1 1.1 1.2 1.3

-3

-2

-1

0

1

2

3

(b)

C - B
B - C - L'
L' - C

Figure 4.4: The PECs of the X 2Π, A 2Σ+, B 2Π, C 2Π, D 2Σ+ and L′ 2Φ states, obtained
by CASSCF & MRCI+Q calculation starting from 1.06 Å to both sides in the
active space [(8,3,3,0)− (2,0,0,0)] with the aug-cc-pV5Z basis set. The third
2Π curve and the L′ 2Φ curve in panel (a) were manually switched in panel
(c) on the right of 1.2 Å, according to the value of Lz, shown in panel (b). The
phase of Lz, in the Cartesian representation, is random. To distinguish different
electronic states, the yellow curve in panel (b) is smoothed for internuclear
distances less than 1.1 Å. The X 2Π state is not shown in the panel as the Lz
values obtained are all −i.

Table 4.1: Comparison of Te values of the MRCI + Q calculation

State CASSCF & MRCI + Q Empirical
Shi and East [4] This work Huber and Herzberg [137] This workb

A 2Σ+ 43558 45410.2 43965.7 43902.99
B 2Π 44803 46260.3a 45913.6 45867.05
C 2Π 51808 53709.5 52126 52081.97
a. Two-state average CASSCF & MRCI + Q calculation.
b. See Section 4.4.

truncated at the right endpoint because of the C 2Π - L 2Π interaction as shown

in panel (b) of Fig. 4.3. On the left endpoint, The MRCI program exited with an

‘INSUFFICIENT OVERLAP’ error. The error is triggered by interactions with an-

other 2Π state, H′ 2Π, which lies below the B 2Π state near the 1.06 Å and which

cannot be described by the reference space. A solution to the problem is to perform

MRCI calculations using a larger active space such as [(8,4,4,0)− (2,0,0,0)].

It is not quantitatively accurate to generate line lists with the ab initio curves;
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however, the curves and couplings provide a suitable starting point for work. These

curves and couplings need to be refined using experimental data, which is the con-

tent of the subsequent two sections.

4.3 MARVEL analysis of the rovibronic energy levels

of 14N16O
The rovibronic energy levels of the A 2Σ+, B 2Π and C 2Π states were reconstructed

by MARVEL analysis of the experimental transitions of the γ, β, δ, and Heath

systems and those inside the ground state.

In the previous work by Wong et al. [114], 11136 IR transitions were collected,

yielding a spectroscopic network of 4106 energy levels. To retrieve the energy levels

of A 2Σ+, B 2Π and C 2Π states, we extracted a further 9861 transitions (including

3393 γ, 5103 β, 1004 δ and 361 Heath transitions) from the data sources listed

in Table 4.2. The vibronic structure of the spectroscopic network is illustrated in

Fig. 4.5.

Although there are studies which report measured transition frequencies for

the four band systems of interest, only the most reliable data sets were included in

our MARVEL analysis. For example, Lagerqvist and Miescher published the line

position data of 20 bands of the β and δ systems (β(5,0) to β(19,0) and δ(0,0) to

δ(4,0), respectively) in 1958 (58LaMi [115]), but half of them were replaced by

more accurate line lists measured by Yoshino et al. around 2000 (94MuYoEs [138],

98YoEsPa [120], 00ImYoEs [139], 02ChLoLe [140], 02RuYoTh [141], 06YoThMu

[7]).

Table 4.2: Data sources used in the final MARVEL analysis

Source Band J′′min J′′max Uncertainty[cm−1]
No. of Trans.a

(A) (V)

97DaDoKe [116] γ(0,0) 0.5 41.5 0.04 - 0.15 304 277

a. Number of measured (A) and validated (V) Transitions
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Source Band J′′min J′′max Uncertainty[cm−1]
No. of Trans.a

(A) (V)

97DaDoKe γ(0,1) 0.5 40.5 0.04 - 0.15 277 245

97DaDoKe γ(0,2) 1.5 39.5 0.04 - 0.15 339 317

97DaDoKe γ(0,3) 1.5 38.5 0.04 - 0.1 289 279

97DaDoKe γ(0,4) 1.5 42.5 0.04 - 0.1 294 283

97DaDoKe γ(0,5) 1.5 37.5 0.04 - 0.1 266 249

97DaDoKe γ(0,6) 1.5 31.5 0.04 - 0.15 158 142

97DaDoKe γ(1,0) 0.5 30.5 0.04 - 0.15 302 275

97DaDoKe γ(1,4) 0.5 41.5 0.04 - 0.15 295 277

97DaDoKe γ(1,5) 1.5 39.5 0.04 - 0.15 142 135

97DaDoKe γ(2,6) 1.5 40.5 0.04 - 0.15 277 246

97DaDoKe γ(2,7) 2.5 41.5 0.04 - 0.15 160 155

02ChLoLe [140] γ(3,0) 0.5 24.5 0.03 - 0.05 227 205

97DaDoKe γ(3,4) 4.5 32.5 0.04 - 0.2 63 56

27JeBaMu [1] β(0,4) 0.5 24.5 0.2 122 52

27JeBaMu β(0,5) 0.5 24.5 0.2 152 143

27JeBaMu β(0,6) 0.5 24.5 0.2 126 124

27JeBaMu β(0,7) 0.5 29.5 0.2 202 200

27JeBaMu β(0,8) 0.5 31.5 0.2 206 204

27JeBaMu β(0,9) 0.5 31.5 0.2 192 188

27JeBaMu β(0,10) 0.5 31.5 0.2 208 202

27JeBaMu β(0,11) 0.5 31.5 0.2 184 180

27JeBaMu β(0,12) 0.5 22.5 0.2 138 138

27JeBaMu β(1,6) 0.5 19.5 0.2 123 119

27JeBaMu β(1,11) 0.5 24.5 0.2 148 142

27JeBaMu β(1,13) 0.5 23.5 0.2 154 150

27JeBaMu β(2,9) 0.5 22.5 0.2 138 130

a. Number of measured (A) and validated (V) Transitions
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Source Band J′′min J′′max Uncertainty[cm−1]
No. of Trans.a

(A) (V)

27JeBaMu β(2,13) 0.5 21.5 0.2 128 128

27JeBaMu β(2,14) 0.5 21.5 0.2 144 139

27JeBaMu β(2,15) 0.5 24.5 0.2 102 99

92FaCo [142] β(3,0) 0.5 31.5 0.05 - 0.1 432 426

96DrWo [143] β(4,0) 0.5 8.5 0.003 - 0.004 66 66

96DrWo β(5,0) 0.5 7.5 0.003 - 0.005 52 52

58LaMi [115] β(5,0) 8.5 14.5 0.2 36 36

02ChLoLe β(6,0) 0.5 17.5 0.03 - 0.1 138 135

94MuYoEs [138] β(7,0) 0.5 7.5 0.03 - 0.1 76 60

58LaMi β(7,0) 6.5 16.5 0.2 - 0.25 70 64

58LaMi β(8,0) 0.5 16.5 0.2 124 120

98YoEsPa [120] β(9,0) 0.5 23.5 0.02 - 0.03 188 178

06YoThMu [7] β(10,0) 0.5 12.5 0.03 - 0.15 218 193

02RuYoTh [141] β(11,0) 0.5 17.5 0.03 - 0.08 134 125

06YoThMu β(12,0) 0.5 20.5 0.03 - 0.15 188 173

58LaMi β(13,0) 11.5 18.5 0.2 97 97

06YoThMu β(14,0) 0.5 20.5 0.03 - 0.08 196 153

58LaMi β(15,0) 0.5 17.5 0.2 - 0.5 239 215

58LaMi β(16,0) 0.5 14.5 0.2 - 0.3 138 133

58LaMi β(17,0) 0.5 11.5 0.2 - 0.5 42 42

58LaMi β(18,0) 0.5 12.5 0.2 - 0.5 120 108

58LaMi β(19,0) 0.5 12.5 0.2 - 0.5 82 80

94MuYoEs δ(0,0) 0.5 20.5 0.03 - 0.1 225 217

00ImYoEs [139] δ(1,0) 0.5 18.5 0.03 - 0.1 261 205

06YoThMu δ(2,0) 0.5 21.5 0.03 - 0.15 250 210

06YoThMu δ(3,0) 0.5 18.5 0.03 - 0.08 138 109

a. Number of measured (A) and validated (V) Transitions
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Source Band J′′min J′′max Uncertainty[cm−1]
No. of Trans.a

(A) (V)

58LaMi δ(4,0) 0.5 11.5 0.2 - 0.6 130 120

82AmVe [144] Heath(0,0) 0.5 11.5 0.01 361 360

a. Number of measured (A) and validated (V) Transitions
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Figure 4.5: Vibronic structure of the MARVEL analysis. The vertical solid lines in green,
blue and red illustrate the bands of γ, β and δ systems, respectively. The verti-
cal dash line in purple represents the Heath(0,0) band.

The spectroscopic network in MARVEL [145] is established in accordance

with the upper and lower quantum numbers of the transitions. We used five quantum

numbers, as shown in Table 4.3, to uniquely label the rovibronic energy levels. The

quantum numbers of some transitions were improperly assigned. New assignments

plus some other comments on the sources are given below:

• In some cases (e.g. for the A 2Σ+ state, the Q21 branch is indeed a copy of

R11 branch as listed in 97DaDoKe [116]) duplicate transitions are provided

in source data. In 27JeBaMu [1], 58LaMi [115], etc., Λ - doubling fine struc-

tures of many transitions are not resolved; therefore we simply created two
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transitions differing in e/ f parity with the same frequency in the MARVEL

dataset.

• The uncertainties of the transitions of 27JeBaMu [1] and 58LaMi [115] were

given by combination difference tests, referring to the energies of the X 2Π

state [114].

• The uncertainties of most validated transitions are close to the lower bounds

listed in Table 4.2.

• The transitions of γ(3,0), β(6,0) and β(11,0) bands extracted from

02ChLoLe [140], 02ChLoLe [140] and 02RuYoTh [141] were increased

by 0.083 cm−1, 0.083 cm−1 and 0.067 cm−1, respectively, as suggested in

05ThRuYo [146]. The uncertainties of these transitions should be 0.1 cm−1

because the absolute frequencies were not calibrated [146]. However, we

used a relative accuracy, i.e., 0.03 cm−1, as the lower bound of uncertainty

to constrain the MARVEL analysis. The uncertainties should be adjusted to

0.1 cm−1 if data of higher accuracy are included in the future.

• In the β(10,0) band of 06YoThMu [7], R11(3.5) and P11(3.5) were exchanged;

the R21 and P21 branches were exchanged.

• In the δ(0,0) band of 94MuYoEs [138], P12(15.5)e and P12(16.5) f should be

P22(15.5)e and P22(16.5)e, respectively.

• In the δ(1,0) band of 00ImYoEs [139], the wavenumbers of R12(15.5)e

and R12(15.5) f should be exchanged; the wavenumbers of P11(5.5) and

P11(16.5) f should be 54668.636 cm−1.

• In the δ(2,0) band of 06YoThMu [7], the wavenumbers of Q22(5.5)e and

Q22(6.5)e should be 56967.72 and 56966.61 cm−1, respectively.

• The transitions, R22(0.5) f f , Q22(0.5) f e, R12(0.5)ee of 97DaDoKe [116] and

R22(0.5) of 02ChLoLe [140], are related to unknown lower states (J = 0.5

and Ω = 1.5). Those transitions were not validated.
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The most serious issue we encountered concerned the 2020 measurements of

Ventura and Fellows (20VeFe[147]) who published a new line list for the γ system

containing 6436 transitions. The transitions of 20VeFe disagree with those mea-

sured by Danielak et al. (97DaDoKe) [116]. MARVEL and combination difference

analysis indicates that their data set is self-consistent within the claimed accuracy,

i.e. 0.005 cm−1 to 0.06 cm−1. However, it is inconsistent with the ground state

MARVEL energies of Wong et al. [114]. Combination difference tests show that

the standard deviations of most energy levels calculated by the data set are greater

than 0.1 cm−1.

In contrast, the line list of 97DaDoKe [116] is consistent with others. The

measurements of 20VeFe differ from those of 97DaDoKeby up to 0.7 cm−1, as ac-

knowledged by 20VeFe. The transitions of the γ(3,4) band measured by 97DaDoKe

are consistent with the transitions in the γ(3,0) band measured by Cheung et al.

(02ChLoLe) [140]. Furthermore, use of the Heath band potentials provides a

closed loop or cycle by following γ(0,0)-Heath(0,0)-δ(0,0). The measurements

of 97DaDoKe gave consistency in this cycle, within the stated uncertainties of the

various measurements, but 20VeFe did not. Analyzing the ground state data and

20VeFe individually, we observed an average 0.43 cm−1 shift for the lower three

vibrational levels of the A 2Σ+ state; these energy differences are plotted in Fig. 4.6.

We were therefore forced to conclude that the measurements of 20VeFe are not con-

sistent with the other measurements and these data were excluded from our MAR-

VEL analysis.

Table 4.3: Quantum numbers used in the MARVEL analysis

Quan. No. Meaning
State Electronic state label, e.g., X stands for X 2Π

J Total angular momentum
parity + or -

v Vibration quantum number
Ω Projection of the total angular momentum on the internuclear axis

The 20293 validated transitions (including 3141 γ, 4795 β, 861 δ and 360

Heath transitions) yielded 327, 1400 and 466 energy levels of the A 2Σ+, B 2Π and
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Figure 4.6: The differences between the A 2Σ+ state MARVEL energies corresponding to
20VeFe and those obtained from the sources of Table 4.2. The average energy
shift is 0.43 cm−1.

C 2Π states, respectively. These levels are plotted as a function of total angular

momentum J in Fig. 4.7.
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Figure 4.7: A 2Σ+, B 2Π and C 2Π state energy levels generated by MARVEL analysis.

Sulakshina and Borkov compared the ground state energies calculated by their

RITZ code [5] with our previous MARVEL result [114]. The MARVEL analysis

here updates the energy values of the X 2Π state by including new rovibronic tran-
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sitions; as shown in Fig.4.8, the energy gaps between the results of the MARVEL

and RITZ analysis are narrowed as a result of this. This is especially true for high J

levels belonging to the Ω = 3
2 series (see Fig. 8(b) of Sulakshina and Borkov’s [5]).

The majority of levels agree within the uncertainty of their determination.
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Figure 4.8: Energy difference of the X 2Π state between MARVEL result in this thesis and
the RITZ result in the work of Sulakshina and Borkov [5].

4.4 Refinement of curves for 14N16O

4.4.1 Calculation setup

The PECs of the A 2Σ+, B 2Π and C 2Π, as well as other coupling curves, were

refined based on the empirical energy levels obtained by the MARVEL analysis in

Section 4.3; the PEC for the X 2Π state was left unchanged from that of Wong et al.

[114] The refinement was executed in Duo which is a general variational nuclear-

motion program for calculating spectra of diatomic molecules [42].

Duo solves the diatomic molecular Schrödinger equation in two steps. Firstly

the rotation-free radial equation of each electronic state is solved to get the vibra-

tional energy levels, Ev, and wavefunctions, ψv(R):

−
ℏ2

2µ
d2

dR2ψv(R)+Vstate(R)ψv(R) = Evψv(R) , (4.1)

where µ is the reduced mass of the molecule and Vstate(r) is the potential energy

curve. This step creates vibrational basis functions, |state,v⟩. Secondly, the fully-

coupled, rovibronic Hamiltonian is diagonalized under the Hund’s case (a) rovi-
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bronic basis set defined by:

|state, J,Ω,Λ,S ,Σ,v⟩ = |state,Λ,S ,Σ⟩ |J,Ω,M⟩ |state,v⟩ , (4.2)

where |state,Λ,S ,Σ⟩ and |J,Ω,M⟩ represent the electronic and rotational basis func-

tions, respectively.[48] The quantum number M is the projection of the total angular

momentum along the laboratory Z-axis.

Users are asked to set up some super-parameters to get the correct solution.

The calculation setup for the refinement of 14N16O is summarized below.

• Equation (4.1) was solved by the Sinc-DVR method [148].

• The calculation range was from 0.6 to 4.0 Å.

• The number of grids points was 701, uniformly spaced.

• The numbers of vibrational basis sets for X 2Π, A 2Σ+, B 2Π and C 2Π were

60, 15, 30 and 10, respectively.

• The maximum total angular momentum considered here was 521
2 .

• The upper bound of the total energy was 65000 cm−1.

4.4.2 Refinement results of the A 2Σ+ state

The PEC of A 2Σ+ state represented by a fourth-order Extended Morse Oscillator

(EMO) function [149]. The EMO is defined as a function of internuclear distance,

R:

V(R) = Te+ (De−Te)
[
1− exp(−βEMO(R) (R−Re))

]2 , (4.3)

where the distance-dependent coefficient βEMO is expressed as

βEMO(R) =
N∑

i=0

biy
eq
p (R)i. (4.4)

The reduced variable yeq
p (R) has the formula:

yeq
p (R) =

Rp− (Re)p

Rp+ (Re)p , (4.5)



69

0.8 1 1.2 1.4 1.6 1.8 2 2.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

104 (a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

(b)

Figure 4.9: The ab initio and refined PECs of the A 2Σ+, B 2Π and C 2Π states as well as the
refined B - C interaction term W(R). (a) diabatic and (b) adiabatic representa-
tions. The refined potential curves in panel (b) are calculated using Eqs. (4.10)
and (4.11). The ab initio curves are shifted using empirical Te values.

where p controls the shape of yeq
p (R). The programmed EMO function in Duo is

not exactly the same as defined by Eq. 4.3. A reference point Rref (usually the

equilibrium internuclear distance) divides the curve into left and right parts. The

numbers of terms N, as well as p, for the left and right parts can be assigned different

values, i.e., NL, NR, pL and pR. The unknown dissociation energy of the state is

regarded as a dummy parameter in the refinement. The initial guess of De was

given by a pure Morse function and the value was fine-tuned in each iteration. The

optimal parameters of the EMO function are listed in Table 4.4. The ab initio and

refined PECs of the A 2Σ+ state are compared in panel (a) of Fig. 4.9.

In addition, our model of the A 2Σ+ state contains a spin-rotational term. In

Duo, the nonzero diagonal and off-diagonal matrix elements of spin-rotation oper-

ator ĤSR[48] are given by

〈
Λ,S ,Σ

∣∣∣ĤSR
∣∣∣Λ,S ,Σ〉 = ℏ2

2µR2γ
SR(R)

[
Σ2−S (S +1)

]
, (4.6)
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B
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2Σ
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〈
Λ,S ,Σ

∣∣∣ĤSR
∣∣∣Λ,S ,Σ ±1

〉
=
ℏ2

4µR2γ
SR(R)

√
S (S +1)−Σ(Σ ±1)

×
√

J(J+1)−Ω(Ω±1) . (4.7)

The dimensionless spin-rotation coefficient γSR(R) of the A 2Σ+ state was modeled

as a constant whose value is

γSR
A (R) = −2.08043004×10−3 . (4.8)

4.4.3 Refinement results of the B 2Π - C 2Π coupled states

4.4.3.1 Deperturbation of the B 2Π - C 2Π interaction

For this thesis we only consider coupling between two electronic states. The inter-

action between two electronic states belong to the same irreducible representation

of the molecular point group directly depends on the avoided crossing of their di-

abatic PECs. Thus, it is possible to model the coupled states by introducing two

adiabatic potentials. This could be accomplished by diagonalizing the matrix:

V1(R) W(R)

W(R) V2(R)

 , (4.9)

where V1(R) and V2(R) are two diabatic potentials and W(R) is the coupling curve.

The adiabatic PECs, i.e. the eigenvalues of the matrix, are

Vlow (R) =
V1(R)+V2(R)

2
−

√
[V1(R)−V2(R)]2+4W2(R)

2
, (4.10)

Vupp (R) =
V1(R)+V2(R)

2
+

√
[V1(R)−V2(R)]2+4W2(R)

2
. (4.11)

EMO potential functions are used to model V1(R) and V2(R) in Eqs. (4.10) and

(4.11) while W(R) is given by:

W(R) =
∑

i≥0 wi (R−R0)i

cosh(b (R−R0))
. (4.12)
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The function rapidly decreases to W0 when R moves away from R0. Alghough

the non-adiabatic coupling term obtained via strict diabatization would be a smooth

curve with no special feature at the crossing point, we prefer to use the bell-shape

for robust fitting here. Its formulae have negligible effect on final energy levels.

The coupled PECs of the X 1Σ+g and B′ 1Σ+g states of C2 were represented by

an adiabatic potential in our previous work [150], producing accurate line list. Nev-

ertheless, this method is not optimal for NO where the avoided crossing between

the B and C states is very sharp. Thus, for example, the adiabatic B – X and C – X

transition dipole moment curves (TDMCs) change dramatically around the crossing

point making them hard to use in any reliable calculation of transition intensities and

a slight shift of the crossing point, R0, during refinement may significantly change

the intensities of nearby lines. We therefore adopt the following procedure for gen-

erating line lists involving these coupled electronic states:

1. Solve the radial equations established with diabatic PECs of different elec-

tronic states to get vibrational basis.

2. Construct rovibronic Hamiltonian matrix with all necessary elements, includ-

ing the electronic interaction terms.

3. Diagonalize the matrix in the rovibronic basis set to get the rovibronic energy

levels and the corresponding wavefunctions.

4. Refine the diabatic PECs, electronic interaction terms and other coupling

curves by fitting the energies to observed energy levels.

5. Calculate the Einstein A coefficients with the diabatic TDMCs and let the

wavefunctions determine the weights of TDMCs for each rovibronic state at

different geometries.

This method not only rescues us from the dilemma of constructing adiabatic

TDMCs but also improves the flexibility of our program. For instance, it is con-

venient to model the B 2Π - C 2Π - L 2Π coupled states of NO by adding new defini-
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Table 4.5: Optimized Lorentz parameters for the B - C interaction curve.

Parameter Value
b [Å

−1
] 2.21707631×101

r0 [Å] 1.18808574
w0 [cm−1] 1.40173179×103

Table 4.6: Optimized values of the spin-orbit (SO) and spin-rotation (SR) coupling terms.

Term Value〈
C 2Π
∣∣∣ĤSO
∣∣∣C 2Π

〉
[cm−1] 1.81766772〈

C 2Π
∣∣∣ĤSO
∣∣∣B 2Π

〉
[cm−1] 2.28206375

γSR
C 2.70593062×10−3

tions of the potential of L 2Π and coupled term between C 2Π and L 2Π in the input

file of Duo, without changing its code.

4.4.3.2 Refined curves

The diabatic PECs of the B 2Π and C 2Π states were modeled using EMO functions

whose optimal parameters are listed in Table 4.4. The ab initio and refined PECs

of the B 2Π and C 2Π states are compared in panel (a) of Fig. 4.9. Its optimal pa-

rameters of the function are listed in Table 4.5. Although not used in this thesis,

the adiabatic curves were calculated as defined by Eqs. (4.10) and (4.11). They are

compared with the ab initio adiabatic PECs in panel (b) of Fig. 4.9. The dissociation

energy of C 2Π state is also a dummy parameter. The refined PECs of A 2Σ+ and

C 2Π states are physically meaningless outside the our calculation range (i.e., when

energy is greater than 65 000 cm−1).

The spin-orbit coupling curve (SOC) of the B 2Π state was also fitted to an

EMO function whose optimal parameters are listed in the last column of Table 4.4.

Figure 4.10 compares the ab initio and refined SOCs. The diagonal spin-orbital

term of the C 2Π state and the off-diagonal term between the B 2Π and C 2Π states

were determined empirically by fitting to constants. The spin-rotational coefficient

of the C 2Π state was also modelled as a constant. The values of these terms are

listed in Table 4.6.

The Λ - doubling fine structures of the β and δ system bands were observed
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Figure 4.10: The spin-orbit coupling curves of the B 2Π state.

in most of the work listed in Table 4.2. Duo calculates the Λ - doubling matrix el-

ements, i.e., ⟨Λ′Σ′J′Ω′|ĤLD|Λ
′′Σ′′J′′Ω′′⟩, according to the terms given by Brown

and Merer, [151]:
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Table 4.7: Optimized polynomial parameters of the Λ - doubling curves of the B 2Π and
C 2Π states

state Parameter p+2q q

B 2Π

r0 [Å] 1.4165047035 1.4165047035
a0 [cm−1] 1.06551670×10−2 6.45332691×10−5

a1 [cm−1 Å
−1

] −2.92114281×10−1 −1.18974108×10−2

a2 [cm−1Å
−2

] 5.09517016×10−1 3.04077180×10−2

C 2Π

r0 [Å] 0 1.06443605
a0 [cm−1] −3.66039401×10−2 −1.61243738×10−2

a1 [cm−1 Å
−1

] 0 3.00321609×10−2

〈
∓1,Σ ±2, J,Ω

∣∣∣ĤLD
∣∣∣±1,Σ, J,Ω

〉
=

1
2

(ov+ pv+qv)×√
[S (S +1)−Σ(Σ ±1)][S (S +1)− (Σ ±1)(Σ ±2)] , (4.13)〈

∓1,Σ ±1, J,Ω∓1
∣∣∣ĤLD

∣∣∣±1,Σ, J,Ω
〉
= −

1
2

(pv+2qv)×√
[S (S +1)−Σ(Σ ±1)][J(J+1)−Ω(Ω∓1)] , (4.14)〈

∓1,Σ, J,Ω∓2
∣∣∣ĤLD

∣∣∣±1,Σ, J,Ω
〉
=

1
2

qv×√
[J(J+1)−Ω(Ω∓1)][J(J+1)− (Ω∓1)(Ω∓2)] . (4.15)

For the B 2Π and C 2Π states, Σ = ±1/2. Therefore, the matrix elements described

in Eq. (4.13) are zero and only the coefficient curves of Eqs. (4.14) and (4.15) were

fitted to polynomials, i.e.,

P(r) = a0+
∑
i≥0

ai(r− r0)i. (4.16)

The optimized parameters of the Λ - doubling terms are listed in Table 4.7.

4.4.3.3 Fitting residuals of the rovibronic energy levels

The fitting residuals of the A 2Σ+ state are shown in panel (a) of Fig. 4.11. The

high-J energies of v = 3 vibrational levels are mainly determined by blended lines

of 97DaDoKe.NO [116]. The fitting residuals of the B 2Π and C 2Π states are shown

in panel (b) of Fig. 4.11, where the cold colors represent the B 2Π state and the warm
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Figure 4.11: Fitting residuals of the (a) A 2Σ+ state, and (b) B 2Π - C 2Π coupled states.

Table 4.8: Overall comparison of uncertainty and residual.

All in cm−1 A 2Σ+ B 2Π - C 2Π

RMS uncertainty 0.04284 0.07927
RMS residual 0.03390 0.27217
Average uncertainty 0.02453 0.05753
Average absolute residual 0.01599 0.18603

ones represent the C 2Π state. The F1 (i.e., Ω = 1
2 ) and F2 (i.e., Ω = 3

2 ) levels are

also distinguishable. The residual distributions indicate a J-dependent systematic

error of our model, which may result from some off-diagonal couplings, e.g., the

coupling between C 2Π and D 2Σ+ states [144].

The residuals of all rovibronic energy levels are plotted against their corre-

sponding uncertainties in Fig.4.12. The root-mean-square and average value of the

uncertainties and the residuals are compared in Table 4.8.

The accuracy of our model is definitely higher than those of Lagerqvist and

Miescher [115], or Gallusser and Dressler [77]. On one hand, the most recent

measurements (e.g., the works of Yoshino et al. [7]) and spectroscopic analysis

techniques (MARVEL [122]) helped us reconstruct reliable spectroscopic networks
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Figure 4.12: Residuals against uncertainties of the (a)A 2Σ+ state, and (b) B - C coupled
states with vibrational states given in the bars.

and energy levels. On the other hand, our model was directly fitted to the observed

rovibronic levels. The vibronic residuals given by Gallusser and Dressler [77] are

greater than our rovibronic residuals. Unlike Gallusser and Dressler, we did not in-

clude higher electronic states, such as the L 2Π and K 2Π states, in our model, which

reduces its range of applicability where the state energy is greater than 63000 cm−1.

However, thanks to the diabatic coupling strategy of Duo, the model can easily be

updated in a future study.

We note that some of the assignments to B or C electronic states differ between

Duo and our MARVEL analysis. Duo uses three good quantum number, namely the

total angular momentum J, the total parity and the counting number of the levels

with the same values of J and parity. The other quantum numbers such as state, v,Ω,

are estimated using the contribution of the basis functions to a given wavefunction.

It is to be anticipated that in regions of heavily mixed wavefunctions this may lead to

differences compared to other assignment methods. The MARVEL and Duo energy

levels of B (v = 13) - C (v = 2) coupled series are plotted in Fig. 4.13. Table 4.9 lists
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Figure 4.13: Calculated and observed energy levels of the B(v = 13) - C(v = 2) coupled
series. The right hand panel is a blow up of the avoided crossing between
the states which gives a clearer view of the Λ - doubling splittings and the
difference between the quantum numbers given by MARVEL and Duo.

some energy levels in the output .en file of Duo. Both of them demonstrate the

differences between the quantum numbers of MARVEL and Duo results.

4.5 Conclusion

In this chapter, potential energy curves and couplings for the low-lying electronic

states of NO are calculated using quantum chemistry package MOLPRO. The strong

interaction between Rydberg and valence states makes the ab initio calculation chal-

lenging. We obtain both adiabatic and diabatic PECs and SOCs for the A 2Σ+, B 2Π

and C 2Π states. The curves were refined by fitting the rovibronic energy levels

calculated by the variational nuclear motion program Duo to those reconstructed

by MARVEL analysis. The RMS error of the A 2Σ+ state fitting and B 2Π - C 2Π

coupled states fitting are 0.03390 cm−1 and 0.27217 cm−1, respectively. The ener-

gies were determined by our use of a MARVEL procedure and the best available

measurements. The success of fitting the B 2Π - C 2Π coupled states validates our
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deperturbation method for treating the coupled electronic state. This chapter, when

combined with the earlier X 2Π study of Wang et al.,[114] provides a comprehen-

sive spectroscopic model for the lowest four electronic states of NO and thus a good

starting point for the generation of a NO UV line list. This line list will be presented

in the next chapter.



Chapter 5

A Line List for the Lowest Four

Doublet States of NO

5.1 Introduction

There are several available high-resolution infra-red line lists of the NO X 2Π

ground state. The HITRAN database [117] is widely used for investigations of

the Earth’s atmosphere and other room temperature studies. For higher temperature

applications, the NO line list in the HITEMP database has been recently updated [8]

based upon use of the ExoMol NOname line list [114]. The CDMS database [32]

contains long-wavelength data including lines with hyperfine-structure; data on two

vibrational bands of 14N16O are available on the CDMS website. Wong et al. pub-

lished the NOname line list [114] as a part of the ExoMol database [25]. NOname,

available for six isotopologues, contains 21688 states and 2409810 transitions for
14N16O.

A spectroscopic model has been developed of NO in Chapter 4, which gives an

accurate description of the A 2Σ+, B 2Π and C 2Π states for levels up to 63000 cm−1

above the ground state; the previous NOname line list already provides a good spec-

troscopic model for the X 2Π state. This chapter demonstrates the calculation of a

IR-VIS-UV NO line list which is both accurate and complete covering the rovibra-

tional transitions within its X 2Π state and the rovibronic transitions belonging to

the other three important band systems, i.e., γ, β and δ as shown in Fig. 5.1.
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Figure 5.1: The band systems of NO involved in this thesis and their names. For a compre-
hensive diagram, see Ref. [3].

5.2 Transition dipole moments
Chapter 4 has explored the difficulty of preforming ab initio calculations of NO in

some detail; fundamentally the problem arises because the A 2Σ+ and C 2Π states

are effectively Rydberg-like in character which means their curves follow that of

the tightly bound NO+ ion [152], while the B 2Π state is a valence state with a

much flatter curve which crosses the others, see Fig. 5.2 (a). Discontinuities arise

in the potential energy curves (PECs) and other curves due to the state (avoided)

crossings and interactions. The quality of transition dipole moment curves (TDMC)

is strongly affected by the complicated behaviour of the excited state wavefunctions

which were computed at the complete active space self-consistent field (CASSCF)

and multi-reference configuration interaction (MRCI) levels using MOLPRO [126].

We therefore adopted a pragmatic approach to determining the TDMCs in which the

TDMCs were modified through a comparison with experimental data.

5.2.1 Range of calculation

The calculation setup is consistent with those of Ref. [114] and Chapter 4: the inter-

nuclear distance, R, varied from 0.6 Å to 4 Å, which in Duo was discretised by 701

uniformly spaced grid points as part of the Sinc-DVR (discrete variable represen-

tation) basis set. In the final calculations, 60, 15, 30, and 10 contracted vibrational

basis functions were retained for the X 2Π, A 2Σ+, B 2Π and C 2Π states, respectively.
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Figure 5.2: (a) Ab initio and refined PECs as well as vibrational wavefunctions and (b) cor-
responding transition dipole moments, µ(·). In panel (a), the wavefunctions are
plotted in arbitrary units. 2 2Π is the adiabatic C 2Π to B 2Π state and 3 2Π is the
adiabatic B 2Π to C 2Π state. In panel (b), ‘Fitted µ(C−X)’ is a quadratic poly-
nomial which was fitted to the values of red and blue circles it passes through.
‘Empirical µ(A−X)’ was calculated with the parameters determined in Ref. [6].

As we do not include interactions with higher electronic states [77] in our

model, the highest vibrational levels of the A 2Σ+, B 2Π and C 2Π states were limited

to 8, 18, and 4, respectively. The vibrational wavefunctions of these levels are

shown in Fig. 5.2 (a), where they are vertically shifted to their vibrational energies.

The global energy limit was chose to be 65000 cm−1.

5.2.2 A 2Σ+ state

For the A 2Σ+– X 2Π transitions, we used the empirical TDMC [6] as a fourth-order

polynomial (see the green solid curve shown in Fig. 5.2 (b)). We chose not to use

an ab initio TDMC of A 2Σ+– X 2Π although the one depicted by the green dash

curve in Fig. 5.2 (b) looks very similar to the empirical one. We found that the

use of different active spaces in MOLPRO gave TDMCs that were very different

in both shape and amplitude; this behaviour has been discussed in Ref. [153]. We

thus had to compare these curves with the empirical TDMC and select a similar

one; this procedure is neither ‘ab initio’ nor ‘empirical’. The empirical TDMC

function of Ref. [6] was based on the lower vibrational levels of the A 2Σ+ state.

As a result, their polynomial diverges at distances R > 1.3Å. We chose to use



84

60000 58000 56000 54000 52000 50000

10-2

100

102

Measured

(3, 0)

(6, 0)

(7, 0)
(0, 0)

(9, 0)

(1, 0)

(10, 0)
(11, 0)

(12, 0)(2, 0)

(14, 0)

(3, 0)

165 170 175 180 185 190 195 200

10-2

100

102
Calculated

(13, 0)

(15, 0)

Figure 5.3: Calculated absorption intensities at 295 K compared with the values given in
Ref. [7]. As the fine-structure doublets for more than half the transitions were
not resolved in the experiment, all doublets are removed by averaging the posi-
tions of the two lines and adding their intensities, for both measured and calcu-
lated transitions.

this TDMC unaltered as the vibrational wavefunctions decay rapidly to zero in this

region so our line list is insensitive to the behaviour of the TDMC at these values of

R.

Settersten et al. updated the TDMC polynomial coefficients using radiative

lifetimes of the NO A 2Σ+ (v = 0,1,2) states [154] which they measured using time-

resolved laser-induced fluorescence. Their transition dipole moment is larger in

magnitude than that of Luque and Crosley. We use the TDMC of Luque and Crosley

as a balance between measured radiative lifetimes [6, 154] and the intensities (‘in-

tegrated cross section’) of the γ(3,0) measured by Yoshino et al. [7]; see Fig. 5.3.

5.2.3 B 2Π-C 2Π coupled states

The adiabatic PECs B 2Π and C 2Π have the same symmetry and therefore form

an avoided crossing as shown by our ab initio PECs computed using MOLPRO,

see circles in Fig. 5.2(a). In order to avoid discontinuities in the various curves,

including the TDMCs, here we follow our diabatic model [155] with the PECs

shown in Fig. 5.2 (a). Off-diagonal matrix elements were introduced to represent
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Figure 5.4: Eigenvalue curves of Eq. (5.1)

the electronic state interaction as follows:VB(R) W(R)

W(R) VC(R)

 , (5.1)

where VB(R) and VC(R) are two diabatic potentials, and W(R) is a bell-shaped cou-

pling curve. The effect of this representation is illustrated in Fig. 5.4, although the

above matrix elements are introduced into the rovibronic Hamiltonian matrix rather

than directly diagonalizing Eq. (5.1) to generate adiabatic potentials shown in this

figure.

Due to the (adiabatic) avoided crossing between the B 2Π and C 2Π states, the

adiabatic TDMCs B 2Π– X 2Π and C 2Π– X 2Π exhibit erratic behaviour in the in-

teraction region with their values rising and dropping sharply near 1.18 Å, as shown

by the blue and red circles in Fig. 5.2 (b). The interaction center (about 1.18 Å) is

close to the equilibrium bond length (about 1.15 Å) of the X 2Π state. Thus, even a

slight change in the TDMC in this region along the internuclear distance axis can

dramatically change the calculated transition intensities.

In the diabatic model, the B 2Π– X 2Π and C 2Π– X 2Π TDMCs are smooth

curves (see Fig. 5.2 (b)) which do not show erratic behaviour in the interaction

region and therefore are no longer the most sensitive factor in intensity calculations.
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The coupling between states in this model is controlled by and relies on the quality

of the rovibronic B 2Π and C 2Πwavefunctions, which can be accurately determined

by our technique of fitting theoretical curves using experimental energies.

The original ab initio PECs for X 2Π and B 2Π and the corresponding TDMC

of B 2Π– X 2Πwere computed using a high level of theory, CASSCF&MRCI+Q/cc-

pVQZ with the [(6,2,2,0) − (2,0,0,0)] active space, where [(n1,n2,n3,n4) −

(n′1,n
′
2,n
′
3,n
′
4)] indicates the occupied and closed orbitals in the irreducible rep-

resentations a1, b1, b2 and a2 of the C2v point group (shown as red and blue circles

in Fig. 5.2). These adiabatic data were then diabatized to produce curves shown

in Fig. 5.2 as dotted curves. In order to improve the quality of the intensity cal-

culations, the diabtaic TDMCs were then further empirically adjusted as follows.

The B 2Π– X 2Π TDMC was scaled using a combination of the measured lifetimes

[118] and integrated cross sections [7]. The scaling factor of 1.17 was chosen as a

balance between these two experiments. The scaled B 2Π– X 2Π TDMC is shown

as a blue solid line in Fig 5.2. Although the B 2Π– X 2Π TDMC diverges from its

original trend for the internuclear distances shorter than 1 Å, this does not affect

our calculation as the corresponding B 2Π vibrational wavefunctions nearly vanish

there.

The TDMC of C 2Π– X 2Π required special care; we first fitted a quadratic

polynomial to the adiabatic ab initio values, shown as the red dash curve in Fig. 5.2,

and then scaled it based on the measured absorption intensities [7]. Since the TDMC

of C 2Π– X 2Π influences the intensities of higher β bands (i.e. vB ≥ 7), it was

important to obtain a global agreement for all intensities, including the β system.

This is illustrated in Fig. 5.3, where the calculated spectrum of NO in the region of

200 nm is compared to the experimental intensities [7].

5.3 Line list calculation

A rovibronic line list XABC for NO was constructed using the Duo program and

the spectroscopic model described above.

The XABC line list consists of 4596666 transitions between 30811 states of
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the four low-lying electronic states X 2Π, A 2Σ+, B 2Π and C 2Π, (21668, 1209, 6873

and 1041, respectively), covering J ≤ 184.5 with rovibronic wavenumber cutoffs of

53000 cm−1 (X 2Π, same as in Ref. [114]) and 63000 cm−1 (all other states). These

energy cutoffs are smaller than the basis set limit to avoid any truncation problems

near 63000 cm−1. In line with the ExoMol data structure [156], the line list is

represented by two files, a .states (states) file and a .trans (transitions) file.

Table 5.1 gives an extract of the XABC .states file. The .trans (transitions) file

contains the Einstein-A coefficients calculated with the Duo spectroscopic model

and constitutes our new XABC line list. Table 5.2 gives an extract from the .trans

file.

The current spectroscopic model uses improved Λ - doubling parameters for the

X 2Π state compared to NOname. As a consequence, the new model shows better

agreement with the effective Hamiltonian SPFIT/SPCAT energies of NO also pre-

sented in Ref. [114], see Fig. 5.5. Due to the change in the model and consequently

the wavefunctions, the Einstein-A coefficients between the states of the X 2Π state

as well as the corresponding lifetimes have also changed. The energies of the lower

rovibronic states (v ≤ 29 and J ≤ 99.5) of the X 2Π state were replaced with the

NOname ones which were calculated by Wong et al. [114] using the programs

SPFIT and SPCAT [37], based on the previous work [157]. These states are la-

beled with EH to indicate that they were calculated from an effective Hamiltonian,

which replaces the label e (i.e. empirical) used in NOname for these EH levels. The

energies of the other states of the X 2Π potential were shifted from the results of

Duo, using the same strategy as NOname, to avoid energy jumps above v = 29 or

J = 99.5. These shifted states were labeled with Sh while they were labeled with c

(i.e., calculated) in NOname.

We also replaced the Duo energies of the A 2Σ+, B 2Π and C 2Π states with

MARVEL energies where available, these states are labeled Ma in the .states file.

The jumps between MARVEL and Duo energies in the excited electronic states are

negligible. Therefore, we did not shift the other calculated energies of the A 2Σ+,

B 2Π or C 2Π states and labeled these states with Ca.
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Figure 5.5: Energy differences between the results of Duo and SPFIT/SPCAT for J ≤ 60.5,
v ≤ 20 states of X 2Π.
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Figure 5.6: The uncertainties assigned to the calculated energies of A 2Σ+, B 2Π and C 2Π

in cm−1.

For this line list we also introduced an extra column containing the energy

uncertainties (i.e., Column 5, ∆E) for each state. The uncertainties of A 2Σ+, B 2Π

and C 2Π were taken from MARVEL analysis where available. Otherwise, they

were constructed according to corresponding vibrational and rotational quantum

numbers using the algorithm shown in Fig. 5.6. The estimation of uncertainties of

the X 2Π state is a bit more complicated but is based on the same idea, see Fig. 5.7.

The partition function was computed using the standard summation over en-

ergies using levels from our final line list. Figure 5.8 compares the Total Internal

Partition Sums (TIPS) partition functions, Q(T ), of Ref. [9] and this work. As can

be seen from the red curve, i.e., (QXABC −QGamache)/QGamache, the partition func-
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Figure 5.7: Uncertainties assigned to the energy levels of X 2Π state in cm−1. The values
are consistent with the recent HITEMP Uncertainty Codes given for NO [8].
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Figure 5.8: Partition function calculated using the XABC state energies in comparison with
the TIPS values of Ref. [9]. The red curve illustrates the relative difference
between them.

tion difference is very small because the thermodynamic properties are generally

not very sensitive to small variations of higher-lying energies as in the X 2Π state,

while the A 2Σ+, B 2Π and C 2Π energies (not considered in TIPS) are too high to

make an obvious difference for the temperature below 3500 K considered here.

With the assumption of local thermal equilibrium, we calculated absorption

spectra of NO using the new line list XABC. An overview of the XABC absorption

spectrum for different temperatures below 63000 cm−1 or greater than 1600 Å is

shown in Fig. 5.9.
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Table 5.2: Extract from the NO XABC .trans file.

f i A f i ν f i
117 1 3.1174E+05 44203.001767

129 1 6.4207E+05 48854.091482

162 1 2.0740E+05 58538.988402

151 1 1.0243E+05 53273.417513

156 1 2.5855E+04 55586.090674

150 1 1.4370E+06 52372.686268

149 1 2.3080E+05 52345.937733

134 1 1.4276E+04 50452.598447

122 1 1.3786E+02 46503.348087

168 1 5.2902E+05 61721.081024

f Counting number of the upper state
i Counting number of the lower state

A f i Einstein-A coefficient in s−1

ν Transition wavenumber in cm−1.

1000 500 333.33 250 200 166.67

10-40
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10-20

(a)

0 10000 20000 30000 40000 50000 60000
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Figure 5.9: 14N16O cross sections below 63000 cm−1 calculated using the XABC line list
and a Gaussian lineshape function with a HWHM of 1 cm−1: (a) Calculated
cross sections of NO at different temperatures; (b) X 2Π– X 2Π, γ, β and δ

cross sections at 2000 K.
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5.4 Comparisons
Unless otherwise indicated, the following calculations were executed with Ex-

oCross [43], which is a program for generating lifetimes, spectra, partition function

etc., from molecular line lists.

5.4.1 Lifetimes

Lifetimes for individual states of X 2Π, A 2Σ+, B 2Π and C 2Π are plotted against the

energies in Fig. 5.10. The vibronic lifetimes ofA 2Σ+ (v = 0 to 3) and B 2Π (v = 0

to 6) are compared with experimental values (where available) in Tables 5.3 and

5.4, respectively. The calculated lifetimes of the A 2Σ+ state agree well with those

measured by Luque and Crosley [6]. As we used their TDMC, the agreement means

that Duo gave similar vibrational wavefunctions as the RKR (Rydberg- Klein-Rees)

ones they used. Our computed lifetimes for the B 2Π state are larger than those of

previous works.

The funnel-like shapes of the dependence of lifetimes on the energy shown

in Fig. 5.10 (b) are caused by the interactions between the B 2Π and C 2Π vibronic

levels. The lifetimes decrease to much smaller values when rotational states are

trapped in these funnels. Apart from the electronic state interaction, the observed

lifetimes are further shortened by predissociation. The dot-dash lines in Fig. 5.10

illustrate the first dissociation limit of NO. As the current version of Duo does

not allow for predissociation, the calculated lifetimes to the right of the dot-dash

lines are expected to be larger than the observed ones. For example, the calculated

lifetimes of C 2Π are of order 10 ns whereas the measured ones can be as short as

several nanoseconds [158].

5.4.2 Absorption spectra

Figure 5.11 compares the experimental absorption intensities of γ(3,0) measured

by Yoshino et al. [7] and theoretical intensities calculated with Duo. With the

TDMC of Luque and Crosley [6], our calculations gives higher intensities than the

observed ones for the transitions of the R11+Q21 and P21+Q11 branches. Thus, if

we had used the TDMC of Ref. [154], Duo would further amplify the intensities of
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Figure 5.10: Calculated lifetimes of (a) X 2Π, (b) A 2Σ+, and (c)&(d) B 2Π-C 2Π coupled
states. The lifetimes of the two lowest states (X 2Π, v = 0, J = 1/2, Ω = 1/2,
e/ f ) are respectively infinity and 2.3× 1014 s−1 and are omitted from panel
(a). The vertical dot-dash lines in panels (b), (c) and (d) indicate the first
dissociation limit of NO. panel (d) is a blow up of panel (c).

Table 5.3: Vibronic radiative lifetimes for the A 2Σ+ state.

v
Measured [ns] Calculated [ns]

Ref. [119] Ref. [154] Ref. [6] This work
0 205± 7 192.6±0.2 206 205.5
1 200± 7 186.2±0.4 199 198.6
2 192± 7 179.4±0.7 193 192.9
3 184± 7 188 188.1
4 157±10 184 184.1
5 136±10 180 180.8

Table 5.4: Vibronic radiative lifetimes of B 2Π state

Measured [µs] Calculated [µs]
v Ref. [159] Ref. [118] This work
0 2.00 2.00 2.00
1 1.82 1.77 1.84
2 1.52 1.56 1.68
3 1.46 1.39 1.53
4 1.19 1.24 1.38
5 1.07 1.11 1.24
6 0.85 0.99 1.11
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Figure 5.11: Calculated absorption intensities of the NO γ(3,0) band at 295 K compared
with the published values [7]. As no spin-rotational fine structure was ob-
served in the experiment, the wavelengths of the calculated doublets are aver-
aged and their intensities summed, to also give blended lines.

all branches, worsening agreement with observation.

The B 2Π - C 2Π interaction has small effect on the intensities of the lower

seven β(v′,0) bands. Figure 5.12 compares the experimental intensities of β(6,0)

measured by Yoshino et al. [7] and theoretical intensities calculated with Duo. The

relative cross section values calculated by LIFBASE [34] are compared with Duo

values in Fig. 5.13. The values of LIFBASE are scaled according to the peak of the

β(6,0) band.

The δ(1,0) band is the strongest one at 295 K in the B 2Π – C 2Π interaction

region and the intensities of the transitions in this band are plotted in Fig. 5.14.

The figure demonstrates the overall agreement between experimental and theoreti-

cal values but also exposes defects in our model showing the interaction model for

B 2Π – C 2Π is not perfect.

Note that the spectra in Figs. 5.11, 5.12 and 5.14 were calculated using the

pure Duo energies before they were replaced by MARVEL or effective Hamiltonian

values. However the difference between the experimental and calculated lines is

indistinguishable at this scale.
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Figure 5.12: Calculated absorption intensities for the β(6,0) band at 295 K in comparison
with the values given by Yoshino et al. [7]. The line intensities of this band
are weak and the experiment only resolved the Λ-doublets of high J lines in
the P11 and R11 branches. To achieve higher signal-noise ratio, we averaged
the wavelengths of the e and f doublets and added up their intensities to create
blended transitions for all branches.
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Figure 5.13: Calculated cross section of the NO β(v′,0) (v′ = 6 to 0 from left to right) bands
of at 295 K in comparison with the data from LIFBASE. The spectrum was
computed assuming a Gaussian profile with a half-width-at-half-maximum
(HWHM) of 0.2 cm. The relative spectrum simulated by LIFBASE is nor-
malised to the peak of the β(6,0) band.
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Figure 5.14: Calculated absorption intensities of the δ(1,0) band at 295 K in comparison
with the intensities published by Yoshino et al. [7]. This is a strong band and
most of the Λ-doublets were resolved in the experiment. To allow compar-
isons of the fine-structure, we evenly divided the measured intensities of any
blended lines to created effective e/ f transitions.

5.5 Conclusions
In this chapter, we present a new line list for 14N16O called XABC which cov-

ers transitions between the ground electronic state, X 2Π, and the four lowest-lying

states, X 2Π, A 2Σ+, B 2Π and C 2Π. The line list combines an effective Hamilto-

nian (SPFIT), MARVEL and calculated (Duo) energies, providing high-accuracy

line positions. Combined with our A 2Σ+– X 2Π, B 2Π– X 2Π and C 2Π– X 2Π tran-

sition dipole moments, the diabatic model predicts the transition intensities which

agree well with the measured values. The line list is part of ExoMol project [24]

and available from (www.exomol.com) and CDS database (cdsarc.u-strasbg.fr).

www.exomol.com
http://cdsarc.u-strasbg.fr


Chapter 6

A Variational Model for the

Hyperfine Resolved Spectrum of VO

in its Ground Electronic State

6.1 Introduction

Vanadium monoxide (VO) is an open shell diatomic molecule which absorbs

strongly in the near infrared and visible region of the spectrum. These absorptions

are of importance for astrophysics where VO is known to be an important com-

ponent of the atmosphere of cool stars. [160] Recently attention has turned to the

possible role of VO in the atmospheres of exoplanets where it has been suggested

that alongside TiO, VO absorption can change the temperature profile of the planet’s

atmosphere.[161] Some tentative detections of VO in exoplanet atmospheres have

been reported [162, 163, 164, 165, 166, 167] but none of these can be regarded as

secure. There are two reasons for this. First, the spectra of VO and TiO are heav-

ily overlapped making them very hard to disentangle at low resolution. Secondly,

while the availability of a high-resolution TiO line list suitable for high-resolution

spectroscopic studies [168] has led to the confirmation of TiO in exoplanetary at-

mospheres, [169, 170, 171] the corresponding VO line list [53] is not of sufficient

accuracy to be used in similar studies.[172] Both the TiO and VO line lists cited

were produced using similar methodology by the ExoMol project [25] but a major
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difference between them is due to the underlying atomic physics. While 16O and
40Ti both have nuclear spin, I, equal zero, the dominant isotope of vanadium, 51V,

has I = 7/2. The interaction between the spin of unpaired electrons and the nuclear

spin, yields a very pronounced hyperfine structure which manifests itself at even

moderate resolution. This hyperfine structure reduces parts of the 51V16O spectra

to “blurred chaos at Doppler-limited resolution” [173]. Progress in identifying VO

in exoplanetary atmospheres using high-resolution spectroscopy requires the devel-

opment of a model which includes a treatment of these hyperfine effects. These

effects were not considered in the ExoMol VOMYT line list.[53]

A full survey of available high resolution spectroscopic data for VO has re-

cently been completed by Bowesman et al. [174] as part of a MARVEL (measured

active rotation vibration energy levels) study of the system. The nuclear hyperfine

structure of 51V16O has been measured [175, 176, 177, 178, 10] and modeled by

effective Hamiltonians.[179, 10] However, for the X 4Σ− electronic state, the ex-

periments only gave the hyperfine constants for the lowest (v = 0) vibrational level

and therefore provide limited information for the observations of hot VO spectra

involving higher vibrational levels.

Hyperfine structure in molecular spectra are usually treated using perturbation-

theory based effective Hamiltonians; these are usually accurate enough to recon-

struct the energy levels using the assumption that hyperfine effects arise from small

perturbations. Thus, effective Hamiltonians are widely used for fitting measured

hyperfine-resolved energies or transitions, see Refs.[179, 10] for examples involv-

ing VO. However, the VOMYT line list [53] shows that interactions between the

electronic states reshape the line positions and intensities of VO. Although we focus

on the X 4Σ− electronic ground state of VO in this chapter, the spin-orbit couplings

between the low-lying X 4Σ− and 1 2Σ+ states as well as the X 4Σ− and A 4Π states

are also included in our model with the aim of obtaining the correct spin splittings

for the X 4Σ− state. This allows us to construct a full, predictive spectroscopic model

of the ground state which can be used as input to the variational, diatomic spectro-

scopic program Duo [42] which we have recently extended to give a full variational
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treatment of hyperfine effects.[180] This chapter presents the development of this

model.

6.2 Computational details
The electronic structure of VO has been investigated in numerous works. [181, 182,

183, 184, 185, 186, 187, 188, 189, 190, 191] Among them, the results for excited

states represented by multi-reference configuration interaction (MRCI) wavefunc-

tions are more accurate. [188, 189, 190, 191] The most recent one by McKemmish

et al. [190] laid the basis of the ExoMol VO linelist, VOMYT [53]. We also perform

MRCI level calculations in this work to get the potential and spin-orbit coupling

curves for the electronic states of interest. The electron spin-dipolar interaction and

hyperfine coupling curves of X 4Σ− were obtained at the complete active space self

consistent field (CASSCF) level.

6.2.1 Quartet states

In this work, the potential energy and spin-orbit coupling curves are calculated using

MOLPRO 2015 [124] at the MRCI plus Davidson correction (+Q) level.

First, the ground X 4Σ− state was calculated on its own to avoid effects from

other electronic states. The active space used is larger than employed by McKem-

mish et al., [190] as the work of Miliordos et al. [188] shows that the occupation

of 4p orbitals of vanadium is not negligible. In this work, the 1s orbital of oxygen

and the 1s, 2s, 2p, 3s, 3p orbitals of vanadium were treated as doubly occupied.

The active space includes the 2s, 2p orbitals of oxygen and 4s, 3d, 4p orbitals of

vanadium. In the four irreducible representations of C2v group, viz. a1,b1,b2,a1, the

numbers of occupied orbitals are (12,5,5,1) while the numbers of closed orbitals

are (6,2,2,0). The basis set used in our calculation is aug-cc-pVnZ n = 3,4,5 [136]

so that we can estimate the potential energy curve at the complete basis set (CBS)

limit by extrapolation.

According to Miliordos et al.,[188] ionic avoided crossings are expected

around 2.75 Å. While we came across a discontinuity of dipole moment around

1.9 Å. We tried to add a second 4Σ− state but failed to find an avoided crossing
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structure in that region.

The off-diagonal spin-orbit interaction between the X 4Σ− and A 4Π states con-

tributes to the spin splitting of the X 4Σ− state. As A′ 4Φ and A 4Π has the same

irreducible representations in the C2v group, it is impossible to omit the A′ 4Φ state

in MRCI calculations. Therefore, we calculated the A 4Π and A′ 4Φ states together

with the X 4Σ− state using the same active space but only with the aug-cc-pVQZ

basis set.

6.2.2 Interaction of doublet states with the X 4Σ− state

Previous studies [190, 53] show that, the spin splitting of the X 4Σ− state of VO is

dominated by the off-diagonal spin-orbit interaction between the X 4Σ− and 1 2Σ+

states.

The 1 2Σ+ state of VO, designated a 2Σ+ in the experimental work of Adam

et al.,[192] is easily obtained in a CASSCF calculation with MOLPRO when its

LQUANT is assigned. However, in the MOLPRO MRCI calculation, it may converge

to the 1 2Γ state, which has degenerate A1 and A2 representations. The 1 2∆ state

also has the same irreducible representations and is lower in energy than the 1 2Σ+

state. In principle, the three states, 1 2Σ+, 1 2Γ and 1 2∆ should be optimized si-

multaneously in the 2A1 symmetry block. Our calculation therefore included these

three low-lying doublet states of VO together with its ground state. The two higher
2Π states were also included in the work of McKemmish et al. [190] but are not

considered here.

We must provide a reasonable CASSCF reference for the MRCI calculations.

The 1 2Σ+ and 1 2Γ states have the same electron configuration as the X 4Σ− while

the 1 2∆ state has a different one.[193] Thus, we initially calculated only the 1 2∆ and

ground state, and then subsequently added one 2Γ state and one 2Σ+ state. Nonethe-

less, we could not obtain the correct 1 2∆ state in a state-average CASSCF calcula-

tion including 4Σ−, 2Γ, 2∆ and 2Σ+ when the closed orbitals were set to (6,2,2,0). To

make the reference wavefunctions physically appropriate, we closed more orbitals,

(8,2,2,0), in the CASSCF calculation, while we still used the a closed (6,2,2,0)

space in the subsequent icMRCI calculation. Again we used an aug-cc-pVQZ basis
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set.

6.2.3 Electron spin dipolar coupling and nuclear hyperfine cou-

pling curves

The electron spin-spin coupling was treated as an empirical fine tuning factor by

McKemmish et al. [53] Using the quantum chemistry program ORCA,[194] we

calculated the electron spin-spin dipolar contribution to the zero-field splitting D

tensor, of the ground state at the CASSCF level with eleven electrons distributed in

ten active orbitals.

Fully-resolved hyperfine splittings have been observed in the v = 0 vibrational

levels of the X 4Σ− state. We calculated the nuclear hyperfine A tensor and the

nuclear electric quadrupole coupling constant in ORCA,[194] with the aim of pre-

dicting the hyperfine structure in vibrationally-excited levels of VO.

The zero-field splitting tensor was calculated with an aug-cc-pVTZ basis set.

The nuclear magnetic A-tensor and electric quadrupole coupling constant were cal-

culated with an aug-cc-pwCVQZ basis set.

The nuclear spin-rotation coupling constants were calculated with another

quantum chemistry program, DALTON [87] 2020.0, at the CASSCF level with an

aug-cc-pVQZ basis set. The active space is the same as used in ORCA.

We failed to find a quantum chemistry program which calculates the electron

spin-rotation constant γ and therefore used the constant empirical value determined

for v = 0 instead.

6.3 Ab initio results

6.3.1 X 4Σ− potential energy curve

The dashed curves in Fig. 6.1 are the ab initio potentials of the X 4Σ− state of VO.

We estimated its potential energies at the CBS limit using the formula

E(n) = ECBS+αexp(−βn)

and obtained the solid potential energy curve shown in the left panel of Fig. 6.1.
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Figure 6.1: MRCI+Q potential energy curves of the X 4Σ− state calculated with aug-cc-
pVnZ basis sets and the estimated one at the complete basis set limit.

The ab initio curves were calculated to build the spectroscopic model of VO.

For numerical stability purposes, we fitted the discrete points with continuous

curves. The extrapolated potential energy curve at the CBS limit was fitted to a

second-order extended Morse oscillator (EMO) function:[42]

V(r) = Te+ (Ae−Te)
[
1− exp(−βEMO(R) (R−Re))

]2 , (6.1)

where R and Re are the internuclear distance and its value at the equilibrium point,

and Ae is the asympotic energy relative to the minimum of the ground electronic

state. βEMO is expressed as

βEMO(R) = b0+b1 y(R)+b2 y2(R), (6.2)

where y(R) is given by:

y(R) =
R4−R4

e

R4+R4
e
. (6.3)

Only the points given as crosses in the righthand panel of Fig. 6.1 were included in

the fit to give a better approximation of the lower vibrational levels. Although the

calculated potential energies marked by circles were excluded, they are still well

represented by the fitted curve. The EMO parameters are listed in Table 6.1.
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Table 6.1: Optimized EMO parameters of the X 4Σ− state.

Parameter E(n) = ECBS+
α

(n+1/2)4 E′(n) = ECBS+αe−βn

Te [cm−1] 0 0
Re [Å] 1.59843863 1.59835533
De [cm−1] 52790 52790
b0 [Å

−1
] 1.83754349 1.84042724

b1 [Å
−1

] −9.62681017×10−3 −1.62377024×10−2

b2 [Å
−1

] −1.48413484×10−1 −1.80240476×10−1

The fitted PEC is not sensitive to the extrapolation formula in the region of

interest (i.e. E ≤ 10000cm−1). Figure 6.2 compares the fitted EMO PECs of two

extrapolation formulae: E′(n) = ECBS +α/n3 and E(n) = ECBS +αexp(−βn). The

EMO parameters corresponding to E′(n) are listed in Table 6.1 too.
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Figure 6.2: Fitted PECs corresponding to two different extrapolation formulae as shown
in the legend. The bottom panels show the energy difference between the two
curve.

6.3.2 Potentials of A 4Π and 1 2Σ+

The calculated potential energies curves for the quartet and doublet states are shown

in Fig. 6.3. The energies are shifted such that the corresponding X 4Σ− ground

state of each set has the same energy zero. The potentials of the A 4Π and 1 2Σ+

states were fitted with second order EMO functions whose parameters are listed in
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Table 6.2: Optimized EMO parameters of the excited states.

Parameter A 4Π 1 2Σ+

Te [cm−1] 9.63445279×103 1.09739904×104

Re [Å] 1.64911957 1.59344721
De [cm−1] 52790 52790
b0 [Å

−1
] 1.81814751 2.12680313

b1 [Å
−1

] −8.35385040×10−2 3.16227470×10−1

b2 [Å
−1

] −3.14510129×10−1 1.98285641×10−1

Table 6.2.
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Figure 6.3: Calculated potential energy curves of the quartet states (left) and doublet states
(right) of VO. The curves for the A 4Π and 1 2Σ+ states were fitted with EMO
functions.

6.3.3 Spin-orbit couplings

The calculated spin-orbit coupling curves are shown in the left panel of Fig. 6.4.

Note that the spin-orbit coupling constant has a phase of i as MOLPRO uses a

Cartesian representation. The figure demonstrates the real curves multiplied an ex-

tra constant −i, which were fitted with polynomials

p(R) =
∑

i

ai Ri. (6.4)

The polynomial coefficients ai are given in Table 6.3.
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Figure 6.4: The calculated spin-orbit coupling curves (left) and zero field splitting curve
due to the spin-spin coupling (right) of VO which were fitted with polynomials.

Table 6.3: Polynomial coefficients of the ab initio spin-orbit coupling curves.

Coefficients −i
〈
X 4Σ−

∣∣∣HLSX
∣∣∣A 4Π

〉
−i
〈
A 4Π
∣∣∣HLSZ

∣∣∣A 4Π
〉
−i
〈
X 4Σ−

∣∣∣HLSZ
∣∣∣1 2Σ+

〉
a0 [cm−1] 1.04200154×102 2.11661061×101 2.62598816×101

a1 [cm−1Å
−1

] −3.73516108×102 −2.21769098×102 −3.57489537×102

a2 [cm−1Å
−2

] 2.58518247×102 7.94325083×101 1.10914862×102

6.3.4 Electron spin dipolar coupling

In a Cartesian representation, the zero-field splitting Hamiltonian is:[195]

HZFS = S⊺DS. (6.5)

where S = (S x,S y,S y) is the spin vector operator and D is a dipolar interaction

tensor. In principal axes of the zero-field splitting tensor, D is diagonal and

HZFS = DxxS 2
x +DyyS 2

y +DzzS 2
z . (6.6)

As a dipolar interaction tensor, D is traceless, HZFS only has two degrees of free-

dom. In electron spin resonance spectroscopy, it is usual to define two constants, D

and E, to describe zero-field splitting:

D =
3
2

Dzz, (6.7)
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Table 6.4: Polynomial coefficients of the ab initio zero-field splitting curve D(R) and the
empirical spin-rotation curve γ(R)

Coefficients D(R) γ(R)
a0 [cm−1] −0.66632402 0.02242111
a1 [cm−1Å

−1
] 2.08037245

a2 [cm−1Å
−2

] −0.61684666

E =
1
2

(Dxx−Dyy). (6.8)

The Hamiltonian can then be rewritten as

HZFS = D
[
S 2

z −
1
3

S2
]
+E(S 2

x −S 2
y), (6.9)

with the principal axis chosen such that

|E| ≤
1
3
|D|.

For the X 4Σ− state of VO, E = 0, and hence Dxx = Dyy.

The calculated zero-field splitting curve is shown in the right panel of Fig. 6.4.

The two points marked by circles were excluded from the fit. The other points were

fitted with a parabolic curve whose coefficients are given in Table 6.4.

We used the constant experimental value [10] for the spin-rotation coupling

curve, as shown in the last column of Table 6.4.

6.3.5 Nuclear hyperfine couplings

In a Cartesian representation, the Hamiltonian describing the nuclear spin – electron

spin magnetic interaction is:[195]

HHFS = S⊺A I. (6.10)

The hyperfine coupling tensor can be divided into an isotropic term Aiso and a

dipolar term Adip:

HHFC = Aiso S · I+S⊺Adip I. (6.11)
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Aiso is also known as the Fermi-contact interaction constant. The isotropic hyperfine

coupling constant is given by

Aiso =
1
3

(
Axx+Ayy+Azz

)
. (6.12)

The calculated curve Aiso is shown in the left panel of Fig. 6.5. The points were

fitted with a linear function, whose coefficients are given in Table 6.5.

In the principal axis representation, the off-diagonal matrix elements of the

dipolar interaction tensor Adip vanish. Since Adip is also traceless, we obtain

Adip
xx +Adip

yy +Adip
zz = 0. (6.13)

Moreover,

Adip
xx = Adip

yy , (6.14)

for the X 4Σ− state. Thus, there is only one independent parameter of Adip. The

calculated Adip
zz term is plotted in the right panel of Fig. 6.5, which was fitted with a

parabolic curve whose coefficients are given in Table 6.5.
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Figure 6.5: The calculated Aiso and Adip
zz curves of the X 4Σ− state which were fitted with

polynomials.

The nuclear electric quadrupole coupling and nuclear spin-rotation coupling

are relatively weak for the X 4Σ− state as shown in Fig. 6.6. They were fitted by
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Table 6.5: Polynomial coefficients of the ab initio hyperfine coupling curves.

Coefficients Adip
zz Aiso

a0 [MHz] −4.35374634×101 2.95222135×102

a1 [MHzÅ
−1

] −1.12799291×102 2.56635489×102

a2 [MHzÅ
−2

] 4.14063843×101

Table 6.6: Polynomial coefficients of the ab initio hyperfine coupling curves.

Coefficients eQq0 cI
a0 [MHz] −3.67214582×103 3.77322818×104

a1 [MHzÅ
−1

] 1.00349024×104 −1.31588701×105

a2 [MHzÅ
−2

] −1.09166936×104 1.82538509×105

a3 [MHzÅ
−3

] 5.91507164×103 −1.26234203×105

a3 [MHzÅ
−4

] −1.60068427×103 4.35197409×104

a4 [MHzÅ
−5

] 1.73355438×102 −5.99532161×103

polynomials, see eq. 6.4, whose coefficients are listed in Table 6.6.
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Figure 6.6: The calculated nuclear electric quadrupole and nuclear spin-rotation coupling
curves of the X 4Σ− state which were fitted with polynomials.

6.4 Infrared spectra

6.4.1 Spectroscopic model

A spectroscopic model considering the X 4Σ−, A 4Π and 1 2Σ+ states of VO was

developed for the diatomic variational nuclear motion program Duo.[42] The equi-
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librium bond length of X 4Σ− ab initio PEC was shifted about 0.009 Å so that

Re = 1.58948094 Å, (6.15)

resulting in the correct rotational constant.

For the basis set in Duo we used 20 vibrationally contracted basis functions

for the ground electronic states and 10 for the other two electronic states based on

401 Sinc-DVR grid points, covering the internuclear distance range from 1.2 to 4

Å. The upper limit of the energy calculations was set to 50000 cm−1, which is

just below the first dissociation limit of VO; the energy levels of interest for this

work are below 10000 cm−1 which is close to the Te value of the A 4Π state and is

also below the discontinuity point in the PEC of the X 4Σ− state. This range covers

vibrational levels up to v = 10. Thus, the 20 vibrational contracted basis functions

are enough to give converged energy levels.

The coupling constants used in Duo follow the definitions generally adopted in

experimental studies.[180] Some constants have the same definition as those given

by quantum chemistry programs. For example, the Fermi-contact coupling constant

is just Aiso

bF = Aiso. (6.16)

Definitions of others are differ and we give the relevant interconversion formulae

below.

In a Cartesian representation, the Hamiltonian of the diagonal electron spin-

spin dipolar interaction in a diatomic molecule is

HSS =
2
3
λ
(
3S 2

z −S2
)
, (6.17)

where S is the electron spin angular momentum and S z is its z component. Com-

paringHSS withHZFS, we have

λ =
1
2

D. (6.18)

In a Cartesian representation, the Hamiltonian of the nuclear spin-electron spin
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dipolar interaction is given by

Hdip =
1
3

c (3IzS z− I ·S)

+
1
2

d
[
S +I+ exp(−2iϕ)+S −I− exp(2iϕ)

]
e
[
(S −Iz+S zI−)exp(iϕ)

+ (S +Iz+S zI+)exp(−iϕ)
]
, (6.19)

where c, d and e are three nuclear spin-electron spin dipolar interaction constants;

I is the nuclear spin angular momentum; Iz, I+ and I− are the components of I; S z,

S + and S − are the components of S. Comparing the Hamiltonian with the matrix

elements of I⊺Adip S, we have:

Adip
xx = −

c
3
+d cos(2ϕ), (6.20)

Adip
yy = −

c
3
−d cos(2ϕ), (6.21)

Adip
zz =

2c
3
. (6.22)

For the ground state, we have Adip
xx = Adip

yy . The only non-vanishing constant is

c =
3
2

Azz. (6.23)

We used the finite-field X 4Σ− permanent electric dipole moment calculated by

McKemmish et al. [190] to compute Einstein-A coefficients and hence transition

intensities.

6.4.2 Hyperfine matrix elements

We use a fully variational method to calculated the hyperfine structure of the VO

X 4Σ− state. The final wavefunctions have non-zero projections on all contracted

vibrational basis functions. The absolute values of the Fermi-contact matrix ele-

ments ⟨v|bF(R)|v′⟩ are plotted in Fig. 6.7. The values decrease dramatically with

the difference between v′ and v, i.e., the diagonal matrix element ⟨v|bF(R)|v⟩ domi-
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nates the Fermi-contact interaction in the vibrational states. The reason for the phe-

nomenon is that the lowest 11 vibrational levels of X 4Σ− do not interact with other

vibronic levels in our model. Thus, the diagonal Fermi-contact matrix elements

in the VO X 4Σ− state provided should be equivalent to the spectroscopic coupling

constants used in effective Hamiltonian methods. We list all the diagonal hyperfine

matrix elements of the lowest 11 vibrational levels of the X 4Σ− state in Table 6.7.

Compared to the measured constants of the v = 0 level[10], the absolute values of

the calculated Fermi-contact matrix elements are smaller while the nuclear spin-

electron spin dipolar matrix elements are larger. For VO, the nuclear spin-rotation

and nuclear electric quadrupole interactions are much weaker than the other hyper-

fine interactions. The corresponding matrix elements are of similar magnitude to

the experimental values.

Figure 6.7: Absolute values of Fermi-contact matrix elements ⟨v|bF(R)|v′⟩ of X 4Σ− for v ≤
10 and v′ ≤ 10.

6.4.3 Hyperfine eigenstates and transitions

A hyperfine-resolved line list was generated based on the spectroscopic model. Duo

provides data in ExoMol format[156] which means energies with quantum numbers

in a .states file and the Einstein-A coefficients for each transition in a .trans

file. Examples of calculated energies and transitions extracted from the output files
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Table 6.7: The empirical hyperfine coupling constants for v= 0 given in Table 4 of Ref. [10]
and the calculated diagonal hyperfine matrix elements of v= 0 levels of the X 4Σ−

state. All values are given in MHz.

Empirical [10] bF c cI eQq0
v = 0 778.737(66) -129.84(19) 0.1928(51) -2.5(1.3)

Ab initio ⟨v|bF(R)|v⟩ ⟨v|c(R)|v⟩ ⟨v|cI(R)|v⟩ ⟨v|eQq0(R)|v⟩
v = 0 703.2540 -177.1301 -0.2191 -7.2987

are given in Tables 6.9 and 6.10. In Duo’s outputs, the eigenstates are printed in

the increasing order of final angular momentum, which is F here. All energies are

given relative to the non-hyperfine zero-point energy i.e., the value corresponds to

J = 0.5,+,v = 0.

A hyperfine-resolved set of empirical energies of VO has recently been ob-

tained [174] using the MARVEL (measured active vibration-rotation energy lev-

els) procedure, which includes 6603 validated transitions from three experimental

sources [196, 192, 10] and gives 1256 hyperfine-resolved energy term values for

the v = 0 state of X 4Σ−. We compare our calculated energies with all the MARVEL

ones, as illustrated in the left panel of Fig. 6.8. The energy differences indicate that

the ab initio fine and hyperfine coupling curves require further refinement to give

accurate electron and nuclear spin splittings.

In order to illustrate the potential of such refinement on the quality of the en-

ergy calculations, we shifted some fine and hyperfine coupling curves in our model

such that the corresponding diagonal matrix elements ⟨v = 0|·|v = 0⟩ have the same

values as those determined using experimentally obtained spectroscopic constants

[10]. The shifted parameters are listed in Table 6.8. The right panel of Fig. 6.8

demonstrates the differences between the calculated and MARVEL energies in this

case. The calculation accuracy improved significantly with use of the shifted curves.

There are four states (shown as red circles in the lefthand panel) whose calcu-

lation errors are greater than 0.1 cm−1, so outside the range of the righthand panel of

Fig. 6.8. The energy levels between 100 to 200 cm−1 have lager uncertainties than

the others, as shown in the right panel. As discussed previously,[196, 192, 10] this

behavior arises from the internal perturbations near N = 15. Figure 6.9 illustrates the
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Table 6.8: Final a0 values for four shifted curves: the X 4Σ−-1 2Σ+ spin-orbit interaction,
γ(R), Aiso(R) and Adip

zz (R).

Curve State a0 value [cm−1]
Spin-orbit X 4Σ−−1 2Σ+ 5.96834165×101

γ(R) X 4Σ− 2.21811385×10−2

Aiso(R) X 4Σ− 1.27096358×10−2

Adip
zz (R) X 4Σ− −4.00661787×10−4

interactions of states in the F2 series of X 4Σ−. The interactions mix energy levels

which makes it difficult to assign quantum numbers to these states. The globally J-

dependent systematic error can be attributed to inaccurate spin-orbit, spin-spin and

spin-rotation coupling curves. We plan to refine these curves in our future work.

Examples of hyperfine resolved transitions (line positions, Einstein A coeffi-

cients and line strengths) generated from our model are listed in Table 6.10. The

upper and lower states of a transition are labelled with the counting numbers as

shown in Table 6.9.

0 200 400 600 800 1000
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0
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-0.04

-0.02
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Figure 6.8: Energy differences between results of Duo and MARVEL analysis when using
ab initio curves. Left: only the Re value of the X 4Σ− state was shifted to give
correct rotational constants. Right: several other curves were also shifted to
reproduce the coupling constants given in Table 4 of Ref. [10].

6.4.4 Transition intensities and lifetime

The hyperfine resolved VO line list was used to generate spectra of the X 4Σ− band

using the program ExoCross.[43] The left panel of Fig. 6.10 compares cross sec-

tions calculated in this work at T = 2200 K. We used a Gaussian lineshape function

for each isolated line and the linewidth was chosen as 0.2 cm−1. The linewidth is
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Figure 6.9: Mixing of energy levels in the F2 series of the X 4Σ− state.

Table 6.10: Sample of the calculated hyperfine-resolved transitions in the form of an Exo-
Mol trans file.

Nupper
1 Nlower

2 A3 [s−1] ν4 [cm−1]
1 451 2.38332335E-05 6.96204647
2 451 1.66833579E-06 14.48804323
3 451 4.70812172E-01 990.05580197
4 451 4.09305033E-03 997.54698774
5 451 2.42692129E-02 1962.67780719
6 451 2.29484807E-04 1970.13424517
7 451 8.52218528E-04 2924.85113931
8 451 8.74951065E-06 2932.27229595
9 451 2.90007987E-05 3876.61727601

10 451 3.10964384E-07 3883.99897089

wider than hyperfine splittings and thus, the cross section profiles are blended. As

a result, the hyperfine resolved and unresolved cross sections agree well with each

other. Note that, in this work, we only calculated the transitions within the ground

state of VO without considering the A-X transition dipole moment contribution to

line strengths. In practice, A-X spin-orbit coupling mixes the wavefunctions of the

two electronic states meaning spectra are increasingly determined by both the X-X

and the A-X electric dipole moment curves; transitions above 6000 cm−1 are much

stronger when the A-X transition dipole moment is included. We do not attempt to

properly model the A state here so we leave the discussion of the interaction of this

and other electronic states to future work.

Only hyperfine transitions with narrow broadening parameters are distinguish-
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able in high-resolution experiments. We simulated the spectra of the eight hyper-

fine transitions near 9.73 cm−1 with different line widths. As shown in the top-right

panel of Fig. 6.10, the hyperfine transitions are completely blended when the half

width at half maximum is 0.002 cm−1. However, due to the uneven line strength

distribution of hyperfine transitions, the shape and center of the blended profile

differs from the one simulated from the line list without considering the nuclear

hyperfine couplings, which is shown in the bottom-right panel of Fig. 6.10. Simi-

lar conclusions were drawn from the VO MARVEL study [174] where attempts to

deperturb the hyperfine-resolved energies by setting the hyperfine constants to zero

were found to give poor results.

0 2000 4000 6000 8000 10000
10-35

10-30

10-25

10-20

Non-hyperfine
Hyperfine

2

4

6

Hyperfine
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00

2

4

6
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Figure 6.10: Comparison of VO IR cross sections at 2200 K. Left: the cross sections were
calculated with Gaussian profiles whose linewidths are 0.2 cm−1. Right: the
cross sections were calculated with Gaussian profiles of different line widths
in a narrow range. ‘Non-hyperfine’ in this and following figures is a short
notation which means that the spectra were simulated without considering
nuclear hyperfine couplings.

Figure 6.11 illustrates the hyperfine splitting of non-hyperfine transitions near

9.77 cm−1. Due to the nuclear spin, both the upper and lower non-hyperfine energy

levels split into several hyperfine levels and the combinations of them give a lot of

hyperfine transitions as shown in the top panel. In the middle panel, we plot the

two strongest non-hyperfine transitions in this region. The intensity of each non-

hyperfine transition is approximately the sum of the intensities of the eight strong

hyperfine transitions nearby but not rigorously equal to it. These strong hyperfine
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transitions were observed [10]. Our calculated positions agree well with the mea-

sured values. Note that, the hyperfine transitions are not necessarily distributed

around the non-hyperfine transitions, as the transitions near 9.8 cm−1 indicate. We

emphasize again that in this thesis the word ‘non-hyperfine’ is used as shorthand no-

tation for the terms given without considering nuclear hyperfine interactions. The

word has a different meaning from ‘hyperfine unresolved’ which is used to describe

blended hyperfine transitions.
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10-20
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10-19

0
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1×10-20

2×10-20
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Non-hyperfine

9.72 9.73 9.74 9.75 9.76 9.77 9.78 9.79 9.8 9.81 9.82

Measured

Figure 6.11: Comparison of the calculated (top and middle) and measured (bottom) transi-
tions near 9.77 cm−1. The line intensities in the top and middle panels were
calculated at 208 K. The middle panel only shows the strong transitions. The
hyperfine resolved line positions in the bottom panel were measured [10].

As the nuclear spin of 51V16O is 7/2, theoretically, one can get ‘forbidden’

dipole transitions up to |∆J| = 8. Table 6.11 lists eight transitions corresponding to

|∆J| = 1,2, · · ·8. As J is no longer a good quantum number for hyperfine structure,

the J′ and J′′ values here are the values of the dominant basis functions. The higher

|∆J| transitions are much weaker while transitions with |∆J| = 2 or 3 have Einstein-

A coefficients of similar magnitude to the ‘allowed’ |∆J| = 1 one. We are not aware

of the observation of such forbidden lines within the X 4Σ− state. However, |∆J| =
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2 (O and S branches) driven by hyperfine couplings have been observed in both

hyperfine-resolved [196, 192] and unresolved [179, 197] rovibronic spectra.

The lifetimes of hyperfine and non-hyperfine eigenstates of the lowest vibra-

tional level of X 4Σ− were calculated by using ExoCross, and compared in Fig. 6.12.

The hyperfine states have similar lifetimes as the corresponding non-hyperfine state.

1020304050
100

102

104

106

Non-hyperfine

10 20 30 40 50

Hyperfine

0

Figure 6.12: Comparison of lifetimes corresponding to the lower rotational levels of X 4Σ−,
v = 0. The J = 0.5 levels which have much longer lifetimes were not plotted
in this figure.

6.5 Conclusion
In this work, we investigate the hyperfine-resolved infra-red spectra of VO in the

X 4Σ− electronic state. The fine and hyperfine coupling curves required to construct

the spectroscopic model were calculated ab initio where possible but to reproduce

the observed hyperfine structure, they were scaled. The hyperfine splitting of the

X 4Σ− state is mainly determined by the Fermi-contact and electron spin-nuclear

spin dipolar interactions. Nevertheless, we also included the nuclear spin-rotation

and nuclear electric quadrupole coupling curves in our calculations. The hyperfine

resolved and unresolved cross sections show good consistence with each other when

using wide line broadening parameters.
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Chapter 7

Summary and Outlook

7.1 Summary of this thesis

The thesis develops methods for the variational calculation of fine and hyperfine

resolved rovibronic spectra of diatomic molecules and demonstrates the accuracy

and efficiency of these methods in representing complex diatomic systems with two

challenging cases, NO and VO.

The variational method for calcualtions of fine structure of diatomic molecules

is explained in the Theoretical Background chapter. To keep the consistency of theo-

retical derivations, an algorithm for the variational calculation of hyperfine structure

and spectra of diatomic molecules is immediately discussed in Chapter 3. The al-

gorithm is derived by using irreducible spherical tensors. Hyperfine coupling terms

considered in this thesis are the Fermi-contact, nuclear spin-electron spin dipole-

dipole, nuclear spin-orbit, nuclear spin-rotation and nuclear electric quadrupole in-

teractions. The algorithm is implemented in Duo and tested with two cases, 14N16O

and 24MgH. The results are compared to experiment and shown to be consistent

with those given in PGOPHER.

A spectroscopic model for the lowest four doublet states of NO, i.e., the X 2Π,

A 2Σ+, B 2Π and C 2Π states, is developed in Chapter 4. This model introduces a

diabatic coupling between the B 2Π and C 2Π states to describe the avoided crossing

structure of B-C coupled states. A spectroscopic network is built containing more

than 20000 transitions of NO. Energies levels are reconstructed from the network



122

by MARVEL analysis. The potential and coupling curves are refined such that

the model can reproduce eigenvalues that are consistent with the empirical energy

levels.

Based on the model, an accurate line list, called XABC, has been computed

in Chapter 5, which covers the pure rotational, vibrational and rovibronic spectra

of 14N16O. A mixture of empirical and theoretical electronic transition dipole mo-

ments are used for the calculation of transition intensities. The diabatic coupling

scheme is adopted in the spectroscopic model to successfully predict the line posi-

tions and intensities for the transitions in the B-C interaction region, which agree

well with the experimental values.

In Chapter 6, hyperfine resolved infra-red spectra of VO have been calculated

using a variational model, which aims to accurately predict the hyperfine struc-

ture within the VO X 4Σ− electronic state. Ab initio calculated nuclear hyperfine

coupling curves, including the Fermi-contact interaction, electron spin-nuclear spin

dipolar interaction, nuclear spin-rotation interaction and nuclear electric quadrupole

interaction, are considered. The calculated hyperfine-resolved cross sections show

good agreement with the hyperfine unresolved cross sections when using appropri-

ate lineshape broadening parameters. This and other comparisons validate both our

model and the implemented hyperfine modules in Duo.

7.2 Future work

7.2.1 Modules for hyperfine structure

Our current implementation of hyperfine modules in Duo only allows for nuclear

spin effects in one atom and neglects coupling between electronic states. The hy-

perfine coupling between two electronic states is known to be important for some

molecules. For instance, to analyse the spectrum of I35Cl, Slotterback et al. also

included the hyperfine coupling terms between the X 1Σ+ and A 3Π states [198].

Implementing this effect in Duo would require some further work on the matrix

elements but should not be a major undertaking. Treating the case where both

atoms possess a nuclear spin introduces another source of angular momentum and
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the interaction between the two nuclei also introduces new matrix elements [71].

Here there are two possibilities, homonuclear systems, such as 1H2 or 14N2, can

be treated by generalizing the scheme given in this thesis. Heteronuclear systems,

such as 1H14N, are a little more complicated as they give rise to different possible

coupling schemes [72]. Our plan is to gradually update Duo for each of these cases

as the need arises.

7.2.2 Line list of NO

The XABC line list covers the transitions of three main band systems of NO in

the ultraviolet spectral region, i.e. the γ, β and δ systems, connecting its lowest

four electronic states. However, experiments show that there are also strong absorp-

tion lines between the D 2Σ+ and X 2Π states of NO, i.e., within the ϵ band system.

Emissions between excited states of NO have also been observed. A more com-

prehensive line list can be further generated after a detail MARVEL analysis and

ab initio calculations.

7.2.3 Line list of VO

The MARVEL analysis of the VO molecule by Bowesman et al. [174] included 15

electronic states . An update model for VO can be developed based on this work and

further quantum chemistry investigations. The potential energy curves and coupling

curves of the 13 electronic states in the model of McKemmish et al. [190] can be

further refined. The model is expected to give a more accurate line list compared

with VOMYT [53]
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A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov,

A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison,

J.–M. Hartmann, V.–M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi,

I. Kleiner, V. Kofman, F. Kwabia–Tchana, N. N. Lavrentieva, T. J. Lee, D. A.

Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T.

Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Müller,

O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston,

Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke,
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