
MIT Open Access Articles

Remaining popular: power-law regularities in network dynamics

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: EPJ Data Science. 2022 Dec 15;11(1):61

As Published: https://doi.org/10.1140/epjds/s13688-022-00373-3

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/146908

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146908
https://creativecommons.org/licenses/by/4.0/


Somin et al. EPJ Data Science           (2022) 11:61 
https://doi.org/10.1140/epjds/s13688-022-00373-3

R E G U L A R A R T I C L E Open Access

Remaining popular: power-law regularities
in network dynamics
Shahar Somin1,2, Yaniv Altshuler2, Alex ‘Sandy’ Pentland2 and Erez Shmueli1,2*

*Correspondence:
1Department of Industrial
Engineering, Tel Aviv University,
Tel Aviv, Israel
2MIT Media Lab, Cambridge, MA,
USA

Abstract
The structure of networks has been a focal research topic over the past few decades.
These research efforts have enabled the discovery of numerous structural patterns
and regularities, bringing forth advancements in many fields. In particular, the
ubiquitous power-law patterns evident in degree distributions, graph eigenvalues
and human mobility patterns have provided the opportunity to model many
different complex systems. However, regularities in the dynamical patterns of
networks remain a considerably less explored terrain. In this study we examine the
dynamics of networks, focusing on stability characteristics of node popularity, and
present our results using various empirical datasets. Specifically, we address several
intriguing questions – for how long are popular nodes expected to remain so? How
much time is expected to pass between two consecutive popularity periods? What
characterizes nodes which manage to maintain their popularity for long periods of
time? Surprisingly, we find that such temporal aspects are governed by a power-law
regime, and that these power-law regularities are equally likely across all node ages.

1 Introduction
The study of complex systems and their structure has seen a growing interest in the past
few decades. Discovering the existence of seemingly ubiquitous meta-structures such as
the power-law patterns evident in degree distributions [1–3], graph eigenvalues [4] and
human mobility patterns [5] has heralded the use of a network oriented approach for mod-
eling, analyzing and predicting the macroscopic and mesoscopic behavior of “real-world”
systems in a myriad of everyday fields and applications.

Equally important is the quest for patterns and regularities in network dynamics, since
these could be used for analyzing and predicting the dynamics within a broad range of
domains. To date research of network dynamics has focused on three main categories.
The first and the most studied one is the spreading dynamics over a static network struc-
ture [6–11]. The second prevalent research direction involved analyzing the dynamics
of individual-level user activity, for instance by establishing inter-event power-law dis-
tributions [12–17]. The third line of studies entailed exploring network dynamics-related
characteristics, on a system-level perspective. These include shrinking diameters and net-
work densification patterns [18], spectral evolution [19], community formation dynamics
[20–22] and system-level bursty dynamics [23, 24].
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This study pertains to the third category, aiming at examining regularities in network
dynamics, while focusing on network stability patterns, as are manifested through the pop-
ularity1 of nodes. In principle, throughout the network’s lifetime, non popular nodes may
become popular and popular nodes might loose their status. In [25] we suggest a theo-
retical modeling which might explain such popularity changes. In the heart of this study,
we analyze temporal aspects of node popularity periods, such as the time-span for which
a “popular node” is expected to maintain its popularity status, the number of consecu-
tive popularity periods per node, and the time it takes for a node to regain its popularity
after losing it. We show clear statistical regularities with regards to all aforementioned
processes, in the form of an adherence to a power-law model, across various and distinct
empirical datasets. We further show that such power-law regularities are equally likely
across all node ages.

In order to provide a complete view of this phenomena, we also examine two generative
models and assess their ability to account for our empirical findings. Specifically, we in-
spect the prevalent Barabasi-Albert (BA) model (employing two parameter constellations)
and the Temporal Preferential Attachment (TPA) model, which accounts for the system’s
aging processes. We find that while many of the dynamic patterns are also captured by the
BA model, it fails to accurately account for the characteristics of highly popular nodes,
for all different examined constellations. In particular, while empirical evidence advocate
that long-term popularity applies to all node ages, the BA model is highly biased towards
early-joiners (i.e. nodes which have joined the network at its early stages). The TPA model
brings forth some advancement, as it is able to better qualitatively reproduce age-related
phenomena, however the low statistical significance of its results implies for the necessity
of further research. Our findings may shed a new light on node ranking dynamics, enhanc-
ing the understanding of node popularity shifts on the one hand and their fortification on
the other, regardless of node ages.

2 Materials and methods
2.1 Data
In this study we analyze empirical datasets from three distinct domains, as elaborated
below:

2.1.1 Amazon ranking dataset
The Amazon Product Rankings dataset [26] contains product reviews and metadata from
Amazon, including 142.8 million reviews spanning August 1997–July 2006. This dataset
includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, cate-
gory information, price, brand, and image features), and links (also viewed/also bought
graphs). We construct weekly bipartite temporal networks, containing product ratings
from the Amazon online shopping website. In each such temporal network, nodes repre-
sent users and products. An edge between a user and a product is formed if the user rated
the specific product within the given timespan. Previous studies that used this dataset for
the modeling of network properties can be found for example in [27–30]

1Throughout this paper, a node is referred to as popular if it is amongst the top-degree nodes in the network.
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2.1.2 ERC20 Ethereum blockchain ledger
Launched in July 2015 [31], the Ethereum Blockchain is a public ledger that keeps records
of all Ethereum related transactions. The ability of the Ethereum Blockchain to store not
only ownership, similarly to Bitcoin, but also execution code, in the form of “Smart Con-
tracts”, has recently led to the creation of a large number of new types of “tokens”, based
on the Ethereum ERC20 protocol. These tokens are “minted” by a variety of players, for
a variety of reasons, having all of their transactions carried out by their corresponding
Smart Contracts, publicly accessible on the Ethereum Blockchain. As a result, the ERC20
ecosystem constitutes a fascinating example of a highly varied financial ecosystems whose
entire activity is publicly available from its inception. This dataset was used in several net-
work theory related studies [32–34] including financial assets adoption [35] and Malware
and BOTs detection [36].

In order to preserve anonymity in the Ethereum Blockchain, personal information is
omitted from all transactions. A user, represented by their wallet, can participate in the
economy system through an address, which is obtained by applying Keccak-256 hash func-
tion on his public key. The Ethereum Blockchain enables users to send transactions in or-
der to either send Ether to other wallets, create new Smart Contracts or invoke any of their
functions. Since Smart Contracts are scripts residing on the Blockchain as well, they are
also assigned a unique address. A Smart Contract is called by sending a transaction to its
address, which triggers its independent and automatic execution, in a prescribed manner
on every node in the network, according to the data that was included in the triggering
transaction.

We have retrieved all transactions spanning from February 2016 to January 2019, result-
ing in 179,488,619 transactions, performed by 27,888,847 unique wallets, trading 79,451
distinct tokens. We construct weekly bipartite temporal networks, containing crypto-
tokens transactions on top of the Ethereum Blockchain. Nodes represent trading wallets
and crypto-tokens. An edge between a wallet and a token is formed if the wallet bought
or sold the given token in the examined timespan.

2.1.3 eToro financial trading dataset
The financial transaction data used in this work was received from an online social finan-
cial trading platform for foreign exchanges, equity indices and commodities, called eToro
[37, 38]. This trading platform allows traders to take both long and short positions, with a
minimal bid of as low as a few dollars, thus providing access for retail traders to investment
activities that until recently were only available for professional investors. A key feature
of eToro’s “social trading” platform is that each trader can easily see the complete trading
history of other investors. Investors can then set their accounts to copy one or more trades
made by any other investors, in which case the social trading platform will automatically
execute the trade(s). Accordingly, there are three types of trades: (i) Single (or non-social)
trade: Investor A places a normal trade by himself or herself; (ii) Copy trade: Investor A
places exactly the same trade as investor B’s single trade; (iii) Mirror trade: Investor A au-
tomatically executes Investor B’s every single trade, i.e., Investor A follows exactly investor
B’s trading activities (and implicitly their investment decisions). Both (ii) and (iii) are here-
after referred to as social trading, and can be regarded as decision making that is based on
information received through the common social medium.

The data that was analyzed for this work encompasses approximately 3 million regis-
tered accounts, containing over 40 million trades during a period of 3 years. We construct



Somin et al. EPJ Data Science           (2022) 11:61 Page 4 of 14

weekly temporal networks, based on the mirroring activity of users on top of this plat-
form.2 The nodes represent traders (followers and followees). An edge (v1, v2) between
two traders is formed if trader v1 mirrored the trading activity of trader v2. Previous stud-
ies of this dataset can be found in [39–46].

2.2 Methods
2.2.1 Temporal networks
We define temporal networks as follows.

Definition 2.1 The temporal graph for a given timestamp t, Gt(Vt , Et) is the directed
graph constructed from all transactions performed during the time period [t – �, t). The
set of vertices Vt consists of all entities participating in the network activity during that
period:

Vt :=
{

v‖v participates in network activity during [t – �, t)
}

(1)

and the set of edges Et ⊆ Vt × Vt is defined as:

Et :=
{

(u, v)‖An activity between u and v occured during [t – �, t)
}

. (2)

The temporal degree of a vertex v ∈ Vt is defined as:

degt(v) =
∣∣{u ∈ Vt|(u, v) ∈ Et

}∣∣. (3)

Definition 2.2 Given a time-stamp t ∈ [T], the rank assigned to node v ∈ Vt , according
to its degree degt(v), is denoted by rankt(v). The ranking is performed in a descending
order, such that the rank of 1 corresponds to the highest degree node in Vt . Specifically,
rankt(v) = r if there are r – 1 nodes with a higher degree than v:

rankt(v) =
∣∣{u ∈ Vt such that degt(u) > degt(v)

}∣∣ + 1. (4)

Ties are broken randomly, by a random internal ranking of groups containing identical
degree nodes. Given a threshold T̂ , a node v will be referred to as popular if its rank is
amongst the top-T̂ nodes:

1 ≤ rankt(v) ≤ T̂ . (5)

2.2.2 Fitting a heavy-tailed model
In this work, we find that the examined distributions present heavy-tailed patterns. In
order to substantiate this hypothesis and determine the exact model best representing
these distributions, we compared four plausible heavy-tailed models:

1. The power-Law model: P(k) = k–α

2. The Truncated Power-Law model: P(k) = k–α · e–λk

2We chose mirroring actions as the underlying edges in the network building process, since they imply strong trust in user
B for user A. In particular, users who are mirrored and followed the most are likely to be the best traders, highly reflecting
their popularity [39].
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3. The Exponential model: P(k) = λe–λk

4. The Lognormal model: 1
kσ

exp(– (ln(x)–μ)2

2σ 2 )
To this end we applied a prevalent statistical framework [1] encompassing two main stages.
Namely, given a heavy tailed model M:

Stage 1: calculate goodness of fit
1. Fit the empirical data to the given model M, estimate its parameters PM using

maximum likelihood estimators, and calculate the Kolmogorov-Smirnov (KS)
statistic3 for this fit – KSM .

2. Calculate the goodness-of-fit between the data and the examined model. This stage
incorporates:
(a) Generate n = 1000 synthetic data sets with the PM parameters.
(b) Fit each synthetic data set individually to its own model M and calculate the KS

statistic KSi for each one relative to its own model.
(c) Calculate the p-value, being the fraction of times that KSi (∀i ∈ n) is larger than

KSM .
3. If the resulting p-value was greater than 0.05 the model M was considered to be a

plausible hypothesis for the data, otherwise it was rejected.

Stage 2: compare plausible models Compare all plausible models which were not rejected
in the previous step using a likelihood ratio test. The log likelihood ratio test calculates the
likelihood of the given data between two competing distributions. The logarithm of this
ratio is positive or negative depending on which model presents a better fit, or is zero if
a tie is obtained. The sign of the log likelihood ratio is subject to statistical instability and
when close to zero, the fluctuations can change its sign. In order to establish the statis-
tical significance of the log likelihood ratio sign, we calculate its standard deviation and
corresponding p-value, where small p-values indicate that the established sign is a reliable
estimate of model compatibility.

2.2.3 Barabasi-Albert (BA) model simulations
Introduced in 1999 [47], the BA Model was based on the discovery that a common prop-
erty of many large networks is that vertex connectedness follows a scale-free power-law
distribution. This feature appears generically in expanding networks where new vertices
attach preferentially to already well connected sites. The proposed model managed to
reproduce various stationary scale-free distributions, indicating that the development of
large networks is governed by robust generic self-organizing phenomena that are agnos-
tic to the particularities of the examined system. The BA Model has served as the basis of
numerous studies in various scientific fields, including social networks analysis [9, 48, 49],
computer communication networks [50], biological systems [51], transportation [52, 53],
IOT [54], emergency detection [55], financial trading systems [40, 41, 44] and many oth-
ers.

In order to substantiate our empirical findings, we examine the dynamics established by
the Barabasi-Albert (BA) model. First we generate a Barabasi-Albert scale-free network
G(V , E) over n = 100,000 nodes. A single node is added at every iteration, each outputting

3The KS statistic is the maximum distance between the CDFs of the data and the fitted model.
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Algorithm 1 Tagged Barabasi-Albert Scale-Free Network (n, m)
Input n: Number of requested nodes.

m: Number of edges to attach from each new node to existing nodes.
Output A scale-free network, with edges tagged with the iteration number

at which they were added to the network.
1: G ← Graph(nodes = m) {Create a graph with m nodes and zero edges.}
2: for i = m + 1 : n do
3: addNode(G, vi)
4: for j = 1 : m do
5: u ← selectNode(G) {A target node is chosen with a probability

proportional to its degree.}

6: addEdge(G, (vi, u), tag = i) {An edge is added and tagged
with the iteration number.}

7: end for
8: end for
9: return G

m = 20 edges, which are preferentially attached to existing nodes, proportionally to their
degree. Algorithm 1 depicts this standard Barabasi-Albert process for scale-free network
generation [47], with the minor alteration of tagging the added edges with the iteration
at which they were added to the network. Next, in order to construct temporal networks
from G(V , E) we follow def. 2.1 with varying � choices:

1. � = 100
2. � ∼ Norm(μ,σ ) for μ = 100, σ = 20

Specifically, each temporal network Gt(Vt , Et) is composed of all edges whose tags are
within the following range:

Et =
{

(e, tag) ∈ E|tag ∈ [t – �, t)
}

(6)

and all the nodes that participated in these iterations:

Vt =
{

u ∈ V |(u, v) ∈ Et or (v, u) ∈ Et
}

. (7)

2.2.4 Trendy preferential attachment (TPA) model simulations
The Trendy Preferential Attachment model [56] is a forget-based extension to the BA
model. It presents a network evolution model where edges become less influential as they
age. The diminishing influence is modeled by a monotonically decreasing function f (τ )
of their age τ . We have chosen to apply f (τ ) ∝ 1/(τ 2). As such, the probability of a new
node to connect to another node v in time t is proportional to its time-weighted degree as
follows:

d̂egt(v) = f (1) · degt–1(v) + f (2) · degt–2(v) + · · · + f (t – 1) · deg1(v), (8)

where degt(v) is the actual (not time-weighted) degree of node v at time t.
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We start by generating a TPA network G(V , E) over n = 100,000 nodes. A single node is
added at every iteration, each outputting m = 20 edges, which are preferentially attached
to existing nodes, proportionally to their time-weighted degree. Similarly to the process
we have performed with the BA model, we tag each edge with the iteration at which it
was added to the network. Next, in order to construct temporal networks from G(V , E)
we follow def. 2.1 with � = 100.

3 Results
3.1 Empirical analysis
We examine the dynamics of nodes popularity levels over time, as measured by their
degree-based rankings. In particular, for each temporal graph Gt we rank all nodes in Vt

according to their associated in-degree, in a descending order (consider def. 2.2 for further
details) and examine these ranks over time. Table 1 presents a description of the ranked
items in each dataset.

We start by presenting the popularity dynamics of several randomly chosen nodes from
three real-world datasets, as qualitatively depicted in Fig. 1. We observe that nodes’ pop-
ularity periods vary considerably in length, and that certain nodes can regain high levels
of popularity even after massive drops in popularity.

In the rest of this section, we examine the dynamics of popularity from a system per-
spective. For a given temporal graph, a node is considered to be popular if it was among the
top 100 highest degree nodes.4 We start by examining the distribution of node popularity

Table 1 Dataset Network Representation

Dataset Edges Ranked Nodes Popularity Significance

Amazon ratings Users × Products Products Amount of users who ranked
the product.

Ethereum Blockhcain Traders × Crypto-tokens Crypto-tokens Amount of traders who bought
the token.

eToro: Social Trading Platform Traders × Traders Mirrored traders Amount of traders who
mirrored user’s trading activity.

Figure 1 Upper panels depict the popularity dynamics of 100 randomly chosen nodes (amongst nodes that
were ever in the top 100) from the Amazon (panel A), the Blockchain (panel B) and the eToro (panel C)
networks. Color-bar in the upper panels indicates nodes’ ranking (in log scale), where brighter colors indicate
higher popularity (better rank). The Y-axis depict time (in weeks), progressing from top to bottom. Missing
values (colored in white) indicate that nodes were not active at all during this point in time, and therefore did
not possess any edges in the corresponding temporal network. Lower panels present the amount of
non-consecutive popularity sequences each node had throughout its lifetime, validating that there are nodes
which manage to regain popularity even after previously loosing it

4See Additional file 1, Sect. 6.1 for other thresholds T̂ ∈ (10, 25, 50) analyses.
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Figure 2 Popularity sequence length distribution. Panel A presents the distribution corresponding to the
Amazon network, panel B to the Blockchain network, and panel C to the etoro network. All three datasets
present a truncated power-law distribution of popularity sequence lengths, indicating that while a small
portion of nodes remain popular for long periods of time, the majority of nodes have rather short popularity
sequences

Figure 3 Distribution of the number of popularity sequences per node. Panel A presents the distribution
corresponding to the Amazon dataset, panel B to the Blockchain dataset, and panel C to the eToro dataset. All
three empirical datasets exhibit a truncated power-law distribution

sequence lengths, where the popularity sequence of a node is defined as the consecutive
time-span for which it was popular. As depicted in Fig. 2, all three empirical datasets (Ama-
zon (panel A), Blockchain (panel B) and eToro (panel C)) present a truncated power-law
distribution of popularity sequence lengths (See Supportive statistical analysis in Tables 2,
3, Additional file 1). This result is rather surprising, as one might expect that once a node
manages to join the “most popular list” it would maintain its popularity status for long
periods of time. Real-world systems however do not abide by these rules. Instead, we note
that the vast majority of popular nodes remain popular only for short periods of time and
only a minority of nodes manage to preserve their popularity status for long periods of
time.

Next, we analyze the distribution of the number of popularity sequences per node. As
presented in Fig. 3, all three empirical datasets follow a truncated power-law distribu-
tion (See supportive statistical analysis in Tables 2, 3, Additional file 1). Interestingly, this
implies that the vast majority of nodes, after losing their popularity status, will remain
non-popular. However, there are the selected few who manage to regain popularity over
and over.

We also examine the distribution of gap lengths (in weeks) between consecutive popu-
larity sequences of each node. As depicted in Fig. 4, all three empirical datasets (Amazon
(panel A), Blockchain (panel B) and eToro (panel C)) follow a truncated power-law distri-
bution (See supportive statistical analysis in Tables 2, 3, Additional file 1). This result sug-
gests that most nodes which manage to regain their popularity, do so after short periods
of time. Nonetheless, and somewhat counter-intuitively, few nodes manage to ‘resurrect’
and become popular again even after a rather long time.
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Figure 4 Gap length (in weeks) between consecutive popularity sequences of each node. Panel A presents
the distribution corresponding to the Amazon network, panel B to the Blockchain network, and panel C to
the eToro network. All three empirical datasets display a truncated power-law distribution of the gap lengths
between popularity sequences

Figure 5 Popularity sequence length as a function of node inception time (in weeks, after system start time).
Upper panels present a heat-map depicting popularity sequence lengths as a function of node inception
time, with coloring standing for the number (log-scale) of nodes with a given popularity sequence length and
inception time. All three empirical datasets (Amazon (panel A), Blockchain (panel B), eToro (panel C)) suggest
that long popularity sequences apply to nodes of all ages. Lower panels depict the distributions of popularity
sequence lengths, each with respect to different inception-related subgroups of nodes. All three empirical
datasets (Amazon (panel D), Blockchain (panel E), eToro (panel F)) across all inception-related categories seem
to follow a truncated power-law model

Finally, we are interested in examining the characteristics of long-term popular nodes.
Specifically, Fig. 5 depicts the connection between popularity sequence lengths and node
“inception” times (the time on which a node was first introduced to the network). We first
observe that long-term popularity has an approximately uniform spread across nodes of
all ages, for the examined datasets (panels A-C). Furthermore, we find that the scale-free
nature of the distribution of popularity sequence lengths (as exhibited in Fig. 2) is also
“age-free” (panels D-F). Namely, even when removing X ∈ {0%, 10%, . . . , 90%} of the oldest
nodes from the network, the popularity distribution associated with the remaining sub-
network still follows a truncated power-law model (see 6.4, Additional file 1 for statistical
support).

3.2 Generative models analysis
We next examine the popularity dynamics established by two network-evolution models.
We start by exploring the well-known Barabasi-Albert (BA) model. This model, being one
of the most prevalent and well-studied models for network evolution, was the first to ac-
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Figure 6 Dynamics analysis of the Barabasi-Albert model. Panel A depicts the popularity sequence lengths
distribution, panel B manifests the number of popularity sequences distribution, and panel C presents the
distribution of gap lengths between consecutive popularity sequences. All three distributions seem to follow
a truncated power-law model, in accordance with our empirical evidence. Panel D presents a heat-map
depicting popularity sequence lengths as a function of node inception times (node tag), indicating that long
popularity applies solely to early-joiners. Panel E depicts the distributions of popularity sequence lengths,
each with respect to different inception-related subgroups of nodes. In contrast to empirical evidence,
popularity longevity is highly biased towards early-joining nodes

count for the formation of power-law patterns in network structure5 (namely, heavy-tailed
degree distributions). It is therefore interesting to verify the extent to which it manages to
reproduce the power-law distributions observed in the network dynamics and their tem-
poral characteristics. To this end, we construct temporal networks from a BA model simu-
lation (see Methods section for details). Interestingly, we note that the BA model succeeds
in capturing all three distributions (panels A-C, Fig. 6). However, it fails to reproduce the
connection between nodes’ popularity and their inception times, as seen in our empiri-
cal examples. In particular, the BA model is highly biased towards early-joiners becoming
popular for long periods of time (panel D, Fig. 6) and its inception-time related distribu-
tions do not generally follow a power-law distribution (panel E, Fig. 6). Consider Sect. 6.4,
Additional file 1, for supportive statistical analysis and Sect. 6.2 for a further analysis of a
different BA temporal network configuration.

We continue by analyzing the dynamics established by a forget-based extension to the
BA model. We believe that a mechanism which allows recent activity to have a heavier
impact on the edge attachment process, might prevent the heavy popularity tilt towards
early-joining nodes. In particular, we analyze the Trendy-Preferential Attachment model
(TPA) [56] which presents a network evolution model where edges become less influential
as they age. We construct temporal networks from a TPA model simulation (see Meth-
ods section for further details). Interestingly, we note that such forget-based mechanism

5Consider Fig. 9, Additional file 1 which shows that the temporal degree distributions of the empirical datasets are indeed
heavy-tailed.
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Figure 7 Dynamics analysis of the Trendy Preferential Attachment (TPA) model. Panel A depicts the
popularity sequence lengths distribution, panel B manifests the number of popularity sequences distribution,
and panel C presents the distribution of gap lengths between consecutive popularity sequences. All three
distributions seem to follow a truncated power-law model, in accordance with our empirical evidence. Panel
D presents a heat-map depicting popularity sequence lengths as a function of node inception times (node
tag), indicating that long popularity applies solely to early-joiners. Panel E depicts the distributions of
popularity sequence lengths, each with respect to different inception-related subgroups of nodes. This
forget-based mechanism manages to reproduce both the power-law dynamics their age related
characteristics

manages to qualitatively reproduce both the power-law distributions and their age charac-
teristics (Fig. 7). However, when employing GOF analysis to the results, we find that both
the dynamical distributions and the age-related distributions obtain rather low statistical
significance for their power-law fit (see Sect. 6.4, Additional file 1.)

4 Discussion
In this study, we examined various characteristics related to the dynamics of node popu-
larity in networks. In particular, we have analyzed the lengths of time periods for which
nodes attain high popularity, the number of such periods per node, and the distribution of
time gaps between two such consecutive periods. We have shown that truncated power-
law patterns accurately describe these characteristics of network dynamics within three
distinct empirical datasets, providing what may be the first evidence for these particu-
lar power-law regularities in network dynamics. We further examined the characteristics
of long-term popular nodes. We show that across all three examined datasets, node ten-
dency towards long popularity periods is not affected by their joining time to the network.
Furthermore, we found that this scale-free property is also “age-free”, as the power-law dis-
tribution is evident across all age categories.

While the Barabasi-Albert (BA) model manages to capture some of these dynamics-
related characteristics, it fails to accurately account for the connection between popularity
dynamics and node ages. In particular, it shows a considerable bias towards early-joiners,
having long popularity periods, in sharp contrast to the real-world networks we have ex-
amined. It is important to note however, that the BA temporal networks in our simulations
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differ from real-world temporal networks since they are restricted to the exact number
edges, resulting in upper bounded temporal degrees. Further research is required in order
to fully comprehend the effect this restriction has on the established results. Nevertheless,
a preliminary analysis we have performed (consider Sect. 6.2, Additional file 1 for further
details) examined the effect of Gaussian noise added to the amount edges each temporal
network consists of, and presented results consistent with the original BA specifications.
We speculate that the origins of this mismatch between the BA model and the empirical
evidence are rooted in the likelihood of popular nodes to be of a given age. Indeed, while
the BA framework is heavily skewed towards early-joining popular nodes, the empirical
datasets exhibit a roughly uniform distribution of inception times among popular nodes
(see supportive analysis in Sect. 6.5, Additional file 1). This suggests different forces are
behind the empirically established power-law distributions.

Employing a forget-based extension of the BA model (TPA), we found that it is able to
qualitatively reproduce the examined dynamical patterns, and has a better agreement with
the age characteristics of popularity. Nevertheless, the low statistical significance of its re-
sults suggests the need of further research in order to understand the forces and mech-
anisms behind the observed dynamics and their age-related characteristics. Such efforts
might include examining other recent network evolution models [56–60] and developing
new generative models to account for these findings.

Furthermore, since the presented analysis was focused on economy-related datasets, it
is intriguing to verify whether the established regularities are a specific characterization of
economical networks, or whether they actually describe any social network, regardless of
its domain. Accompanied by the increasing availability of temporal empirical data, these
research directions could enable much deeper understanding of dynamical regularities,
and impact domains ranging from biology to social science.
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