Manuscript version: Working paper (or pre-print)
The version presented here is a Working Paper (or ‘pre-print’) that may be later published
elsewhere.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/172158

How to cite:

Please refer to the repository item page, detailed above, for the most recent bibliographic
citation information. If a published version is known of, the repository item page linked to
above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/172158
mailto:wrap@warwick.ac.uk

WARWICK

ECONOMICS

External Instrument SVAR Analysis for Noninvertible Shocks

Mario Forni, Luca Gambetti and Giovanni Ricco

December 2022 No: 1444

Warwick Economics Research Papers

ISSN 2059-4283 (online)
ISSN 0083-7350 (print)



External Instrument SVAR Analysis for
Noninvertible Shocks

Mario Forni', Luca Gambetti?, and Giovanni Ricco?

YUniversita di Modena e Reggio Emilia, CEPR and RECent
2 Universitat Autonoma de Barcelona, BSE, Universita di Torino, CCA

3 University of Warwick, OFCE-SciencesPo, and CEPR

20th December 2022

Abstract

We propose a novel external-instrument SVAR procedure to identify and estimate the
impulse response functions, regardless of the shock being invertible or recoverable. When
the shock is recoverable, we also show how to estimate the unit variance shock and
the ‘absolute’ response functions. When the shock is invertible, the method collapses
to the standard proxy-SVAR procedure. We show how to test for recoverability and
invertibility. We apply our techniques to a monetary policy VAR. It turns out that, using
standard specifications, the monetary policy shock is not invertible, but is recoverable.
When using our procedure, results are plausible even in a parsimonious specification,
not including financial variables. Monetary policy has significant and sizeable effects on
prices.
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1 Introduction

Since the seminal contributions of Stock (2008), Mertens and Ravn (2013) and Stock and
Watson (2018), Proxy-SVAR (or SVAR-IV) methods have become a popular approach to
structural macroeconomic analysis. A very partial list of recent noticeable applications include
Stock and Watson (2012), Mertens and Ravn (2014), Gertler and Karadi (2015), Mertens and
Montiel-Olea (2018), Paul (2020) and Miranda-Agrippino and Ricco (2021).

A severe limitation of the method is that it requires invertibility (Stock and Watson,

1A shock is invertible if it is a linear

2018, Miranda-Agrippino and Ricco, forthcoming).
combination of the present and past values of the VAR variables, i.e. a contemporaneous
linear combination of the VAR residuals.

Invertibility is a demanding property, often unlikely to be satisfied by commonly adopted
VAR specifications. In fact, several works have argued that it is hardly valid in the presence
of ‘news’ technology shocks (Forni et al., 2014), forward guidance (Ramey, 2016) or fiscal
foresight (Mertens and Ravn, 2010, Ramey, 2011, Leeper et al., 2013), and necessarily fails for
the so-called ‘noise’ shocks (Blanchard et al., 2013, Forni et al., 2017). The problem is that
current values of the macroeconomic variables do not convey enough information to recover
the shock. Here we show that invertibility does not hold for a few standard monetary-policy
VAR specifications.

In this paper we propose a simple SVAR procedure with an external proxy which does not
require invertibility. Instead of regressing the VAR residuals onto the current proxy only —
what we name ‘the standard procedure’ — we regress the VAR residuals onto the current proxy
and its lags. The impulse response functions are then estimated by combining the coefficients
of this regression with the reduced-form impulse response functions obtained from the VAR.
As for variance decomposition, we show how to implement the upper and lower bounds of
Plagborg-Mgller and Wolf (2022) within our setting. While the ‘relative’ impulse-response
functions can be always estimated, the ‘absolute’ response functions and the structural shock
itself cannot, unless the shock is recoverable.

Recoverability (Chahrour and Jurado, 2021) is much less demanding than invertibility. A
shock is recoverable if it is a linear combination of the present, past and future values of the
VAR variables, or, equivalently, it is a linear combination of the present and future values of

the VAR residuals.?

1Stock and Watson (2018) require global invertibility. Miranda-Agrippino and Ricco (forthcoming) show
the method can be generalized to the case of partial invertibility, at the cost of reinforcing the validity
conditions for the instrument.

2Consider that, if the number of shocks is equal to the number of variables, recoverability is always fulfilled



In this paper, we show how to test for recoverability and estimate the structural shock of
interest when it is recoverable. We simply regress the proxy onto the present and future values
of the VAR residuals. We show that, if the shock is recoverable, the fitted value is a consistent
estimate of the shock and therefore must be serially uncorrelated. Following a valuable
suggestion of Plagborg-Mgller and Wolf (2022), we then propose to test for recoverability
by testing for serial uncorrelation of such fitted value. If the test does not reject the null,
we can estimate the unit-variance shock and the corresponding ‘absolute’ impulse-response
functions. Having an estimate of the shock, historical decomposition can be performed as
usual. Standard variance decomposition is downward biased at finite horizons when the model
is not globally invertible. However, we can get an unbiased variance decomposition by looking
at the integrals of the spectral densities over specific frequency bands, as suggested in Forni
et al. (2019).°

The regression of the proxy onto the present and future values of the VAR residuals also
allows us to test for invertibility. For, under the invertibility assumption, the shock is a
linear combination of current VAR residuals only. Hence a simple F-test for the null of zero
coefficients for the future residuals tells us whether the shock is invertible or not. If the null
of invertibility is not rejected, our proposed procedure collapses to the standard proxy-SVAR
procedure. A few Monte Carlo exercises validate our proposed procedure in small samples.

In the empirical application, we study the effects of US monetary policy using the proxy
of Gertler and Karadi (2015). Such instrument is based on surprises in federal fund futures
with three-month maturity, so that it is likely to capture both conventional monetary policy
shocks and shocks to forward guidance about the path rate at short horizons. This news
component might induce noninvertibility, thus providing a strong motivation for our analysis.

Our main findings are the following. First, in standard VAR specifications the monetary
policy shock turns out to be noninvertible. This is true even for specifications including the
excess bond premium or other financial variables. Hence, the results obtained so far with the
standard proxy-SVAR approach should be taken with caution.

Second, when using our proposed procedure, a contractionary shock reduces inflation and
output, consistently across different VAR specifications and independently of the inclusion
of financial variables, whereas, when using the standard proxy-SVAR approach, results are
dramatically different across different VAR specifications.

Finally, the monetary policy shock is recoverable, so that we can perform variance

for all shocks, whereas invertibility requires special conditions on the impulse-response functions (see e.g.
Lippi and Reichlin, 1993, Lippi and Reichlin, 1994 and Fernandez-Villaverde et al., 2007).
3The method is the same used, for different purposes, in Angeletos et al. (2020).



decomposition. The variance decomposition shows that the contribution of the monetary
policy shock on both output and prices is sizeable and larger than previously reported. This
is a noticeable result, in that it suggests that monetary policy can be effective in controlling
prices, contrary to what found in most of the existing literature.

Our paper is closely related to the growing literature studying structural macroeconomic
shocks and impulse-response functions by means of ‘narrative’ proxies or instrumental variable
methods. In this stream of literature, we can distinguish three approaches: the first one uses
a VAR with an external proxy; the second uses Jorda (2005) local projections; the third
includes the proxy in the VAR (Ramey, 2016, Plagborg-Moller and Wolf, 2021) or in a VARX
(Paul, 2020). Our contribution is in the first line of research, i.e. the external proxy SVAR
approach. By generalising the standard procedure, we relax the validity conditions of this
method, while retaining its strengths. In this sense, our procedure makes the external-proxy
SVAR more appealing compared to existing alternatives. The key advantage of our method is
that, under recoverability, it produces an estimate of the structural shock and the variance
decomposition. Moreover, our method is more flexible in various respects; in particular, the
time span of the proxy can be different from the time span of the VAR variables.

A further contribution of the present paper is represented by the recoverability test and
the invertibility test, which provide a simple and valuable guidance for the choice of the
VAR variables. Stock and Watson (2018) and Plagborg-Mgller and Wolf (2022) also propose
invertibility tests based on the proxy. The former requires estimation of LP-IV. The latter
consists in testing whether the proxy Granger causes the VAR variables. In our setting, the
F-test on the joint significance of future VAR residuals is more appropriate than the Granger
causality test, being a natural by-product of the estimation procedure.

The remainder of the paper is organised as follows. Sections 2 and 3 discuss the general
framework and present the theoretical results on identification with external instruments. The
proposed procedure is summarised in Section 4. Section 5 presents a few simulation exercises,
while Section 6 offers an empirical application to the identification of monetary policy shocks.

The last section provides some conclusions.

2 Representation theory

In this section we introduce our theoretical framework and study the relation between the
structural representation and the VAR representation when the structural shock of interest is

not recoverable, recoverable but not invertible, and invertible.



2.1 The model

Let us start from our assumptions about the structural macroeconomic model and the VAR

representation.

Assumption 1. (Structural MA representation) The observable macroeconomic variables in

the n-dimensional vector y; (possibly after suitable transformations) have the representation
Yt = B(-L)ut) (]‘)

where (1) B(L) = By + BiL + BoL* + -+ is an n X ¢ matriz of rational impulse-response
functions in the lag operator L; (ii) n < q and B(L) has mazximum rank n; (i) u; is a
q-dimensional white noise vector including the structural shocks, whose variance covariance

matriz is I,.*

The above model is sometimes referred to as the Slutsky-Frisch representation of the
macro economy. It can be thought of as resulting from the linearisation of a DSGE model
and can easily be derived from its state-space representation. Notice that we do not assume
that the number of shocks is equal to the number of variables, so that the matrix B(L) is
not necessarily square. However, we assume that the number of variables cannot be larger
than the number of shocks (n < ¢). This assumption can be justified by recognising that the
variables are observed with error and such errors are allowed to enter the vector u; together
with the structural shocks. Since the entries of B(L) are rational functions, the assumption
that B(L) has maximum rank n implies that B(z), z being a complex variable, has rank n
almost everywhere in the complex plane. This is tantamount to assuming that the spectral

density matrix of y;, i.e. SY(6) = 2i (e779)B'(¢??), j being the imaginary unit, is nonsingular

a.e. in [ m).°
In this paper we are concerned with identification of a single shock of interest, say ;.
In order to highlight the shock of interest and the corresponding response functions, it is

convenient to re-write (1) in the form
ye = bi(L)usy + B(L)y, (2)

where b;(L) = byg + bir L 4 bipL? + - - - is the i-th column of B(L), B(L) includes the other

4We omit the constant term for notational simplicity. A rational impulse-response function is the ratio of
two polynomials in L.

A treatment of the case ¢ < n, where the variables have a singular spectral density matrix, can be found
in Forni et al. (2020).



columns of B(L) and @; = (U1 -+ Wi—1t Wit1s - Ug)'
On the other hand, being stationary and purely nondeterministic by (1), y; necessarily
admits the Wold representation
y: = C(L)e (3)

where C(L) = Cy + C1 L + CoL? + - -+ and &; is a vector white-noise process with covariance
matrix .. Of course, this representation is square.

For VAR estimation, it is convenient to add the following assumption.

Assumption 2. (VAR representation) The matriz of the Wold representation C(L) has an
inwverse in the non-negative powers of L, possibly of infinite order. Hence, letting its inverse

be A(L), y: has the VAR representation

A(L)ys = & (4)

2.2 Structural shocks and VAR residuals

What is the relation between the structural shocks u; and the VAR residuals ;7 What is
the relation between the structural response functions B(L) and the VAR coefficients A(L)?
To begin, we present a very general result, not requiring either invertibility or recoverability.
Then we define these important properties of the structural shocks and specialize our results

to the recoverability and the invertibility cases.

2.2.1 A general result

Clearly, the VAR residuals ¢; are linear combinations of the current and lagged structural

shocks uy, since from Equations (1) and (4) we see that
e = A(L)yr = A(L)B(L)ur = Q(L)uy. ()

But what about the inverse relation, i.e. the one relating u; to ;7 Unfortunately, in the
general case we cannot write u; as an exact function of the €’s. To see this, consider the case
q > n, i.e. there are more structural shocks than VAR residuals: intuition suggests that in
this case we cannot have an exact linear mapping relating all of the shocks in u; to those in
g,. We show below that this is in fact the case. The best we can do, within a linear setting, is
to approximate u; by taking the projection of u; onto H, the space spanned by the present,

past and future of the Wold shocks ¢,: H =span(e;i—x,j = 1,...,n,k € Z). Denoting with



P the linear projection operator, we have
up = P(w|H) + s; = D'(F)e; + 51, (6)

where s, is the residual of the projection, F' = L~ is the forward operator such that Fe, = &,
and D'(F') is a ¢ X n matrix of linear filters. Existence of the above infinite sum representation
is guaranteed by the fact that ¢, is a vector white noise.

The following result shows that there is a precise relation between (5) and (6).
Proposition 1. (Basic representation theorem)
(i) D(F) is one-sided in the non-negative powers of F.

(ii) Q(L) defined in (5) is linked to the projection coefficients in (6) by the relations
Q(L)=3%.D(L);  D(L)=3%'Q(L). (7)

(111) The structural impulse-response functions are linked to the Wold impulse response

functions by the relation
B(L) = C(L)Q(L) = C(L)%:D(L).
In particular, for the impulse-response functions of interest the relation is

bi(L) = C(L)g:(L) = C(L)S.di(L). (®)

Proof. Let H; be the ‘half-space’ spanned by present and future €’s, i.e. H; = span(e;;_x,j =
1,...,n,k < 0), and H, be the half-space spanned by present and past ¢’s, i.e. H, =
span(ejy—k,j = 1,...,n,k > 0). Then H is the direct sum of the orthogonal subspaces H;
and H, ;, so that P(u]H) = P(us|H;") + P(us|H,; ). But the latter projection is zero,
since u; is white noise, and therefore is orthogonal to ¢, = Q(L)u;_ for any k& > 0. This
establishes (i). To prove (ii) we use the cross-covariance generating function of ¢; and u,, say

G.u(2), z being a complex variable.® From (5) we get G.,(z) = Q(z). Now let us consider

5Let a; and e; be two zero-mean weakly stationary variables. Let 'y, = E(atbL ). The cross-covariance
genearating functions is defined as the z-transform of the cross-covariance function, i.e. Gae(z) = > 7o Tp2*.
A well-known result in time series theory is the following. Let v; be a vector white noise with covariance
matrix X,. Let a; = M(L)v; + p;, where p; is orthogonal to v; at all leads and lags and M (L) = 3% My L".
Finally, let e; = N(L)v; + s¢, where p; is orthogonal to v, and p, at all leads and lags and N(L) = >->_ N, L*.
Then the cross-covariance generating function of a; and e; is given by Gae(2) = M (2)S,N'(271).



the opposite covariance, i.e. the cross-covariance generating function of u; and ¢;: from (6)
we get Gu.(2) = D'(z71)2S.. But Gou(2) = G .(27') = X.D(z2). The first equation in (7)
follows. As for the second, we have just to show that Y. is invertible. Now, the rank of
the spectral density matrix of y,, which is equal to B(e™7?)B’(e/?), j being the imaginary
unit, is equal to n a.e. in [—m,7), since B(L) has maximum rank n by Assumption 1 (ii).
But B(e™%)B'(e/%) = C(e99)S.C"(e?), so that . has rank n. Finally, (iii) is obtained by
pre-multiplying Equation (5) by C'(L) = A(L)™! and using (ii). O

Proposition 1 establishes a mapping between the Wold impulse-response functions C'(L) and
the structural impulse-response functions B(L) which holds true independently of invertibility

or recoverability of the structural shocks.

2.2.2 Recoverable shocks

An important special case is the one of u; being recoverable. In this case, we have an exact

mapping relating wu; to the present and future of &;.

Definition 1. (Recoverability) Let HY be the closed linear space spanned by present, past
and future values of y;: HY = Span(y;1—k,j = 1,...,n,k € Z). We say that the structural
shock wy is recoverable with respect to y, if and only if uy € HY. We say that uy is (globally)

recoverable with respect to y; if and only if all of the structural shocks are recoverable.

The result below is closely related to the representation results of Lippi and Reichlin
(1994).

Proposition 2. (Structural shocks and VAR residuals) If u; is recoverable with respect to y;,
uy = di(F)e, = ¢(F)S ey, 9)

where d;(F) = dyg + din F + doF? + - - - is the i-th column of D(F) and ¢;(F) = qi + ¢ F +
qinF? + - -+ is the i-th column of Q(F). Moreover

di(F)S.di(L) = qz,'(F)Es_lqi(L) =L

Proof. We see from (4) and (3) that e;,_; € HY for any k and y_, € H for any k. Hence
HY = H, so that u; is recoverable if and only if it belongs to H. It follows that, if u; is
recoverable, in Equation (6) s;; = 0 and u;; = d;(F)e;. This proves (9). Finally, by taking



the autocovariance generating function of all members of (9) we get 1 = di(271)X.d;(2) =
G (z7) S a(2). O

Remark 1. (Global recoverability) An immediate consequence of the above result is that,
if u; is globally recoverable, then s; = 0 and u;, = D'(F)e;. Hence from (5) we see that
D'(F) is a left-inverse of Q(L). This can be true in our setting, where n < ¢, only if ¢ =n
(so that D'(F) is the inverse of ()(L)). The converse is also true, i.e. if ¢ = n, then wu; is
recoverable. For, from (5) we get 3. = Q(2)Q’'(z7!). Hence, if det Q(z) vanishes for z = 2*,
then det Q(27') must have a pole in z*, which is impossible if |z*| = 1, since & is stationary.
Hence Q(L) is invertible (possibly toward the future) and w; € H for any 4. In conclusion, u,

is globally recoverable if and only if ¢ = n.”

Remark 2. (Recoverability measure) Let us consider the spectral density function of the
projection of u; onto H, i.e. dj(F)e; = ¢i(F)X'e;. We have

RY(0) = di(e)Sedi(e7") = gi(e) 5 qu(e ™),

where j denotes the imaginary unit. This quantity represents the fraction of the total variance
of u; explained by the projection, decomposed by frequency, and is equal to 1 at all frequencies

if u; is recoverable. Correspondingly, the variance of the projection, i.e.
o oo
R = djSedy =Y ¢S qun
k=0 k=0

is the fraction of total variance explained by the ¢’s and is equal to 1 when u;; is recoverable.

Hence R?(A) and R? can be regarded as measures of recoverability.

2.2.3 Fundamental/invertible shocks

If u; is recoverable, it may be the case that it fulfils a more demanding property, that is
fundamentalness. In the literature, fundamentalness is often regarded as a synonymous
of invertibility. Indeed, fundamentalness is somewhat weaker than invertibility, in that
invertibility requires that u; can be written as a linear combination of the present and past
history of y;, whereas fundamentalness does not. For instance, if y; = (1 — L)u,, then w; is
fundamental but does not have a VAR representation since (1 — L) is not invertible. In our
setting however we are assuming that y, has a VAR representation, so that fundamentalness

and invertibility coincide.

"See also Chahrour and Jurado (2021).



Definition 2. (Fundamentalness) Let H; be the closed linear space spanned by present and
past values of y;: H, =span(y;—x,j =1,...,n,k >0). We say that the structural shock w;
is fundamental with respect to vy, if and only if u;; € Hy . We say that uy is fundamental with

respect to y; if and only if all structural shocks are fundamental with respect to y;.

From the definition of fundamentalness we see that if u;; is fundamental for y;, then u; is

recoverable, whereas the converse is not necessarily true. The following well-known result

holds.

Proposition 3. (Structural shocks and VAR residuals) If u; is fundamental for y,, then
di(F) = dio = d; and ¢;(F') = qio = ¢;, so that

uy = djg; = ;5 e (10)

Proof. We see from (3) and (4) that £,_, & > 0, span the same linear space as y;_x, k > 0.
Hence if u; is fundamental it belongs to H; . On the other hand, if u; is fundamental, it is
also recoverable, so that, by Proposition 2, we have u;; = d;(F')e;. By projecting both sides of
this equation onto H; we get u;; = P(uy|H; ) = diey, since dieyr is orthogonal to H; for
k> 0. O

Remark 3. (Global fundamentalness) An immediate consequence of Proposition 3 is that, if
uy is globally fundamental for y,;, then it is a contemporaneous linear combination of the &’s,
that is u; = D’e;. Hence using Proposition 1 we get Q(L) = ¥.D’, so that Q(L) = Q = By
(since Ag = I,,, see Equation 5). Moreover, we see from Equation (5) that D'e; = uy = D'Quy,
so that D'Q) = I,,. Since we have global fundamentalness, By, @ and D must be square (see

Remark 1), so that D’ is the inverse of the matrix of the impact effects By.

Remark 4. (Fundamentalness measure) In analogy with Remark 2, we can define a measure
of fundamentalness as R} = d;¥.d;. This measure corresponds to the fundamentalness

measure proposed by Forni et al. (2019).

Regarding the impulse-response functions, we see from Proposition 3 that, if u; is funda-

mental, Equation (8) reduces to

where d;¥.d; = ¢/X ¢ = 1.



2.3 A general representation

From the above result we can derive a general representation of y; in the fundamental shocks,

the recoverable but nonfundamental shocks and the nonrecoverable shocks.®

Proposition 4. (General Representation) Any vector process y, satisfying Assumptions 1

and 2 can be represented as

v = B'(L)u] + B"(L)u; + B"(L)u}
C(L)Q'uf + C(L)Q"(Lyuy + C(L)Q™(L)uy

C(L)S.D'ul + C(L)S.D"(L)u} + C(L)S.D™(L)ul. (12)
where u{ is the sub-vector of the fundamental structural shocks, uj of the recoverable (but
nonfundamental) shocks, and u} of the nonrecoverable ones. 3. is the covariance matriz of
the Wold innovations &, and C(L) is the matriz of the Wold representation. Q"(L)u?, for
h = f,r,n, is the projection of €; onto ul ., with k > 0; and D"(L), for h = f,r,n, is such
that D"(F)e; is the projection of ul onto g4y, with k > 0. Moreover, the following properties
hold:

(i) D and Q' are such that D/'>.D7 = Q/'>71Q7 = Iy;, q5 being the number of funda-

mental shocks;

ii) D"(L) and Q"(L) are such that D" (F)X.D"(L) = Q" (F)X'Q"(L) = I, q. being the
€ q

number of recoverable but nonfundamental shocks.

Proof. Let us reorder u; in the structural representation in equation (1) in such a way that
u = (u’ u w). Correspondingly, we partition B(L) as B(L) = (Bf(L) B"(L) B"(L)),
Q(L) as Q(L) = (@ Q'(L) Q"(L)), and D(L) as D(L) = (D! Dr(L) D"(L)). The
equations in (12) are obtained from (1), (5), (8) and (11). Properties (i) and (ii) follow from
Propositions 2 and 3. O]

3 Identification, estimation, and testing

We now discuss how the structural impulse-response functions and the structural shocks can
be identified and estimated by using an external proxy in the VAR framework discussed in
the previous section.

8Proposition 4 generalises representation results provided in Lippi and Reichlin (1994) and Miranda-

Agrippino and Ricco (2021).

10



3.1 The proxy

Let us start by introducing the proxy.

Assumption 3. (The Proxy) The researcher can observe the prozy Z;, following the relation
Z = B(L)21 + p' (L)wp1 4 aug + wy, (13)

where wy s an error orthogonal to uj;—y, j = 1,...,q, for any integer k and to z_y, Ti—x,
k>0, and (L), (L) are rational functions in the lag operator L (for simplicity we omit the

constant term,).

This assumption is similar to the one used in Plagborg-Mgller and Wolf (2022), which in
turn is essentially equivalent to the weak LP-IV condition of Stock and Watson (2018). A
remarkable difference, however, is that the vector x; appearing on the right side of (13) is not
necessarily equal to the VAR vector y;.

Stock and Watson (2018) stresses that equation (13) is more restrictive than the standard
validity conditions for the SVAR-IV, i.e. (i) cov(Z;,ui) # 0 and (ii) cov(Z, ug) = 0 for
k # i. Let us observe, however, that (i) and (ii) are sufficient only when assuming global
invertibility, which of course is more demanding than invertibility of w; alone (for the
definition of invertibility see Section 2.2 below). If we require only partial invertibility, we
need a stronger validity condition, similar to equation (13) above (see Miranda-Agrippino
and Ricco, forthcoming).”

The above proxy cannot be used directly in our setting unless 5(L) = 0. Hence, in place of

Z, we shall consider the residual of the projection of Z; onto the past history of Z; and xy, i.e.
2 = QUi + Wy. (14)

Indeed the first step of our proposed procedure is to ‘clean’ Z; by estimating (13) and then

using the residual z; in place of Z;.

3.2 The IRFs and the shock

In this subsection, we present the core of our estimation procedure. First we consider the case

of nonrecoverable shocks. In this case we cannot estimate either the shock or the impulse

9As an example, consider the proxy % = uis + Uz t—1 + wy, where ug; is not fundamental. If the shock of
interest is the first one (¢ = 1), this proxy fulfills (i) and (ii). But in general us ;1 will be correlated with e,
thus inducing a bias in the estimated response functions.

11



response functions corresponding to a unit-variance shock (the absolute IRFs) but we can
estimate the relative response functions. Moreover, we can estimate upper and lower bounds
for the absolute IRFs. Then we turn to the case of a recoverable shock. In this case we can
estimate both the shock and the absolute IRFs. Finally we consider the case of a fundamental
shock. In this case our estimation procedure collapses to the standard proxy-SVAR procedure.

Throughout this and the following sections, we present results for the ‘cleaned’ proxy
2 = auy + wy (see Equation 14). Let us observe, however, that all results hold true also for

the original proxy Z;, provided that S(L) = 0 in equation (13).

3.2.1 Nonrecoverable shocks

Let us consider the projection of £; onto the present and past of the proxy:
Et — w(L)Zt + e;. (15)

The following result holds.

Proposition 5. (Relative IRFs) The coefficients of the projection (15) are related to q;(L)
appearing in (8) by the equation
Y(L)o? = qi(L)e (16)

Hence the impulse-response functions fulfil the relation
bi(L)a = C(L)(L)o?. (17)

Proof. Notice first that the residual of (15) e, is orthogonal to z;_j for k > 0 by construction;
moreover, it is ortogonal to z;_ for k < 0 since the future of z; is orthogonal to both &;_
and z;_, £ > 0. Hence e; is orthogonal to z; at all leads and lags. Therefore, by taking the
cross-covariance generating functions of ¢, and z; we get G..(L) = ¢(L)o?. Similarly, from
equation (5) we get Gey, (L) = ¢;(L), ¢:(L) being the i-th column of Q(L). But it is easily
seen from (14) that G..(L) = aG.,, (L) = aq;(L). Equation (16) follows. Equation (17) is an

immediate consequence of (8). O

A consequence of Proposition 5 is that a possible strategy to estimate the impulse response
functions is to perform the OLS regression of ¢; onto the present and past values of z; until a

maximum lag r to get an estimate of ¢(L) = ¢/(L)a/o?, say @(L), and estimate b;(L)« as

—

bi(L)a = C(L))(L)5? = A(L)5?. (18)
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Unfortunately, in the general case o cannot be estimated consistently so that we cannot
estimate the impulse response functions corresponding to a unit-variance shock. However,
we can estimate the relative IRFs, by normalising the IRFs obtained according to (18) by
dividing by the effect on a pre-specified variable at a given lag, as suggested in Stock and
Watson (2018). For instance we can normalise the impulse-response functions by dividing by

the impact effect on the first variable:

- (19)

where 71 (L) is the first entry of v(L). The IRFs are then the ones corresponding to a shock

having impact effect 1 on the first variable.

Remark 5. (An alternative estimator for the IRFs) An alternative strategy for the estimation
of the relative impulse response functions is to perform the opposite projection, i.e. the OLS
projection of z; onto the present and future of £;, until a maximum lead r, to get an estimate
of §(F) = ad;(F) (see Equation 6) and use the equality b;(L) = C(L)¥.d;(L) (see Formula
8). This strategy however implies estimation of a single equation with (r + 1)n regressors
as against the r + 1 regressors of each one of the n equations in (15). Our simulations,
not reported here, confirm that the procedure proposed above performs better than this

alternative.

Plagborg-Mgller and Wolf (2022) show that, while it is impossible to estimate the absolute
response functions, it is nonetheless possible to compute upper and lower bounds for the
parameter «; such upper and lower bounds can be derived in our setting and provide lower

and upper bounds, respectively, for the absolute response functions b;(L) = vy(L)o?/a.

Proposition 6. (Upper and lower bounds) Letting @® and o® be the upper and the lower

bound of o, respectively, we have

&2 < of=g?
o > o sup RY6) =0l sup o/(e)STMp(e ). (20)
0e(0 7 6e(0 7

Proof. The first inequality is easily obtained from (14). As for the second, from (16) we get
(02)2)' (795 1p(e79%) = R2(0)a?, where R%(f) is the measure of recoverability defined in

z

Remark 2. Inequality (20) follows from R%(#) < 1. O

In practice, the upper bound can be easily estimated as a = 0,; the lower bound can
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be estimated by taking the maximum of (e19)S 1@[}(6 %) over the Fourier frequencies
0= f@2n/T)for f=1,...,T, T being the number of observations:

G =52 max /() ST1 ().

o< f<T

Having an estimate of the two bounds, the lower bound for the absolute impulse response

functions can be estimated as

bi(L) = A(L)52/a =F(L)5. = C(L)(L)3.. (21)
Similarly, the upper bound for the impulse response functions can be estimated as

(1) = L7 _ CL)(L) (22)

a maxg. < \/1/) e]fw/T) 1¢(e jf7r/T)

The upper and lower bounds for « can also be used to get upper and lower bounds for
the fraction of variance accounted for by the shock of interest. We explain in detail how to

perform variance decomposition in subsection 3.3 below.

3.2.2 Recoverable but nonfundamental shocks

If the shock is recoverable, we can estimate the absolute IRFs and the shock itself. Let us

begin with the absolute IRFs. The following results holds.

Proposition 7. (Absolute IRFs) If u; is recoverable, its (absolute) impulse response functions

are given by the equation

C(L)y(L)
\/Zk U

Proof. From (16) and Remark 2 we get a? > "2 ¢x X2 i = o> R2 = (02)2 300 o Y Xc Y. If

ug is recoverable, we have R? = 1, so that

(23)

The statement follows from Proposition 5. n
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From the above proposition we see that b;(L) can be estimated as

/\

(L) 20

bi(L) =F(L)3% /& = ——
JEW%E

Coming to the shock, let us consider the projection of z; onto the space spanned by the
present and the future of the VAR residuals:

Zt = 5,(F)Et + Vt. (25)

The following proposition holds.

Proposition 8. (The structural shock) If u; is recoverable, then

(Sl(F)éft
V 2k 0. 50

Proof. We have P(z|H;") = aP(uy|H;) + P(w¢|H;"). But the latter projection is zero, since

wy is orthogonal to w;;— j = 1,...,¢q, for any integer k, so that it is orthogonal to H. Hence

Ui =

from (6) we get
2z =0"(F)ey + v = ady(F)ey + (s + wy).

where ad(F)e; is the projection and vy = as;; + wy is the residual. If u; is recoverable,
sit = 0, so that v; = w; and §'(F)e; = auy. Since « is the standard deviation of cuy, the

result follows. O]

From the above proposition we see that, if the shock is recoverable, it can be estimated as
&' (F)é,
\/ ZZ:O 0% YOk

Having an estimate of the shock, we can perform historical and variance decomposition as

(26)

Uiy =

explained in Section 3.3 below.

Remark 6. (An alternative estimator for the shock) An alternative strategy for the estimation
of the shock is to use the equality ¢;(F) = ¢(F)o./a (see (17)), which, coupled with equation
(9). gives iy = $(F)2'5./a.0

10We do not follow this alternative route since our simulations, available on request, show that the estimator
w;; performs better than ;.

15



Remark 7. (Measuring instrument validity) Having an estimate of the shock, we can measure
the Instrument Relevance (IR), and test for it, by using the correlation coefficient of u; and
2

IR = corr (Ui, 2¢)-

3.2.3 Fundamental shocks

If we have fundamentalness, the following result holds.

Proposition 9. (IRFs and shocks under fundamentalness)

(1) Let us consider the projection equation e, = V'z + e4. If uy is fundamental, then
C(L)y
Vs

(i1) Let us consider the projection equation z, = 8y + e;. If uy is fundamental, then

bi(L) =

(S/E‘:t

VY0

Proof. Let us first notice that, if u; is fundamental, ¢; is orthogonal to z;_; for £ > 0, since

Usp =

2k 18 a contemporaneous linear combination of £, (see Proposition 3) and &, is a vector
white noise. It follows that in equation (15) the coefficients of lagged z,’s are all zero and
(L) = 1o = 1. Result (i) then follows from Proposition 7. For the same reason, in equation
(25) the coefficients of leaded &;’s are all zero and 0(F') = dp = 0. Result (ii) then follows from
Proposition 8. O

From Proposition 9 (i) we see that, if the shock is fundamental, we can estimate (15)
without including the lags of z;, i.e. we can estimate by OLS the projection ¢, = ¢’z + ¢; to

get an estimate of ). The impulse-response functions can then be estimated as

bi(l) = ——== (27)

Notice that the above procedure is nothing else that the standard estimation procedure, which
is usually applied without testing (see below for our proposed fundamentalness test).
Turning to estimation of the shock, by Proposition 9 (ii) we can estimate (25) including

only the current £, among the regressors, in order to estimate ¢§; having b} , the unit variance
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shock can be estimated as

3.3 Historical and variance decomposition

In this subsection we discuss historical decomposition and variance decomposition. First we

consider the case of recoverability, then we turn to nonrecoverability.

3.3.1 Recoverable shocks

We have shown that, if the shock of interest is recoverable, it can be estimated. Having an es-
timate of the shock and the corresponding impulse-response functions, historical decomposition
can be performed in the standard way.

Variance decomposition is more problematic. The standard forecast error variance de-
composition is only valid in the case of globally invertible models. This is because it is
based on the variance of the forecast error, which depends on all structural shocks and the
corresponding impulse response functions. Having an estimate of the IRFs of u;; we can of
course compute the numerator of the ratio, but we cannot estimate the denominator without
estimating the whole structural model.

Plagborg-Moller and Wolf (2022) replace the forecast error variance based on present and
past values of u; with the one based on present and past values of y;, which can be easily
estimated, and name this ratio FVR. This ratio however is difficult to interpret, since the
numerator and the denominator refer to forecast errors of different nature: on the one hand,
the information set given by the structural shocks; on the other hand, the information set
given by the VAR residuals, which, being less informative than the structural shocks, have
larger forecast errors. Hence in general the FVR underestimates the variance contribution of
the structural shock of interest. Having an estimate of all structural shocks, the sum of the
variance contributions of these shocks, computed with the FVR, is smaller than 1, unless we
have global fundamentalness (see Forni et al., 2019, Section 3.4).

To solve this problem, we suggest to use the variance decomposition given by the integral
of the spectral density over suitable frequency bands. This decomposition has been proposed
in Forni et al. (2019) for the case of partial fundamentalness and has become popular with
Angeletos et al. (2020), where it is used to identify the so called Main Business-Cycle Shock.
It is the variance decomposition referred to as VD in Plagborg-Mgller and Wolf (2022). We

recommend to use this variance decomposition even if fundamentalness of the shock of interest
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is not rejected according to the test described in the following subsection, since of course we
might have fundamentalness of this shock but not global fundamentalness; and, as stated
above, standard variance decomposition requires global fundamentalness.

Let b, (L) be the h-th element of b;(L). The total variance of the component of yp,; which is
attributable to u; can be computed as [ bin(e77%)b;,(€7%)d6 /7, where j denotes the imaginary
unit. But we can also compute the variance on a specific frequency band [0, 65). If we are
interested for instance in the variance of waves of business cycle periodicity, say between 8
and 32 quarters, the corresponding angular frequencies (with quarterly data) are 6; = 7/16
and 0, = m/4 and the corresponding variance is f;r/fﬁ bin (e bir, (€7°)df /7. In practice, the
integral must be approximated by averaging over a suitable frequency grid within the relevant
interval (for instance, the Fourier frequencies 6y = f(27/T'), f being a natural number such
that 01(T/27) < f < 05(T/2m)).

As for the denominator, we need the spectral density of v, say %Sh(Q), where

~ ~

Si(0) = Ch(e ) S.Ch(e?),
Ch(L) being the h-th row of the matrix C'(L) appearing in the Wold representation. The
total variance of yp; on the frequency band [f; 60s) is given by f;f §h(9)d9/7r. Hence the

contribution of u; to the variance of y,, on the frequency band [0y 65), say ¢, (01, 62) can be

estimated as

%2 bin (6790 bip, (€7 d0

Cn(1,0s) = 2 = (29)
Iy Si(6)d6

We can also evaluate the fraction of total variance explained by the shock of interest at each

frequency, i.e.

bin (€71 bip, (€7)
Su(0)

We stress that the above formulas provide a variance decomposition for the variable

éh(e) = (30)

itself. In this respect, its interpretation is more direct than the one of the standard variance

decomposition, which refers to the variance of the forecast errors.!

1 The relation linking the variance decomposition proposed here to the standard forecast error variance
decomposition is not simple. However, it is easily seen that the spectral variance decomposition for the whole
interval [0 ) is equivalent to the forecast error variance decomposition at horizon infinity.
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3.3.2 Nonrecoverable shocks

2

In the case of nonrecoverability we can only estimate v(L)o? = ab;(L) according to Equation

(18). Hence we can get an estimate of

o fgof (e )y (e’?)db

a20h(91, 92) = 5
o Su(0)do

(31)

Since a cannot be estimated, we cannot perform the variance decomposition. However, the
upper and lower bounds for a? provided in subsection 3.2.1 provide respectively lower and

upper bounds for ¢,(6;,65). Precisely, we can estimate the lower bound as

S A F () do

éh(ela 02) =0, 2~ (32)
Jo. S(0)do
and the upper bound as
O AV~
. e’ e’?)db
(01, 65) = 8;1 0, Fn( )7 (e”) ’ (33)

where 0 = f(2r/T), f =1,...,T. Finally, the lower and upper bounds for the frequency-by-

frequency decomposition of equation (30) can be computed as

a0 = SR o
h
éh<0) _ /O'\gry\hé\éeziezz;z(@]e)’ (35)

where 0y = f(2n/T), f=1,...,T.

3.4 Testing for recoverability and fundamentalness

In this subsection we propose a test for recoverability and a test for fundamentalness.

3.4.1 Recoverability test

In the proof of Proposition 8 we have seen that, if u; is recoverable, then the projection in (25),
0 (F)ey, is equal to auy and therefore is a white noise process. By contrast, if recoverability

does not hold, s;; # 0 and the projection is not equal to au;;. Being a Moving Average of
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present and future VAR residuals, the projection will in general be autocorrelated.

Hence, to check whether the shock is recoverable or not, following a suggestion of Plagborg-
Mogller and Wolf (2022), we propose to test for zero serial correlation of the projection §(F)e;."?
Precisely, we propose to perform the OLS regression of z; onto the present and future values
of &;, until a maximum lead r, to get an estimate of §(F"). Then apply the Ljung-Box Q-test
to the estimated projection ) (F)é;. The null hypothesis is recoverability (serial uncorrelation)
and the alternative is nonrecoverability (serial correlation). In the following section we present
a Monte Carlo exercise in which the autocorrelation test has a reasonably good power in
rejecting recoverability when it is false.

If recoverability is rejected, we have two options: (1) estimate the relative impulse response
functions and the upper and lower bounds for variance decomposition; (2) amend the VAR
specification by adding variables (or use a FAVAR model in place of the VAR) and perform
the test with the novel VAR specification.

It is worth noticing that the above test is valid under the maintained hypothesis that
equation (13) is fulfilled. If it is not, the lags of u; may appear in equation (14) and the test
may reject serial uncorrelation even if the shock is recoverable. Hence the serial uncorrelation
test is indeed a joint test about recoverability and instrument validity.

If recoverability is not rejected, we can estimate the ‘absolute’ response function, the unit

variance shock and the variance decomposition as explained above.

3.4.2 Fundamentalness test

If uy is fundamental with respect to y, we see from Proposition 9 that in equation (25)
0 = 0 for all positive k and §(F') reduces to dg = 0. Hence, we can test for the null of
fundamentalness against the alternative of nonfundamentalness by estimating (25) by OLS as
explained above and perform a standard F-test for the joint significance of the coefficients of
the leads. Notice that the test is valid even if recoverability does not hold; hence, in principle

we can test directly for fundamentalness without testing for recoverability.'?

Remark 8. (Estimating the degree of fundamentalness) If fundamentalness does not hold,
but recoverability does, we can estimate consistently the degree of fundamentalness R?c (see

Remark 4). From Proposition 8 we see that the fraction of the variance of u; explained by
12Tn the approach of Plagborg-Mgller and Wolf (2022), the practical implementation of the test is left for
future research.

3However, the recoverability test can provide a useful check in that, if recoverability is rejected, funda-
mentalness is rejected as well.
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the current VAR residuals is RJ% = 00200/ > e 0p2:0. Hence we can estimate Rfc as

= 5500 3 6546,
k=0

Stock and Watson (2018) and Plagborg-Mgller and Wolf (2022) also propose invertibility
tests based on the proxy. The latter paper, in particular, proposes to test whether the proxy
Granger causes the VAR variables.!* By using Sims’ theorem, it can be shown that their
method is asymptotically equivalent to ours. It would be interesting to compare the small
sample performances of all these tests; this however is left for further research. In the following
section we present a Monte Carlo exercise showing that the proposed F-test has a good
performance in small samples.

If fundamentalness is not rejected, we can estimate the ‘absolute’ response function, the

unit variance shock and the variance decomposition as explained in the previous subsections.

3.5 Inference

For inference purposes, we suggest the following bootstrap procedure. For simplicity, we
assume that the sample size T is the same for z; and y;. The generalisation to the case of
different time spans is straightforward.

First, draw with reintroduction 7' — (p + r) integers i(t), t = 1,...,7 — (p + r), uniformly
distributed between 1 and T'— (p+7), and construct the artificial sequences of shocks e = Ei(t)
and v} = Uiy, t=p+1,...,T —r, 0 being the estimated residual of regression (25). Set the
final conditions e} = &, for t =T —r +1,...,T. Repeat the procedure H times to get the
sequences el t=p+1,....,Tand v} t=p+1,..., T —r,for h=1,... H.

Second, compute ¢, h =1,..., H, according to the VAR equation (4). Precisely, set the

initial conditions y{? =y, t=1,...,p, for all h. Then compute
p —~
vt == Ay +el
k=1

fort =p+1,...,T. As for the proxy, set the initial and final conditions 2! = 2z, t =1,...,p

MFundamentalness test based on Granger causality have been previously proposed, in the context of
standard VAR identification, in Giannone and Reichlin (2006) and Forni and Gambetti (2014).
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andt=T—r+1,...,T, for all h. Then compute
zth = Z 5k8?+k + vf
k=0

fort=p+1,...,T —r.

Finally, repeat the estimation procedure for any one of the artificial data sets y?, ..., v,
h=1,...,H to get the sequences of absolute IRFs b?*(L), h =1,..., H, or the corresponding
sequence of relative IRFs. Compute the confidence band as usual, by taking appropriate

percentiles of the distribution of o7, for each lag k.

4 The proposed procedure

On the basis of the above considerations and results, we propose the following estimation and

testing procedure.

1. As a first step, regress the available proxy Z; onto the first m lags (notice that m is not
necessarily equal to p) of Z; itself and a set of regressors x; —which can in principle be
different from y,— to get an estimate of the residual z;, say 2;. If the F-test does not
reject the null that the coefficients of past Z;’s are all zero, i.e. Hy: B(L) =0, step 1 is
unnecessary and can be skipped.

2. Estimate a VAR(p) with OLS to obtain A(L), C(L) = A(L)™!, &, and ..
3. Regress with OLS the proxy 2; on the current value and the first r leads of the Wold
residuals: )
L= Ok + 0 =0(F)é + by
k=0
Save the fitted value of the above regression, let us call it 7;. Test for invertibility by
performing the F-test for the null Hy : §; = 63 = --- = §, = 0 against the alternative

that at least one of the coefficients is non-zero.

4. Case 1: invertibility is not rejected. In this case estimate (25) without the leads of &; to
get an estimate of 0 and estimate the unit-variance shock according to (28). To estimate
the corresponding IRFs, apply the standard procedure, i.e. estimate (15) without the
lags of z; to get 1& and estimate the IRFs according to (27). Estimate the variance

decomposition according to equation (29) or (30).
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4'. Case 2: invertibility is rejected. In this case perform the recoverability test by testing

for the null of serial uncorrelation of the fitted value 7, by using the Ljung-Box Q-test.

5. Case 1: recoverability is not rejected. In this case estimate the unit-variance shock
according to (26) and the corresponding IRFs according to (24). Estimate the variance
decomposition according to equation (29) or (30). Historical decomposition can be

performed in the standard way.

5. Case 2: recoverability is rejected. In this case, either amend the VAR specification
and repeat steps 2-4, or estimate (15) with a maximum lead r and the ‘relative’ IRFs
according to (19). Estimate lower and upper bounds according to (21) and (22) and the

corresponding variance contributions according to (32) and (33) or (34) and (35).

Notice that the regression in step 3 (or 4) is necessarily a truncated version of the infinite-
lead (infinite-lag) regression of equation (25) (or 15). However the approximation works since
the coefficients tend to shrink the further you go into the future (or the past).

Let us stress that the above ‘external proxy’ procedure is more flexible than the ‘internal
proxy’ method, recently re-proposed in Plagborg-Mgller and Wolf (2021), and the VARX
method, proposed in Paul (2020).'5 This is maily because the sample span of the proxy can
be different from the sample span of the VAR (or the VARX). Moreover, with respect to the
VAR method, our method is more flexible because the number of lags m and the regressors
x; used in step 1 of the above procedure are not necessarily equal to the number of lags p and
the regressors y; used in the VAR. In particular, if the regression in step 1 is not significant,
or the coefficient in the lags of the proxy are not significant, the proxy can be used without
treatment (m = 0): an option that we do not have when including the proxy into the VAR
model. Finally, notice that the number of lags r used in the regression of the VAR residuals
g; onto the current and lagged proxy can be different from p — the number of lags used in the

VAR.

5 A simulated economy with fiscal foresight

In this section, we assess the small sample performance of the proposed estimates and tests in
a series of Monte Carlo exercises.

15The internal proxy method consists in including the proxy into the VAR model, ordered first, and
identifying the shock as the first one in a Cholesky scheme; the VARX method consists in estimating a VARX
with the proxy used as the exogenous variable.
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5.1 Simulation 1: a recoverable shock

In our first simulation exercise we use the fiscal foresight model of Leeper et al. (2013) (LWY
henceforth). The model is a simple Real Business Cycle model with log preferences, inelastic
labor supply and two shocks: u,,, a technology shock, and u,;, a tax shock. A nonstandard
feature of the model is the fact that the tax shocks are announced to the agents before being

implemented, thus inducing fiscal foresight. The equilibrium capital accumulation is
kt = Oék't_l +a; — K Z eiEtTH_H_l (36)
i=0

where 0 < o < 1,0 < 6 < 1, kK = (1 —0)7/(1 —7), 7 being the steady state tax rate,
0 <71 <1, and ay, k; and 7; are the log deviations from the steady state of technology, capital

and the tax rate, respectively. Technology and taxes are given by

gy = Ugy

Tt = Urt—2,

where u.; and u,; are i.i.d. shocks. Solving for k; we obtain the following equilibrium MA

representation for capital and taxes:

) L " Yt} Z B(L 37
Rl TR R B W Rl (37)
1 —al 1 —al ’

The determinant of the above matrix vanishes for L = 0; hence the shocks are not fundamental.
However, they are recoverable, since the system is square (see Remark 1). In particular, the
tax shock is equal to taxes two periods ahead: u,; = T49.

We generate 1000 different dataset with 240 time observations from model (37) using the
parameterization in Leeper et al. (2013): a = 0.36, § = 0.2673 and 7 = 0.25 and u; ~ N(0, I).

The proxy is generated according to the equation
Zt = Ury + 0.5Zt_1 + O-4kt—1 — 0.6Tt_1 + Vg,

where v; ~ iid N'(0,1), where the parameters are arbitrarily chosen. For each dataset, we
test for invertibility and recoverability, and estimate the tax shock along with its response
functions as explained in the previous section, by setting p=m =2, r =0 and p =m = 2,

r = 4. Invertibility is correctly rejected in all cases. Recoverability is (wrongly) rejected at
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the 5% level in 10% of the cases, showing that the test is somewhat oversized in small samples
with this DGP.
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FIGURE 1: Simulation 1: LWY fiscal foresight model (recoverable shock). Left panels: IRF
estimation with » = 0 (standard method). Middle panels: IRF estimation with » = 4. Right panels:
estimation of the variance contribution according to equation (30), expressed in percentage terms.
Upper and middle panels: red dashed line, true response functions and variance decomposition; black
solid line, mean of the 1000 estimated response function and variance decompositions; grey area,
16th to 84th percentiles. Lower panels: frequency distribution of the correlation coeflicients between
the estimated shock and the true shock.

Estimation results are shown in Figure 1. The first column shows the estimates obtained
with the standard method (r = 0). The upper and middle panels show the estimated response
functions: the black solid line is the mean across the 1000 experiments; the grey area shows
the estimates between the 16th and the 84th percentiles; the red dashed lines are the true IRFs.
The bottom panel shows the frequency distribution of the correlation coefficients between
the estimated shock and the true shock. As expected, the estimates are dramatically wrong,

since r = 0 requires invertibility, which does not hold in this case.
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The second column shows the estimates obtained with » = 4. Here the estimates are very
good, both because black and red lines are almost perfectly overlapping, and because the grey
area is not large, particularly for taxes. The correlations coefficients between the estimated
shock and the true shock are very close to 1.

The third column shows the variance decomposition obtained according to equation (30),
expressed in percentage terms. The estimates are fairly good, albeit somewhat less precise
than those of the IRFs.

5.2 Simulation 2: a nonrecoverable shock

The second Monte Carlo exercise adopts the LWY model of the previous subsection, modified

by adding a demand shock that affects taxes. Precisely, the data generating process is now

L2 0 1 Urt
T\ 1—~L B
(ka:) C\zeErl) tag | = BlLJu

1—al 1—al 0 Ug,t

We arbitrarily set v = 0.7. Now the system is no longer square an the tax shock is no longer
recoverable. As in the previous exercise, we generate 1000 different dataset with 240 time

observations. As in the previous subsection, the proxy is generated according to the equation
Zt = Ury + 0.5215,1 + 0.4k’t,1 - 0.67},1 + Vg,

where v; ~ iid N'(0,1). For all estimates we set p=m = 2 and r = 4.

First, we test for recoverability and fundamentalness. Invertibility is correctly rejected
in all cases; recoverability is correctly rejected in 85.5% of the cases. Then we estimate the
relative IRFs of the tax shock. Since b;;(0) = 0, the normalisation in equation (19) cannot be
used, so that we normalise by dividing by 412 i.e. by imposing that the effect on taxes at
lag 2 is equal to 1. In addition, we estimate upper and lower bounds for the absolute IRFs,
according to equations (22) and (21). Finally, we compute the lower and upper bounds for
the variance decomposition according to equations (34) and (35).

In the left panels of Figure 2, one can observe that the estimates of the relative IRFs
are consistently very close to the true relative IRFs.!0 In the middle panes are reported the
estimated upper and lower bounds for the IRFs. The black solid lines are the average upper

bounds; the blue solid lines are the average lower bounds; as before, the red dashed lines

16Here we do not report results for the shock, since the shock cannot be estimated consistently.
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FIGURE 2: Simulation 2: Modified fiscal foresight model (nonrecoverable shock). Left panels:
Estimated relative IRFs. Middle panels: estimated upper and lower bounds for the absolute IRFs.
Right panels: estimated upper and lower bounds for the variance contribution according to equations
(34)-(34), expressed in percentage terms. Red dashed lines: true response functions and variance
decomposition; black solid lines, average of the estimated upper bounds; blue solid lines: average of
the estimated lower bounds; shaded areas: 16th to 84th percentiles.

are the true IRFs and the shaded areas are bounded by the 16th and the 84th percentile
of the IRFs distribution. Similarly, in the right panels are reported the upper and lower
bounds for the explained variance, decomposed by frequency, expressed in percentage terms
(equations (34)-(35)). The basic message is that upper and lower bounds provide some

valuable information about the importance of the shock for the two variables.

5.3 Simulation 3: fundamentalness test

The goal of our third experiment is to evaluate the small-sample performance of the funda-
mentalness test. In this simulation the DGP for y; is the ARMA(1,1) model

Yit Uit
(I —AL) | yoe | =L = BL) | ug |
Yai Uzt

27



where A and B are generated as follows. First, we produce a 3 x 3 matrix with random
entries, uniformly distributed in the interval (0 1). Next we divide all entries by the maximum
eigenvalue. Finally, to generate A we multiply by 0.5, whereas to generate B we multiply
by 5, with 5 =0.8,1.1,1.2,1.3,1.4,1.5. Hence the maximum eigenvalue of A is 0.5, whereas
the maximum eigenvalue of B is 3, implying that I — AL is invertible, whereas I — BL is
invertible only when = 0.8. For the other values of [ it is not, and the larger is § the
larger is the departure from invertibility. The shocks are again u; ~ iid N (0, I3). The proxy
is generated as in Simulations 1 and 2.

Again, we generate 1000 dataset with T" = 240 for each value of 3, and estimate the shock
uy; as described in the previous section, using p =m =6 and r = 1,2, 3,4,5. Then we test

for fundamentalness as explained in the previous section.

Fundamentalness parameter

=08 =11 =12 =13 p=14 p=15

1 7.1 36.9 68.3 87.2 95.9 98.3

2 6.5 48.9 79.2 94.4 98.9 99.5
r=3 7.1 52.4 82.8 96.1 99.5 99.7

4

5

8.1 53.0 83.8 96.0 98.8 99.7
7.9 53.5 84.6 95.4 98.7 99.7

TABLE 1: Results of Simulation 3. Percentage of rejection of the fundamentalness test over 1000
replications for different values of the parameter governing invertibility.

Table 1 shows the percentage of rejections obtained at the 5% level with each r,
configuration. In the first column we have 8 = 0.8, so that and we have invertibility. Hence
the percentage of rejections shows the empirical size of the test, which is reasonably close to
the theoretical value (5%), even if there is some evidence that the test is oversized for this
DGP. In the other columns we do not have invertibility; hence the percentage of rejections
shows the power of the test. With g = 1.1 the model is close to invertibility, so that the
power is relatively low; but with g = 1.2 the test exhibits a reasonably good power, which

becomes excellent for § = 1.3,1.4, 1.5.

5.4 Simulation 4: recoverability test

In our last Monte Carlo exercise, we evaluate the performance of the recoverability test. The
DGP is given by the ‘short” model
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The shocks are u; ~ iid N'(0, I5). We set 1)y = 0.1, )y = 0.3 1py = 0.5, 3 =1, ¢, = —0.3,
Y5 = 0.7, ¥ = 1, P7 = 0.8, 1y = 0.5. Moreover, we set 3 = \/(c? + 03)0/(1 — 0), where o7

and o2 are the variances of the components of y;; and yo;, respectively, driven by wuy; and uy;.

In this way, the parameter 6 is the fraction of the total variance of the variables explained by
the shock us, so that the larger is 6 the larger is the deviation of the model from recoverability.
We set 0 = 0,0.2,0.4,0.6,0.8 and test for serial correlation of #y; using the Liung-Box Q-test
with maximum lag 6, 12, 18, and 24.

Table 2 shows the percentage of rejections over 1000 experiments. In the first column
we have § = 3 = 0, so that the model is square and we have recoverability (see Remark 1).
Hence the percentage of rejections shows the empirical size of the test, which is somewhat
undersized for this DGP (the theoretical size is 5%). In the other columns we do not have
recoverability; hence the percentage of rejections shows the power of the test. Of course, with
small values of 6 the power is relatively low; but with 6 > 0.4 we have a fairly good power of

the test, especially when the maximum lag is set to 6.

Recoverability parameter
=0 6=02 =04 6=06 60=038

max lag = 6 2.9 68.1 77.2 86.9 93.6
max lag = 12 2.9 51.6 65.5 80.7 88.3
max lag = 18 3.7 47.9 59.7 73.7 83.1
max lag =24 4.0 45.5 56.6 69.4 80.7

TABLE 2: Results of Simulation 4. Percentage of rejection of the recoverability test over 1000
replications for different values of the parameter governing recoverability.

6 The effects of monetary policy shocks

We apply our proposed IV methodology to the identification of monetary policy shocks. We
first show that the monetary policy shocks identified with standard high-frequency surprises
at the short end of the yield curve are likely to be nonfundamental but recoverable, in a
few routinely used VAR specifications. We then show that, a standard IV procedure that

assumes invertibility delivers price and output puzzles. Conversely, when using our suggested
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procedure for noninvertible shocks, we get results in line with the textbook effects of monetary

policy.

6.1 Data, VAR specification, instruments

Our baseline VAR specification includes three variables at monthly frequency: the 1-year
government bond rate (1YB), industrial production (IP) in growth rates and CPI inflation
(Specification I). We also present results for two additional specifications, one including
Gilchrist and Zakrajsek (2012)’s excess bond premium (EBP) (Specification II); the other
including EBP along with the mortgage spread (MS) and the commercial paper spread (CPS)
(Specification IIT). We use 1YB as the policy indicator variable.!”

Our benchmark sample spans the period 1983:1-2008:12. In a robustness exercise, we
consider three additional time samples: 1987:8-2008:12, 1979:7-2008:12, and 1979:7-2019:6.1%
The trending variables, CPI and IP, are taken in differences since these variables are unlikely
to be cointegrated. In a robustness exercise, we consider a VAR specification with all the
trending variables in levels.

The instrument for monetary policy shocks consists of the Giirkaynak et al. (2005)’s
intra-daily monetary policy surprises triggered by Federal Open Market Committee (FOMC)
decisions in the three month ahead monthly Fed Funds futures (FF4), as proposed of Gertler
and Karadi (2015) (GK from now on). The use of this instrument provides scope for testing
our approach to noninvertibility since, as discussed in Gertler and Karadi (2015), surprises
in futures with a three month maturity are likely to capture both conventional monetary
policy shocks, and shocks to forward guidance about the path rate at short horizon. We
‘clean’ the instrument by regressing it onto its own lags and the lags of the three variables of
Specification I, using 6 lags.'® The instrument turns out to be relevant, with a measure of

relevance IR between 0.4 and 0.6 depending on the specification adopted.

1"We use monthly data taken from the FRED-MD data set of McCracken and Ng (2015). Specifically, we
use industrial production (FRED mnemonic INDPRO, IP from now on), taken in log differences, the CPI
index (FRED mnemonic CPTAUCSL), taken in log differences, and the 1-year government bond rate (FRED
mnemonic GS1, 1YB from now on). In addition, we use the excess bond premium (EBP), the mortgage spread
(MS) and the commercial paper spread (CPS) taken from the replication files of Gilchrist and Zakrajsek
(2012).

18The samples starting in 1983:1 and 1987:8 are chosen in line with Sims and Zha (2006). Moreover, 1979:7
is the beginning of Volcker’s mandate; 1987:8 is the beginning of Greenspan’s mandate; 2008:12 is the first
month in which the 1-year bond rate falls below 1%, so that cutting our sample to 2008:12 excludes the zero
lower bound period.

9The regression is significant at the 5% level and the residual is serially uncorrelated according to the
Ljung-Box Q-test.
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6.2 Fundamentalness and recoverability

Number of leads r
r=4 r=5 r=6 r=7 r=8 r=9

Specification I

p=6 0.008 0.028 0.002 0.003 0.001 0.001
p=9 0.016 0.061 0.003 0.003 0.002 0.001
p=12 0.011 0.045 0.003 0.002 0.001 0.000
Specification 11

p=6 0080 0.195 0.027 0.001 0.000 0.000
p=9 0180 0.351 0.034 0.002 0.000 0.000
p=12 0.221 0.457 0.059 0.003 0.000 0.000
Specification 111

p=6 0.060 0.184 0.089 0.003 0.001 0.002
p=9 0184 0.362 0.220 0.020 0.002 0.003
p=12 0.215 0.353 0.250 0.060 0.031 0.027

TABLE 3: P-values for the fundamentalness test, for different values of p and r. Specification I
includes the 1-year bond rate (1YB, industrial production growth (IP) and CPI inflation (CPI).
Specification II includes 1YB, IP, CPI and the excess bond premium (EBP). Specification IIT includes
1YB, IP, CPI, EBP, the mortgage spread and the commercial paper spread. The proxy is the one of
Gertler and Karadi (2015).

We start our analysis by applying our fundamentalness test (Table 3) to verify whether
our specifications turns out to be fundamental or not when using our baseline instrument GK.
The main takeaway is that the results obtained with the standard proxy-SVAR approach
in the monetary policy literature should be taken with caution, since the VAR specification
might be affected by nonfundamentalness. In fact, results in Table 3 show that, for r > 6,
fundamentalness is rejected at the 1% level with Specifications I and I and is rejected either
at the 5% level or the 10% level with Specification III. The degree of fundamentalness R? is
below 0.5 for all specification for r > 6. Similar results (not shown here) are obtained with
the MPI instrument. We conclude that the inclusion of financial variables in the VAR may
not be sufficient to solve fundamentalness problems.

Yet, the good news is that the shock is recoverable. The p-values of the Ljung-Box Q-test
for serial correlation of the estimated monetary policy shock, for our three specifications, with
different values of p and r (maximum lag 24) are in Table 4. The result is that recoverability
cannot be rejected at the 5% level for most parameter configurations. Similar results (not

shown here) are obtained with the MPI instrument.? We conclude that, at least for our time

20For the MPI instrument recoverability is obtained only with r > 6.
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Number of leads r
r=4 r=5 r=6 r=7 r=8 r=9

Specification I

p=6 0.619 0.662 0.251 0.469 0.037 0.060
p=9 0350 0.571 0.114 0.435 0.050 0.042
p=12 0.880 0.944 0.324 0.820 0.466 0.285
Specification 11

p=6 0441 0473 0.308 0.777 0.394 0.357
p=9 0119 0.18 0.104 0.517 0.222 0.193
p=12 0472 0.558 0.269 0.913 0.701 0.575
Specification 111

p=6 0.034 0.315 0.446 0.608 0.738 0.546
p=9 0.005 0.064 0.148 0.046 0.391 0.103
p=12 0.032 0.037 0.065 0.057 0.343 0.022

TABLE 4: P-values for the recoverability test, for different values of p and r. Specification I includes
the 1-year bond rate (1YB, industrial production growth (IP) and CPI inflation (CPI). Specification
IT includes 1YB, IP, CPI and the excess bond premium (EBP). Specification III includes 1YB, IP,
CPI, EBP, the mortgage spread and the commercial paper spread. The proxy is the one of Gertler
and Karadi (2015).

span, the monetary policy shock is recoverable, even with the three-variable Specification I,

and that financial variables are not necessarily needed to find the policy shock.

6.3 The three-variable VAR

In this subsection we compare the impulse response functions obtained with the standard
method with those obtained with our proposed method. We choose Specification I with the
GK instrument as our benchmark. We set the number of lags in the VAR equal to 12 (p = 12)
and the number of leads of the VAR residuals included in the regression of the proxy equal to
6 (r = 6). In a robustness exercise, we try different values of p and r.*!

The basic insight delivered by our exercise is that by incorrectly assuming invertibility
without testing one can get dramatically misleading results. On the contrary, when the
proposed procedure is applied, the estimation delivers results in line with textbook effects
of monetary policy, even with a small VAR, and not including the EBP or other financial
variables.

The results from the baseline model are reported in Figure 3. All responses are normalised

21For simplicity, here we do not make any attempt at cleaning the instrument from the information effects
recently discussed in the literature (see for example Jarocinski and Karadi, 2020 and Miranda-Agrippino and
Ricco, 2021). This is left for future research.
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FIGURE 3: VAR results: Specification I, p = 12, GK instrument. Top panels: estimated response
functions with » = 0 (standard method). Bottom panels: estimated response functions with our
proposed method r = 6. Black line: point estimate. Grey area: 68% confidence bands.

to have an impact effect of 100 basis on the 1-year bond rate. The top panels show the
estimated impulse response functions obtained with r = 0, i.e. the standard proxy SVAR
procedure. The response of 1YB is hump-shaped and very persistent (the zero line is not
reached after 3 years). Both prices and industrial production significantly increase after a
tightening shock, so that we have both a large price puzzle and a large real activity puzzle.
The bottom panels show the result obtained with our proposed procedure with r = 6.
Results are completely different and much more plausible. The reaction of the policy variable
is much less persistent: after the significant impact effect it reaches the zero line in about 4
months and further on it is no longer significant. Both inflation and output puzzles disappear:
prices and industrial production reduce significantly after an impact effect which is very close
to zero. The effects on real activity are no longer significant after about one year, showing
that the effects of monetary policy on real activity are transitory, in line with the consensus.
In the appendix, Section B, we report several robustness checks. The overall conclusion is

that the above results are reasonably robust.

6.4 Medium-size VAR specifications

In this subsection we show results for Specification II, including EBP, and Specification III,
including EBP, the mortgage spread and the commercial paper spread. We set p =12, r =0

and r = 6 as in the previous subsection. We compare the results with Specifications I and II.
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Our main conclusion is that, when changing the VAR specification, results obtained with the
standard method change dramatically. On the other hand, when using our proposed method,

results are reasonably robust.
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FIGURE 4: IRFs for Specification III (1YB, CPI inflation, IP growth, EBP, MS CPS). The instrument
is GK. Red line: point estimates; blue line: point estimates for Specification II; black line: point
estimates for Specification I. Top panels: estimated response functions with p = 12, » = 0 (standard
method). Bottom panels: estimated response functions with our proposed method, p = 12, r = 6.
Pink shaded area: 68% confidence bands for Specification III.

In the top panels, Figure 4 reports the case r = 0 (standard method). The red lines are
the point estimates for Specification III; the pink shaded areas are the confidence bands. The
black lines are the point estimates for Specification I; the blue lines are the point estimates
for Specification II. Results appear to be very sensitive to the set of variables included in
the VAR. In Specification II, the effects on prices and real activity are essentially zero. In
Specification III, the sign of the IRFs of prices and industrial production are negative, and
the puzzles of Specification I disappear. Still, the effects are quantitatively small, especially
for prices, and not significant.

The bottom panels report results for our method with » = 6. The IRFs of the first three
variables are similar to those obtained with Specifications I and II. The reaction of prices is
large and significant. The reaction of IP is barely significant, since the confidence bands are
very large, however the point estimates consistently show a sizeable reduction of about 3-5

percentage points of production after one year, depending on the VAR specification.
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6.5 Variance decomposition

In this subsection we show the variance decomposition of CPI inflation and industrial
production growth obtained with our VAR specifications (p = 12, r = 6). We report results
for waves of periodicity 2-18 months (short run), 18-96 month (business cycle) and 2+ months
(overall variance). The result is that monetary policy has sizeable effects on both prices and

real economic activity.

Waves of periodicity
2 — 18 months 18 — 96 months 24 months

Specification I

CPI inflation 19.2 27.6 20.8
(13.5—29.1)  (12.8—642)  (16.2—35.1)
IP growth 27.7 33.8 28.3

(191—36.4)  (13.1—55.4)  (20.0—37.6)

Specification 11

CPI inflation 12.3 12.9 13.2
(10.4—23.1) (9.7—45.1)  (13.4—26.8)
IP growth 20.3 29.5 22.5

(15.8—28.2)  (11.4—515)  (16.7—31.3)
Specification II1

CPI inflation 12.5 10.3 12.5
(10.2—19.5) (6.9—34.2) (11.2—21.5)
IP growth 16.1 5.2 13.0

(12.2—22.2) (42—22.0)  (11.2—20.7)

TABLE 5: Percentage of variance accounted for by the monetary policy shock, for waves of periodicity
2-18 months (short run), 18-96 months (business cycle), 2+ months (overall variance). 68% confidence
bands in brackets.

Table 5 reports the point estimates and the 68% confidence bands (in brackets) for the
percentage of variance explained by the monetary policy shock. The estimates of the short-run
volatility contributions range from 12.3% to 19.2% for inflation and from 16.1% to 27.7% for
industrial production growth. As for the overall variance, the estimates range from 12.5% to
20.8% for inflation and from 13.0% to 28.3% for industrial production.

Focusing on Specification III, which provides the smallest estimates, we see that the
monetary policy shocks explains 12.5% of the overall variance of inflation and 13% of the
overall variance of production, with the 68% confidence bands ranging between a minimum of
around 10% and a maximum of around 20% for both variables.

The above results are at odds with what found in Plagborg-Mgller and Wolf (2022), where
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the contribution of policy shocks to prices fluctuations is found to be very small. A possible
explanation is that, as observed in subsection 3.3, the measure of variance contribution used in
Plagborg-Mgller and Wolf (2022) tends to under-weigh the variance contributions of structural
shocks.

7 Concluding remarks

In this paper we propose a new estimation procedure for structural VARs with an external
instrument. The procedure includes a test for invertibility and a test for recoverability, a
method to estimate the relative impulse response functions when the shock is not recoverable
and a method to estimate the absolute response functions and the shock itself when the
shock is recoverable but not invertible. The procedure reduces to the standard method when
the shock is invertible. Results reported in this paper indicate that all procedures work
remarkably well under simulation, when the sample size is comparable with those typical of
macroeconomic empirical analyses.

An application to monetary policy shocks, using the instrument of Gertler and Karadi,
2015, indicates that the policy shocks are not invertible in a few popular monetary policy VAR
specifications. While the standard method produces puzzling results, our procedure delivers
results in line with textbook effects. Finally, we find that the policy shock is recoverable, so
that we can estimate its variance contributions. Variance decomposition shows that monetary
policy has sizeable effects on both real activity and inflation, suggesting that monetary policy

can be effective in contolling prices.
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Appendix

A Examples

A.1 A square system

Counsider the structural model

Yie) o L 0\ (un
(o) o= (2]

with u; ~ WN(0, I5). Here the system is square, i.e. n = ¢ = 2. The model is noninvertible
(toward the past) since det B(z) = 0 for z = 0. Noninvertibility arises from the fact that uy;

has a delayed effect on ;. However, by inverting the matrix on the right-hand side toward

L™t 0 Yre ) _ [ tae
—L7t 1 Y2t U

Hence both shocks are recoverable with respect to y; (see Remark 1). By projecting y; onto
2

the future we get

its past values one can find the VAR(1) representation?

w66 ()
Y2t 0 1 Yot €at

By inverting the VAR we get the MA(1) Wold representation

Y1t — (L) = 1 0.5L €1t
Yot ' 0 1 Eat ’

0.5 0
where >, = . Hence
0 2

Uy = Y41 = €11 + 0.089 (38)

Upp = —Yip41 T Yor = —€141 + 0.0

so that both uy; and uo; are linear combinations of the present and future values of €1, and

22The projection of y9; on y;_1 is zero, so €9y = yo;. The projection of y;; onto y;_; is %yth =

0-52/2,15—1 .
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€9; as stated in Proposition 2.
Now let us assume that

Zp = Uy + Wy,

where w, is orthogonal to u; at all leads and lags and o2 = 1. By projecting the proxy onto the
present and the future of £; we get §(L~') = (L~! 0.5)". The implied standard deviation « is
1. Hence §(L) = (L 0.5)". According to Proposition 8 we get uy; = ¢'(L™1)e; = (L1 0.5)ey,
which corresponds to equation (38).

Turning to the response functions, from (38) and the definition of z; we get

€1t 0.5L —0.5L Uy 0.25L 0.25z;1 — 0.5w—1 — 0.5uy;
Eot 1 1 Ut 0.5 0.5215 — Wy + Ugy

It can be easily verified that the second term on the right side is orthogonal to z; and
its past history, so that (39) is the projection equation of ; onto z; and its lags. Hence
(L) = (0.25L 0.5)". Applying formula (17) we get the first column of the matrix B(L):

bi(L)e = by(L) = C(L)¢(L)o? = (; 0'?) (002?> 5 _ (f) |

which provides the response functions of interest.

A.2 Example 2: A ‘short’ system

Now let us modify the example above by adding a third structural shock affecting only yo;:
Ure
L 00
) = B(L)u, = Uy
Yo 111
Uzt

with u; ~ WN(0, I3). Now the system is ‘short’; since n = 2 and ¢ = 3. By projecting y;

onto its past values one can find the Wold representation, which is now?3

1 L/3
Y1t _ C(L)Et _ / €1t
Yot 0 1 Eat
Var(uii—1)

23The projection of yo; on y;_1 is zero, so €94 = yo;. The projection of y1¢ onto y;_1 is Var(gs s ) Y2t-1 =
Y2.t-1/3 = €24-1/3 and the innovation is ey, = y1; — €2,4-1/3.
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2/3 0
Wher625:<(/)

However, uy, is still recoverable (whereas uy; and ug; are not), since

). Since ¢ > n, we cannot have global recoverability (see Remark 1).

Utt = Y1441 = E144+1 + €2t/ 3. (40)

Assuming again z; = uy; + wy, when projecting z; onto the present and future of £, we
find §(L71') = (L7' 1/3) and a = 1. Hence 6(L) = (L 1/3)". According to (26) we get
uy = §'(L1)e, = (L7 1/3)e;, which corresponds to equation (40). The responce functions
can be found following the lines of Example 1.

Now let us assume that the shock of interest is uo;, which is not recoverable, and we have
the proxy Z; = ua; + vy, where v; is a unit-variance white noise process orthogonal to u; at all
leads and lags. Notice that 0% = 2. Combining the Wold representation and the structural

representation we find

2L/3 —L/3 —L/S) e

g = C(L) 'B(L)u; = ( | X :

U3t

Hence the projection of ¢; onto the present and past of uy is (—L/3 1)ugy. By replacing
the regressor ug; with Z; the variance of the regressor is doubled whereas the covariances
are the same, so that we have an attenuation bias equal to one half and the projection is
W(L)Zy = (—L/6 1/2)'Z;. Applying formula (17) we get

by(L)or = C(L)p(L)o? = (; L1/3> (‘1%6) 2 = (?) .

We can then normalize by dividing by the impact effect of the shock on the second variable,

which is 1, to get the correct relative IRFs.

B Empirics: robustness checks

B.1 Changing p, r and the instrument

In this subsection, we explore the robustness of our baseline VAR to changes of the number

of lags p, the number of leads r of the VAR residuals used in the regression of the proxy and
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Changing p

Changing r

Changing the proxy
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FIGURE 5: Top panels: changing p. Black line: p = 12; blue line: p = 7; green line: p = 8; red
line: p = 10. Middle panels: changing r. Black line: » = 6; blue line: » = 5; green line: r = 7; red
line: r = 8. Bottom panels: changing the instrument. Black line: GK instrument; blue line MPI
instrument. Grey areas: 68% confidence bands for the baseline specification.

to the use of a different instrument.

Figure 5, top panels, reports results for p = 7 (blue lines), p = 8 (red lines) and p = 10
(green lines), whereas r = 6 is kept fixed. The baseline IRFs p = 12 are the black solid lines;
the shaded grey area is the 68% confidence region of the baseline. In the middle panels we
show results obtained with p = 12 and different values of r, i.e. the benchmark specification
(r = 6, black lines), » = 5 (blue lines), » = 7 (green lines), » = 8 (red lines). In the bottom
panel we report the results obtained by using the MPI instrument (blue lines) in place of the
GK instrument (black lines).

Our conclusion is that results are remarkably robust to these changes.

B.2 Using levels and changing the VAR specification and the time
span

In this subsection, we explore the robustness of our baseline VAR to changes of the treatment
of the variables, the VAR specification and the time span. The parameters are kept fixed to
p = 12 and r = 6; the instrument is GK.

Results are reported in Figure 6. The top panels refer to the results obtained with CPI
and IP in log-levels (blue lines). The effecs on prices is similar to that of the benchmark, but

the effect on IP is much smaller. The middle panels show the results obtained with different
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Using levels
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Changing the time span
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FIGURE 6: Top panels: changing the treatment of the variables. Black line: benchmark; blue line:
CPI and IP are taken in log-levels. Middle panels: changing the time span. Black line: benchmark;
blue line: 1987:8-2008:12; green line: 1979:7-2008:12; red line: 1979:7-2019:6. Bottom panels:
changing the VAR specification. Black line: benchmark (Specification I); blue line: Specification IT;
red line: Specification III. Grey areas: 68% confidence bands for the baseline specification.

time spans, namely 1987:8-2008:12 (blue line); 1979:7-2008:12 (green line); 1979:7-2019:6 (red
line). For the last period the effects on prices are sizably smaller than the benchmark (black
lines). Finally, the bottom panels show what happens when changing the VAR specification
by adding the financial variables. The blue lines correspond to Specification II and the red
lines to Specification III. Results are qualitatively similar to those of the benchmark.

Our overal conclusion is that results are reasonably robust to these important changes.

44



	Insert from: "twerp_1444_-_Ricco.pdf"
	Introduction
	Representation theory
	The model
	Structural shocks and VAR residuals
	A general result
	Recoverable shocks
	Fundamental/invertible shocks

	A general representation

	Identification, estimation, and testing
	The proxy
	The IRFs and the shock
	Nonrecoverable shocks
	Recoverable but nonfundamental shocks
	Fundamental shocks

	Historical and variance decomposition
	Recoverable shocks
	Nonrecoverable shocks

	Testing for recoverability and fundamentalness
	Recoverability test
	Fundamentalness test

	Inference

	The proposed procedure
	A simulated economy with fiscal foresight
	Simulation 1: a recoverable shock
	Simulation 2: a nonrecoverable shock
	Simulation 3: fundamentalness test
	Simulation 4: recoverability test

	The effects of monetary policy shocks
	Data, VAR specification, instruments
	Fundamentalness and recoverability
	The three-variable VAR
	Medium-size VAR specifications
	Variance decomposition

	Concluding remarks
	Examples
	A square system
	Example 2: A `short' system

	Empirics: robustness checks
	Changing p, r and the instrument
	Using levels and changing the VAR specification and the time span



