

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/171966

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/171966
mailto:wrap@warwick.ac.uk

BLOX: Macro Neural Architecture Search Benchmark
and Algorithms

Thomas Chau1*, Łukasz Dudziak1*, Hongkai Wen1,3

Nicholas D. Lane1,2, Mohamed S. Abdelfattah4

1 Samsung AI Center, Cambridge, UK
2 University of Cambridge, UK 3 University of Warwick, UK

4 Cornell University, USA
* Indicates equal contributions

{thomas.chau, l.dudziak, hongkai.wen, nic.lane}@samsung.com
mohamed@cornell.edu

Abstract

Neural architecture search (NAS) has been successfully used to design numerous
high-performance neural networks. However, NAS is typically compute-intensive,
so most existing approaches restrict the search to decide the operations and topo-
logical structure of a single block only, then the same block is stacked repeatedly
to form an end-to-end model. Although such an approach reduces the size of
search space, recent studies show that a macro search space, which allows blocks
in a model to be different, can lead to better performance. To provide a system-
atic study of the performance of NAS algorithms on a macro search space, we
release Blox – a benchmark that consists of 91k unique models trained on the
CIFAR-100 dataset. The dataset also includes runtime measurements of all the
models on a diverse set of hardware platforms. We perform extensive experi-
ments to compare existing algorithms that are well studied on cell-based search
spaces, with the emerging blockwise approaches that aim to make NAS scalable to
much larger macro search spaces. The Blox benchmark and code are available at
https://github.com/SamsungLabs/blox.

1 Introduction

Deep neural network (DNN) performance is closely related to its architecture topology and hyper-
parameters as demonstrated through the progression of image classification CNNs in recent years:
AlexNet [1], Inception [2], MobileNets [3] and EfficientNets [4, 5]. Increasingly, automated methods
are used to design DNN architectures to avoid intuition-based manual design. The field of neural
architecture search (NAS) continues to offer a large number of methods including sample-based
NAS [6, 7], differentiable NAS [8], training-free NAS [9] and blockwise NAS [10, 11, 12]. Within
this realm of NAS for DNN design there are two important design problems which are still mostly
manual. First, how do we design the NAS search space, which defines the set of DNN architectures
from which a NAS algorithm can select. Second, how do we select or design a suitable search method
for a given NAS search space. In this work, we attempt to address both problems through a focused
analysis of macro NAS algorithms within a new NAS search space called Blox.

NAS search spaces. A well-defined search space is crucial for NAS. However, the literature has
mostly focused on cell-based designs in which the NAS algorithm only searches for operations and
connections of a cell that is repeatedly stacked within a predefined skeleton [8, 13, 14, 15, 16, 17, 18].
These approaches prohibit layer diversity which can help to achieve both high accuracy and low

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/SamsungLabs/blox

A A A A B C

Cell-based Search Space Macro Search Space

Figure 1: A macro search space allows each block to have a different architecture whereas a cell-based
search space repeats the same cell/block throughout the DNN.

latency [19]. An alternative to cell-based NAS, known as macro NAS, enables the individual search
for each block in a DNN as shown in Figure 1. In other words, macro NAS allows different stages
of a model to have different structures. Though promising, macro NAS is exorbitantly expensive
because the search space size grows exponentially with the number of blocks. We present the first
large-scale benchmark and study of a macro search space to shed some light on how to perform NAS
in this challenging setting.

NAS benchmarks. To facilitate a fair comparison of NAS algorithms, standardized benchmarks
have been created such as NAS-Bench-101/201/1shot1/NLP/ASR [13, 14, 20, 21, 22]. While these
benchmarks span multiple application domains, they all use cell-based search spaces thus limiting
the analysis of NAS algorithms to this setting only. More recently, NAS-Bench-Macro [23] proposed
a macro search space with 8 stages; however, each stage only has three block options making the
overall search space quite small (38 = 6, 561 DNNs) and not diverse. To address this, we have
developed Blox – a much larger macro NAS benchmark that focuses on block diversity, with 45
unique block options and three stages (453 = 91, 125 DNNs). This enables the empirical analysis of
NAS algorithms on macro search spaces and will thus inform the design of efficient macro search
algorithms. Table 1 summarizes Blox and other recent NAS benchmarks.

Macro NAS algorithms. Any search algorithm can operate on a macro search space; however, very
few will be efficient because of the large search space size. To cope with the complexity of macro
search, a new class of blockwise search algorithms are being developed that perform local search
within each stage before using that local information to construct an end-to-end model. Blockwise
search algorithms is a family of NAS algorithms designed to work well for macro NAS problems.
This divide-and-conquer approach has the potential to speed up macro NAS at the expense of using
inexact heuristics to predict the performance of each block. DNA [10], DONNA [11] and LANA [12]
are three recent and notable works in this area, showing state-of-the-art accuracy-latency tradeoffs on
very large macro search spaces. In this work, we aim to analyze the different components of these
blockwise NAS algorithms to understand, compare and build upon the existing approaches.

We enumerate our contributions below:

1. Macro search space and benchmark for NAS. We release Blox, a NAS benchmark
for CNNs on a macro search space, trained on the CIFAR-100 dataset [24], with latency
measurements from multiple hardware devices.

2. Analysis of blockwise NAS. We systematically evaluate the performance of different NAS
algorithms on Blox, with a particular focus on emerging blockwise search algorithms, for
which we include a detailed analysis of the efficacy of (a) block signatures, (b) accuracy
predictors, and (c) training methodologies.

2 Blox: Macro Search Space

Blox is a macro search space for CNNs on image classification task. The search space is designed to
be compatible with all NAS methods, including differentiable architecture search [8].

2.1 Search space

We opt for a simple search space definition that mimics many recent CNN architectures [3, 4, 5]
and NAS search spaces [8, 14]. Figure 2 shows an overview of the Blox search space. The network
architecture consists of three stages, each containing a searchable block and a fixed reduction block.
The searchable block can be expressed as a differentiable supernet as shown in the figure (block
architecture), and is allowed to be different for each stage to construct the macro search space. We
designed the block architecture to allow for interesting and diverse connectivity between operations as

2

 Network
 Architecture

 Block Architecture Operation set
Skip
Zero
Conv

BConv
MBConv

0

1

3

4

2

Bl
oc

k

R
ed

uc
tio

n

C
on

v

Bl
oc

k

R
ed

uc
tio

n

Bl
oc

k

R
ed

uc
tio

n

C
la

ss
ifi

er

Stage 1 Stage 2 Stage 3

Figure 2: Overview of the Blox macro search space.

Input

Reduction

m/b/conv

Input

Reduction

m/b/conv

m/b/conv

Input

Reduction

m/b/conv

m/b/conv

Input

Reduction

m/b/conv

m/b/conv

Input

Reduction

m/b/conv

m/b/conv

Input

Reduction

m/b/conv m/b/conv

ST1 ST2 ST3 ST4 ST5 ST6

Figure 3: Example block architectures from Blox showing diverse connectivities. Conv: VGG-
style [26] 3x3 convolutions. BConv: Resnet-style [25] bottleneck with 5x5 depthwise-separable
convolutions. MBConv: EfficientnetV2 fused-inverted residual convolution [5] including squeeze
and excitation operation [27].

exemplified in Figure 3. We make sure to include common structures such as residual connections [25]
and inverted bottleneck blocks [5] that are relevant for the state-of-the-art CNNs. In total, there are
45 unique blocks, making the size of the Blox search space 453 = 91, 125. Additionally, we selected
operations from the relevant state-of-the-art DNNs [3, 5, 25, 26], and controlled their repetition
factor to roughly balance FLOPs and parameters across the different blocks (more details in the
supplementary material).

2.2 Training details

Throughout the paper we consider models from our Blox search space in 3 different training scenarios:
1) Normal setting is when a model is trained in a standard way, without any other model participating
in the process. Information about the performance of all 91,125 models when trained normally comes
pre-computed with our benchmark; 2) Distillation refers to a setting in which individual candidate
blocks are distilled independently to mimic analogous blocks from a normally-trained teacher model
T – this process is described in more details in section 3; 3) Fine-tuning, which follows Distillation,
is a process when blocks that were distilled independently are used to form an end-to-end model
M . M is then trained using the standard knowledge distillation approach with the same teacher T
which was used to distill blocks. For the information about hyperparameters used for each of the
three settings and what is included with the benchmark, please refer to the supplementary material.

Blox currently provides tabular results of training-from-scratch to enable systematic study of con-
ventional NAS algorithms on emerging macro search spaces. Such results are also beneficial for
studying blockwise algorithms (even though it does not directly enable their fast evaluation) because
it allows better control of parameters of experiments (e.g. choosing "good teacher vs. bad teacher"),
and enables comparison of the accuracy of the same models trained using different approaches.

3

Table 1: Comparison to other NAS benchmarks.

models Type Operations

NAS-Bench-101 [13] 423k

cell-based

conv3x3, conv1x1, maxpool3x3
NAS-Bench-201 [14] 15,625 zeroize, skip connection, conv1x1, conv3x3,

avgpool3x3
NAS-Bench-1shot1 [20] 363k conv3x3, conv1x1, maxpool3x3
NAS-Bench-NLP [21] 14,322 linear, element wise,

activations (Tanh, Sigmoid, LeakyReLU)
NAS-Bench-ASR [22] 8,242 linear, conv1x5, conv1x5 dilation2,

conv1x7, conv1x7 dilation2, zeroize

NAS-Bench-Macro [28] 6,561 macro identity, MB3_K3, MB6_K6
Blox 91,125 conv, bconv, mbconv

Figure 4: Accuracy v.s. FLOPs and parameters for
all models in the Blox space. The Pareto-frontier of
models with different blocks dominates that of models
with repeated “uniform" blocks – only macro NAS can
discover the superior models.

0 200 400 600 800 1000
Training cost

75.8

76.0

76.2

76.4

76.6

Av
g.

 b
es

t t
es

t a
cc

ur
ac

y
[%

]

BRP-NAS
Regularized Evolution
Hyperband
Random
Q-Learning
REINFORCE

Figure 5: Comparison of conventional NAS
search algorithms on Blox. For the de-
tails about each algorithm, please see Ap-
pendix C.2.

2.3 Differences to other NAS benchmarks

We summarize characteristics of Blox and other recent NAS benchmarks in Table 1. In order to
highlight both promises and challenges of macro NAS versus cell-based NAS, Figure 4 shows the
accuracy of cell-based models consisting of uniform blocks (blue), and macro models consisting
of different blocks (red), from our Blox search space when plotted against their number of FLOPs
or parameters. Pareto-optimal points are additionally emphasized with markers. There are two
highlights. 1) The Pareto-frontier of models with different blocks clearly dominates that of models
with uniform blocks. It indicates that a macro search space contains higher performing models than a
cell-based search space thus motivating our benchmark and study; 2) There are many more models
with different blocks than the models with uniform blocks. The macro search space is much larger,
posing a challenge to the searching algorithms. Figure 4 shows the trade-off between achievable
results and the amount of configurations available. Every cell-based search space can be turned into a
much larger macro search space, which leads to a much higher exploration cost, and the achievable
accuracy would likely improve.

Comparing to NAS-Bench-Macro, another published macro search space, Blox considers a larger
number of diverse replacements. In terms of individual linear operations (e.g. a single convolution),
the shallowest block out of the 45 candidates in Blox contains only 4 layers while the deepest block
has 36 layers. This means that the depth of the whole network can range from 12 to 108 layers
(excluding fixed parts). The design of Blox follows a complementary approach which uses a lower
granularity of blocks with more diverse replacements, while NAS-Bench-Macro focuses on the
opposite direction with higher granularity of blocks which results in lower diversity of candidates
(e.g. NAS-Bench-Macro contains a single operation without any choices regarding connectivity,
while Blox uses 2 operations per searchable stage thus introducing another degree of freedom related
to the connections between them). Having NAS benchmarks that explore different design choices
increases our opportunities to study NAS algorithms in different situations and better understand their
behaviour.

4

Fine tuningBlockwise distillation Search

B0 B1 B2

B0,1

B0,m

Loss B2,1

B2,m

…

… …

B0 B1 B2

B0,i B1,j B2,k

Soft

CE
CE

Labels

Teacher

Student

Loss

Pre-trained

weights

Fine-tuned

accuracy

Next student to evaluate

Block signatures

LANA : ILP + sum of Δvalidation accuracy

DONNA : Evolutionary +
linear regression of distillation loss

Others

Figure 6: Blockwise NAS – (1) Blockwise distillation is performed to obtain the signature of each
candidate blocks. (2) Fine-tuning initializes the blocks of student model with weights obtained in
distillation. Then the student model is trained with knowledge distilled from the teacher. (3) Search
is conducted using different NAS algorithms to find the best model after fine-tuning.

3 Experiments: Characterizing Blockwise NAS on Blox

In order to alleviate the challenges associated with macro NAS, blockwise algorithms have been
proposed recently and showed promising results in optimising state-of-the-art models on large-scale
image classification [10, 11]. Figure 6 shows an overview of blockwise NAS methods: 1) Blockwise
distillation divides a pre-trained reference model (teacher) into sequential blocks that are later distilled
into their possible replacements independently from each other. The process of blockwise distillation
produces a library of pre-trained replacement blocks together with their signatures, such as distillation
loss or drop in the teacher’s accuracy when a student block is swapped-in; 2) Search uses these
signatures to guide an algorithm to find well-performing models built by stacking a number of blocks
from the block library; 3) Fine-tuning is a process when blocks of student model are initialized with
weights obtained in distillation, then the model is trained with knowledge distilled from the teacher.

Although outstanding results were demonstrated, blockwise NAS algorithms have not been thoroughly
evaluated yet, presumably due to their exceptionally challenging setting. To the best of our knowledge,
their performance has not been evaluated in a common setting, nor compared to standard NAS
methods, and very few of their design choices and assumptions have been adequately investigated. In
this section, we attempt to fill these gaps with the help of our Blox search space and benchmark.

We begin by establishing a baseline by running conventional NAS algorithms that can be found in the
literature in the simplest setting when each model is trained normally – results are shown in Figure 5.
The relative efficiency of our search algorithms matches what is found in the literature. Binary-relation
predictor-based NAS (BRP-NAS) [29] performs best, followed by evolutionary search [7] then other
methods [30, 31, 32]. Other than providing these measurements to accompany our benchmark, we
aim to compare to the two most recent blockwise NAS algorithms in the remainder of the paper –
DONNA [11] employs a block-level knowledge distillation technique. Each block’s distillation loss is
treated as its signature. To perform search, an accuracy predictor (linear regression model) is trained
by sampling and fine-tuning random architectures once all blocks are distilled. The predictor takes
the block signatures as input and predicts the performance of models. This accuracy predictor guides
an evolutionary search over the search space to find models that satisfy performance constraints.
LANA [12] also uses blockwise distillation to train a library of blocks. The block signature is the
change of teacher’s validation accuracy after a block is swapped with the candidate block. Then an
integer optimization problem, which minimize the sum of block signature, is used to select efficient
models.

3.1 Fine-tuning versus normal training

We ask questions related to the performance of models when they are fine-tuned in the blockwise
setting compared to that when trained normally, with special attention to the implications for NAS.

Q1: Does distillation help us achieve better performance compared to normal training? Distil-
lation from a teacher model is a central part of both DONNA and LANA, at the same time there is
plenty of evidence in the existing literature suggesting that distillation helps a model achieve better

5

M5
(71.50)

M4
(72.18)

M3
(74.42)

M2
(75.96)

M1
(75.66)

Student architecture

M
1

M
2

M
3

M
4

M
5

Te
ac

he
r a

rc
hi

te
ct

ur
e

76.68 76.32 76.90 76.54 77.00

76.78 76.74 76.72 75.90 76.18

75.66 75.90 75.68 75.30 75.80

74.30 74.42 74.88 74.64 74.30

73.92 73.74 75.12 75.06 73.98

Validation accuracy after distilling for 200 epochs

M5
(72.11)

M4
(72.25)

M3
(74.52)

M2
(75.37)

M1
(75.39)

Student architecture

M
1

M
2

M
3

M
4

M
5

Te
ac

he
r a

rc
hi

te
ct

ur
e

76.64 76.45 76.10 75.99 76.99

76.39 76.15 76.59 75.60 76.05

76.01 75.96 75.68 75.63 75.47

74.55 74.58 74.92 74.54 74.69

73.92 73.72 74.33 74.72 74.37

Test accuracy after distilling for 200 epochs

71

72

73

74

75

76

77

71

72

73

74

75

76

77

Figure 7: Mutual effect of the student and
teacher architecture on the distillation out-
come. Each cell at position (x, y) contains in-
formation about accuracy when model Mx is
blockwise-distilled and then fine-tuned from
a normally-trained model My. Performance
of each model when trained normally is in-
cluded in the X-axis’ tick labels for reference.

72 73 74 75 76 77 78 79 80
Acc. when trained from stratch

71

72

73

74

75

76

77

Ac
c.

 a
fte

r d
ist

illa
tio

n
+

fin
e

tu
ni

ng

Teacher - Spearman-
M1 - 0.25 M5 - 0.31

Figure 8: Spearman correlation between fine-tuned
accuracy and training-from-scratch accuracy. For
fine-tuning, all models are trained for 200 epochs,
either using the good teacher (M1) or the bad
teacher (M5). Solid lines mark performance of
each teacher and dashed line marks y = x diago-
nal.

M1 M5

st
ag

e
0

st
ag

e
1

st
ag

e
2

-0.09 -0.06

0.55 -0.49

-0.45 -0.54

DONNA
(Normal)

M1 M5

-0.16 -0.17

0.26 -0.72

-0.55 -0.46

(Normal)

M1 M5

0.31 0.14

0.51 0.15

-0.49 -0.45

DONNA
(Fine-tuned)

M1 M5

0.13 -0.12

0.14 0.07

-0.33 -0.32
1.0

0.5

0.0

0.5

1.0

LANA LANA
(Fine-tuned)

Figure 9: Spearman correlation between block signatures and oracle ranking for 1000 random models.
The oracle rank of a block is defined by the best normal / fine-tuned accuracy of a model containing
that block. M1 and M5 are used as the teachers.

results, often exceeding even the teacher’s performance. However, it is important to note that the
setting in those works is usually very different from NAS. Specifically, distillation is conventionally
used in situations when the teacher model is known to perform better than the student (e.g., it is
significantly larger) – in general, this important assumption might not hold in a NAS setting when we
sample models from a search space without knowing if they are better or worse than our teacher. In
order to investigate the expected outcome of fine-tuning in different scenarios, we select 5 different
architectures from our search space: 2 from the top performing ones, 1 average, and 2 bad ones; we
refer to them as M1-M5, where M1 is the most accurate and M5 is the least accurate among them.
We then run blockwise distillation for 10 epochs and fine-tuning for 200 epochs (to match normal
training) for each of the 25 possible (student, teacher) pairs. From the results in Figure 7, we can
see that in all cases student model is able to improve upon its teacher, delivering on the promise
of blockwise distillation from the existing works. However, we can also see that compared to the
accuracy achievable when a student is trained normally, fine-tuning does not always result in
improvement. Specifically, when a bad teacher is used, accuracy of the models that otherwise tend
to achieve good performance is suppressed – this can be seen in the lower-right corner of Figure 7.

Q2: Does fine-tuning accuracy correlate to training-from-scratch accuracy? Figure 7 includes
one more significant observation for NAS – even within our small sample of 5 models relative ranking
of models after fine-tuning is different from when the models are trained normally. For example, when
M1 is used as a teacher we can see that the second best model turns out to be M5, which normally is

6

0 100 200 300 400 500
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ea

rm
an

-

Distill epochs = 1
GCN
DONNA

0 100 200 300 400 500
Number of models used to train the predictor

0.1

0.0

0.1

0.2

0.3

0.4

0.5
Distill epochs = 10

0 100 200 300 400 500
0.1

0.0

0.1

0.2

0.3

0.4

0.5
Distill epochs = 50

LANA

Figure 10: Comparison of different predictors on estimating end-to-end model accuracy (after
distillation and fine-tuning). Y-axis shows the Spearman correlation between the predicted and actual
accuracy. In this experiment, 1000 models are randomly sampled from Blox. The number of models
used to train the predictors are indicated in the x-axis, and the rest of the models are used for testing.

the worst. This suggests that models exhibit vastly different performance when distilled compared
to normal training. To further investigate this behaviour, we scale up our analysis to 1000 random
student networks which are distilled with M1 and M5, then we correlate their training-from-scratch
accuracy to fine-tuning accuracy. Results are presented in Figure 8. We can see that indeed on the
larger sample correlation remains rather weak for both teachers, with Spearman-ρ of 0.25 for M1
and 0.31 for M5. At the same time, Figure 8 further supports our observation that fine-tuning is
only beneficial if a good teacher is used – even though most of the students are able to significantly
improve upon the M5 teacher, most of them do not improve upon their own training-from-scratch
accuracy; this is not the case for a good teacher though. Poor correlation between fine-tuning and
normal training suggests that in general we should not perform NAS by simply searching for a good
model using standard training and then rely on distillation to boost its performance – instead, we can
achieve better results if we directly search for a model that performs well when distilled.

3.2 Searching for good students efficiently

In the previous subsection we showed that blockwise distillation can be helpful in improving accuracy
of models, and it is important to identify good students under distillation settings as fast as possible
in order to minimize searching cost. We also highlighted that blockwise methods utilise a divide-and-
conquer approach where signatures of different blocks are used to guide the search. We therefore ask
the following questions related to block signatures and their usage in NAS.

Q3: How well do block signatures identify good blocks? We compare different block scoring
methods by measuring their correlation with an oracle ranking. The oracle ranking is computed
by answering "if this block is selected at this stage, what is the best accuracy we can get?" for
each candidate block, and the blocks are then sorted accordingly. Figure 9 compares the two block
signatures, distillation loss (DONNA) and change of validation accuracy (LANA), in their ability
to identify good blocks with approximated oracle ranking, when distilled from a good (M1) and
a bad (M5) teacher. It is the first time that the efficacy of DONNA and LANA block signatures
are quantified, and surprisingly, they are not consistently indicative of block performance. In
particular, the correlation of the last stage (stage 2) is much worse than the earlier stages.

Q4: Can we still use signatures to predict end-to-end performance? Even though signatures
are not good indicators when it comes to identifying if individual blocks would lead to the best
possible model on their own, it is still possible that they can be used in a smart way to estimate
end-to-end performance. In DONNA, a linear regression model with second-order terms is used to
predict end-to-end accuracy, using block signatures as features and accuracy as targets. In LANA,
a simple sum of signatures is used as a proxy to approximate the non-linear objective to minimize
the loss function. At the same time, there are predictors that utilize graph structure rather than block
signatures and deliver promising results in other settings. For example, BRP-NAS [29] uses a graph
convolutional network (GCN) to capture graph topology and predict performance of a model. We
compare these different prediction-based approaches in estimating end-to-end model accuracy.

Figure 10 shows comparison of different predictors used to estimate end-to-end model accuracy after
distillation and fine-tuning. There are 3 findings: 1) Distillation loss + linear regression (DONNA)

7

74 75 76 77
Acc. after fine tuning for 200 epochs

70

71

72

73

74

75

Ac
c.

 a
fte

r f
in

e
tu

ni
ng

 fo
r 5

0
ep

oc
hs

Spearman- : 0.53

74 75 76 77
Acc. after fine tuning w/ good teacher

71

72

73

74

75

Ac
c.

 a
fte

r f
in

e
tu

ni
ng

 w
/ b

ad
 te

ac
he

r

Spearman- : 0.50

Figure 11: (Left) Spearman correlation between fine-tuned accuracy for 50 epochs and 200 epochs,
using the good teacher (M1). It indicates that high performing models can be identified by fine-tuning
for fewer number of epochs. (Right) Spearman correlation between fine-tuned (for 200 epochs)
accuracy using the good teacher (M1) and bad teacher (M5). It indicates that high performing models
can be identified even by using the bad teacher.

is better than change of validation accuracy + simple summation (LANA). 2) Signatures of
blocks that were distilled for more epochs tend to produce better predictors. 3) The GCN
predictor, which does not require any distillation signatures, can outperform DONNA. However,
DONNA works better with a small number of training points, provided that the blockwise
distillation was performed with 10 or more epochs.

Q5: Do we have to fine-tune for 200 epochs?

It is possible that reduced fine-tuning (e.g. for 50 epochs) can identify models that are as good as
those found by the full searches (e.g. for 200 epochs). To investigate this, Figure 11 (left) shows the
correlation of fine-tuning for 50 and 200 epochs – the results suggest that it should be possible to
still identify good models without full fine-tuning. To confirm this hypothesis, in Figure 12, we
first search by fine-tuning the student models for 10 epochs (FT10, which has 400 models trained
when the training cost reaches 30 as indicated by the gray line). Then we rank the models searched
and retrain them for 200 epochs using the same teacher. The big improvement seen in the blue curves
indicated that the models searched are good. After full training they outperform the models searched
by fine-tuning the student models for 200 epochs (FT200, which only has 20 models searched when
the training cost reaches 30). This aligns with the results in Figure 11 (left) that models trained with
50 epochs and 200 epochs are highly correlated.

Q6: Can we search for good models without prior knowledge of a good teacher? Figure 11
(right) shows the correlation of fine-tuning by different teachers. We can see that the accuracy of
models fine-tuned by a good teacher is highly correlated with that of a bad teacher. Although we
know that model selection is robust to the choice of teacher, it is not usually the case that we have
prior knowledge of a good teacher. In such case, we propose to find better teachers iteratively: 1) Start
NAS and fine-tune models using any teacher. 2) Stop the search and obtain a list of candidate models.
3) Train the candidate models from scratch and pick the best model as the teacher. 4) Fine-tune the
candidate models using the teacher selected, and pick the best model as the next teacher. 5) Repeat
step 4 until we see no further improvement. As we can see from the blue curve in Figure 13, the
iterative approach has significantly improved the model accuracy without knowing a good
teacher in advance.

3.3 Comparison of different NAS methods

Table 2 quantifies the performance of different methods on the Blox search space. We measure two
things – accuracy after reaching a fixed cost of 40, and cost required to achieve an accuracy of 76.6
(which is roughly the accuracy of the best model in our search space when trained normally). For
conventional NAS, we highlight regularized evolution [7] and BRP-NAS [29] which have the best
results among the others, and DART-PT [33] which is a well-known differentiable NAS method.

8

0 5 10 15 20 25 30 35 40
Training cost

72

73

74

75

76

77

78

Av
g.

 b
es

t t
es

t a
cc

ur
ac

y
[%

]
DONNA D10_FT200
DONNA D10_FT10
LANA D10_FT200
LANA D10_FT10

Figure 12: Comparison of models being
searched and retrained using a different number
of epochs. For the blue lines, the search is con-
ducted until cost=30 with 10 fine-tuning epochs,
after which the best models found are trained
fully (to the right of the dashed gray line).

0 5 10 15 20 25 30 35 40
Training cost

69

70

71

72

73

74

75

76

77

78

Av
g.

 b
es

t t
es

t a
cc

ur
ac

y
[%

]

DONNA D10_FT10
DONNA_D10_FT10
retrained by bad teacher
DONNA_D10_FT10
retrained by good teacher
DONNA_D10_FT10
retrained iteratively

Figure 13: Models being searched using a
bad teacher (M5), and retrained using differ-
ent schemes. Firstly the search is conducted
till cost=30 as indicated by the gray line. Then
the models found during search are ranked and
retrain for 200 epochs using 3 different schemes
– (1) the same bad teacher (green curve), (2) the
good teacher (red curve), (3) iterative approach
(blue).

Table 2: Performance of different NAS methods on Blox search space. For blockwise-NAS methods,
the blocks are distilled for 10 epochs and then the models are fine-tuned using a FTα setting, e.g.
FT10 means the models are fine-tuned for 10 epochs in the search process. In the cases that retraining
is performed (which starts once the cost reaches 30), the searched models are ranked and retrained
until the cost or accuracy target is reached, e.g. FT10 + FT200 means the models are retrained for 200
epochs. If a different teacher is used for retraining, it is denoted, e.g. FT10 + FT200 iter. means the
teacher used in the retraining process is selected by the iterative strategy. The middle column shows
the accuracy achieved after reaching a fixed cost of 40, and the last column shows the cost required to
achieve an accuracy of 76.6. %means the target accuracy cannot be achieved with reasonable cost.
† DARTS-PT is a differentiable NAS method that the cost of 40 does not apply.

Method Acc. Cost
@ cost=40 @ acc.=76.6

Conventional NAS

BRP-NAS 76.40 400
Reg. Evolution 76.10 %

DARTS-PT 74.52† %

Method Acc. Cost
@ cost=40 @ acc.=76.6

Blockwise NAS assuming good teacher (M1)

FT200 76.90 25
FT10 73.47 %
FT10 + FT200 77.66 30

Blockwise NAS assuming bad teacher (M5)

FT10 70.67 %

FT10 + FT200 74.90 %
FT10 + FT200 iter. 76.67 30
FT10 + FT200 M1 76.88 30

We can see a few things: 1) Conventional NAS achieves worse results than standard blockwise
(FT200) when a good teacher is used; 2) We can improve blockwise NAS by utilising reduced
fine-tuning proxy followed by full fine-tuning (FT10 + FT200), which is our contribution stemming
from questions Q 1-5; 3) However, when a bad teacher is used (FT10 + FT200 at the bottom part),
blockwise NAS actually falls short to its conventional counterpart – the results can be improved by
our proposed simple iterative strategy (FT10 + FT200 iter., Q 6), which allows us to again dominate
conventional NAS. In fact, iterative strategy is almost as good as using the good teacher in the second
phase of the search (FT10 + FT200 M1).

9

Overall, our results again showcase the dominant role of the final fine-tuning and, more broadly,
quality of training in blockwise NAS. We include more detailed discussion about interpretation of
some of our results, as well as their limitations, in the supplementary material.

4 Conclusion

In this work, we presented Blox – a macro NAS search space and benchmark designed to provide a
challenging setting for NAS. With its help, we perform a thorough analysis of the emerging blockwise
NAS algorithms and compare them to each other and the conventional NAS methods that can be
found in the literature. Our results include a quantitative analysis of the efficacy of block signatures
and accuracy predictors, furthermore, we discover that the training methodology, especially the
teacher model architecture during distillation, plays a bigger role than student model architecture
in finding a good student model. Our findings are somewhat unexpected and only made possible
by the availability of Blox, for which we hope to see many more interesting studies by the research
community.

Acknowledgments and disclosure of funding

This work was done as a part of the authors’ jobs at the Samsung AI Center, and was supported by
the National AI Strategy Fund at the Alan Turing Institute. We thank the reviewers of the NeurIPS
Datasets and Benchmarks Track 2022 for their comments and suggestions that helped improve the
paper.

10

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems, 2012.

[2] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[3] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan,
Grace Chu, Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, and Quoc Le.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019.

[4] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning (ICML), 2019.

[5] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. CoRR,
abs/2104.00298, 2021.

[6] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations (ICLR), 2017.

[7] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01), Jul. 2019.

[8] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations (ICLR), 2019.

[9] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane.
Zero-cost proxies for lightweight nas. In International Conference on Learning Representations
(ICLR), 2021.

[10] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and
Xiaojun Chang. Blockwisely supervised neural architecture search with knowledge distillation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[11] Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott,
and Tijmen Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[12] Pavlo Molchanov, Jimmy Hall, Hongxu Yin, Jan Kautz, Nicolò Fusi, and Arash Vahdat. LANA:
latency aware network acceleration. In Proceedings of the European Conference on Computer
Vision (ECCV), 2022.

[13] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
NAS-Bench-101: Towards reproducible neural architecture search. In International Conference
on Machine Learning (ICML), 2019.

[14] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations (ICLR), 2020.

[15] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimiza-
tion. In Advances in Neural Information Processing Systems, 2018.

[16] Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. NPENAS: neural predictor guided
evolution for neural architecture search. CoRR, abs/2003.12857, 2020.

[17] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. In Advances in
Neural Information Processing Systems, 2020.

11

[18] Colin White, Willie Neiswanger, and Yash Savani. BANANAS: bayesian optimization with
neural architectures for neural architecture search. CoRR, abs/1910.11858, 2019.

[19] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[20] A. Zela, J. Siems, and F. Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-shot
neural architecture search. In International Conference on Learning Representations (ICLR),
2020.

[21] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim V. Fedorov,
and Evgeny Burnaev. Nas-bench-nlp: Neural architecture search benchmark for natural language
processing. CoRR, abs/2006.07116, 2020.

[22] Abhinav Mehrotra, Alberto Gil C. P. Ramos, Sourav Bhattacharya, Łukasz Dudziak, Ravichan-
der Vipperla, Thomas Chau, Mohamed S Abdelfattah, Samin Ishtiaq, and Nicholas Donald Lane.
Nas-bench-asr: Reproducible neural architecture search for speech recognition. In International
Conference on Learning Representations (ICLR), 2021.

[23] Xiu Su, Tao Huang, Yanxi Li, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang
Xu. Prioritized architecture sampling with monto-carlo tree search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[24] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR), 2015.

[27] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[28] Xiu Su, Tao Huang, Yanxi Li, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang
Xu. Prioritized architecture sampling with monto-carlo tree search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[29] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcns. In Advances in Neural Information Processing
Systems, 2020.

[30] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet S. Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res., 18:185:1–185:52, 2017.

[31] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. In International Conference on Learning Representations
(ICLR), 2017.

[32] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[33] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Re-
thinking architecture selection in differentiable nas. In International Conference on Learning
Representations (ICLR), 2021.

[34] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

12

[36] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015.

[37] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In
International Conference on Learning Representations (ICLR), 2017.

[38] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop, 2013.

[40] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

[41] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wal-
lach, Hal Daumé, and Kate Crawford. Datasheets for datasets. arXiv preprint arXiv:1803.09010,
2018.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss the limitations in the

supplementary material.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] The

details are provided in the supplementary material.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The details
are included in the supplementary material. The code and data are accessible via
https://github.com/SamsungLabs/blox.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section 2 and further details in the supplementary
material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] The experiments are compute intensive. At the time of
submission we could only run training once per experiment and we plan to include
multiple seeds in the future.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The details are provided in the
supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use CIFAR-

100 [24] and have mentioned them in Section 1.
(b) Did you mention the license of the assets? [Yes] The license is CC BY-NC which is

mentioned in the supplementary material and https://github.com/SamsungLabs/
blox.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The assets is accessible via https://github.com/SamsungLabs/blox.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

https://github.com/SamsungLabs/blox
https://github.com/SamsungLabs/blox
https://github.com/SamsungLabs/blox
https://github.com/SamsungLabs/blox

