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ABSTRACT

This paper has been designed to study whether photodiodes and supervised machine learning (ML) algorithms are sufficient to automatically clas-
sify weld defects caused by simultaneous variation of the part-to-part gap and laser power during remote laser welding (RLW) of thin foils, with
applications in battery tabs. Photodiodes are used as the primary source of data and are collected in real-time during RLW of copper-to-steel thin
foils in the lap joint. Experiments are carried out by the nLight Compact 3 kW fiber laser integrated with the Scout-200 2D scanner. The paper
reviews and compares seven supervised ML algorithms (namely, k-nearest neighbors, decision tree, random forest, Naïve–Bayes, support vector
machine, discriminant analysis, and discrete wavelet transform combined with the neural network) for automatic classification of weld defects. Up
to 97% classification rate is obtained for scenarios with simultaneous variations of weld penetration depth and part-to-part gap. The main causes
of misclassification are imputed to the interaction between welding parameters (part-to-part gap and laser power) and process instability at high
part-to-part gap (high variation in the process not captured by the photodiodes). Arising opportunities for further development based on sensor
fusion, integration with real-time multiphysical simulation, and semi-supervised ML are discussed throughout the paper.
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NOMENCLATURE

AI artificial intelligence
DP weld penetration depth (μm)
DWT discrete wavelet transform
ECOC error-correcting output codes
k-NN k-nearest neighbor
LoC lack of connection
ML machine learning
NN neural network
OCT optical coherence tomography
OP overpenetration
PL laser power (W)
RLW remote laser welding

SW sound weld
SP signal generated by the radiation from plasma and metal

vapor (V)
ST signal generated by the radiation in the short waves-infra

red (V)
SR signal generated by the reflected laser radiation (V)
SVM support vector machine
TL lower material thickness (μm)
TS throat thickness (μm)
TU upper material thickness (μm)

Greek

μP, μT, μR mean value of SP, ST, and SR (V)
σP, σT, σR scatter level of SP, ST, and SR (V)
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INTRODUCTION

With the transition from fossil fuel to electric mobility, it is
estimated that at least 30 million zero-emission electric vehicles
(EVs) will be on the roads in the EU alone by 2030. The assembly
of a single battery pack for EVs requires about 20 000 cell-to-tab
welds, which adds up to a few billion welds being made per year.
Cell-to-tab welds involves various dissimilar thin foils ranging from
a few tens of micrometers to below 500 μm. Going from a few
thousands to billions of welds per year is a game change for
current production systems and hence, needs tighter and reliable
monitoring, diagnosis, and process control. This is corroborated by
the fact that (1) undetected lack of connection results in voltage
drops with the malfunction of the whole battery pack; (2) unde-
tected variations in the weld profile result in unequal electrical resis-
tances within the same battery pack leading to uneven current
loads that can reduce the overall electrochemical performance of
the battery pack and lead to inhomogeneous cell degradation;1 (3)
excessive weld penetration depth brings the risk of piercing adjacent
components (electrodes, etc.) with subsequent leakages of harmful
gases and potential thermal-runway.

Remote laser welding (RLW) is the process of choice for a
wide range of EV applications and, in particular, for cell-to-tab
assembly due to several advantages in terms of single sided non-
contact access, high production rate due to high processing speed,
narrow heat affected zone, and ease of automation.2,3 A number of
novel laser welding technologies have been developed and proposed
in recent years and hold the promise to stabilize the molten pool
and, hence, enlarge the process window. For example, novel laser
systems (i.e., green or blue lasers4) and/or beam shaping technolo-
gies (i.e., adjustable ring mode laser5 or optical phased array6)
claim improved stability of the keyhole and better coupling of the
laser beam. Although some of these technologies are being imple-
mented in the industry, the fact remains that the weld quality is
still below the expected targets. In this regard, sensor technologies
for in-process monitoring of laser weldments have attracted signifi-
cant interest. For example, Simonds et al.7 investigated the laser-
induced fluorescence (LIF) for monitoring laser spot welding of
aluminum to copper thin-foil, with the purpose of controlling the
formation of intermetallic compounds showing that it enables the
detection of copper atoms in the vapor plume before sufficient
laser energy was deposited to form strong mechanical joints.
Chianese et al.1 investigated the capability of photodiodes to
monitor weld penetration depth and part-to-part gap variations
during RLW of 300 μm-thick copper-to-steel foils and concluded
that the occurrence of weld defects is indicated by the signal fea-
tures, such as energy intensity and scatter level.

Boosted by current rises in digital technologies such as
machine learning (ML) and artificial intelligence (AI), the concept
of intelligent systems for automatic classification of weld defects is
now a closer perspective. The underlined principle for the auto-
matic classification of laser weld defects via supervised ML tech-
niques is to generate both defective and nondefective parts (also
known as classes), while gathering a set of data/signals via
in-process sensors. Data are represented with distinctive features
(see Fig. 1) and then the classification algorithm is trained on those
features to draw a “decision boundary” so that, when a new and

untrained case is presented, the algorithm would be able to auto-
matically assign it to the most similar class. The concept of “simi-
larity” is pivotal and differentiates the selection of the algorithm.
Cases with poor similarity lead to the problem of misclassifica-
tions—i.e., multiple decision boundaries can be drawn in the
feature space as a consequence of the fact that the same set of fea-
tures describes multiple classes. Misclassifications must be avoided
since they trigger false negative (type-I error) and/or false positive
(type-II error) scenarios and have detrimental effects on production
up-time, scrap rate, and product quality.

Classification algorithms have been predominantly imple-
mented for laser welding of thick parts (above 1mm), whose process
window is larger and more robust against process variations than
assembly with thin foils (below 500 μm).8 Nonetheless, the applica-
tion of classification algorithms to the RLW process of thin foils for
battery cell-to-tab welding remains an under-explored area of
research. Lee et al.9 combined photodiodes with SVM, fully con-
nected neural network (FCN), and convolutional neural network
(CNN) to estimate the level of weld penetration during laser welding
of aluminum to copper for thin foils and introduced three classes
with respect to the weld penetration mode (penetration limited to
the upper foil, penetration of the weld in the lower foil, and transi-
tion mode). Sumesh et al.10 classified metal-arc welding experiments
with respect to three classes by training decision trees and random
forest algorithms with statistical features that were calculated from
signals recorded with microphones. Wang et al.11 employed high
speed photography and SVM to predict weld quality during welding
of steel plates with respect to two classes, namely, good and poor
welds. Lee et al. developed in situ monitoring of CO2 laser welding
of 0.83 mm-thick galvanized steel using the spectrometer by training
k-NN and SVM models with the ranked features based on the spec-
troscopic and temporal information of the spectra.12

Motivated by the fact that photodiodes have a simple structure
and low cost, this paper aims at studying whether photodiodes
combined with supervised ML models are sufficient to classify weld
defects caused by simultaneous variation of the part-to-part gap
and laser power during RLW of thin foils battery tabs. The paper
will review and compare 7 ML methods for weld defects classifica-
tion by introducing three classes: lack of connection, sound weld,
and overpenetration weld.

FIG. 1. Concept of feature classification—different decision boundaries as a
result of different partitions of the feature space.
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MATERIALS AND METHODS

Equipment and experimental settings

The employed laser unit was nLight Compact fiber laser 3 kW
(nLight Inc., USA), and the laser beam was delivered by a 2D
scanner (Scout-200, Laser & Control K-lab, South Korea). The
photodiode-based sensor LWM 4.0 (Laser Welding Monitoring,
Precitec GmbH, Germany) was used to record optical emission with
wavelength within the following three ranges: 300–700, 1200–2000,
and 1020–1090 nm, respectively, in the SP signal (plasma), ST signal
(temperature), and SR signal (back reflection) at a maximum sam-
pling rate of 50 kHz. The sensor was aligned to the center of the
molten pool/keyhole and was installed just below the collimator of
the scanner, close to the camera port [see Fig. 2(a)]. Full specifica-
tions of the welding setup are shown in Tables I and II. Laser beam
wobbling was implemented and, the laser beam motion consisted of
the superimposition of a circular oscillation (500 Hz and radius
equal to 0.2mm) and a linear motion with a speed of 120mm/s.

The laser power (PL) was delivered in a continuous mode and
the direction of the laser beam was perpendicular to the specimens
(this was enabled via the F-theta optics). The position of the focal
point was set 500 μm above the lower surface of the steel foil.
Experiments were performed without filler wire and shielding gas.
A “check surface” was placed below the steel plate so that a mark
on the check surface would indicate full penetration of the foils by
the laser beam [see Fig. 2(b)].

Design of experiments and generation of datasets

Two process parameters were considered in the design of
experiments, namely, the laser power and part-to-part gap. The
laser power was varied to emulate manufacturing scenarios with
variable weld penetration depth and eventually variations of mate-
rial absorptivity. Variation of part-to-part gap relates to nonrepeat-
able clamping system and dimensional inaccuracies. Part-to-part
gap was controlled by using shim packs. Specimens were 70 mm
long and 30 mm wide and were wiped with acetone prior to
welding to remove any surface contamination. All welds were in lap
configuration with a welding length of 40 mm. Three replications
for each experiment were executed in randomized order to avoid

unknown bias effects. For each experiment, one cross section was
taken at the middle of the weld—each cross section was ground
and polished (no etching) and, after mounting in resin disks,
images were recorded by the microscope Nikon Eclipse LV150N.

Three datasets were generated (Table III) with the aim to clas-
sify weld defects caused by only variations of the laser power (dataset
A); only variations of the part-to-part gap (dataset B); and simulta-
neous variations of laser power and part-to-part gap (dataset C).

Three geometrical features were measured (see Fig. 3) in each
cross section: (1) weld penetration depth, DP; (2) throat thickness,
TS; (3) and actual part-to-part gap. Ts was measured at the shortest
distance of the weld profile from the bottom corner of the upper
material. Those features were then used to label the welds in three
classes.

Definition of the three classes derived from the need to meet
the safety requirements (no laser piercing through the bottom foil)
and satisfy the electrical and mechanical targets (via control of TS
and DP).

• Class (1)—Overpenetration (OP): laser mark left on the check
surface;

• Class (2)—Lack of connection (LoC): DP < 0.35⋅TL and
TS < 0.75⋅TU; and

• Class (3)—Sound weld (SW): DP≥ 0.35⋅TL, DP < TL, TS≥ 0.75⋅TU.

The reasoning behind the selection of the labeling criteria is
discussed as follows: (1) the overpenetration owns the risk of
piercing adjacent components and thermal-runway. Looking at
Figs. 3(b)–3(c), it appears that both cases (b) and (c) represent full-
penetration welds (molten layer fully extended throughout the two
foils). However, the case in (c) has a blind keyhole, which does not
propagate throughout the bottom foil. As such, the laser radiation
[shown as small arrows in Figs. 3(b) and 3(c)] eventually is only
absorbed by the keyhole walls (or back-reflected towards the top)
and does not pierce through the bottom of the steel foil. Following
this logic, only case (b) is labeled as overpenetration; (2) minimum
level (35% of TL) of weld penetration depth to ensure mechanical
resistance; (3) minimum level (75% of TU) of throat thickness to
ensure both electrical conductivity and mechanical resistance.

FIG. 2. (a) Experimental setup of the equipment and (b) representation of the
clamping device.

TABLE I. Compact fiber laser 3 kW, nLight.

Max. output power 3 kW
Wavelength range 1070 ± 10 nm
Beam quality 4 mm rad
Fiber diameter 50 μm

TABLE II. Scout-200, Laser & Control K-lab.

Working field 70 × 70mm2

Collimating length 160 mm
Focal length 254 mm
Max. allowed laser power 2 kW
Spot diameter on focus 80 μm
Rayleigh length 0.8 mm
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Preliminary welding trails confirmed that those levels were suffi-
cient to achieve 70 N/mm weld strength and electrical resistance
below 8 μΩ.1

Signal processing and definition of signal features

The photodiode recorded three signals, SP, ST, and SR, during
each experiment. Both hardware and software gains were set to
clamp the signals in the range [0, 10] V.

Since for each experiment, one cross section was taken at the
middle of the weld, the signals were extracted likewise. For this
purpose, a cropping window of 6 mm (corresponding to a duration
of 0.05 s and approximate 2500 readings) was used and centered in
the middle of the recorded signal. The 6 mm window was chosen
to allow ±3mm tolerance during the cutting stage of the cross
section itself. This approach allowed consistency between the
results of the cross sections and data collected by the sensor.

Statistical features were then extracted from the cropped
signal: mean value, μ, and the scatter level, σ. The mean value is
proportional to the total energy content of the emitted radiation;
the scatter level is proportional to the uncontrolled process varia-
tions and was calculated with the standard deviation of the noise
content at frequencies above 100 Hz. Therefore, each data point in
the dataset had a six-tuple of signal features, {μP, σP, μT, σT, μR, σR}.
Figure 4 illustrates the 2D case (μP and σP) of the feature space for
the three analyzed datasets. Figure 4(a) shows that the variation of
the weld penetration depth (dataset A) results in the gradual transi-
tion from lack of connection to overpenetration. This transition has
a negative effect on the capability to classify the weld defects—this
point will be discussed thoroughly in the “Results” section.
Opposed to dataset A, in dataset B [Fig. 4(b)], the occurrence of
weld defects is indicated by the abrupt changes of the signals,

which results in two distinct classes (lack of connection and sound
weld). Dataset C in Fig. 4(c) shows the simultaneous variation of
part-to-part gap and laser power; this leads again to a gradual tran-
sition with overlapped regions.

Although dataset B has limited dimensionality (only 14 data
points) and, therefore, is not suitable alone for ML models, it has
been used in conjunction with datasets A and C (A ∪ B ∪ C) to
prove the generalization of the selected ML models.

TABLE III. Definition of datasets with related process parameters and materials.

Process and materials

Dataset

A B C

Laser power (W) 600–1500 1050 390–990
Part-to-part gap (μm) 0 0–300 0–200
No. of data points 46 14 86
Upper material, TU C103 copper R240

(uncoated), 300 μm
C103 copper

R240, Ni-plated,
200 μm

Lower material, TL Hilumin (steel cold deep, Ni-plated) 300 μm

FIG. 3. Geometric features of the cross sections that were measured: the effec-
tive gap, the penetration depth (DP), and the throat thickness (TS).

FIG. 4. Representation of the three analyzed datasets for the SP signal. The
red triangle indicates laser mark left on the check surface.
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ML models for classification of weld defects

The paper benchmarks seven ML models8,10–13 for the classifi-
cation of weld defects.

(1) k-NN—a data point is classified by a plurality vote of its “k”
neighbors in the feature space, with the data point being assigned
to the class most common among its nearest neighbors.

(2) Decision tree—classification is determined by binary decisions
at different nodal levels, with observation being assigned to
one of the two branches based on attribute values. Final deci-
sion results in assignation to a class at the last level, which is
also called “leaf.”

(3) Random forest—as individual decision trees tend to overfit,
random forests that consist of an ensemble of decision trees are
used to prevent overfitting.

(4) Naïve–Bayes—it is a probabilistic classifier with boundaries
between classes that are defined in the space of the observed
attributes by leveraging the Bayes theorem and assuming that
the features are conditionally independent; coupling with
kernel density estimation, it enables the achievement of higher
accuracy.

(5) SVM—it is used in binary classification by drawing boundaries
in the feature space (hyperplanes) that maximize distance
margins with observations of the two classes.

(6) Discriminant analysis—boundaries between different classes
are set in the space of the observed variables assuming that dif-
ferent classes generate data based on different Gaussian
distributions.

(7) DWT&NN—DWT allows representing the signal in the time-
frequency domain with a set of coefficients. DWT’s coefficients
are then passed to a single-layer perceptron NN without
hidden layers.

Since SVM uses a binary classifier and this paper deals with
three classes, we considered the error-correcting output codes
(ECOCs) model instead. It is worth noting that these methods are
optimized to work with the low number of features (below 100).
Parameters and kernels for each of the considered ML models are
reported in Table IV.

The paper also introduces the DWT to gather additional fea-
tures beyond the statistical ones. DWT allows representing the
signal in the time-frequency domain.8 Opposed to fast Fourier
transform (FFT), which is capable to represent only stationary
signals in the frequency domain, DWT deals with nonstationary
signals and provides band frequency information in the time
domain. It also allows coping with local spikes, discontinuities, and
fluctuations. The interest in exploring the potentiality of DWT
stems from the idea of accounting for the frequency content of the
oscillations/fluctuations in the signals.

Our hypothesis is that those fluctuations are directly related to
the dynamics of the keyhole and the molten pool. For instance,
during the RLW process, the keyhole is kept open according to a
pressure equilibrium whose balance is influenced by the process
parameters and their variations, hence leading to oscillations/fluc-
tuations in the signal itself.14

DWT starts by passing the signal iteratively through digital
low pass filters with the impulse response, called scaling function,

and through high pass filters, the wavelet function. The result of
these iterations is an ordered subset of Ns coefficients that can be
arranged in a sparse matrix and allow a nonredundant representa-
tion of the signal with perfect reconstruction upon inversion.
Coefficients corresponding to high frequency-bands are close to
zero and hence have low contribution toward the reconstruction of
the original signal.8,14 Following this logic, the representation of the
signal with Ns/2, Ns/4, and Ns/8 have progressively lower dimen-
sionality but carry less information, as shown in Fig. 5. In our
implementation, the set of coefficients generated via DWT are

TABLE IV. Kernels and parameters of ML models.

ML model Parameters and kernels

(1) k-NN • Similarity metrics: Euclidean distance.
• Number of neighbors: tested both 2 and
3. With k > 3 accuracy degraded.

• Standardization of values of the
predictors.

(2) Decision tree • Algorithm: classification and decision tree
(CART) with Gini diversity index split
criterion.

• Minimum leaf size: 1.
• Minimum sample split: 2.
• Model depth:
• 3 for dataset A,
• 5 for dataset C, and
• 6 for dataset A ∪ B ∪ C.

(3) Random forest • Algorithm: classification and decision tree
(CART) with Gini diversity index split
criterion.

• Minimum leaf size: 1.
• Minimum sample split: 2.
• Number predictor considered at each
node: 3 (randomly selected).

• Number of trees: 20.
• Model depth:
• 4 for dataset A,
• 6 for dataset C, and
• 8 for dataset A ∪ B ∪ C.

(4) Naïve–Bayes Kernel smoothing density estimate with
normal kernel smoother

(5) ECOC-SVM Three binary SVM models with:
• Coding design: “one-vs-one.”
• Kernel: linear.
• Solver: Iterative single data algorithm.
• Standardization: off.
• Box-constraint = 1.

(6) Discriminant
analysis

Quadratic kernel

(7) DWT&NN Single-layer perceptron without hidden
layers
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treated as synthetic signal features and provide different representa-
tions of the signal than the statistical descriptors (μ and σ).

We trained the ML model (1)–(6) with the six statistical fea-
tures, {μP, σP, μT, σT, μR, σR}. Conversely, NN was trained using
the coefficients (1000+) of DWT. It is worth noting that NN can
process inputs with high dimensionality.15 NN algorithms have
been used for the classification of weld defects, and artificial
neural network is the basis for a number of different type of NN
algorithms, with deep neural networks (DNNs) and CNN being
the most promising algorithms 9,13,16. This paper implemented a
fully connected input layer (whose nodes are the DWT coeffi-
cients) to the output layer (whose nodes are the three classes),
with a bias vector and without hidden layers. The softmax func-
tion was then used for normalization. To avoid any randomness
during the training, the weights of the fully connected layer were
initialized to zero.

The composition of the dataset can affect the performance of
the trained model. When classes are not equally represented by the
observations, the dataset is defined as imbalanced. Several tech-
niques are used to handle imbalance classification problems, which
involve undersampling of the majority class, oversampling of the
minority class, applying cost functions, or synthetic data genera-
tion/augmentation.17 In this paper, only dataset C resulted imbal-
anced since we performed more experiments at higher part-to-part
gaps to account process instability at higher power. The imbalance
of the dataset was addressed by data augmentation via a linear
combination of signals belonging to the same minority class.
Augmented signals were generated by considering two signals
within the same class. Each element of the new augmented signal
was calculated as the average of the elements in the same position
as the original signals. The class composition of dataset C before
and after class balancing is reported in percentages in Table V.
Accuracy of the ML models was evaluated using leave-one-out
crossvalidation. Implementation was carried out in MATLAB© and
both datasets and source codes are available from the Zenodo
portal (https://zenodo.org/record/6732794#.YrnEb3ZBzIU).

RESULTS AND DISCUSSION

Metallographic analysis

Characterization and metallographic analysis of datasets A
and B have been already addressed in Ref. 1. Hence, this paper only

reviews the results of dataset C. Experimental campaign consisted
of 86 experiments ranging across lack of connection to overpenetra-
tion, as shown with cross sections in Fig. 6(a). It is worth noting
that the transition (at no part-to-part gap) from a condition of
sound weld to overpenetration is indicated by the change of the
geometric shape of the weld seam from conical to cylindrical,
reflecting that the laser pierces the steel foils and marks the check
surface. Figures 6(b)–6(c) show the average and the standard devia-
tion of the weld penetration depth, as measured in the cross sec-
tions. As expected, weld penetration depth increases with
increasing laser power and decreases with increasing part-to-part
gap. This trend results in overpenetration in those experiments
with laser power PL= [840, 990]W.

Conversely, a lack of connection was observed at PL= [390,
540]W. Higher values of standard deviation are observed when
gap≥ 150 μm, especially for PL= [840, 990]W. This is due to the
fact that gravity prevails on viscous stresses and surface tension,
and hence, the molten copper sinks into the part-to-part gap,

TABLE V. Percentage composition (and absolute number specified) of dataset C
before and after class balancing.

Class Before After

Lack of connection 64.4% (55) 35.9% (59)
Sound weld 10.5% (9) 32.6% (53)
Overpenetration 24.0% (22) 31.5% (51)

FIG. 6. Results of the metallographic analysis for dataset C, calculated over
three replications. The red triangle indicates bottom foil piercing (a). Radial
basis function used for regressions (R2 = 90%) in (b) and (c).

FIG. 5. Application of DWT for signal approximation. (a) Original signal with
Ns = 12 560 and (b) approximated signal reconstructed with Ns = 3140.
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generating an unstable molten pool.18 This instability leads to a sig-
nificant lack of process repeatability (when gap≥ 150 μm, the stan-
dard deviation is approximately 125 μm, which is more than half of
the copper thickness) and consequently to the coexistence of the
two classes (lack of connection and overpenetration) for the same
experiment. This is further illustrated in Fig. 7.

Characterization of signals

Mean value and scatter level have been calculated to character-
ize signals SP, ST, and SR to simultaneous variations of laser power
and part-to-part gap.

Regression models of the six statistical features were contour-
plotted against laser power and part-to-part gap (Fig. 8). A two-way
ANOVA analysis was implemented to test the statistical significance
of the process parameters against the signals—the significance level
set at 5%. ANOVA tests the null hypothesis that the process parame-
ter has no impact on the signal feature, against the alternative
hypothesis that its variation has a significant impact and is reflected
by the variation in the signal itself. Results of the two-way ANOVA
are given in Table VI. If p-value is lower than 5% than the alternative
hypothesis is accepted. Results are discussed as follows:

• Plasma and temperature signals (SP and ST)—the p-value far
below 5% suggests that the variation of both laser power and
part-to-part gap against the variation of both plasma and
temperature is statistically significant. This translates to the fact
that variations in SP and ST are well represented by the variations
in SP and ST. Furthermore, looking at the regressions in
Figs. 8(a)–8(d), it appears a positive correlation with the laser
power and a negative correlation with the part-to-part gap. This
is justified by the fact that the higher the power the higher the
plasma plume formation and equally the thermal field. Besides,
with an increasing gap, the higher amount of emitted radiation is
dispersed between the two foils; hence, process radiation
decreases with the increasing gap.

• Back-reflection signal (SR)—variations of laser power (p-value
= 7.8%) and part-to-part gap (p-value = 100%) do not statistically
describe the variations observed in the back-reflection.

Classification of weld defects

The performances of the selected ML models were evaluated
in terms of accuracy of classification, and the results are given in

Table VII. The accuracy is expressed in percentage and represents
the ratio between the number of true predictions and the total
number of data points in the dataset. Low accuracy corresponds to
the high level of misclassification. To test the generalization, the
classification models were also tested against the combined dataset
A ∪ B ∪ C. It is worth noting that the coating of the copper and the
thickness between dataset A/B and C are different (see Table III).

Main findings are articulated as follows:

Discussion about the accuracy

The accuracy of the ML models trained with dataset A is sig-
nificantly affected by the relatively small size of the dataset (46
experiments) and by the overlaps in the features space with the
cluster of experiments belonging to different classes [see Fig. 4(a)].
Gradual variation of weld penetration depth from lack of connec-
tion to overpenetration determines smooth transition in the signal
features—this leads to overlapped regions. The highest classification
accuracy was achieved by the random forest (87%) and the second
highest by the DWT&NN (84.8%). Class balancing applied to
dataset C via data augmentation has a positive impact, even if the
interaction between simultaneous variations of part-to-part gap

FIG. 7. Two replicas of the same experiment with gap = 150 μm; PL = 840 W
(dataset C). (a) Lack of connection; (b) overpenetration. The red triangle indi-
cates laser mark left on the check surface.

FIG. 8. Contour plot of the regression models (quadratic polynomial fitting with
R2 = 90%) calculated for each statistical feature (dataset C).

Journal of
Laser Applications ARTICLE scitation.org/journal/jla

J. Laser Appl. 34, 042040 (2022); doi: 10.2351/7.0000800 34, 042040-7

© Author(s) 2022

https://lia.scitation.org/journal/jla


and weld penetration depth determines the overlap of signals with
different labels. DWT&NN has overall the best performance with
97.5% accuracy on dataset C. This result can be explained consider-
ing that the DWT coefficients carry also information about the fre-
quency content of the signal, enabling better performances than
the statistical descriptors, mean and scatter level, only limited to
the time domain—statistical descriptors are, therefore, more sus-
ceptible to confusion due to overlap of experiments with different
labels in the signal features space.

Discussion about the generalization

When trained with the mixed dataset (A∪ B∪C), all algorithms
perform relatively worse than dataset C alone (which carries most of
the data points compared to A and B). This is explained considering
that experimental conditions vary during the three different experi-
mental campaigns. Indeed, copper foils used in datasets A and B are
300 μm-thick, whereas those used for dataset C are 200 μm-thick and
Ni-plated. Eventually, differences in the physical phenomena are not
reflected in the signals that do not carry sufficient information with
reliable patterns for classification. Results show that the DWT&NN is
the algorithm that best generalizes with 92.7% accuracy. Higher accu-
racy and capability to generalize the case of simultaneous variations
of the part-to-part gap and laser power can improve performances in
the diagnosis and classification of weld defects.

Discussion about the misclassification

Analysis of the misclassifications shows that there are two main
sources of confusion: (1) significant variation in the welding process
itself as a consequence of the nature of the materials being welded
(i.e., high reflective materials such as copper) or induced by
part-to-part gaps—as observed in Fig. 6(c) when gap≥ 150 μm, the
standard deviation of the weld penetration depth is approximately
125 μm, which is more than half of the copper thickness; those varia-
tions are eventually not captured by the signal features; (2) the inter-
action between process parameters which may lead to similar weld
profiles but different signal features, but also the concurrent occur-
rence of overpenetration and lack of connection—this results in over-
lapped regions as shown in Fig. 6(d) and demonstrated in Fig. 9.

Since photodiodes only measure the radiations emitted during
the process but not directly the weld features, the results indicate
that passive observation via photodiodes provides useful informa-
tion for the classification but does not lead to an exhaustive indica-
tion of the process status. For instance, the occurrence of
shrinkages (reduction in the throat thickness) in the upper foil
might not have a significant effect on the radiation and, therefore,
they cannot be captured by the signal features. Since the common
consensus is to achieve classification accuracy as close as possible
to 100% to avoid both false negative (type-I error) and false positive
(type-II error) scenarios, current limitations call for future
improvements. Actions for improvements are discussed as follows:

• Sensor fusion—Integration of photodiodes with other types of
sensors, such as OCT (for the direct measurement of the weld
penetration depth) and vision systems/laser scanners (for the
direct measurement of the seam top surface and throat thick-
ness), can enable gathering data with complementary informa-
tion. In this regard, sensor fusion might be a viable option to
overcome the limitations of individual sensors; however, cost and
maintenance issues must be considered too.

TABLE VI. Results of the ANOVA test (p-values) for each of the statistical feature
(dataset C).

Feature Variable p-value Significance

μP PL 1.745 × 10−10 Strong
Gap 1.461 × 10−7

σP PL 2.689 × 10−9

Gap 2.638 × 10−5

μT PL 1.943 × 10−12

Gap 5.474 × 10−8

σT PL 6.625 × 10−16

Gap 1.213 × 10−12

μR PL 0.078 Weak
Gap 1 Poor

σR PL 0.078 Weak
Gap 1 Poor

TABLE VII. Accuracy in the percentage of all the selected ML models for automatic
classification of weld defects.

Algorithm A C A ∪ B ∪ C

2-NN 80.4 95.1 89.5
3-NN 82.6 95.7 88.5
Decision tree 71.7 95.1 81.6
Random forest 87 94.5 88
Naïve–Bayes 65.2 96.9 73.8
ECOC-SVM 54.3 96.3 87.4
Discriminant analysis 71.7 96.3 84.4
DWT&NN 84.8 97.5 92.7

FIG. 9. Representative examples of misclassified observations for dataset
C. Red triangle indicates laser mark left on the check surface.
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• Integration with multiphysical simulation—subsurface weld features
(i.e., weld pores), which are not currently detectable by sensor tech-
nology might be predicted via multiphysical simulation. Recent
advancements in computational power and fidelity of the multi-
physical simulations19 are opening new opportunities to develop
digital-twin models which leverage both sensor and simulation data.

• Further developments in machine learning—main findings also
showed that the performance of the classification algorithms
improves with increasing the size of the training dataset.
Therefore, the availability of large datasets is of paramount impor-
tance. However, the collection of large datasets with both defective
and nondefective parts is unavoidably expensive (i.e., defects need
to be made on purpose) and time-consuming. Furthermore, data
labeling is a manual process and prone to errors. Semi-supervised
ML approaches, which would rely on a mixed dataset of both
“labeled” and “unlabeled” data, could be investigated to signifi-
cantly reduce the cost and time of data collection and labeling.

CONCLUSIONS

This paper investigated the use of photodiodes and ML classi-
fication models for the automatic classification of weld defects
during RLW of copper-to-steel thin foils. Three classes were intro-
duced (lack of connection, sound weld, and overpenetration),
driven by safety, electrical, and mechanical requirements arising
during battery cell-to-tab assembly. Seven supervised ML models
were implemented and benchmarked.

The key findings are discussed as follows:

• Plasma and temperature are the predominant signals which
carry most of the information about the process and are well cor-
related to both variations of the part-to-part gap and laser
power. Back-reflection signal showed weak contribution.

• Since the process window is significantly narrow when welding
thin foils (below 500 μm) and the interaction between parameters
generates process instability (when gap≥ 150 μm at high power
the standard deviation of the weld penetration depth is approxi-
mately 125 μm, which is more than half of the copper thickness),
variations in the process are eventually not captured by the
signal features, resulting in misclassifications.

• Up to 97.5% classification accuracy is achieved for scenarios with
simultaneous variations of weld penetration depth and part-to-part
gap.

• Photodiodes integrated with ML models provide useful informa-
tion for the classification but do not lead to an exhaustive indica-
tion of the process’s status. Opportunities for sensor fusion and
integration with real-time multiphysical simulation have been
highlighted as a future stream of research and development.
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