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A B S T R A C T   

Current approaches to simulate occupants’ wayfinding in AEC mostly employ direct routing algorithms that 
assume global knowledge of the navigation environment to compute a shortest path between two locations. This 
simplification overlooks evidence concerning the role of perception and cognition during wayfinding in complex 
buildings, leading to potentially erroneous predictions that may hinder architects’ ability to design wayfinding 
by architecture. To bridge this gap, we present a novel simulation paradigm entitled Cognitive Occupancy 
Modeling in BIM to simulate wayfinding by means of a vision-based cognitive agent and a semantically-enriched 
navigation space extracted from BIM (Building Information Modeling). To evaluate the predictive power of the 
proposed paradigm against human behavior, we conducted a wayfinding experiment in Virtual Reality (VR) with 
149 participants, followed by a series of simulation experiments with cognitive and direct routing agents. Results 
highlight a significant correspondence between human participants’ and cognitive agents’ wayfinding behavior 
that was not observed with direct routing agents, demonstrating the potential of cognitive modeling to inform 
building performance simulations in AEC.   

1. Introduction 

Previous research shows that people often get lost or disoriented 
during wayfinding in unfamiliar buildings with complex multilevel ge-
ometries or mixed-used development such as transit hubs, hospitals, 
shopping malls[1–9] and museums [100]. The implications of feeling 
lost are numerous and range from confusion, stress and frustration 
[9–11] to unnecessary operational costs and delays [12]. Despite these 
negative implications and although considerable evidence shows that 
wayfinding is largely shaped by preliminary design decisions [1,35,38, 
100,101] (e.g., the location of the entrance and circulation cores or 
visibility between spaces and floors), wayfinding in architecture is pri-
marily associated with signage design [13]. As a result, wayfinding as-
pects are usually addressed at the very end of the construction process 
and are mostly delegated to environmental communication designers. 
The latter frequently face the complex and at times impossible task of 
making a building legible [14,15] regardless of its architectural 
configuration or functional organization that are often determined early 
on [8,9,13,16–18]. This disconnect between wayfinding and 

architectural design overlooks the potential of architectural configura-
tion to directly shape occupants’ wayfinding experience and nudge their 
behavior to achieve local and global objectives. Bridging this gap is 
instrumental to align the intended wayfinding experience with the 
actual one to ultimately achieve various performance objectives that are 
related to occupants’ wayfinding behavior in buildings, including effi-
ciency, productivity, sustainability, health, and wellbeing. 

A powerful approach to increase the integration of wayfinding 
evaluation into the architectural design process, and to harness the 
potential of architecture to shape occupants’ wayfinding is the use of 
computational, agent-based simulations [35,38]. This approach is 
particularly relevant today given the ubiquity of Building Information 
Modeling (BIM), resulting in digital representations of buildings 
throughout their life cycle. Nevertheless, a common tendency in 
pedestrian modeling and occupancy models in AEC is to simplify the 
complex process of wayfinding to a routing problem, formulated as the 
‘Shortest-Path’ problem [19–23]. To calculate an optimal path, the 
environment is abstracted into nodes and edges and the shortest path 
between two points is classically computed using direct routing 
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algorithms such as Dijkstra’s algorithm and A* [24,25]. However, unlike 
in computer science where the computation of an optimal path relies on 
having a complete representation of the environment, human way-
finding in unfamiliar buildings involves a gradual discovery of the space 
from an ego-centric perspective, one step at a time [26–28]. This process 
forces one to navigate on the basis of partial information, and subse-
quently become prone to erroneous decisions [8,28–30]. Consequently, 
occupants who perform wayfinding in unfamiliar buildings often pre-
sent substantial deviations from the shortest or fastest route [8,17,31]. 
This discrepancy raises fundamental questions concerning the applica-
bility of direct routing algorithms to reliably forecast occupants’ way-
finding in complex buildings. 

To advance occupancy simulations in AEC beyond these simplified 
models, a profound understanding of wayfinding is required. Cognitive 
science provides theoretical and empirical foundations to model way-
finding with an appropriate degree of detail. In cognitive science liter-
ature, wayfinding and locomotion are regarded as two principal 
components that underpin human navigation [26,27]. While locomo-
tion refers to the motor aspects of navigation, wayfinding involves 
spatial decision making and movement towards unfamiliar destinations 
located outside of one’s immediate perception range [26]. In this sense, 
the role of external information encoded in the spatial configuration and 
functional organization of buildings is cardinal to support wayfinding 
decisions [3,13,17,18,32,33]. In complex multilevel buildings, floors 
and walls often occlude sight-lines, revealing only partial information. 
Such limited visibility in the horizontal and vertical dimensions is 
associated with specific wayfinding strategies and reliance on back-
ground expectations to support wayfinding under uncertainty 
[11,31,33–35]. 

Cognitive modeling, in contrast to direct routing, seeks to simulate 
wayfinding through modeling cognitive processing mechanisms that are 
grounded in the above-mentioned evidence and in theories from 
cognitive science. The result of this modeling process is a cognitive or 
intelligent agent that is able to perceive the external environment 
through sensors (e.g., visual perception, auditory perception), has an 
internal representation of the environment, learning capacities, 
commonsense knowledge to reason upon the perceived sensory input, 
strategies to achieve goals or maximize some objective, and mechanisms 
of motor movement to act in the environment. The representation of the 
environment and the information it encodes are the basis for agents’ 
perception and decision making. Cognitive agents in the context of 
wayfinding were originally developed to test existing or novel hypoth-
eses in cognitive science, followed by the validation of different agent 
models against human behavior. Nonetheless, applications of cognitive 
modeling to simulate wayfinding have been widely applied in the field 
of computer graphics and in robotics. In computer graphics, cognitive 
models were mostly applied to simulate realistic movement of virtual 
agents for the entertainment industry. In the field of robotics, cognitive 
modeling inspired major advancements in robotic navigation that 
diverge from classical direct routing. Specifically, it led to a shift from 
‘Map-Based’ robots that apply direct routing to ‘Mapless’, vision-based 
robots [36,37] that implement cognitive modeling to navigate in unfa-
miliar real-world environments on the basis of perceived and stored 
visual information. In AEC, cognitive modeling has so far not been 
directly applied to simulate wayfinding. Moreover, the potential of BIM 
to generate an information rich environment and support agents’ way-
finding on the basis of local perception has been largely overlooked. 

To bridge this disconnect between wayfinding and architecture, the 
work presented in this paper combines evidence and theory from 
cognitive science together with the aforementioned advances in cogni-
tive modeling, vision-based robotics, and BIM. This holistic combination 
underpins our proposed modeling paradigm entitled Cognitive Occu-
pancy Modeling in BIM. In contrast to direct routing agents, the pro-
posed paradigm outlines the necessary cognitive processing mechanisms 
(e.g.,vision, wayfinding strategies and cognitive maps) and environ-
mental information (e.g., metric, semantic, volumetric, topological and 

connectivity information) required to simulate wayfinding in a cogni-
tively plausible manner. 

To test the feasibility of this paradigm, we employ cogARCH, a 
software implementation developed in [38]. This previous work pre-
sented an initial version of the simulation software employed in the 
current paper. In addition to the software development, the study con-
ducted by Gath-Morad et al. included a preliminary sensitivity analysis 
showing that cognitive agents were able to capture and reflect the dif-
ferences in visibility of the environment, while shortest-path agents, as 
expected, did not. cogARCH provides a vision-based cognitive agent 
complemented by a BIM-generated, hierarchical and semantically 
enriched navigation space used to support agents’ perception and 
cognitive decision making. In this work we move beyond this sensitivity 
analysis to quantify the wayfinding performance of a cognitive agent 
model and a shortest-path agent model against wayfinding by human 
participants observed in a VR experiment. This required redesigning 
agents’ background expectations and designing simulation experiments 
that are comparable with the wayfinding experiment conducted in VR. 

To critically assess the proposed paradigm against classical direct 
routing, we conducted two interrelated studies. The first simulation 
study compares the variability in wayfinding behavior observed by 
vision-based cognitive agents and direct routing agents under three 
building conditions with systematic variations applied to their volu-
metric design. These variations manipulate the degree of visibility be-
tween floors through systematic architectural design actions (e.g., 
introducing atria between floors or varying the transparency of building 
surfaces). To assess which agent model (cognitive agents’ versus direct 
routing agents) better corresponds with human wayfinding, we con-
ducted a second study in which we perform a wayfinding experiment in 
VR with 149 participants. Results from a total of 890 wayfinding tasks 
sampled in the VR experiment are compared against shortest-path and 
cognitive agents. The correspondence between simulated behavior and 
observed one are then analyzed statistically and spatially, showcasing 
strong evidence concerning the limitations of direct routing and the 
potentials of cognitive modeling to capture the effects of architecture on 
wayfinding. 

The contributions of this paper are three-fold: (1) it highlights con-
crete limitations of direct routing agents (that are often employed to 
simulate movement in building performance simulations) to forecast 
wayfinding in multilevel buildings. This is done by providing a dual 
perspective of wayfinding in cognitive science versus routing in com-
puter science. (2) It provides empirical results that confirm these limi-
tations. This is demonstrated by the invariant wayfinding behavior of 
shortest-path agents which fails to capture the effect of architectural 
variations between conditions. This contrasts significantly with 
observed human wayfinding behavior under the same conditions in 
which the same variations had a significant effect on human wayfinding. 
(3) It showcases how a vision-based cognitive agent is able to overcome 
these limitations, presenting significant variability in wayfinding 
behavior in response to the same architectural design variations. This is 
highlighted by evaluating and contrasting shortest-path versus cognitive 
agents’ forecasting quality of human wayfinding through several metrics 
(accuracy, precision, recall, f1-score, ROC-AUC), revealing that the 
proposed cognitive agent consistently outperforms the forecasting 
quality of the shortest-path agent with regards to the predicted changes 
in wayfinding behavior under different building configurations. 

2. Background and related work 

2.1. Direct routing in AEC simulations 

The majority of agent-based models that simulate navigation in AEC 
adopt a classical three-layer architecture which originates in the field of 
pedestrian modeling [39,40]. These layers model agents’ strategic, 
tactical, and operational behavior [41]. At the strategic layer, agents 
choose between possible destinations to form an activity schedule [40]. 
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At the tactical layer, agents plan a route from an origin to a destination. 
At the operational layer, agents’ locomotion behavior such as obstacle 
avoidance, speed, and acceleration is calculated (which is often simu-
lated using the social force model [42] or Optimal Reciprocal Collision 
Avoidance [43]). 

Wayfinding is addressed at the tactical layer in the classical three- 
layer architecture, where it is formulated as a routing problem and 
solved using shortest-path algorithms [44] or its variants [28,40,45]. 
Variants of shortest-path algorithms are prevalent in egress evacuation 
simulations [46,47] where the assumption is that agents follow the 
shortest path that is also the fastest and safest evacuation route [48]. To 
calculate these ‘optimal’ paths, the shortest path is weighted with 
additional heuristics in addition to distance. These heuristics include the 
least angle heuristic, longest-leg first heuristic, shortest-leg first heu-
ristic, fewest turns heuristic, less-congested-leg heuristic, and widest-leg 
heuristic [28,45,49,50]. Applying the shortest-path heuristic or its var-
iants to perform routing calculations may capture some route choice 
preferences. Yet, direct routing still fails to represent movement 
behavior that is the result of a wayfinding process involving perception 
and cognition, or the interplay between them. 

With regard to perception, despite the well known importance of 
visual information to support wayfinding decisions [8,15,33,51,52], the 
representation of the environment required for routing calculations is a 
complete graph that represents the walkable space (e.g., a grid repre-
sentation) or the connectivity between spaces (e.g., a network graph). 
Attempts to encode visibility information in such graphs have been 
made [28,49]. Yet, although this type of graph representation is very 
useful for routing calculations, it is not possible to encode in it the full 
complexity of volumetric visual perception from an egocentric 
perspective given a complex multilevel building. In such buildings, it is 
necessary to account for visibility through voids or transparent surfaces 
that emerges from the complex interaction between the architectural 
configuration and agents’ 3D field of view, heading, head movement, 
and height. Empirical evidence shows that information captured in 
humans’ field of view during wayfinding in the vertical has a significant 
impact on wayfinding and plays an important role in mitigating the risk 
of getting lost [35]. 

Regarding cognition, direct routing overlooks inherent cognitive 
limitations and mechanisms involved in wayfinding. Most importantly, 
it assumes that occupants have a precise representation of the envi-
ronment and are completely familiar with it, which is often not the case, 
especially in public or large-scale buildings with a high degree of 
complexity and choice. Nonetheless, this assumption is necessary to 
perform routing calculations that rely on having a pre-generated and 
complete representation of the environment from which the shortest 
path can be computed. This assumption stands in sharp contrast to ev-
idence and theory from cognitive science which shows that wayfinding 
is bounded by humans’ sensory-motor perception range and often in-
volves movement in an unfamiliar environment towards a novel desti-
nation that is not visible [26]. 

To cope with this uncertainty people apply different search strategies 
[8] as well as background expectations [53] to approximate the location 
of their destination and find a path towards it. These strategies involve 
an exhaustive search such as in the perimeter strategy (i.e., moving 
along the perimeter of an environment to reduce the probability of 
visiting the same space [54]), the lawnmower strategy (i.e., moving in a 
sequence of straight parallel lanes [55]), and the directed random search 
strategy (i.e., choosing a turn that has the lowest likelihood of back-
tracking [27]). In multilevel buildings where visual access is limited and 
there are inherently more movement options, additional wayfinding 
strategies have been observed [8]. These include the central point 
strategy (i.e., adhering to public and visually integrated areas at the 
expense of performing detours), the direction strategy (i.e. first mini-
mizing the horizontal distance to the approximated target location, 
irrespective of level changes) and the floor strategy (first minimizing the 
vertical distance to the target, irrespective of its horizontal location). 

Whereas the aforementioned strategies often result in considerably 
longer paths at the expense of minimizing the risk of getting lost, direct 
routing delegates the decision making process to routing algorithms that 
calculate the fastest or shortest path (e.g., Dijkstra’s or A*). 

Although through different processes, wayfinding and routing pro-
duce the same output, a path between an origin and a destination. 
Whereas in routing a complete graph is a prerequisite to calculate a path, 
in wayfinding, the graph is generated on-the-fly through visual 
perception, knowledge-based reasoning and wayfinding strategies. In 
this sense, while routing is concerned with the efficient computation of 
the shortest or fastest route irrespective of occupants’ bounded knowl-
edge, wayfinding attempts to model how a bounded agent would ac-
quire, process and act upon the knowledge perceived from the 
environment to find their destination and plan a path towards it. In 
building performance simulations that consider occupants’ behavior in 
buildings, this important distinction between routing and wayfinding is 
often overlooked and de-emphasized, reflected in the fact that direct 
routing dominates occupancy simulations in AEC [23,56,57]. 

2.2. Cognitive modeling of wayfinding 

As shown in the previous section, direct routing algorithms simulate 
wayfinding by computing the shortest path given a complete graph of 
the environment. In contrast, cognitive modeling seeks to model the 
process of wayfinding by modeling the interplay between cognitive 
processing mechanisms (i.e., knowledge in the head, [16]) and infor-
mation in the environment (i.e., knowledge in the world, [16]). In the 
context of agent-based modeling in social science and cognitive robotics 
these models are referred to as ‘cognitive agents’ [58,59], whereas in 
computer graphics and artificial intelligence they are often referred to as 
‘intelligent agents’ [30,60]. In social science, the motivation for devel-
oping cognitive agents is to formalize theories and test existing and 
novel hypotheses [30], which usually involves comparing agents’ 
behavior against human observations [61]. In robotics, cognitive models 
are implemented in cognitive robots to support wayfinding in real-world 
environments, facing the need to simulate wayfinding in an accurate 
manner given a dynamic and complex environment [62]. In artificial 
intelligence and computer graphics, intelligent agents are developed to 
populate virtual worlds, placing an emphasis on simulating realistic 
navigation. Such models highlight the trad-off between realism and 
efficient performance [63,64]. 

Our work is mostly grounded in social science and the robotics 
approach to modeling cognitive agents, yet it is inspired by the methods 
employed by the artificial intelligence community to develop intelligent 
agents. Accordingly, we consider agents as entities able to perceive the 
external environment through sensors (e.g., visual perception, auditory 
perception). These agents may have an internal representation of the 
environment, learning capacities, commonsense knowledge to reason 
upon perceived sensory input, global and local wayfinding strategies to 
search for a destination or maximize some objective, and motor capac-
ities to act upon their decisions in the environment [30,58,60,61]. 

Authors in [61] provide a comprehensive review of methods applied 
in cognitive modeling to simulate wayfinding. Broadly speaking, 
methods to model agents’ cognitive decision making and commonsense 
knowledge vary and range from ‘symbolic models’ that emphasize 
explicit rules to model behavior [65], ‘neural network models’ where 
agents learn rules from training data instead of encoding explicit rules 
[30,66,67], and general cognitive architecture models (e.g., ACT-R or 
SOAR) that employ a combination of the other two methods [59]. 
Similarly, methods to model the navigation environment to accommo-
date cognitive-based decision making are highly diverse and are often 
crafted to correspond with the cognitive model. The environment can be 
represented as a semantic network graph that connects decision points 
[59,68], a grid graph that represents the walkable space [69], or a 
room/region graph that models the connectivity between spaces 
[38,40]. Spatial memory and learning are modeled using an internal 
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graph representation of the environment that is based on the agents’ 
ego-centric or allocentric perception [28,68,70–72]. Most agents have 
short-term and long-term memory in which this representation is stored, 
forgotten, and distorted using distance decay and directional distortion 
of visited and perceived locations [72]. Sensory perception mostly em-
phasizes visual perception which can be modeled using visibility graphs, 
isovist or space syntax analysis [69], ray-casting to simulate agents field 
of view in 2D [40,52,69] or in 3D [35,38,70] as well as scene processing 
methods that include scene classification, semantic segmentation, object 
detection, pose estimation, physics-based reasoning, saliency predic-
tion, affordance prediction, and 3D reconstruction [73]. 

Earlier studies that model wayfinding by means of cognitive agents 
mostly focused on simulating wayfinding through the generation of a 
‘cognitive map’ [74]. The cognitive map hypothesis [75] postulates that 
neural encoding of place, grid and direction cells in the brain form an 
internal representation of previously navigated environments to inform 
memory-based wayfinding [76]. Several computational models of 
cognitive agents that focused on simulating wayfinding using such an 
internal representation have been proposed [67,68,71,72]. The valida-
tion efforts of these models against human behavior are limited [61]. 
NAVIGATOR [68] proposed a model of wayfinding using a semantic 
network representation in which agents can perceive information locally 
and store the input in memory to calculate novel paths step-wise. The 
model qualitatively replicated human wayfinding errors. Agents and 
humans performed errors at locations with more information, or at lo-
cations where complex navigational actions were required. Moreover, 
there was a correspondence in errors due to misidentification of the goal. 
Additional approaches to model cognitive aspects during wayfinding 
proposed to integrate visibility information to inform decision making 
[40,77]. For instance, Penn and Turner [77] developed an ‘exosomatic 
visual architecture’ to simulate agents’ undirected wayfinding (i.e., 
exploration). In their implementation, the environment was represented 
as a grid graph and each cell was encoded with pre-computed visibility 
information derived from a space syntax analysis. Agents’ visibility was 
bounded by a two-dimensional field of view and their decision making 
was informed by this visibility input, used to move towards the most 
visually integrated cell. This model was validated against real shoppers 
behavior in a department store. Results indicate a positive correspon-
dence between real shoppers and agents flow. Another approach to 
model visibility is presented by [43] who provide a hierarchical repre-
sentation of a 3D environment through 2D layers to represent the 
environmental details perceived by agents’, used to inform agents’ local 
decision making. Their validation was limited to the collision avoidance 
and pedestrian flow based on ‘fundamental diagrams’. The main short-
coming of these models is that they focus on either visibility or memory 
(i.e. cognitive map), instead of modeling the interplay between them 
[16]. 

In cognitive robotics, the challenges of wayfinding in real-world 
environments have led to a more integrative approach that combines 
an internal representation with 3D visual perception to support ‘Map-
less’ robot navigation. Whereas ‘Map-Based’ is almost analogous to 
routing, ‘Mapless’ applications are much closer to wayfinding, [62,78]. 
‘Mapless’ applications employ methods to acquire and store visual clues 
from the environment to map the navigation space in real time and 
support robots’ wayfinding in an unfamiliar environment. Methods to 
support robots’ visual perception include image segmentation, optical 
flow, or the tracking of features across frames. Across these applications, 
there is no global representation of the environment. Rather, it is 
perceived and generated on-the-fly as robots move from one location to 
another. 

Only recently efforts have been made to apply this integrated 
approach to simulate wayfinding by virtual agents in virtual indoor 
environments. The majority of these studies apply it to simulate aided- 
wayfinding by externalized symbolic information, such as signage and 
maps [79–81]. Far fewer studies focus on applying vision-based cogni-
tive agents to simulate wayfinding by architecture in buildings. Authors 

in [35] proposed an isovist drift [15] agent with a three-dimensional 
field of view and an internal representation of the environment to 
simulate wayfinding in the vertical. A validation experiment with 69 
human participants confirmed significantly less differences in way-
finding behavior between isovist-drift agents’ and human behavior 
when compared to a shortest-path agent analysis. Nonetheless, the 
complexity of the wayfinding task in this study was minimal, requiring 
participants to find a door with a randomized color. Such task structure 
does not account for directed wayfinding tasks towards semantically 
defined destinations (e.g., looking for an office). Simulating these types 
of tasks is critical to inform wayfinding evaluation in buildings as one of 
the main tasks in the design process is the functional allocation of spaces 
in the building. Accordingly, it is necessary to model the background 
expectations people may have concerning the location of typical build-
ing destinations (e.g., entrance, exit, nurse station, office, roof terrace). 
Previous studies show that background expectations are applied to 
associate perceived environmental cues (e.g., configuration, materials, 
objects, people, and activities) with the locations of typical building 
destinations. For instance, an auditorium, main exits and restrooms are 
associated with more central and public locations whereas a rear exit, 
entrance to the cellar, and broom closet are associated with peripheral 
locations [53]. 

A more extensive vision-based cognitive agent that overcomes these 
limitations and integrates visibility, memory, background expectations 
and wayfinding strategies is proposed by authors at [38] who developed 
cogARCH. The latter is used to simulate directed wayfinding in multi-
level buildings using vision-based cognitive agents and a hierarchical 
navigation space generated from a BIM representation. This hierarchical 
space consists of (1) a grid graph to represent the walkable space (2) an 
isovist grid to represent the qualities of the perceived space (3) a 3D 
representation of semantic activity zones and (4) a graph representing 
the connectivity between thresholds (e.g., doors, transitions between 
areas) that link the different activity zones in the building. Agents have a 
3D field of view to perceive visual information from the environment. As 
agents move in the building, they develop an internal graph represen-
tation of visible and visited spaces (i.e. memory). The memory decays 
over time using a decay function. Agents can act upon the perceived 
sensory input using a range of wayfinding strategies (e.g., direction, 
floor, central point and perimeter strategies [11]) that correspond with 
their background expectations concerning the location of a destination 
or local cues that may be indicative to find a path towards it [53]. 

In summary, cognitive modeling holds great potential to inform 
wayfinding evaluation in architecture. Yet, and in contrast to this work, 
these studies have the following deficits with regards to their applica-
bility to simulating wayfinding in AEC: (1) they mostly focus on 
modeling cognitive maps’ [59] and overlook the well-known role of 
visual perception to inform wayfinding, especially in complex and 
multilevel buildings [11,35]. In such a setting, the visual perception (or 
lack thereof) of destinations or cues that are not accessible (e.g. a 
destination viewed through an atria on another floor) may trigger spe-
cific wayfinding strategies that should be modeled. (2) Visibility is 
reduced to capture a 2D field of view that is not appropriate to model the 
complex interplay between volumetric configuration and visual 
perception in multilevel buildings (except for a few notable exceptions 
that are restricted to simulate wayfinding by means of signage percep-
tion [79,80].) In addition, even if visibility is modeled, agents lack the 
cognitive mechanisms required to find their way on the basis of the vi-
sual information perceived (e.g., a ‘cognitive map’, strategies, 
commonsense knowledge). (3)Background expectations concerning the 
location or cues associated with semantically-defined destinations are 
not modeled, despite evidence showing its significant effect on way-
finding decisions [53]. In AEC fields, the need to simulate how the 
spatial organization of building functions affects wayfinding is a primary 
concern [82]. Therefore, it is cardinal to model agents’ background 
expectations to provide meaningful simulation output to inform the 
design and operation of buildings. 
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3. Towards cognitive occupancy modeling in BIM 

To move beyond direct routing, we propose a novel paradigm enti-
tled Cognitive Occupancy Modeling in BIM. The proposed paradigm 
highlights the potential of combining cognitive modeling and 
semantically-enriched navigation spaces generated from BIM to inform 
agents’ perception and cognitive-based decision making. On the basis of 
available evidence and theory we provide a high-level outline of agents’ 
cognitive functions and the environmental layers required to support 
wayfinding decisions and simulate cognitively plausible wayfinding 
behavior. 

Furthermore, we draw a conceptual link between BIM and the pro-
posed environmental description, suggesting which information should 
be used to generate the navigation space. This includes the 3D geometry, 
information on building elements, material, and division to spaces and 
zones. This information is used to generate the necessary environmental 
layers required to form a hierarchical navigation space that corresponds 
with the agents’ coarse to fine decision making structure [11]. These 
layers include a representation of the walkable space, the topological 
connectivity between spaces, the semantics of spaces and objects, the 
configurational properties of the visible space and the volumetric rep-
resentation of functional areas. Agents’ cognitive functionalities include 
vision, commonsense knowledge, memory and learning, wayfinding 
strategies, local heuristics and movement abilities. This hierarchical 
representation of the navigation space provides complex perception 
input for the agent. This input is then processed using agents’ cognitive 
abilities, yielding cognitive-based wayfinding actions, such as strategic 
search towards non-visible destinations, local decisions following way-
finding heuristics, short-cutting and movement in the shortest path to-
wards visible destinations or local goals. 

An overview of the differences between the proposed paradigm and 
direct routing in the context of architectural design is provided in Fig. 1. 
The diagram maps both paradigms to the classical perception-action 
cycle [60] and highlights the key differences between the two para-
digms. These relate to the type of building information inputs used to 
generate the environment, how the environment is represented, how 
agents perceive the environment, and how they may act in it. 

4. Methods 

To test the feasibility of the proposed paradigm, we conduct two 
interrelated studies. The first simulation study compares wayfinding 
performance of vision-based cognitive agents and direct routing agents 
under three building conditions with systematic variations applied to a 
multilevel building. To assess which agent model (cognitive agents’ 
versus direct routing agents) better corresponds with human wayfinding 
we conduct the second study in which we perform a wayfinding 
experiment in VR with 149 participants. The methods and results of 
these experiments are presented in the following sub-sections. 

4.1. Study 1 - agent-based simulation experiments 

4.1.1. Agents 
The simulation experiments included two types of agents; (1) 

Shortest-path agents (S) that perform direct routing using an A* algo-
rithm applied to a grid graph representation of the walkable space, (2) 
Vision-based cognitive agents (C) that perform wayfinding using search 
strategies and background expectations on the basis of visual input 
captured from a hierarchical navigation space. Simulations were con-
ducted using cogARCH, a software implementation developed in [38].1 

4.1.2. Materials 
Fig. 2 (Experimental setup), shows the three building scenarios 

included in the simulation experiments. The Base-case building spans 5 
building floors. The building program consists of a cafeteria, exhibition 
space, auditorium, classrooms, open-space study areas, office spaces, 
meeting rooms, indoor patios, and a roof terrace. Vertical circulation 
between floors is enabled by two staircases and two elevators, all of 
which are located in enclosed concrete shafts. The buildings’ main 
entrance is on the ground floor. The Base-case building is modeled after 
the Zollverein School of Management and Design in Essen, Germany, 
designed by SANAA architects. 

Two variations on the Base-case building (i.e., Scenario 1) are 
introduced. One variation, Scenario 2, introduces five small-scale atria 
on the second floor similar to those on the fifth floor. We refer to this 
scenario as Atria. The other variation, Scenario 3, replaces the concrete 
enclosure of both circulation shafts that include staircases with a glass 
facade. We refer to this scenario as Glass. The proposed variations aim to 
make wayfinding in the Base-case building more efficient by increasing 
vertical visibility between floors. Architectural changes are intentionally 
applied to the three-dimensional configuration of the building. This is 
done to demonstrate the need for a vision-based cognitive agent to 
capture the potential effects these variations may have on wayfinding 
performance, and could not be observed using a shortest-path agent 
without vision or wayfinding strategies. 

4.1.3. Wayfinding tasks 
For both agent types, we consider typical wayfinding tasks for novice 

occupants. These tasks assume the same initial origin zone (i.e., the 
buildings’ main entrance) combined with one of six semantically 
defined destinations (i.e., Auditorium, Reading Area, Study Area, Office, 
Patio, Roof Terrace). The initial heading of the agents has been ran-
domized and a total of 3600 samples were generated. Simulations were 
executed through singularity-based containerization in a large-scale 
computing cluster. 

4.2. Study 2 - a wayfinding experiment in virtual reality 

4.2.1. Virtual reality setup 
In the present study our aim was to analyze how changes in the 

configuration of buildings affect human wayfinding performance, and 
compare it against wayfinding performance of the proposed cognitive 
agents and classical direct routing agents. Isolating the effect of archi-
tectural configuration on wayfinding in a real-world experiment would 
have been difficult or even impossible, both with respect to the feasi-
bility of applying systematic variations to the building, and with regards 
to the control of extraneous variables such as crowd density or signage 
[29,83]. 

Over the last two decades, the use of Virtual Reality (VR) to over-
come the limitations of wayfinding experiments in RE has been 
increasingly adopted in AEC and in spatial cognition [31,84]. Unlike RE, 
VR is conducted in a controlled lab setting, and participants’ interaction 
with the virtual environments such as walking trajectories, speed, head 
movement and gaze can be accurately recorded and captured for further 
analysis [31]. Several studies compared wayfinding behavior between 
RE and VR. Conroy-Dalton [85] compared movement patterns of people 
in a real art gallery and a virtual replica. A comparison of cumulative 
flow counts recorded in both the real and virtual building suggests a 
strong correspondence between flow counts. Pramnik et al. [86] 
compared participants’ wayfinding in a real and virtual environment, 
displaying a correspondence in the average use of corridors, the average 
use of intersections, and wayfinding completion rates. Skorupka et al. 
[87] compared wayfinding in a real and virtual complex office building, 
suggesting that people may use similar cues or wayfinding strategies to 
find their way during real and virtual wayfinding. 

Nonetheless, some differences between wayfinding in VR and RE 
have been reported as well, namely distance estimation in VR may be 

1 For a more complete description of cogARCH please refer to [38], DOI: 
http://simaud.org/2020/proceedings/10.pdf 
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less accurate than in RE [88]. Moreover, whereas in RE spatial infor-
mation is encoded in the brain during real physical self-movement 
[89,90], in VR, participants move by means of visual motion often 
using a keyboard and mouse [90]. Methods to integrate physical motion 
(e.g., walking) in VR include omnidirectional treadmills which may be 
sufficient for producing realistic locomotion behavior, but can also 
distract from the task without a large amount of training with the 
interface [91]. In contrast, mouse-and-keyboard interfaces use a 
completely different set of effectors (i.e., hands instead of legs) but are 
sometimes less distracting because of participants’ familiarity with 
desktop computers [91]. Taking into account the considerable evidence 
suggesting that wayfinding in VR and RE is comparable, we chose to 
conduct the study using VR. 

4.2.2. Participants 
149 participants in total were recruited using Amazon’s Mechanical 

Turk (Mean age = 33.7 years; SD = 6.8 years; Age range = 18 to 59 
years). The study was approved by the Research Ethics Committee of 
ETH Zurich (2020-N-24) and all methods and experiments described in 
this paper were performed in accordance with the relevant guidelines 
and regulations. The main inclusion criteria were English proficiency, 
normal or corrected-to-normal vision, and ability to discriminate colors 
(i.e., color blind individuals were excluded). All participants signed an 
informed consent form before starting the experiment. Participants 

required approximately 20 min to complete the experiment and were 
compensated between 4.5 and 5.5 USD (mean = 5.4 USD) for their 
participation. 

4.2.3. Materials 
Study materials included the digital BIM models of the aforemen-

tioned building conditions used as part of the agent simulation experi-
ments (See Fig. 2). The experimental software and processing of the 
virtual environment was developed using Unity3D game engine (Unity 
Technologies). BIM models were exported in an IFC format and im-
ported to Unity3D using Tridify, an online cloud service that converts 
IFC models to Unity game objects while maintaining the semantic data 
encoded in IFC classes. To load the virtual buildings onto to the web, we 
used Unity’s WebGL to render the environment in a web browser. Am-
azon’s Mechanical Turk (MTURK) platform was used to recruit and 
reward participants. Trajectories were recorded by logging participants’ 
positions and orientations every 0.02 s. Data was streamed in real time 
(4.3Kb chunks) to an online server and stored there until the end of the 
experiment. Participants had a first person view of the navigation 
environment and could navigate using a keyboard and mouse. Virtual 
movement included three degrees of freedom: forward/backward 
translations, left/right translations, and left/right rotation. To simplify 
the control setup, a homogeneous virtual character was assumed as re-
ported in [92] (height = 1.8 m, maximum forward walking speed = 1.3 

Fig. 1. Cognitive Occupancy Modeling in BIM versus Classical Direct Routing in AEC. The diagram maps both paradigms to the classical perception-action cycle [60] 
and highlights (in green) which cognitive aspects should be modeled as part of the agent or the environment to simulate cognitively plausible wayfinding. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. An overview of the two interrelated studies. On the left: (1) The agent-based simulation experiments and the resulting analysis comparing wayfinding of 
cognitive agents (C) and shortest-path agents (S) (i.e., direct routing agents). On the right,(2) The wayfinding experiment in Virtual Reality with 149 participants and 
the comparative analysis between participants (P) and agents wayfinding under respective building conditions. 
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m/s; backwards and lateral moving speed = 0.6 m/s). 

4.2.4. Procedure 
Participants were randomly assigned to one of the three building 

scenarios. Each participant was first asked to digitally sign a consent 
form, to read the information page that introduced the task, and to 
complete a training phase to become familiar with the main task and the 
navigation control keys. The training phase took approximately 5 min, 
during which participants learned how to navigate in the virtual envi-
ronment by completing a step-by-step tutorial meant to practice all 
possible movement options, including movement between floors by 
means of stairs. The environment used for training consisted of a simple 
multilevel building with two stair flights connecting the two levels. This 
environment was different from the one used in the following test trials 
to avoid any learning bias. 

Upon successful completion of the training phase, participants were 
asked to perform a set of 6 wayfinding tasks (i.e., 1 task per trial). 
Participants were instructed to find a semantically defined destination 
(e.g. ‘office’). The decision to ask participants to find a generic desti-
nation was intended to have them search the building using their 
background expectations (coupled with visual information). This 
approach provides a more comparable behavioral output to analyze 
humans’ versus agents’ behavior, given that the vision-based cognitive 
agents are partly driven by background expectations to inform strategy 
selection. Given that the destinations across tasks referred to a generic 
function and not to a specific instance (i.e., there could be multiple in-
stances of a semantically-defined destination in the building), partici-
pants were told that the destination would be marked with a colored 
ball. The color of the ball was randomly generated per trial from a preset 
list of colors. Participants’ origins across building scenarios and tasks 
were identical and set to the main entrance on the first floor (same as 
agents’ origin) across tasks. To prevent any bias due to fatigue or 
learning, the task order was randomized. Exemplary screenshots from 
the VR study and the training tutorial are provided in the Supplementary 
Materials. 

5. Results 

5.1. Study 1: comparing wayfinding performance between cognitive and 
direct routing agents 

The analysis of the simulation results aims to quantify the differences 
in observed wayfinding behavior between cognitive and shortest-path 
agents, across tasks and between scenarios. Accordingly, we per-
formed the following analyses: (1) A Kernel Density Estimation (KDE) to 
visually inspect potential differences in the density distribution of 
agents’ trajectories across tasks and building scenarios;(2) multiple 
Linear Mixed Effects Model Regressions (LMEMR) [93] to quantify the 
difference in subject’s average distance performance between the Base- 

case building (B) and either the Atria (A) or Glass (G) scenarios (see 
Table 1); (3) a forecasting quality analysis that considers the agent 
models as binary classifiers with varying classification thresholds to 
compare the ‘forecasting power’ of the two agent models, specifically 
focusing on its capacity to forecast improvement in average distance 
performance as a function of architectural design variations. 

We begin by comparing the spatial density and distribution of 
agents’ trajectories between scenarios. Fig. 3 shows the results of this 
analysis performed using 3D Kernel Density Estimation (KDE). It can be 
observed that path density in shortest-path agents (see Fig. 3a), is highly 
localized and shows minimal variability across scenarios in comparison 
to cognitive agents (see Fig. 3b, c, d). These results are further reflected 
when comparing the average distance performance between cognitive 
and shortest-path agents across 6 wayfinding tasks, as can be seen in 
Fig. 7a and Fig. 7b. Whereas shortest-path agents showcase minimal 
performance variability, cognitive agents’ performance varies largely 
between scenarios. 

To analyze the effect of the architectural variations on agents’ 
wayfinding distance performance while accounting for the random ef-
fect of the wayfinding task (i.e., considering the substantial variance in 
distance performance, see Fig. 7a, b) we focus on four LMEMRs. These 
four LMEMRs (out of the six LMEMRs, see Table 2) are the ones related 
to the agents (i.e., LMEMR #2, #3, #5, and #6). The two remaining 
LMEMRs (i.e., LMEMR #1 and #4), relate to the human participants and 
are discussed in the next section alongside additional measures. 

As can be seen, LMEMR model #3 and LMEMR model #6 show that 
both architectural variations (i.e. Glass (G) and Atria (A)) had a marginal 
effect on shortest-path agents’ performance when compared to the Base- 
case scenario (B). In both scenarios, the shortest-path agents’ subjected 
to the same random initializations displayed a minimal increase in the 
path length; 0.230 m in the Glass scenario (G) and an even more 
negligible distance increase in the Atria (A) scenario (0.051 m); In 
contrast, LMEMR #2 and LMEMR #5 show that the same architectural 
variations (i.e. Glass (G) and Atria (A)) had a substantial effect on 
cognitive agents’ wayfinding performance. More specifically, cognitive 
agents display a substantial improvement in distance performance (i.e., 
decrease in distance covered across tasks) of 110.328 m from the Glass 
(G) to the Base-case scenario (B) and 87.290 m for the Atria scenario (A). 

5.2. Study 2: comparing humans’ versus agents’ wayfinding performance 

The analysis of the experimental data focused on quantifying the 
differences between both agent types and human participants for 
respective building conditions and tasks. Our aim was to uncover which 
of the two agent models better captures the effect of the architectural 
variations on wayfinding, when compared to human wayfinding 
observed in the VR experiment under respective building conditions. 

Our analysis included a total of 890 samples from the VR experi-
ments. An overview of agents’ versus participants’ trajectories for each 
of the three scenarios is presented in Figs. 5 and 6. Similarly to the 
analysis of the agent-based simulation results, we analyze the density of 
participants’ trajectories across building conditions as well as the dif-
ference in participants’ distance performance from the Base-case (B) 
scenario to the Atria (A) and Glass scenario (G). Results of these analyses 
are then compared to the corresponding findings per agent type (i.e. 
shortest-path agents versus cognitive agents). 

We begin by calculating the spatial density and distribution of par-
ticipants’ trajectories (Fig. 4) for each building scenario using 3D Kernel 
Density Estimation (KDE). Inspecting these results (i.e., Fig. 4) high-
lights two notable findings: (1) A marked difference between density 
patterns is observed between building conditions, suggesting that the 
architectural variations had a substantial effect on participants’ spatial 
search behavior, and (2) participants’ path density across the Base-case 
(Fig. 4a) and Atria (Fig. 4b) conditions was substantially more dispersed 
when compared to the Glass scenario (Fig. 4c), where density patterns 
converged to the area of the circulation core that was closer to the main 

Table 1 
Linear Mixed Effects Model Regressions (LMEMR) design. A total of 6 different 
LMEMRs are used to analyze the effect of the systematic architectural variations 
on the subjects’ wayfinding distance performance. This analysis evaluates 
individually either the shortest-path agents (S), the cognitive agents (C) or the 
participants (P) against a building comparison pair, i.e., Base-case versus Glass 
(B-G) or Base-Case versus Atria (B-A), considering the building as the fixed effect 
and the task as the random effect.  

Distance performance ~ fixed effect (building) + random effect (task) 

Subjects (P) (C) (S) 

Comparison 
Pairs 

Human 
Participants 

Vision-Based Cognitive 
Agents 

Shortest-Path 
Agents 

Base(B)-Glass 
(G) 

#1 P(B-G) #2C(B-G) #3 S(B-G) 

Base(B)-Atria 
(A) 

#4 P(B-A) #5C(B-A) #6 S(B-A)  
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entrance. When comparing participants’ density patterns to those of 
shortest-path agents’(Fig. 3a) across building conditions, a striking dif-
ference is crystallized, revealing a sharp contrast between the highly 
localized and invariant density patterns of shortest-path agents and the 
substantially varied density patterns of participants’ trajectories across 
building conditions. 

Differently than shortest-path agents, cognitive agents present a 
considerably more comparable density pattern to that of human par-
ticipants, both with regards to variability across scenarios and regarding 
the observed convergence pattern in the case of the Glass scenario 4c. 
Nevertheless, the similarity between participants’ and cognitive agents’ 
density patterns is still lacking in some respects, pointing to the 

limitations of the cognitive agent model that would be further evaluated 
in the discussion section. 

To provide a quantitative comparison between participants’ and 
agents’ behavior, we performed multiple LMEMR analysis, as presented 
in Table 2. This analysis aims to quantify the effect of the building 
variation on participants’ performance, comparing the performance 
sampled across pairs of conditions, between the Base-case and the Glass 
condition (i.e. B-G), and between the Base-case and the Atria condition 
(i.e. B-A). Results of the LMEMR #1 and LMEMR #4 demonstrate a 
statistically significant improvement in distance performance in the 
Glass and Atria conditions when compared to the Base-case (p < 0.01); 
LMEMR #1 suggests that the architectural variations applied, resulted in 
participants’ walking on average 64.622 m less in the Glass condition 
(G) when compared to the Base-case (B), and LMEMR #4 indicates that 
variations applied in the Atria condition (A) resulted in participants 
walking in average 14.472 m less in comparison to the Base-case con-
dition (B), all while controlling for the different tasks. 

Whereas a more in-depth analysis of participants data is required to 
fully understand the underpinnings of their behavior, a comparison of 
the LMEMR results between agents and participants marks a clear trend; 
whereas shortest-path agents displayed an increase in distance perfor-
mance across building conditions, participants and cognitive agents 
alike presented a comparable decrease in distance performance between 
the Base-case and Glass scenarios (Participants; − 64.622 m, Cognitive 

Fig. 3. Overlay of agents’ paths (shortest-path and cognitive) with 3D path point Kernel Density Estimation (KDE) across tasks and building scenarios.  

Table 2 
Results of 6 Linear Mixed Effects Model Regressions (LMEMR) quantifies the 
effect of the building scenario (Base-case (B), Atria (A), Glass (G)) and group 
(Participants (P), Shortest-Path agents (S), Cognitive agents (C)).  

# Regression Effect Coef. Std.Err. z p-Value 

1 Dist ~ Buil. P(B-G) buil. − 64.622 11.799 − 5.477 p<0.01 
2 Dist ~ Buil. C(B-G) buil. − 110.328 3.944 − 27.975 p<0.01 
3 Dist ~ Buil. S(B-G) buil. 0.230 0.015 15.136 p<0.01 
4 Dist ~ Buil. P(B-A) buil. − 14.472 12.268 − 1.180 0.238 
5 Dist ~ Buil. C(B-A) buil. − 87.290 3.477 − 25.107 p<0.01 
6 Dist ~ Buil. S(B-A) buil. 0.051 0.026 1.957 0.050  

Fig. 4. Overlay of human participants paths sampled in the VR experiment, with 3D path point Kernel Density Estimation(KDE) across tasks and building scenarios.  
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Agents; − 110.328 m), and between the Base-case and Atria condition 
(Participants’; − 14.472 m, Cognitive Agents; − 87.290 m). 

Notably, overall, cognitive agents actually performed wayfinding 
less efficiently than human participants, and covered more distance to 
find their way across all building conditions, see Fig. 8a and Fig. 7b and c 
in which distance performance across destinations and groups (shortest- 
path agent, cognitive agent, human participants) is presented. However, 
in terms of relative improvement between building conditions (e.g., 
Base-case versus Atria and Base-case versus Glass), cognitive agents 
indeed showed greater relative improvement between conditions in 
comparison to human participants. The reason for this is that human 
participants were more efficient than cognitive agents in the Base-case 
scenario (i.e., walked less to find their way), resulting in greater 
improvement potential than that of cognitive agents. 

Lastly, we aim to evaluate which of the two agent models better 
forecasts the observed improvement in participants’ average distance 
performance between the Base-case scenario and each of the buildings to 
which we applied architectural variations (i.e. Atria and Glass). This 
analysis is done by considering a simplified binary classification prob-
lem, in specific: improvement (1) or no improvement (0). For more 
details on the classification method used please see the Supplementary 

Materials. 
Fig. 8b and c, show these metrics as a function of the ‘performance 

threshold’, the gray rectangle in both figures marks that above (>70%) 
there is no improvement across both models. As expected, the cognitive 
agent outperforms the shortest-path agent in every metric for most of the 
thresholds. It has to be noted that as the threshold increases, less 
improvement is considered in the ground truth (i.e. participants). In 
turn, the shortest-path agent becomes a more accurate model as it 
consistently returns a ‘no improvement’ classification. This is an artifact 
of the analysis construction that, as noted above, should avoid low and 
high values of the ‘performance threshold’. Yet, for completeness, we 
decided to present the full threshold range. 

Interestingly, cognitive agents were considerably more predictive in 
the Glass scenario 8c than in the Atria scenario 8b, when compared to 
shortest-path agents. This finding corresponds with the findings from 
our LMEMR analysis showcasing that participants performance was 
significantly (p<0.01) differing in the P(B-G) comparison and not in the 
P(B-A) comparison, meaning that participants wayfinding was more 
efficient in the Glass condition when compared to the Base-case 
scenario. 

Fig. 5. Planar projection of agents and participants trajectories across building scenarios (–, Shortest-path agents), (–, Cognitive agents), (–, Participants)  

Fig. 6. An overlay of participants’ and agents’ trajectories onto the 3D model of each building scenario (–, Shortest-path agents), (–, Cognitive agents), (–, 
Participants). 
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6. Discussion and conclusion 

“Able or not, today’s architects.….have an enormous impact on the 
wayfinding success or failure of a setting. In planning the layout, they are 
creating the setting and the wayfinding problems future users will have to 
solve…” [94]. As this quote by Paul Arthur and Romedi Passini reflects, 
architectural design and wayfinding are fundamentally intertwined. 
Nevertheless, during the design process they are largely disconnected. 
The responsibility to guide people in buildings is effectively delegated to 
signage designers, limiting the potential of architecture to shape way-
finding experience by means of configuration, functional allocation and 
materiality. This disconnect is further reflected in current simulation 
approaches in AEC that overlook the cognitive aspects of wayfinding 
and instead formulate this process as a shortest-path problem which 
cannot capture the complex interplay between architecture and 

wayfinding, nor its outcomes. 
To bridge the disconnect between wayfinding and architecture, the 

work presented in this paper combines advances in cognitive modeling, 
concepts from vision-based robotics and BIM with evidence and theory 
from cognitive science. We present a holistic modeling paradigm enti-
tled Cognitive Occupancy Modeling in BIM that puts forth a blueprint for 
modeling wayfinding by cognitive agents in BIM. In contrast to direct 
routing agents, the proposed paradigm highlights the necessary cogni-
tive processing mechanisms (e.g.,vision, wayfinding strategies, memory, 
learning, and commonsense knowledge) and environmental information 
(e.g., metric, semantic, volumetric, topological and connectivity infor-
mation) required to simulate wayfinding in a cognitively plausible 
manner. 

To critically assess the proposed paradigm against classical direct 
routing, we conducted two interrelated studies. The first simulation 

Fig. 7. Differences in average distance performance between human participants’, cognitive agents’ and shortest-path agents’ for each task and across build-
ing scenarios. 

Fig. 8. Quality metrics considering the two agent models (shortest-path versus cognitive) as a binary classifier with varying classification threshold to compare the 
‘forecasting power’ of the two agent models, considering each models’ capacity to forecast improvement in average distance performance as a function of archi-
tectural design variations. 
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study compares the variability in wayfinding behavior observed by 
vision-based cognitive agents and direct routing agents under three 
building conditions with systematic variations applied to their volu-
metric design. These variations manipulate the degree of visibility be-
tween floors through systematic architectural design actions (e.g., 
introducing atria between floors or varying the transparency of building 
surfaces). To assess which agent model (cognitive agents’ versus direct 
routing agents) better corresponds with human wayfinding we con-
ducted the second study in which we performed a wayfinding experi-
ment in VR with 149 participants. 

Results from the first simulation study provide convincing evidence 
of the proposed Cognitive Occupancy Modeling in BIM paradigm to 
reflect significant variability in agents’ behavior as a result of archi-
tectural design variations. This variability stands in contrast to the sta-
tistically invariant wayfinding behavior of classical direct routing agents 
(i.e. shortest-path agents) in response to the same architectural changes. 
Results from the second study included a total of 890 wayfinding tasks 
by human participants under the same experimental setup used for the 
first study. Our analysis compared human wayfinding to that of both 
agent types. Results mark a clear trend; whereas shortest-path agents’ 
displayed an increase in distance performance across building condi-
tions, participants’ and cognitive agents alike presented a comparable 
decrease in distance performance between the Base-case and Glass 
scenarios (Participants; − 64.622 m, Cognitive Agents; − 110.328 m) and 
between the Base-case and Atria condition (participants; − 14.472 m, 
Cognitive Agents; − 87.290 m). 

These results indicate a substantial correspondence between partic-
ipants’ and cognitive agents’ wayfinding behavior, whereby increased 
vertical visual connectivity resulted in a substantial decrease in distance 
performance. In sharp contrast, the wayfinding performance of shortest- 
path agents was almost invariant to the same architectural variations, 
displaying an opposite effect. This is further reflected in the results of a 
concluding evaluation comparing which of the two agent models better 
forecasts the observed improvement in participants’ average distance 
performance between the Base-case scenario and each of the buildings to 
which we applied architectural variations (i.e. Atria and Glass). Spe-
cifically, the results show that vision-based cognitive agents outperform 
the shortest-path agents in every metric for most of the thresholds and 
are therefore considerably more predictive when compared to shortest- 
path agents. 

Notably, and although a solid body of evidence suggests that way-
finding in VR and Real Environments(RE) [92,95,96] are indeed com-
parable, the limitations of VR to fully capture wayfinding in RE should 
be considered when interpreting our results. Namely, distance estima-
tion in VR may be less accurate than in RE [88], and the use of visual 
motion (as opposed to physical motion) may affect neural encoding of 
spatial information in memory [90]. 

To our knowledge, this paper is the first attempt to compare direct 
routing agents, cognitive agents and observed human behavior for the 
case of wayfinding in multilevel buildings, and considering architectural 
variations related to vertical visual connectivity. The vision-based 
cognitive agents were able to better capture the variability in way-
finding performance across conditions in a way that is comparable with 
human wayfinding behavior. We expect that further calibration of 
cognitive agents with human observations will improve the ‘goodness of 
fit’ of the proposed model when compared to human behavior. Whereas 
such parameter fitting is possible for the case of cognitive agents, it is not 
the case for shortest-path agents who lack a parameter space and operate 
on the basis of a uniform algorithm. Furthermore, we aim to initiate a 
critical and scientifically rigorous discussion on the development and 
validation of agent-based models for the AEC community. 

Beyond fitting specific model parameters, there has been thriving 
research in the use of more adaptable models produced through machine 
learning techniques. For example, Artificial Neural Networks [97] have 
been used to model locomotion behavior and Reinforcement Learning 
(RL) has been increasingly used to solve routing problems [98], and 

even simulate wayfinding [67]. Although these studies have been 
limited to simple, single-level environments, there is a great potential for 
their application to multilevel and complex buildings as the ones 
considered in our work. Specifically, the use of RL to model uncertainty 
and learning through the provision of a reward signal offers a comple-
mentary mechanism to our theoretically-grounded cognitive agent 
model. Yet, completely adaptive models such as the ones provided by 
artificial neural networks contain parameters and hyper parameters (e. 
g., number of layers, weights of neurons, dropout ratios) that require 
more nuanced interpretation, when compared to agents with limited 
and meaningful parameters (e.g., preferred walking speed, view angles). 
We believe that machine learning, especially when combined with 
cognitive-modeling is a promising method to simulate human cognition. 
To fully realize this potential for the case of wayfinding, it is necessary to 
adopt a critical approach in which agents modeled using different 
methods are compared against one another, and against human 
behavior with respect to fit, but also with regards to the interpretability 
of behavioral parameters and emergent behavior. 

6.1. Implications 

The paradigm and method presented in this paper provides an in-
tegrated, iterative, validated and cost-effective way to forecast how 
architectural changes in a multilevel building (e.g., carving out an 
atrium, or changing the transparency of walls) will affect wayfinding 
performance measures (e.g., efficiency measures as distance covered to 
find a destination). Such insights could directly inform preliminary 
design stages and reduce various negative effects associated with getting 
lost [8,17]. As demonstrated in the Results section, direct routing al-
gorithms used to calculate the shortest path assuming global knowledge 
of the environment were invariant to the same architectural changes. 
Notably, such direct routing agents (e.g., A*) are prevalent in com-
mercial simulation tools used in AEC practice [23,56,57]. Yet, as our 
results show, such models are unable to account for how people find 
their way in unfamiliar buildings. This is especially problematic for the 
case of complex and costly buildings such as hospitals, museums, and 
transportation hubs. Our method, although requiring further re-
finements and additional validation, provides a novel alternative which 
could help practitioners design wayfinding by architecture from the very 
early stages of the design process. 

6.2. Limitations and future work 

Our novel findings concerning the forecasting capacity of wayfinding 
performance by direct routing agents and cognitive agents must be 
considered alongside the limitations of our approach. Notably, although 
the proposed cognitive agent was able to capture the direction of 
improvement (i.e., in wayfinding performance) presented by human 
participants, it had a limited capacity to capture the size of the 
improvement. As our comparative analysis shows, cognitive agents’ 
relative improvement (i.e. in meters) between the base-case scenario 
and the other two building conditions was greater than that observed in 
the case of human participants. This means that human participants 
covered less distance and showcased more efficient wayfinding in the 
Base-case condition, such that their potential improvement was smaller 
to begin with. In this sense, cognitive agents were less efficient than the 
human participants in the base-case scenario which left more room for 
them to improve. 

The potential reasons for cognitive agents covering more distance 
and finding their way less efficiently in the Base-case scenario when 
compared to human participants are numerous, and rooted in the simple 
fact that these agents are far less cognizant than any human being. In the 
present paper the proposed cognitive agents had a limited number of 
simplified strategies and background knowledge [38] to find their way 
whereas human participants with real human cognition (as opposed to 
simulated cognition) possess potentially more sophisticated strategies 
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and richer background knowledge which they employed during way-
finding in the Base-case scenario. We conjecture that parameter tuning, 
fitting or training would help close this gap (e.g., [28]). 

Accordingly, to improve the forecasting capacity of cognitive agents 
it is critical to model additional wayfinding strategies (e.g. [99]), richer 
background knowledge [34] and more elaborate memory models [67]. 
Towards this end, a follow up manuscript that provides an in-depth 
analysis of human participants’ wayfinding in the VR study is under-
way. This paper will shed light on the relationship between wayfinding 
strategies in response to systematically applied changes in vertical visual 
connectivity, and analyze how individual differences (e.g., gender, age) 
may affect wayfinding performance and behavior. These findings may 
be used to inform future extensions of the proposed cognitive agents and 
advance our ability forecast how architectural design of complex, 
multilevel buildings affects wayfinding performance and behavior. 
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