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Abstract

A nonlinear finite-time sliding mode control is proposed in this paper for the governing
of complex hydroelectric systems with the finite/fixed setting time. The proposed control
method is derived from the finite-time stability and sliding mode control theories. The
finite settling time is calculated and bounded, not depending on the initial conditions of the
system. The solution trajectory of the controlled hydroelectric system can reach the sliding
manifold in a fixed settling time, regardless of initial values. Based on the Lyapunov theory,
the controlled hydroelectric system also converges to a reference state within the fixed
settling time. A simulation of a high-dimensional hydroelectric system verifies the feasibility
of the proposed method. In addition, a comparison between the proposed method and the
conventional PID method demonstrates the advantages of the proposed method in the
shorter settling time and smaller overshoot. The proposed control method allows for the
design of a flexible controller and provides an improvement in dynamic performance.

1 INTRODUCTION

Hydroelectricity is a clean, efficient, and reliable form of energy
whose contribution to greenhouse gas emissions is negligi-
ble in comparison with fossil fuels [1, 2]. Century-developed
hydro turbines and units make the modern huge hydro-power
plants generate an amount of electricity among the whole power
system [3, 4]. However, the large hydroelectric scheme casts
difficulties on its governing systems, since any possible fault
could result in the failure of the whole power system. Thus,
the control system for the hydroelectric plants is of signifi-
cance. Literature has been concerned about the stable operation
conditions of diverse hydroelectric systems [5–7]. The large
hydroelectric system is a complex system and difficult to be con-
trolled, incorporating the electric system, hydro turbine system,
mechanical system, and control system [8]. The hydroelec-
tric system, coupled with the above subsystems, shows varied
dynamic behaviours. As a result, the control of the hydro-
electric system turns out to be a difficult issue. In addition,
the small/micro-hydroelectric plants, as a kind of distributed
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resource, require the control system to be accurate and flexible
for the possibility of the islanded operation [9].

Conventional control strategies have been applied to the
hydroelectric system such as PID controllers [10] and its varied
methods [11], and feedback controller [12]. These controllers
are normally tuned based on linear transfer functions. How-
ever, hydroelectric systems are highly nonlinear, time-variant,
and multi-variable. Any controlling law designed based on a lin-
earized representation is a compromise [13]. For this reason,
state-of-the-art methods have been introduced to hydroelec-
tric systems, for instance, sliding mode control [14–17], fuzzy
control [18, 19], predictive control [20, 21], and so on.

Most of the above-mentioned control systems for the hydro-
electric system are derived from asymptotic stability theories,
with the convergence process of the closed-loop system at
most exponential and the containment tracking errors decreas-
ing to zero with infinite settling time [22]. Such a control
scheme no longer meets the higher requirements of large hydro-
electric systems. In addition, the finite-time control method
ensures the system converges within a finite settling time. The
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2 ZHANG ET AL.

finite-time controller has a faster convergence rate, higher pre-
cision, and more robustness to uncertainties [23–25]. Many
remarkable outcomes have been reported about the finite-time
stability theories, for example, the finite-time stability for linear
time-delay systems [26], the necessary and sufficient conditions
for the finite-time stability of systems [27], and the global finite-
time stability theory [28]. The above literature presents simple
feedback control strategies for governing systems. Besides,
other advanced control methods based on finite-time stability
theories have also been reported such as the finite-time feed-
back control [29, 30], sliding model control [31], H -infinity
control [32, 33], and fault-tolerant control [34, 35]. A fixed-time
adaptive backstepping control was successfully implemented for
an anti-synchronization problem with good performance in the
elimination of singular problem [36]. To control a high-order
nonlinear system, an adaptive neural fixed-time tracking con-
trol was proposed with overcoming the design difficulty that
appeared in the non-strict feedback structure [37]. A novelty
finite-region H∞ asynchronous control scheme was devel-
oped for the transient behaviour of a class of two-dimensional
Markov jump systems [38]. A new robust sliding mode con-
trol was designed for a class of discrete conic-type nonlinear
systems with time delays and uncertain parameters with a bet-
ter performance and disturbance attenuation level [39]. To
govern nonlinear Markov jump systems, an asynchronous out-
put feedback controller was proposed with both stochastically
finite-time bounded and satisfying the attenuation condition of
predefined finite-time H∞ performances[40]. Invoked by the
above novelty literature, a different technique is implemented
in this paper, in which the sliding surface is designed with a
unique function ensuring fixed-time stability. All the existing
literature illustrates the possibility of the implementation of
the finite-time controllers on hydroelectric systems whereas the
convergence time of the finite-time control method depends on
the initial condition of the systems. As a result, the control laws
with fixed-time stability and guaranteed settling time regardless
of the initial states were proposed in ref. [41].

From the motivation of the above discussions, this paper
proposes a finite-time sliding mode control method to stabi-
lize the complex and nonlinear hydroelectric system shown in
Figure 1. The sliding mode control law is derived using the
finite-time stability theory and the upper bound of the settling
time is also found in this work. It can be further proved that the
settling time is independent of initial states. As a higher-order
sliding mode controller is proposed to achieve a fixed-time
convergence with higher accuracy [42], the stability of the pro-
posed method and the finite and fixed settling time are obtained
through the Lyapunov method. The main contributions of this
paper are:

(1) A new sliding mode-based finite-time control scheme for
the nonlinear hydroelectric systems is designed;

(2) The stability of the proposed controller and its bounded set-
tling time are analysed and calculated from the viewpoint of
Lyapunov theory;

(3) The feasibility of the proposed controller for the hydroelec-
tric system is successfully validated.

FIGURE 1 Diagram of hydroelectric system and the comparison between
the previous PID control method and the proposed control method in this
paper

Compared with other sliding mode methods, the sliding
mode surface proposed in this paper, first of all, has a
higher-order design.

Secondly, the sliding mode control is fixed-time stability
based. Finally, the unique sliding mode surface ensures the fixed
and finite setting time can be theoretically found.

The rest parts of the paper are organized as follows. In
Section 2, two basic inequality lemmas are illustrated. The finite-
time control method is proposed in Section 3. Section 4 presents
the results from the application of the proposed controller on
the nonlinear hydroelectric system. Section 5 summarizes the
main findings while Appendix A provides the proofs for the
theorem proposed in Section 3.

2 PRELIMINARIES

The sliding mode control for hydroelectric systems is
proposed based on the finite/fixed time stability. Some prelim-
inaries including the definitions and concepts are introduced as
follows based on the conventions in the literature. There is such
a system as:

ẋ = f (t , x ), x(0) = x0, (1)

where x ∈ ℜn and f ∶ ℜ+ ×ℜ
n → ℜn is an either con-

tinuous or discontinuous nonlinear function. Assume the
equilibrium point of Equation (1) is x(0) = 0. Many remarkable
concepts of the finite-time stability are proposed during the last
years. The conventional definition of the finite-time stability is
illustrated as follows.
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ZHANG ET AL. 3

Definition 1. ([43]): The equilibrium point of Equation (1)
is so-called to be globally finite-time stable if it is globally
asymptotically stable and any solution x(t , x(0)) of Equation
(1) reaches the equilibria at some finite-time moment, i.e.
x(t , x(0)) = 0, ∀t ≥ T (x0), where T ∶ ℜn → ℜ+ ∪ {0} is the
setting-time function.

Furthermore, a concept of fixed-time stability was defined as
below.

Definition 2. ([44]): The equilibrium point of Equation (1) is
so-called to be globally fixed-time stable if it is globally finite-
time stable and the settling time function T (x(0)) is bounded,
i.e. ∃Tmax > 0 ∶ T (x(0)) ≤ Tmax , ∀x(0) ∈ ℜn.

Then, two inequalities are introduced for the stability analysis
in Section 3.

Lemma 1. ([45]): If xi > 0, 0 < q ≤ 1, then there is the following

inequality: (
n∑

i=1

xi

)q

≤
n∑

i=1

x
q

i . (2)

Lemma 2. ([46]): If xi > 0, q > 1, then there is the following

inequality: (
n∑

i=1

xi

)q

≤ nq−1
n∑

i=1

x
q

i . (3)

3 FINITE-TIME SLIDING MODE
CONTROL SCHEME

A finite-time control method is proposed based on the high-
order sliding mode strategy. The proposed method enables the
controlled system to reach the reference in a finite settling time.
The bound of the time, regardless of the initial values, is also
found. Here, the system model can be represented as:

ẋ = f(x) + g(x)u + w(t ), (4)

where x ∈ ℜn, u ∈ ℜn, f(⋅) ∈ ℜn are the state vector, control
vector and nonlinear function, respectively; g(⋅) ∈ ℜn×n is the
nonlinear function which satisfies rank(g(⋅)) = n and g(⋅) ≠ 0;
w(t ) is the system disturbance satisfying |w(t )| ≤ M ; and M is
the disturbance bound.

The system error can be selected as:

e = x − xr , (5)

where e ∈ ℜn, e = [ e1, … ei , … en ]T ; xr ∈ ℜn, xr =
[ xr1, … xri , … xrn ]T are the reference states.

The sliding surface of the finite-time control method is
designed as follows:

S = e + 𝜂sgn(e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏, (6)

where 𝜂 ∈ ℜn×n depicts the convergence rate which is pos-
itive definite and diagonal matrix; sgn(x) is a n × 1 signum
function with sgn(⋅)-vector; and 0 < 𝛼 < 1 is the sliding
surface parameter.

The differentiation of Equation (6) gives Equation (7),

Ṡ = ė + 𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼

+ 2𝜂𝜹 (e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏

= f(x) + g(x)u + w(t ) − ẋr

+𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼

+ 2𝜂𝜹 (e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏,

(7)

where 𝜹 (e) is a n × 1 Dirac function vector whose engineering
application can be found in ref. [47] (Chapter 3). In Equation
(7), assuming that the system reference (xr) is constant. Thus we
will have ẋr = 0. In this case, the equivalent controller ensur-
ing the sliding surface to satisfy Ṡ = 0, can be obtained as in
Equation (8).

ueq = −g−1(x)

⎡⎢⎢⎢⎢⎣
f(x) + M − ẋr

+ 𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼

+2𝜂𝜹 (e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏

⎤⎥⎥⎥⎦ . (8)

us = −g−1(x)
[
𝜀sgnT (S)EnS2−𝛽 + 𝜁sgnT (S)EnSabs

+𝜎sgnT (S)EnS𝛽
]
. (9)
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4 ZHANG ET AL.

u = ueq + us =

− g−1(x) [f(x) + M

+𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼

+ 2𝜂𝜹 (e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏

+ 𝜀sgnT (S)EnS2−𝛽 + 𝜁sgnT (S)EnSabs

+𝜎sgnT (S)EnS𝛽
]
. (10)

Then, we also need a switching controller us to enforce the
system on the sliding surface, as Equation (9) where

S2−𝛽 =
[|s1|2−𝛽, |s2|2−𝛽, … |si |2−𝛽, … |sn|2−𝛽]T

, (11)

Sabs =
[|s1|, |s2|, … |si |, … |sn|]T , (12)

S𝛽 =
[|s1|𝛽, |s2|𝛽, … |si |𝛽, … |sn|𝛽]T

, (13)

and 0 < 𝛽 < 1; En is an n × n unit matrix, 𝜀, 𝜁, and 𝜎 are the
switching control parameters which need to be designed. Com-
bining the equivalent controller (8) with that of the switching
controller (9) and substituting the disturbance by its maximum
estimated value M will give the finite-time controller as in
Equation (10).

Theorem 1 and 2 provide the stability of the proposed con-
trol method. Theorem 1 gives the finite-time stability of the
controlled system and the settling time. Then, Theorem 2 finds
the bound of the settling time and proves that the bound is
independent of the initial values.

Theorem 1. Implementation of the proposed finite-time controller (10)

in the system (4), as long as 𝜁2 < 4𝜎𝜀n−
1−𝛽

2 , 𝜖 > 0, 𝜁 > 0 and

𝜎 > 0, then the system (4) is with the finite-time stability, and the set-

tling time is shown in Equation (14), where V (⋅) and L(⋅) are selected

Lyapunov functions.

Tx ≤ 1
𝜂𝛼

(2V (ts ))
𝛼

2√
(2V (ts ))𝛼 + 1

+
2

(1 − 𝛽)

√
4𝜎𝜀n−

1−𝛽

2 − 𝜁2

× arctan
2𝜀n−

1−𝛽

2 (2L(t0))
1−𝛽

2 + 𝜁√
4𝜀𝜎n

−
1−𝛽

2 − 𝜁2

, (14)

Theorem 2. The finite settling time in Equation (14) is bounded

by:

Tx max =
1
𝜂𝛼

+
𝜋

(1 − 𝛽)

√
4𝜎𝜀n−

1−𝛽

2 − 𝜁2

. (15)

The proofs of Theorem 1 and 2 can be found in Appendix A.
Obviously, Equation (15) is independent of the initial values

of the system. The system, governed by the proposed fixed-
time controller, always reaches the reference within the fixed
settling time.

The design procedure of the proposed sliding mode control
can be summarized below.

(1) Designing the sliding surface (6)
(2) Designing the equivalent controller (8)
(3) Designing the switching controller (9)
(4) Following Theorem 1 to calculate the control parameters

𝜖 > 0, 𝜁 > 0 and 𝜎 > 0
(5) Based on Equation (14) in Theorem 1 and Equation (15) in

Theorem 2 to find the finite settling time Tx , and its bound
Tx max

Remark 1. The introduction of symbolic function in the sliding
surface enhances the sliding surface converging into equilib-
rium. For the sliding surface, the equilibrium is S = 0. Normally,
the sliding surface is designed as S = 0 the dynamic (1) will
reach x = 0. With the symbolic function of the sliding surface,
both the sliding surface and state x converge to the equilibrium
faster, and the closer to the equilibrium point the faster the con-
vergence. As a result, finite-time convergence can be achieved.
In addition, the enhancement of robustness of the controlled
system can be provided based on the design of the sliding sur-
face with the symbolic function. The introduction of symbolic
function in the sliding surface has already been implemented in
many reports [48].

4 FIXED-TIME CONTROL OF THE
HYDROELECTRIC SYSTEM

The proposed control method is verified with the following
hydroelectric power system in four different scenarios.

4.1 Case study A

Considering the voltage behind the transient reactance of a
synchronous generator E ′

q in the hydroelectric system model
described in the ref. [49] the seven-dimensional hydroelectric
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ZHANG ET AL. 5

system model is obtained as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + u1 + w1(t )

ẋ2 = x3 + u2 + w2(t )

ẋ3 = −a0x1 − a1x2 − a2x3 + y + u3 + w3(t )

�̇� = 𝜔B (𝜔 − 1) + u𝛿 + w𝛿 (t )

�̇� =
1

Tab
[mt − Pe − D(𝜔 − 1)] + u𝜔 + w𝜔(t )

Ė ′
q = −

𝜔B

Td 0′

xdΣ

x′dΣ
E ′

q +
𝜔B

Td 0′

xdΣ − x′dΣ

x′dΣ
Vs cos 𝛿

+
𝜔B

Td 0′
E f + uE ′

q
+ wE ′

q
(t )

ẏ =
1
Ty

(
−y + uy

)
+ wy (t )

(16)

where Pe =
E ′

qVs

x′dΣ
sin 𝛿 +

V 2
s (x′dΣ−xqΣ )

2x′dΣxqΣ

sin 2𝛿, 𝜔B = 314 rad/s,

x′
d
= 0.34, xq = 0.66, Td 0′ = 0.54, Ty = 0.1„ x′

dΣ
= 1.15, x′

qΣ
=

1.474, Vs = 1.0, a0 = 24, a2 = 3, b0 = 24, b1 = 33.6, b2 =
3, b3 = −1.4, and M = 0.003. These parameters are derived
from ref. [49]. In, Equation (16), x = [x1, x2, x3, 𝛿, 𝜔,E

′
q , y]

T .
w = [w1, w2, w3, w𝛿, w𝜔, wE ′

q
, wy]

T are the disturbances, u =

[u1, u2, u3, u𝛿, u𝜔, uE ′
q
, uy]

T are control inputs, G(x) = I7, and
f(x) is shown below.

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = x3

ẋ3 = −a0x1 − a1x2 − a2x3 + y

�̇� = 𝜔B (𝜔 − 1)

�̇� =
1

Tab
[mt − Pe − D(𝜔 − 1)]

Ė ′
q = −

𝜔B

Td 0′

xdΣ

x′dΣ
E ′

q +
𝜔B

Td 0′

xdΣ − x′dΣ

x′dΣ
Vs cos 𝛿

+
𝜔B

Td 0′
E f + wE ′

q
(t )

ẏ = −
y

Ty
.

(17)

According to Equation (16) and designing the corre-
sponding controller based on Equation (10) with xr0 =

[0, 0, 0, 0, 0, 0, 0]T , we are able to obtain the results of the
controlled hydroelectric system as Figure 2(a).

Remark 2. In Figure 2(a), the system seems to reach the refer-
ence state before the settling time Tx as the system state to the
reference state with a very small error after t = 2. However, the
system absolutely reaches the reference state after Tx . In addi-
tion, Tx max can be obtained without the system initial values.

FIGURE 2 The outputs and sliding surface of the hydro turbine system
controlled by the fixed-time controller in case study A

In practice, the system is allowed to run beyond a small neigh-
bouring region of the reference. In this case, L(ts ) and L(tx )
in Equations (A9) and (A18) are no longer zero and one just
needs to substitute the bound of the neighbouring region into
the corresponding Lyapunov function to calculate the finite and
fixed settling time, respectively. In this case, the calculated time
is smaller than the time in Equations (14) and (15).

The controller (10) enables the system (4) to reach
any possible reference state. The following simulation
shows the results of the different reference state xr1 =
[0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98]T . From Figure 2(b), the
system reaches to the references within a fixed settling time.
In addition the sliding surfaces in this case study with xr1 are
shown in Figure 2(b).

 17518695, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12660 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 ZHANG ET AL.

FIGURE 3 The outputs of the controlled system with the reference and
fault xr2

4.2 Case study B

In addition, the controller can also make a system to
reach a divergent reference such as xr2 = [0.8, 0.5, 0.6,
0.7, 0.6, 0.9, 0.8]T . The result is shown in Figure 3(a). Although
each reference is different, the controller ensures the system to
reach the reference.

4.3 Case study C

The controller (10) also ensures the system is stabilized to the
reference even though faults exist in the system. The following
simulation shows that the controller can also enable the system
to be stable when a fault occurs at t = 3 and after t = 3.5, the
system recovers from the faults. In the simulation, a very low
point state represents the existence of the fault and the system
cannot maintain the original state after the system recovers. The
result is illustrated in Figure 3(b).

From Figure 2(b), when the system recovers from the fault
after a few seconds, the controlled system reaches the reference
states verifying the robustness of the proposed control method.

4.4 Case study D

The proposed control method offers an advantage over the
traditional PID control method. The following comparison sim-

FIGURE 4 The outputs of the PID control method and the fixed-time
control method in case study D

TABLE 1 Settling time of each case

Cases Tx Tx max

Case study A xr0 2.9036 27.833

Case study A xr1 2.9685 27.833

Case study B xr2 4.1803 27.833

ulation in Figure 4 supports the point. The PID controller is
designed based on ref. [50]. In the simulation, the system shares
the same initial values and parameters shown in the previous
cases. The PID control parameters are taken from ref. [50] and
the fixed-time control parameters are the same as in previous
cases. The results are presented by the second norm of the
errors in Figure 4.

Figure 4 shows that the application of the finite-time con-
trol method to the hydroelectric system can improve its dynamic
response and reduce the overshoot and settling time. Thus, the
method in this paper is able to control a nonlinear system with
expected performance.

Remark 3. From Equation (14), it rationally obtains the finite
settling time for the controlled hydroelectric power system in
different scenarios, which are shown in Table 1. Based on Equa-
tion (14), the finite settling time is dependent on the initial
values, thus, there are varying in different cases. While, since
the fixed settling time is regardless of the initial values, thus the
fixed settling time of the different cases is the same shown as in
Table 1.

5 CONCLUSION

Based on sliding mode control theory, a finite-time control
method was designed in the paper to govern a complex non-
linear hydroelectric system. Owing to this finite-time control,
the settling time is bounded regardless of the initial values of
the system. The stability of the controlled system was proved by
the Lyapunov theorem. The finite and fixed settling times have
been calculated for the performance evaluation. In addition to
this, a method, aiming to calculate the settling time to reach an
arbitrary neighbour region, has also been discussed. To verify

 17518695, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12660 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG ET AL. 7

the proposed control method, a high-dimensional hydroelec-
tric system was introduced in this paper. The numerical results
have shown that the fixed-time control enables the nonlinear
hydroelectric system to reach different references within its set-
tling time. To further depict the control performance, the results
from the proposed finite-time controller were compared with
the conventional PID control. It has been demonstrated that the
application of the fixed-time controller significantly improves
the dynamic response of the hydroelectric system. The primary
advantages of the finite-time controller include smooth treat-
ment, less overshoot, and a short settling time in the response
relative to the conventional PID controller. Another advan-
tage is that the performance of the fixed-time controller is
anticipated in the design stage without initial values.
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APPENDIX A: PROOF OF THEOREMS

Proof of Theorem 1 The finite stability of the controlled sys-
tem (4) will be proved through the Lyapunov theorem. First of
all, we should prove that the controller (10) enables the sliding
surface (6) to reach within a finite settling time. A Lyapunov
function for the sliding surface is selected as:

L =
1
2

ST S ≥ 0 (A1)

The differentiation of Lyapunov function (A1) can be written
as:

L̇ = ST Ṡ =

n∑
i=1

si ṡi

= −

n∑
i=1

si

[
𝜀sgn(si )|si |2−𝛽 + 𝜁sgn(si )|si |

+𝜎sgn(si )|si |𝛽]
= −

n∑
i=1

[
𝜀sign2(si )|si |3−𝛽 + 𝜁sign2(si )|si |2

+𝜎sign2(si )|si |𝛽+1
]
,

(A2)

where i = 1, 2, … , n. If the sliding surface has reached to the
origin, there are S = 0, and L̇ = 0. Therefore, the derivative of
Lyapunov function (A1) can be further rewritten as:

L̇ = −

n∑
i=1

(
𝜀|si |3−𝛽 + 𝜁|si |2 + 𝜎|si |𝛽+1

)
. (A3)

In accordance with Lemma 1 and 2, one can get:

L̇ = −

n∑
i=1

⎛⎜⎜⎝𝜀|si |2 3 − 𝛽

2 + 𝜁|si |2 + 𝜎|si |2 𝛽+1

2

⎞⎟⎟⎠
≤ −

𝜀

n
1−𝛽

2

‖si‖3−𝛽
2 − 𝜁‖si‖2

2 − 𝜎‖si‖𝛽+1
2

= −
𝜀

n
1−𝛽

2

(2L)
3−𝛽

2 − 𝜁(2L) − 𝜎(2L)
𝛽+1

2 .

(A4)
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The left part of Equation (A4) is rewritten as:

dL

dt
≤ −

𝜀

n
1−𝛽

2

(2L)
3−𝛽

2 − 𝜁(2L) − 𝜎(2L)
𝛽+1

2

= −(2L)
𝛽+1

2

(
𝜀

n
1−𝛽

2

(2L)1−𝛽
+ 𝜁(2L)

1−𝛽

2 + 𝜎

)
.

(A5)

Since the following to inequalities hold:

(2L)−
𝛽+1

2 dL

dt
≤ −

(
𝜀

n
1−𝛽

2

(2L)1−𝛽
+ 𝜁(2L)

1−𝛽

2 + 𝜎

)
;

1
1 − 𝛽

d

(
(2L)

1−𝛽

2

)
dt

≤ −

(
𝜀

n
1−𝛽

2

(2L)1−𝛽
+ 𝜁(2L)

1−𝛽

2 + 𝜎

)
.

(A6)

The following inequality can be obtained:

dt ≤
1

1−𝛽
d

(
(2L)

1−𝛽

2

)
−

(
𝜀

n
1−𝛽

2

(2L)1−𝛽
+ 𝜁(2L)

1−𝛽

2 + 𝜎

) . (A7)

Integrating both sides of Equation (A7) from t0 to ts , where
t0 is the initial time, and at ts , L(ts ) = 0 is hold, the following
equation can be obtained:

∫
ts

t0

dt ≤

∫
(2L(ts ))

1−𝛽
2

(2L(t0 ))
1−𝛽

2

−
1

1 − 𝛽(
𝜀

n
1−𝛽

2

(2L)1−𝛽
+ 𝜁(2L)

1−𝛽

2 + 𝜎

) d

(
(2L)

1−𝛽

2

)
,

(A8)

where t0 to ts are the initial and settling time of the surface,

respectively. Here if 𝜁2 < 4𝜎𝜀n−
1−𝛽

2 , the result in Equation (A8)
will be as:

ts − t0 ≤ 2

(1 − 𝛽)
√

4𝜎𝜀n−
1−𝛽

2 − 𝜁2

arctan

2𝜀n−
1−𝛽

2 (2L(t0))
1−𝛽

2 + 𝜁√
4𝜀𝜎n

−
1−𝛽

2 − 𝜁2

−
2

(1 − 𝛽)
√

4𝜎𝜀n−
1−𝛽

2 − 𝜁2

arctan

2𝜀n−
1−𝛽

2 (2L(ts ))
1−𝛽

2 + 𝜁√
4𝜀𝜎n

−
1−𝛽

2 − 𝜁2

,

(A9)

Assume that t0 = 0 and the sliding surface reaches 0, which is
L(ts ) = 0. Equation (A9) can be respectively written as:

ts ≤ 2

(1 − 𝛽)
√

4𝜎𝜀n−
1−𝛽

2 − 𝜁2

arctan
2𝜀n−

1−𝛽

2 (2L(t0))
1−𝛽

2 + 𝜁√
4𝜀𝜎n

−
1−𝛽

2 − 𝜁2

.

(A10)

On the contrary, if 𝜁2 ≥ 4𝜎𝜀n−
1−𝛽

2 , Equation (A8) results ts ≤
0 which is unrealistic. Thus, 𝜁2 < 4𝜎𝜀n−

1−𝛽

2 must be satisfied.
Form Equation (A10), the finite settling time of sliding surface
depends on the initial values. Secondly, the finite stability of the
controlled system can also be proved by the Lyapunov theorem.
We can structure the following Lyapunov function:

V =
1
2

eT e ≥ 0. (A11)

From Equation (A10), the sliding surface has reached 0 at ts .
Thus from Equation (6), the sliding surface S and system error
e are:

S = e + 𝜂sgn(e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏 = 0,

e = −𝜂sgn(e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏.

(A12)

The derivative of Equation (A12) is shown as Equation (A13).

ė = −𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼
−𝜂ffi(e)∫

t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏.

(A13)

Also, substituting Equation (A13) into the derivative of
Equation (A11) gives:

V̇ = eT ė

= −eT

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼

−2𝜂𝜹 (e)∫
t

t0

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼d𝜏

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= −eT 𝜂sgn(e)

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼

≤ −

n∑
i=1

⎛⎜⎜⎜⎝𝜆|ei |sgn2(ei )

(
n∑

i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼⎞⎟⎟⎟⎠,

(A14)
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10 ZHANG ET AL.

where 𝜆 = min{𝜆i}, and 𝜆i = eigenvalue(𝜂). Equation (A14)
results from eT 𝜹 (e) = 0 and Equation (A14) can be rewritten
as:

V̇ ≤ −𝜆

n∑
i=1

|ei |( n∑
i=1

|ei |2𝛼 + 1

) 3

2 n∑
i=1

|ei |1−𝛼. (A15)

The implementation of Lemma 1 on Equation (A15)
gives:

V̇ ≤ −𝜆

(
n∑

i=1

|ei |2)
2−𝛼

2 ⎛⎜⎜⎝
(

n∑
i=1

|ei |2)𝛼

+ 1
⎞⎟⎟⎠

3

2

= −𝜆(2V )
2−𝛼

2
(

(2V )𝛼 + 1
) 3

2 .

(A16)

The left hand side of Equation (A16) can be rewritten as:

dV

dt
≤ −𝜆(2V )

2−𝛼

2
(

(2V )𝛼 + 1
) 3

2 ,

dt ≤ −
dV

𝜆(2V )
2−𝛼

2
(

(2V )𝛼 + 1
) 3

2

,

dt ≤ −
1
𝜆𝛼

1√(
(2V )𝛼 + 1

)3
d (2V )

𝛼

2 . (A17)

Integrating Equation (A17) from ts to tx gives:

∫
tx

ts

dt ≤ −∫
(2V (tx ))

𝛼
2

(2V (ts ))
𝛼
2

1
𝜆𝛼

1√(
(2V )𝛼 + 1

)3
d (2V )

𝛼

2 ,

tx − ts ≤ 1
𝜆𝛼

⎛⎜⎜⎜⎝
(2V (ts ))

𝛼

2√
(2V (ts ))𝛼 + 1

−
(2V (tx ))

𝛼

2√
(2V (tx ))𝛼 + 1

⎞⎟⎟⎟⎠, (A18)

where at tx , there is V (tx ) = 0. When V (tx ) = 0, the sys-
tem reaches the reference within a finite settling time. Thus,
Equation (A18) is written as:

tx − ts ≤ 1
𝜂𝛼

(2V (ts ))
𝛼

2√
(2V (ts ))𝛼 + 1

. (A19)

When 𝜁2 < 4𝜎𝜀n−
1−𝛽

2 is satisfied, the controlled system can
reach the reference within the finite settling time Tx in Equation
(14).

Proof of Theorem 2 Since arctan(⋅) is bounded and

(2V (ts ))
𝛼

2√
(2V (ts ))𝛼 + 1

≤ 1,

arctan
2𝜀n−

1−𝛽

2 (2L(t0))
1−𝛽

2 + 𝜁√
4𝜀𝜎n

−
1−𝛽

2 − 𝜁2

<
𝜋

2
, (A20)

the maximum of Equation (14) is Equation (15).
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