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Abstract

Satisfiability Modulo Theories (SMT) solvers check the satisfiability of quantifier-free first-order logic formulas over
different theories. We consider the theory of non-linear real arithmetic where the formulae are logical combinations of
polynomial constraints. Here a commonly used tool is the Cylindrical Algebraic Decomposition (CAD) to decompose
real space into cells where the constraints are truth-invariant through the use of projection polynomials.

A CAD encodes more information than necessary for checking satisfiability. One approach to address this is to
repackage the CAD theory into a search-based algorithm: one that guesses sample points to satisfy the formula, and
generalizes guesses that conflict constraints to cylindrical cells around samples which are avoided in the continuing
search. Such an approach can lead to a satisfying assignment more quickly, or conclude unsatisfiability with far
fewer cells. A notable example of this approach is Jovanović and de Moura’s NLSAT algorithm. Since these cells
are being produced locally to a sample there is scope to use fewer projection polynomials than the traditional CAD
projection. The original NLSAT algorithm reduced the set a little; while Brown’s single cell construction reduced
it much further still. However, that refines a cell polynomial-by-polynomial, meaning the shape and size of the cell
produced depends on the order in which the polynomials are considered.

The present paper proposes a method to construct such cells levelwise, i.e. built level-by-level according to a
variable ordering instead of polynomial-by-polynomial for all levels. We still use a reduced number of projection
polynomials, but can now consider a variety of different reductions and use heuristics to select the projection
polynomials in order to optimise the shape of the cell under construction. The new method can thus improve the
performance of the NLSAT algorithm. We formulate all the necessary theory that underpins the algorithm as a
proof system: while not a common presentation for work in this field, it is valuable in allowing an elegant decoupling
of heuristic decisions from the main algorithm and its proof of correctness. We expect the symbolic computation
community may find uses for it in other areas too.

The work has been implemented in the SMT-RAT solver and the benefits of the levelwise construction are vali-
dated experimentally on the SMT-LIB benchmark library. We also compare several heuristics for the construction
and observe that each heuristic has strengths offering potential for further exploitation of the new approach.

Keywords: Satisfiability modulo theories, Cylindrical algebraic decomposition, Non-linear real arithmetic,
Model-constructing satisfiability calculus, Proof system

1. Introduction

In this paper we present a new method to construct around a sample point a single cylindrical cell that is
truth-invariant for a set of polynomial constraints. We demonstrate how the new method allows for improved
decision procedures to determine the satisfiability of formulae involving such constraints. We use a proof system
presentation for our method, which we consider an important contribution for such algebraic decision procedures.
We take this opportunity to explain the benefit of such a presentation to the symbolic computation community.
This introduction continues with a broad overview of context for the contribution, followed by the plan of the paper.
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1.1. Non-linear real arithmetic and CAD

We are concerned with non-linear real arithmetic, formulae which are Boolean combinations of polynomial
constraints with rational coefficients. This is a powerful logic that can express a wide variety of problems. This
logic admits quantifier elimination [40], i.e. any quantified formula in the logic may be replaced by an equivalent
quantifier-free one. In this paper we restrict our attention to the problem of determining the satisfiability of such
formulae, that is quantifier elimination when all variables are existentially quantified.

The most commonly used complete methods here are based on the idea of the Cylindrical Algebraic Decompo-
sition (CAD) introduced by Collins [16]. A CAD is a finite decomposition of Rn into cells, traditionally produced
relative to a set of polynomials in n variables such that each polynomial has constant sign on each cell. It thus
allows us to use a finite set of sample points (one for each cell) to study sign-constraints on those polynomials over
the infinite space Rn. The CAD method offered the first tractable approach to real quantifier elimination and found
numerous applications in the years that followed. However, its practical use is restricted by a doubly exponential
worst case complexity in the number of variables [20], that is felt often in practice: the algorithm makes use of
iterated resultants [16] leading to polynomials of doubly-exponential degree.

It was soon realised that a CAD encoded far more information than needed even for quantifier elimination: a
CAD for a set of polynomials can be used to study any logical formula built from those polynomials, not just the
one of interest. Some progress was since made in adapting the core CAD algorithm to the logical formula, e.g.
[17, 23], but these were only partial solutions.

1.2. NLSAT, MCSAT and single cylindrical cells

A novel framework for satisfiability modulo theories (SMT) solving was introduced with the NLSAT algorithm
of Jovanović and de Moura [27] in 2012. This was since generalised into the model constructing satisfiability calculus
(MCSAT) framework [21] and has been applied to other logics such as non-linear integer arithmetic [25]. In
MCSAT the search at the Boolean and theory levels are carried out concurrently, mutually guided by each other
away from unsatisfiable regions. Partial solution candidates for the Boolean structure and for the corresponding
theory constraints are constructed incrementally in parallel, with Boolean conflicts generalised using propositional
resolution and, for real algebra, theory conflicts by CAD technology.

For the latter, when a theory model (sample point) is determined not to satisfy all those constraints which
should hold according to the current Boolean search, then we seek to guide the future search by an explanation to
which is generalised from the sample point to a region containing the point on which the same constraints fail for
the same reasons. This can be achieved by having the polynomials involved in the combination of constraints which
cause the failure all have invariant sign upon this region. Such regions are constructed as cylindrical algebraic cells,
but they are not necessarily cells from the CAD that would be built for the problem. Instead, they are usually
larger since not all constraints are involved in every conflict. The exclusion of the cell is learned by adding a new
clause: the negation of the algebraic description of the cell.

This motivates the optimisation of sub-algorithms to produce single cells from a point and a set of polynomial
constraints. Savings can be made not just by building cells with only a subset of the constraints, but also by
restricting the combinations of those constraints that we do consider in reference to the current model. Until now,
the state-of-the-art approach is that in [11]. We continue this research in the present paper by developing a new
method for single cell construction.

1.3. First contribution: Proof system presentation

In contrast to [11], our new method allows for different choices how to construct the cell. We will describe and
evaluate some of these choices, however, it is important to distinguish that area of work from the broader method
to build the cell introduced in the next subsection. The choices do not effect the correctness of the cell produced:
in all cases the cell meets the essential criteria of containing the sample and being invariant for the truth of the
conflicting constraints. Nor do the choices have an affect on high level measures of complexity: they achieve similar
reductions in algebraic work. However, it can be observed that the choices do greatly effect the cells produced and
thus the performance of the algorithm and so it is worth to try to make an optimal choice. We do these choices
heuristically, i.e. using methods not guaranteed to give an optimal answer but hopefully giving a reasonable answer
quickly. To expedite and simplify future research on heuristics it is helpful to clearly separate out these heuristic
choices from the broader algorithm and its proof of correctness.

To achieve that, we present our work as a proof system. Such a presentation clearly achieves the separation of
heuristic decisions from action that need to take place for the correctness of the method. Essentially, we must find
a chain of proof rules to prove our desired property, and where there is freedom in the chain to be built we can
employ a heuristic method. The system is flexible, extensible, allows for detailed optimizations without changing

2



the fundamental algorithm, and allows for correctness proofs to be portioned nicely. We note that this is not just
a presentation for the purpose of the paper, but also present in the underlying implementation we report on.

We acknowledge that a proof system presentation is uncommon in symbolic computation. It is more prevalent
in the SAT and SMT communities where there is more intense work on the optimisation of such heuristic choices
and proof systems are an established presentation method. However, such a system has not been used before for
CAD theory, even when deployed in the SMT context. We view our proof system presentation as a contribution
in its own right, which allowed for greater exploration of heuristic choices in our work. We also hope the wider
symbolic computation community may find it interesting as a potential new tool to use elsewhere.

1.4. Second contribution: Levelwise single cells

The current state-of-the-art for single cylindrical cell construction is that of Brown and Košta [11]. This
constructs the single cell gradually, processing one polynomial at a time, initialising the cell as the entirety of
Rn and then gradually refining it according to the sign of each polynomial considered. For each refinement the
method needs to consider only the interaction of the next polynomial with the ones currently defining the cell,
rather than all those that went before, which allows for savings compared to the original approach used in [27].
However, this approach introduces a sensitivity to the order in which polynomials are considered. A machine
learning approach to select the order was considered in [10].

The alternative method contributed in this paper allows to produce the single cell incrementally by level (i.e.
dimension / variable). This removed the direct sensitivity to the polynomial ordering, instead introducing at each
level decisions about which polynomials to use first. This approach uncovers a greater range of decision that the
polynomial ordering, and allows for more reasoned heuristics than black-box machine learning. By allowing for
these better heuristic decisions we can produce more optimal cells in turn improving the performance of algorithms
which use them.

1.5. Plan of the paper

We continue in Section 2 by introducing the necessary preliminaries and notation used, followed by background
material on CAD. Then in Section 3 we present the existing state of the art in single cell construction and an
informal motivation for our new levelwise approach to single cell construction.

In Section 4, a new CAD property (projective delineability) and the theory around it is presented: we need this
to prove the correctness of optimisations utilised by our new algorithm. Then in Section 5 we establish the proof
system, and in Section 6 we present our new algorithm and some heuristics that may be used with it.

In Section 7 we give some qualitative analysis on our new method and the heuristics. Then an experimental
evaluation on the use of the new method for explanation generation in MCSAT is given in Section 8. Finally, we
conclude in Section 9 with an outlook on further research and open questions.

2. Preliminaries

Let N denote the set of all natural numbers including 0, N>0 = N \ {0}, Q be the rational numbers, and R
be the real numbers. For i, j ∈ N with i < j, we define the sets of integers [i..j] = {i, . . . , j} and [i] = [0..i]. For
i, j ∈ N>0, j ≤ i and r ∈ Ri, we denote by rj the j-th component of r and by r[j] the vector (r1, . . . , rj). For a tuple
t = (a, b, c, . . .) we denote by t.a, t.b, t.c, . . . the corresponding tuple entries.

Let f : D → E be a function, then the domain D of f is denoted by dom(f), and the restriction of f to A ⊆ D
is denoted by f |A (i.e. dom(f |A) = A). Let f, g : D → E and let < be a total order on E. We write f < g if
f(d) < g(d) for all d ∈ D and f ≤ g if f(d) ≤ g(d) for all d ∈ D.

2.1. Variables and polynomials

We assume that the reader is familiar with the common definitions and terminology related to polynomials. We
will introduce some notation in this section; for further reading, we refer to [19].

We work with the variables x1, . . . , xn with n ∈ N>0 under a fixed ordering x1 ≺ x2 ≺ ... ≺ xn. A polynomial
is built from a set of variables and numbers from Q using addition and multiplication. We use Q[y] to denote
univariate polynomials in some variable y and Q[x1, . . . , xi] for multivariate polynomials in those variables. We say
that a polynomial p is of level j (denoted as level(p) = j) if xj is the largest variable appearing in p: i.e. either
j = 0 and p ∈ Q; or j ∈ [1..n] and p ∈ Q[x1, . . . , xj ] \Q[x1, . . . , xj−1].

Assume in the following some i ∈ [n] and polynomials p, q ∈ Q[x1, . . . , xi].
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We write p(x1, . . . , xi) to indicate p’s variable domain. For j ∈ [1..i] and r = (r1, . . . , rj) ∈ Rj we write
p(r, xj+1, . . . , xi) for the polynomial p after substituting r1, . . . , rj for x1, . . . , xj in p and indicating the remaining
free variables in p.

We use realRoots(p) ⊆ Ri to denote the set of real roots of p, degxj
(p) to denote the degree of p in xj , ldcfxj

(p)
the leading coefficient of p in xj , factors(p) to denote the irreducible factors of p, discxj

(p) to denote the discriminant
of p with respect to xj , and resxj (p, q) to denote the resultant of p and q with respect to xj .

2.2. Real algebraic numbers, constraints and cells
Real algebraic numbers are real roots of univariate polynomials with rational coefficients. Although we will not

distinguish between real and real algebraic numbers in the following for simplicity, the algorithms are complete
when restricting all choices of constants to real algebraic numbers.

A constraint p ∼ 0 compares a polynomial p ∈ Q[x1, . . . , xi], level(p) = i to zero using a relation symbol,
∼∈ {=, ̸=, <,>,≤,≥}, and has the solution set {r ∈ Ri | p(r) ∼ 0}.

A subset of Ri for some i ∈ [n] is called semi-algebraic if it is the solution set of a Boolean combination of
polynomial constraints. A cell is a non-empty connected subset of Ri for some i ∈ [n]. A cell is called algebraic if
it is a semi-algebraic set.

For simplifying the notation throughout this paper, we define R0 = {()}. Given i, j ∈ N>0 with j < i, we call
Ri an extension of Rj and define the projection of a set R ⊆ Ri onto Rj by R↓[j]= {(r1, . . . , rj) | (r1, . . . , ri) ∈ R}.

Given a cell R ⊆ Ri, i ∈ [1..n] and continuous functions f, g : R → R, we define the sets R× (f, g) =
{(r, ri+1) | r ∈ R, ri+1 ∈ (f(r), g(r))}, analogously R× (−∞, g) = {(r, ri+1) | r ∈ R, ri+1 < g(r)}, R× (f,∞) =
{(r, ri+1) | r ∈ R, f(r) < ri+1}, and R× f = {(r, ri+1) | r ∈ R, ri+1 = f(r)}. Note that if f ≤ g (on R), then these
sets are cells (as a continuous image of a connected set is connected).

The sign of r ∈ R, denoted sgn(r), is defined to be 1 if r > 0, −1 if r < 0, and 0 otherwise. A polynomial
p ∈ Q[x1, . . . , xi] is sign-invariant on a set R ⊆ Ri if sgn(p(r)) = sgn(p(r′)) for all r, r′ ∈ R. A set of polynomials
P ⊆ Q[x1, . . . , xi] is sign-invariant on R ⊆ Ri if all p ∈ P are sign-invariant on R.

2.3. CAD definition
A set D = {R1, . . . , Rk} of cells of Rn such that ∪i=1,...,kRi = Rn and Ri ∩ Rj = ∅ is called a decomposition

of Rn. A decomposition is called algebraic if its cells are algebraic. A decomposition D of Rn is called cylindrical
over a decomposition D′ of Rm, m < n if all projections of cells R ∈ D onto Rm are themselves cells in D′. I.e.
the cells in Rn stack up in cylinders over the cells in Rm. A cylindrical algebraic decomposition (CAD) is produced
relative to a variable ordering: it is an algebraic decomposition D such that there exists a sequence of algebraic
decompositions (D1, . . . , Dn), D = Dn with each Di a cylindrical decomposition of Ri over Di−1 for i ∈ [2..n].

A decomposition inherits the invariance properties for polynomials and constraints defined above if they apply
to all its cells. A CAD will usually be computed relative to an input polynomial set to ensure such an invariance
property. Collins [16] first introduced the notion of a CAD and an algorithm for computing a sign-invariant CAD
in the 1970s. A central notion for this algorithm is delineability.

Definition 2.1 (Delineability [16]). Let i ∈ N, R ⊆ Ri be a cell, and p ∈ Q[x1, . . . , xi+1] \ {0}. The polynomial p is
called delineable on R if and only if there exist finitely many continuous functions θ1, . . . , θk : R → R (for k ≥ 0)
such that

• θ1 < . . . < θk;

• the set of real roots of the univariate polynomial p(r, xi+1) is {θ1(r), . . . , θk(r)} for all r ∈ R; and

• there exist constants m1, . . . ,mk ∈ N>0 such that for all r ∈ R and all i ∈ [1..k], the multiplicity of the root
θi(r) of p(r, xi) is mi.

The θj are called real root functions of p on R. The cells R × θj , j ∈ [1..k] are called p-sections over R. The
cells R × (−∞, θ1), R × (θk,∞), and R × (θj , θj+1) for j ∈ [1..k − 1], and in case k = 0 also R × (−∞,∞), are
called p-sectors over R.

These notions are extended to finite sets of polynomials P ⊆ Q[x1, . . . , xi+1] \ {0} such that P is delineable on
R if the product of the polynomials in P is delineable on R. Accordingly, we define the real root functions of P , the
P -sections and P -sectors; for the empty polynomial set there are no sections and a single sector Ri.

A CAD projection operator is a function proj that maps a set of polynomials P to a set of lower-level polynomials
such that the sign-invariance of proj(P ) on R implies the delineability of P on R. The operator proj induces a
sign-invariant CAD of P , recursively defined as follows: In case all polynomials in P are of level 1, then the CAD
is the set of all sections and sectors of P . If the polynomials are of higher level, the CAD contains all sections and
sectors of P over each cell of the CAD of proj(P ).
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2.4. McCallum’s projection operator

Although Collin’s original projection operator is complete, the projection set is large and thus relatively inef-
ficient. McCallum presented an improved operator by making the projection set smaller [33]. To do so, his proof
of correctness relies not on sign-invariance but on the stronger property of order-invariance. Although a stronger
property, the induced cells in McCallum’s CAD are actually bigger than in Collin’s CAD. In the following, we
present a simplified version of the McCallum CAD projection (simplified as we do not describe the optimisation
using delineating polynomials).

McCallum’s theory relies on some notions which we will mention here only on the level of intuition: for more
details, we refer to [31, 33]. An i-dimensional (analytic) submanifold of Rn is a non-empty subset R ⊆ Rn that
“looks locally like Ri”. Given an open subset U ⊆ Ri, a function f : U → R is called analytic if it has a multiple
power series representation [31] around each point of U . Given an i-dimensional submanifold R of Rn, a function
f : R → R is called analytic if for all r ∈ R, R looks locally like Ri with respect to a coordinate system about r
and f looks locally like an analytic function Ri → R. Every open subset of Ri, i ∈ [1..n] is an analytic submanifold.
To simplify notation, we say R0 is an analytic submanifold. Given an analytic submanifold R ⊆ Ri and analytic
functions f, g : R → R with f < g, the sets R×(f, g) and R×f are analytic submanifolds as well [31, Theorem 2.2.3.
and Theorem 2.2.4]. Note that analytic submanifolds are cells.

Let p ∈ Q[x1, . . . , xn] be a polynomial and r ∈ Rn be a point. Then the order of p at r is defined as

ordr(p) = min({k ∈ N | some partial derivative of total order k of p does not vanish at r} ∪ {∞}).

We call p order-invariant on R ⊆ Rn if ordr(p) = ordr′(p) for all r, r′ ∈ R. Note that if p has no root in R,
then ordr(p) = 0 for all r ∈ R and p is trivially order-invariant on R. Note also that order-invariance implies
sign-invariance.

Additionally, the notion of delineability is extended to analytic delineability, which is only defined on connected
analytic submanifolds and the real root functions are required to be analytic.

McCallum’s operator requires a smaller projection set than Collins’ operator. It does so by maintaining the
stronger property of order-invariance instead of sign-invariance; however, order-invariance can only be concluded if
no polynomial is nullified on a point in the underlying cell.

Definition 2.2 (Nullification). Let i ∈ N, r ∈ Ri, and p ∈ Q[x1, . . . , xi+1], level(p) = i + 1. The polynomial p is
nullified on r if p(r, xi+1) = 0.

The McCallum projection operator is thus incomplete. We note the recent validation of Lazard projection in [36]
as an alternative to McCallum projection which is complete and is no bigger than McCallum except for those cases
where McCallum cannot be applied [12]. We choose to formalise here with McCallum projection as it is extended
to optimisations such as equational constraints [34] [23] which are very powerful in practice (see Section 5.6) and
the existing single cell approach [11] is also based on McCallum. We expect that our work could be reformulated
in Lazard projection if so desired.

2.5. Computing a CAD

In many applications, a decomposition of a set of polynomials P is not computed explicitly but instead the
projection of P is used to generate sample points for every sign-invariant cell that would be formed in such a
decomposition. The generation of cells / samples from the projection is called lifting. Polynomials can be evaluated
at these sample points to check the satisfiability of constraints and formulae which involve them.

For representing cells explicitly, we need to give witnesses for the real root functions θj : R → R from Defini-
tion 2.1 defining the sectors and sections over a cell R.

Definition 2.3 (Indexed root expression). Let i ∈ N, p ∈ Q[x1, . . . , xi+1], level(p) = i + 1, and j ∈ N>0. The
indexed root expression rootxi+1

[p, j] : Ri → R ∪ {undef} is the j-th real root of p in xi+1 at the given sample if it
exists, and undef otherwise. That is for each s ∈ Ri:

rootxi+1
[p, j](s) =

{
undef if j > | realRoots(p(s, xi+1))| or p(s, xi+1) = 0, and otherwise

ξj where realRoots(p(s, xi+1)) = {ξ1, . . . , ξk} and ξ1 < . . . < ξk.

Indexed root expressions of this form are also called indexed root expression of level i+ 1. Assuming ξ denotes the
above indexed root expression, we use ξ.p to refer to p and ξ.j to refer to j.
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In the algorithms presented in this paper, we only need to evaluate the indexed root expressions for real algebraic
numbers. Note that the existence and index of a real root function depends on the given sample. Thus, the same
indexed root expression may refer to different real root functions at different sample points.

Definition 2.4 (Symbolic intervals, single cell and CAD data structures). A symbolic interval I of level i is either
(i) of the form I = (sector, l, u) where l is either an indexed root expression of level i or −∞, and u is either an
indexed root expression of level i or ∞; or (ii) of the form Ii = (section, b) where b is an indexed root expression of
level i. The polynomials I.l, I.u respectively I.b are the defining polynomials of I (if they exist).

A single cylindrical cell data structure is a sequence R = (I1, . . . , In) of symbolic intervals Ii of level i. For an
empty single cell data structure, we define setOf(()) = {()}. For a single cell data structure (I1, . . . , Ii), i ≥ 1, we
define the corresponding subset of Ri as setOf(I1, . . . , Ii) = {(r, r′) | r ∈ setOf(I1, . . . , Ii−1), r′ ∈ (Ii.l(r), Ii.u(r))},
respectively setOf(I1, . . . , Ii) = {(r, r′) | r ∈ setOf(I1, . . . , Ii−1), r′ = Ii.b(r)} if the respective indexed root expres-
sions are not undef, and setOf(I1, . . . , Ii) = undef otherwise. Similarly, we define setOf(R, Ii) for arbitrary subsets
R ⊆ Ri−1 and setOf(r, Ii) for points r ∈ Ri−1.

A CAD data structure D is a set of single cell data structures. We define setOf(D) = {setOf(R) | R ∈ D}.

In our algorithms, indexed root expressions occurring in a single cell data structure will be always defined;
the above definition covers the undef case just for the sake of completeness. Furthermore, note that given a
single cell data structure R = (I1, . . . , Ii), the restrictions of members Ii.l|setOf(I1,...,Ii−1), Ii.u|setOf(I1,...,Ii−1),
Ii.b|setOf(I1,...,Ii−1) are real root functions of their defining polynomials as θj in Definition 2.1.

Definition 2.5 (Indexed root expressions of polynomials). Let i ∈ N, s ∈ Ri, and p ∈ Q[x1, . . . , xi+1] of level i+1.
The set of indexed root expressions of p at s is defined as

irExpr(p, s) =

{
undef p(s, xi+1) = 0,

{rootxi+1 [p, j] | j ∈ [1..| realRoots(p(s, xi+1))|]} otherwise.

Let P ⊆ Q[x1, . . . , xi+1] be a set of polynomials of level i + 1. The set of indexed root expressions of P at s is
defined as

irExpr(P, s) =
⋃
p∈P

irExpr(p, s).

Let ξ ∈ R. The set of indexed root expressions of P for s and ξ is defined as

irExpr(P, s, ξ) = {rootxi+1 [p, j] | p ∈ P, level(p) = i+ 1, ξ = rootxi+1 [p, j](s)}.

A description of a sign-invariant CAD defined by a projection operator with respect to a set of polynomials can
be computed as follows: First the projection operator is applied from level n to 1, called the projection phase. This
is followed by the lifting phase where, starting from level 1, all cells from level i− 1 are extended to the level i such
that all sections and sectors in the cylinder above every cell of level i− 1 are identified as cells. To achieve this, for
each cell R of dimension i − 1, the polynomials on level i are partially evaluated up to their last dimension using
a sample s from R. This results in univariate polynomials whose roots can be isolated and sorted to give intervals:
point intervals at the roots of the polynomials, the open intervals between them, and the two open intervals below
and above all roots. Delineability allows the conclusions drawn at the sample to generalise over R. For each interval
a symbolic description is determined that together extend R to level i.

3. Single cell computation

For our problem of study, we are not interested in computing a full sign-invariant CAD, but only a single sign-
invariant algebraic cell. That is, given a set of polynomials P ⊆ Q[x1, . . . , xn] and a sample s ∈ Rn, we need to
compute a cell R ⊆ Rn such that s ∈ R and P is sign-invariant on R.

In this paper, we will focus on the computation of algebraic cells that adhere to Definition 2.4. These cells have
a triangular algebraic description with respect to the variable ordering (i.e. a condition on x1 alone; then one on
(x1, x2), and so on). Such cells are called (locally) cylindrical [11, 2] as this shape is implied by the cylindricity
property of a full CAD. Although we do not construct entire decompositions in this paper, we make use of CAD
theory which results in cells having this property. Such cells have the advantage of being easy to visualise and
compute with. For example, projection with respect to the variable ordering is trivial, as is checking whether a
point is inside such a cell, which is particularly important for our use of such cells.
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3.1. Previous work on optimizing single cell computations

As described in Section 1.2, Jovanović and de Moura use a single cell construction for model explanation in
their algorithm to decide satisfiability for non-linear arithmetic [27]. This was based on Collins’ CAD projection
operator [16] but did not compute a full CAD projection: it left out coefficients based on the current sample (as we
only need consider subsequent coefficients when the leading coefficient vanishes).

Brown enhanced this single cell construction, first in the open case [7] (i.e. building only cells with maximal
dimension) and then for the general case [11] in collaboration with Košta. This work was based on McCallum
projection theory, and in addition to coefficients also avoided some computation of resultants and discriminants
based on the current sample. The work led in turn to the consideration of entire decompositions built one cell at a
time [8] and their use for quantifier elimination [9].

The approach in [8] started with a single cell data structure describing the whole of Rn which was continually
refined by merging in new polynomials one at a time. The process maintains several invariants: (1) the cell contains
the sample point s; (2) the cell is cylindrical; and (3) all polynomials merged so far have constant sign (more precisely,
constant order) in the cell. The polynomials are merged one-by-one, and the order in which they are merged affects
the cell that gets produced. Figure 1 illustrates this process for Example 3.1 below, showing different results for
two different orderings of the polynomials. From now on we will refer to this approach as refinement-based single
cell construction. The merge operation, unless on the lowest level, projects the current polynomial p and then calls
itself iteratively on the projection result. When the call returns to p, the polynomial is used to refine the bounds
of the cell in the dimension that corresponds to the level of p. This is done by isolating the roots of the univariate
polynomial resulting from partially evaluating p up to its last dimension using the sample s. If there is a root closer
to si than the current bound then it becomes the new bound of the sector. In the special case that a root coincides
with si, the sector collapses into a section described by said root. By this recursive refinement, the transitivity of
the ordering on real root functions of polynomials induced by the order-invariance of resultants is exploited, so that
at most two resultants are calculated per merge-operation and polynomial. Furthermore, as soon as a section is
identified, some superfluous discriminants can be detected, and using the current sample irrelevant coefficients can
be identified.

Example 3.1. We consider the point s = ( 18 ,− 3
4 ) and polynomials p1 = x1 − 2x2 + 1, p2 = x2

1 + x2
2 − 1 and

p3 = x1 − 2x2 − 1. These are the polynomials studied in Figure 1 which demonstrates the refinement-based single
cell construction process for two different orderings. We see that one produces a larger cell than the other. It is
not obvious how to choose good orders for adding polynomials in this approach (a machine learning heuristic was
presented in [10]). Moreover, because the method works by completely refining the cell by the chosen polynomial,
the order in which lower-level polynomials resulting from projections are added is not very flexible.

Our approach will build a single cell levelwise, i.e. constructing the same level-by-level according to a variable
ordering instead of polynomial-by-polynomial for all levels. We note there exists another levelwise single cell
construction in an unpublished work on the arXiv, [30]. In comparison, our formulation using a proof system will
enables the use of more sophisticated optimizations in the following.

3.2. Our levelwise approach to single cell computation

Our new levelwise approach is based on using information about the ordering of the roots of polynomials relative
to the sample point s and to one another to make decisions during the cell construction process that are likely to
lead to larger cells.

We will exploit said information and the transitivity of the ordering on the roots induced by order-invariance
of resultants. Thus, before projection, the roots of the polynomials on the current level are isolated and ordered to
see which resultants are required for maintaining sign- or order-invariance of the given polynomials.

Example 3.2. Figure 2 shows how our new levelwise approach would operate on the formula from Example 3.1.
We start by considering x1 = s1, the first coordinate of the sample s. We evaluate the polynomials at this coordinate
and isolate the real roots to find ξ1 = rootx2

[p2, 1], ξ2 = rootx2
[p3, 1], ξ3 = rootx2

[p1, 1], and ξ4 = rootx2
[p2, 2]. We

order these, along with the second coordinate of s, as in the top-left image.
Our sample lies in the interval for x2 denoted I2 = (sector, ξ1, ξ2) in the top-right image. We thus know that,

local to s1, the cell we want will be bounded from below by p2 and from above by p3. We also know that the other
section of p2 and the section of p1 are above the cell. In this figure the graphs of the polynomials are greyed out
because the algorithm is not aware of them: it knows only their roots when evaluated at the sample. However, this
is enough to allow the algorithm to infer behaviour around the sample, as illustrated by the partial thick lines.

As we generalise from the sample we must ensure than ξ1 and ξ2 remain well-defined and that no root function
crosses the symbolic interval described by I2. To achieve this we compute a projection consisting of p4 = discx2

(p2)
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Figure 1: Refinement-based construction of a single cell for Example 3.1. In the upper row the original cell (the entire plane) is refined
first by polynomial p1, then by p2, then by p3. In the lower row a different order of refinement is used: p3, p2, p1 giving a larger cell.
Note that in the figures of this paper we label the varieties of polynomials with their name, p1 labels p1 = 0.

and p5 = resx2
(p3, p2) (also discx2

(p1) and discx2
(p3) but they do not have any real roots and so play no further

role in this example). Crucially, because p1 has only one section and that section lies above the cell of interest, the
resultant of p1 and the lower-boundary polynomial p2 is not required or computed. The bottom-left figure shows how
the zeros of the projection map onto the geometric features.

Analogously to x2, we isolate the real roots ξ′1 = rootx1 [p4, 1], ξ
′
2 = rootx1 [p5, 1], ξ

′
3 = rootx1 [p4, 2] in x1. We

determine the interval I1 = (sector, ξ′2, ξ
′
3) around s1 for x1 and thus generate the cell in the bottom-right image.

So we see that for Example 3.2 the new levelwise approach produces the second of the two possible outcomes
from the refinement-based construction (Figure 1). The example illustrates how the levelwise approach avoids
“mistakes” that the refinement-based construction can make due to poor choices of orderings for the polynomials.

The levelwise approach also allows greater flexibility in how polynomials resulting from projection are handled,
but that aspect of the algorithm requires more variables than in this simple example in order to be observed.

4. Projective delineability

It is already known that if a polynomial is not nullified at any point of a cell, then a projection consisting solely
of the leading coefficient and the discriminant suffices to guarantee its delineability. In this section, we will explore
a new notion called projective delineability (Definition 4.1) for which the order-invariance of the discriminant alone
is enough to guarantee. It is similar to delineability bu allows for the existence of an additional special root function
below or above all other roots that has a singularity at points (exactly where the leading coefficients vanishes) where
it approaches plus or minus infinity.

This new property is often enough for constructing a sign-invariant cell, as in the example is depicted in Figure 3.
We will utilise this notion in Section 5 to save leading coefficients.

The proofs of the lemmas in this section may be found in Appendix B.

Definition 4.1 (Projective delineability). Let i ∈ N, R ⊆ Ri be a cell, and p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1 be
a polynomial. Then p is projectively delineable on R if and only if either (i) p(r, r′) ̸= 0 for all r ∈ R and r′ ∈ R,
or (ii) p is delineable on R, or (iii) S = realRoots(ldcfxi+1

(p)) ∩ R ̸= ∅ and there exist finitely many continuous
functions θ1, . . . , θk : R → R and a function θ∗ : R \ S → R continuous on the connected components of its domain
such that:

• θ1(r) < . . . < θk(r) for all r ∈ R;
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Figure 2: Construction of a single cell for Example 3.1 following the new levelwise approach as described in Example 3.2.

• if k > 0, then for all r ∈ R \ S, either θ∗(r) < θ1(r) or θk(r) < θ∗(r);

• for any continuous L : [0, 1] → R such that ldcfxi+1(p) (L(t)) = 0 at t = 1 and for no other L(t′), t′ ∈ [0, 1) it
holds that limt→1− θ∗ (L(t)) = ±∞;

• the set of real roots of the univariate polynomial p(r, xi+1) in xi+1 is {θ1(r), . . . , θk(r), θ∗(r)} for all r ∈ R \S
and {θ1(r), . . . , θk(r)} for all r ∈ S; and

• there exist constants m1, . . . ,mk,m∗ ∈ N>0 such that for all r ∈ R and all j ∈ [k], mj is the multiplicity of
the root θj(r) of p(r, xi+1) and for all r ∈ R \ S, m∗ is the multiplicity of the root θ∗(r) of p(r, xi+1).

Definition 4.2 (Analytic projective delineability). Analytic projective delineability is defined as projective delin-
eability in Definition 4.1, with the modification that it is only defined on connected analytic submanifolds (instead
of general cells) and the functions θ1, . . . θk are required to be analytic and θ∗ analytic on the connected components
of its domain (instead of only continuous).

The key property, that order-invariance of the discriminant alone, without looking at the leading coefficient, is
enough to guarantee projective delineability, is captured in Lemma 4.1 below.

Lemma 4.1. Let i ∈ N, R ⊆ Ri be a connected analytic submanifold, and p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1 be
irreducible. If p is not nullified on any point in R and discxi+1

(p) is order-invariant on R, then p is analytically
projectively delineable on R.

The following theorem states the relationship between delineability and projective delineability.

Lemma 4.2. Let i ∈ N, R ⊆ Ri be a cell and p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1.
If p is projectively delineable on R and ldcfxi+1(p) is sign-invariant on R, then p is delineable on R.

Note that we already defined real root functions of delineable polynomials on arbitrary cells in Definition 2.1;
here, we define real root functions for the case of analytic projective delineability.
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Figure 3: In this situation, projective delineability of the polynomial is enough for constructing a sign-invariant cell, i.e the leading
coefficient could be omitted from the projection.

Definition 4.3 (Real root function). Let i ∈ N, R ⊆ Ri be a connected analytic submanifold, p ∈ Q[x1, . . . , xi+1],
level(p) = i+ 1, and θ : R → R be an analytic function. We call θ a real root function of p on R if p(r, θ(r)) = 0
for all r ∈ R.

Definition 4.4. Let i ∈ N, R ⊆ Ri be an analytic submanifold, p ∈ Q[x1, . . . , xi+1], level(p) = i + 1, r ∈ R and
ξ ∈ irExpr(p, r).

If p is analytically projectively delineable on R and there exists a real root function θ of p on R such that
θ(r) = ξ(r), then θξ,r denotes this (unique) real root function.

The following results are analogous to the known properties for delineability, showing how to lift order invariance
and ensure delineability of sets of polynomials.

We first give a lemma proving order-invariance of polynomials for the non-trivial case where a polynomial is
zero (remembering that a polynomial is trivially order-invariant on sets where it is non-zero).

Lemma 4.3. Let i ∈ N, R ⊆ Ri be a cell, and p ∈ Q[x1, . . . , xi], level(p) = i such that p(r) = 0 for all r ∈ R.
If i = 0, then p is order-invariant on R. If i > 0, R↓[i−1] is an analytic submanifold, p is not nullified on any

point in R↓[i−1], and p is analytically projectively delineable on R↓[i−1], then p is order-invariant on R.

We next present a lemma for ensuring the order of two real root functions from different polynomials; if they
stem from the same polynomial, projective delineability of this polynomial already suffices.

Lemma 4.4. Let i ∈ N, R ⊆ Ri be a connected analytic submanifold and p1, p2 ∈ Q[x1, . . . , xi+1] irreducible and
coprime such that level(p1) = level(p2) = i+ 1, θ1, θ2 : R → R be real root functions of p1 and p2 respectively, and
∼∈ {=, <,>}.

If p1, p2 are not nullified on any point in R and resxi+1(p1, p2) is order-invariant on R and p1 and p2 are
projectively delineable on R, then θ1(r) ∼ θ2(r) ⇐⇒ θ1(r

′) ∼ θ2(r
′) for all r, r′ ∈ R.

5. Proof system for single cells

In Section 6 we will present our new levelwise procedure to construct a single cell. We lay the basis for this by
first formalising our work as a proof system in this section. The system expresses how the properties we want to
conclude rely on other “smaller” properties. From this, the procedure in the next section gains maximal freedom
to make heuristic choices. Before we go into the formal presentation, we outline the idea for our running example.

5.1. Motivating example

Example 5.1. Recall Example 3.1 and Figure 2 where we sought to construct a cell R ⊆ R2 around s = (s1, s2) such
that the sign-invariance of p1, p2, p3 hold on R. We started by eliminating x2: we isolated real roots of pj(s1, x2)
to define ξ1, . . . ξ4, sorted them, and observed that ξ1(s1) < s2 < ξ2(s1), thus we determined that in the second level
the cell was represented by I2 = (sector, ξ1, ξ2).
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sgn inv(p1)(R) ⊣sample(s)(R), repr(I2, s1)(R), ir ord(⪯, s1)(R), an proj del(p1)(R),

sgn inv(ldcfx2
(p1))(R), an sub(1)(R), connected(1)(R)

sgn inv(p2)(R) ⊣sample(s)(R), repr(I2, s1)(R), ir ord(⪯, s1)(R), an proj del(p2)(R),

an sub(1)(R), connected(1)(R)

sgn inv(p3)(R) ⊣sample(s)(R), repr(I2, s1)(R), ir ord(⪯, s1)(R), an proj del(p3)(R),

sgn inv(ldcfx2
(p3))(R), an sub(1)(R), connected(1)(R)

sample(s)(R) ⊣repr(I2, s1)(R), sample(s1)(R)

repr(I2, s1)(R) ⊣R = setOf(R↓[1], I2), an proj del(p2)(R), an proj del(p3)(R),

sgn inv(ldcfx2
(p2))(R), sgn inv(ldcfx2

(p3))(R), sample(s1)(R)

ir ord(⪯, s1)(R) ⊣an proj del(p1)(R), an proj del(p2)(R), an proj del(p3)(R), ord inv(resx2
(p3, p1))(R),

ord inv(resx2
(p3, p2))(R), an sub(1)(R), connected(1)(R), sample(s1)(R)

an proj del(p1)(R) ⊣non null(p1)(R), ord inv(discx2(p1))(R), an sub(1)(R), connected(1)(R)

an proj del(p2)(R) ⊣non null(p2)(R), ord inv(discx2(p2))(R), an sub(1)(R), connected(1)(R)

an proj del(p3)(R) ⊣non null(p3)(R), ord inv(discx2(p3))(R), an sub(1)(R), connected(1)(R)

non null(p1)(R) ⊣true
non null(p2)(R) ⊣true
non null(p3)(R) ⊣true

ord inv(discx2(p1))(R) ⊣true
ord inv(discx2(p2))(R) ⊣sgn inv(p4)(R), sample(s1)(R)

ord inv(discx2
(p3))(R) ⊣true

sgn inv(p4)(R) ⊣repr(I1)(R)

ord inv(resx2
(p3, p1))(R) ⊣true

ord inv(resx2
(p3, p2))(R) ⊣sgn inv(p5)(R), sample(s1)(R)

sgn inv(p5)(R) ⊣repr(I1)(R)

sgn inv(ldcfx2(p1))(R) ⊣true
sgn inv(ldcfx2(p2))(R) ⊣true
sgn inv(ldcfx2(p3))(R) ⊣true

an sub(1)(R) ⊣repr(I1)(R)

connected(1)(R) ⊣true
sample(s1)(R) ⊣repr(I1)(R)

repr(I1)(R) ⊣R↓[1]= setOf(I1)

Figure 4: Proof for Example 5.1 (slightly truncated, read in columns). Q ⊣ P1, . . . , Pk means that Q is derived from P1, . . . , Pk.

This root ordering and the representation should now be generalized such that the underlying cell R1 is restricted
by specifying certain properties ensuring ξ1 and ξ2 remain as cell boundaries: they must remain well-defined over
R1; no further root of p1, p2, p3 should appear that intersects I2 over R1; and the other roots, ξ3 and ξ4, should
remain outside of the symbolic interval I2 over R1. For the latter, we extend to a partial ordering ⪯ with ξ2 ⪯ ξ3
and ξ2 ⪯ ξ4.

To conclude that p1, p2, p3 are sign-invariant in R, the proof system shows we need to maintain the properties
that: the sample s is included in R; I2 describes the cell’s boundaries on the current level; the underlying cell R1 is
a connected analytic submanifold and; the that p1, p2, p3 are projective delineability. For some polynomials we also
need to ensure full delineability. Furthermore, we maintain that the partial ordering ⪯ is maintained over R1.

To maintain these properties the proof system concludes that we must also prove order-invariance and sign-
invariance of some coefficients, resultants, and discriminants of the input polynomials. After simplification, we find
that on level 1 the polynomial p4 = discx2

(p2) and p5 = resx2
(p3, p2) must be ensured sign-invariant. This leads

to a representation I1 = (sector, ξ′2, ξ
′
3) and then since all polynomials are univariate and their zeros are algebraic

numbers, no further projection or proof steps are necessary. The constructed cell is described by R = (I1, I2).
The graph of the proof constructed is shown in Figure 4, in which the sign-invariance properties sgn inv(p1),

sgn inv(p2), sgn inv(p3) lead to R = setOf(R↓[1], I2) and R↓[1]= setOf(I1). The exact proof rules used in that figure
will be defined in the rest of this section.

Note how in the example there were multiple choices for ⪯. Choosing ξ2 ⪯ ξ3 and ξ3 ⪯ ξ4 would have been a
valid choice but that leads to a smaller cell (the one depicted in the top right of Figure 1). We will discuss ordering
heuristics to make this choice in Section 7.1.
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5.2. Proof system: Properties and rules

Our system is for constructing cells. We will define properties of the cell that is being constructed and rules of
inference to infer that a property holds for a cell given some other properties and conditions. As indicated in the
previous example, there may be different rules that can be used to prove a property.

Definition 5.1 (Property). Let i ∈ N. A property of level i is a function q : {R | R ⊆ Ri} → B. A property q
of level i holds on a set R ⊆ Ri if q(R) = 1. The set Prop denotes the set of all properties of any level. For a set
Q ⊆ Prop, we denote by Q|i the set of properties of level i and by Q|[i] the set of properties of level at most i.

Note that the concept of levels of polynomials has been extended to properties in the sense that the satisfaction
of a property of level i cannot be influenced by values of the variables xi+1, . . . , xn.

We denote a rule of inference in the form P1, . . . , Pk ⊢ Q, where A1, . . . , Ak are the antecedents and Q is the
consequent.

For convenience, we allow to lift properties from lower levels to higher levels as follows.

Definition 5.2. We extend every property q of level i to q : {R | R ⊆ Rj , j ≥ i} → B such that q(R) = q(R ↓[i])
for any R ⊆ Rj , j ≥ i. Accordingly, we introduce the following rule of inference:

R ⊆ Ri+1, q ∈ Prop|i, q(R↓[i]) ⊢ q(R)

So, for example, this rule allows us to say that because the property of sign-invariance holds for x2 − 2 in the
one-level cell −1 < x < 1, sign-invariance holds for x2−2 in the two-level cell which is the interior of the unit circle,
since this projects down to −1 < x < 1.

The set of inference rules will be defined in such a way that the property of sign-invariance of a polynomial is
reduced to the property of sign-invariance of polynomials at a lower level: thus the chain of rules is finite. On each
level, we will additionally determine a representation describing the symbolic boundaries of the cell on this level as
well as an ordering of the indexed roots of some polynomials assuring their sign-invariance which will be used later
for heuristic decisions.

5.3. Basic cell properties

We will first define the basic properties on polynomials and cells that follow from the original work on McCallum
CAD projection. Throughout, i will refer to the level of the given property and s refers to algebraic points. It
is important to recall that an i-level property is a function that maps subsets of Ri to Boolean values. Consider
for example the first element of Property 5.1: “sample(s)” where s ∈ Ri is a property, meaning that sample is a
function that maps a point (and a level i that is given implicitly by the point) to a function mapping subsets of
Ri to Booleans. Thus, sample(s) is not a true/false value. Rather, it is the function sample(s) applied to a given
subset of Ri that yields a true/false value. Note that for the fifth and sixth items in Property 5.1 the level i must
be given explicitly, while with the others the level is implicit in other arguments.

Property 5.1. Let i ∈ N, and R ⊆ Ri.

1. Let s ∈ Ri be a sample point. The property sample(s) holds on R if and only if s ∈ R.

2. Let p ∈ Q[x1, . . . , xi] be a polynomial of level i. The property ord inv(p) holds on R if and only if p is
order-invariant on R.

3. Let p ∈ Q[x1, . . . , xi] be a polynomial of level i. The property sgn inv(p) holds on R if and only if p is
sign-invariant on R.

4. Let p ∈ Q[x1, . . . , xi+1] be a polynomial of level i+ 1. The property non null(p) holds on R if and only if p is
not nullified on any point in R.

5. The property an sub(i) holds on R if and only if R is an analytic submanifold.

6. The property connected(i) holds on R if and only if R is connected.

7. Let p ∈ Q[x1, . . . , xi+1] be a polynomial of level i+ 1. The property an proj del(p) holds on R if and only if p
is analytically projectively delineable on some connected superset R′ ⊇ R.

Note that an proj del(p) is defined such that it holds on a subset R ⊆ Ri if and only if there is a connected
superset of R on which p is analytically projectively delineable. This is due to the fact that in general, we cannot
assume that R is a connected set, but projective delineability is only defined on connected sets. We will use this
trick in the following for other properties as well.

Further note that for some properties such as sgn inv(p), if they hold on R ⊆ Ri, then they also hold on all
subsets of R. For others such as an sub(i) or connected(i), this is not the case: a subset of R is not necessarily an
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analytic submanifold nor connected! This is one of the reasons why the proof rules below cannot cover all subsets
where a given property holds, but they do cover sufficiently many subsets for our purposes.

For the remainder of this sub-section we will present proof rules for these properties (with proofs of correctness
available in Appendix C). For the ease of navigation we give references to the rules which apply to prove each
property above (and provide similar references after introducing further properties in later sub-sections).

References.

sample(s) Rule 5.13

ord inv(p) Rule 5.3, Rule 5.4, Rule 5.5

sgn inv(p) Rule 5.3, Rule 5.4, Rule 5.6, Rule 5.8,
Rule 5.11

non null(p) Rule 5.2

an sub(i) Rule 5.7

connected(i) Rule 5.12

an proj del(p) Rule 5.1

In the following rule definitions we list assumptions before the actual inference rule. These assumptions are
formally part of the inference rule, but we keep them separated to improve readability.

We start by defining rules that relate to the material in Section 4.

Rule 5.1. Let i ∈ N, R ⊆ Ri, and p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1. Assume that p is irreducible.

an sub(i)(R), connected(i)(R), non null(p)(R), ord inv(discxi+1
(p))(R) ⊢ an proj del(p)(R)

Rule 5.2. Let i ∈ N, R ⊆ Ri, s ∈ Ri, and p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1. Assume that p is irreducible, and
p = cm · xm

i+1 + . . .+ c1 · xi+1 + c0 such that cm, . . . , c0 ∈ Q[x1, . . . , xi].

sample(s)(R), degxi+1
(p) > 1, discxi+1

(p)(s) ̸= 0, sgn inv(discxi+1
(p))(R) ⊢ non null(p)(R)

sample(s)(R), ∃j ∈ [m]. (cj(s) ̸= 0 ∧ sgn inv(cj)(R)) ⊢ non null(p)(R)

Note that the condition degxi+1
(p) > 1∧discxi+1(p)(s) ̸= 0 already implies that p(s, xi+1) ̸= 0, as does cj(s) ̸= 0.

In practice it is good to delay choosing which rule to use because we may observe that one of the non-zero cj ’s is
already required to be sign-invariant from some other part of the projection process (e.g. leading coefficients are
often added to the projection). Moreover, the second case is trivial if the cj is constant.

Rule 5.3. Let p ∈ Q.

⊢ ord inv(p)(R0)

⊢ sgn inv(p)(R0)

Rule 5.4. Let i ∈ N>0, R ⊆ Ri, and p ∈ Q[x1, . . . , xi], level(p) = i. Assume that p is reducible, and factors(p) =
{q1, . . . , qk}.

ord inv(q1)(R), . . . , ord inv(qk)(R) ⊢ ord inv(p)(R)

sgn inv(q1)(R), . . . , sgn inv(qk)(R) ⊢ sgn inv(p)(R)

Rule 5.5. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri, and p ∈ Q[x1, . . . , xi], level(p) = i. Assume that p is irreducible.

p(s) ̸= 0, sample(s)(R), sgn inv(p)(R) ⊢ ord inv(p)(R)

p(s) = 0, sample(s)(R), an sub(i− 1)(R), connected(i)(R), sgn inv(p)(R), an proj del(p)(R) ⊢ ord inv(p)(R)

5.4. Sign invariance for polynomials without roots

For polynomials without roots over the current sample, we must ensure that no further root appears over
the underlying cell. Whenever the leading coefficient of such a polynomial is not zero at the underlying sample,
projective delineability ensures that no further root appears. Otherwise, if the leading coefficient is zero, its sign-
invariance must be maintained to prevent the special root function θ∗ from Definition 4.1 popping up over the
underlying cell. Figure 5 illustrates the two cases.
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(a) with non-zero coefficient
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(b) with zero leading coefficient

Figure 5: Examples of the two cases of polynomials without roots at the projection s1 of the sample s = (s1, s2). Dashed lines denote
cylinder boundaries over the projected cell.

Rule 5.6. Let i ∈ N, R ⊆ Ri, s ∈ Ri, and p ∈ Q[x1, . . . , xi+1], level(p) = i+ 1. Assume that p is irreducible, and
realRoots(p(s, xi+1)) = ∅.

sample(s)(R), an proj del(p)(R), ldcfxi+1
(p)(s) ̸= 0 ⊢ sgn inv(p)

sample(s)(R), an proj del(p)(R), ldcfxi+1
(p)(s) = 0, sgn inv(ldcfxi+1

(p))(R) ⊢ sgn inv(p)

5.5. Cell boundary representations

We are aiming to generate the description of a sign-invariant cell for the input polynomials. In the language
of our proof system: at every level we identify a symbolic interval upon which we prove sign-invariance of the
polynomials of that level. To do this, we take their real roots over the current sample into account.

We determine whether we are in a section or sector (i.e. whether a polynomial has a root exactly at the current
sample point or not) and pick indexed root expressions (as given by Definition 2.5) to be symbolic descriptions
of the cell boundaries that generalize a concrete interval around the sample point: either the root at the current
sample or the largest root below and the lowest root above. Note that the choice of such boundaries might not be
unique in the cases where two root functions cross over the underlying sample. We will discuss more general choices
of the symbolic intervals in Section 6.2.

Our next property is designed to state that a designated representation describes the cell boundaries on the
current level.

Property 5.2. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri−1, and I be a symbolic interval of level i.
The property repr(I, s) holds on R if and only if I.l ∈ irExpr(I.l.p, s) (if I.l ̸= −∞), I.u ∈ irExpr(I.u.p, s) (if

I.u ̸= ∞) respectively I.b ∈ irExpr(I.b.p, s) and one of the following hold:

• I = (sector, l, u), dom(θl,s) ∩ dom(θu,s) ⊇ R↓[i−1] and R = {(r, r′) | r ∈ R↓[i−1], r
′ ∈ (θl,s(r), θu,s(r))}; or

• I = (sector,−∞, u), dom(θu,s) ⊇ R↓[i−1] and R = {(r, r′) | r ∈ R↓[i−1], r
′ ∈ (−∞, θu,s(r))}; or

• I = (sector, l,∞), dom(θl,s) ⊇ R↓[i−1] and R = {(r, r′) | r ∈ R↓[i−1], r
′ ∈ (θl,s(r),∞)}; or

• I = (sector,−∞,∞) and R = {(r, r′) | r ∈ R↓[i−1], r
′ ∈ R}; or

• I = (section, b), dom(θb,s) ⊇ R↓[i−1] and R = {(r, r′) | r ∈ R↓[i−1], r
′ = θb,s(r)},

(for the real root functions θl,s, θu,s respectively θu,b according to Definition 4.4).

References. repr(I, s) Rule 5.14

Since the cell’s boundaries are described by indexed root expressions, we can prove it is an analytic submanifold.

Rule 5.7. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri−1, and I be a symbolic interval of level i.

⊢ an sub(0)(R0)

repr(I, s)(R), an sub(i− 1)(R) ⊢ an sub(i)(R)
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5.6. Equational constraint projection

An optimisation to CAD which tailors it to the logical structure of the problem is the theory of equational
constraints. A polynomial equation is an equational constraint if it is logically implied by the truth of the input
formula. If the input to CAD has an equational constraint then we may perform fewer projection and lifting
operations to achieve truth-invariance. This optimisation dates back to [34] with the recent paper [23] summarising
the state of the art. The examples there demonstrate the drastic savings that are achievable in these cases (the
analysis in [23] shows the double exponent in the complexity bound decreases for each equational constraint).

In the context of building a single cell we have even greater scope to use equational constraint savings. Here, any
time we are generalising in the section case, we can apply the reduced projection and lifting. I.e., if a polynomial is
zero at our sample then it must also be zero throughout the cell we are generalising the sample to, and so for the
purposes of this cell, it is an equational constraint. In this case we need only make the section defining polynomial
delineable. All other constraints can be made sign-invariant simply by including resultants with the section defining
polynomial (but not other projection polynomials).

Rule 5.8. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri−1, p ∈ Q[x1, . . . , xi], level(p) = i, and I be a symbolic interval of level i.
Assume that p is irreducible, and I = (section, b).

Let

Q := an sub(i− 1)(R) ∧ connected(i− 1)(R) ∧ repr(I, s)(R), and

Qdelineable(q) := an proj del(q)(R) ∧ sgn inv(ldcfxi(q))(R).

Q, Qdelineable(b.p), b.p = p ⊢ sgn inv(p)(R)

Q, Qdelineable(b.p), b.p ̸= p, ord inv(resxi
(b.p, p))(R) ⊢ sgn inv(p)(R)

5.7. Root orderings

We define a partial ordering on the indexed root expressions of the given set of polynomials, which we will use
to ensure that none of their roots cross the cell’s boundary on the current level.

We first give a general definition of indexed root orderings.

Definition 5.3 (Indexed root ordering). Let i ∈ N, and Ξ be a set of indexed root expressions of level i + 1. An
indexed root ordering on Ξ is a relation ⪯⊆ Ξ × Ξ such that its reflexive and transitive closure ⪯t is a partial
order on Ξ. Indexed root orderings of this form are also called indexed root ordering of level i + 1, and we define
dom(⪯) = {ξ, ξ′ | (ξ, ξ′) ∈⪯}.

Let s ∈ Ri. An indexed root ordering ⪯ of level i+1 matches s if and only if ξ ∈ irExpr(ξ.p, s) for all ξ ∈ dom(⪯)
and ξ(s) ≤ ξ′(s) for all (ξ, ξ′) ∈⪯.

In our algorithm we will pick an indexed root ordering such that, in the sector case, roots lower than the
intervals’s lower bound remain lower, and roots greater than the intervals’s upper bound remain greater. In the
section case, the lower and upper bounds in that condition both refer to a single bound. We do not give an explicit
definition here yet, as it will be part of the rules defined below.

The motivation for introducing the general concept of indexed root orderings is to allow for choices between
different root orderings. We will discuss them in Section 6.2.

Example 5.2. Given indexed root expressions Ξ = {ξ1, . . . , ξ5} of level i + 1 and a sample s ∈ Ri such that
ξ1(s) < . . . < ξ5(s) and I = (sector, ξ1, ξ2); then ⪯= {(ξ2, ξ3), (ξ2, ξ4), (ξ2, ξ5)}, ⪯′ = {(ξ2, ξ3), (ξ3, ξ4), (ξ2, ξ5)}, and
⪯′′ = {(ξ2, ξ3), (ξ3, ξ4), (ξ4, ξ5)} are all indexed root orderings on Ξ that allow us to derive sign-invariance of the
corresponding polynomials above the sample s and the interval I.

Now, we must maintain that an indexed root ordering holds over the underlying cell. First, we will define this
property formally. it is not straight forward as we do allow an optimisation whereby the referred root functions
may disappear (i.e. not to be defined) over parts of the cell, so long as this does not change the ordering.

Property 5.3. Let i ∈ N, R ⊆ Ri, s ∈ Ri, ⪯ be an indexed root ordering of level i+1, and ⪯t be the reflexive and
transitive closure of ⪯.

The property ir ord(⪯, s) holds on R if and only if ⪯ matches s and for all ξ, ξ′ ∈ dom(⪯) it holds that

ξ ⪯t ξ′ ∧ ξ(s) < ξ′(s) =⇒ θξ,s(r) < θξ′,s(r) for all r ∈ dom(θξ,s) ∩ dom(θξ′,s) ∩R
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x1

x2

ξ1

ξ2

ξ3

s

(a) In the simple case all three real root
functions are defined over the underlying cell.
Only two resultants are necessary to main-
tain the ordering of the root functions, e.g.
resx2

(ξ1.p, ξ2.p) and resx2
(ξ2.p, ξ3.p). We

conclude the ordering between ξ1 and ξ3 by
transitivity.

x1

x2

s

(b) It is also possible that some real root func-
tions disappear over the underlying cell. If this
were the highest or lowest then it would not
change the ordering. Subsequent ones could
also disappear in addition without changing
the ordering.

x1

x2

s

(c) If a real root function in the middle were to
disappear alone (here ξ2) then the ordering is
maintained by the same resultants and transi-
tivity: i.e. it must converge to ±∞ when dis-
appearing and thus cross a neighbouring root
function, which was protected by the resul-
tant.

Figure 6: Different cases for the property ir ord(⪯, s) with ⪯= {(ξ1, ξ2), (ξ2, ξ3)}, noting that we are only depicting real root functions
defined at s and not whole varieties of their defining polynomials.

and
ξ ⪯t ξ′ ∧ ξ(s) = ξ′(s) =⇒ θξ,s(r) = θξ′,s(r) for all r ∈ dom(θξ,s) ∩ dom(θξ′,s) ∩R

(for the real root functions θξ,s, θξ′,s according to Definition 4.4).

References. ir ord(⪯, s) Rule 5.9

Note that the semantics of an indexed root expression ξ is only defined in combination with the sample s, as
this uniquely determines the real root function θξ,s; thus, we add s to the signature of the property. To clarify this
further: the sample s is only used to identify the referred real root functions and is not necessarily contained in the
constructed cell by definition of the above property (although in the following proof rules, this will be required).

The property is maintained by projective delineability and adding resultants for the defining polynomials of
a pair of indexed root expressions to the projection. Note that the property is defined in such a way that no
leading coefficients need to be projected. We essentially prove that the ordering of root functions ensured by the
order-invariance of resultants is transitive. Figure 6 shows the different cases whereby transitivity is maintained for
three root functions.

Rule 5.9. Let i ∈ N, R ⊆ Ri, s ∈ Ri, and ⪯ be an indexed root ordering of level i+1. Assume that ξ.p is irreducible
for all ξ ∈ dom(⪯), and that ⪯ matches s.

sample(s)(R), an sub(i)(R), connected(i)(R), ∀ξ ∈ dom(⪯). an proj del(ξ.p)(R),

∀(ξ, ξ′) ∈⪯ . ord inv(resxi+1
(ξ.p, ξ′.p))(R) ⊢ ir ord(⪯, s)(R)

In the following, we need to make sure that certain indexed root expressions are well-defined over the underlying
subset R ⊆ Ri. To do so, we define a property for an indexed root expression stating that its graph is continuous
on some connected superset of R.

Property 5.4. Let i ∈ N, R ⊆ Ri, s ∈ Ri, ξ be an indexed root expression of level i+ 1.
The property well def(ξ, s) holds on R if and only if ξ ∈ irExpr(ξ.p, s) and dom(θξ,s) ⊇ R for the real root

function θξ,s according to Definition 4.4.

References. well def(ξ, s) Rule 5.10

For maintaining this property, we do an elaborated case distinction resulting from the definition of projective
delineability, and in some cases we need to fall back to making the corresponding polynomial delineable by adding
its leading coefficient to the projection. The different cases are illustrated in Figures 7a to 7c. We note that this
case distinction does not detect all superfluous leading coefficient as shown in Figure 7d.
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x1

x2

sp1

rootx2 [p1, 2]

(a) The real root function that
rootx2 [p1, 2] at s refers to is al-
ready well-defined by projective
delineability of p1, since it is nei-
ther the first nor last root of p1 at
s and thus cannot be the special θ∗
function from Definition 4.1.

x1

x2

s p1

rootx2 [p1, 1]

(b) As the leading coefficient of p1

is zero at s, no indexed root ex-
pression refers to θ∗. Thus all real
root functions defined at s are well-
defined over the underlying cell by
projective delineability of p1.

x1

x2

sp1

rootx2 [p1, 1]

(c) Here rootx2 [p1, 1] refers to θ∗
at s. Thus, the leading coefficient
of p1 is added to the projection.

x1

x2

s p1

rootx2 [p1, 1]

(d) rootx2 [p1, 1] does not refer to
θ∗ at s. However, this cannot
be distinguished from the previous
case and so a superfluous leading
coefficient is added to the projec-
tion.

Figure 7: Ensuring well defined real root functions.

Rule 5.10. Let i ∈ N, R ⊆ Ri, s ∈ Ri, and ξ be an indexed root expression of level i + 1. Assume that ξ ∈
irExpr(ξ.p, s).

sample(s)(R), an proj del(ξ.p)(R), 1 < ξ.j < | realRoots(ξ.p(s, xi+1))| ⊢ well def(ξ, s)(R)

sample(s)(R), an proj del(ξ.p)(R), ldcfxi+1
(ξ.p)(s) = 0 ⊢ well def(ξ, s)(R)

sample(s)(R), an proj del(ξ.p)(R), sgn inv(ldcfxi+1
(ξ.p))(R) ⊢ well def(ξ, s)(R)

Now we are ready to define the rule for ensuring the sign-invariance of a polynomial p, given a representation I

and an indexed root ordering ⪯. The latter will be used to ensure that no real root function of p that is defined at
the current sample s (i.e. which is “visible” at s by real root isolation) crosses the cell’s boundaries. Additionally
to that, we make sure that no further root function of p emerges over the underlying cell. Thus, the many case
distinctions follow from the fact that we allow the number of roots of a polynomial to vary over the underlying cell,
maintaining only that the appearing roots do not cross the cell’s boundary. The cases are depicted in Figure 8.

Rule 5.11. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri−1, p ∈ Q[x1, . . . , xi], level(p) = i, I be a symbolic interval of level i, ⪯ be
an indexed root ordering of level i, and ⪯t be the reflexive and transitive closure of ⪯.

We choose l, u such that either I = (sector, l, u) or I = (section, b) and l = u = b.
Assume that p is irreducible, irExpr(p, s) ̸= ∅, ξ.p is irreducible for all ξ ∈ dom(⪯), ⪯ matches s, and for all

ξ ∈ irExpr(p, s) it holds either ξ ⪯t l or u ⪯t ξ.
Let

Q := sample(s)(R) ∧ an sub(i− 1)(R) ∧ connected(i− 1)(R)

∧ repr(I, s)(R) ∧ ir ord(⪯, s)(R) ∧ an proj del(p)(R),

Ql := l ̸= −∞∧ ∃ξ ∈ irExpr(p, s). (ξ ⪯t l ∧ well def(ξ, s)(R)),

Ql other := l ̸= −∞∧ ∃ξ′ ∈ dom(⪯) \ irExpr(p, s). (ξ′ ⪯t l ∧ well def(ξ′, s)(R) ∧ ord inv(resxi
(p, ξ′.p))(R)),

Qu := u ̸= ∞∧ ∃ξ ∈ irExpr(p, s). (u ⪯t ξ ∧ well def(ξ, s)(R)), and

Qu other := u ̸= ∞∧ ∃ξ′ ∈ dom(⪯) \ irExpr(p, s). (u ⪯t ξ′ ∧ well def(ξ′, s)(R) ∧ ord inv(resxi
(p, ξ′.p))(R)).
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x1

x2

s

(a) The indexed root ordering en-
sures that real root functions re-
main outside the cell. In the case
where the green polynomial is de-
lineable, this is sufficient to prove
sign invariance.

x1

x2

s

(b) In the case where the green
polynomial has a “θ∗” root func-
tion over the underlying cell that
disappears and reappears, the in-
dexed root ordering does not say
anything about “θ∗” on other con-
nected components of its domain.
For preventing them to cross the
cell’s boundary (e.g. the upper
right root function), we might need
to add the leading coefficients to
the projection.

x1

x2

s

(c) However, if we know that
there are well-defined root func-
tions of the green polynomial be-
tween the cell’s boundaries and
“θ∗”, the leading coefficient is not
needed, as by projective delineabil-
ity, these intermediate root func-
tions already protect the cell.

x1

x2

s

(d) Alternatively, an additional re-
sultant with a polynomial with a
(well-defined) root function below
or above the cell can be added to
prevent “θ∗” root functions from
crossing the cell’s boundary. As
this is expensive, this rule is only
applied when this additional resul-
tant is added anyway for maintain-
ing the indexed root ordering, for
instance if the cell’s lower and up-
per bounds are defined by the same
polynomial.

Figure 8: Different cases for maintaining the sign-invariance of a polynomial (graphed here in green) in a cell (here defined by the
enclosed region between the orange and magenta polynomial graphs).

l = u ∧ p(s, b(s)) = 0, Q ⊢ sgn inv(p)(R)

l ̸= u ∨ p(s, b(s)) ̸= 0, Q, sgn inv(ldcfxi
(p))(R) ⊢ sgn inv(p)(R)

l ̸= u ∨ p(s, b(s)) ̸= 0, Q, Ql ∨Ql other, Qu ∨Qu other ⊢ sgn inv(p)(R)

We note that this rule hides some of the complexity for an efficient decision: in the Ql and Qu cases, it is wise to
choose the closest root to the lower respectively upper bound, as if there is more than one bound below/above the
cell, their root functions are well defined on the underlying cell without adding the leading coefficient. The Ql other

and Qu other cases do not add any extra properties if resultants are picked that are added due to the indexed root
ordering ⪯ anyway.

5.8. Connectedness

For maintaining properties (in particular the order-invariance of some polynomials) on higher levels, we need
to maintain connectedness. Besides some preconditions, i.e. that the cell’s boundaries are described by two well-
defined real root functions, we need to ensure that the lower and upper bound of a sector do not cross as illustrated
in Figure 9.

Rule 5.12. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri−1, I be a symbolic interval of level i, ⪯ be an indexed root ordering of
level i, and ⪯t be the reflexive and transitive closure of ⪯. Assume that ⪯ matches s.

Let Q := an sub(i− 1)(R) ∧ connected(i− 1)(R) ∧ repr(I, s)(R).

⊢ connected(0)(R0)

Q, I = (sector, l, u), l ̸= −∞, u ̸= ∞, l.p ̸= u.p, l ⪯t u, ir ord(⪯, s) ⊢ connected(i)(R)

Q, I = (sector, l, u), l = −∞∨ u = ∞∨ l.p = u.p ⊢ connected(i)(R)

Q, I = (section, b) ⊢ connected(i)(R)

5.9. Generalization of the current sample

We define a mapping for generalizing the sample to the cell on the current level.
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x2
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s

Figure 9: Let I = (sector, ξ1, ξ2), then repr(I, s1) holds in the whole blue area, thus forming a non-connected subset of R2. By adding
resx2 (ξ1.p, ξ2.p) to the projection, the subset is made connected by restricting the underlying cell as indicated by the dashed vertical
lines.

Rule 5.13. Let i ∈ N>0, R ⊆ Ri, s ∈ Ri, and I be a symbolic interval of level i. Assume that si ∈ setOf(s[i−1], I).

⊢ sample(())(R0)

sample(s[i−1])(R), repr(I, s[i−1])(R) ⊢ sample(s)(R)

5.10. Cell descriptions

Now, we define a property that states that the cell is described by its representation.

Property 5.5. Let i ∈ N>0, R ⊆ Ri, and I be a symbolic interval of level i.
The property holds(I) holds on R if and only if R = setOf(R↓[i−1], I).

This property is the only one that cannot be mapped to a set of other properties, i.e. properties of this kind are
the assumptions in our proof system.

Given holds(I), we can maintain the weaker property repr(I, s). To do so, we need to ensure that the indexed
root expressions describing the cell’s boundaries always refers to the same root on the underlying cell by making
their defining polynomials delineable (such that the referred real root function is defined and the number of roots
below the referred root function is constant over the underlying cell).

Rule 5.14. Let i ∈ N>0, R ⊆ Ri−1, s ∈ Ri−1, and I be a symbolic interval of level i. Assume that I.l ∈
irExpr(I.l.p, s) (if I.l ̸= −∞), I.u ∈ irExpr(I.u.p, s) (if I.u ̸= ∞) respectively I.b ∈ irExpr(I.b.p, s).

Let Qdelineable(q) := an proj del(q)(R) ∧ sgn inv(ldcfxi+1(q))(R).

sample(s)(R), holds(I)(R), I = (section, b), Qdelineable(b.p) ⊢ repr(I, s)(R)

sample(s)(R), holds(I)(R), I = (sector, l, u), l = −∞∨Qdelineable(l.p), u = ∞∨Qdelineable(u.p) ⊢ repr(I, s)(R)

Note that repr(I, s) could be maintained by a weaker property, namely that the roots defining the cell boundaries
are well-defined and some analogous guarantee as given by holds(I). For the purpose of describing single cells, this
is too weak; however, for other scenarios, this could avoid some more leading coefficients in the projection.

5.11. Ordering of properties

We observe that the rules of inference defined in Rules 5.1 to 5.14 are cycle-free in the sense that all properties
in the antecedents are smaller than the consequent property according to some ordering ◁:

Definition 5.4. The ordering ◁ is defined such that properties of level i are greater than any property of level i−1
w.r.t. ◁ and such that it satisfies the following partial order of properties of each level i (starting with the greatest
element):

1. ir ord(⪯, s) for all ⪯ for roots of level i and s ∈ Ri−1

2. well def(ξ, s) for all ξ of level i and s ∈ Ri−1

3. an proj del(p) for all p of level i

4. non null(p) for all p of level i
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well def(ξ, s) ir ord(⪯, s)

an proj del(p)

non null(p) an sub(i) ord inv(p)

sgn inv(p) ord inv(p), p irred

sgn inv(p), p irred connected(i)

sample(s)

repr(I, s)holds(I)

well def(ξ, s) ir ord(⪯, s)

an proj del(p)

an sub(i− 1) ord inv(p)

sgn inv(p)

connected(i− 1)

sample(s)

level i

level i− 1

Figure 10: Proof rule relationships; irred stands for irreducible.

5. ord inv(p) for all reducible p of level i

6. ord inv(p) for all irreducible p of level i

7. sgn inv(p) for all reducible p of level i

8. sgn inv(p) for all irreducible p of level i

9. connected(i)

10. an sub(i)

11. sample(s) for all s ∈ Ri of level i

12. repr(I, s) for all I of level i and s ∈ Ri−1

13. holds(I) for all I of level i

The proof rules introduced in this section are visualised in Figure 10 which shows the relationships between
rules of different levels.

6. Levelwise construction of a single cell

So far, we presented an abstract proof system, i.e. a set of rules which allow us to construct a proof for sign-
invariance of some polynomials in a cell. In the following, we will give an algorithm for constructing a single cell
in a levelwise manner by specifying how the proof rules are applied. We first give the algorithmic framework and
then define heuristics needed to instantiate the algorithm.
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6.1. Algorithm to construct single cell

Algorithm 1 constructs a single cell. The input to the algorithm is a set of polynomials for which a cell is to be
computed on which these polynomials are sign-invariant. This initialises the set of properties Q on Line 1 which
is maintained to contain properties that need to be fulfilled by the yet to be chosen representations on the lower
levels. I.e. at the beginning of iteration i, the data structure (I1, . . . , Ii) needs to maintain all properties in Q.
To do so, Algorithm 1 iteratively calls Algorithm 2 to process the properties and construct the interval on level i,
taking note of any failure cases due to nullifications that might occur.

Algorithm 3 is a sub-algorithm that replaces a property in Q by a set of properties Q′ induced by a proof rule
if no such set is already contained in Q, and otherwise simply removes the property from Q. FAIL is returned
here if and only if no proof rule is applicable; which is the case only when a polynomial is nullified (i.e. Rule 5.2)
and equational constraint projection does not allow us to ignore that fact. The sets Q′ induced by a proof rule are
determined in Line 1 as follows. Assume we want to derive the property non null(p) of R ⊆ Ri for some polynomial
p of level i+ 1 with respect to the current sample s ∈ Ri. The algorithm would check if the conditions of the proof
rules in Rule 5.2 are satisfied, and then determine the corresponding properties of R which form the set Q′. In
the first case, we check whether p is irreducible, degxi+1

(p) > 1, and discxi+1
(p)(s) ̸= 0 hold; if yes, we add the set

Q′ = {sample(s), sgn inv(discxi+1
(p))} to the set of choices. In the second case, we check whether p is irreducible

holds and there exists coefficient cj of p such that cj(s) ̸= 0 holds; if yes, we add the set Q′ = {sample(s), sgn inv(cj)}
to the set of choices.

Algorithm 2 is used to extend the cell construction by a level. It applies the proof rules according to the ordering
◁ on the properties from Definition 5.4 until the only properties of level i remaining are the sign-invariance of some
irreducible polynomials (note that all smaller properties w.r.t. ◁ are provable with only the sample s present except
if a nullification occurs). Then, a representation consisting of a symbolic interval I, a set of polynomials E and an
indexed root ordering ⪯ is chosen. The roles of I and ⪯ are already discussed above; the polynomials in E are meant
to be excluded from the indexed root ordering, and thus the application of the equational constraint projection rule
(Rule 5.8) is enforced. The formal requirements on the representation will be defined in Definition 6.1. Finally, the
remaining properties on level i are eliminated by application of the proof rules, until only a property of the form
holds(I) is left on the level (which is the greatest property of the current level w.r.t. ◁).

Theorem 6.1. Let P ⊆ Q[x1, . . . , xn], and s ∈ Rn. The method single cell in Algorithm 1 either returns a cell
data structure R such that all polynomials in P are sign-invariant on setOf(R) and s ∈ setOf(R), or returns FAIL.

Proof. Note that the algorithm will terminate as Algorithm 3 replaces properties by smaller properties according
to the ordering as defined in Definition 5.4, there does exist a smallest property, and the CAD projection of a set
of polynomials is finite. The correctness follows from the correctness proofs of the rules of inference.

6.2. Heuristic choices

Our algorithm has two points where a choice must be made: (1) when applying a rule of inference in Algorithm 3
Line 5 and (2) choosing the representation in Algorithm 2 Line 7.

For the first choice, the rules of inference may define multiple possible property sets for a property that each
imply that property and so we have the freedom to choose which to use. We aim to pick the “best” such set,
noting that this choice is heuristic (made for example with respect to estimated computational effort, or degrees
of polynomials, or number of polynomials / real roots). One could compute each of these sets individually and
compare them, or, to avoid superfluous heavy computations of resultants or discriminants, prefer sets which seem
easier to compute (which is the approach taken by our implementation). For instance, in Rule 5.2, we always pick
a coefficient rather than computing a discriminant. Note that even if sets involving resultants or discriminants
are avoided where possible, the algorithm should first check whether one such set is already maintained before
computing any new set.

For the second choice, we formalize what we mean by a representation. As already discussed, there might be
multiple choices for the cell description I on the current level and the indexed root ordering ⪯ for fulfilling the
requirements for Rule 5.11. Additionally, if I is a section, we can make use of the equational constraints projection
in Rule 5.8. A representation determines all these parameters.

Definition 6.1 (Representation for Ξ). Let i ∈ N>0, s ∈ Ri, and Ξ be a set of indexed root expressions of level i
such that ξ ∈ irExpr(ξ.p, s[i−1]) for every ξ ∈ Ξ.

A representation for Ξ with respect to s is a tuple (I, E,⪯) where I is a symbolic interval of level i, E is a set
of polynomials of level i, and ⪯ is an indexed root ordering of level i such that

• si ∈ setOf(s[i−1], I),
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Algorithm 1: single cell(P, s)

Input : finite P ⊆ Q[x1, . . . , xn], s ∈ Rn

Output: single cell data structure R such that s ∈ setOf(R) and all polynomials in P are sign-invariant on
setOf(R); or FAIL

1 Q := {sgn inv(p) | p ∈ P}
2 for i = n, . . . , 1 do
3 result := construct interval(Q, s) // Algorithm 2

4 if result ̸= FAIL then
5 Ii, Q := result

6 else
7 return FAIL

8 return (I1, . . . , In)

Algorithm 2: construct interval(Q, s)

Input : i ∈ N>0, finite Q ⊆ Prop|[i], s ∈ Ri

Output: an interval data structure I such that s ∈ setOf(s[i−1], I), and a set Q′ ⊆ Prop|[i−1] such that for
any R ⊆ Ri−1 it holds (∀q′ ∈ Q′. q′(R)) =⇒ (∀q ∈ Q. q(setOf(R, I))); or FAIL

1 foreach q ∈ Q|i where q is the greatest element with respect to ◁ (from Definition 5.4) and q ̸= sgn inv(p)
for an irreducible p do

2 Q := apply pre(Q,q,(s)) // Algorithm 3

3 if Q = FAIL then
4 return FAIL

5 Pnonnull := {p | sgn inv(p) ∈ Q|i s.t. p(s[i−1], xi) ̸= 0}
6 Ξ := irExpr(Pnonnull, s[i−1])
7 choose representation (I, E,⪯) of Ξ with respect to s
8 if i > 1 then
9 foreach q ∈ Q|i where q is the greatest element with respect to ◁ (from Definition 5.4) and

q ̸= holds(I) do
10 Q := apply pre(Q,q,(s, I,⪯)) // Algorithm 3

11 if Q = FAIL then
12 return FAIL

/* Q|i contains now only holds(I) */

13 return I,(Q \Q|i)

Algorithm 3: apply pre(Q, q, parameters)

Input : i ∈ N>0, finite Q ⊆ Prop|[i], q ∈ Prop|i ∩Q and either parameters = (s) or
parameters = (s, I,⪯) with s ∈ Ri, symbolic interval I on level i, indexed root ordering ⪯ on
level i

Output: a set (Q \ {q}) ∪Q′ ⊆ Prop|[i] \ {q} such that for all R ⊆ Ri it holds (∀q′ ∈ Q′. q′(R)) =⇒ q(R);
or FAIL

1 let choices ⊆ 2Prop such that each Q′ ∈ choices is a set of properties from a proof rule which can be
applied according to parameters to derive q (see explanatory text above for details)

2 if choices = ∅ then
3 return FAIL

4 if ∄Q′ ∈ choices. Q′ ⊆ Q then
5 choose Q′ ∈ choices

6 return (Q \ {q}) ∪Q′

7 else
8 return Q \ {q}
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• either p ∈ E or irExpr(p, s[i−1]) ⊆ dom(⪯) for all p ∈ {ξ.p | ξ ∈ Ξ},

• if E ̸= ∅ then I = (section, b) for some indexed root expression b,

• ⪯ matches s[i−1], and

• ξ ⪯t I.l or I.u ⪯t ξ for all ξ ∈ Ξ if I = (sector, l, u) respectively ξ ⪯t I.b or I.b ⪯t ξ for all ξ ∈ Ξ if
I = (section, b).

This definition is quite general by allowing additional indexed root expressions in Ξ′ compared to the set Ξ
describing the roots of the present polynomials. This for example enables heuristics to under-approximate the
constructed cell to reduce heavy computations in future work (see Section 9.1).

In the following however, we will assume that Ξ′ = Ξ, that is, I and ⪯ will only consider roots from Ξ
corresponding to the polynomials for which we need to derive sign-invariance.

Note that we omit the requirements of Rule 5.12 here yet for readability reasons and as the adaption is trivial:
If required, we only need to add the pair (I.l, I.u) to the indexed root ordering.

For the symbolic interval I, we minimize the degrees in the main variable of the defining polynomials.

Definition 6.2 (Choice of the symbolic interval). Let i ∈ N>0, P ⊆ Q[x1, . . . , xi] be a set of irreducible polynomials
of level i, s ∈ Ri be a sample such that no p ∈ P is nullified on s[i−1], and Ξ ⊆ irExpr(P, s[i−1]).

We define the sets Ξlo and Ξup of the closest lower respectively upper bounds of si as follows:

Ξlo = {ξ ∈ Ξ | ξ(s[i−1]) ≤ si ∧ ∀ξ′ ∈ Ξ.
(
ξ′(s[i−1]) ≤ si =⇒ ξ′(s[i−1]) ≤ ξ(s[i−1])

)
},

Ξup = {ξ ∈ Ξ | si ≤ ξ(s[i−1]) ∧ ∀ξ′ ∈ Ξ.
(
si ≤ ξ′(s[i−1]) =⇒ ξ(s[i−1]) ≤ ξ′(s[i−1])

)
}.

We pick ξlo ∈ Ξlo such that degxi
(ξlo.p) is minimal and ξup ∈ Ξup such that degxi

(ξup.p) is minimal. Additionally,
if Ξlo = Ξup, then we require ξlo = ξup.

We define the lowest degree interval Ildeg of s with respect to Ξ as

Ildeg = (section, ξlo) if ξlo = ξup,

Ildeg = (sector, ξlo, ξup) otherwise.

For the indexed root ordering ⪯, there are two possibilities: aim to make the underlying cell as big as possible;
or aim to avoid heavy resultant computations. In theory we could compute the results for all (or all promising)
possible indexed root orderings and pick the best one. However, as this is infeasible in practise, we define below
several alternative heuristics with different rationales.

To achieve this we employ a somewhat idealistic view on the problem. Recall the property that an indexed root
ordering holds is ensured by making resultants order-invariant, which is often a stronger ordering on the roots than
required by the picked indexed root ordering. We ignore this fact and base our heuristics on the set of indexed roots
without considering common defining polynomials between them (for now). This is further discussed in Section 7.

We start with the following observation: as the given derivation rules always require projective delineability
for all polynomials whose sign-invariance is proven using an indexed root ordering, a fixed ordering of all real root
functions defined at s[i−1] of such polynomials is guaranteed anyway. Thus, we can restrict the heuristics for the

choice of ⪯ by computing the ordering on the set Ξ̃ containing for each polynomial only the closest lower and upper
roots to si, and extending an ordering ⪯̃ of Ξ̃ to an ordering ⪯ on Ξ. This is formalized in the following definition.

Definition 6.3 (Choice of the indexed root ordering: reduction). Let i, P, s,Ξ be as in Definition 6.2. Then

Ξ̃ = {ξ ∈ Ξ | ξ(s[i−1]) ≤ si ∧ ∀ξ′ ∈ Ξ \ {ξ}. (ξ′.p = ξ.p =⇒ ¬(ξ(s[i−1]) < ξ′(s[i−1]) ≤ si))}
∪ {ξ ∈ Ξ | si ≤ ξ(s[i−1]) ∧ ∀ξ′ ∈ Ξ \ {ξ}. (ξ′.p = ξ.p =⇒ ¬(si ≤ ξ′(s[i−1]) < ξ(s[i−1])))}.

For any indexed root ordering ⪯̃X on Ξ̃ matching s[i−1], we define the ordering ⪯X on Ξ matching s[i−1] as

⪯X = ⪯̃X ∪ {(ξ, ξ′) | ξ, ξ′ ∈ Ξ such that ξ.p = ξ′.p ∧ ξ(s[i−1]) < ξ′(s[i−1]))}.

In the following definitions we give different heuristics to choose an indeed root ordering ⪯̃X which in each case
can be extended to a corresponding ordering ⪯X .

First, in the section case, the below equational constraint heuristic enforces simply the application of the
equational constraint rule to all polynomials.
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Definition 6.4 (Equational constraint representation). Let i, P, s, Ξ, ξlo, ξup, Ildeg be as in Definition 6.2.
If ξlo = ξup, we define the Equational constraint representation as the tuple (Ildeg, P, ∅).

Next, the biggest cell heuristic defines the weakest ordering on the indexed roots according to Definition 6.1
and thus defines the biggest possible underlying cell (under the assumption that this ordering can be realized
perfectly, i.e. the resultants have roots only below the crossing of a polynomials’ root with a cell boundary) as
visualized in Figure 11a. Note that for the section case, the biggest cell heuristic is the equational constraint
heuristic plus some discriminants and coefficients; thus, the application of biggest cell only makes sense in the
sector case.

Definition 6.5 (Biggest cell representation). Let i, P, s, Ξ, ξlo, ξup, Ildeg be as in Definition 6.2.
We define the indexed root ordering ⪯biggest on Ξ according to

⪯̃biggest = {(ξ, ξlo) | ξ ∈ Ξ̃ \ {ξlo} s.t. ξ(s[i−1]) ≤ ξlo(s[i−1])}
∪ {(ξup, ξ) | ξ ∈ Ξ̃ \ {ξup} s.t. ξup(s[i−1]) ≤ ξ(s[i−1])}

and the Biggest cell representation as the tuple (Ildeg, ∅,⪯biggest).

The below lowest degree barriers heuristic minimizes the degrees of the defining polynomials (locally per
level), and thus also the degree of the computed resultants (under the above assumption) as visualized in Figure 11b.
Furthermore, it enforces the equational constraints rule whenever possible.

This heuristic has two motivations. First recall that the polynomial degrees grow doubly exponentially during
the CAD projection, see e.g. [5, Table 1]. Second, that the running time of the resultant computation depends
quadratically on the degree in the main variable of the input polynomials, see [22].

In the following definition, we use the lexicographical ordering on tuples, that is t = (t1, . . . , tk) < (t′1, . . . , t
′
k) = t′

holds if t1 < t′1 ∨ (t1 = t′1 ∧ t2 < t′2) ∨ (t1 = t′1 ∧ t2 = t′2 ∧ t3 < t′3) ∨ . . ..

Definition 6.6 (Lowest degree barriers representation). Let i, P, s, Ξ, ξlo, ξup, Ildeg be as in Definition 6.2.
We assume an injection o : Ξ → N that orders the elements of Ξ such that o(Ildeg.b) = 0 respectively o(Ildeg.l) =

0, o(Ildeg.u) = 1 (if both are indexed root expressions), or o(Ildeg.l) = 0 (if Ildeg.u = ∞), or o(Ildeg.u) = 0 (if
Ildeg.l = −∞).

Let Ξ′ ⊆ Ξ. For ξ ∈ Ξ′, we define the barrier of ξ w.r.t. Ξ′, that is a root in Ξ′ between ξ(s[i−1]) and si with
minimal degree in the main variable:

if ξ(s[i−1]) ≤ si then barrierΞ′(ξ) = argmin
{ξ′∈Ξ′|ξ(s[i−1])≤ξ′(s[i−1])≤si}

(degxi
(ξ′.p), si − ξ′(s[i−1]), o(ξ

′));

if si ≤ ξ(s[i−1]) then barrierΞ′(ξ) = argmin
{ξ′∈Ξ′|si≤ξ′(s[i−1])≤ξ(s[i−1])}

(degxi
(ξ′.p), ξ′(s[i−1])− si, o(ξ

′)).

If ξlo ̸= ξup, we define the indexed root ordering ⪯barriers on Ξ according to

⪯̃barriers = {(ξ, barrierΞ̃(ξ)) | ξ ∈ Ξ̃ s.t. ξ(s[i−1]) < si and ξ ̸= barrierΞ̃(ξ)},
∪{(barrierΞ̃(ξ), ξ) | ξ ∈ Ξ̃ s.t. si < ξ(s[i−1]) and ξ ̸= barrierΞ̃(ξ)}

and the Lowest degree barriers representation as the tuple (Ildeg, ∅,⪯barriers).
If ξlo = ξup, we exclude the polynomials with roots around si which do not qualify as a barrier for some other

roots from the indexed root ordering (thus enforcing the application of the equational constraint rule). To do so, for
a set of polynomials P ′ ⊆ P , we define the set Ξ̃|P ′ = {ξ | ξ ∈ Ξ̃ s.t. ξ.p ∈ P ′} and let Peq ⊆ P be the result of the
following fixed point computation (i.e. Peq = Pj = Pj+1 for some j):

P0 = ∅
Pj+1 = Pj ∪ {p ∈ P | p ̸= Ildeg.b.p

∧ ∃ξ ∈ Ξ̃ \ Ξ̃|Pj . (ξ.p = p ∧ barrierΞ̃\Ξ̃|Pj
(ξ) = Ildeg.b ∧ ∄ξ′ ∈ Ξ̃ \ Ξ̃|Pj . barrierΞ̃\Ξ̃|Pj

(ξ′) = ξ)}.

We define the indexed root ordering ⪯barriers on Ξ \ Ξ|Peq
according the definition of ⪯̃barriers as above but only

considering the roots Ξ̃\ Ξ̃|Peq and the Lowest degree barriers representation as the tuple (Ildeg, Peq,⪯barriers).
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Figure 11: Visualization of indexed root ordering heuristics.

The below chain heuristic fixes the total ordering on the roots as visualized in Figure 11c.

Definition 6.7 (Chain representation). Let i, P, s, Ξ, ξlo, ξup, Ildeg be as in Definition 6.2.

Let {ξ1, . . . , ξk} = Ξ̃ s.t. ξj(s[i−1]) ≤ ξj+1(s[i−1]) for all j ∈ [1..k − 1].
We define the indexed root ordering ⪯chain on Ξ according to

⪯̃chain = {(ξj , ξj+1) | j ∈ [1..k − 1]}

and the Chain representation as the tuple (Ildeg, ∅,⪯chain).

Finally, the full heuristic fixes the same total ordering as it is the unique transitive closure of the chain
heuristic as visualized in Figure 11d. Note that we include this heuristic only for illustrative purposes: it resembles
the cells constructed naively by making a full projection without adapting to the behaviour at the sample.

Definition 6.8 (Full representation). Let i, P, s, Ξ, ξlo, ξup, Ildeg as in Definition 6.2.

Let {ξ1, . . . , ξk} = Ξ̃ s.t. ξj(s[i−1]) ≤ ξj+1(s[i−1]) for all j ∈ [1..k − 1].
We define the indexed root ordering ⪯full on Ξ according to

⪯̃full = {(ξj , ξj′) | j, j′ ∈ [1..k − 1], j < j′}

and the Full representation as the tuple (Ildeg, ∅,⪯full).

7. Observations

7.1. Ordering heuristics

In this section we will explain the intuition behind the various ordering heuristics. They are designed to optimise
desirable characteristics. We acknowledge their heuristic nature, and in particular that the intuition is made under
the idealistic view that any indexed root ordering ⪯ can be perfectly realized: that is, the resultants calculated only
have roots which indicate a crossing of two root functions considered in ⪯ when in reality they also have “spurious”
roots which do not have relevance for the problem at hand.

From the full to the chain heuristic. As mentioned above, both the full and the chain heuristic fix the same
ordering on the real root functions over any cell containing the current sample as depicted in Figure 12a.

Obviously, the chain heuristic is more efficient here as it uses a strict subset of the work done by the full
heuristic. Unlike the full heuristic, the chain heuristic takes the underlying sample into account, and thus the
resulting projection is only valid for a single cell, i.e. locally delineable. The full heuristic is independent from the
sample and makes the set of polynomials fully delineable.
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Figure 12: Root ordering heuristics; the dotted lines indicate for which pairs of polynomials the resultant is added to the projection.

From the chain to the biggest cell heuristic. The chain heuristic still fixes a stronger ordering on the root
functions than necessary. As defined above, the biggest cell heuristic is the minimal requirement on the ordering
to maintain sign-invariance on the constructed cell. This way, we hope that the size of the underlying cell is
maximized, as in Figure 12b. Note that while the chain heuristic only takes the sample in one dimension less into
account, the biggest cell heuristic also considers the highest dimension of the sample.

From the biggest cell heuristic to the lowest degree barriers heuristic. The lowest degree barriers
heuristic minimizes the degrees of the resultants, as illustrated in Figure 12c. The rationale here is that resultant
computations are heavy and their complexity depends on the degrees of the input polynomials, and that polynomials
with lower degrees have fewer roots. Thus reducing degrees may reduce the case of resultants having real roots
that do not actually correspond to relevant points. Note that despite the naming, the lowest degree barriers
heuristic could in theory lead to bigger cells than the biggest cell heuristic in certain cases.

Equational constraint projection. The equational constraint projection allows us to leave out discriminants and
coefficients of all polynomials except the section-defining polynomial by only adding resultants of all polynomials
with the defining polynomial. Thus, we expect this rule to be more efficient than the presented heuristics in
most cases. However, we added the possibility for the application of heuristics for cases where the section-defining
polynomial has high degree and thus computing resultants with that polynomial is desirable to be avoided.

On the gap between the idealised view and reality. For the lowest degree barriers heuristic, this might lead to
the computation of a redundant set of resultants regarding the minimal requirement on the indexed root ordering,
as shown in Figure 13, where the relation between the first roots of p2 and p3 (depicted in red) is superfluous but
its corresponding resultant is added because all roots are considered individually and not their connection via the
defining polynomials.

7.2. Comparison with the refinement-based approach

The refinement-based approach to single cell construction [11] saves resultants compared to full CAD projection
in the same way as our levelwise variant, by exploiting the transitivity of the induced ordering on real root functions.
Complexity-wise, the approaches are the same, as both add up to two resultants per polynomial on a level.

However, the influence on the ordering of constraints on the refinement-based variant means the quality of the
constructed cell varies. In the worst case, the resulting ordering corresponds to the chain heuristic: in Figure 12a,
this is achieved for the example when the polynomials are merged in the ordering p4, p3, p2, p1. Then, the upper cell
boundary is updated in every step to a lower boundary. In the best case, the biggest cell heuristic is achieved:
for our example in Figure 12b, this is when the polynomial p1 defining the sector’s boundary is merged first.
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Figure 13: Redundancies in the Lowest degree barriers heuristic

For the section case, it should also be noted that the levelwise approach can always apply the equational
constraints rule as the cell description is known before the projection. The refinement-based approach only starts
applying the equational constraints rule when the cell collapses to a section, until then it adds discriminants of all
polynomials, which may not actually be needed. The illustrating examples may be used to explain this observation.
Consider Figure 12a but with the sample smoved to the upper root of p1. When merging polynomials in the ordering
p4, p3, p2, p1, the polynomials p4, p3, p2 are merged as in the sector case until the cell collapses to a section when
merging p1. When merging p1 first, then the section case is identified directly and the reduced projection applied
when merging p4, p3, p2, meaning the discriminants and coefficients for those polynomials need not be added.

7.3. Potential for non-connected “cell” descriptions

Recall that we aim to compute a single cell on which the input polynomials are sign-invariant, but McCallum’s
CAD projection theory uses the stronger property of order-invariance. It has been observed before that this can
allow for small optimisations at the top layer. For example, when using equational constraint projection we must
take discriminants if the projection is in a middle layer (to ensure order-invariance is provided which is a hypothesis
of the next lifting) but can avoid these at the top layer as we need never lift over that [23].

The visualisation of our proof rules in Figure 10 alerted us to another such optimisation, which if enacted has
some strange consequences. Note that a cell being connected at level i is required for it to be order-invariant, but
not sign-invariant. Thus we need not ensure connectivity at the top level, i.e. we could avoid taking resultants of
the upper and lower bound polynomials to satisfy Rule 5.12. Without connectedness it would not be accurate to
describe what we are constructing as a cell, rather it is a semi-algebraic set (see also Figure 9). However, it is still
describing a portion of space on whose points the respective polynomials are all sign-invariant. Thus, in the context
of the MCSAT search which we discuss in the next section, the set is still describing a portion of space on whose
points the constraints are all unsatisfiable for the same reason and so its negation is still a valid explanation clause
to further that search.

We note that the resultants saved by this optimisation may still have to be computed later, if the cell is used in
further propagation. However, this will not always be the case and so often this optimisation may save computation.
Discovery of this optimisation illustrates the advantages of the proof system presentation used in this paper.

7.4. Factorization of polynomials and cell size

To ensure the output of CAD is correct we must compute a square-free basis of the current set of polynomials
P (i.e. a set of square-free polynomials without common factors which define the same varieties as P ) before the
application of a projection operator.

The approach of the rules presented above is to fully factorize each polynomial, resulting in what is called the
finest square-free basis. This is a fairly standard choice made in CAD implementations as the effort of computing
a full factorization pays off compared to the heavy resultant, discriminant, and real root isolation computations,
which are all simpler for smaller polynomials.

When building a full CAD the choice of square-free basis does not effect the decomposition computed, just
the time taken to compute it. However, for the single-cell construction, this makes a difference also in the size
of the resulting cell, specifically the cell can be larger if we factor. This can easily be observed by considering
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Figure 14: By perturbing a problem making a reducible polynomial irreducible, the problem gets harder.

Example 3.1. Here polynomial p1 · p2 · p3 is already square-free. Using this directly in the one-cell construction
algorithm without factorization as a whole would simply result in computing the discriminant of the polynomial
(and some coefficients): the discriminant must have as factors all the cross resultants of p1, p2, p3 by definition. So
in this case, no improvement over a full projection is achieved, and we would find the smaller cell from Figure 1.
However, if we factor to consider the set {p1, p2, p3} instead then we can obtain the larger cell from Figure 1.

The limits of factorization. We note that this described gain in size of the computed cell from factorization does not
mean we build optimal cells for all problems where there is a geometric separation. Figure 14a shows an example
with two circles and a linear polynomial for which the constructed cell we ideally build is the inside of the circle
defined by p1. Even if we were originally presented with p1 · p2, factorisation would allow a one-cell algorithm to
ignore the intersections of p2 and p3 to construct the entire inner circle. But consider the similar example from
Figure 14b, in which we have perturbed the problem to consider the irreducible polynomial p1 · p2+1. Graphically,
the two problems seem to be similar, and the delineation of the roots are identical. But in the second case the
single cell construction cannot treat the two ovals separately: we must consider the irrelevant intersection and thus
build a smaller than ideal cell.

This shows some of the limits of the single cell construction by way of a well observed truth in computer
algebra: problems which appear similar to human beings (i.e. when viewed geometrically) are not always equally
hard algebraically.

8. Experimental evaluation

The presented proof rules are, due to their generality, potentially applicable with only small additions to a
variety of problems and algorithms related to non-linear arithmetic, such as quantifier elimination by CAD [16],
various CAD optimisations e.g. [34, 17], non-uniformly cylindrical decompositions for quantifier elimination [8, 9],
the generation of explanations when using cylindrical algebraic coverings for a traditional SMT solver [2], and
the generation of explanations in MCSAT [27, 26, 11]. As the latter was the main motivation for our work, the
evaluation of this paper will focus on generating theory explanations in MCSAT for non-linear arithmetic.

8.1. Generating explanations for MCSAT

Recall the description of MCSAT in Section 1.2. We are interested in when MCSAT resolves theory conflicts.
I.e. when there is a set of constraints C in real variables x1, . . . , xn, xn+1 that should be satisfied according to
the Boolean model and an assignment s : {x1, . . . , xn} → R such that s cannot be extended to a value for xn+1

satisfying C. The task then is to exclude a cell around s that generalizes this conflict, i.e. a region cell where the
reason for unsatisfiability of C is invariant.

This reason of unsatisfiability is maintained when all input polynomials are sign-invariant on the generalized
cell. To achieve this, we could do a full McCallum projection step, obtaining a set of properties of one level below
allowing to construct a cell around s.
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However, this is already too strong, as we need the set of input polynomials P = {p | (p ∼ 0) ∈ C} ⊂
Q[x1, . . . , xn, xn+1] to be delineable over a cell containing the current sample s ∈ Rn for maintaining the de-
sired property. We achieve this by determining the indexed root expression of the real roots of the set {p ∈
factors(P )| level(p) = n + 1} over s in xn+1 and ordering them such that ξ1(s) ≤ ξ2(s) ≤ . . . ≤ ξk(s). Finally, we
ensure that all lower level factors {p ∈ factors(P )| level(p) < n+ 1} are sign-invariant, check that each polynomial
is not nullified (if not, we stop), make each polynomial individually delineable and add the resultants of the pair of
polynomials (ξj .p, ξj+1.p) for j ∈ [1..k − 1]. Thus, the input of the presented one-cell algorithm is given as

Q = {sgn inv(p) | p ∈ factors(P ), level(p) < n+ 1}
∪ {an proj del(p), sgn inv(ldcfxn+1(p)) | p ∈ factors(P ), level(p) = n+ 1}
∪ {ord inv(resxn+1

(ξj .p, ξj+1.p)) | j ∈ [k − 1]}.

This approach is similar to the chain heuristic for indexed root orderings presented in Definition 6.7.
Note that this approach could be embedded nicely into our system as a proof rule, taking over some optimizations.

Furthermore, there are alternative approaches for elimination in the first levels, i.e. by computing a covering of
unsatisfying intervals of input constraints. These possibilities are part of our plans for future work.

Further note that in MCSAT, conflicts might also depend on previously computed cells which are expressed by
conjunctions of extended constraints where a variable is compared with an indexed root expression; these constraints
can also occur in the input. To handle an extended constraint xn+1 ∼ rootxi+1

[p, j] with p ∈ Q[x1, . . . , xn+1], we
simply add p to the set P of input polynomials.

8.2. Implementation

For the evaluation of the presented algorithm, we employ the SMT-RAT [1, 18] solver, which provides an
MCSAT engine allowing the combination of multiple explanation backends. Several incomplete and complete
methods are combined in the sense that these backends are called sequentially until one returns an explanation.

Currently available backends are the Fourier-Motzkin variable elimination (FM) [26], interval constraint prop-
agation (ICP) [28], virtual substitution (VS) [3], the complete model-based CAD cell construction algorithm from
NLSAT [27] using Collin’s projection operator as well as the refinement-based single cell construction algorithm
[11]. Furthermore, SMT-RAT employs a fully dynamic activity-based variable ordering heuristic for scheduling
theory variable assignments and Boolean decisions [39].

All variants of the presented levelwise one-cell construction algorithm are implemented as backends in SMT-
RAT. This is a preliminary version not fully exploiting the power of all proof rules, in particular, it is not checked
whether a property is already implied by some properties in the projection. Most notably, the presence of resultants
(the second and third respectively the third and fourth case) is not checked for in Rule 5.11; thus more leading
coefficients than necessary are added to the projection set.
For the evaluation, we compare the following solver variants:

NL The model-based projection using Collin’s operator from NLSAT [27] as a complete explanation backend. I.e.
to use when one of the following variants which are all based on McCallum projection hits a nullification
which they cannot handle (see Definition 2.2).

OC-* The refinement-based one-cell construction algorithm [11]. We use the same MCSAT embedding as described
above. Furthermore, the refinement-based method is able to return an explanation when a polynomial is
nullified in the sector case in some special cases which our levelwise approach cannot handle yet; for better
comparability, these special cases are excluded from the following tests. In case of failure, the complete
explanation from NLSAT is called. To further specify the algorithm’s behaviour and make it reproducible,
we implemented heuristics for the order of merging of initial polynomials. These specify the * in the variant
name as follows.

ASC The merge-operation is called on the initial polynomials in ascending order by their total degree.

DSC The merge-operation is called on the initial polynomials in descending order by their total degree.

LW-*-* The new levelwise one-cell construction algorithm with different heuristics applied in the section and sector
case. In case of failure, the complete explanation from NLSAT is called. The first * in the variant name
dictates the employed heuristic for the section case and the second for the sector case. Possible substitutions
for the stars are as follows.
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solved sat unsat with single cell without single cell

NL 9057 4518 4539
OC-ASC 9316 4605 4711 4194 5122
OC-DSC 9316 4605 4711 4194 5122

LW-EQ-BC 9308 4598 4710 4186 5122
LW-EQ-CH 9311 4602 4709 4189 5122
LW-EQ-LDB 9304 4595 4709 4182 5122

VB-LW 9403 4650 4753 4281 5122
VB 9435 4671 4764 4313 5122

LW-CH-CH 9305 4600 4705 4183 5122
LW-LDB-LDB 9296 4585 4711 4174 5122

NL+ 9535 4699 4836
OC-ASC+ 9797 4788 5009 615 9182

LW-EQ-BC+ 9795 4786 5009 613 9182
LW-EQ-CH+ 9797 4787 5010 615 9182
LW-EQ-LDB+ 9795 4786 5009 613 9182

VB-LW+ 9797 4787 5010 615 9182
VB+ 9800 4790 5010 618 9182

Total 11552* 5069* 5379*
* For 1104 instances, it is not known whether they are satisfiable or unsatisfiable.

Table 1: Details on the instances solved by each solver: the number solved (first column), the number of satisfiable and unsatisfiable
solved instances (the second and third columns) and the number of solved instances where the solver made at least one call to the
single-cell construction and the number that did not require any such call to solve (the final two columns). Note that the last column
is, for the first block of solvers, the number of instances that may be solved with Boolean reasoning and construction of sample points
alone, i.e. without any theory calls. For the second block of solvers this also includes the instances that are solved using the additional
incomplete theory backends.

EQ equational constraint heuristic is applied (only for section case).

BC biggest cell heuristic is applied (only for sector case).

CH chain heuristic is applied.

LDB lowest degree barriers heuristic is applied.

[solver]+ with [solver] being one of the solver variants above, uses the FM-, ICP- and VS-based backends serially,
in this order, before resorting to [solver]. Furthermore, we apply general preprocessing to the input before
calling the main solver [18].

All variants are executed on the SMT-LIB benchmark library [4] for quantifier-free non-linear real arithmetic,
abbreviated as QF NRA. This set contains 11552 problem instances.

The machine used for testing has four 2.1 GHz AMD Opteron CPUs with 12 Cores each. In the created test
series, each instance was solved with 15 minutes timeout and 6 GB of memory.

For reproducibility, the implementation which generated the following results is available at https://doi.org/
10.5281/zenodo.5764569.

8.3. Results

Examined solvers. First of all, we observed that OC-ASC solves as many instances as OC-DSC but needs slightly
less time; thus, we omit OC-DSC. Furthermore, we observe that LW-EQ-CH and LW-EQ-LDB solve more instances
than LW-CH-CH and LW-LDB-LDB. In our basic implementation, saving leading coefficients and discriminants pays
off compared to the other heuristics. Thus for further examination, we focus on the LW-EQ-* variants which always
use the equational constraints projection in the section case. A brief summary of solved instances of all solvers
can be seen in Table 1. Furthermore, from now on, VB-LW (respectively VB-LW+) is the virtual best of the LW-EQ-*
(respectively LW-EQ-*+) solvers. VB and VB+ are the corresponding virtual bests with respect to LW-EQ-* and
OC-ASC.
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LW-EQ-BC LW-EQ-BC+ VB-LW VB-LW+

solved instances 9308 9795 9403 9797
mean running time (s) 4.36 5.22 5.56 5.26
sum calls to explanation 83628 58826 107964 58953
of them: sum calls to SC 83628 (100.0%) 1740 (2.96%) 107964 (100.0%) 1849 (3.14%)
of them: sum calls to NL 15394 (18.41%) 117 (0.2%) 19412 (17.98%) 119 (0.2%)

solved instances with single cell 4186 613 4281 615
mean running time (s) 9.13 20.34 11.7 21.81
sum calls to explanation 83628 10363 107964 10490
of them: sum calls to SC 83628 (100.0%) 1740 (16.79%) 107964 (100.0%) 1849 (17.63%)
of them: sum calls to NL 15394 (18.41%) 117 (1.13%) 19412 (17.98%) 119 (1.13%)

Table 2: Comparison of four exemplary solvers: firstly, the subset of all solved instances and secondly the subset of all solved instances
where at least one call to the single cell construction was made are considered. For each, the statistics describing the total number
of instances, the mean running time, the sum of constructed cells as well as the sum of attempts to generate a cell using single cell
construction or NLSAT backend are given. For the last two, these sums are included in the previous one; their share of the total
number of constructed cells is given. Note that the explanation calls involving single cell are the ones not being solved by the additional
backends and the calls involving NLSAT are the ones where the single cell construction failed.
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(a) Comparison of solvers without additional backends.
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Figure 15: Performance profile (running times).

General observations. Before we compare the different approaches, we make some general comments on the results
based on exemplary solvers in Table 2.

As already observed in Table 1 and confirmed by Table 2, large parts of the benchmark set are relatively easy.
Around half of the benchmarks do not involve a single explanation call; and when enabling the additional incomplete
backends, 79% of the benchmarks can be solved without a single call to the single cell construction. Considering the
total number of explanation calls made, only 3.14% of them use the single cell construction for the VB-LW+ solver,
meaning that even for the problems where single cell is needed, it is only needed rarely.

The fail rate of the levelwise backend (the cases where a nullification occurs) is smaller on the VB-LW+ solver
(6%) than on the VB-LW solver (17.98%). That means, that nullifications are more probable on the simple parts of
the problem.

It should also be noted that VB-LW+ needs significantly less explanation calls than VB-LW; which means, that the
incomplete backends have explanations of higher quality.

To summarize, we can only make meaningful statements on our heuristics based on the solver variants without
the additional backends, as otherwise, there are too few calls to the single cell construction in solved instances.
The possible reasons for this are twofold. On the one hand, our procedure and its implementation may not yet
be suitable to solve the harder instances in the benchmark set. On the other hand, the benchmark set might not
contain enough interesting or diverse benchmarks for an evaluation.
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Figure 16: Commonly solved instances.

Overall results. All solvers are depicted in the performance profile in Figure 15.
First of all, the NL and NL+ solvers perform significantly worse than the single cell variants, which justifies the

investigation of this new levelwise cell construction approach.
The refinement-based approach OC-ASC as well as LW-EQ-* perform similarly. Among the levelwise variants, the

LW-EQ-CH solves the most; however, these differences are not significant and depend on the implementation and
heuristics chosen in the MCSAT solver. Considering OC-ASC+ and LW-EQ-*+, these differences vanish even more
when combining them with incomplete methods handling simple sub-problems. These results are summarized in
Table 1.

Virtual best and orthogonality of heuristics. VB-LW performs significantly better than the LW-EQ-* solvers. This
means that although the number of solved instances is similar for all heuristics, each heuristic solves instances that
the others do not solve. Thus these heuristics are orthogonal to some degree. We depict the number of instances
solved by differing combinations of solvers in Figure 16. Note that the same holds for VB, meaning that OC-ASC is
orthogonal to LW-EQ-* as well.

Note that the VB-LW+ solver does not solve significantly more instances than any of the LW-EQ-*+ solvers. That
means the differences of the heuristics only become noticeable in the simple parts of the instances. An explanation
could be that harder parts of instances require heavy resultant computations which could quickly shift the instance
to unsolvable within the timeout.

Now focusing on the “pure” solvers without additional backends, we observe that on simple instances the
refinement based approach OC-ASC and the virtual best of the levelwise approaches VB-LW behave similar on simple
instances while they are more “orthogonal” on harder instances, as indicated by Figure 17a.

The SMT-LIB benchmark set is split up into families which each have a similar structure. We note that all
variants LW-EQ-* and OC-ASC solve roughly the same amount of benchmarks in each family individually, as seen in
Table 3, while the virtual best solvers do solve more. That means that the orthogonality of the variants is split up
onto all families.

Number of constructed cells. Figure 18 depicts a performance profile where we consider the number of constructed
cells (that is, the number of times the explanation function is called by MCSAT) instead of the running time.
We can clearly see that the solvers that solve more instances tend to compute fewer cells during a run. That
is, the quality of the explanations is better. Again, considering the refinement based approach and the levelwise
approaches, differences are only significant without the other backends. In particular, the virtual best solver clearly
solves more instances with fewer cells. Figure 17b makes this even more clear by comparing the number of cells
constructed by VB-LW and OC-ASC for every instance.

Comparison of heuristics. For further comparison of the three heuristics, we collected two more statistics for
each instance: the dimension of constructed cells (i.e. the number of levels considered during its construction),
the maximum degree in the main variable of the polynomials occurring in the computation, and the size of the

32



10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

OC-ASC running time (s)

V
B
-L
W

ru
n
n
in
g
ti
m
e
(s
)

(a) Running times on all instances.

100 101 102 103

100

101

102

103

OC-ASC number of cells

V
B
-L
W

n
u
m
b
er

o
f
ce
ll
s

(b) Number of constructed cells on instances solved by both solvers.

Figure 17: Scatter plots comparing VB-LW and OC-ASC on the individual instances.

1 2 3 4 5 6 7 8 9 20 11 12

OC-ASC 25 0 0 86 9 2 26 6 2180 8 6913 61
LW-EQ-BC 22 0 0 89 9 2 22 6 2170 8 6918 62
LW-EQ-CH 25 0 0 88 9 3 22 5 2174 8 6914 63
LW-EQ-LDB 22 0 0 88 9 2 22 7 2170 8 6913 63
VB-LW 26 0 0 90 9 4 25 7 2249 8 6918 67
VB 27 0 0 94 9 4 28 7 2267 8 6923 68

Total 405 9 69 135 63 821 61 20 2752 45 7006 166

Table 3: Solved instances by solver and family. Benchmark families: (1) 20161105-Sturm-MBO (2) 20161105-Sturm-MGC (3) 20170501-
Heizmann-UltimateInvariantSynthesis (4) 20180501-Economics-Mulligan (5) 2019-ezsmt (6) LassoRanker (7) UltimateAutomizer (8)
hong (9) hycomp (10) kissing (11) meti-tarski (12) zankl.

computed projection (i.e. number of resultants, discriminants and coefficients). A summary of these statistics is
shown in Table 4.

First note that the virtual best has the lowest value or close to the lowest value in all categories, which means
that they might indicate the performance of a solver to some degree. However, interpretation needs to be careful,
as the differences are relatively small, confirming the previous observations. Further note that we do consider fewer
instances as in previous analysis. However, we do have two minor observations to make here.

Regarding the heuristic LW-EQ-LDB: its idea was to minimize the degrees of the polynomials in the projection,
however, the average maximum degree is slightly higher than for the other two heuristics. LW-EQ-BC needs slightly
less projection steps, but is similar to the other solvers in terms of number of cells created. This means that the
size of the cells are similar, although again, the intention was to produce the biggest possible cells. To emphasize,
in the analysis in Figure 18 which is based on all solved instances (including the ones where the NLSAT backend
was used as fallback), it needs more cells than LW-EQ-LDB.

To summarize, this simple analysis can not confirm that the ideas behind the different heuristics take effect on the
benchmarks or prove different behaviour on all benchmarks. However, as stated above, on individual benchmarks,
they do behave differently, as shown by the performance of the virtual best solver.

9. Conclusions and future work

9.1. Future work

The formulation of the presented proof system allows heuristic to influence the shape of the constructed cells.
The experimental evaluation shows potential for further development of those. Furthermore, for some applications
such as incremental linearization [15], under-approximations of the constructed cell might be beneficial if they can
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Figure 18: Performance profile (number of cells).

mean #cells
per inst.

mean dim.
of cells

mean max
deg. per inst.

mean #res.
per inst.

mean #disc.
per inst.

mean #coeff.
per inst.

LW-EQ-BC 4.38 8.59 6.51 8.95 13.94 13.62
LW-EQ-CH 4.39 8.52 6.52 9.07 14.04 13.80
LW-EQ-LDB 4.39 8.48 6.57 9.07 14.05 13.88

VB-LW 4.32 8.49 6.52 8.77 13.75 13.48

Table 4: Statistics on the 3226 instances solved by all three solvers with at least one call to the single cell construction and without
a call to the NLSAT explanation (single cell construction always succeeds): mean number of cells per instance, mean dimension of
constructed cells, mean maximum degree of polynomials occurring in an instance, mean number of resultants/discriminants/coefficients
in the projection per instance.

be computed more efficiently; more concretely, the resultant computations get trivial if the lower and upper bounds
are replaced by one or more linear polynomials, resulting in boxes or polyhedra.

The proof system could be applied in the future in contexts other than MCSAT, such as the cylindrical algebraic
coverings method [2] or quantifier elimination algorithms such as NuCAD [8, 9].

By relying on the theory of McCallum projection, the presented proof system is incomplete. Recently, there
has been progress on the Lazard projection operator [29, 35, 36, 12, 37, 38], which is complete while maintaining
the advantages of the McCallum operator. Thus, it is promising to extend our framework to exploit the Lazard
projection.

Finally, the presented set of inference rules allows to produce fine-grained proof graphs, which could enable the
certification and external automated verification of results.

9.2. Conclusion

We introduced the new concept of levelwise single cell construction, motivated by maintaining the savings of
the existing refinement based approach of Brown [11] while allowing for more flexibility and new optimisations.

The theoretical part of this paper consists of the introduction of the novel notion of projective delineability
and the presentation of a proof system in order to enable fine-grained projections based on a given sample. To
demonstrate the possibilities of the proof system, we gave a simple algorithm which builds upon this proof system
as well as several heuristics for the application of the given rules. Finally, we gave a qualitative evaluation as well
as some notable observations.

We evaluated our algorithm by an implementation applied to explanation generation in MCSAT. We showed
that our basic heuristics yield different performances for different instances indicating that there is room for further
algorithmic development, as well as a more elaborated implementation of the proof rules.

Importantly, our proof system allows for a wide range of improvements through experimentation with heuristics,
approximations and on theoretical matters as well as extensions to other algorithms than the single cell construction.
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[36] Scott McCallum, Adam Parusińiski, and Laurentiu Paunescu. Validity proof of Lazard’s method for CAD
construction. Journal of Symbolic Computation, 92:52–69, 2019. URL: https://doi.org/10.1016/j.jsc.
2017.12.002.

[37] Akshar Nair, James H. Davenport, and Gregory Sankaran. On benefits of equality constraints in lex-least
invariant CAD. In J. Abbott and A. Griggio, editors, Proceedings of the 4th Workshop on Satisfiability Checking
and Symbolic Computation (SC2 2019), number 2460 in CEUR Workshop Proceedings, 2019. URL: http:
//ceur-ws.org/Vol-2460/.

[38] Akshar Nair, James H. Davenport, and Gregory Sankaran. Curtains in CAD: Why are they a problem and how
do we fix them? In A. Bigatti, J. Carette, J.H. Davenport, M. Joswig, and T. de Wolff, editors, Mathematical
Software – ICMS 2020, volume 12097 of Lecture Notes in Computer Science, pages 17–26. Springer International
Publishing, 2020. URL: https://doi.org/10.1007/978-3-030-52200-1_2.
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Appendix A. Technical theorems on projection

In the following theorem, we prove analytic projective delineability of a polynomial locally in some neighbourhood
around a point.

Theorem A.1. Let p ∈ R[x1, . . . , xn] be square-free and R be a connected analytic submanifold in Rn−1 in which
discxn

(p) is order-invariant and p is non-nullified. For any point r in R, there exists a neighbourhood of r such
that the intersection of that neighbourhood and R is an analytic submanifold (which we will refer to as Nr) and for
which either

1. ldcfxn
(p) is sign-invariant on Nr, or

2. ldcfxn
(p) is zero at r but is non-zero at all points in Nr arbitrarily close to r, in which case:

(a) realRoots(p)∩ (Nr ×R) consists of the graphs of k+1 analytic functions θ1, . . . , θk, θ∗ where the domain
of each θ1, . . . , θk is Nr and the domain of θ∗ is Nr \realRoots(ldcfxn

(p)), and for all paths σ : [0, 1] → R
such that ldcfxn

(p) is zero at σ(1) and non-zero for all other points on the path, limt→1− θ∗(σ(t)) = ±∞;
(b) there are integer constants m1, . . . ,mk,m∗ such that for all r′ ∈ Nr, the multiplicity of θi(r

′) as a root
of p(r′1, . . . , r

′
n−1, xn) is mi, and for all r′ ∈ Nr \ realRoots(ldcfxn

(p)), the multiplicity of θ∗(r′) as a root
of p(r′1, . . . , r

′
n−1, xn) is m∗;

(c) for all r′ ∈ Nr, θ1(r
′) < · · · < θk(r

′) , and for all r′ ∈ Nr \ realRoots(ldcfxn(p)), either θk(r
′) < θ∗(r′)

or θ∗(r′) < θ1(r
′); and

(d) p is order-invariant in the p-sections θ1, . . . , θk over R and has constant order at every point of the graph
of θ∗ over R \ realRoots(ldcfxn

(p)).
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To illustrate what this theorem is saying, consider the polynomial p := xy3 + 16y2 − 32 with variable ordering
x ≺ y. We take x = 0 as the chosen point r, and we take R to be an open interval on the x-axis containing r. The
pictures below show the curve defined by the variety of p, and the situation over R and how the θ1, θ2 and θ∗ from
the theorem relate to the picture.

x 
=

 0

s1

s2
s*

s*

The particular feature to keep in mind is the discontinuity of θ∗ at the point x = 0, and how, as we move through the
discontinuity from negative x to positive x, θ∗ switches from being below θ1 and θ2 to being above them. Note also
that if R were expanded either right or left, we would violate the requirement that the discy(p) is order-invariant.

Proof of Theorem A.1. If ldcfxn
(p) is sign-invariant in Nr, then the theorem holds. The interesting case is when

ldcfxn(p) is not sign-invariant in Nr, no matter how small we make Nr. If this is the case, then there must be points
in R at which ldcfxn(p) vanishes that are arbitrarily close to r.

Choose a real number α such that all roots of p(r1, ..., rn−1, xn) are greater than α, and choose Nr to be
sufficiently small so that p has no zeros in Nr × R that intersect with the hyperplane xn = α. Since p, being a
polynomial, is continuous and non-zero at (r1, ..., rn−1, xn), such an Nr exists. Let p∗ = p(x1, . . . , xn−1, xn − α).
Note that the discriminant is invariant under this transformation (see for example [24]) so discxn

(p) = discxn
(p∗).

The mapping that shifts xn by α is a homeomorphism that maps the roots of p to the roots of p∗. So we can study
the roots of p by understanding the roots of p∗. But for p∗ we are guaranteed that p∗(r1, . . . , rn−1, 0) ̸= 0. In fact,
over Nr, no zero of p∗ lies in the hyperplane xn = 0. To put another way, the constant coefficient with respect to
xn of p∗ does not vanish on Nr.

Let d be the degree of p∗ in xn. We now consider the polynomial p = xd
np

∗(x1, . . . , xn−1, 1/xn). We note
that, over Nr, the transformation from p to p defines an analytic homeomorphism from Nr × (R \ {0}) to itself
that maps the zeros of p off the xn = 0 hyperplane to the zeros of p (none of which, recall, lie on the xn = α
hyperplane). Specifically, the homeomorphism is given by the mapping (x, y) 7→ (x, 1/y − α). The transformation
leaves the discriminant unchanged as well, i.e. discxn

(p) = discxn
(p∗). This also follows from [24], but is also

addressed explicitly as Lemma 8.1 of [6]. Thus, the discriminant of p is order-invariant in R. Moreover, its leading
coefficient, which is the same as the constant coefficient (in xn) of p∗, is non-zero throughout Nr. This means
that p is not nullified anywhere in Nr and its leading coefficient (in xn) is sign-invariant on Nr. Thus, by the
Brown-McCallum projection, p is analytically delineable over Nr. It must have a section that passes through the
point (r1, . . . , rn−1, 0), since its constant coefficient (in xn) vanishes at r. So let the sections of p be θ1 ≺ · · · ≺ θk
with multiplicities m1, . . . ,mk, and let i be the index such that θi is the section passing through (r1, . . . , rn−1, 0).
Note that it must be unique because delineability guarantees non-intersecting sections. Since none of the remaining
sections pass through (r1, . . . , rn−1, 0) we can refine Nr to N ′

r that is sufficiently small so that none of the remaining
sections intersect the hyperplane xn = 0 over N ′

r.
So, over N ′

r the p-section θj , where j ̸= i, maps to p-section θj . Moreover, since θi is the only p-section that
crosses the xn = 0 hyperplane, the graphs of θ1, . . . , θi−1 lie in N ′

r × R<0, and the graphs of θi+1, . . . , θk lie in
N ′

r ×R>0. This means these p-sections are non-intersecting and ordered as follows θi−1 < · · · < θ0 < θk < . . . θi+1.
Finally, consider a connected region M in N ′

r on which the leading coefficient of p or, equivalently, the constant
coefficient of p is non-zero. Section θi either lies entirely above the xn = 0 hyperplane on this region, in which
case it maps via the homeomorphism to a section over M that lies above section θi+1, or entirely below xn = 0, in
which case it maps to section over M that lies below section θi−1. So the θ∗ required by the theorem is the image
θi via the homeomorphism restricted to the points in N ′

r at which the trailing coefficient of p is non-zero, which is
equivalent to N ′

r \ realRoots(ldcfxn
(p)). Note that because θi passes through xn = 0 at precisely the points that

map back to points in realRoots(ldcfxn
(p)), limt→1 θ∗(σ(t)) = ±∞. Thus points 2.a and 2.c are proven.

Next we show that the multiplicities of the sections are constant, i.e. that point 2.b of the theorem holds. We
will show that the multiplicities of sections of p carry over to the sections of p∗, which suffices since the sections of
p∗ are just shifts of the sections of p. Let Md be the map of a polynomial in xn of degree at most d to a polynomial
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of degree at most d in xn given by Md(h(xn)) = xd
nh(1/xn). Note that Md(p

∗) = p and Md(p) = p∗. First, consider
point r′ in N ′

r \ realRoots(ldcfxn(p)). In this case,

p(r′1, . . . , r
′
n−1, xn) = γ

r∏
i=1

(x− βi)
ei ,

where the βis are the distinct zeros (over C) and the eis are the multiplicities of those zeros, and γ is some non-zero
constant. Hence we have

p∗(r′1, . . . , r
′
n−1, xn) = Md(p(r

′
1, . . . , r

′
n−1, xn)

= Md(γ
∏r

i=1(x− βi)
ei)

= γ
∏r

i=1 Md(x− βi)
ei = γ

∏r
i=1(1− βix)

ei

and we see that the multiplicities of the roots are preserved. Thus, we are left with the case r′ ∈ realRoots(ldcfxn
(p)).

In this case, p∗(r′1, . . . , r
′
n−1, xn) = q∗(xn) for some polynomial q∗ ∈ R[xn] of degree less than d (because the leading

coefficient, and possibly some others, vanish at r′). The leading coefficient of p does not vanish at r′, but the
trailing coefficient does. In fact, the coefficients of the degree zero up to m∗ − 1 all vanish at r′. So we have
p(r′1, . . . , r

′
n−1, xn) = xm∗

n · q(xn), where q(xn) = Md−m∗(p
∗(xn)). So the roots of q(xn) are θ1(r

′), . . . , θk(r′) with
multiplicities m1, . . . ,mk, and these roots and multiplicities carry over to q∗, which can be proven with the same
argument used in the previous case.

To finish we need to justify the claim of order-invariance for the sections θ1, . . . , θk and for θ∗. Lemma A.1 (below)
shows that the orders of p and p are the same at associated points. (Note that Theorem 2.1 of [32] essentially shows
that order is preserved under general analytic coordinate transformation, which includes Lemma A.1 as a special
case.) Given that, we note that polynomial p is order-invariant in the sections θ1, · · · , θk and θ∗ (by McCallum’s
theorem on projection), and when we map these sections back to zeros of p, the orders of p in θ1, . . . , θk and θ∗ will
be the same as the orders of p in θ1, · · · , θk and θ∗, which concludes the proof.

Lemma A.1. Let p ∈ R[x1, . . . , xn] be of degree d in xn. Let r ∈ Rn with rn ̸= 0 be a point at which p is non-zero.
Define the function f as f(p) = xd

np(x1, . . . , xn−1, 1/xn), and the function g(r) = (r1, . . . , rn−1, 1/rn), noting that
f(p) ∈ R[x1, . . . , xn] is of degree d in xn, and g(r) is a point in Rn with non-zero nth coordinate. The order of p at
r is the same as the order of f(p) at g(r).

Proof. We will show that ordr(p) ≤ ordg(r)(f(p)). Since f(f(p)) = p and g(g(r)) = r, and f(p) and g(r) satisfy the
hypotheses of the theorem, we may reverse the roles of p and f(p), and r and g(r) and get that ordg(r)(f(p)) ≤
ordr(p).

Let p = f(p) and r = g(r). We will use the usual multi-index notation for partial derivation so that ∂ω =
∂ω1

∂x
ω1
1

· · · ∂ωn

∂xωn
n

. We show by induction on ||ω||1 that

∂ωp =
∑

ω′∈Nn s.t. ||ω′||1<||ω||1
cω′∂ω′

p(x1, . . . , xn−1, 1/xn) + c∗xd∗

n ∂ωp(x1, . . . , xn−1, 1/xn), (A.1)

where cω′ is a Laurent polynomial in xn, c
∗ ∈ R and d∗ ∈ Z. Note that substitution of r into (A.1) is always

well-defined because only xn appears in denominators and rn is non-zero. If p has order t + 1 at r, then for any
multi-index ω such that ||ω||1 ≤ t, (A.1) shows us that ∂ωp is a sum of terms of the form (∂ρp)(x1, . . . , xn−1, 1/xn),
where ||ρ||1 ≤ t, which evaluates at r to exactly (∂ρp)(r). Therefore, all terms of (A.1) vanish and we get that
∂ωp(r) is zero.

So what remains to be proven is (A.1), which we prove by induction on t = ||ω||1. When t = 0, we have that
p = xd

np(x1, . . . , xn−1, 1/xn), which is of the form required by (A.1) — the cω′s are all zero, c∗ = 1 and d∗ = d. So
assume (A.1) holds for all values up to and including t and consider a multi-index ω such that ||ω||1 = t. Let µi be
the n-vector that is 1 in the ith component and zero everywhere else. We will show that for any i, (A.1) holds for
∂ω+µi .

First assume i < n. By induction we have

∂ω+µip =
∂

∂xi
∂ωp = ∂

∂xi

(∑
ω′ | ||ω′||1<||ω||1 cω′∂ω′

p(x1, . . . , xn−1, 1/xn) + c∗xd∗

n ∂ωp(x1, . . . , xn−1, 1/xn)
)

=
∑

ω′ | ||ω′||1<||ω||1 cω′∂ω′+µ1p(x1, . . . , xn−1, 1/xn) + c∗xd∗

n ∂ω+µ1p(x1, . . . , xn−1, 1/xn)

=
∑

ω′ | ||ω′||1<||ω+µ1||1 cω′∂ω′
p(x1, . . . , xn−1, 1/xn) + c∗xd∗

n ∂ω+µ1p(x1, . . . , xn−1, 1/xn),

(A.2)
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which is of the required form. Second assume i = n. By induction we have

∂ω+µnp =
∂

∂xn
∂ωp = ∂

∂xn

(∑
ω′ | ||ω′||1<||ω||1 cω′∂ω′

p(x1, . . . , xn−1, 1/xn) + c∗xd∗

n ∂ωp(x1, . . . , xn−1, 1/xn)
)
,

=
∑

ω′ | ||ω′||1<||ω||1

((
d

dxn
cω′

)
∂ω′

p(x1, . . . , xn−1, 1/xn) + cω′

(
∂ω′+µnp(x1, . . . , xn−1, 1/xn)

)
−1
x2
n

)
+

c∗d∗xd∗−1
n ∂ωp(x1, . . . , xn−1, 1/xn) + c∗xd∗

n ∂ω+µnp(x1, . . . , xn−1, 1/xn)
−1
x2
n

(A.3)
In the final line of (A.3) we see that the last term, −c∗xd∗−2

n ∂ω+µnp(x1, . . . , xn−1, 1/xn), is the only order t + 1
derivative term, and it has the proper form. All other terms are of the form c∂ω′

(x1, . . . , xn−1, 1/xn), where c is a
Laurent polynomial in xn and ||ω′||1 < t + 1. Since Laurent polynomials are closed under addition, this sum has
the required form.

Theorem A.2. Let p1, p2 ∈ R[x1, . . . , xi] of level i. Let R be a connected analytic submanifold in Ri−1 on which
p1 and p2 are degree-invariant and non-nullified, and on which pr = resxi

(p1, p2) is order-invariant. Let θ1 be a
real root function of p1 and θ2 be a real root function of p2, both defined on R. If there is a point r ∈ R at which
the values of θ1 and θ2 differ, then the values of θ1 and θ2 differ throughout R.

Proof. We prove this theorem by contradiction. Suppose there are points at which θ1 and θ2 have the same value.
Choose such a point r′ ∈ R and path π : [0, 1] → R such that π(0) = r, π(1) = r′ and for all x ∈ (0, 1) we have
θ1(π(x)) ̸= θ2(π(x)). Note that we are guaranteed to be able to find such r′ and π by the continuity of θ1 and θ2.

Let U be a neighbourhood of r′ and V a neighbourhood of the origin, both within Ri−1. Denote by d the
dimension of R. We now refer to the concept of a coordinate system, as described in [31]. By Theorem 2.2.1 of
[31], there is a coordinate system ϕ mapping U to V such that R ∩ U = {x ∈ U | ϕd+1(x) = 0, . . . , ϕi−1(x) = 0}.
In other words, the image of R ∩ U is the set of points in V with zeros for the last n − 1 − d coordinates, which
we will refer to as S. We view p1 and p2 in this new coordinate system as p1 = p1(ϕ

−1(x1, . . . , xi−1), xi) and
p2 = p2(ϕ

−1(x1, . . . , xi−1), xi), respectively. Note that for any a ∈ U , p1 evaluated at a gives the same univariate
polynomial in xi as p1 evaluated at ϕ(a) (as is also true for p2). In particular, since p1 and p2 are degree-invariant
in R, p1 and p2 are degree-invariant in S, moreover, the degrees of p1 and p1 are the same, as are the degrees
of p2 and p2. Because ϕ−1 only acts on the coefficients of p1 and p2 (as polynomials in xi), and because the
degrees remain unchanged, the resultant construction commutes with respect to ϕ−1. In other words, recalling that
pr = resxi

(p1, p2), we have pr ◦ ϕ−1 = resxi
(p1, p2). Moreover, by the “Remark” on p.45 of [31], the order of pr at

point a is the same as the order of pr ◦ϕ−1 at ϕ(a), for any a ∈ U . This means that pr is order-invariant in U ∩R if
and only if pr ◦ ϕ−1 is order-invariant in S. We will show that the order-invariance of resxi

(p1, p2) in S contradicts
the assumption that θ1(r

′) = θ2(r
′).

For convenience, let f = θ1 ◦ ϕ−1 and g = θ2 ◦ ϕ−1, noting that f and g are themselves analytic functions and
thus proper real-root functions for p1 and p2, and that they agree in value at ϕ(r′). The function f defines a root
of p1 on S, not on all of V . Define f∗(y1, . . . , yi−1) = f(y1, . . . , ys, 0, . . . , 0), which extends the domain of f to all
of V , and define g∗ analogously. Note that f∗ and g∗ are analytic functions of V . [This is actually the key to
this proof. Had we tried in the same way to extend θ1 and θ2 from functions of R to functions of U , we would
not have been guaranteed to get analytic functions.] By division we get p1 = (x− f∗)q1 + p1(f

∗). The remainder,
p1(f

∗), is zero throughout S because f , which f∗ extends, is a root function of p1 on S. However, since the value
of f∗ is independent of ys+1, . . . , yi−1, the remainder p1(f

∗) is actually zero throughout V . Thus, p1 factors as
p1 = (x− f∗)q1 over V . By the same logic, we get the factorization p2 = (x− f∗)q2. Note that the coefficients of
q1 are all polynomial in f∗, so all coefficients are analytic functions of V .

It’s shown in [13], Theorem 1, Chapter Computing in Algebraic Extensions, that res(A,B) = anm
∏m

i=1 B(ri),
where m is the degree of A, am is the leading coefficient of A, the ris are the m complex roots of A, and n is the
degree of B. It easily follows that

res(A,BC) = res(A,B) · res(A,C), from which we get:

resxi((xi − f∗)q1, (xi − g∗)q2) = resxi(xi − f∗, xi − g∗) · resxi(q1, xi − g∗) · resxi(xi − f∗, q2) · resxi(q1, q2).

For any analytic function, if there are points of order k and also of order k + j, the set of points of order at least
k + j is a closed subset of the set of all points of order at least k. This means that if the order of a product of
analytic functions is constant in S then the orders of each of the individual factors must be constant as well. Thus,
since the order of resxi

(p1, p2) is constant in S, the order of resxi
(xi − f∗, xi − g∗), which we note is f∗ − g∗, is
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constant as well. There are points in R arbitrarily close to r′ at which θ1 and θ2 are unequal. Let r′′ be such a
point, sufficiently close such that ϕ(r′′) ∈ S. Then at ϕ(r′′), the functions f∗ and g∗ are unequal. Thus the order
of resxi

(xi − f∗, xi − g∗) is zero at ϕ(r′′), which means its order is zero everywhere in S. So f∗ ̸= g∗ for every point
in S. However, since θ1 and θ2 are equal at r′, f∗ and g∗ are equal at ϕ(r′), which is a contradiction.

B. Correctness of the theorems of projective delineability

Lemma 4.1. Its proof relies on the more technical Theorem A.1 from Appendix A.

Proof. If ldcfxi+1
(p) is sign-invariant in R, then p is analytically delineable on R by Theorem 3.1 in [6] and Theorem

2 of [33]. Thus, we assume that ldcfxi+1
(p) is not sign-invariant in R. By Theorem A.1, for any point r in R, there

is a neighbourhood Nr around r such that all the properties required for analytic projective delineability hold
in Nr ∩ R. Since R is connected, this suffices to prove the lemma. To see why, consider two points in R, r
and r′. Since R is connected there is a path (a continuous function with domain [0, 1]) L : [0, 1] → R such
that L(0) = r and L(1) = r′. According to Theorem A.1, in some neighbourhood containing L(0) the definition
of projective delineability is satisfied, i.e. there is some k and root functions θ1, . . . , θk, θ∗ with all the desired
properties. We need to prove that the root functions can be extended to cover the entire path while maintaining
those properties. Let c be a real number in the range (0, 1) such that θ1, . . . , θk, θ∗ can be extended over the subpath
L′ = {L(β) | β ∈ [0, c)}. By Theorem A.1 there is a neighbourhood NL(c) in which the properties required for
projective delineability hold, i.e. there is some k′ and root functions θ′1, . . . , θ

′
k′ , θ′∗ with all the desired properties.

However, because NL(c) ∩ L′ ̸= ∅, k′ = k and the functions θ′1, . . . , θ
′
k′ , θ′∗ agree with θ1, . . . , θk, θ∗ on the path up

to L(c). Moreover, choosing a value c′ greater than c such that L(c′) ∈ NL(c), they provide an extension of those
functions through L′′ = {L(β) | β ∈ [0, c′)}. Thus, the functions we require can be extended to cover the whole
path L from r to r′, maintaining all the properties required for projective delineability. In fact, the same argument
shows that p will be order-invariant in the sections defined by the root functions.

Lemma 4.2.

Proof. If ldcfxi+1
(p)(r) = 0 for all r ∈ R, then there is no θ∗ root function for the definition of projective delineable,

meaning the definition collapses to that of ordinary delineability. Otherwise ldcfxi+1
(p)(r) ̸= 0 for all r ∈ R, which

means that there is a θ∗ root function, but it is defined everywhere on R. As R is connected, the definition of
projective delineability collapses once again to that of ordinary delineability.

Lemma 4.3.

Proof. If p is analytically projectively delineable on R ↓[i−1], then by Theorem A.1, p is order-invariant in each
R↓[i−1] ×θ1(s), . . . , R↓[i−1] ×θk and each R↓[i−1] ×θ′∗ where θ′∗ is a restriction of θ∗ to a connected component of
its domain. As R is a subset of one of these sets by definition, p is order-invariant on R.

Lemma 4.4.

Proof. The hypotheses state that θ1 and θ2 are real root functions over R, which means that neither can be θ∗ in
Definition 4.1, the section that is not defined over the whole of R, and that both are continuous and analytic. If
the two functions are identical over R, then the theorem holds. So assume they are not, i.e. assume there is a point
r ∈ R at which the two functions have different values. We will show that the two functions differ everywhere in R
which, because they are continuous, proves the theorem.

Suppose, by way of contradiction, that there are points in R at which θ1 and θ2 are equal. Choose such a
point, s, and path L : [0, 1] → R such that L(0) = r, L(1) = s and for all x ∈ [0, 1) we have θ1(L(x)) ̸= θ2(L(x)).
Note that we are guaranteed to be able to find such s and L by the continuity of θ1 and θ2. Choose a value
γ ∈ R that, over s, is not a zero of p1 neither of p2. Let N be a neighbourhood of s over which neither p1
nor p2 are zero at γ. Let U be the connected component of N ∩ R that contains s. There must be a value
µ ∈ (0, 1) such that {L(x) | x ∈ (µ, 1]} ⊆ U . Set r′ = L ((µ+ 1)/2), noting that θ1(r

′) ̸= θ2(r
′). Let p∗1 =

p1(x1, . . . , xi, xi+1−γ) and p∗2 = p2(x1, . . . , xi, xi+1−γ). By [24], the resultant is invariant under this transformation.
Let p1 = xd1

i+1p
∗
1(x1, . . . , xi, 1/xi+1) and p2 = xd2

i+1p
∗
2(x1, . . . , xi, 1/xi+1), where the d1 = degxi+1

(p1) and d2 =
degxi+1

(p2). The resultant is unchanged by this transformation, once again by [24], so resxi+1
(p1, p2) is order-

invariant in U . Moreover, since neither p1 nor p2 is nullified in U , p1 and p2 are non-nullified in U . The proof of
Theorem A.1 examines this same transformation, and shows that the root functions of p1 and p2 map to the root
functions of p1 and p2 (with, of course, some special caveats for the θ∗ section, which don’t apply to θ1 and θ2).
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The leading coefficients of p1 and p2 are non-vanishing in U , and thus p1 and p2 are degree-invariant. Let θ1 and
θ2 be the root functions of p1 and p2 corresponding to θ1 and θ2. By Theorem A.2 The fact that θ1 and θ2 are
unequal at r′ means that they are unequal throughout U . However, this implies they are unequal at s, which is a
contradiction.

C. Correctness of the proof system

Lemma C.1. Rule 5.1 is correct.

Note that throughout this section, when proving the correctness of a mapping, we implicitly use the assumptions
from the mapping’s definition in the proofs.

Proof. Let R ⊆ Ri be a connected analytic submanifold such that s ∈ R. If p is not nullified on any point in R and
p is order-invariant on R, then p is analytically projectively delineable on R by Lemma 4.1.

Lemma C.2. Rule 5.2 is correct.

Proof. The first rule follows from the definition of the discriminant by the Sylvester matrix. For the second rule,
observe that p is nullified on any point r ∈ R if and only if cj(r) = 0 for all j ∈ [m]. Thus, statement follows
immediately. See also [11, Lemma 5].

Lemma C.3. Rule 5.3 is correct.

Proof. Trivial.

Lemma C.4. Rule 5.4 is correct.

Proof. Let R ⊆ Ri. Note that if p is reducible, then p /∈ factors(p). If p is reducible and every q ∈ factors(p) is
order-invariant (sign-invariant) on R, then p is order-invariant (sign-invariant) on R by [31, Lemma 3.2.2].

Lemma C.5. Rule 5.5 is correct.

Proof. Let R ⊆ Ri. If p(r) ̸= 0 for all r ∈ R, then p is order-invariant on R as an immediate consequence of the
definition of order-invariance.

Let R ⊆ Ri be a cell such that R↓[i−1] is a connected analytic submanifold and s ∈ R. If p(r) = 0 for all r ∈ R
and p is analytically projectively delineable on R↓[i−1], then p is order-invariant by Lemma 4.3.

Lemma C.6. Rule 5.6 is correct.

Proof. Let R ⊆ Ri such that s ∈ R.
Assume p is (analytically) projectively delineable on a connected superset R′ ⊇ R and realRoots(p(s, xi+1)) = ∅,

then by Definition 4.1 either p(r, r′) ̸= 0 for all r ∈ R′, r′ ∈ R or the graph of p over R′ is given by a function
θ∗ : R′ \ {r ∈ Ri | ldcfxi+1(p)(r) = 0} → R.

If ldcfxi+1
(p)(s) ̸= 0, then the second statement cannot hold, thus p is delineable on R′ without any real roots

on R′. Otherwise, if ldcfxi+1
(p) is sign-invariant on R′, by ldcfxi+1

(p)(s) = 0 follows ldcfxi+1
(p)(r) = 0 for all r ∈ R′

consequently θ∗ is not defined on R′; and again, it follows that p is delineable on R′ without any real roots on R′.
If p is delineable on R′ without any real roots on R′, then p is sign-invariant on R′ × R.

Lemma C.7. Rule 5.7 is correct.

Proof. As the endpoints of I are described by analytic functions, the statement follows immediately from [31,
Theorem 2.2.3 and Theorem 2.2.4].

Lemma C.8. Rule 5.8 is correct.

Proof. Let R ⊆ Ri such that its projection R↓[i−1] on Ri−1 is a connected analytic submanifold. If b.p is analytically
projectively delineable on R↓[i−1] and ldcfxi

(b.p) is sign-invariant on R↓[i−1], then by Lemma 4.2, b.p is analytically
delineable on R↓[i−1]. Furthermore, as repr(I, s) holds in R, it holds b.p(r) = 0 for all r ∈ R and that R is connected.

Now, if p = b.p, then p is trivially sign-invariant on R. Otherwise, by the order-invariance of resxi
(b.p, p) on R

and [34, Theorem 2.2], p is sign-invariant on R.

Lemma C.9. Rule 5.9 is correct.
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Proof. Let ⪯ be an indexed root ordering on some Ξ = dom(⪯) for some s ∈ Ri. Let R ⊆ Ri be a connected analytic
submanifold such that s ∈ R, ξ.p is analytically projectively delineable on R for all ξ ∈ Ξ and resxi+1(ξ.p, ξ

′.p) is
order-invariant on R for all ξ ⪯ ξ′.

For ξ ⪯ ξ′, let S := dom(θξ,s) ∩ dom(θξ′,s) ∩ R. Either ξ.p = ξ′.p, then the statement holds by definition of
projective delineability (Definition 4.1), or resxi+1

(ξ.p, ξ′.p) is order-invariant on R ⊇ S, then statement follows
immediately by Lemma 4.4.

So now let ξ ⪯t ξ′ (where ⪯t is the transitive closure of ⪯), then there exist ξ1, . . . , ξk such that ξ = ξ1 ⪯ . . . ⪯
ξk = ξ′. Here we will prove that the statements hold by induction, with the base case in the preceding paragraph.

Assume the inductive hypothesis that the statement holds for ξ1 and ξj , j < k. Let S := dom(θξ1,s) ∩
dom(θξj+1,s) ∩ R and S′ := dom(θξj ,s) ∩ S. Note that the statements hold for ξj and ξj+1 on S′. If S = S′,
then they also hold for ξ1 and ξj+1 on S. Finally, assume for a contradiction that S′ ⊂ S. Then θξj ,s is the “θ∗”
root function of ξj .p, and thus tends to −∞ or ∞ at the borders of S′. Hence by continuity it intersects either
with θξ1,s in the first case or θξj+1,s in the second case before it disappears. The first case is excluded by induction
hypothesis. The second case is excluded by the order-invariance of resxi+1

(ξj .p, ξj+1.p) on R ⊇ S. Thus, this is a
contradiction and the statement also holds for ξ1 and ξj+1. The induction is complete.

Lemma C.10. Rule 5.10 is correct.

Proof. Let R ⊆ Ri, s ∈ R and R′ ⊇ R be a cell such that p is analytically projectively delineable on R′.
By Definition 4.2, the variety of p on R′ can be described by analytic θ1, . . . , θk, θ∗ where dom(θj) = R′ for

all j ∈ [1..k] and dom(θ∗) ⊆ R′. If ξ is not the first or last root of p(s, xi+1), then θξ,s = θj for some j ∈ [k]. If
ldcfxi+1

(p)(s) = 0, then θ∗ is not defined at s, thus θξ,s = θj for some j ∈ [1..k].
Otherwise, if additionally ldcfxi+1(p) is sign-invariant on R′, then the variety of p on R′ can be described by

θ1, . . . , θk where dom(θj) = R′, j ∈ [1..k], thus θξ,s = θj for some j ∈ [1..k].

Lemma C.11. Rule 5.11 is correct.

Proof. Let R ⊆ Ri such that R ↓[i−1] is a connected analytic submanifold, p is analytically projectively delineable
on R↓[i−1], s ∈ R↓[i−1], repr(I, s) holds on R and ir ord(⪯, s) holds on R↓[i−1].

First note that as repr(I, s) holds on R↓[i−1], it follows that if l ̸= −∞, then θl,s exists on R↓[i−1], and if u ̸= ∞,
then θu,s exist on R↓[i−1].

• If p(s, b(s)) = 0, then there exists ξ ∈ realRoots(p(s, xi)) such that ξ(s) = b(s). By repr(I, s) the root function
θb,s exists over R ↓[i−1]. We show that θξ,s exists on R ↓[i−1] (according to Definition 4.4) and θξ,s = θb,s on
R↓[i−1]:

We prove the first by contradiction: Assume that for the domain S of θξ,s it holds S ∩ R ↓[i−1]⊂ R ↓[i−1].
As p is projectively delineable, then θξ,s is the θ∗ function and thus tends to −∞ or ∞ at at least one of
the boundaries of S. By continuity, this would imply θξ,s(r) ̸= θb,s(r) for some r ∈ S ⊂ R ↓[i−1], which is a
contradiction to the assumption that ir ord(⪯, s) holds on R↓[i−1].

Thus, θξ,s exists on R↓[i−1], and by the property ir ord(⪯, s) it follows that θξ,s = θb,s on R↓[i−1].

Finally, as repr(I, s) holds on R, it follows (r, θξ,s(r)) ∈ R for all r ∈ R↓[i−1]; in other words, p is sign-invariant
on R.

• If l ̸= u or p(s, b(s)) ̸= 0, then:

– If ldcfxi
(p) is sign-invariant on R↓[i−1], then by Lemma 4.2 p is delineable on R↓[i−1]. Thus, there exist

real root functions θ1, . . . , θk : R ↓[i−1]→ R of p on R ↓[i−1] covering all real roots of p on R ↓[i−1]; and
as R ↓[i−1] is connected, the properties ir ord(⪯, s) and repr(I, s) on R ↓[i−1] and the note above yield
(r, θj(r)) /∈ R for all r ∈ R↓[i−1].

– Now assume l ̸= −∞ and u ̸= ∞ and ldcfxi
(p) is not sign-invariant on R ↓[i−1]. By analytic projective

delineability of p, there exist real root functions θ1, . . . , θk : R↓[i−1]→ R of p on R↓[i−1] and a function
θ∗ : R↓[i−1] \ realRoots(ldcfxi

(p)(r)) → R covering all real roots of p on R↓[i−1].

As R ↓[i−1] is connected, the properties ir ord(⪯, s) on R ↓[i−1] and repr(I, s) on R and the note above
yield immediately (r, θj(r)) /∈ R for all r ∈ R↓[i−1] and j ∈ [1..k]. It remains to show that (r, θ∗(r)) /∈ R
for all r ∈ R↓[i−1] \ realRoots(ldcfxi(p)(r)). We split R↓[i−1] up into maximal cells in which ldcfxi(p) is
sign-invariant. Let S be any such cell, and note that S is an analytic submanifold by [31, Theorem 2.2.3
and Theorem 2.2.4] (see also Rule 5.7). We need to prove that either S ∩ dom(θ∗) = ∅, θ∗|S ≤ θl,s or
θu,s ≤ θ∗|S over S. Assume S ∩ dom(θ∗) ̸= ∅.
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∗ If there exists a ξ ∈ irExpr(p, s) with ξ ⪯t l (i.e. ξ(s) ≤ l(s)) such that θξ,s exists on R ↓[i−1]

(according to Definition 4.4), then θξ,s = θj for some j ∈ [1..k] and θj ≤ θl,s on R ↓[i−1]. By
projective delineability, either θ∗|S < θj ≤ θl,s or θj < θ∗|S on S.

∗ Analogously, if ξ ∈ irExpr(p, s) with u ⪯t ξ such that such that θξ,s exists on R↓[i−1], there exists a
j ∈ [1..k] such that either θu,s ≤ θj < θ∗|S or θ∗|S < θj on S.

∗ If there exists a ξ′ ∈ dom(⪯) \ irExpr(p, s) with ξ′ ⪯t l (i.e. ξ′(s) ≤ l(s)) such that θξ′,s exists
on R ↓[i−1] (according to Definition 4.4), then θξ′,s ≤ θl,s on R ↓[i−1]. If additionally resxi(p, ξ

′.p)
is order-invariant on R ↓[i−1] and θ∗ tends to −∞ at a boundary of S, then by Lemma 4.4 and
continuity it holds either θ∗ < θl,s or θ∗ = θl,son S.

∗ Analogously, if there exists a ξ′ ∈ dom(⪯)\ irExpr(p, s) with u ⪯t ξ′ such that θξ′,s exists on R↓[i−1],
resxi

(p, ξ′.p) is order-invariant on R↓[i−1] and θ∗ tends to ∞ at a boundary of S, then it holds either
θu,s < θ∗ or θu,s = θ∗ on S.

The above cases in combination with the fact that θ∗ either tends to −∞ or ∞ at a boundary of S (but
not both) yields that θ∗|S ≤ θl,s or θu,s ≤ θ∗|S . This concludes our proof.

Lemma C.12. Rule 5.12 is correct.

Proof. Let R ⊆ Ri such that R↓[i−1] is a connected analytic submanifold and let s ∈ R↓[i−1]. Let I be a symbolic
interval of level i such that its defining polynomials are not nullified on s and repr(I, s) holds on R.

Consider the case I = (sector, l, u), l ̸= −∞, u ̸= ∞, l.p ̸= u.p. As repr(I, s) holds, θl,s and θu,s are well-defined
on R ↓[i−1]. As l ⪯t u and ir ord(⪯, s) holds on R ↓[i−1], it either holds θl,s < θu,s on R ↓[i−1] or θl,s = θu,s on
R↓[i−1]. Moreover, by assumption repr(I, s) holds on R and R↓[i−1] is connected, thus R is connected (noting that
empty sets are connected).

The other cases are similar but simpler.

Lemma C.13. Rule 5.13 is correct.

Proof. This follows from the definitions.

Lemma C.14. Rule 5.14 is correct.

Proof. Let R ⊆ Ri and R′ ⊇ R be connected such that p is projectively delineable on R′. Now let p be a polynomial.
If ldcfxi+1

(p) is sign-invariant on R′, by Lemma 4.2 p is delineable on R′. Thus, the graph of p over R′ is described
by real root functions θ1 < . . . < θk on R′. It follows that for any indexed root expression ξ with ξ.k ≤ k it holds
dom(θξ,s) = R′ and θξ,s = ξ on R′.

Now, the result follows immediately from the definition of holds(I) and the previous statement applied on the
cell’s boundaries.
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