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Abstract: The spike protein is key to SARS-CoV-2 high infectivity because it facilitates the receptor
binding domain (RBD) encounter with ACE2. As targeting subunit S1 has not yet delivered an
ACE2-binding inhibitor, we have assessed the druggability of the conserved segment of the spike
protein stalk within subunit S2 by means of an integrated computational approach that combines the
molecular docking of an optimized library of fragments with high-throughput molecular dynamics
simulations. The high propensity of the spike protein to mutate in key regions that are responsible
for the recognition of the human angiotensin-converting enzyme 2 (hACE2) or for the recognition of
antibodies, has made subunit S1 of the spike protein difficult to target. Despite the inherent flexibility
of the stalk region, our results suggest two hidden interhelical binding sites, whose accessibility is
only partially hampered by glycan residues.
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1. Introduction

The spike protein (SP) subunit S1 has been the main drug target in attempts to combat
the high infectivity of SARS-CoV-2 by preventing the prime interaction with the human
angiotensin-converting enzyme 2 (ACE2) receptor. Since this approach has yet to yield
suitable small molecule inhibitors, we have investigated the druggability of the conserved
region of the flexible stalk region within subunit S2 by combining molecular docking with
high-throughput molecular dynamics simulations. The significance of this work is set
against concerns amongst governments, physicians, and the scientific community of the
threat that is posed by acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), with
almost 530 million cases around the world with more than 6.2 million certified deaths
(WHO dashboard, https://covid19.who.int (accessed on 8 June 2022)). SARS-CoV-2 shows
a strong affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor, a type
1 transmembrane protein that is responsible for the extracellular conversion of the an-
giotensin hormone into angiotensin II [1] through the SARS-CoV-2 spike protein (SP). The
SP is a highly glycosylated trimeric structure, common amongst the coronaviridae fam-
ily [2], which is constituted of two subunits, named S1 and S2. While S1 is responsible for
molecular recognition of ACE2, S2 is paramount to structural stability and membrane fu-
sion to deliver the viral genome [3]. The efforts of the scientific community were dedicated
to promptly developing vaccines or small molecules [4–7] that are specifically designed to
bind and neutralize the area on S1 that is responsible for ACE2 binding, namely the receptor-
binding domain (RBD). In 2020, the term variants of concern (VOC) was introduced to
describe new SARS-CoV-2 strains which differentiated from the original SARS-CoV-2
wild-type (WT) through mutations that cause drastic enhancement in transmissibility and
pathogenicity [8–10]. The B.1.617.2 strain (Delta variant) was identified in India by January
2021 and spread rapidly across the globe [11], overcoming the WT. In November 2021, the
B.1.1.529 (Omicron variant) became the dominant VOC over the Delta [12].

The SP is constituted of 1273 residues that are divided into two domains. Starting
from the signal peptide (residues 1–13) located at the N-terminal, the S1 subunit comprises
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residues 14–685, while the S2 subunit encompasses residues 686–1273 [13]. Among the
SARS-CoV-2 VOCs, major preoccupations regarded those strains that carried important
mutations and deletions, especially on the RBD [14]. The vaccine technology that has
been developed so far is designed to specifically target the RBD, where the majority
of the concerning mutations occur, increasing the risk for antibody inefficacy [15–18].
The potential loss of efficacy against the Omicron variant was attenuated by a reduced
replication and lethality, probably due to Omicron’s inefficiency in exploiting the cellular
transmembrane protease serine 2 (TMPRSS2) [19]. However, with the continuous viral
diffusion, the likelihood of new mutations remains critical and new variant-specific vaccines
need to be developed regularly to keep up with the rate of mutation [20]. While S1 and
the RBD are the SP domains that are most prone to mutation, S2 has a higher level of
conservation among the coronaviridae family [21]. The only S2 mutations that have been
identified so far are N764K, D796Y, N856K, Q954H, N969K, and L981F. Residues I921, S980,
V1187, F1218, and I1219 (Figure 1), present in both the Delta and Omicron strains (i.e., the
WT bears K921, I980, N1187, L1218, and G1219), are pivotal residues that confer increased
flexibility to the stalk [11,22,23]. Interestingly, the region between residues L1145–L1186
(Conserved Region 1, Figure 1), and between E1188–W1217 (Conserved Region 2, Figure 1)
contain Loop 1 and Loop2, which contribute to the S1 domain flexibility [24] and exhibit
highly-conserved sequences [25].

Figure 1. (A) Sequence alignment between the conserved SP stalk region of the wild-type (WT) or
Omicron and Delta variants. (B) Structural comparison between WT or Omicron (tan ribbon) and
Delta S2 (cyan ribbon) regions. The segment between residues L1145–W1217 is almost identical
between the strains, except for residue 1187, which divides the Conserved Regions 1 and 2. Glycans
were removed for clarity; the S1 subunit with the three receptor-binding domains (RBDs) and the
viral membrane are schematically represented.
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Molecular dynamics (MD) simulations highlighted crucial aspects and features of the
SP [26], including the flexibility of the SP stalk [23], which has been proposed as paramount
for ACE2 binding and infectivity [27]. In principle, a small molecule that is able to target
the stalk region would be effective on all the VOC by impairing the flexibility of the SP,
thus the infectivity of SARS-CoV-2, by interfering with the correct SP-ACE2 alignment.
We assessed whether Conserved Region 1 (Figure 1B) is solvent-accessible and able to
bind small molecules in the presence of the branched glycans by combining the molecular
docking of a library of optimized fragments [28] with high-throughput post-docking MD
simulations and binding free-energy calculations. Possible cryptic binding sites were
further evaluated through a mixed MD (mixMD) approach [29–31].

2. Materials and Methods
2.1. General Workflow

MD simulations and molecular docking were combined in a computational pipeline
(Figure 2) aimed to discern potential fragments that are able to bind the SP stalk. Ini-
tial MD simulations [32] of the stalk primed the structure for molecular docking, while
mixMD [29–31] sampled the accessibility of potential pockets. Molecular docking followed
by high throughput post-docking MD simulations established the stability of the predicted
poses, narrowing the number of putative binders to five, which were evaluated further, in
extended 1000 ns MD and mixMD simulations.

Figure 2. Computational workflow of the study. Preliminary classic molecular dynamics (cMD) and
mixed MD (mixMD) were performed on the spike protein stalk (SP); an MD-extracted conformation
of the SP stalk was used to dock 240 molecular fragments. The best 560 poses according to Vina
score were subjected to 10 ns of cMD ed evaluated according to the dynamic energy score (DES,
Equation (1)). The best five fragments according to DES were further simulated through cMD and
mixMD. BENZ: benzene; FAC: formic acid; MTA: methylamine. These fragments contain the basic
functional groups, namely aromatic (benzene, BENZ), hydrogen bond donors (formic acid, FAC;
methylamine, MTA), hydrogen bond acceptors (FAC), and aliphatic hydrophobic (MTA).
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2.2. Classic MD of the Spike Protein Stalk

The SP stalk was prepared using the CHARMM36 [33,34] force field. The fully gly-
cosylated SP model was retrieved from the CHARMM-GUI repository (https://charmm-
gui.org/?doc=archive&lib=covid19 (accessed on 16 January 2022)) [35] and trimmed from
residue E1144 to residue W1214, keeping all the glycan residues within this segment.
Hydrogen atoms in the S2 domain were added by Propka [36] at a simulated pH of 7.0.
The structural integrity was checked through HTMD [37], visually inspected, and disul-
fide bonds were patched manually through VMD [38] according to previous structural
knowledge [3]. Each system was solvated with TIP3P water molecules [39] added to the
simulation box considering 15 Å padding in every direction by the Solvate plugin 1.5
(http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/ (accessed on 11 November
2021)). The charge neutrality was achieved by adding Na+/Cl− to a concentration of
0.150 M using Autoionize plugin 1.3 (http://www.ks.uiuc.edu/Research/vmd /plug-
ins/autoionize/ (accessed on 11 November 2021)). The initial geometry and potential
energy were optimized using the conjugate gradient algorithm by ACEMD3 [40] to elim-
inate possible clashes and optimize atomic distances. Equilibration was achieved under
isothermal-isobaric conditions (NPT) using the Berendsen barostat [41] (target pressure
1 atm) and the Langevin thermostat [42] (target temperature 300 K) with low damping of
1 ps−1. During the 4 ns equilibration, a positional restraint of 1 kcal/ mol Å2 was applied to
the protein alpha carbons for the first 3 ns, and on the protein side chains for the first 2 ns.
The production run was performed in the NVT ensemble for 500 ns without any restraint.

2.3. Mixed Molecular Dynamics (MixMD)

MixMD [29,31] was used to explore the accessibility of the stalk region to both very low
(BENZ, FAC, MTA, Figure 2) and intermediate (fragments 1–3, Table 1) molecular weight
molecules, as well as possible cryptic binding sites. The MixMD systems were prepared
using PACKMOL [43], setting a minimum distance of 4 Å between each component to
avoid clashes and secure a broad placement of the probe molecules. An adequate number
of cosolvent molecules were introduced to reach a virtual concentration of 5% w/w. The
systems were then neutralized, equilibrated, and simulated as reported above. For each
probe or fragment, the production run was performed in the NVT ensemble for 500 ns.
Density maps were computed using the Volmap VMD plugin (https://www.ks.uiuc.edu/
Research/vmd/plugins/volmapgui/ (accessed on 11 November 2021)) setting a grid of
0.5 Å while the solvent accessible surface area (SASA) was estimated using vmdICE [44]
and Chimera [45].

Table 1. Summary of the best five fragments after 500 ns of cMD.

Fragment IUPAC NAME Pre-Unbinding
Position

Displacement
Time

1 1-pyridin-2-ylpiperidin-4-one N-terminal ~160 ns
2 N-phenyl-1,3,4-thiadiazol-2-amine N-terminal ~200 ns
3 6-fluoro-3-piperidin-4-yl-1H-indole N-terminal ~300 ns
4 3H-[1]benzofuro[2,3-d]pyridazin-4-one C-terminal ~200 ns
5 1,3-benzothiazole-6-carbonitrile C-terminal ~110 ns

2.4. Fragments Preparation and Molecular Docking

The SpotXplorer database, consisting of 240 optimized molecular fragments [28]
(Table S1), was converted to 3D conformers through the RDKit AllChem module [46],
protonated at pH 7 with Chimera, and energy minimized with the RDKit AllChem module.
Each fragment was docked using Autodock Vina [47,48], to the Conserved Region 1 of the
SP stalk using the structure from the last frame of the cMD equilibration (Figure S1) and
the residue V1164 as the center of a grid with a 46 Å side length, for a broad exploration of
the stalk surface. For each fragment, ten poses were ranked according to the docking score.
Poses that were in contact with glycans or outside the conserved region were discarded.

https://charmm-gui.org/?doc=archive&lib=covid19
https://charmm-gui.org/?doc=archive&lib=covid19
http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/
http://www.ks.uiuc.edu/Research/vmd
https://www.ks.uiuc.edu/Research/vmd/plugins/volmapgui/
https://www.ks.uiuc.edu/Research/vmd/plugins/volmapgui/
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The rationale behind our selection was to narrow down our list of fragments to those that
were able to specifically target the conserved set of protein residues of the stalk beyond
glycan’s reach. Poses away from the density maps that were produced by BENZ, FAC,
and MTA (see below) or not engaging simultaneously with at least two monomers were
also excluded.

2.5. Post-Docking Classic Molecular Dynamics

The best 500 docking complexes were subjected to 10 ns of post-docking cMD each. The
initial CGenFF force field [49,50] topology and parameter files of the molecular fragments
were obtained from the CGenFF software. Restrained electrostatic potential (RESP) charges
were calculated with AmberTools20 [51] after geometry optimization through Gaussian 09
at the HF/6-31G* level of theory [52]. Each complex was prepared for cMD, equilibrated,
and simulated as reported below. For each simulation, similarly to Sabbadin et al. [53],
we calculated the dynamic energy score (DES, Equation (1)), which is the sum, over all
the MD frames (n), of the ratio between the molecular mechanics energy combined with
generalized Born surface area (MMGBSA) binding energy and the fragment root mean
square deviation (RMSD) to the initial docking pose, using AmberTools20 and VMD.

DES = ∑n
i=1

GBSA
RMSD

(1)

The use of DES should favor fragments with high binding energy and stability (low
RMSD values throughout the MD trajectory). We excluded all the complexes with an average
RMSD > 10 Å and RMSD standard deviation > 5 Å and ranked the remaining complexes
according to the DES score. We then chose the five best fragments, which were visually in-
spected to avoid important interactions with glycans. These candidates were further evaluated
through 500 ns of cMD (Fragments 1–5, Table 1) or mixMD (Fragments 1–3).

3. Results
3.1. The Flexible Loops Promote Stalk Flexibility

Computational studies have suggested high flexibility of the SP stalk due to the
presence of Loops 1 and 2 [22]. This study focused on the SP stalk Conserved Region
1 (residues L1145 to L1186), which is less glycosylated than other SP domains. During
preliminary classic MD (cMD) simulations (Figure 3), the trimeric stalk maintained a stable
quaternary structure in the region L1150–L1210, while displaying high flexibility at the
level of the N-terminus (residues 1144–1149) and C-terminus (residues 1211–1214). The
flexibility at the N and C termini was due to the artificial truncation of S2, adopted to
specifically investigate the conserved stalk region. The flexible Loop 1 (residues 1160–1170)
was characterized by intermediate flexibility. The high root mean square fluctuation (RMSF,
Figure 3A) of the N- and C-termini is ascribable to the artificial cut that was performed
to isolate the stalk region from the rest of the SP, which created unnatural protein ends.
For this reason, we excluded the four N-termini amino acids for the successive steps of
the study. cMD simulations of the stalk in water showed high flexibility and mobility of
the trimeric stalk, aided by the opening of transitory pockets within flexible Loops 1 and
2, with the chains temporarily moving away more than 20 Å from each other (Figure 3B)
and forming an angle of about 133◦ between the alpha carbon atoms of P1143–V1164–I1172
(Figure S1).

3.2. The Conserved Region of the Stalk Is Accessible to Solvent and Small Fragments

Preliminary MixMD simulations were employed to assess the accessibility of the
Conserved Region 1 (Figure S2). The probes BENZ, FAC, and MTA indicated accessible
sections across the stalk. BENZ sampled possible hydrophobic pockets on both the N-
(close to K1149) and C-terminal (close to E1195) of the stalk. The latter was explored also
by FAC, alongside a further interhelical volume in the proximity of E1182. MTA, and
to a lesser extent BENZ, weakly interacted with the stalk at the level of Loop 1 residues
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V1164–S1170. These results indicate that the glycosylation of the stalk efficiently protects the
SP, although some small areas are accessible for potential binding. Interestingly, molecular
probes were able to intercalate within the three stalk helices, indicating possible pockets.
Solvent accessible surface area (SASA) analysis indicated more solvent-exposed sites at
the N-terminal of the stalk, below the connection with S1, and below the flexible Loop 1
(Figure S3) in accordance with mixMD results.

Figure 3. (A) Root mean square fluctuation (RMSF) of the SP stalk during cMD simulations. The
RMSF of each residue is mapped on the structure (left panel) and color-coded according to the value
(flexible residues are red); RMSFs are also plotted on the sequence (right panel); (B) the SP stalk
Conserved Region 1 (orange) is subjected to high flexibility during cMD simulations at the level of
Loop 1; the position of the S1 domain and the Loop 2 is reported for reference.

3.3. Molecular Docking and High Throughput Post-Docking cMD Predict Interactions with Loop 1

Molecular docking of the optimized library of fragments SpotXplorer that was per-
formed on the fully glycosylated stalk, produced binding poses with scores ranging from
−6.7 kcal mol−1 (suggested strongly binding) to −2.3 kcal mol−1 (suggested weakly bind-
ing, Table S2) with limited convergence with density maps obtained from MixMD simula-
tions of BENZ, FCA, and MTA (Figure S2). We discarded the last half of the poses (poses
1201–2400) as their docking score was higher than the arbitrary value of −4.5 kcal mol−1

and all the poses that did not interact with at least two monomers of the stalk or that
made contacts with the glycans. The remaining 500 poses were then simulated for 10 ns
of MD simulation each, for a total MD sampling of 5 µs, in a fully hydrated and flexible
environment. Poses were ranked according to the dynamic energy score (DES, Equation (1),
Table S3). Fragments with DES < −500 kcal mol−1 Å−1, average RMSD < 10 Å and RMSD
standard deviation < 5 Å were retained and visually inspected to filter out fragments that
did not remain close to the Conserved Region 1 and made contact with any glycan residue.
This led to the retaining of 18 fragments (Table S4), whose MD simulations were extended.

3.4. Longer Post-Docking MD Simulations Rebut Molecular Docking Predictions

Disappointingly, 13 out of the 18 fragments were completely displaced in the first
100 ns of the extended MD simulations (Table S4). Rotations, openings, and closures of
the flexible Loop 1 rapidly disentangled the fragments, causing the rapid displacement of
the fragments. However, it is common for molecular fragments to have low affinities [54],
sometimes close to or even lower than binding assay sensitivity [55]. The remaining
five compounds (Fragments 1–5, Figure 4, Table 1) initially interacted with Loop 1, in
correspondence with residues N1158–S1170, before moving away from the initial position
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in less than 300 ns (Figure 4). Planar compounds, predicted by molecular docking in sites
that were also sampled by the mixMD of BENZ and FAC, displayed better interactions with
Loop 1 residues N1158–S1170. Fragments 1–3 resided at the center of the trimer for more
than 100 ns, before dissociating; Fragments 4 and 5 resided mainly on the C-terminal end
of Loop 1 before unbinding through a temporary tunnel formed between the stalk chains.

Figure 4. (A–E) The best five fragments (1–5) according to molecular docking followed by 10 ns of
post-docking cMD simulations; the final conformation (stick representation) after 10 ns is reported.
(F–J) Stalk residues (ribbon) that most interacted with Fragments 1–5 during 500 ns of cMD; residues
with the highest occupancy are in maroon.

3.5. MixMD to Check the Fragments’ Accessibility to Conserved Region 1

Since mixMD simulations of the molecular probes BENZ, FAC, and MTA (Figure S2)
suggested some degree of accessibility to the stalk despite the high glycosylation of the
SP, we ran further mixMD simulations using Compounds 1–3 (Table 1, Figure 4) to inves-
tigate the accessibility of larger compounds, and any convergence with the metastable
configurations that were sampled during the 500 ns post-docking cMD simulations. During
mixMD simulations, the fragments were able to reach the stalk protein surface on isolated
spots, overcoming the shield that was provided by the glycans (Figure S4). Fragment 1
made fewer interactions with the stalk among the three compounds (Table S5), mainly
engaging residues F1148, T1155, K1149, E1151, and L1152 (Figure S4A). Fragment 2 formed
interatomic contacts with residues K1149, Y1155, E1151, L1152, V1176, H1159, and F1148
(Table S5, Figure S4B). Compound 3 formed the most persistent interactions with the stalk,
engaging Y1155, E1182, E1151, N1178, Q1180, K1149, H1159, L1152, R1185, ASP1153, F1156,
V1177, and D1153 side chains (Table S5, Figure S4C). Many of these residues were engaged
with a high turnover by different fragment molecules, indicating low stability of the in-
teractions. However, mixMD simulations indicated two cryptic binding sites; these sites
were occupied for almost the whole duration during single molecule simulations of 1–3. In
Sub-pocket 1 (Figure 5B), located in the Conserved Region 1, Fragment 3 formed hydrogen
bonds with E1151 and hydrophobic contacts with residues F1148, K1149, L1152, and Y1155.
In Sub-pocket 2 (Figure 5C, Videos S1 and S2) at the interface between Conserved Regions
1 and 2, a molecule of three formed hydrophobic contacts with L1186, V1189, A1190, and
K1191, and 3 hydrogen bonds with E1182, N1194, and N1187; glycan residues participated
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in the stabilization of the molecule through van der Waals contacts (Video S1). Sub-pocket 2
was also identified by the FAC probes around residues E1182–K1191 (Figure S2), suggesting
that it might provide an overall stable binding site, although far from the flexible Loop
1. MixMD simulations of 3 sampled an alternative conformation of the fragment within
Sub-pocket 2; interestingly, three molecules of Fragment 3 occupied putative binding sites
on the symmetric trimeric stalk at the same time (Video S2), suggesting accessibility and
the possibility to exploit the two pockets for drug design purposes.

Figure 5. MixMD simulations indicated two sub-binding pockets. (A) Overview of the stalk SP
(white transparent surface); glycan residues are depicted with an orange transparent surface, while
Fragment 3 is in green van der Waals spheres. (B) Magnification of the Sub-pocket 1 with 3 in green
stick representation; (C) magnification of the Sub-pocket 2; Fragment 3 is in green stick representation,
while glycan residues are orange. Hydrogen bonds are shown as dashed red lines.

4. Discussion

The SP stalk region is conserved amongst the SARS-CoV-2 VOCs. Given its role in ori-
enting the RBD for binding to ACE2, impairing its flexibility through the binding of a small
molecule or disrupting its integrity through a planar molecule that is able to intercalate be-
tween the stalk helices could represent a therapeutic approach to explore. We investigated
the druggability of the SP stalk using 240 biologically active molecular fragments, evaluat-
ing the shielding effect of the glycan residues on the protein surface. Our computational
workflow combined molecular docking, high-throughput cMD simulations, and mixMD as
orthogonal methods to evaluate putative interactions on the stalk region. Molecular dock-
ing predicted putative interaction sites around residues T1160–S1170. High-throughput
cMD simulations of 500 docking poses suggested the instability of docking predictions, ex-
cept for a few fragments that were then further evaluated in longer simulations. Metastable
interactions on the whole stalk were confirmed in the proximity of residues H1159–I1169.
The mixMD simulations of the three most promising fragments 1–3 sampled two narrow
binding sites within the helices of the stalk. Sub-pocket 1 (Figure 5B) is located close to
Loop 1 and might represent an anchor point for the design of larger ligands bearing a
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group that intercalates between the stalk helices and a flexible moiety that impairs Loop
1 dynamics and likely the whole SP flexibility, although this strategy appears complicated
due to the extreme flexibility of the unstructured region as well as the possible influence of
the glycans on the S1 unit. Sub-pocket 2 (Figure 5C) presents a balanced mix of hydrophilic
and hydrophobic residues that increase the druggability compared to Sub-pocket 1. How-
ever, it bears the non-conserved residue N1147, it is more distant from Loop 1 than Pocket
1, and it is heavily influenced by glycan residues.

5. Conclusions

We applied a computational pipeline that exploited hundreds of classic MD simula-
tions to assess the best molecular docking poses according to the Vina scoring function.
Despite the good scores that were obtained, most of the poses displayed instability in a
fully flexible and hydrated simulated environment. This should stress the importance of
combining MD simulations with molecular docking for drug discovery and development.
Despite the state-of-the-art methodology that was used, our work highlights the challenges
of exploiting the SP stalk as a therapeutic target. A fragment-based approach appears
challenging for this task whereas alternative routes that consider the symmetry of the stalk
and its sub-pockets might improve the results that were obtained by adding up binding
stabilization from more interaction sites. Future studies could, therefore, be based on
the symmetry of the trimeric SP stalk and consider higher molecular weight ligands, to
evaluate if they are able to overcome the glycan residues’ hindrance of the binding pathway
to the pockets that were identified as Sub-pocket 1 and Sub-pocket 2. This work, to the best
of our knowledge, is the first computational characterization of the SP stalk from a drug
discovery perspective.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14122789/s1, Figure S1: Our simulation indicated that an angle
of 133.56◦ is formed between P1143, V1164, and I1172 causing important changes in the structure
with the consequent opening of broad gaps between the chains with P1143 and G1171 being key
residues for structural flexibility; Figure S2: MixMD Density maps for BENZ (grey), FAC (blue), and
MTA (red) at the 20% iso value. The probes identified possible sites on the stalk (ribbon) accessible
to small molecules, despite the presence of glycans (not shown for clarity); Figure S3. (A) Solvent
Accessible Surface Area (SASA) indicates possible accessible sites (red color) toward the N-terminal
of the stalk, below the connection with S1, and below Loop 1; glycans are shown as tan surface. (B)
Glycan residues movement tends to give access to a small portion of the stalk and has a considerable
impact on the accessible surface; Figure S4: Contacts formed during mixMD simulations of fragments
1–3. The stalk is reported as a cyan ribbon, while the most involved residues (Table S5) are in stick
maroon representation; Table S1: SMILES of the fragments used; Table S2: Fragments’ docking poses,
ranked according to the docking score; Table S3: DES of the 559 fragments. The average (avg) and
standard deviation (SD) of DES, GBSA, and RMSD are also reported; Table S4: The best 18 fragments
according to post-docking MD; Table S5: The best 5 fragments (1-pyridin-2-ylpiperidin-4-one, N-
phenyl-1,3,4-thiadiazol-2-amine, 6-fluoro-3-piperidin-4-yl-1H-indole); their contacts’ occupancies
are indicated individually with the respective frequency expressed in % over the totality of the MD
frames; Video S1: Fragment 3 bound to sub-pocket 2 (binding mode 1). One molecule of fragment 3
is depicted as in green stick, the SP stalk as a white transparent ribbon, and glycan residues as black
lines; hydrogen bonds are shown as red dashed lines; Video S2: Fragment 3 bound to sub-pocket 2
(binding mode 2). Three molecules of fragment 3 occupy a sub-pocket 2 each on the surface of the SP
stalk. Fragment 3 is depicted as in green stick, the SP stalk as a white transparent ribbon, and glycan
residues as black lines; hydrogen bonds are shown as red dashed lines.
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read and agreed to the published version of the manuscript.
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