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Spontaneous imbibition dynamics in two-dimensional porous media: a
generalized interacting multi-capillary model
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The capillary bundle model, wherein the flow dynamics of a porous medium is predicted from that of a bundle of
independent cylindrical tubes/capillaries whose radii are distributed according to the medium’s pore size distribution,
has been used extensively. But, as it lacks interaction between the flow channels, this model fails at predicting complex
flow configuration, including those involving two-phase flow. We propose here to predict spontaneous imbibition in
quasi-two-dimensional (quasi-2D) porous media from a model based on a planar bundle of interacting capillaries. The
imbibition flow dynamics, and in particular, the breakthrough time, the global wetting fluid saturation at breakthrough,
and which capillary carries the leading meniscus, are governed by the distribution of the capillaries’ radii and their
spatial arrangement. For an interacting capillary system consisting of 20 capillaries, the breakthrough time can be
39% smaller than that predicted by the classic, non-interacting, capillary bundle model of identical capillary radii
distribution, depending on the spatial arrangement of the capillaries. We propose a stochastic approach to use this
model of interacting capillaries for quantitative predictions. Comparing bundles of interacting capillaries with the
same capillary diameter distribution as that of the pore sizes in the target porous medium, and computing the average
behavior of a randomly-chosen samples of such interacting capillary bundles with different spatial arrangements, we
obtain predictions of the position in time of the bulk saturating front, and of that of the leading visible leading front, that
agree well with measurements taken from the literature. This semi-analytical model is very quick to run and could be
useful to provide fast predictions on one-dimensional spontaneous imbibition in porous media whose porosity structure

can reasonably be considered two-dimensional, e.g., paper, thin porous media in general, or layered aquifers.

I. INTRODUCTION 48

49

When a wetting fluid is placed in contact with a porous 5°
medium, the fluid spontaneously imbibes into the pore5*
space due to capillary suction. Such spontaneous imbibi- sz
tion in the porous matrix is crucial for applications such ss
as oil recovery from reservoirs' =, Paper Analytic Devices ss
(UPADs)*3, textiles®, inkjet printing”®, microfluidics®!3,
lab-on-chip devices'*!3, point-of-care diagnostics'®!7, Poly-ss
mer Electrolyte Membrane Fuel Cell (PEMFC)'®!°, micros,
heat pipes?*?!, in understanding the motion of blood cells?? ss
and in the design of bio-inspired drainage and ventilation se
systems>*. Capillary driven imbibition in a homogeneous eo
porous medium follows diffusive dynamics, where the imbi- e:
bition length is proportional to the square root of time>*2°. 62
This kind of dynamics was first characterized by Lucas®’ and es
Washburn?® for a horizontal cylindrical capillary tube: during s
the spontaneous imbibition of a wetting fluid of viscosity U ines
a tube of radius r, the imbibition length (which here is sim- es
ply the longitudinal position of the meniscus along the tube) ,

55

is given by o8
69

I rccosewt, (1)

2” 71

where o is the surface tension coefficient and 6y, is the wet- i
ting angle of the invading fluid on the tube’s wall. In Eq. (1),
the prefactor of the /¢ law is proportional to /7, which im- ™

plies that at any given time the meniscus will have advanced "
76

77
78
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more along a capillary of larger radius than along one of
smaller radius. Later, the phenomenon of imbibition in a sin-
gle pore/tube was observed to be strongly dependent on the
geometries of the capillaries?0.

Due to the similarity in the macroscopic laws describing
the time evolution of the imbibition length between imbibition
in a capillary tube and imbibition in a homogeneous porous
medium, the capillary bundle model, considering a bundle of
non-interacting capillaries of different radii, is classically con-
sidered as a proxy for porous media, in particular, soils*!=**.
However, in a naturally occurring porous medium, the pores
are of various shapes and sizes, and are interconnected***®. In
a quasi-two-dimensional (2D) porous medium such as paper,
Bico and Quéré47 showed that there are two imbibing fronts,
a leading front in the small pores and a bulk saturating front
which lags behind, which is contradictory to the predictions
of the classic bundle of (non-interacting) capillaries, where
the pores with larger radii have the leading front during imbi-
bition.

The model geometry consisting of interacting capillaries
(i.e., a capillary bundle where an opening allowing fluid ex-
change exists between adjacent capillairies, see e.g. Ref.55)
accounts for the effect of the interaction between pores on
the pore scale flow dynamics, which in turn affects the Darcy
scale flows in porous media*®>>. In a system of two inter-
acting capillaries, the imbibition in the capillary of smaller
radius is found to be faster than that in the one of larger ra-
dius, unlike the behavior suggested by Eq. (1). However, a
majority of these models were limited to predicting the im-
bibition dynamics in an ordered arrangement of pores or in
two and three interacting capillary systems. For a system con-
sisting of three interacting non-cylindrical capillaries, Unsal
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et al.>*8 showed experimentally that the imbibition speed ise
fastest in the capillary of least effective radius. On the conase
trary, Ashraf et al.>>, using a one-dimensional lubrication ap-4o
proximation model and considering a system of three interua:
acting cylindrical capillaries, showed that imbibition is not al-az
ways fastest in the capillary of smallest radius. Furthermorejas
both these studies®>° showed that, for three capillary sysas
tems, the random positioning of the capillaries strongly im-as
pacts the invasion behaviour. But how the interconnectioruas
between capillaries impacts the overall imbibition dynamicsuaz
is far from being fully understood in the general case of auas
larger number of tubes. Consequently, interacting capillaryiae
systems, despite having a complexity which is intermediateiso
between that of the classical bundle of non-interacting capils:
laries, have so far not been used to predict the generalized im-s.
bibition phenomenon observed in porous media consisting ofiss
several pores of irregular sizes and varying connectivity. Toisa
this aim, more complex models have been introduced sincejss
based on pore-network geometries inferred from a geometrise
cal analysis of the porous medium in which imbibition is toss
be investigated®®°!. We will present here a model of interass
mediate complexity between those early interacting-capillaryse
models and pore network models. Note that in many practieo
cal cases, the detailed porous structure is not known, and onlyies
an estimate of the pore size distribution is available; in suche
cases a pore network model cannot be applied without mak-es
ing assumptions on the unknown structure, whereas the modekhes
presented here can be applied directly. 165

We thus propose a generalized one-dimensional model o™
predict spontaneous imbibition in a capillary bundle consist-
ing of any number of randomly arranged cylindrical tubes that
interact with each other, with any arbitrary distribution of the®”
capillaries’ radii. The model generalizes the study by Ashraf
et al.,>> for systems of two and three interacting capillaries?e®
to an arbitrary number of interacting capillaries. It is meant
to model spontaneous imbibition in quasi-2D porous mediaes
for which the pore size distribution is known. The model iso
inspired from a model developed to tackle spontaneous imbizi
bition in stratified geological porous media®?. The two modar2
els are formally very similar to each other, but, due to thess
difference in geometries (flat layers for the stratified geologza
ical formation, cylindrical tubes in the present model), thes
equations are not identical. More importantly, the two stud-e
ies differ widely in that the relative positioning of the lay-rr
ers in a geological medium is given, whereas, for a quasi-2Dizs
porous medium whose pore size distribution is known, thee
relative positioning of connected capillaries of different di-so
ameters within the 2D bundle that can predict the medium’see:
behavior is not known a priori. Here, we explain the unders=
lying physical phenomena causing the menisci to advance atss
different rates in the different capillaries, and demonstrate thatsa
both the spatial arrangement of the interacting capillaries, and;ss
for a given arrangement, the contrasts in the capillaries’ radikss
(i.e., their ratios), are crucial in predicting the imbibition dy-e7
namics. In contrast to the standard (non-interacting) capillaryiss
bundle, this model provides predictions that are qualitativelyiso
consistent with the phenomenology of spontaneous imbibi-eo
tion in real (quasi-)two-dimensional (2D) porous media. Ires:

particular, this model correctly predicts that the smaller pores
carry the leading front, while the larger pores carry the lag-
ging saturating front responsible for the mass uptake of fluid
in the porous medium, as measured in a paper-based porous
medium®*’. Furthermore, we provide a successful quantitative
comparison between the measurements of Bico & Quéré on
the leading and lagging imbibition fronts to predictions of the
model obtained using a stochastic approach: the predicted be-
havior is the average of those obtained for all possible spatial
organizations of the capillaries’ diameter distribution. Though
less accurate than fully numerical (and much more compli-
cated) pore network models, this semi-analytical model has
the advantage of running within seconds on any computer.

The presentation is organized as follows. We first review
the model by Ashraf et al.,> (section IIA). We then pro-
ceed to extend it to a system consisting of 4 interacting cap-
illaries (section 11 B), before presenting the generalized one-
dimensional model predicting spontaneous imbibition in an
interacting multi-capillary system (section II C). We then ex-
amine the imbibition dynamics in a system of four interacting
capillaries (section III A) and in a similar system consisting of
20 capillaries (section III B). In the discussion, we first com-
pare the predictions of our model to those of the classic, non-
interacting, capillary bundle (section III C 1), and, finally, con-
front its predictions of the leading and lagging fronts in a real
quasi-2D porous medium from the literature to the published
experimental measurements (section III C 2). Section IV con-
tains a summary of the work and conclusive remarks, and dis-
cusses prospects to this study.

II. MODELS
A. Capillary imbibition in interacting capillaries

Using the capillary system shown in Fig. 1, Ashraf et al.,>
used volume of fluid®® (VOF) two-phase flow simulations to
study spontaneous imbibition in a bundle of two or three inter-
acting capillaries. These CFD (computational fluid dynamics)
calculations provided the entire pressure and velocity fields
inside the connected capillaries. They showed that (1) the in-
vading wetting fluid transfers between two adjacent capillar-
ies from the capillary of larger radius to that of smaller radius,
but this transfer occurs only in the immediate vicinity of the
(less advanced) meniscus of the capillary of larger radius; (2)
that everywhere else (that is, everywhere except in the vicinity
of that meniscus), the flow in the capillaries is not perturbed
by the transfer of fluid between the capillaries; and (3) that,
consequently, the pressure can be considered uniform over all
transverse sections of the capillary system where both capil-
laries are filled with the same fluid, since no flow occurs along
the transverse direction (if one neglects the small regions in
the vicinity of the less advanced meniscus). These findings
(1-3) served as basic assumptions to develop a reduced or-
der, Washburn-like one dimensional model for a bundle of two
and three interacting capillaries that can interact hydrodynam-
ically with the neighbouring capillaries along their touching
sides. The model predicted that in a bundle of two interact-
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ing capillaries the meniscus in the capillary of smaller radius
moves ahead of the other one during the spontaneous imbibi-
tion, in consistency with the results of the VOF simulations.
In this study we shall generalize the reduced order model of
Ashraf et al.,> to an arbitrary number of capillaries positioned
in the same plane and interacting with their neighbours.

(a)éB (b)

FIG. 1. Spontaneous imbibition in two interacting capillaries, (a)
cross-sectional view, (b) lateral view showing the contact angle 6.

A0,

For a flat bundle of three interacting capillaries, the modekse
of Ashraf et al.,>> showed that the distribution of radii and theao
spatial arrangement of the capillaries impact the imbibitiores:
behavior in the capillary system significantly. The meniscussz
in the capillary of smallest radius does not always move aheacss
of the others. 244

In the following sections, we examine the dynamics ofss
menisci during spontaneous imbibition in a flat bundle con-24s
taining an arbitrary number of interacting capillaries. Thiss7
generalization of the interacting capillaries’ model follows thezss
model development formulations from the study of Ashraf etass
al.,%? for imbibition in stratified porous media. In a stratifieckso
porous medium, the contrasts in layer transmissivities and thees:
relative positioning of the layers control the imbibition dy-s2
namics, whereas in the present interacting capillaries bundlesss
model, the positioning of the capillaries also plays a cruciakss
role, but the role played by the transmissivities in the strati-ss
fied medium is played by the product of the capillaries’ per-se
meabilities by their cross-sectional areas, both of which ares?
controlled by the contrasts in the capillaries’ radii. 258

We first describe below the one-dimensional model formu-zse
lation for a system of four interacting capillaries to understanckse
the underlying equations, before generalizing the model to ae:
multiple-interacting capillary system. 262

263
264
B. Model development for four interacting capillaries 265
266

To predict the dynamics of spontaneous imbibition in asr
porous medium using a system of interacting capillaries, Weses
need to take the arrangement of capillaries into account, un-=es
like for the classic capillary bundle (sometimes called bundle=zo
of-tubes) model. For a porous medium made of »n interact-r:
ing capillaries, there are n!/2 different arrangements. Figer:
2 shows a bundle of four interacting capillaries that are orrzs
dered spatially according to their radii ro > rg > ry > rs; Weera
call this arrangement a8y5. The capillary pressure in tube &5

(i=«a,B,7, ) is given by the Young-Laplace equation as®*% ;7
2 6 277
Pc; = =0 €Os bw ; (2)7s

ri

279
where o is the surface tension and 6,, the contact anglezso
hence, Pcy < Pcg < Pcy < Pcg. The corresponding imbibi-s:
tion lengths in the tubes at any time ¢ are denoted respectivelyzs:

b
-1

QR ™™
=

Zg

L

FIG. 2. Schematic showing the spontaneous imbibition in an ordered
system of four interacting capillaries. The imbibition lengths in cap-
illaries a, B, v, 6 of radii rg, rg. Iy, s are denoted by z¢, 285 2y 25>
respectively. The cross section of the system of interacting capillaries
is also shown.

by z;(t). We consider the assumptions from Ashraf et al.>,
according to which (1) the pressure equilibrates over the sec-
tions of the capillary system that are entirely filled with the
invading fluid, and (2) fluid transfers from a capillary having
a larger radius to an adjacent capillary having a smaller radius
just before the meniscus, which in the model we assume to oc-
cur at the position of the meniscus. We show this fluid transfer
between adjacent capillaries in the vicinity of the meniscus by
vertical arrows in Fig. 2. We consider the interaction between
the capillaries to be sufficiently low for the Poiseuille flow in
each of the capillaries to be maintained. At any given time
t, the less advanced meniscus (i.e., that for which the imbibi-
tion length is the smallest) will be in the capillary for which
the driving capillary pressure jump across the meniscus is the
smallest, hence it is will be the meniscus in the o capillary.
For z < z4(t), the pressure field must be identical in all cap-
illaries. Similarly, the next-less-advanced meniscus is neces-
sarily the f3 capillary driven by the capillary pressure Pcg, so
at any time ¢ the pressure field is identical in capillaries f3, ¥
and 0 for z¢(t) < z < zg(t), and so forth: the pressure field is
identical in the & and  capillaries for zg(¢) < z < zy(t).The
imbibition length in capillary 8, z5(¢) is the largest at any time
t.

We now consider one of the random arrangements as shown
in the schematic of Fig. 3, where the order of arrangement
of the capillaries is Byad. It was explained by Ashraf et
al.,>* that, for a randomly-arranged interacting capillary sys-
tem, the meniscus in the smallest radius capillary does not
always lead. For this arrangement, depending upon the con-
trasts in the radii, three different positionings of the menisci
are possible as shown in Fig. 3 (a), (b) and (c). At any given
time #, for 0 < z¢(#), the pressure field is identical in all capil-
laries, and the pressure drop from the inlet to z4(2) is Pcg. For
7> z¢(t), the imbibing fluid is continuous in the capillaries
and 7, since they are connected. Therefore, the pressure field
is the same in the capillaries B and y for z4 (1) < z < zg(t). As
rg > ry (meaning that the capillary suction in 8 is less than
that in 7), during the spontaneous imbibition, zg (1) < zy(t), at
all times. Although the capillary 0 is filled with the imbibing
phase, the non-wetting fluid in o disconnects it from capillar-
ies B, for z > z4(t). Therefore, for z > z4(t) the pressure
field in § can be different from that in 8,y. For the arrange-
ment Byod shown in the schematic of Fig. 3, z¢ < zp < 2y
and z4 < zg during the imbibition process and the position of
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FIG. 3. Spontaneous imbibition in a system of four interacting cap-, _
illaries with a spatial arrangement of By of the capillaries. The
imbibition lengths in capillaries o, B, v, 6 of radii rq, rg, 1y, rg o
are z¢(t), zg(t), zy(r), z5(t), respectively. The schematics of the*’
imbibition phenomenon show the fluid transfer at menisci locations
with arrows. Fot this spatial arrangement, depending upon the con-
trasts in the capillaries’ radii, the possible orders in the invasion
lengths can be (a) z¢ < zg <zy <z, (b) z¢ < 7 <z5 <zy ands11
(¢) za < zg < zg < zy. The cross section of the system of interacting
capillaries is also shown for (a).

312

z5(t) relative to zg (¢) and zy(¢) depends on the contrasts in the
capillaries’ radii.

The detailed development of the generalized one-
dimensional model for this system of four interacting capil-
laries with arrangement Byod is described in Appendix A.
The pressure drop across each of the sections is determined
individually, i.e., for sections (I) 0 < z < zg, () z¢ <z < 28,
() zg <z <2zy, and (IV) z4 < z < z5. As spontaneous im-
bibition is driven by capillary forces, the sum of the pressures4
drops across all the sections of a capillary is equal to the cap31®
illary pressure of that capillary. 316

RF(Z&Q’
j

where By, is the pressure drop across the section of index”’

j=),II),(II),(IV) of the capillary of index i = a, B,7, 0 s
By solving the system of equations expressing (i) Darcy’s law320
in each of the capillaries, and (ii) the relations between the
meniscii’s advancement and the fluid velocities and fluid ex-,

change between the capillaries, we obtain the equations gov-

323
erning the flow in the interacting capillaries, which are,

__ Buzalt) (pdia 4%
g+ U P dr

313

3)

22

324

d 325
2425
s dt)

(42

2 dzy
Y dt

Pcy

P05—Pca:w<ddzt6>7 ®
5
 8u(zp(t) —zalt) [ Ldzp | ,dzy
Pclg—PCa—,M<ﬁdt+7dt> (6)
8 t)—zg(t d
pe -y = B0 ()

Egs. (4) to (7) are rendered non-dimensional by normaliz-
ing the positions by the total capillary system’s length, L, and
time by [8uL?/(Pcgr?)], thus defining the non-dimensional
positions and times

Pcaré
8ulL?

3j .
Zizzl , 1=

o, B,7,06 and T = (8)

Introducing the contrasts in radii, A; = r;/rq, and in capillary
pressures, & = Pc;/Pcg, for i = 3, ¥, 6, we then obtain the
non-dimensional form of Eqgs. (4) to (7) as

__ Za dZa Yy dzﬁ lzdzy )dezs
L+ A+ A7 + A4 Bar ""var " 0ar )’
&)
Zs —Za <d25>
es—1= — (10)
A3 dT
Zﬁ dZﬁ 2dZy
£p — =20 (’13 ) an
Z,~Zp (dzZ,
&= 2 (dT)a (12)

Further assuming that the contact angle 0, is the same in all
capillaries, we have & = 1/A;, and upon rearranging the gov-
erning Eqgs. (9) to (12) and adding them, we obtain,

2<1+ Y .s,-zlf)Tz@+z§x§+z§x§+z§z§. (13)
=By,

Eq. (13) expresses that, in a system of interacting capillaries,
the sum of the squares of the product of the non-dimensional
radius with the non-dimensional distance invaded in all the
capillaries is proportional to the invasion time 7. For dif-
ferent arrangements of a system of 4 interacting capillaries
having the same contrasts in capillary radii, the total capil-
lary suction of the system remains the same. Therefore, for
any of the 4! /2 = 12 possible arrangements, rearranging the
equations governing the imbibition process, and adding them,
leads to Eq. (13). However, the velocity at which the indi-
vidual meniscii travels in each of the tubes depends on the
particular arrangement of the capillaries.
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C. Generalizing the one-dimensional spontaneous imbibition zeo
model in the interacting capillary system 361

362

Equation (13) is readily generalized to a system of # inter-ss

acting capillaries, in the form 364
365

}’l }’l 366

2 (Z ei/l,f‘) T=Y vz (14),,
i=1 i=1

368

where ; = wriz/(nril) (j = 1,2,..,n) is the non*°
dimensional volume imbibed in the capillary of index i3
Eq. (14) expresses that the sum over all capillaries of™
the non-dimensional volumes times the corresponding non*"*
dimensional imbibition lengths, is proportional to time. This*"®

can be compared to the dynamics in a bundle of non®™

interacting capillaries, for which we know that the dynam>"
ics are diffusive, i.e., for each of the capillaries, the imbibed®
length square is proportional to time. 377
We note from the derivation of Eq. (13) for the system con*"®
sisting of four capillaries, that each arrangement of the cap?"°
illaries will have a different set of governing equations for
menisci positions with time. This is because the knowledge
of the arrangement is required to determine the regions of the**°
capillaries across which the pressure equilibrates and the loca-
tions of fluid transfers. Therefore, for a system of » interactingss:
capillaries, we now propose an algorithm which can determiness:
the imbibition behaviour in the bundle of interacting capillar-sss
ies and form the governing equations for a generalized model
of such systems of » interacting capillaries. A MATLAB pro-
gram has been written to implement this algorithm and obtairsss
the advancement of the menisci, z;(¢), where [ = 1,2,3,...,n,
as a function of time. The step-by-step procedure is described,,,
in detail in Appendix B, but its principles can be described in,,,

the following manner. 387

388
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Cc, - ( 389
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FIG. 4. Schematic of spontaneous imbibition in an n-capillary sys4°4
tem where the capillaries are positioned randomly. The capillaries imos
the arrangement are denoted by C1,C,, - - - Cy,. The capillary radii aresos
denoted as rg4,1p, e, -+, and the corresponding imbibition distancesoo
at time ¢ are denoted by z4(¢),z(f),z¢(2),- - - 410

411
First, the algorithm searches for the capillary of largest ra-=:
dius in the arbitrary arrangement, whose meniscus position is:us

74 at a given time; it is denoted C; in Fig. 4, where the capil-
laries in the order of arrangement are denoted from Cj to C,,.
The pressure drop in the region 0 < z < z, is determined for all
the capillaries and the algorithm then considers two regions:
the ‘top region” consisting of the capillaries C; to C;_y) and
the “bottom region’ consisting of the capillaries C(; 1) to G,
(see Fig. 4). The largest radius capillaries in each of these
two regions are determined and the pressure drop in the re-
spective regions are determined for sections z, < z < z; and
Za < 2 < zc. Now, each of these two regions is further divided
into two subregions each, i.e., containing the capillaires C; to
C(j—1) on the one hand and C{; ) to C(;_y) on the other hand
in the ‘top region’, and C(;, 1) to C;_1) on the one hand and
Cik+1) to C, on the other hand in the ‘bottom region’. The
pressure drops are determined in each of the subregions. This
procedure is then performed recursively until the algorithm
has identified the pressure drop in each of the sections for ev-
ery capillary. It can then formulate the governing equations,
which are consequently solved to obtain the advancement of
all menisci as a function of time.

Ill. RESULTS AND DISCUSSIONS

We first explore the imbibition of a system of four interact-
ing capillaries, followed by the imbibition in a system consist-
ing of 20 capillaries.

A. Interacting four-capillary system

In section II A,we have anticipated that, in an ordered ar-
rangement, the meniscus in the capillary of smallest radius, &,
will always lead, followed by the capillary of second small-
est radius, 7y, as shown in Fig. 2, while the meniscus in the
capillary o always lags behind. Solving the governing equa-
tions for this arrangement, we always get the same trend, i.e.,
za(t) < zg(t) < zy(t) < z5(t) for the imbibed lengths in the
capillaries at any given time during the imbibition process.
However, 4! /2 = 12 arrangements are possible for an inter-
acting four-capillary system, for any given 4 radii of the cap-
illaries. In section II B we chose one arrangement Syad and
anticipated 3 cases of different relative positioning of menisci.
The possibility of occurrence of these 3 cases depends upon
the radii contrast in the capillaries. A change in radii contrast
changes the pressure fields in the capillaries, which governs
the menisci positions. Each of the 3 cases shown in Fig. 3
are shown in Fig. 5 (a), (¢), (e). Solving Egs. (9) to (12) over
non-dimensional times, we show in Fig. 5 (b), (d), (f), how
the relative positions of the plots of Zg, Zy, Zs as a function
of time change when the contrast in the radii of capillaries
are changed according to the three configurations addressed
in Fig. 5 (a), (¢), (e).

We now consider two other random arrangements yo o3
and ya 8, which are illustrated in Figs. 6 and 7, respectively.
In these figures, we show the schematic of the menisci loca-
tions at a given time during imbibition in (a), (c), (¢). The
corresponding time evolution of the positions of menisci in
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FIG. 5. Spontaneous imbibition in a system of four interacting capillaries which are positioned with respect to each other according to the
arrangement Yo, for three different contrasts in capillary radii. (a), (c), (¢) represent the schematics of possible imbibition behavior at a
given time ¢. The distribution of radii predicting the imbibtion phenomenon are indicated in the plots (b), (d) and (f). The non-dimensional
times at which the leading meniscus reaches the outlet end of the interacting capillary system (7}y) for the cases (b), (d) and (f) are 0.43, 0.40
and 0.39, respectively.
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FIG. 6. Spontaneous imbibition in a system of four interacting capillaries, spatially arranged as y§af3. Depending upon the contrasts in
capillary radii, at a given time, the relative positions of the menisci vary. (a), (c), (¢) represent the schematics of possible imbibition behavior.
The non-dimensional meniscus positions and the radii contrasts corresponding to the schematics of (a), (c), (e) are shown in (b), (d), (f)
respectively, as a function of the non-dimensional time. The times at which the invading fluid reaches the outlet end (Tjy) for the cases (b), (d)

and (f) are 0.38, 0.40 and 0.39, respectively.

the four capillaries are shown in (b),(d),(f). Each of these figaso
ures shows that the contrast in the capillary radii, for a giverus:
arrangement, impacts the relative positions of the menisci ats2
any given time. Conversely, in Figs. 5(f), 6(d), and 7(b), thesss
radii of the capillaries in the interacting capillary system aressa
identical but the arrangements of the capillaries are differentass
For the arrangement 3yad shown in Fig. 5(f), the meniscise
positions are ordered according to Zy > Zg > Zs > Zy Whilesss
for the arrangement Y8 a8 shown in Fig. 6(d) the menisci po-

sitions are ordered according to Zs > Zg > Zy > Zy and fomss
the arrangement ya 80 shown in Fig. 7(b), the menisci posi-ase
tions are ordered according to Zs > Zy > Zg > Zy. Hencegao
for an interacting multi-capillary system, both the contrasta:
in capillary radii and their arrangement are crucial in deter-az
mining the imbibition behavior. The non-dimensional time atas

444

which the imbibing fluid first breaks through or reaches the
non-dimensional length 1 in one of the interacting capillaries,
and the radius of the capillary through which the breakthrough
occurs, are impacted accordingly, as reported in the captions
of Fig. 5, 6 and 7. Note that in Figs. 5, 6, 7, the schematics
presented in (a), (c) and (e) are not necessarily to scale, either
for the capillaries’ radii (indicated in the legends of (b), (d)
and (f)) or for the imbibition lengths.

We further illustrate the imbibition phenomenon in a sys-
tem of four interacting capillaries for three arrangements out
of the 12 possible arrangements in Fig. 8. The radii of the
capillaries are ry, = 80 m, rg = 60 m, r, =40m, and r5 =20
m for all the arrangements. In Fig. 8(a), where the capillaries
are in the ordered arrangement (f3y8), the leading menis-
cus is in the capillary with the smallest radius (6). For the
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FIG. 7. Spontaneous imbibition in a system of four interacting capillaries, spatially arranged as yo30. Depending upon the contrasts in
capillary radii, at a given time, the relative positions of the menisci vary. (a), (c), (¢) represent the schematics of possible imbibition behavior.
The non-dimensional meniscus positions and the radii contrasts corresponding to the schematics of (a), (c), (e) are shown in (b), (d), (f)
respectively, as a function of the non-dimensional time. The times (7j) at which the invading fluid first reaches the outlet in any of the
capillaries are 0.38, 0.42 and 0.38 for the cases (b), (d) and (f) , respectively.
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FIG. 8. Spontaneous imbibition in a system of four interacting capillaries of radii r¢ = 80 m, rg =60 m, ry =40 m and r5 = 20 m. The
non-dimensional positions of the four meniscii are shown as functions of the non-dimensional time for three of the 12 possible arrangements
(a) afyd, (b) YBad, and (c) S PBy are shown. The relative position of the menisci with time and the breakthrough time depend upon the

arrangement of the capillaries, for a given contrast in the radii.

same contrast in radii and the arrangement yB oS (Fig. 8(b))asa
the leading meniscus is in capillary . For arrangement o8 3 Jaes
shown in Fig. 8(c), the menisci in capillaries ¥ and 6 travel

at the same velocity at all times. It can also be observed

from Fig. 8 that the breakthrough times change with the ar-

rangement of the capillaries; while the breakthrough for the

ordered arrangement (Fig. 8(a)) occurs at T = 0.33, for the

other two other arrangements shown in Fig. 8(b) and (c), the*®”
breakthrough occurs at 7' = 0.40. Similar plots are shown for**®
all 12 possible arrangements in Fig. C.1 of Appendix C; alf*®
the arrangements are found to have breakthrough times in the*™
range 7 = 0.33 to T = 0.40. For a wetting fluid of viscos#™
ity 1073 Pa-s and surface tension of 73X1073 N/m impreg~">
nating the empty capillary system of length 1 m and with &£
maximum capillary radius of 80 m, the non-dimensional time*”*
corresponding to 7 = 0.01 is 6.84 s, so the breakthrough for*™
the arrangements shown in Fig. 8 occurs between 225.7 s and*™®
273.6 s. Hence, for the four-capillary system, we can summa-*""

rize that the arrangement of the capillaries and the contrasts irf™®
479

capillary radii significantly affect the breakthrough time and
the index of the capillary through which breakthrough occurs.

B. System consisting of 20 interacting capillaries

From the above analysis, we see that for any interact-
ing multi-capillary system, the capillary having the leading
meniscus and the breakthrough time both depend on the con-
trast in the capillary radii and on the spatial arrangement of
capillaries. We now use the generalized model to predict im-
bibition in a system consisting of # = 20 interacting capillar-
ies, focusing on the impact of the arrangement. We assume
no spatial correlations in the capillaries’ radii. The number
of different arrangements for n = 20 is 20! /2 = 1.216 x 10'3.
We run the generalized model on 1000 random arrangements
for capillaries whose radius distribution is uniform between
10 m (minimum radius) and 200 m (maximum radius).

We show in Fig. 9(a), the imbibition length in the capillar-
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FIG. 9. Spontaneous imbibition in 7 systems of twenty interacting capillaries with identical radii but different spatial arrangements: 6 random
arrangements and one ordered arrangement. (a) radii vs. imbibition length at 7 = 0.2; (b) radii vs. imbibition length at breakthrough time,
T = Ty, (c) saturation vs. longitudinal position at 7 = 0.2 and 7 = 0.3, (d) saturation vs. longitudinal position at breakthrough time, T = Tj.

ies vs the radii of the capillaries at the non-dimensional timesos
T = 0.2 for 6 random arrangements (denoted arrl, arr2, arr3soo
arrd, arr5 and arr6 in the figure), and the ordered arrange-sio
ment (denoted ordered in the figure). We have chosen thes:
6 random arrangements such that the disparity in the break-sa:
through time and the capillary radius through which the break-ss
through occurs can be observed for the given radii contrast ofi4
the capillaries. We see from Fig. 9(a) that, at 7 = 0.2, the:s
capillary having the leading meniscus is different for different.s
arrangements and the menisci positions in the capillaries ares,
also dependent on the arrangement. For instance, at T = 0.2
the meniscus in the capillary of radius 10 m (smallest rasso
dius) has traveled a non-dimensional length of 0.79 for the orszo
dered arrangement, whereas for random arrangement numbeisz,
1, the non-dimensional length invaded in the smallest capils2-
lary is 0.51. In Fig. 9(b), we illustrate the relationship betweers.s
the radii and the imbibition length in all capillaries at break-zs
through time. The breakthrough time for different arrange.s
ments is given in the legend of the arrangement in Fig. 9(b) 4.
Breakthrough in the systems of 20 interacting capillaries oc+.,
curs through different capillaries and at different times for the,,
6 random arrangements and the ordered arrangement. 20

The saturation at a given imbibition length Z can be defined:s,
as the ratio of the cross-sectional area occupied by the imbib-s,
ing fluid at Z to the total cross sectional area of the capillaryss.
system , i.e., (¥ rf )/X, 2, where ny(Z) is the number ofss
capillaries ﬁlled] by the 1mb1b1ng fluid at Z, and the indices fsa
refer to all such capillaries. The plot of saturation vs. longi-=sss

tudinal position is shown in Fig. 9(c)at T = 0.2 and T = 0.3,
for all the 7 spatial arrangements. These saturation profiles
of the interacting capillary system depend significantly on the
arrangement of the capillaries. For example, at T = 0.3, the
saturation at Z = 0.7 is 0.43 for the random arrangement num-
ber 3, and 0.35 for the ordered arrangement as indicated in
Fig. 9(c).

In Fig. 9(d) we show how saturation varies with the longi-
tudinal position at breakthrough time for the 7 arrangements.
The amount of non-wetting fluid displaced at the time of
breakthrough is different between the different arrangements.
We also observe from Fig. 9(a) that the random arrangements
where the leading meniscus is in a capillary of larger radius,
will have a longer breakthrough time as shown in Fig. 9(b).
This will also cause the saturation of the random arrangement
to be larger at the breakthrough time, which can be observed
in Fig. 9(d).

However, since the contrast in the radii of the capillar-
ies is identical for all arrangements, the effective capillary
suction causing the imbibition phenomenon is also identical
in all cases. Therefore, at a given time T, the global wet-
ting fluid saturation in the interacting capillary system will
be the same for all arrangements, which is determined as
S=Y",r?Z;/¥"  r?. The fraction of the interacting capil-
lary system occupled with the imbibing phase at 7 = 0.2 is
0.55 and at T = 0.3, S is 0.67 for all the 7 arrangements. But
this is only applicable until breakthrough occurs in one of the
arrangements.
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FIG. 10. Radii of the capillaries in which breakthrough occurs vs.
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chosen to 200 m). The shortest breakthrough time is observed in the

ordered arrangement, at 7 = 0.31, and the maximum observed break#84
through time is 7' = 0.42. The largest radius of a capillary througless
which breakthrough occurs is 100 m while the smallest one is 10 m.ss6
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In Fig. 10 we have plotted the radius of the capillary having®®
the leading meniscus vs. the breakthrough time for the 1000F**
randomly chosen arrangements, assumed to be representative®?
of the entire statistics. We see that when a wetting fluid of**®
viscosity of 1073 Pa-s and surface tension of 73X1073 N/nf**
imbibes a twenty-capillary system of length 1 m and maxi*®®
mum capillary radius of 200 m, the non-dimensional time of
T = 0.01 corresponds to 2.73 s. If such a wetting fluid were
considered to imbibe into this interacting capillary system, theses
breakthrough which occurs between 7 = 0.31 and T = 0.42%07
corresponds to the dimensional times of 84.63 s and 114.66 ssoe
Therefore, for the same contrast in capillary radii, the maxi=soes
mum and minimum breakthrough time are approximately 3(soo
s apart, indicating that the breakthrough time significantly de-sox
pends on the arrangement of the capillaries. It can also beso:
observed from Fig. 10 that breakthrough in an ordered multi-os
capillary system occurs through the capillary of smallest ra-sos
dius at 7 = 0.31, which is the smallest breakthrough time assos
compared to other arrangements. Fig 10 also shows that theses
largest radius of a capillary through which breakthrough oc-ser
curs is as large as 100 m, while the minimum radius of theses
capillary through which breakthrough occurs is 10 m. Foisos
arrangement number 6 (+ symbols), the leading meniscusio
is in the 100 m radius capillary and breakthrough occurs a:
Ty = 0.42 as shown in Fig. 9(b). From Fig. 10, we also seesi2
that, when breakthrough occurs through the smallest radiuss
capillary, the breakthrough time may vary between T = 0.3 le1a
and T = 0.41, and the total volume fraction of the interact-sis
ing capillary system occupied by the invading phase can liesie
between 0.69 and 0.79. In contrast, if breakthrough occursi-
through the capillary of radius 70 m, the breakthrough timesie
lies between T = 0.38 and 7' = 0.42 and the total volume frac-sis
tion imbibed by the wetting phase lies between 0.76 and 0.8. 620

C. Discussion

We now compare the predictions of our analytical model of
interacting capillaries to those of the standard capillary bundle
model, and discuss how the predictions of our model compare
to experimental measurements in quasi-2D porous media. We
use our model within a stochastic approach, that is, for a given
number 7 of capillaries of known radii we consider the aver-
age behavior of all m = n! /2 different spatial arrangements of
the capillaries. When m is too large to be tractable even for
our very fast semi-analytical model (for example for n = 20,
m>1.21 1018), we consider the average behavior of a suf-
ficiently large subsample of R < m randomly-chosen spatial
arrangements.

1. Confronting predictions from the classic (non-interacting)
capillary bundle to our model

We show the spatial saturation profile for the classic capil-
lary bundle model with n = 20 capillaries at three different
times (T = 0.1, T =0.3 and T = Ty, = 0.5) in Fig 11(a),
and the average spatial saturation profile for 1000 randomly-
chosen different spatial arrangements, for a system of 20 in-
teracting capillaries (as predicted by our model) at the same
three times in Fig 11(b). Note that the number of spatial ar-
rangements was chosen after a convergence study which we
present in Appendix D (see in particular Fig. D.1).

The capillary radii are identical in the two cases. For non-
interacting capillaries, by non dimensionalizing the Wash-
burn’s law, z7 = (Pc;r? /414)t, we obtain

7} =267T, (15)

where Z; = z;/L is the non-dimensional length imbibed in
the capillary of radius r; and L is the total length of the
capillary system. The time is non-dimensionalised as T =
t(Pcgrk)/(8uL?). In Eq. (15), € = Pc;/Pcq and A; = r;/rq,
where Pcy and ry are respectively the capillary pressure and
radius of the widest capillary (200 m). The maximum value
of & and A; are 1, which occurs for the largest radius capillary.
For all other capillaries & and A; are always smaller than 1.
As discussed previously, in the classic capillary bundle
model, imbibition follows Washburn’s diffusive dynamics and
therefore the invaded length is the largest in the capillary of
largest radius. As illustrated in Fig. 11(a), due to the large
cross-section area of that widest capillary, it contributes to a
large fraction of the cross-sectional saturation for the bundle-
of tubes model. On the contrary, in our interacting-capillary
system, the largest radius capillary always has the least ad-
vanced meniscus, at any time. Consequently, the break-
through time for the capillary bundle model is 136.5 s (at
T = 0.5), at which the fractional volume occupied by the
invading fluid is 0.86. This is considerably larger than the
breakthrough time for interacting capillary systems, which oc-
curs between 84.63 s and 114.66 s (between 7' = 0.31 and
T = 0.42), depending on the configuration, and the fractional
volumes occupied by the imbibing fluid across the 1000 ar-
rangements lie between 0.69 and 0.79. In Fig. 11(b), we show
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the averaged saturation values along the length of the capil-sss
lary system for all the 1000 arrangements of the twenty in-ese
teracting capillary system at non-dimensional times 7 = 0.1,

0.2 and at breakthrough, i.e., T;;. We see from fig. 11(b) that,,
the standard deviation across the arrangements is due to the,,
difference in the relative positioning of the menisci resulting,,
from the spatial arrangement of the capillaries. 660

661
662
663

664

For instance, the leading meniscus for an orderly arrangecdbss
interacting capillary system is in the smallest radius capillarysse
and we know that the fraction of saturation contributed byss?
the smallest radius capillary is small. For the arrangementss
2 shown in Fig. 9, the leading meniscus is in the capillarysee
of radius 100 m. In the capillary bundle model, the cross-s7e
section area of the leading capillary (200m) is 13.93% of thes7
total cross-section area, whereas for the ordered arrangement?2
and the arrangement number 2, the respective cross-sectiors?s
area of the leading meniscus capillaries are 0.03% and 3.43%¢s74
Consequently, as shown by Fig. 11(b), the cross-sectional sat-67s
uration decreases gradually with longitudinal position for thes7e
classic capillary bundle model, while in the case of interact-677
ing capillaries a steep decrease is observed already at smalb7s
longitudinal positions. Fig. 11(b) also shows that the standard7e
deviation in saturation from the average across the 1000 ar-sse
rangements at 7 = 0.1 and 7 = 0.2, which is as high as 0.2%s:
at Z = 0.59 and 0.69, respectively; whereas for T = Ty, i®s2
is 0.18 at Z = 0.76. In real two-dimensional porous medias3
where the spatial arrangement of pores may vary, the interact-ss+
ing capillaries model will be more helpful in predicting the ac-sss
curate imbibition behaviour than the classic capillary bundlesss
model. The saturation of the porous medium with length ands-
the breakthrough time significantly differ for the classic (non-sse
interacting) capilary bundle and for the different arrangementsss
of the interacting multi-capillary system, although the contrasteo
in the radii of the capillaries is the same. 601

2. Confronting predictions from the model to experimental
measurements from previous studies

The spatial profiles of saturation for the interacting multi-
capillary system are consistent with observations of imbibi-
tion phenomena in quasi-2D porous media described by Dong
et al., Ding et al., Debbabi et al., and Akbari et al.,48’66‘68.
In real porous media, the imbibing fluid saturation decreases
gradually with longitudinal position, similarly to the trend
shown by the interacting multi-capillary system. It was also
previously described that the lagging macroscopic front is
mostly responsible for the saturation of a porous medium*,
which is in good agreement with the saturation profile an-
ticipated by the interacting multi-capillary system, as shown
in Fig. 11(b). The saturation profile for the (classic) non-
interacting capillary bundle (Fig. 11a) predicts that the large
pores are responsible for the leading macroscopic front and
the saturation of the porous medium, which is contrary to the
interacting capillaries model (shown in Fig. 11(a)) and the
experimental observations in real porous media.*7>#62:69.70,

Furthermore, in the following we compare the predictions
of our model to two data sets from the literature, both taken
from Ref.*”.

a. Two capillary system: We first compare our model
predictions to measurements performed on a system of two
capillaries consisting of a thread positioned inside a cylindri-
cal tube. The time evolution of the menisci position squared,
as predicted by our model, compares well with the experi-
mental observations for both capillaries (Fig. 12). The ra-
dius of the large capillary was rog = 300 m, that of the
thread rg = 170 m. From the experimental data?’, the value
of (Pcqr)/(8uL?) is 0.0108 s~!, which is used to non-
dimensionalize time in Fig. 12. The predictions from the clas-
sic (non-interacting) capillary bundle model (Eq. 15) are also
shown in the inset of Fig. 12 for comparison. The imbibition
in the wider capillary is little impacted by the imbibition in the
(much) narrower capillary, so that the prediction of the non-
interacting capillary bundle for the wider capillary are similar
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the lagging front. The results from the classic, non-interacting capil-">*
lary bundle are presented for comparison for the leading front (greerrs2
long-dashed line) and lagging fronts (green dashed line). 753
754
b. Imbibition in a paper filter: Bico and Quéré*’ alsorss

performed experiments in which a silicone oil of viscosityrse

11

16 - 1073 Pa.s and surface tension 20.6 - 10~3 N/m sponta-
neously imbibes into a Whatman grade 4 filter paper, which
has pore diameters in the range 20 to 25 m. They observed
that the microscopic front propagating in small pores trav-
els ahead of the saturating macroscopic front in large pores,
again in contradiction to the predictions of the classic non-
interacting capillary bundle model. In Fig. 13, we show
a comparison of the experimental observations from these
authors*’ (shown as symbols in the figure) with predictions
of our model (shown as lines in the figure). Two capillary
systems were simulated with our model, corresponding to two
ways of sampling the pore size PDF (probability density func-
tion) of the paper filter: having no information on the func-
tional form of that PDF, we assumed that it was uniform and
sampled it first with n = 6 interacting capillaries of radii 10,
10.5, 11, 11.5, 12, and 12.5 m; we then performed a second
calculation with a sampling twice finer, i.e., with n = 11 inter-
acting capillaries of radii 10, 10.25, 10.5, 10.75, 11, 11.25,
11.5, 11.75, 12, 12.25 and 12.5 m. For n = 6 the non-
dimensional leading front position was defined as the average
of the positions of the two more advanced menisci, whereas
that of the lagging front was defined as the average of the two
less advanced menisci. For n = 11, a similar method was used,
but involving the average of the 3 more advanced menisci po-
sitions for the leading front and that of the 3 less advanced
menisci positions for the lagging front. A statistics of R = 360
arrangements (i.e., all possible arrangements) was chosen for
n =6, whereas for n = 11 we used R = 1000 randomly-chosen
arrangements within more than 19.9 millions of different pos-
sible arrangements. The confidence interval defined from the
standard deviations over the statistics is also shown in Fig. 13
as thin orange lines for the leading front computed with n = 6;
for the lagging front the standard deviations are so small that
they would be hardly visible, so we did not plot the corre-
sponding confidence interval.

The predictions of our model for » = 6 and n = 11 are very
similar to each other, especially for the leading front, which
is a good test of consistency for the method. Indeed, it means
that changing the sampling resolution for a given pore size dis-
tribution does not impact the predictions. Furthermore, these
predictions appear to be quite consistent with the experimen-
tal data, for both the leading and lagging front. In other words,
they exhibit the same Washburn-like dynamics as both the ex-
perimental leading front (at all times) and lagging front (for
T < 0.3 at least), with the same proportionality factors be-
tween Z2 and T (i.e., the slope in the plots) . On the contrary,
the predictions of the classic (non-interacting) capillary bun-
dle, also shown in Fig 13 (as green dashed lines) are shown to
be much less efficient at predicting the proportionality factor,
especially the leading front; in addition they predict a leading
front occupying the largest capillaries and a lagging front oc-
cupying the smallest ones, in contradiction to the experimental
observations and to the predictions from our model.

Note that to non-dimensionalize the time in Fig. 13 we have
relied on the observation by Bico and Quéré that most of the
wetting fluid is carried by the lagging front (which they term
macroscopic front). Adopting a macroscopic point of view,
one can assume that the Darcy law holds at any time across
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the porous medium’s length, with a pressure gradient that isoe
Pcefr/ 7, Pcesr being a constant effective capillary pressure desio

fined for the entire medium. Then the Darcy law reads 811
812
d KP 2PcetK
G _RICM eading to 22 = My (16ps
dt u z Hu 814

where K is the medium’s permeability and we have assumed™®
that at time # = 0 no wetting fluid has yet invaded the medium ™
If we choose to non-dimensionalize time by the character="
iztic time (uL?)/(PceK), we obtain from Eq. (16) the non""*
dimensional equation Z> = 2T. Since, according to Bico™’
and Quéré’s observation mentioned above, it is the lagging™’
(macroscopic) front that carries most of the interface between’
the two fluids, Eq. 16, and therefore its non-dimensional coun-?
terpart, can be assumed to describe the behavior of the lag™
ging front. From the experimental data for the lagging front;**
(PcegtK) /(UL?) is measured to be 9.7 - 107> s~!, which we™®
thus use to non-dimensionalize all plots in Fig. 13. The de-*°
pendence of Z> on T for the lagging (macroscopic) front ther™"
has a slope 2 (as shown by the dotted gray line in Fig. 13)7*°
while that for the leading (microscopic) front exhibits a larger”
imbibition rate, with a slope 2.67 (as shown by the orange ™

dotted line in Fig. 13). e
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833
IV. CONCLUSIONS 834
835

In conclusion, we investigated spontaneous imbibition of &°
837

wetting fluid in a randomly arranged planar system of inter-
acting capillaries. This generalized model can predict the im-***
bibition behavior for all the n! /2 possible arrangements of ar®*®
interacting n-capillary system. It is inspired from a previous*®
work on stratified geological formations, with planar layers**
instead of cylindrical capillaries. 842

Using an interacting capillary system containing 4 capillar®*?
ies, we showed that the imbibition dynamics depends signifi-**
cantly on the arrangement of the capillaries within the capil>*®
lary system, for a given distribution of the capillary radii. Sim**°
ilarly, the dynamics are affected by that distribution for a giver®*”
arrangement of the capillaries. Furthermore, we showed thaf*®
the arrangement and radii distribution of the capillaries jointly?*°

control the relative menisci’s locations, the breakthrough time?*°

and which capillary carries the leading meniscus. The cross***
sectional saturation of the impregnating fluid along the length®
of the capillary system also changes with a change in the ar=**
rangement of the capillaries. However, the total capillary pres=*®
sure driving the flow is identical for all arrangements, there*®
fore, the overall volume fraction occupied by the invadingse
fluid (i.e, the global saturation of the wetting fluid) at a giveres?
time remains the same across all arrangements, until break-sse
through occurs in one of the arrangements. 859

Similarly, considering 1000 randomly-chosen different ar-se
rangements of an interacting twenty-capillary system having st
uniform distribution of radii between 10 m and 200 m, we ob-8s2
served that, depending on the arrangement of the capillariesges
the leading meniscus can be in any of the capillaries whosegs+
radii are between 10 m and 100 m, and the non-dimensionakes

breakthrough time lies between Ty = 0.31 and T,y = 0.42. g6

4

12

The dynamics of spontaneous imbibition as predicted by
this new model is significantly different from that predicted by
the classic bundle of non-interactive capillaries (or tubes), for
which the leading meniscus is always in the largest radius cap-
illary. For the interacting multi-capillary system mentioned
above, on the contrary, the leading meniscus can be in any
of the capillaries having radii between 10 m and 100 m. We
observed that the breakthrough occurs earlier than in the clas-
sic capillary bundle, where it occurs at non-dimensional time
Ty = 0.5 for the aforementioned 20-capillary-system, to be
compared to the 0.31-0.42 range for the 20-capillary-system
mentioned above. Furthermore, for this system the saturation
at breakthrough time falls in the range 0.69-0.79, whereas for
the classic capillary bundle it is equal to 0.86. The dependence
of the saturation as a function of the longitudinal position are
also shows a stark contrast between the predictions of the clas-
sic capillary bundle and the average behavior of the 1000 ar-
rangements of interacting capillaries. Indeed, the interacting
capillary system shows a steep decrease in the saturation with
length as compared to the classic capillary bundle. Addition-
ally, the interacting multi-capillary system shows that the spa-
tial arrangement of the capillaries may cause significantly dif-
ferent saturation values at a given longitudinal position.

So, how is this model consisting of a planar bundle of inter-
acting capillaries to be used to predict spontaneous imbibition
in quasi-two-dimensional porous media whose pore size dis-
tribution is known? We propose to use a stochastic approach,
i.e., to consider the average behavior between a large number
of randomly-picked spatial arrangements of the capillary di-
ameters, the distribution of these diameters being equal to the
pore size distribution of the real porous medium. We tested
that method against data from the literature. Firstly, qualita-
tive observations relative to which ranges of pore sizes mainly
contribute to the leading and lagging fronts of the imbibition
interface, and to the longitudinal saturation profile, are consis-
tent between experiments from the literature and the predic-
tions of our model. Secondly, to validate the model’s quanti-
tative predictive capacity, we compared its predictions to im-
bibition measurements in filter paper, performed by Bico and
Quéré*’. The model predicts that the visible leading front is
carried by smaller pores and that the bulk saturating front re-
sponsible for most of the fluid mass invasion is the lagging
front carried by larger pores, which agrees very well with
the experimental findings. The quantitative predictions for
the positions in time of these two fronts, obtained from av-
eraging over the statistics of randomly-chosen arrangements,
agree well with the measurements.

This generalized model for spontaneous imbibition in a pla-
nar bundle of interacting capillaries, which is semi-analytical
and runs extremely quickly, could be useful for fast as-
sessment of one-dimensional imbibition dynamics in design-
based porous media such as loop heat pipes, diagnostic
devices and microfluidic devices, or in real porous media
whose porosity structure can reasonably be considered two-
dimensional, e.g., paper, thin porous media in general, or lay-
ered aquifers.

Prospects to this work include extending this approach to
three-dimensional models by considering parallel capillaries,
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the positions of whose axes in a transverse plane would be theses
nodes of a triangular grid. 900
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Appendix A: Mathematical formulation for the system of four
interacting capillaires

In capillary o, for 0 < z < z4(t), the pressure drop is given

by the Hagen-Poiseuille law as, Z:

 Buzg(t)
3

916

(AL)

P(zq(t),t) — Py = ve (1),
where [ is the imbibing fluid’s viscosity, v(#) is the instanta-
neous velocity of the wetting fluid in the capillary o, Py is the
inlet pressure and P(z4(f),t) is the pressure in the imbibing
fluid at z4(7), as shown in Fig. 3. Since the pressure fields are
identical in all capillaries for z < z4(?), the pressure gradient
is the same in all capillaries , which from Eq. (A1) implies 7

Vﬁt) _ vﬁgt) _ vy(zt) _ V5§I)7 (A2ps

o rﬁ ry }’5 920

where the index i (i = o, 8,7, 6) indicates quantities relative
to the capillary of radius r; and v;(¢) (i = o, 8,7, 0) is the ve-
locity of the imbibing fluid for z < z4(?).

The capillary pressure jump through the fluid-fluid interface
is Pcq at zq(t), where some of the imbibing fluid transfers
from the capillary o to other capillaries. The volumetric fluid
transfer from the capillary o to the capillaries B and ¥ is dqq,
whereas the fluid transfer from the capillary « to the capillary
d is dq),. The velocity of the advancing meniscus in capillary
o, dzg/dt, is thus given by

dZa

7 t
ar Vel

For z4(1) < 7 < z5(t), the velocity of the fluid in capillary & is

similarly given by

_ dqg+dqy,

(A3)
nrl

dzs dqy
— = A4
7 vs(t) + 7'[1% ) (A4)
so the pressure drop in the capillary § between z = z4(¢) and
=25 (t) is 024
P(z5(1),0)=P(za(t),1) .
926
8 1) —zalt dq,
TR A0) (w . qg> e
7'5 71'}"5
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At z = z5(t), the pressure jump across the meniscus is Pcg,
since the pressure in the non-wetting fluid is the atmospheric
pressure.

The capillaries B and 7 are on the other side of the capillary
o with respect to the capillary 6. As the capillary pressure
jump of the capillary B is smaller than that in the capillary ¥,
the meniscus in 8 lags behind that in . Hence, the imbibing
fluid in these capillaries is continuous for z¢(t) < z < zg(t).
Defining @ and (1 — @) as the fractions of dgg transferred
respectively to 8 and ¥, we can write an equation similar to
Eq. (A4) for both 8 and o, where @dqy and (1 — @)dg ap-
pear respectively as a differential velocity term arising from
fluid transfer. Considering that the pressure field is the same
in the capillaries 8 and 7y for z4 () < z < zg(t), we then obtain
in that z range:

vp(0)+ 8 vy (r) + 1-0ldae
L= : (A6)
nrk 7r’
B ¥

Combining Eq. (A2) and Eq. (A6), we then obtain the fraction
o from the capillaries’ radii: ® = 145/ (rg +17). Therefore, the

pressure drop in capillaries 8 and y for z4 () < z < zg(t) is

P(zg(t),t)—P(za(t),1)
8u(zp(t) —zalt)) ( dqq
B
(A7)

3

At the meniscus in the capillary 3, the capillary pressure jump
is Pcg and some of the impregnating fluid transfers from f3
to 7, which we assume to correspond to a differential flow
rate dqg. The velocity of the meniscus in the capillary 8 for
7> zg(t) is then

dZﬁ dqq dqﬁ
— =vg(t)+ 00— — —. A8
dt vﬁ( )+ ﬂr% m% (A8)

Similarly, for z > zg(¢), the meniscus in the capillary y trav-
els with a velocity given by

dzy dge  dqp
Ey _ |- ) 2o Y98 A
it vy(t) + (1 — @) 7 + 72 (A9)

The pressure drop between z = zg(¢) and z = z,(t) in capillary
v is then given by,

P(zy(t),t) — P(zp(2),t) = _w

dqo d9[3
(Vy(t) +{1-0) nr%, + ﬂfr%, ’
(A10)

The pressure jump across the meniscus in each of the
capillaries is given by the Young-Laplace equation®*%, ie.,
Eq. (2), from which it follows that

26 cos O
P(zi,t) =Py = —Pcj = = ———,

Ti

(Al1)
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fori=a, 3,7, 8. Note that the prefactor 2 is controlled by cir-es
cular cross-section of the tube, another geometry (e.g., squarees
cross section) would yield a different prefactor. Eq. (A11) im-7o
poses the total pressure drop within the impregnating wetting

fluid in each of the capillaries. Substituting Eqs. (A3), (A4)s7
(A8), (A9) in Egs. (Al), (AS), (A7), (A10) respectively, wesr2
obtain the equations governing the flow in the interacting cap-73

illary system: o74
SIJZa (t) > dzg b dZﬁ 2 dZ'y > dZ5 76

Pecog=—F—F—":— — — — —
o re gty o g T8 a8 g
(Al12y™

979

Pcg—Pcq = (A13),,

981

8U(zs(r) —za(t)) (dz
el (3),

982

Bu(zp(t) —zalt)) ( ,dzp  ,dzy
Peg — Peg = ——B) 7<) Al4
e ry+ry Bar v ) (Al4be
8u(zy(t) —zp(t)) (dz °
Pey—Peg = P (dy) . (A15pss
ry t
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Appendix B: Generalization of the model for an arbitrary

number of capillaires

991

992

The following step-by-step procedure must be followed: o3

1. We initiate the model formulation by finding the largest:::
radius capillary, C;. The pressure field is identical in all
capillaries for z < z,(¢), and the corresponding pressure,gs
gradient is related to the fluid velocity in each capillary,,
by Hagen-Poiseuille’s law. Some of the invading fluid,,
from capillary i transfers to other capillaries in the im-g,

mediate vicinity of the meniscus position z,(¢). 1000

2. For z > z,(1), the imbibing fluid in the capillaries C; o
C(;—1) 1s separated from the imbibing fluid in the capif—002
laries C(;; 1) to C,. We thus classify the capillaries on
either sides of the capillary C; in two regions, the cap-
illaries Cy to C(;_y) in the first one, the capillaries fronilz Zi
C(it1) to G, in another one. The fluid transfer from the
capillary C; is divided among the other capillaries ac-
cording to their radii. If the fluid transfer to the ‘toff°®
region’ is dg;, the fraction of dg, flowing from capillar§*°e
C; to a capillary of radius r, would be rf,dqt / Z;;ll (r;‘)‘.“’
Similarly, for the ‘bottom region’, if dg; is the fluitf*®
transfer from C;, the fractional flow in a capillary of*
radius r, will be rdg,/Y" ;. (r}). This fluid trans®**
fer causes the flow rates to increase in capillaries C; t&*?
Ci-n and Cliy1y to Cp. 1013

3. The widest capillary among the capillaries Cj to C(;_ipo1s
C; is now identified. For z,(f) < z < z,(t) the preswos
sure field in the imbibing fluid is identical in capillaries:-
C1 to C(;_y), and is related to the fluid velocity in eacl:s
capillary by Hagen-Poiseuille’s law. In the vicinity ofo:e

14

z=z,(), some of the invading fluid transfers from C;
to the capillaries Cy to C(; 1) and C(;, 1) to C(;_1), which
increases the flow rate in these capillaries.

4. Similarly, the widest capillary among capilllary C(;, 1)
to C,,, which we denote Cy, is chosen. The pressure field
is identical in the capillaries C(;, 1) to Cy for z,(t) <z <
z¢(t), and the pressure gradient is related to the fluid
velocity in each of these capillaries from the Hagen-
Poiseuille law. A z = z.(¢), some of the fluid invad-
ing Cy transfers into the capillaries C(;, 1) to C;_y) and
Cik+1) to Gy, which increases the flow rate in in these
capillaries.

5. The impregnating fluids in the regions encompassing
capillaries Cy to C(;_1) and C(j; 1) to C(;_y) are sepa-
rated by displaced fluid in capillary C; for z > z;. Again,
the capillary of largest radius among the capillaries C;
to C(;_1) is identified, as well as the capillary of largest
radius among the capillaries C(; 1 to C(;_1). The simi-
lar procedure previously explained for the pressure field
and its relation to the fluid velocity is repeated for those
two regions.

6. The same procedure as explained in step 5. is performed
in the regions encompassing capillaries C(; 1) to Cjx_1)
and Cg 1) to Cy.

7. This is repeated in all the regions which have been de-
fined in steps 1 to 5, and this in a recursive manner, un-
til the entire bundle of interacting capillaries is divided
into regions containing only one capillary each.

8. The pressure jump across the meniscus in each of the
capillaries is the corresponding Young-Laplace capil-
lary pressure of that capillary. The n equations relat-
ing the pressure drops to the velocities of the fluid-fluid
interfaces are then solved to obtain the lengths impreg-
nated in each of the capillaries at the considered time
t.

Appendix C: Imbibition in all possible arrangements of a
system of four interacting capillaries

A four capillary system has 12 possible arrangements. For
a set of capillaries with radii ro = 80 m, rg = 60 m, ry =40
m and rg = 20 m, we present in Fig. C.1 the time evolution
of the menisci’s positions in all four capillaries for all 12 ar-

rangements.
We see from Fig. C.1 that the leading menis-
cus is in capillary & for arrangements shown in

Fig. C.1(a),(b),(f),(2),(1),(j),(k),(1). For the arrangements
shown in Fig. C.1(c),(d), the leading meniscus is in }. For
arrangements shown in Fig. C.1(e),(h), the capillaries y and §
impregnate the same distance with time. But the breakthrough
times are different for all the arrangements, varying from
T =033 to T = 0.40. The minimal breakthrough time is
0.33, observed in arrangements (a), (g), (k) and (1) of Fig. C.1.
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FIG. C.1. Spontaneous imbibition in a system of four interacting capillaries of radii ro = 80 m, rg =60 m, ry =40 m and rs = 20 m. The
non-dimensional positions of the four menisci are shown as a function of non-dimensional time for all the 12 possible arrangements in (a) to
(1). The arrangement, the ordering of the menisci locations, and the breakthrough times for each of the cases (a) to (1) are provided as legends

of the plots.

The breakthrough for all the arrangements shown in Fig. C.dos:
occurs between 225.7 s and 273.6 s. 1032

Appendix D: Convergence of the computations for a system *°**°

of 20 interacting capillaries 1038

1038

For the study of the bundle consisting of 20 interacting capi-:jz

illaries, the convergence of the results as a function of the

number of randomly-chosen spatial arrangements was verified

in the following manner. 1043

Three sets of R = 100, 1000 and 2000 randomly-chosep,,
arrangements were simulated independently, and their results

were compared with each other. Fig. D.1(a) shows the spaross

tial profile of wetting phase saturation at three different times
(T =0.2, T =03, T =Ty), obtained as the average of the
spatial profiles for all R arrangements. Fig. D.1(b) shows
the standard deviation over the statistics of the spatial wetting
phase saturation profiles for the R arrangement, also at times
T =0.2,T =0.3, T = Ty;. Obviously the average behavior for
1000 arrangements (in contrast to the case R = 100) cannot
be distinguished from that for 2000 arrangements, and even
the spatial profiles of the standard deviation over the statis-
tics are quite similar for the two cases. Therefore, we con-
sider R = 1000 to be a sufficiently large number of randomly-
chosen arrangements for the imbibition dynamics to be well
predicted in a system of 20 interacting capillaries.

1B, Xiao, J. Fan, and F. Ding, “Prediction of relative permeability of unsat-
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FIG. D.1. Convergence of the simulations for a system of 20 interacting capillaries, based on R = 100, 1000 and 2000 arrangements at 7 = 0.2,
T =0.3, and T = Ty (breakthrough time): (a) Mean saturation as a function of the longitudinal coordinate. (b) Standard deviation (SD) of the

statistics as a function of the longitudinal coordinate.

urated porous media based on fractal theory and monte carlo simulationioex
Energy & fuels 26, 6971-6978 (2012). 1002
2Y.-J. Lin, P. He, M. Tavakkoli, N. T. Mathew, Y. Y. Fatt, J. C. Chai, A. Gaoes
harzadeh, F. M. Vargas, and S. L. Biswal, “Characterizing asphaltene depaooa
sition in the presence of chemical dispersants in porous media micromodoos
els,” Energy & fuels 31, 11660-11668 (2017).
3S. Saraji, L. Goual, and M. Piri, “Adsorption of asphaltenes in porousez
media under flow conditions,” Energy & fuels 24, 6009—-6017 (2010). 1008
M. Taghizadeh-Behbahani, B. Hemmateenejad, M. Shamsipur, antbee
A. Tavassoli, “A paper-based length of stain analytical device for naked eyeio0
(readout-free) detection of cystic fibrosis,” Analytica Chimica Acta (20193101
5Y. Soda, D. Citterio, and E. Bakker, “Equipment-free detection of k+ on mi1o2
crofluidic paper-based analytical devices based on exhaustive replacementios
with ionic dye in ion-selective capillary sensors,” ACS sensors 4, 670671104
(2019). 1105
B. Dai, K. Li, L. Shi, X. Wan, X. Liu, F. Zhang, L. Jiang, and S. Wangzoe
“Bioinspired janus textile with conical micropores for human body mois1oe7
ture and thermal management,” Advanced Materials (2019).
M. Rosello, S. Sur, B. Barbet, and J. P. Rothstein, “Dripping-onto-substrateioe
capillary breakup extensional rheometry of low-viscosity printing inksiiio
Journal of Non-Newtonian Fluid Mechanics 266, 160-170 (2019). 1111
8y. Wang, R. Deng, L. Yang, and C. D. Bain, “Fabrication of monolayers afi12
uniform polymeric particles by inkjet printing of monodisperse emulsionsi13
produced by microfluidics,” Lab on a Chip 19, 3077-3085 (2019).
%Y. Liu, J. Kaszuba, and J. Oakey, “Microfluidic investigations of crude oik11s
brine interface elasticity modifications via brine chemistry to enhance oihie
recovery,” Fuel 239, 338-346 (2019). 1117
10R. Gharibshahi, M. Omidkhah, A. Jafari, and Z. Fakhroueian, “Hybridiza11s
tion of superparamagnetic fe304 nanoparticles with mwents and effect afize
surface modification on electromagnetic heating process efficiency: A mi120
crofluidics enhanced oil recovery study,” Fuel 282, 118603 (2020). 1121
e, Carrell, A. Kava, M. Nguyen, R. Menger, Z. Munshi, Z. Call, M. Nuss122
baum, and C. Henry, “Beyond the lateral flow assay: A review of papeta23
based microfluidics,” Microelectronic Engineering 206, 45-54 (2019).
12F. Schaumburg and C. L. Berli, “Assessing the rapid flow in multilayenzs
paper-based microfluidic devices,” Microfluidics and Nanofluidics 23, 926
(2019). 1127
I3M. Rich, O. Mohd, F. S. Ligler, and G. M. Walker, “Characterizatiomzs
of glass frit capillary pumps for microfluidic devices,” Microfluidics anth2e
Nanofluidics 23, 70 (2019). 1130
14y _H. Lin, W.-H. Chen, Y.-J. Su, and T.-H. Ko, “Performance analysis afiz1
a proton-exchange membrane fuel cell (pemfc) with various hydrophobiais2
agents in a gas diffusion layer,” Energy & fuels 22, 1200-1203 (2008). 1133
I5K. K. Lee, M.-O. Kim, and S. Choi, “A whole blood sample-to-answansa
polymer lab-on-a-chip with superhydrophilic surface toward point-of-carerss

1096

1108

1114

1124

technology,” Journal of pharmaceutical and biomedical analysis 162, 28-33
(2019).

loc, Liang, Y. Liu, A. Niu, C. Liu, J. Li, and D. Ning, “Smartphone-app
based point-of-care testing for myocardial infarction biomarker ctni using
an autonomous capillary microfluidic chip with self-aligned on-chip focus-
ing (sof) lenses,” Lab on a Chip 19, 1797-1807 (2019).

ITH.-A. Joung, Z. S. Ballard, A. Ma, D. K. Tseng, H. Teshome, S. Bu-
rakowski, O. B. Garner, D. Di Carlo, and A. Ozcan, “based multiplexed
vertical flow assay for point-of-care testing,” Lab on a Chip 19, 1027-1034
(2019).

8B, Xiao, W. Wang, X. Zhang, G. Long, H. Chen, H. Cai, and L. Deng, “A
novel fractal model for relative permeability of gas diffusion layer in proton
exchange membrane fuel cell with capillary pressure effect,” Fractals 27,
1950012 (2019).

19P. Carrere and M. Prat, “Liquid water in cathode gas diffusion layers of pem
fuel cells: Identification of various pore filling regimes from pore network
simulations,” International Journal of Heat and Mass Transfer 129, 1043—
1056 (2019).

20, Singh, N. V. Datla, S. Kondaraju, and S. S. Bahga, “Enhanced ther-
mal performance of micro heat pipes through optimization of wettability
gradient,” Applied Thermal Engineering 143, 350-357 (2018).

2IM. Chernysheva and Y. Maydanik, “Simulation of heat and mass transfer in
a cylindrical evaporator of a loop heat pipe,” International Journal of Heat
and Mass Transfer 131, 442449 (2019).

22C, Pozrikidis, “Axisymmetric motion of a file of red blood cells through
capillaries,” Physics of fluids 17, 031503 (2005).

BK. Singh, B. P. Muljadi, A. Q. Raeini, C. Jost, V. Vandeginste, M. J. Blunt,
G. Theraulaz, and P. Degond, “The architectural design of smart ventila-
tion and drainage systems in termite nests,” Science advances 5, eaat8520
(2019).

24K. Li, D. Zhang, H. Bian, C. Meng, and Y. Yang, “Criteria for applying the
lucas-washburn law,” Scientific reports 5, 14085 (2015).

23S. Gruener and P. Huber, “Capillarity-driven oil flow in nanopores: Darcy
scale analysis of lucas-washburn imbibition dynamics,” Transport in Porous
Media 126, 599-614 (2019).

203 Cai, Y. Chen, Y. Liu, S. Li, and C. Sun, “Capillary imbibition and flow
of wetting liquid in irregular capillaries: A 100-year review,” Advances in
Colloid and Interface Science , 102654 (2022).

27R. Lucas, “Ueber das zeitgesetz des kapillaren aufstiegs von fliissigkeiten,”
Colloid & Polymer Science 23, 15-22 (1918).

28E. Washburn, “The dynamics of capillary flow,” Physical Review 17, 273
(1921).

2R. Lenormand, C. Zarcone, et al., “Role of roughness and edges during
imbibition in square capillaries,” in SPE annual technical conference and
exhibition (Society of Petroleum Engineers, 1984).



1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

30M. Dong and I. Chatzis, “The imbibition and flow of a wetting liquid alongies
the corners of a square capillary tube,” Journal of colloid and interface sciaoo
ence 172, 278-288 (1995). 1200
3IM. Ramezanzadeh, S. Khasi, and M. H. Ghazanfari, “Simulating imbibizos
tion process using interacting capillary bundle model with corner flow: Thezo2
role of capillary morphology,” Journal of Petroleum Science and Engineet2o03
ing 176, 62-73 (2019).
32D. Zheng, W. Wang, and Z. Reza, “Integrated pore-scale characterization agos
mercury injection/imbibition and isothermal adsorption/desorption experiqg
ments using dendroidal model for shales,” Journal of Petroleum Sciencg,,
and Engineering 178, 751-765 (2019). 1208
3M. Reyssat, L. Courbin, E. Reyssat, and H. A. Stone, “Imbibition in ggxee
ometries with axial variations,” Journal of Fluid Mechanics 615, 335-344,,,
(2008).
34A. Budaraju, J. Phirani, S. Kondaraju, and S. S. Bahga, “Capillary displacez,,
ment of viscous liquids in geometries with axial variations,” Langmuir 32,5
10513-10521 (2016). 1214
3E. F. Ouali, G. McHale, H. Javed, C. Trabi, N. J. Shirtcliffe, and M. [,
Newton, “Wetting considerations in capillary rise and imbibition in closegd,, ¢
square tubes and open rectangular cross-section channels,” Microfluidics,,,
and nanofluidics 15, 309-326 (2013). 1218
36U. Rosendahl, A. Grah, and M. E. Dreyer, “Convective dominated flows ij,, o
open capillary channels,” Physics of Fluids 22, 052102 (2010). 1220
3TM. M. Weislogel, “Capillary flow in interior corners: The infinite column;},,
Physics of Fluids 13, 3101-3107 (2001). 1222
3D, Dimitrov, L. Klushin, A. Milchev, and K. Binder, “Flow and transpogt,,,
in brush-coated capillaries: A molecular dynamics simulation,” Physics g,
Fluids 20, 092102 (2008). 1225
39J. Wang, A. Salama, and J. Kou, “Experimental and numerical analysis qf ,q
imbibition processes in a corrugated capillary tube,” Capillarity 5, 83-9(,,,
(2022). 1228
40A. Salama, “On the dynamics of a meniscus inside capillaries during imbioq
bition and drainage processes: A generalized model, effect of inertia, and a5,
numerical algorithm,” Physics of Fluids 33, 082104 (2021). 1231
41H. K. Dahle, M. A. Celia, and S. M. Hassanizadeh, “Bundle-of-tubeg,,
model for calculating dynamic effects in the capillary-pressure-saturatiof,,;
relationship,” Transport in Porous media 58, 5-22 (2005). 1234
42R. Douglas and J. Bartley, “Capillary tube models with interaction betweeyy5
the tubes [a note on “immiscible displacement in the interacting capillary,;q
bundle model part i. development of interacting capillary bundle model’;,;,
by dong, m., dullien, fal, dai, I. and li, d., 2005, transport porous media]53g
Transport in porous media 86, 479-482 (2011). 1230
43]. Bartley and D. Ruth, “Relative permeability analysis of tube bundle modn,q
els, including capillary pressure,” Transport in porous media 45, 445-478,,,
(2001). 1242
447, Bartley and D. Ruth, “Relative permeability analysis of tube bundle mod;, 43
els,” Transport in Porous Media 36, 161-188 (1999). 1242
45Y. Shiri and S. M. J. Seyed Sabour, “Analytical, experimental, and numeri,g
cal study of capillary rise dynamics from inertial to viscous flow,” Physics,,¢
of Fluids 34, 102105 (2022). 1247
46J, Kim, M.-W. Moon, and H.-Y. Kim, “Capillary rise in superhydrophilig, 4
rough channels,” Physics of Fluids 32, 032105 (2020). 1240
477, Bico and D. Quéré, “Precursors of impregnation,” EPL (Europhysics Letzgo
ters) 61, 348 (2003). 1251
4BM. Dong, J. Zhou, et al., “Characterization of waterflood saturation profilg,,
histories by the ‘complete’capillary number,” Transport in porous media 31,55
213-237 (1998). 1254
“YM. Dong, F. A. Dullien, L. Dai, and D. Li, “Immiscible displacement ifys5
the interacting capillary bundle model part i. development of interactinggg
capillary bundle model,” Transport in Porous media 59, 1-18 (2005).  ,,5,
SOM. Dong, FE. A. Dullien, L. Dai, and D. Li, “Immiscible displacement in thg,gg
interacting capillary bundle model part ii. applications of model and comy,z,

1204

1260

17

parison of interacting and non-interacting capillary bundle models,” Trans-
port in Porous media 63, 289-304 (2006).

318, Krishnamurthy and Y. Peles, “Gas-liquid two-phase flow across a bank
of micropillars,” Physics of fluids 19, 043302 (2007).

525, Wang, F. A. Dullien, and M. Dong, “Fluid transfer between tubes in
interacting capillary bundle models,” Transport in Porous Media 71, 115—
131 (2008).

53S. Li, M. Dong, and P. Luo, “A crossflow model for an interacting cap-

illary bundle: Development and application for waterflooding in tight oil
reservoirs,” Chemical Engineering Science 164, 133—147 (2017).

43, Ashraf, G. Visavale, S. S. Bahga, and J. Phirani, “Spontaneous imbibi-
tion in parallel layers of packed beads,” The European Physical Journal E
40, 39 (2017).

55S. Ashraf, G. Visavale, and J. Phirani, “Spontaneous imbibition in ran-
domly arranged interacting capillaries,” Chemical Engineering Science
192, 218-234 (2018).

56E. Unsal, G. Mason, N. Morrow, and D. Ruth, “Co-current and counter-
current imbibition in independent tubes of non-axisymmetric geometry,”
Journal of Colloid and Interface Science 306, 105-117 (2007).

STE. Unsal, G. Mason, D. Ruth, and N. Morrow, “Co-and counter-current
spontaneous imbibition into groups of capillary tubes with lateral connec-
tions permitting cross-flow,” Journal of Colloid and Interface Science 315,
200-209 (2007).

58E. Unsal, G. Mason, N. R. Morrow, and D. W. Ruth, “Bubble snap-off and
capillary-back pressure during counter-current spontaneous imbibition into
model pores,” Langmuir 25, 3387-3395 (2009).

T, Bultreys, K. Singh, A. Q. Raeini, L. C. Ruspini, P.-E. @ren, S. Berg,
M. Riicker, B. Bijeljic, and M. J. Blunt, “Verifying pore network mod-
els of imbibition in rocks using time-resolved synchrotron imaging,” Water
Resources Research 56, e2019WR026587 (2020).

60T, Bultreys, K. Singh, A. Q. Raeini, P-E. Oren, S. Berg, B. Bijeljic, and
M. J. Blunt, “Improving the description of two-phase flow in rocks by in-
tegrating pore scale models and experiments,” in InterPore 11th Annual
Meeting and Jubilee (2019) p. 87.

61S. Foroughi, B. Bijeljic, and M. J. Blunt, “Pore-by-pore modelling, vali-
dation and prediction of waterflooding in oil-wet rocks using dynamic syn-
chrotron data,” Transport in Porous Media 138, 285-308 (2021).

628. Ashraf and J. Phirani, “A generalized model for spontaneous imbibition
in a horizontal, multi-layered porous medium,” Chemical Engineering Sci-
ence 209, 115175 (2019).

63C. W. Hirt and B. D. Nichols, “Volume of fluid (vof) method for the dy-
namics of free boundaries,” Journal of computational physics 39, 201-225
(1981).

%T. Young, “III. an essay on the cohesion of fluids,” Philosophical Transac-
tions of the Royal Society of London 95, 65-87 (1805).

5P S. de Laplace, Supplément au dixieme livre du Traité de mécanique
céleste: sur ’action capillaire (1806).

66, Ding, Q. Wu, L. Zhang, and D. Guérillot, “Application of fractional flow
theory for analytical modeling of surfactant flooding, polymer flooding, and
surfactant/polymer flooding for chemical enhanced oil recovery,” Water 12,
2195 (2020).

67Y. Debbabi, M. D. Jackson, G. J. Hampson, P. J. Fitch, and P. Salinas,
“Viscous crossflow in layered porous media,” Transport in Porous Media
117, 281-309 (2017).

68g. Akbari, S. M. Mahmood, H. Ghaedi, and S. Al-Hajri, “A new empirical
model for viscosity of sulfonated polyacrylamide polymers,” Polymers 11,
1046 (2019).

9S. Ashraf and J. Phirani, “Capillary displacement of viscous liquids in a
multi-layered porous medium,” Soft matter 15, 2057-2070 (2019).

708, Ashraf and J. Phirani, “Capillary impregnation of viscous fluids in a
multi-layered porous medium,” in Fluids Engineering Division Summer
Meeting, Vol. 59087 (American Society of Mechanical Engineers, 2019)
p. VOO5STO5A057.



Accepted to Phys. Fluids 10.1063/5.0123229

(a) (b)




:

>0 B




Zs > Z},> Zﬁ > Lo

(ﬂ) B lﬁi'?cr #(
Y T( aqgg (
a
0 47aqr’.gf

zy>25>zﬁ>za

(b) P 249,

Y vdqgg

, {

L 4 C
d dq',
Z}, > Zﬁ > Zs > Z

(c)b 2dq, I

a

5 v (




Cy N h
C
2 - C1to C (-1
Cj ( s | » CitoC -1 >
> Cjt1) to C (i-1)
Ci-1 D J
Ci ( a .
Ciivr) = ) A
: - Ciir1y to C (k-1
Cr ( re _>___C_'gi+1) toC n
C(n—l) j ~ C(k+1) toC n )
Cn —z Fmmmme -
<—aZb—>=
< zZ—*

Y

top region

bottom region



Zy >Z},> Zﬂ >Z{I

(@) B (
Y

(b) [ 1, =106 um
0.8 |

0.6 | Ts = 20 um - T

--F"‘..-ﬂ"

04 | 4%

-
0.2 [z

Z],>Z‘S>Zﬁ>za

(c) g (

4
a (
) ¢
(d) !
0.8 > <l
20 ”ﬁi;:'
0.6 Pmi{;;ﬂ“f'
N S
0.4
0.2
0 L L
0.2

(e) p
Y

H !

0.8
0.6
0.4

0.2

ZY>Zﬁ>Z‘5‘>Za

L
1, = 100 pm g |
5 rg = 60 um i/,,,-»“"’:““::._o:..-‘-..
I = 40 .,a-"'“'f" g
i r}f Hm - ‘,.:f--"' - -
L 15 = 20pum 2t _ -7
L .!.}F T -
: P e
- /#
; /_,-v’", -
By L
fﬁ
0 0.1 0.2

0.4



(b)

Z5 > Zy> Zg > Z,

(

()

(d)

Zs>2g > 7, > Z,

(

=V RI:




Zs > Z,> Zg > Z, Z5s > 2g > 2, > 2, Zy > 25 > 2g> Zg
4 (

( (c) ; : ( (e) a (

N1

0.8

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4




Zs >Zy> Zﬁ >Za

(b)!

0.8
0.6
0.4

0.2

Zy>ZS>Zﬂ>Za

(c) 1

Zy=Z5>Zﬁ>Za




200 %
(a) %
‘.
..
ﬂ.
150 | x*
x o
~ N
5 00 T+
) r
3t .-
~ + oR
$ oOX
SIUN ¥ +K cox
+ 00 ox
o+ o %
o 8K ¢ ®
<+ o x
0 — . .
0.4 0.6 0.8
Z;
1
(€)
0.8 |
0.6 |
v [
04 |
02 |
0
0.4

M mim -
(b) 200 rown—
XA OXO®
XAO
X A O Mok
150 | Xx A OO ¥
x X b
x oo E
i a7
E L o arr 1 T, =0.40 "x X <=’+ N
3100 Coarr 2Ty, =042 ;fma i oo +.
- arr 3Ty,=0.38 - o 40
~ [ carr 4Ty, =033 o*x+° ¢
50 } oarr 5T, =0.36 o
f +arr 6 Ty, =042 + ,:;H-z
. % ordered Ty;=0.31 o p
I o + o
0 | /| 1 1 1 | L ,
0.4 0.6 0.8 1
Z;
1
@
0.8 |
0.6 |
% | e arr 1
04 [ * arr 2
- o arr 3
+ arr4
02 | » arr5
[ o arr6
- —ordered
0
0.4

VA




200

ordered

o
=
a
=
)
a0
=
g
i~
=
S




(b) !

0.8

0.6

0.4

0.2




o Z,exp; Ref.47
o Zg exp; Ref.4a -
—Z,Eq.15 L
—Zp Eq. 15

s Z,exp;Ref.47
o Zg eJ_rp;Ref.47
— Z,sim;n = 2
— Zgsim; n = 2




Z2

0.8

0.6

0.4

0.2

] l-'/ /
, A
/ 74
ey A
1/ _4 g A
K [ 7 _#
. / A
slope 2.67 .~ O, ~ _f
A, A
R _ slope 2
“ 7\
s O lead exp; Ref.47
=~ e» e lead sim;n =6
lead sim;n =11
A lag exp; Ref.47
e e» lag sim;n =6
— — lag sim:n =11
— -lead Eq.15
— - ~-lag Eq.15
0.2 0.3 0.4 0.5

T



0 T 0.2 0.4

Zg :3"'21,:3" Zﬁ e Z o

}Zﬁ

T Z§>zZy>2g> Zg Zs > Zy > Zg

0 1 0.2 0.4 0 7 0.2 0.4 0 T 0.2 0.4



0.8

0.6

0.4

0.2

- = =T=0.2, R=100
= = =T=0.3, R=100

- = =TT, R=100

T=ﬂ_2, R=1000
T=0.3, R=1000
.......... 7=0.2, R=2000

........... T=0.3, R=2000
........... T= Tb " R=2000

0.2 0.4

(b)

SD

0.25 T
- — =T=0.2, R=100
- — —T=0.3, R=100
— — —T=T,, R=100
0.2 T=0.2, R=1000
7=0.3, R=1000
=T, , R=1000
.......... T=0_2, R:Zblﬂﬂ
0.15 ™ Mascesssaasy T=0.3, R=2000
........... T=T, , R=2000
0.1
0.05
= |




	Manuscript File
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	app 1
	app 2



