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In this thesis, insurance solutions for low-income populations and their capacity for poverty
reduction are considered. Classical risk theory techniques are adopted to the study of the trap-
ping probability, where “trapping” refers to the event at which an economic entity falls below
the poverty line and into an area of poverty, from which it is di�cult to escape without external
help. In the poverty setting, the trapping probability mimics an insurer’s probability of ruin.
Studying two household-level capital processes that align with risk processes with deterministic
investment and (i) random-valued and (ii) multiplicative claims, explicit trapping probabilities
are derived. The ability of low-income insurance strategies to reduce trapping probabilities
is assessed, with a particular focus on government subsidy schemes. For those closest to the
poverty line, insurance without subsidies increases their probability of trapping in both the
random-valued and multiplicative cases, in line with the existing literature. The governmental
cost of social protection is reduced under subsidisation schemes, with a premium payment
barrier strategy additionally ensuring the increased risk associated with insurance purchase is
mitigated. Purchase of insurance for multiplicative losses is found to be more a↵ordable than
for random-valued losses. A stochastic dissemination model is proposed for the extension of
the problem to the group setting, in line with the prevalence of risk sharing and group-based
insurance schemes across low-income communities. Consideration of risk sharing suggests that
the impact of loss and premium payment is shared throughout a homogeneous group, mitigat-
ing the severity of negative wealth transaction events. Subsidisation is also found to support
both the insured and the uninsured, further highlighting the benefit of governmentally sup-
ported schemes. In the second part of the thesis, the existence of lifetime dependence and the
influence of socioeconomic features on its structure are considered. Analysis is undertaken on
data sets from Ghana and Egypt, with dependence induced through joint stochastic mortality
and copula models, respectively. The impact of dependence on the pricing of a reversionary
annuity is derived through implementation of the indi↵erence pricing principle. In general,
pricing under the dependence assumption decreases the indi↵erence price of the annuity. In
visualising both data sets, dependence is observed to be lower in this alternative socioeco-
nomic environment than previously observed in the existing empirical literature, supporting
suggestion of socioeconomic influences on bereavement processes. Studying the existence of
pairwise dependence within relationships beyond the classical husband-wife case, dependence
within child-parent relationships is also found to be significant. Accounting for this existence,
even where reduced, is critical to improving the accuracy of insurance product pricing and to
mitigate the mortality risks faced by insurers, particularly given the uncertain nature of the
low-income financial environment.
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Chapter 1

Introduction

Social risk management is defined by the Jorgensen and Siegel (2019) as the way in which
society:

(i) manages income variability,

(ii) manages the risks of poverty and vulnerability to poverty,

(iii) builds resilience to poverty over time.

This thesis assesses insurance strategies which span the three components of social risk
management as a means for reducing the financial vulnerability of low-income populations
living close to the poverty line.

1.1 Microinsurance

Inclusive insurance, commonly referred to as microinsurance, relates to the provision of insur-
ance services to low-income populations with limited, or no access to mainstream insurance
or alternative e↵ective risk management strategies. First formally introduced by Dror and
Jacquier (1999), the term “microinsurance” has been defined in varying ways. Regulators,
academics, donors and governing institutions di↵er in their definition, with microinsurance
interpreted both qualitatively and quantitatively. “Micro” typically refers to (i) the low and
lower-middle income target population, (ii) the a↵ordability of the low cost and low coverage
products or (iii) the level of society associated with the organisation providing the insurance
[Dror, 2019; Ingram and McCord, 2011]. Credit life and life insurance, funeral insurance,
health insurance and crop and livestock insurance are the most common types of microinsur-
ance product in the market.

In 2018, 656 million of the worlds population were estimated to live below the international
extreme poverty line of $1.90 USD per day (World Bank, 2022) and in 2017, 1.7 billion adults
remained unbanked (Demirguc-Kunt et al., 2018). Targeting low-income individuals living close
to or below the poverty line, microinsurance products aim to close the protection gap that exists
between uninsured and insured losses to life, property and health by providing protection to
the poor. However, barriers to microinsurance penetration exist due to constraints on product
a↵ordability resulting from fundamental features of the microinsurance environment. These
distinct features include the nature of low-income risks, limited consumer financial literacy and
experience, product accessibility and data availability. While novel solutions for the supply and
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1. Introduction

distribution of products in this environment exist (see, for example, Microinsurance Network
(2020)), it is important to consider the viability of microinsurance uptake for all sectors of the
target population, particularly for the most vulnerable.

In this thesis, insurance solutions for low-income couples, households and communities are
considered. Divided into two core topics, the first focuses on the impact of microinsurance
on poverty reduction and the importance of government partnerships and subsidisation. The
second considers life-based public and private products with a specific application to the low-
income setting.

1.1.1 Government subsidisation

Premium payments can in fact heighten the risk of falling into poverty for the proportion of
the population living just above the poverty line, inducing a balance between protection and
loss as a result of insurance coverage which is dependent on the entity’s level of capital. This
insu�ciency of microinsurance alone as a means for poverty reduction for the most exposed
necessitates an alternative solution. For this purpose, Chapter 2 considers microinsurance
schemes that are supported by social protection strategies, and more specifically, their poten-
tial in minimising both the probability of a household falling below the poverty line and the
governmental cost of social protection. Microinsurance products typically su↵er from ad-hoc
design and under-regulation, leaving those with little capital or access to infrastructure open
to exploitation. Public-private collaborations are therefore more e↵ective than standalone
products. For thorough discussions of microinsurance, the challenges associated with adapt-
ing commercial insurance to serve the poor and the insurability of risks in the market, the
interested reader may refer to Dror (2019), Churchill (2007) and Biener and Eling (2012),
respectively.

Governments in low-income and emerging countries have been increasingly involved in the
provision of insurance programmes in recent years. Premium subsidies are the most common
form of government support for insurance. In the particular case of the Ugandan Agricultural
Insurance Scheme, the Government of Uganda provides subsidies of 30%, 50% or 80% to
participating farmers, dependent on whether they are large-scale farmers, small-scale farmers,
or farmers in disaster-prone areas, respectively (Erena et al., 2019). While doubts about the
role of insurers in alleviating poverty exist among practitioners, adequate coordination between
governments and private insurance companies has been shown to enhance the development of
sustainable, a↵ordable and cost-e↵ective insurance products (see, for example, Solana (2015)).
Insurance premium subsidies should be designed with a clearly stated purpose, target those in
need and address market deficiencies or consumer equity concerns (Hill et al., 2014). When
designed properly, subsidised insurance schemes represent a powerful and cost-e↵ective way to
achieve public policy objectives, while poorly designed premium subsidies are ine�cient and
can lead to significant economic costs (Hazell et al., 2017).

Previous studies have approached the subsidisation problem from a dynamic stochastic
programming perspective. Ikegami et al. (2016), Carter and Janzen (2018) and Janzen et al.
(2021) propose dynamic models of household consumption, investment and risk management,
considering a social insurance-type mechanism which first prioritises lending aid to the vulner-
able non-poor, contingent on their experience of negative shocks, then to those already below
the poverty line. Introduction of an index-based insurance market is found to outperform the
asset-based vulnerability-targeted protection in poverty reduction, economic growth and the
cost of social protection. Although implementation of a vulnerability-targeted strategy induces
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1.1. Microinsurance

a short-term increase in poverty, rates are lower than those associated with both in-kind and
cash transfers in the medium- and long-term.

Carter and Janzen (2018) and Janzen et al. (2021) compare the impact of insurance when all
costs are paid by the policyholder and when targeted-subsidies are provided to the vulnerable
and already poor. In the latter study, those in the neighbourhood of the poverty line do not
optimally purchase insurance (without subsidies), instead suppressing their consumption and
mitigating the probability of falling into poverty. Observing a greater reduction in poverty
in comparison to pure cash transfers, Jensen et al. (2017) provide empirical evidence for the
benefits of insurance-based social protection through analysis of safety net and drought-based
livestock insurance programmes in northern Kenya. Chantarat et al. (2017) consider the welfare
impacts of the same index-based insurance programme, using herd size dynamics to address
the vulnerability to poverty associated with covariate livestock mortality such that critical
herd size mimics the poverty line. Targeted premium subsides are optimised across various
herd size groups such that given measures of poverty reduction are maximised. Increases
and decreases in household wealth and poverty, respectively, were greater under the optimal
strategy than under alternative needs-based subsidisation mechanisms and with no insurance.
In the presence of needs-based subsidisation which provides free protection to the most poor,
the number of poor continued to increase, thus highlighting the importance of social protection
strategies that target those still above but close to the poverty line, in addition to the already
poor.

Kovacevic and Pflug (2011) alternatively propose a risk-theoretic model for calculating the
probability of falling below the poverty line, aligning the problem with that of an insurer’s
probability of ruin. Negative consequences of purchasing insurance are observed for members
of low-income populations closest to the poverty line, with the most vulnerable experiencing
an increase in their probability of falling when insured. Implementing a multiple-equilibrium
framework in the dynamic stochastic programming setting, Liao et al. (2020) echo this finding
in their analysis of the impact of subsidised and unsubsidised agricultural insurance on poverty
rates in rural China. Subsidisation of insurance is not considered in Kovacevic and Pflug
(2011). The proportion of coverage and the choice to insure is also fixed across the population,
as in Chantarat et al. (2017). Kovacevic and Semmler (2021) instead optimise the level of
coverage by permitting a change in the retention rate of policyholders after any catastrophic
event, defining a multi-equilibria model for their analysis. Flexibility in the insurance purchase
decision is also considered in Janzen et al. (2021). The application of classical risk theory
concepts to the context of poverty is the approach adopted in Chapters 2 and 3, for two types
of capital growth model.

Besides reducing the impact on household capital growth, the use of subsidies to lower
consumer premium payments has the potential to increase microinsurance uptake, with wealth
and product price positively and negatively influencing microinsurance demand, respectively,
see Eling et al. (2014) and Platteau et al. (2017). Focusing specifically on agricultural insurance,
Hazell et al. (2017) present government and donor incentives for subsidisation. As an example,
temporary subsidies can enable low-income farmers to bear the risk of adopting innovative
technologies which may bring them out of poverty. However, in addition to improving the
economic circumstances of the insured, through the provision of insurance experience this
strategy mitigates the uncertainties surrounding insurance common among consumers in the
microinsurance environment, while improving the quality of consumer data.

Households that live or fall below the poverty line are said to be in a poverty trap, where a
poverty trap is a self-perpetuating state of poverty from which it is di�cult to escape without
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1. Introduction

external help. Due to the prevalence of the informal sector and, in rural areas, the reliance
upon agricultural yields, income processes in low-income economies are typically inconsistent
and liquidity constraints are widespread. This limits the ability to save and as a result, the
availability of self-sustained financial protection. Exposure to the risks associated with extreme
loss events and their potential to induce poverty trapping are therefore heightened among low-
income populations, while insurance is often una↵ordable and demand is low. An additional
strategy for easing liquidity constraints and increasing consumer trust is to allow policyholders
to delay premium payments until the end of the insured period, at which time any indemnities
are paid. For discussion of this approach, see, for example, Liu et al. (2013) and Liu and Myers
(2016), where positive consumer investment e↵ects are also observed.

Poverty trapping is a well-studied topic in development economics, with a large literature
focus on why economic stagnation below the poverty line occurs in certain communities. In
theory, the poor could readily grow their way out of poverty by adopting profitable strate-
gies including productive asset accumulation, opportunistic exchange and implementation of
cost-e↵ective production technologies. However, poverty traps are underlined by reinforcing
behaviours induced by the state of being poor (Barrett et al., 2016). Multiple dynamic equi-
libria models dominate existing poverty trap literature, capturing the existence of both poor
and non-poor equilibria. Single equilibrium models are also studied, with the economic entity
converging to a unique dynamic equilibrium point which lies below the poverty line.

Although important for poverty alleviation, the behaviour of a household below the poverty
line is not considered in this thesis. The analysis in Chapters 2-4 focuses only on low-income
behaviours above this critical line. For further discussion, the interested reader may refer to
Azariadis and Stachurski (2005), Bowles et al. (2006), Carter and Barrett (2006), Kraay and
McKenzie (2014), Barrett et al. (2016) and references therein; see Matsuyama (2008) for a
detailed description of the mechanics of poverty traps.

1.1.2 Risk sharing

Given the widespread exclusion of the low-income sector from traditional financial and in-
surance services, low-income populations often rely on alternative risk mitigation strategies.
Risk-sharing is one such strategy for smoothing consumption fluctuations and mitigating the
high-risk nature of the low-income environment. Gift exchange, informal credit and rotat-
ing savings associations, mutual aid and burial societies are examples of informal risk-sharing
mechanisms (see, for example, Bardhan and Udry (1999)) used to lessen exposure to the id-
iosyncratic risks faced by low-income households. These risks include death, accident, illness,
crop damage due to fire, insect and disease, with support provided in the form of monetary
payments, labour services and food provisions. The absence of a formal contract, or rules and
regulations, characterises the informal nature of these agreements.

A large development economics literature exists on the study of risk-sharing mechanisms,
with many studies highlighting the prevalence of risk-sharing among small social groups rather
than entire communities. Udry (1990), Townsend (1994) and de Weerdt and Dercon (2006),
among others, discuss the presence of subgroups within villages or communities, including
burial societies, women’s organisations, families, religions and ethnic groups, and their in-
fluence on the structure of risk-sharing in a heterogeneous society. Dependent on the risk,
groups with similar features (or dissimilar features when diversifying the risk) will be sought as
participants in the risk-sharing agreement, where the socioeconomic characteristics determin-
ing partnership preferences are shaped by membership of these often overlapping subgroups.
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1.2. Lifetime dependence modelling

As such, consideration of financial structures within small societal groups is important when
studying the wealth dynamics of a system. Grimard (1997), Ligon (2002), Murgai et al. (2002),
Fafchamps and Lund (2003), Dercon et al. (2006), Fafchamps and La Ferrara (2012), Attanasio
et al. (2012), Mobarak and Rosenzweig (2013) and Dercon et al. (2014) are further examples
of empirical work considering risk-sharing at this more granular level, in varying low-income
economies.

It is often the case that agents within informal risk-sharing agreements have interchangeable
roles, with recipients of capital also acting as capital providers at varying points in time
(Coate and Ravallion, 1993). However, some indigenous associations also provide insurance in
a more formalised manner. Dercon et al. (2006) study group-based insurance using evidence
from Ethiopia and Tanzania. Focusing specifically on funeral associations, explicit rules on
membership, insurance schedules and payouts were observed. Additional coverage for risks
other than those relating to funeral costs were o↵ered by a typically low number of schemes
and as such, consumers were found to increase their coverage by participating in more than
one scheme. Applications for short-term credit payments were also permitted in the event of
a shock.

Due to their limited financial experience and the prevalence of basis risk, low-income con-
sumers often have little trust in the insurer. In addition, lack of understanding of the workings
of insurance causes incorrect use of products and thus induces moral hazard. By increasing
communication among consumers, targeting insurance at the group-level contributes towards
mitigating these fundamental risks. Chemin (2018) promotes the role of social networks in
the uptake of health insurance. To overcome the lack of trust prevalent in the microinsurance
environment, the study compares health insurance uptake among members of pre-existing in-
formal groups with uptake among randomly selected sub-groups, where interventions including
subsidies, registration assistance and information about the scheme are provided. While full
subsidisation increases initial uptake to 45%, almost no retention is observed within the ran-
domly selected group. Promotion of insurance within informal groups on the other hand,
results in a 7% one-year retention rate with 12% initial uptake. Risk sharing is also found to
be complementary to index-based insurance in overcoming basis risk (Dercon et al., 2014).

Note that, while risk sharing mechanisms mitigate the idiosyncratic risks experienced in-
dependently by group members over time, the occurrence of covariate risks, such as natural
disasters and epidemics, requires more formal coverage. In Chapter 4, the dissemination model
of Chan and Mandjes (2022) is adopted for analysis of the impact of insurance on wealth be-
haviours within a low-income group of the nature discussed here. In a simulation-based study
of a similar nature, Will et al. (2021) assess the impact of the availability of microinsurance
on participation in risk-sharing agreements. In this study, an agent-based simulation model is
combined the Watts-Strogatz small-world networks model (Watts and Strogatz, 1998), which
induces the risk sharing connections between households.

1.2 Lifetime dependence modelling

Two lives involved in the pricing of an insurance contract are traditionally assumed to be
mutually independent, inferring there exists no relationship between their remaining lifetimes.
This assumption induces greater simplicity in pricing calculations through reduction of the
joint life estimation problem to the estimation problem of a single life, however it does not
reflect reality. The existence of dependence between individual lifetimes presents the need
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1. Introduction

to refine the independence assumption to improve the accuracy of the pricing and reserving
of life insurance products that involve multiple lives and mortality assumptions. Survival
probabilities of two individuals whose remaining lifetimes are dependent at the initiation of a
policy will vary in line with the life status of the pair. Mortality laws determined at the time
of the policy’s valuation, which dictate the calculation of prospective premium and benefit
payments, must therefore account for the likelihood of future shifts in mortality.

Existing joint lifetime research largely considers dependence between husband and wife.
Denuit and Cornet (1999) and Denuit et al. (2001) use data from the Belgian National Institute
of Statistics for estimation of the marginal force of mortality in a Markovian model. Here, an
increase in mortality among widowed individuals is observed, with bereaved males experiencing
a more significant deviation from the non-widowed mortality. Bivariate data is however more
di�cult to obtain, data for copula estimation in these studies was sampled from the gravestones
of couples in Belgian cemeteries. The impact of marriage status on mortality is also presented in
Maeder (1995). Many studies including those by Frees et al. (1996), Carriere (2000), Youn and
Shemyakin (1999, 2001), Shemyakin and Youn (2001, 2006), Luciano et al. (2008), Spreeuw and
Wang (2008); Spreeuw and Owadally (2013), Ji et al. (2011), Luciano et al. (2016), Dufresne
et al. (2018), Zhang and Brockett (2020) and Arias and Cirillo (2021) consider a generation-
based joint life data set from a large Canadian insurer in their analysis of joint life dependence.
Joint annuity data from a French insurer is analysed in Lu (2017), French geneaology data in
Cabrignac et al. (2020) and Dutch census data on married couples in Sanders and Melenberg
(2016). Henshaw et al. (2020) (Chapter 5) consider Ghanaian survey data and Walter et al.
(2021) joint life and last survivor annuity data from a Kenyan insurer, where the latter two
studies are the only studies assessing dependence in an alternative socioeconomic context.

Various methods for dependence modelling appear in the literature. Copula-based ap-
proaches are widely used to express the joint survival functions of interest. Studies include
those by Frees et al. (1996), Youn and Shemyakin (1999), Carriere (2000), Denuit et al. (2001)
Spreeuw (2006), Shemyakin and Youn (2006), Luciano et al. (2016) and Dufresne et al. (2018).
Copula selection is often found to influence the strength of the dependence observed. To
mitigate the influence of copula choice, Sanders and Melenberg (2016) extend the paramet-
ric Weibull copula to a more flexible semi-nonparametric model through multiplication of the
probability density by squared polynomials. Considering age-related influences on dependence
structures, Youn and Shemyakin (1999) and Dufresne et al. (2018) find dependence to be a
decreasing function of age di↵erence, while Luciano et al. (2016) observe reduced dependence
in younger joint lives through application of a generation-based model. Changes in the value
of joint life and last survivor annuities with varying benefits are consistently observed under
the dependence assumption. Joint life annuities making payments until the first loss of life
are underpriced, while last survivor annuities providing benefits until the final death are over-
priced. The observed impact of age di↵erence on product pricing for an individual liability is
however mitigated in Dufresne et al. (2018) when considering the total liability of an insurer
given a portfolio of policyholders. Kaluszka and Okolewski (2014) alternatively study multiple
life products where the joint distribution of future lifetimes is unknown, with the dependence
structure assumed to belong to a nonparametric neighbourhood of independence.

Frailty models are an extension of the Cox (1972) proportional hazards model, and an
alternative to the copula approach, which account for unobserved heterogeneities between in-
dividuals in a population. Hetergeneities may be positively or negatively correlated, dependent
on the specification of their distribution. First introduced by Vaupel et al. (1979) and devel-
oped by Hougaard (1984), Marshall and Olkin (1988) and Oakes (1989) among others, in the
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lifetime dependence context, frailty-type models have been used in studies including those by
Clayton (1978), Hougaard et al. (1992), Klein (1992), Nielsen et al. (1992) and Gourieroux and
Lu (2015), where dependence is captured by the sharing of an unobserved common risk factor
(or frailty) which negatively impacts mortality. Walter et al. (2021) apply a frailty model
for construction of dependence life tables. Bivariate distributions generated by frailty models
are a subclass of the Archimedean copula family popular in joint lifetime modelling (Marshall
and Olkin, 1988; Oakes, 1989). Lu (2017) implement a mixed proportional hazards model to
account for observed and unobserved frailties, with a treatment e↵ect capturing the mortality
jump characteristic of spousal dependence (see Section 1.2.1). The impact of losing a spouse is
found to be asymmetric between males and females, a finding also observed in Dufresne et al.
(2018). See Frees and Valdez (1998) for a thorough overview of copulas and their link with
frailty models in the actuarial setting.

Dependence induced by the occurrence of an event experienced simultaneously by two
lifetimes, due to, for example, a car accident or natural disaster can be modelled using the
common shock model of Marshall and Olkin (1967). Gobbi et al. (2019) consider the extended
Marshall-Olkin model of Pinto and Kolev (2015) which combines the copula and common shock
approaches. Common shock models have also been used in the risk theory context to model
dependence in the frequency and severity of claims across insurance business classes, see, for
example, Ambagaspitiya (2003), Wang and Yuen (2005), Dang et al. (2009) and Wang et al.
(2016). Multivariate risk models with common shock and thinning dependence are adopted
in Wang and Yuen (2005) and Wang et al. (2016) to additionally capture the possibility of a
given claim inducing claims in other insurance classes. Lee and Cha (2018) consider a more
flexible common shock model in the joint survival analysis context, accounting for shock events
that a↵ect the remaining lifetimes of two individuals but do not necessarily induce the death
of both.

Markov chain methods are implemented in a number of works as a basis for joint mortality
models. Martikainen and Valkonen (1996) propose the significance of adaptations in the living
conditions of bereaved individuals, due to factors including grief and stress, on the interdepen-
dence of the lifetimes of paired lives. The state-based approach facilitated in the Markovian
setting enables the capturing of such lifestyle changes. Norberg (1989) proposes a four-state
Markov mortality model dependent on marital status. Denuit and Cornet (1999) use Fréchet-
Hoe↵ding bounds to estimate the maximum impact of dependence under assumption of the
Norberg (1989) model, again observing a notable reduction in premium. This study is further
developed in Denuit et al. (2001). Spreeuw and Wang (2008) and Spreeuw and Owadally (2013)
extend Norberg’s model to account for the typically short-term nature of spousal dependence.
Through the inclusion of an additional state, the mortality of the survivor is assumed to be
dependent on the time elapsed since the first death.

A limitation of the discrete model of Spreeuw and Wang (2008) is that, in moving between
states, the bereaved spouse experiences sudden jumps in their mortality intensity. Semi-Markov
chain models have superior flexibility in comparison to the standard Markov chain model. In
calculation of transition probabilities, time since previous transition is considered in addition
to the current time and state occupied. Ji et al. (2011) define the impact of spousal loss as a
smooth, parametric, decreasing function of time since bereavement through implementation of
a semi-Markov model, enabling greater information gain in regard to how the e↵ect changes
with time. Clearly, model selection influences the pricing and valuation of insurance products.
The Markov chain model of Norberg (1989) suggests bereaved mortality increases permanently;
however, the semi-Markov model of Ji et al. (2011) allows for the recovery of bereaved mortality
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after the initial death, thus facilitating duration dependence.
Deterministic mortality intensities, defined as functions of the age of the policyholder,

have traditionally been used by actuaries in the pricing and valuation of insurance products.
Use of stochastic processes in modelling mortality intensity allows for incorporation of the
uncertainty of future mortality development and time dependence in mortality models. This
facilitates improvements in the accuracy of pricing calculations, in addition to allowing for
quantification of the mortality risk faced by insurance companies. Financial risk, systematic
and unsystematic mortality risk, are the fundamental risk factors insurers are exposed to (Dahl,
2004).

Paralleling mathematical approaches for modelling time to default in the credit risk litera-
ture, Dahl (2004), Bi�s (2005), Luciano and Vigna (2005), Schrager (2006) and Luciano and
Vigna (2008) among others, model the remaining lifetime of an individual as a doubly stochas-
tic stopping time, with stochastic intensity given by the force of mortality. The link between
credit-sensitive securities and insurance contracts was first proposed by Artzner and Delbaen
(1995). This connection enables exploitation of the similarities between time to default and
remaining lifetime, and short-term interest rate and force of mortality.

Credit risk models can, in general, be classified into two distinct categories (see Jarrow
and Protter (2004) for a detailed comparison of the two). Originating from the approaches
of Black and Scholes (1973) and Merton (1974), structural models focus on the structural
characteristics of an institution, comparing the market value of a company’s assets to their
liabilities, with complete knowledge of a comprehensive information set. The approach of the
aforementioned mortality literature falls into the class of reduced form models, implemented
without the need to account for company specific factors underlying the occurrence of a default,
due to assumption of an exogenous cause (Saunders and Allen, 2002).

Although well-established for single cohort studies, use of stochastic mortality models for
joint life dependence is limited. In the case of the joint mortality experience of coupled
lives, Luciano et al. (2008) again adopt the reduced form credit risk methodology, imple-
menting a continuous time cohort model of a�ne type with dependence induced through an
Archidmedean copula. This study creates the first link between stochastic and copula based
approaches. Luciano et al. (2016) find two parameter extensions of Archimedean copulas to
be more suitable for representing coupled dependence when investigating the dependence of
spouses across generations.

Symmetric bereavement reactions and the staticity of dependence over time are two draw-
backs of the use of copulas. Allowing for asymmetric mortality reactions to the occurrence
of a death, Gourieroux and Lu (2015) introduce mortality jumps through combination of a
Freund model with an unobservable, common, static frailty representing the socioeconomic
conditions shared by coupled lives. Dependence between lifetimes further to the contagion
e↵ects resulting directly from a loss is also therefore accounted for. In addition, copula density
functions are largely continuous, implying significant changes (or jumps) in mortality do not
occur.

Jevtić and Hurd (2017) introduce an alternative to copula dependence in the credit risk
environment through definition of a probabilistic mechanism which describes the influence of
a loss on the dependent lifetime. A stochastic mortality model of a�ne type is implemented
for mortality experience, assuming correlated non-mean-reverting Ornstein–Uhlenbeck (OU)
di↵usions for the mortality intensities of coupled lives. Inclusion of mean-reversion in mor-
tality modelling requires a diminishing likelihood of future mortality improvements in the
event that recent mortality developments occur at a faster rate than anticipated. Uncertain-
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ties surrounding medical advances and improvements in the healthcare and pharmaceutical
industries highlight the unsuitability of a mortality model with such constraints. In line with
this, existing research suggests time-homogeneous mean-reverting a�ne processes do not fit
observed mortality tables, while forces of mortality appear to behave exponentially rather than
in a mean-reverting fashion (Luciano and Vigna, 2005). The requirements for a good stochastic
mortality model are presented in Cairns et al. (2006).

In relation to credit risk, however, default intensities are generally modelled as mean-
reverting processes. As such, implementation of the classical Cox–Ingersoll–Ross (CIR) model
is popular within credit risk literature. For examples of applications of CIR processes in the
financial and insurance mathematics literature, the interested reader may refer to Liang et al.
(2011), Nowak and Romaniuk (2018) and Dassios et al. (2019). Milevsky and Promislow (2001)
implement a CIR interest rate process with stochastic force of mortality, incorporating both
interest rate risk and systematic mortality risk. The Feller process is a non-mean-reverting
adaptation of the classical CIR model. In contrast to OU-type processes, the non-negativity
constraint of mortality intensity is not violated through implementation of this model, con-
ditional on the non-negativity of the initial starting point. Calibrating the Feller process to
three generations in the UK population, Luciano and Vigna (2008) find the associated survival
probability to decrease at every age. Inclusion of a rooted mortality intensity also tempers the
volatility of the process. Non-mean reverting CIR and OU stochastic processes are combined
in Chapter 5 to construct a joint mortality model applicable to the low-income environment.

An alternative approach to correlating stochastic processes in the credit risk setting is pro-
posed by Zhang and Brockett (2020). In this study, individual mortalities are modelled as
Brownian motions with drift and have time indices that move according to correlated subordi-
nators. Dependence is induced through this correlation, where the subordinators are structured
to capture both shared frailties and idiosyncratic risks in a similar manner to Jevtić and Hurd
(2017) and Henshaw et al. (2020) (Chapter 5). Instead adopting a machine learning perspec-
tive, Arias and Cirillo (2021) propose the use of the non-parametric bivariate reinforced urn
process which learns from the lifetime experience of individuals and uses the information ob-
tained to make inference about the lifetimes of others. In line with the Bayesian approach,
prior knowledge can be incorporated in the model and updated at the end of each lifetime,
thus facilitating improvements over time.

1.2.1 Broken-heart syndrome and shared frailty dependence

Establishing the duration of dependence is important in determining the full extent of pricing
implications. Hougaard (2000) discusses the classification of dependence across three time
frames, with time elapsed since the death of the deceased allowing for di↵erentiation between
the three classes.

Dependence between the lifetimes of coupled lives is commonly referred to as broken-heart
syndrome. Characterised by an elevated force of mortality which is a decreasing function of
time since death, broken-heart syndrome is the most recognised form of short-term depen-
dence. Long-term and instantaneous dependence, also referred to as the common shock e↵ect,
constitute the remaining classifications which should be considered by insurers in the pric-
ing of products involving mortality assumptions. For further details on the definition of each
dependence structure, see Hougaard (2000).

Spreeuw (2006) investigates the nature of dependence and time-dependent association be-
tween lifetimes through implementation of a number of single parameter Archimedean copula
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models. Almost all of the nine copulas studied exhibit long-term dependence. One copula fam-
ily presents short-term dependence, however only for young ages or short durations, with pure
short-term dependence not recognised in any of the copulas studied. Although these results
question the relevance of copulas in the context of broken-heart syndrome, the limitation of
single parameter models in capturing all dependence classes is highlighted in line with Luciano
et al. (2016).

Historical research into the prevelance of broken-heart syndrome suggests the elevated
mortality of the survivor diminishes significantly following an approximate period of between
six and twelve months (Rees and Lutkins, 1967; Parkes et al., 1969; Ward, 1976), falling to the
commonly lower mortality of the comparative non-widowed population in some cases. Factors
influencing the impact of broken-heart syndrome include the cause of death of the deceased
spouse (Elwert and Christakis, 2008), the age of the bereaved spouse and the location of the
first death (Rees and Lutkins, 1967), with widowers experiencing a greater change in mortality
compared to that of widows. Spreeuw and Wang (2008), Ji et al. (2011), Spreeuw and Owadally
(2013), Gourieroux and Lu (2015), Jevtić and Hurd (2017) and Henshaw et al. (2020) introduce
jumps in the mortality intensity of the survivor after the death of their spouse in line with
empirical findings of dependence studies on coupled lives.

The nature of joint life dependence is important to insurers both for pricing and to en-
sure diversification opportunities are exploited. Dependence between the remaining lifetimes
of paired lives exists before the occurrence of a death, through unobserved couple-level het-
erogeneities (Klein, 1992). This prior association is referred to as spurious risk dependence.
In contrast to broken-heart syndrome, which is causal by definition, spurious risk dependence
is purely attributable to the sharing of correlated risk factors or frailties. Living conditions,
healthcare access, diet habits and mutual emotional stresses are among some of the lifestyle
features that are determinants of both health and mortality. Selectivity in the formation of
couples also implies the pairing of individuals with equivalent levels of risk, heightening the
prevalence of any unobserved correlation and the associated risks. Improvements in the un-
derwriting processes of an insurance company and diversification of insurance portfolios would
mitigate dependence risk if correlated unobserved heterogeneities were the main component
of spousal mortality dependence. However, identification of a marked causal e↵ect of spousal
bereavement would need to be addressed, with assumption of coupled mortality dependence
required across all policyholders regardless of their characteristics and socioeconomic status.

Lu (2017) separates the impact of spurious and causal dependence, observing 92.4% and
81% of the mortality jump to be accounted for by broken-heart syndrome among bereaved
males and females, respectively. The remaining proportion reflects unobserved heterogeneities.
However, despite the dominance of broken-heart syndrome over spurious correlation, disre-
garding either e↵ect was found to produce significant pricing errors. Both spurious and causal
dependence are also captured by van den Berg et al. (2011), where the mortality increase is
of greatest significance during the first two and a half years of bereavement, with no e↵ect
observed more than five years post loss. This study provides evidence for the causal e↵ect
of conjugal bereavement on mortality and health, reporting a reduction in residual life ex-
pectancy of 12% on average following the loss of a spouse. In line with Lu (2017), the error in
assuming the life status of an individual’s spouse to be an exogenous determinant of mortality
is here acknowledged. Evaluating the impact of bereavement on premium pricing over time,
in Spreeuw and Wang (2008), the mortality drop characteristic of broken-heart syndrome was
found to outweigh the initial mortality elevation, with little impact on future pricing.

Although the negative implications of the loss of a spouse on the remaining lifetime of the
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bereaved partner are widely accepted, di↵erences in cultural patterns of bereavement reactions
are observed across socioeconomic environments (Osterwers and Solomon, 1984; Laungani,
1996; Parkes et al., 2015). Cultural di↵erences in outlook on life, behaviours and religious
beliefs, the environmental characteristics of a country or region, disease incidence, healthcare
access and levels of economic, social or political change each contribute to the mortality and
bereavement reactions of individuals.

Knowledge of the importance of insurance in sustaining economic growth has a history
of significant length (United Nations, 1964); however, penetration in low and lower-middle
income countries remains reduced in comparison to higher-middle and high income countries
(Outreville, 2013), with determinants of consumption ranging from income per capita, infla-
tion and banking sector development to religious inclination (Beck and Webb, 2003). As a
long-term savings instrument and measure of risk mitigation providing protection against the
financial consequences of death, the need for increased life insurance penetration rates in such
economies is highlighted by its connection with financial development levels (Outreville, 1996).
The importance of acknowledging dependence between coupled lives particularly in low and
lower-middle income countries and consequently alleviating the insurance risk associated with
inaccurate pricing mechanisms is therefore heightened by this connection, due to the instability
of the associated economies.

1.3 Contributions and outline

Although well-studied in the economics and development economics literature, actuarial meth-
ods for microinsurance and for traditional insurance with application to low-income settings
are lacking. Existing actuarial research largely focuses on empirical analysis of the pricing, de-
mand, renewal and sustainability of products. However, to facilitate movement away from di-
rect replication of traditional insurance products, rigorous mathematical modelling is required.
The main objective of this thesis is therefore to contribute with mathematical perspectives on
insurance solutions in the low-income environment.

Chapter 2 adopts the insurance risk process with deterministic investment and exponen-
tially distributed claims to the poverty reduction context. Classical risk theory techniques
are used to analyse the behaviour of low-income capital processes. Comparing the impact of
three microinsurance strategies on the probability of falling below the poverty line, specifically,
microinsurance schemes with (i) unsubsidised premiums, (ii) subsidised constant premiums
and (iii) subsidised flexible premiums, explicit solutions for the desired probability and for the
governmental cost of social protection are obtained. Cost of social protection is defined as
the present value of government subsidies plus a supplemental fixed cost that ensures, with a
certain level of confidence, that households will not return to poverty, should they fall below
the threshold, where previous studies consider only the cost of lifting households to the poverty
line. Mimicking the dividend barrier strategy well-studied in risk theory, strategy (iii) is de-
fined such that premium payments are made by consumers only when their capital is above
some predefined barrier.

Capital losses in Chapter 2 are captured by negative jumps of random size. Chapter 3
studies an adjustment of the process with households susceptible to random shocks proportional
to their level of capital. Kovacevic and Pflug (2011) consider a version of this process discretised
at loss event times, performing numerical analysis on the associated probability of falling below
the poverty line. In Chapter 3, closed-form expressions of the probability are obtained for

11



1. Introduction

special cases of beta distributed remaining proportions of capital using Laplace transform
methods. The impact of insurance on the probability of falling below the poverty line is again
considered through assumption of proportional insurance coverage. Asymptotic analysis of a
similar light to that applied in Constantinescu (2006) is considered. Analysis is undertaken on
the infinitesimal generator of the proportional capital process and comparisons made with the
uninsured case through simulation.

Chapter 4 adjusts the stochastic dissemination model of Chan and Mandjes (2022) for
application to the wealth behaviours of a group. The impact of group membership and wealth
interactions on the probability of falling below the poverty line are considered for the first
time in the mathematical context. Deriving a system of coupled di↵erential equations for the
joint transient distribution of agent wealth and an exogenously evolving Markov background
process, which represents the economic state of the system, numerical analysis is facilitated
through consideration of the first, reduced and mixed second moments of the wealth process.
Group wealth behaviours are investigated through sensitivity analysis and the probability of
falling below the poverty line with normal approximation techniques.

Chapters 5 and 6 address the existence of socioeconomic influences on dependence between
paired lifetimes and the bereavement processes of survivors. Focusing on dependence between
coupled lives, in Chapter 5, an adjustment of the joint mortality model of Jevtić and Hurd
(2017) is adopted. Motivated by analysis of a Ghanaian data set collected for the purpose of
this study, correlated non-mean-reverting CIR di↵usions are proposed to represent the paired
mortalities of coupled lives. Unoberserved heterogeneities are accounted for by correlating the
Brownian motions present in the CIR processes. A mean-reverting OU process is then selected
to represent the broken-heart syndrome e↵ect. In moving from the deterministic bereavement
of Jevtić and Hurd (2017) to a stochastic bereavement process, should it exist, any non-
diversifiable risk associated with a loss can also be accounted for. Deterministic bereavement
processes only capture diversifiable risks. Applying classical methods from stochastic optimal
control, the indi↵erence price of a reversionnary annuity is derived and used to determine
the impact of the dependence assumption on the pricing of an insurance product requiring
mortality assumptions.

Chapter 6 adopts the copula-based approach for lifetime dependence modelling well-used
in the literature, fitting four Archimedean copulas to a large sample of Egyptian social pension
data. Covering, by law, a policyholder’s spouse, children, parents and siblings, this data set
enables analysis of pairwise dependence between multiple familial relationships beyond the
well-known husband and wife case. Bayesian Markov Chain Monte Carlo (MCMC) techniques
are used for parameter estimation with likelihood derived by the two-step inference functions
for margins (IFM) method. Given the traditional use of UK mortality tables in the modelling
of mortality in countries such as Ghana and Egypt, Chapters 5 and 6 are useful in informing the
definition of appropriate joint mortality assumptions that correctly fit the target population.

Concluding remarks on the five studies and notes on future work are presented at the end
of the thesis.
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Chapter 2

Subsidising inclusive insurance to
reduce poverty

In this chapter, the benefits of coordination and partnerships between governments and private
insurers are assessed, and further evidence provided for microinsurance products as powerful
and cost-e↵ective tools for achieving poverty reduction. Household capital is modelled from
a ruin-theoretic perspective to measure the impact of microinsurance on poverty dynamics
and the governmental cost of social protection. The model is analysed under four frameworks:
uninsured, insured (without subsidies), insured with subsidised constant premiums and insured
with subsidised flexible premiums. Although insurance alone (without subsidies) may not be
su�cient to reduce the likelihood of falling into the area of poverty for specific groups of
households, since premium payments constrain their capital growth, the analysis suggests that
subsidised schemes can provide maximum social benefits while reducing governmental costs.
This chapter is based on work submitted to a peer-reviewed academic journal, currently under
review (Flores-Contró et al., 2022).

2.1 Introduction

Adopting the novel ruin-theoretic approach presented by Kovacevic and Pflug (2011), this
chapter studies the impact of insurance on poverty dynamics and the governmental cost of social
protection. The aim of this anlaysis is to determine the benefits derived from coordination and
partnerships between governments and private insurers, and to highlight the cost-e↵ectiveness
of government support for insurance. As discussed in Chapter 1, premium payments may
increase the risk of falling into poverty for the proportion of the population living just above the
poverty line. Microinsurance schemes which are supported by social protection strategies are
therefore considered, and more specifically, their potential in minimising both the probability
of a household falling below the poverty line and the governmental cost of social protection.

The piecewise-deterministic Markov process proposed by Kovacevic and Pflug (2011) is
adapted such that households are subject to shocks of random size. Where Kovacevic and
Pflug (2011) consider a version of the process discretised at the jump times, in this chapter,
the full, non-discretised capital process is considered. In line with the poverty trap ideology,
the area of poverty is assumed to be an absorbing state and only the state of events above the
poverty threshold is considered. Obtaining explicit solutions for trapping probabilities and the
governmental cost of social protection using classical risk theory techniques, the influence of
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three structures of microinsurance is compared. Specifically, microinsurance schemes with (i)
unsubsidised premiums, (ii) subsidised constant premiums and (iii) subsidised flexible premi-
ums are considered. Unlike in previous studies, where the cost of social protection is defined
as the present value of government subsidies plus the transfers needed to close the poverty gap
for all poor households (see, for example, Ikegami et al. (2016) and Janzen et al. (2021)), the
ruin-theoretic perspective adopted in the proposed model enables inclusion of a supplemental
fixed cost that ensures, with a certain level of confidence, that households will not return to
poverty, should they fall below the threshold. In this way, the likelihood that the government
will re-incur these costs for the same household is reduced.

Under the first premium framework, premiums are paid by households in full. These pay-
ments constrain household capital growth and increase their trapping probability compared
to that of uninsured households, as in the existing literature. The cost of social protection
remains lower than the corresponding uninsured cost. With the need for an alternative solu-
tion to address the observed negative impact on poverty dynamics, under the second premium
framework it is assumed that governments provide insurance premium subsidies to all house-
holds. Reducing premium payments by means of subsidies has a positive impact on household
capital growth and on the associated trapping probabilities. The analytic results enable optimi-
sation of the subsidy level for households with varying degrees of capital, such that a trapping
probability equal to that of when uninsured is preserved. The proposed subsidy optimisation
aligns with the idea of “smart” subsidies, which are defined as those that provide maximum
social benefits while minimising distortions in the insurance market and the mis-targeting of
clients (Hill et al., 2014). Under the optimal subsidised microinsurance scheme, comparing
with the uninsured case, while non-essential for more privileged households, vulnerable house-
holds with capital close to the poverty line are in need of government support. Moreover, the
cost of social protection for the most vulnerable is lower than the corresponding uninsured and
insured (without subsidies) costs, but is higher for the most privileged.

Mimicking the dividend barrier strategy well-known in risk theory, the third framework
considers a novel scheme under which households pay premiums only when their capital is
above some pre-defined capital barrier, with the premium otherwise paid by the government.
Granting flexibility on premium payments allows households to attain lower trapping proba-
bilities, since they are assisted by government when their capital lies close to the poverty line.
In this analysis, the capital barrier level at which governments should begin providing support
is optimised. Intuitively, those closest to the poverty line require immediate aid, with optimal
barriers lying above their initial capital. On the other hand, those further away from the
poverty line have su�cient capital to pay premiums themselves on enrolment to the scheme,
yielding optimal barriers that lie below initial capital levels. Under this framework, the cost
of social protection remains lower than the corresponding uninsured cost.

The remainder of the chapter is structured as follows. In Section 2.2, the household capital
model and its associated infinitesimal generator are introduced. The (trapping) time at which
a household falls into the area of poverty is defined in Section 2.3, and subsequently the ex-
plicit trapping probability and the expected trapping time are derived for the basic uninsured
model. Links between classical ruin models and the trapping model of this chapter are stated
in Sections 2.2 and 2.3. Microinsurance is introduced in Section 2.4, where a proportion of
household losses are covered by a microinsurance policy. The capital model is redefined and the
trapping probability derived. Sections 2.5 and 2.6 consider the case where households are pro-
portionally insured through a government subsidised microinsurance scheme, with the impact
of subsidised flexible premiums discussed in Section 2.6. Optimisation of the subsidy and cap-
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ital barrier levels are presented in Sections 2.5 and 2.6, alongside the associated governmental
cost of social protection. Concluding remarks are provided in Section 2.7.

2.2 The capital model

The fundamental dynamics of the model follow those of Kovacevic and Pflug (2011), where
the growth in accumulated capital (Xt)t�0 of an individual household is given by

dXt

dt
= r · [Xt � x⇤]+ , (2.2.1)

where [x]+ = max(x, 0). These dynamics are constructed under the assumption that a house-
hold’s income (It) is split into consumption (Ct) and savings or investments (St), such that at
time t,

It = Ct + St, (2.2.2)

where consumption is an increasing function of income:

Ct =

(
It, if It  x⇤

I⇤ + a(It � I⇤), if It > x⇤
(2.2.3a)

(2.2.3b)

for 0 < a < 1. The critical point below which a household consumes all of their income with
no facility for savings or investment, is denoted I⇤. Accumulated capital is assumed to grow
proportionally to the level of savings, such that

dXt

dt
= cSt, (2.2.4)

for 0 < c < 1, and income is generated through the accumulated capital, such that

It = bXt,

for b > 0. Combining (2.2.2), (2.2.3a), (2.2.3b) and (2.2.4), gives (2.2.1), where the capital
growth rate r = (1 � a) · b · c > 0 incorporates household rates of consumption (a), income
generation (b) and investment or savings (c), while x⇤ = I⇤

b > 0 denotes the threshold below
which a household lives in poverty.

Reflecting the ability of a household to produce, accumulated capital (Xt) is composed of
land, property, physical and human capital, with health a form of capital in extreme cases
where su�cient health services and food accessibility are not guaranteed (Dasgupta, 1997).
The notion of a household in this model setting may be extended for consideration of poverty
trapping within economic units such as community groups, villages and tribes, in addition to
the traditional household structure.

The poverty threshold x⇤ represents the amount of capital required to forever attain a
critical level of income, below which a household would not be able to sustain their basic needs,
facing elementary problems relating to health and food security. Throughout the chapter, this
threshold will be referred to as the critical capital or the poverty line. Since (2.2.1) is positive
for all levels of capital greater than the critical capital, all points less than or equal to x⇤

are stationary (capital remains constant if the critical level is not met). In this basic model,

15



2. Subsidising inclusive insurance to reduce poverty

stationary points below the critical capital are not attractors of the system if the initial capital
exceeds x⇤, in which case the capital process Xt grows exponentially with rate r.

Using capital as an indicator of financial stability over other commonly used measures
such as income enables a more e↵ective analysis of a household’s wealth and well-being. As,
for example, households with relatively high income, considerable debt and few assets would
still be vulnerable if any loss of income was to occur, while low-income households may live
comfortably on assets previously acquired and saved (see, for example, Gartner et al. (2004)).

In line with Kovacevic and Pflug (2011), the dynamics of (2.2.1) are expanded under the
assumption that households are susceptible to the occurrence of capital losses, including severe
illness, the death of a household member or breadwinner and catastrophic events such as floods
and earthquakes. The occurrence of loss events is assumed to follow a Poisson process with
intensity �, where the capital process follows the dynamics of (2.2.1) in between events. On
the occurrence of a loss, the household’s capital reduces by a random amount Zi. The sequence
(Zi) is independent of the Poisson process and independent and identically distributed (i.i.d.)
with common distribution function GZ . In contrast to Kovacevic and Pflug (2011), claims
are assumed to be random-valued, rather than a random proportion of the capital itself. This
adaptation facilitates analysis of a tractable mathematical model that enables derivation of an
analytic solution for the infinite-time trapping probability (see Section 2.3). The analysis of
this chapter therefore di↵ers from previous work on the topic, in which numerical methods are
employed to estimate the quantities of interest (see, for example, Kovacevic and Pflug (2011)
and Azäıs and Genadot (2015)). The core objective of studying the probability of a household
falling into the area of poverty remains.

A household reaches the area of poverty if it su↵ers a loss large enough that the remaining
capital is attracted into the poverty trap. Since a household’s capital does not grow below
the critical capital x⇤, households that fall into the area of poverty will never escape without
external help. Once below the critical capital, households are exposed to the risk of falling
deeper into poverty, with the dynamics of the model allowing for the possibility of negative
capital. A reduction in a household’s capital below zero could represent a scenario where
total debt exceeds total assets, resulting in negative capital net worth. The experience of a
household below the critical capital is, however, out of the scope of this chapter.

The stochastic capital process is now formally defined, where the structure of the process
between loss events is derived through solution of the first order Ordinary Di↵erential Equation
(ODE) (2.2.1). This model is an adaptation of the model proposed by Kovacevic and Pflug
(2011).

Definition 2.2.1. Let Ti be the ith event time of a Poisson process (Nt)t�0 with parameter �,
where T0 = 0. Let Zi � 0 be a sequence of i.i.d. random variables with distribution function
GZ , independent of the process Nt. For Ti�1  t < Ti, the stochastic growth process of the
accumulated capital Xt is defined by

Xt =

(�
XTi�1 � x⇤

�
er(t�Ti�1) + x⇤, if XTi�1 > x⇤

XTi�1 , otherwise.

(2.2.5a)

(2.2.5b)

At the jump times t = Ti, the process is given by

XTi =

(�
XTi�1 � x⇤

�
er(Ti�Ti�1) + x⇤ � Zi, if XTi�1 > x⇤

XTi�1 � Zi, otherwise.
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2.3. The trapping time

The stochastic process (Xt)t�0 is a piecewise-determinsitic Markov process (Davis, 1984)
with infinitesimal generator:

(Af)(x) = r(x� x⇤)f 0(x) + �

Z
1

0
[f(x� z)� f(x)] dGZ(z), x � x⇤. (2.2.7)

The capital model as presented in Definition 2.2.1 is in fact a model well-studied in ruin
theory since the 1940s. As such, well-established techniques can be easily applied to the poverty
trapping context of this chapter. In ruin theory, modelling is undertaken from the point of
view of an insurance company. Consider an insurer’s surplus process (Ut)t�0 given by

Ut = u+ pt+ ⌫

Z t

0
Us ds�

NtX

i=1

Zi, (2.2.8)

where u is the insurer’s initial capital, p is the constant premium rate, ⌫ is the risk-free interest
rate, Nt is a Poisson process with parameter � which counts the number of claims in the time
interval [0, t] and (Zi)1i=1 is a sequence of i.i.d. claim sizes with distribution function GZ . This
model is also called the insurance risk model with deterministic investment, first proposed by
Segerdahl (1942) and subsequently studied by Harrison (1977) and Sundt and Teugels (1995).
For a detailed literature review on the model prior to the turn of the century, readers may
consult Paulsen (1998).

Observe that when p = 0, the insurance model (2.2.8) for positive surplus is equivalent to
the capital model of Definition 2.2.1 above the poverty line x⇤ = 0. Subsequently, the capital
growth rate r in the model presented here corresponds to the risk-free investment rate ⌫ of the
insurer’s surplus model. More connections between the two models will be made in the next
section, following introduction of the trapping time.

2.3 The trapping time

Let
⌧x := inf {t � 0 : Xt < x⇤ | X0 = x}

denote the time at which a household with initial capital x � x⇤ falls into the area of poverty
(the trapping time) and let  (x) = P(⌧x < 1) be the infinite-time trapping probability. To
study the distribution of the trapping time in this chapter, the expected discounted penalty
function at ruin, a concept commonly used in actuarial science (Gerber and Shiu, 1998), is
adopted. For a force of interest � � 0 and initial capital x � x⇤, consider

m�(x) = E
h
w(X⌧�x

� x⇤, |X⌧x � x⇤|)e��⌧x1{⌧x<1}

i
, (2.3.1)

where 1{A} is the indicator function of a set A and w(x1, x2) for 0  x1, x2 < 1, is a non-
negative penalty function of x1, the capital surplus prior to the trapping time, and x2, the
capital deficit at the trapping time. For more details on the so-called Gerber-Shiu risk theory,
the interested reader may wish to consult Kyprianou (2013).

The probabilistic properties of the trapping time are contained in its distribution function.
In studying the distribution of the trapping time in this chapter, the Laplace transform, as
defined in Appendix A, is considered, where the Laplace transform characterises the probability
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2. Subsidising inclusive insurance to reduce poverty

distribution uniquely. Note that, specifying the penalty function such that w(x1, x2) = 1 in
(2.3.1), m�(x) is exactly the Laplace transform of the trapping time, or intuitively, the expected
present value of a unit payment due at the trapping time.

Throughout the remainder of the chapter capital losses are assumed to be exponentially
distributed, i.e. Zi ⇠ Exp(↵). The following theorem is required for derivation of the uninsured
trapping probability, where the trapping time mimics the time of ruin.

Theorem 2.3.1 (Paulsen and Gjessing (1997)). Let ⌧x = inf{t � 0 : Xt < 0 |X0 = x} denote
the time of ruin given initial surplus x, where ⌧x is fixed at infinity if Xt � 0 8t. Assume m�(x)
is a bounded and twice continuously di↵erentiable function on x � 0, with a bounded first
derivative. If m�(x) solves Am�(x) = �m�(x) on x � 0, together with boundary conditions

m�(x) = 1 for x < 0

and
lim
x!1

m�(x) = 0,

then
m�(x) = E[e��⌧x ].

Proof. See Paulsen and Gjessing (1997) for proof.

Proposition 2.3.1. Consider a household capital process (as proposed in Definition 2.2.1)
with initial capital x � x⇤, capital growth rate r, loss intensity � > 0 and exponentially
distributed capital losses with parameter ↵ > 0. The Laplace transform of the trapping time
is given by

m�(x) =
�

(�+ �)U
�
1� �

r , 1�
�+�
r ; 0

�ey(x)U
✓
1�

�

r
, 1�

�+ �

r
;�y(x)

◆
, (2.3.2)

where � � 0 is the force of interest, y(x) = �↵(x � x⇤) and U(·) is Tricomi’s Confluent
Hypergeometric Function as defined in Appendix B.

Proof. Using the standard arguments based on the infinitesimal generator presented in Theo-
rem 2.3.1, the expected discounted penalty function at the trapping time m�(x) in (2.3.1), can
be characterised as the solution of the IDE

r(x� x⇤)m0

�(x)� (�+ �)m�(x) + �

Z x�x⇤

0
m�(x� z)dGZ(z) = ��A(x), x � x⇤, (2.3.3)

where

A(x) :=

Z
1

x�x⇤
w(x� x⇤, z � (x� x⇤))dGZ(z).

When Zi ⇠ Exp(↵) and w(x1, x2) = 1, (2.3.3) can be written such that

r(x�x⇤)m0

�(x)� (�+ �)m�(x)+�

Z x�x⇤

0
m�(x� z)↵e�↵zdz = ��e�↵(x�x⇤), x � x⇤. (2.3.4)

Applying the operator
�

d
dx + ↵

�
on both sides of (2.3.4), together with a number of algebraic

manipulations, yields the second order homogeneous di↵erential equation

�
(x� x⇤)

↵
m00

� (x) +

"
(�+ � � r)

↵r
� (x� x⇤)

#
m0

�(x) +
�

r
m�(x) = 0, x � x⇤. (2.3.5)
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2.3. The trapping time

Letting f(y) := m�(x), such that y is associated with the change of variable y := y(x) =
�↵(x� x⇤), (2.3.5) reduces to Kummer’s confluent hypergeometric equation (Slater, 1960)

y · f 00(y) + (b� y)f 0(y)� af(y) = 0, y < 0, (2.3.6)

for a = �
�
r and b = 1� �+�

r , with regular singular point at y = 0 and irregular singular point
at y = �1 (corresponding to x = x⇤ and x = 1, respectively). A general solution of (2.3.6)
and thus m�(x) is given by

f(y) =A1M

✓
�
�

r
, 1�

�+ �

r
; y(x)

◆
+A2e

y(x)U

✓
1�

�

r
, 1�

�+ �

r
;�y(x)

◆
(2.3.7)

for x � x⇤, where A1, A2 2 R are arbitrary constants, M(a, b; z) and U(a, b; z) are the Kummer
and Tricomi confluent hypergeometric functions, respectively, as defined in Appendix B, and
m�(x) = f(y) = 1 for x < x⇤. Tricomi’s function is typically complex-valued when its
argument z is negative, i.e. when x � x⇤ in the case of interest. Seeking a real-valued
solution of m�(x) over the entire domain, an alternative independent pair of solutions to
(2.3.6) is therefore selected for x � x⇤, specifically M(a, b; z) and ezU(b � a, b;�z), (13.1.12)
and (13.1.18) of Abramowitz and Stegun (1972), respectively.

In order to determine the constants A1 and A2, consider the boundary conditions for m�(x)
at x⇤ and infinity. Applying Kummer’s Transformation: M(a, b; z) = ezM(b�a, b;�z), (2.3.7)
can be written such that

m�(x) = ey(x)

A1M

✓
1�

�

r
, 1�

�+ �

r
;�y(x)

◆
+A2U

✓
1�

�

r
, 1�

�+ �

r
;�y(x)

◆�
, (2.3.8)

for x � x⇤. For z ! 1, it is well-known that

M(a, b; z) =
�(b)

�(a)
ezza�b

⇥
1 +O

�
|z|�1

�⇤
(2.3.9)

and
U(a, b; z) = z�a

⇥
1 +O

�
|z|�1

�⇤
.

Asymptotic behaviours of the first and second terms of (2.3.8) as y(x) ! �1 are therefore
given by

�
�
1� �+�

r

�

�
�
1� �

r

� (�y(x))
�
r
�
1 +O

�
|� y(x)|�1

��
(2.3.10)

and
ey(x) (�y(x))

�
r �1 �1 +O

�
|� y(x)|�1

��
, (2.3.11)

respectively. See, for example, (13.1.27), (13.1.4) and (13.1.8) of Abramowitz and Stegun
(1972) for Kummer’s transformation and the asymptotic behaviours of the Kummer and Tri-
comi functions, respectively. For x ! 1, (2.3.10) is unbounded, while (2.3.11) tends to zero.
The boundary condition lim

x!1
m�(x) = 0, by definition of m�(x) in (2.3.1), thus implies that

A1 = 0.
Letting x = x⇤ in (2.3.4) and (2.3.7) yields

�

(�+ �)
= A2U

✓
1�

�

r
, 1�

�+ �

r
; 0

◆
.
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2. Subsidising inclusive insurance to reduce poverty

Hence, A2 =
�

(�+�)U(1��
r ,1�

�+�
r ;0)

and the Laplace transform of the trapping time for x � x⇤ is

given by (2.3.2), as required.

Remark 2.3.1. Figure 2.1a shows that the Laplace transform of the trapping time (2.3.2)
approaches the trapping probability as � tends to zero. This is clear, since by definition of
m�(x),

lim
�#0

m�(x) = P(⌧x < 1) ⌘  (x).

As � ! 0, (2.3.2) yields

 (x) =
1

U
�
1� �

r , 1�
�
r ; 0

�ey(x)U
✓
1�

�

r
, 1�

�

r
;�y(x)

◆
. (2.3.12)

The trapping probability in (2.3.12) can be further simplified through application of the
upper incomplete gamma function �(a; z) =

R
1

z e�tta�1dt. Applying the relation

�(a; z) = e�zU(1� a, 1� a; z),

(see, for example, (6.5.3) of Abramowitz and Stegun (1972)) and since �(a; 0) = �(a) for
Re(a) > 0, it holds that

 (x) =
�
�
�
r ;�y(x)

�

�
�
�
r

� . (2.3.13)

Figure 2.1b presents the trapping probability  (x) for the stochastic capital process Xt.
Increasing the value of the exponential parameter ↵, which describes the size of capital losses,
reduces the trapping probability for all households, since losses are more likely to take values
close to zero and so will have a lesser impact on household capital.
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Figure 2.1: (a) Laplace transform m�(x) of the trapping time when Zi ⇠ Exp(1), a = 0.1, b = 1.4, c = 0.4,
� = 1, x⇤ = 1 for � = 0, 1

8 ,
1
32 ,

1
128 (b) Trapping probability  (x) when Zi ⇠ Exp(↵), a = 0.1, b = 1.4, c = 0.4,

� = 1, x⇤ = 1 for ↵ = 0.8, 1, 1.5, 2.
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2.3. The trapping time

Remark 2.3.2. As an application of the Laplace transform of the trapping time, one quantity
of interest is the expected trapping time, i.e. the expected time at which a household will fall
into the area of poverty. Reducing a household’s trapping probability is central to poverty
alleviation. However, knowledge of the time at which a household is expected to fall below
the poverty line would allow insurers and governments to better prepare for the potential need
to lift households out of poverty. It also provides an alternative comparative measure for the
performance analysis of di↵erent schemes, helping to inform insurance product design and
financial education for consumers. For example, a household with a low expected trapping
time may be encouraged to adopt certain risk mitigating behaviours to reduce the impact of
shock events and hence the likelihood of falling below the poverty line.

The expected trapping time can be obtained through the derivative of m�(x), such that

E [⌧x; ⌧x < 1] = �
d

d�
m�(x)

����
�=0

,

where E [⌧x; ⌧x < 1] is analogous to E
⇥
⌧x1{⌧x<1}

⇤
.

Corollary 2.3.1. The expected trapping time under the household capital model proposed
in Definition 2.2.1 with initial capital x � x⇤, capital growth rate r, loss intensity � > 0 and
exponentially distributed capital losses with parameter ↵ > 0 is given by

E [⌧x; ⌧x < 1] =
�
�
�
r ;�y(x)

�

�U
�
1� �

r , 1�
�
r ; 0

� �
�
�
�
r ;�y(x)

�
U (b)

�
1� �

r , 1�
�
r ; 0

�

r
⇥
U
�
1� �

r , 1�
�
r ; 0

�⇤2

+ ey(x)
U (b)

�
1� �

r , 1�
�
r ;�y(x)

�

rU
�
1� �

r , 1�
�
r ; 0

� , (2.3.14)

where y(x) = �↵(x� x⇤), U(·) is Tricomi’s Confluent Hypergeometric Function, as defined in
Appendix B, and U (b)(·) its derivative with respect to the second parameter as in (2.3.16).

Proof. Denote

U (b)(a, b; z) ⌘
d

db
U(a, b; z). (2.3.15)

A closed form expression of (2.3.15) can be given in terms of series expansions, such that

U (b)(a, b; z) =(⌘(a� b+ 1)� ⇡ cot(b⇡))U(a, b; z)

�
�(b� 1)z1�b log(z)

�(a)
M(a� b+ 1, 2� b; z)

�
�(b� 1)z1�b

�(a)

1X

k=0

(a� b+ 1)k(⌘(a� b+ k + 1)� ⌘(2� b+ k))zk

(2� b)kk!

�
�(1� b)

�(a� b+ 1)

1X

k=0

⌘(b+ k)(a)kzk

(b)kk!
, b /2 Z, (2.3.16)

where ⌘(z) = d ln[�(z)]
dz = �0(z)

�(z) is the digamma function, see, for example, (6.3.1) of Abramowitz

and Stegun (1972). Taking the derivative of (2.3.12) by the standard chain rule and applying
(2.3.16) then gives (2.3.14), as required.
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2. Subsidising inclusive insurance to reduce poverty

Note that, the conditional expected trapping time given that trapping occurs is given by

E [⌧x|⌧x < 1] =
E [⌧x; ⌧x < 1]

 (x)
,

see, for example, (4.37) of Gerber and Shiu (1998). In line with intuition, the expected trapping
time is an increasing function of both the capital growth rate r and initial capital x. A number
of examples of expected trapping times for varying r are displayed in Figure 2.2.

Remark 2.3.3. The ruin probability for the insurance model (2.2.8) given by

⇠(u) = P(Ut < 0 for some t > 0 | U0 = u),

is found by Sundt and Teugels (1995) to satisfy the Integro-Di↵erential Equation (IDE)

(⌫u+ p)⇠0(u)� �⇠(u) + �

Z u

0
⇠(u� z) dGZ(z) + �(1�GZ(u)) = 0, u � 0. (2.3.17)

When p = 0, (2.3.17) coincides with the special case of (2.3.3) when x⇤ = 0, w(x1, x2) = 1
and � = 0. Thus, the household trapping time can be thought of as the insurer’s ruin time.
Indeed, the ruin probability in the case of exponential claims when p = 0, as shown in Section
6 of Sundt and Teugels (1995), is exactly the trapping probability (2.3.13) when x⇤ = 0.
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Figure 2.2: Expected trapping time when Zi ⇠ Exp(1), � = 1 and x⇤ = 1 for r = 0.02, 0.03, 0.04.

2.4 Introducing microinsurance

As in Kovacevic and Pflug (2011), in this section, households are assumed to have the option
of enrolling in a microinsurance scheme that covers a proportion of the capital losses they
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2.4. Introducing microinsurance

encounter. The scheme has proportionality factor 1�, where  2 (0, 1], such that 100 · (1�)
percent of any loss is covered by the microinsurance provider. The premium rate paid by
households, calculated according to the expected value principle, is given by

⇡(, ✓) = (1 + ✓) · (1� ) · � · E [Zi] , (2.4.1)

where ✓ is the loading factor specified by the insurer. The expected value principle is popular
due to its simplicity and transparency. When ✓ = 0, ⇡(, ✓) can be considered as the pure risk
premium (see, for example, Albrecher et al. (2017)).

The stochastic capital process of a household covered by a microinsurance policy is denoted

by X()
t . All variables and parameters relating to the original uninsured (Section 2.3) and the

insured processes are distinguished through use of the superscript () in the latter case. The
basic model parameters are assumed to be unchanged by the introduction of microinsurance
coverage (parameters a, b and c introduced in Section 2.2). As mentioned in Chapter 1, Ko-
vacevic and Semmler (2021) derive the retention rate process that maximises the expected
discounted capital, by allowing adjustments in the retention rate of the policyholder after each
capital loss throughout the lifetime of the insurance contract. Variable coverage is also consid-
ered by Janzen et al. (2021). In the study presented in this chapter, households are assumed
to select a fixed retention rate.

Since premiums are paid out of household income, the capital growth rate r is adjusted
such that it reflects the lower rate of income generation resulting from the need for premium
payment. The premium rate is restricted to prevent certain poverty, which would occur should
it exceed the rate of income generation. As such, ⇡ < b. The capital growth rate of the insured
household r() = (1� a) · (b� ⇡) · c > 0 is lower than that of the uninsured household, while
the critical capital is increased. Previous work, such as that of Janzen et al. (2021), allow
households to select optimal levels of consumption and insurance coverage over time based
on asset holdings and the probability distribution of future assets. Here, all households for
which microinsurance is a↵ordable enrol in a scheme; that is, households whose rate of income
generation is greater than the insurance premium, thus admitting both optimal and suboptimal
insurance decisions with respect to the trapping probability. Although this feature aligns with
the low levels of financial literacy that characterise the microinsurance environment (Churchill
and Matul, 2006), it could be considered as a limitation of the proposed model. However,
one of the core objectives of the subsidised schemes introduced in Sections 2.5 and 2.6 is to
diminish the adverse e↵ects that arise with suboptimal insurance decisions and as such any
limitation is accounted for.

In between jumps, the insured stochastic growth process X()
t behaves in the same manner

as (2.2.5a) and (2.2.5b), with parameters corresponding to the proportional insurance case of
this section. By enrolling in a microinsurance scheme, a household’s capital losses are reduced
to Yi :=  · Zi. Considering the case in which losses follow an exponential distribution with
parameter ↵ > 0, the structure of the IDE in (2.3.3) remains the same. However, acquisition
of a proportional microinsurance policy changes the parameter of the random loss distribution
GY . Namely, Yi ⇠ Exp

�
↵()

�
for  2 (0, 1], where ↵() := ↵

 .
Following a similar procedure to that in Proposition 2.3.1, the Laplace transform of the

trapping time and thus the trapping probability for the insured process is obtained.

Proposition 2.4.1. Consider the capital process of a household enrolled in a microinsurance
scheme with proportionality factor 1 �  2 (0, 1]. Assume the household has initial capital
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2. Subsidising inclusive insurance to reduce poverty

x � x()⇤, capital growth rate r(), loss intensity � > 0 and exponentially distributed capital
losses with parameter ↵() > 0. The Laplace transform of the trapping time is given by

m()
� (x) =

�

(�+ �)U
⇣
1� �

r()
, 1� �+�

r()
; 0
⌘ey()(x)U

✓
1�

�

r()
, 1�

�+ �

r()
;�y()(x)

◆
,

where � � 0 is the force of interest and y()(x) = �↵()
�
x� x()⇤

�
.

Proof. Proof follows that of Proposition 2.3.1.

Figure 2.1a presents the Laplace transform m()
� (x) for varying values of �. As mentioned

in Section 4.4, as � ! 0, the Laplace transform m()
� (x) converges to the trapping probability

 ()(x).
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Figure 2.3: (a) Laplace transform m()
� (x) of the trapping time when Zi ⇠ Exp(1), a = 0.1, b = 1.4, c = 0.4,

� = 1, x()⇤ = 1,  = 0.5 and ✓ = 0.5 for � = 0, 1
8 ,

1
32 ,
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128 (b) Trapping probability  ()(x) when Zi ⇠ Exp(↵),

a = 0.1, b = 1.4, c = 0.4, � = 1, x()⇤ = 1,  = 0.5 and ✓ = 0.5 for ↵ = 0.8, 1, 1.5, 2.

Remark 2.4.1. The trapping probability of the insured process  ()(x), displayed in Figure
2.3b, is given by

 ()(x) =
�
⇣

�
r()

;�y()(x)
⌘

�
⇣

�
r()

⌘ . (2.4.2)

As previously, increasing the value of the exponential parameter ↵ reduces the trapping prob-
ability. Equivalently, note that as the proportionality factor ! 0, the parameter ↵() := ↵

 of
the distribution of capital losses Yi of the insured capital process increases, leading households
to experience low impact losses with a higher probability. However, by (2.4.1), this level of
coverage induces higher premiums.
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2.5. Microinsurance with subsidised constant premiums

Remark 2.4.2. When  = 0 the household has full microinsurance coverage, as the microin-
surance provider covers the total capital loss experienced by the household. On the other hand,

when  = 1, no coverage is provided by the insurer, i.e. Xt = X()
t .

Figure 2.4 presents a comparison between the trapping probabilities of the insured and
uninsured processes. As in Kovacevic and Pflug (2011), households with initial capital close
to the critical capital (here, the critical capital x⇤ is fixed at 1), i.e. the most vulnerable
households, do not receive real benefits from enrolling in a microinsurance scheme. Although
subscribing to a proportional scheme reduces capital losses, premium payments appear to make
households more prone to falling into the area of poverty. The intersection point of the two
probabilities in Figure 2.4 corresponds to the boundary between households that benefit from
the uptake of microinsurance and those who are adversely a↵ected.
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Figure 2.4: Trapping probabilities for the uninsured and insured capital processes for Zi ⇠ Exp(1), a = 0.1,
b = 1.4, c = 0.4, � = 1,  = 0.5, ✓ = 0.5 and x⇤ = x()⇤ = 1.

2.5 Microinsurance with subsidised constant premiums

The preliminary results suggest that microinsurance alone is not enough to reduce the likelihood
of impoverishment for those closest to the poverty line, and so additional aid is required. In this
section, the cost-e↵ectiveness of government subsidised premiums is studied for governments
subsidising an amount � = ⇡ � ⇡⇤, such that ⇡⇤ � 0 is the premium after subsidisation.
Lower values of ⇡⇤ therefore correspond to higher levels of government support. When ⇡⇤ =
0 the premium is fully subsidised, when ⇡ = ⇡⇤ households pay premiums in full with no
subsidisation. Previous work largely considers fixed subsidies with limited flexibility. Kovacevic
and Pflug (2011) restrict subsidisation to the loading factor, while Janzen et al. (2021) adopt
a self-targeted subsidy strategy with subsidies provided uniformly to poor households with
demand for unsubsidised insurance. The schemes proposed in Sections 2.5 and 2.6 allow
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2. Subsidising inclusive insurance to reduce poverty

vulnerable non-poor households to benefit from greater subsidisation in addition to minimising
the associated governmental costs by optimising subsidy levels.
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Figure 2.5: (a) Trapping probabilities for the uninsured, insured and insured subsidised capital processes when
Zi ⇠ Exp(1), a = 0.1, b = 1.4, c = 0.4, � = 1, x⇤ = x()⇤ = x⇡(,✓)⇤ = 1,  = 0.5, ✓ = 0.5 and ⇡ = 0.75 for
⇡⇤ = 0, 0.55 (b) Optimal ⇡⇤ for varying initial capital when Zi ⇠ Exp(1), a = 0.1, b = 1.4, c = 0.4, � = 1,
x⇡(,✓)⇤ = 1,  = 0.5, ✓ = 0.5 and ⇡ = 0.75.

Government subsidisation of microinsurance should enhance household benefits of enrolling
in microinsurance schemes. However, it is also important to gauge the cost-e↵ectiveness of
subsidy provision. Although households with capital close to the critical capital will require
additional aid, government support is not necessarily essential for more privileged households.
In determining the level of subsidy it is therefore intuitively assumed that governments would
like to optimise subsidy provision. Since all non-zero values of ⇡⇤ below the optimal value
induce a trapping probability lower than that of the uninsured process through a reduction
in premium, one approach to determining the optimal subsidy for households that require
government aid is to solve

 ⇡⇤(,✓)(x) =  (x),

where  ⇡⇤(,✓)(x) and  (x) denote the trapping probabilities of the insured subsidised and
uninsured capital processes, respectively. The behaviours of these trapping probabilities can be
seen in Figure 2.5a. While government support is not needed by the most privileged households,
since insurance without subsidies lowers their trapping probability below the uninsured, the
most poor require further support. Figure 2.5b illustrates the optimal value of ⇡⇤ for varying
initial capital, verifying that, from the point at which the yellow dashed line (insured household)
intersects the blue solid line (uninsured household) in Figure 2.5a, payment of the entire
premium is a↵ordable for the most privileged households, with the optimal premium remaining
constant at ⇡⇤ = ⇡ = 0.75 after this point (red dashed line in Figure 2.5b).
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2.5. Microinsurance with subsidised constant premiums

2.5.1 Cost of social protection

The governmental cost-e↵ectiveness of the provision of microinsurance premium subsidies is

now assessed. Let ⌧⇡
⇤(,✓)

x denote the trapping time of a household covered by a subsidised
microinsurance policy. Let � � 0 be the force of interest and let S denote the present value of
all subsidies provided by government until the trapping time, such that

S = �

Z ⌧
⇡⇤(,✓)
x

0
e��tdt.

Further assume that governments provide subsidies according to the strategy introduced in
this section, i.e. the government subsidises � = ⇡ � ⇡⇤.

For x � x⇡
⇤(,✓)⇤, where x⇡

⇤(,✓)⇤ denotes the critical capital of the insured subsidised pro-
cess, let V ⇡⇤(,✓)(x) be the expected discounted premium subsidies provided by the government
to a household with initial capital x until the trapping time, that is,

V ⇡⇤(,✓)(x) = E
h
S | X⇡⇤(,✓)

0 = x
i
.

Then, the following proposition holds:

Proposition 2.5.1. Consider a household enrolled in a microinsurance scheme with subsidised
constant premiums in which the government subsidises an amount � = ⇡�⇡⇤, where ⇡ � ⇡⇤ �
0, with proportionality factor 1 �  2 (0, 1]. Assume an initial capital x � x⇡

⇤(,✓)⇤, capital
growth rate r⇡

⇤(,✓), loss intensity � > 0 and exponentially distributed capital losses with
parameter ↵() > 0. The expected discounted premium subsidies provided by the government
to the household until the trapping time is given by

V ⇡⇤(,✓)(x) =
�

�

h
1�m⇡⇤(,✓)

� (x)
i
, (2.5.1)

where m⇡⇤(,✓)
� (x) is the Laplace transform of the trapping time with rate r⇡

⇤(,✓) and critical
capital x⇡

⇤(,✓)⇤.

Proof. Since

S =
�

�


1� e��⌧

⇡⇤(,✓)
x

�

and E[e��⌧
⇡⇤(,✓)
x ] is exactly the Laplace transform of the trapping time of the insured subsidised

process with capital growth r⇡
⇤(,✓) and critical capital x⇡

⇤(,✓)⇤, (2.5.1) holds.

The governmental cost of social protection is now formally defined.

Definition 2.5.1. Consider the expected discounted penalty function at trapping (2.3.1)
for a household enrolled in a subsidised microinsurance scheme with initial capital x. Let
w(x1, x2) = x2+M⇡⇤(,✓)

�x⇡
⇤(,✓)⇤ be the penalty function, where M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤. Here,

x2 accounts for the cost of lifting households up to the critical level (or poverty line) x⇡
⇤(,✓)⇤,

while M⇡⇤(,✓)
�x⇡

⇤(,✓)⇤ is a constant representing the cost of lifting households away from the

area of poverty. The expected discounted penalty function at trapping m⇡⇤(,✓)
�,w (x) is therefore

the expected present value of the capital deficit at trapping plus the cost M⇡⇤(,✓)
� x⇡

⇤(,✓)⇤

due at the trapping time. The governmental cost of social protection is thus defined as the
expected discounted premium subsidies (2.5.1), plus the expected present value of the capital
deficit and M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤.
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Remark 2.5.1. The government does not provide subsidies for uninsured households. The
uninsured expected discounted penalty function at trapping is therefore given by m�,w(x),
where w(x1, x2) = x2 + M � x⇤. The choice of this penalty function is based on the idea
that in order to lift a household out of poverty the government incurs a cost equivalent to the
household’s capital deficit at the moment they fall into poverty, plus a fixed cost M � x⇤ that
lifts the household away from the area of poverty, reducing their probability of falling again.
This approach di↵ers to those presented in previous research, where the cost of social protection
considers only the present value of the transfers required to close the poverty gap (Ikegami
et al., 2016; Janzen et al., 2021). Through this alternative specification, the likelihood of re-
incurring social protection costs for the same household is reduced. The constant M could
be precisely defined in such a way that the government ensures with some probability that
households will not fall again into the area of poverty. For instance, consider ✏ to be the most
admissible trapping probability for an uninsured household. Then,

M := inf {x � x⇤ :  (x) < ✏} (2.5.2)

denotes the minimum initial capital (MIC) required to ensure a trapping probability of less than
✏. This measure has also been studied from the point of view of an insurance company, where ✏
represents the most admissible probability that the company becomes insolvent (Sattayatham
et al., 2013; Constantinescu et al., 2019). In this way, the government is able to define M
such that a household’s probability of re-entering the area of poverty is less than ✏ 2 (0, 1).
Clearly, higher values of M will increase the certainty that households will not return to
poverty. Further note that M will di↵er between uninsured, insured and insured subsidised
households due to their distinct trapping probabilities. Figure 2.6 displays the cost incurred
by the government at the trapping time when employing the penalty function w(x1, x2) =
x2 +M � x⇤ for an uninsured household.

Remark 2.5.2. Selection of an appropriate force of interest � � 0 is managed by the govern-
ment and determined by interest rates in the market. For lower force of interest the government
discounts future subsidies more heavily, while for higher interest future subsidies tend to zero.

When losses are exponentially distributed with parameter ↵() > 0 it is possible to obtain
a closed form expression for the cost of social protection. Given the derivation of V ⇡⇤(,✓)(x)

in (2.5.1), Proposition 2.5.2 gives an expression for m⇡⇤(,✓)
�,w (x).
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Figure 2.6: The cost incurred by the government at the trapping time is given by | X⌧x � x⇤ |, the capital
deficit at the trapping time, plus M � x⇤, the cost to lift households away from the area of poverty.

Proposition 2.5.2. Consider a household enrolled in a microinsurance scheme with propor-
tionality factor 1 �  2 (0, 1] and subsidised constant premiums, in which the government
subsidises an amount � = ⇡ � ⇡⇤, where ⇡ � ⇡⇤ � 0. Assume an initial capital x � x⇡

⇤(,✓)⇤,
capital growth rate r⇡

⇤(,✓), loss intensity � > 0 and exponentially distributed capital losses
with parameter ↵() > 0. Let M⇡⇤(,✓)

�x⇡
⇤(,✓)⇤, where M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤, be the cost to lift

such a household away from the area of poverty. Then, the expected discounted cost incurred
by the government at the trapping time is given by

m⇡⇤(,✓)
�,w (x) =


1

↵()
+M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤

�
m⇡⇤(,✓)

� (x), (2.5.3)

where m⇡⇤(,✓)
� (x) is the Laplace transform of the trapping time with rate r⇡

⇤(,✓) and critical
capital x⇡

⇤(,✓)⇤, and � � 0 is the force of interest.

Proof. Following a similar approach to that in the proof of Proposition 2.3.1, consider the
integral

A(x) :=

Z
1

x�x⇡⇤(,✓)⇤
w(x� x⇡

⇤(,✓)⇤, z � (x� x⇡
⇤(,✓)⇤))dGZ(z)

=

Z
1

x�x⇡⇤(,✓)⇤

h
z � (x� x⇡

⇤(,✓)⇤) +M⇡⇤(,✓)
� x⇡

⇤(,✓)⇤
i
↵()e�↵()zdz

=

✓
1

↵()
+M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤

◆
e�↵()(x�x⇡⇤(,✓)⇤),

which under the assumption w(x1, x2) = x2 +M⇡⇤(,✓)
� x⇡

⇤(,✓)⇤ yields a modified version of
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the in IDE (2.3.3) given by

r⇡
⇤(,✓)(x� x⇡

⇤(,✓)⇤)m⇡⇤(,✓)0
�,w (x)

� (�+ �)m⇡⇤(,✓)
�,w (x) + �

Z x�x⇡⇤(,✓)⇤

0
m⇡⇤(,✓)

�,w (x� z)↵()e�↵()zdz

=� �

✓
1

↵()
+M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤

◆
e�↵()(x�x⇡⇤(,✓)⇤) (2.5.4)

for x � x⇡
⇤(,✓)⇤.

Solving (2.5.4) in the same manner as (2.3.4) gives (2.5.3), as required.

Remark 2.5.3. Due to the lack-of-memory property of the exponential distribution, the deficit
at trapping, given that trapping occurs, is also exponentially distributed. One can easily verify
this by specifying the penalty function such that for any fixed u, w(x1, x2) = 1{x2u} and � = 0.
Similar results to that of Proposition 2.5.2 have been obtained for other risk processes (see,
for instance, Example 3.2 of Albrecher et al. (2005)).

Figure 2.7 presents the governmental cost of social protection for varying initial capital. In
this example, a high force of interest is considered. Moreover, values of M are given by the
MIC (2.5.2) corresponding to each capital process. As supposed, high values of � hand a lower
weight to future government subsidies, and high values of M grant greater certainty that a
household will not return to the area of poverty once lifted above the critical capital.

Governments do not benefit from subsidising insurance for the most privileged households
since they will subsidise premiums indefinitely, almost surely. As such, as also illustrated in
Figure 2.5b, it is favourable for governments to remove subsidies for this particular household
group, since their cost of social protection, as presented in Figure 2.7 (red dashed-dotted and
gray dotted lines for highest values of initial capital), is higher than when uninsured (blue solid
line for highest values of initial capital). This is largely due to the fact that governments are
still obliged to subsidise a given amount of the premium despite greater initial capital leading
to lower trapping probabilities and therefore a reduction in the likelihood of the government
need to lift households away from the area of poverty. Governments perceive a lower cost of
social protection when subsidising premiums for households with initial capital lying closer
to the critical capital x⇤. The cost of social protection for households that do not pay the
premium in full is lower than for those paying the premium entirely.

Figure 2.7 further shows that under the optimal subsidy scheme, the cost of social protection
incurred for the most vulnerable is reduced, such that only the fully subsidised scheme (⇡⇤ = 0)
is of lower cost, with a marginal di↵erence observed between the two (blue circular-marked
line just above gray dotted line for the most vulnerable). This behaviour aligns with the high
probability of the most vulnerable falling into the poverty trap, and the associated need for
governments to lift them out of and away from poverty. The cost of social protection for this
particular group is therefore mainly constituted by the capital injection M⇡⇤(,✓)

� x⇡
⇤(,✓)⇤,

which under the subsidised scheme reaches its minimum when the scheme is fully subsidised.
The cost incurred when providing optimal subsidies to more privileged households lies slightly
above that of insured households without subsidies (blue circular-marked line above yellow
dashed line for more privileged households). Higher initial capitals reduce the weight of the
capital injection in the cost of social protection since households are less likely to fall into
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2.6. Microinsurance with subsidised flexible premiums

the area of poverty. Where the injection weight is small, the capital injection needed for
an insured household without subsidies is almost equivalent to that of a household receiving
optimal support (both frameworks require the same capital injection for x > 3.821), however,
under the latter scheme, governments are additionally required to subsidise a given amount of
the premium. Note that, the cost of social protection for the insured (yellow dashed line), non-
optimal insured subsidised (gray dotted and red dashed-dotted lines) for the most vulnerable
(initial capital less than x = 3.037 when ⇡⇤ = 0 and x = 4.661 when ⇡⇤ = 0.55) and optimally
insured subsidised households (blue circular-marked line) is below that of the uninsured, thus
highlighting the significance of insurance as a tool for reducing the governmental cost of social
protection.

0
1

2
3

4
5

Initial Capital

C
os
t
of

S
oc
ia
l
P
ro
te
ct
io
n

1 2 3 4 5 6 7 8

Uninsured Household (M = 7.61)
Insured Household (M () = 6.24)
Insured Subsidised Household (Optimal Subsidy)
Insured Subsidised Household (⇡⇤ = 0, � = 0.75, M⇡⇤(,✓) = 4.3)
Insured Subsidised Household (⇡⇤ = 0.55, � = 0.2, M⇡⇤(,✓) = 5.43)

Figure 2.7: Cost of social protection for the uninsured, insured and insured subsidised with ⇡⇤ =
⇡⇤

Optimal, 0, 0.55 capital processes when Zi ⇠ Exp(1), a = 0.1, b = 1.4, c = 0.4, � = 1, x⇤ = x()⇤ = x⇡(,✓)⇤ = 1,
 = 0.5, ✓ = 0.5, � = 0.9, ✏ = 0.01 and ⇡ = 0.75.

2.6 Microinsurance with subsidised flexible premiums

Microinsurance premiums are typically paid as soon as coverage is purchased. The capital
growth of a household could therefore be constrained after joining a scheme, as observed in
the results of Sections 2.4 and 2.5. As such, it is important to consider alternative premium
payment mechanisms. From the point of view of microinsurance providers, advance premium
payments are preferred so that additional income can be generated through investment, nat-
urally leading to lower premium rates. Consumers on the other hand may find it di�cult to
pay premiums up front. A common problem in low-income populations, research suggests that
consumer preference is for payment of smaller installments that are spread over time (Churchill
and Matul, 2006). Collecting premiums at a time that is inconvenient for households can be
futile, particularly given the liquidity constraints associated with informal and agricultural
work. Flexible premium payment mechanisms have been widely adopted by informal funeral
insurers in South Africa for instance, with policyholders paying premiums whenever financially
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feasible, rather than at fixed times (Roth, 2000). As mentioned in Chapter 1, similar alter-
native insurance designs in which premium payments are delayed until the insured’s income
is realised and any indemnities are paid have been studied. Under such strategies, insurance
take-up increases, due to the relaxing of liquidity constraints and concerns regarding insurer
default (Liu and Myers, 2016).

In this section, an alternative microinsurance subsidy scheme with flexible premium pay-
ments is introduced. The capital process of a household enrolled in the alternative scheme

is denoted by X(A)
t . As in Section 2.4, variables and parameters relating to the uninsured,

insured and alternative insured processes are distinguished by their respective superscripts,
with the superscript (A) applied in the latter case. Under this alternative microinsurance
subsidy scheme, households pay premiums only when their capital is above some capital bar-
rier B � x(A)⇤, with the premium otherwise paid entirely by the government, through full
subsidisation. This form of premium collection could motivate households to maintain a level
of capital below the barrier B in order to avoid premium payments. For the purpose of this
study, it is therefore assumed that households always pursue capital growth. The aim is to
assess how this alternative subsidy scheme could help households to reduce their probability
of falling into the area of poverty, while also measuring the cost-e↵ectiveness of the strategy
from the governmental perspective.

The intangibility of microinsurance makes it di�cult to attract potential consumers. Most
policyholders will never experience a claim and so cannot perceive the real value of purchasing
coverage, paying more into the scheme through premium payments than the monetary benefit
they receive from being covered. It is only when claims are settled that microinsurance be-
comes tangible. The alternative microinsurance subsidy scheme described here could increase
client value, since, for example, households with capital below the barrier B could submit a
claim, receive a payout and thus perceive the value of microinsurance when a loss is su↵ered,
regardless of whether they have ever paid a single premium. Further strategies for increasing
microinsurance client value include bundling microinsurance with other products and intro-
ducing Value Added Services (VAS), which for health schemes, for example, include services
such as telephone hotlines for consultation with doctors or remote diagnosis services, o↵ered
to clients outside of the microinsurance contract (Madhur and Saha, 2019).

Proposition 2.6.1. Consider a household enrolled in an alternative microinsurance scheme
with subsidised flexible premiums, capital barrier B � x(A)⇤ and proportionality factor 1� 2

(0, 1]. Assume an initial capital x � x(A)⇤, capital growth rates r() and r above and below
the barrier, respectively, loss intensity � > 0 and exponentially distributed capital losses with
parameter ↵() > 0. The Laplace transform of the trapping time is given by

m(A)
� (x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

C1M

✓
�
�

r
, 1�

�+ �

r
; y(A)(x)

◆

+ C2e
y(A)(x)U

✓
1�

�

r
, 1�

�+ �

r
;�y(A)(x)

◆
, if x(A)⇤

 x  B

C3M

✓
�

�

r()
, 1�
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◆

+ C4e
y(A)(x)U

✓
1�

�

r()
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r()
;�y(A)(x)

◆
, if x � B,

(2.6.1a)

(2.6.1b)
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where y(A)(x) = �↵()(x�x(A)⇤) and constants Ci for i = 1, 2, 3, 4 are given by (2.6.4), (2.6.6),
(2.6.3) and (2.6.5), respectively.

Proof. Under the alternative microinsurance subsidy scheme, the Laplace transform of the
trapping time satisfies the following di↵erential equations:
8
>>>>>>>>>>><

>>>>>>>>>>>:

�
(x� x(A)⇤)

↵()
m(A)

�

00

(x)

+
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� (x� x(A)⇤)

i
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�

0
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�

r
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�
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↵()
m(A)

�

00

(x)

+
h(�+ � � r())

↵()r()
� (x� x(A)⇤)

i
m(A)

�

0

(x) +
�

r()
m(A)

� (x), if x � B

(2.6.2a)

(2.6.2b)

As in Proposition 2.3.1, use of the change of variable y(A) := y(A)(x) = �↵()(x� x(A)⇤) leads
to Kummer’s confluent hypergeometric equation, and so (2.6.1a) and (2.6.1b) are obtained for

arbitrary constants C1, C2, C3, C4 2 R. Under the boundary condition lim
x!1

m(A)
� (x) = 0 and

given the asymptotic behaviour of the Kummer function M(a, c; z) in (2.3.9),
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Due to the continuity of the functions m(A)
� (x) and m(A)
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(x) at x = B and the di↵erential
properties of the confluent hypergeometric functions:
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where
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Remark 2.6.1. The trapping probability  (A)(x) for the alternative microinsurance subsidy
scheme is given by
8
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In a similar manner to that of the subsidised case, the optimal barrier B can be found by
determining the solution of the equation

 (A)(x) =  (x),

where  (A)(x) and  (x) denote the trapping probabilities of the capital process under the
alternative microinsurance subsidy scheme and in the uninsured case, respectively. A number
of examples for varying initial capital are presented in Figure 2.9a.

Remark 2.6.2. When B ! x(A)⇤, the trapping probability for the alternative microinsurance
subsidy scheme is equivalent to the trapping probability obtained in the insured case without
subsidies  ()(x):

lim
B!x(A)⇤

 (A)(x) =
�
⇣

�
r()

;�y()(x)
⌘

�
⇣

�
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⌘ .

Moreover, when B ! 1, the trapping probability is given by

lim
B!1

 (A)(x) =
�
�
�
r ;�y()(x)

�

�
�
�
r

� ,

which is exactly the trapping probability of the insured subsidised process  ⇡⇤(,✓)(x) with
⇡⇤ = 0.
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2.6. Microinsurance with subsidised flexible premiums

Remark 2.6.3. Figure 2.8 presents the expected trapping time under the alternative microin-
surance subsidy scheme for varying initial capital. Again, in line with intuition, the expected
trapping time is an increasing function of both the capital level B and initial capital x. Steps
for obtaining the expected trapping time under the alternative scheme are analogous to those
used to derive (2.3.14) and are thus not presented here.
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Figure 2.8: Expected trapping time when Zi ⇠ Exp(1), a = 0.8, b = 1.4, c = 0.4, � = 1, x(A)⇤ = 1,  = 0.5,
and ✓ = 0.5 for B = 1.5, 2.5, 3.5.

Figure 2.9a presents trapping probabilities for varying initial capital under the uninsured,
insured, insured subsidised and insured alternatively subsidised schemes. As expected, increas-
ing the capital barrier B helps almost all households reduce their probability of falling into
the area of poverty, since support from the government is received when their capital resides
in the region between the critical capital x(A)⇤ and the capital level B. Furthermore, as in
Section 2.5, since insurance without subsidies decreases their trapping probability to a level
below the uninsured, government support is not required for households with higher levels of
initial capital (capital greater than or equal to the point at which the yellow short-dashed line
intersects the blue solid line). The optimal barrier for such households is in fact the critical
capital, i.e. B = x(A)⇤. This household group can a↵ord to cover the costs of microinsurance
coverage themselves.

Figure 2.9b shows that in order to remove the capital growth constraints associated with
premium payments experienced by the most vulnerable, governments should fix the barrier
level above their initial capital. This level should be selected until the household reaches
a capital level that is adequate in ensuring their trapping probability is equal to that of an
uninsured household. On the other hand, for more privileged households (central area of Figure
2.9b), governments should establish barriers below their initial capital, with households paying
premiums as soon as they enrol in the microinsurance scheme. This observation is largely due
to the distance of the associated capital levels from the critical capital x(A)⇤. These households
are not likely to fall into the area of poverty after su↵ering one (non-catastrophe) capital loss,
and are instead likely to fall into the region between the critical capital x(A)⇤ and the barrier
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2. Subsidising inclusive insurance to reduce poverty

level B, where full government subsidisation occurs, before entering the area of poverty. A
such, this region acts as a “bu↵er”, where households benefit from coverage without the need
for premium payments. Increasing initial capital leads to a decrease in the size of the “bu↵er”
region until its disappearance when the optimal barrier B = x(A)⇤, as shown by the red dashed
line in the right area of Figure 2.9b.
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Figure 2.9: (a) Trapping probabilities for the uninsured, insured, insured subsidised with ⇡⇤ = 0, 0.55 and
insured alternatively subsidised with B = 2, 3.5 capital processes when Zi ⇠ Exp(1), a = 0.1, b = 1.4, c = 0.4,
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2.6.1 Cost of social protection

To ensure sustainability, it is again important to measure the governmental cost-e↵ectiveness
of providing microinsurance premium subsidies to households under the alternative subsidy

scheme. For this purpose, let ⌧ (A)
x be the trapping time of a household covered by the alterna-

tive scheme and V (A)(x) the expectation of the present value of all subsidies provided by the
government to the household until the trapping time, that is

V (A)(x) := E
"Z ⌧

(A)
x

0
⇡e��t1n

X
(A)
t <B

odt

�����X
(A)
0 = x

#
.

The following proposition then holds:

Proposition 2.6.2. Consider a household enrolled in an alternative microinsurance scheme
with subsidised flexible premiums, capital barrier B � x(A)⇤ and proportionality factor 1 �

 2 (0, 1]. Assume an initial capital x � x(A)⇤, capital growth rates r() and r above and
below the barrier, respectively, loss intensity � > 0 and exponentially distributed capital losses
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2.6. Microinsurance with subsidised flexible premiums

with parameter ↵() > 0. Then, the expected discounted premium subsidies provided by the
government to the household until the trapping time is given by
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where y(A)(x) = �↵()(x� x(A)⇤) and the constants Ri for i = 1, 2, 3, 4 are given by (2.6.13),
(2.6.16), (2.6.14) and (2.6.15), respectively.

Proof. If the derivative of V (A)(x) exists, then using the standard arguments based on the

infinitesimal generator presented in Theorem 2.3.1 for X(A)
t , under the barrier B, the following

IDE for V (A)(x) is obtained:
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under application of the operator ( d
dx + ↵()), where x(A)⇤

 x  B.

Letting V (A)
h (x) be the homogeneous solution of (2.6.12), which is an ODE of the same

form as (2.6.2a), it holds that
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 x  B and arbitrary constants R1, R2 2 R, where y(A)(x) = �↵()(x � x(A)⇤) as

previously.
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Above the barrier B, V (A)(x) satisfies (2.6.2b) for x � B and so
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for arbitrary constants R3, R4 2 R. Since lim
x!1

V (A)(x) = 0 by definition, it holds that

R3 = 0. (2.6.14)

Using the continuity of the functions V (A)(x) and V (A)0(x) at x = B and the di↵erential
properties of the confluent hypergeometric functions,

R4 =
�

h
�⇡

(�+�)� +R2U
�
1� �

r , 1�
�+�
r ; 0

�i
M

�
�

�
r , 1�

�+�
r ; y(A)(B)

�

ey(A)(B)U
⇣
1� �

r()
, 1� �+�

r()
;�y(A)(B)

⌘

+
R2ey

(A)(B)U
�
1� �

r , 1�
�+�
r ;�y(A)(B)

�
+ ⇡

�

ey(A)(B)U
⇣
1� �

r()
, 1� �+�

r()
;�y(A)(B)

⌘ (2.6.15)

and

R2 =�
�⇡K�1

�+ �

h ↵()

(r � �� �)
M

✓
1�

�

r
, 2�

�+ �

r
; y(A)(B)

◆

+
1

�
M

✓
�
�

r
, 1�

�+ �

r
; y(A)(B)

◆⇣
↵()

�D
⌘ i

�
⇡K�1

�

⇣
D � ↵()

⌘
, (2.6.16)

where D and K are (2.6.7) and (2.6.8), respectively.

As in Section 2.5.1, it is possible to obtain an explicit expression for m(A)
�,w (x), the ex-

pected discounted cost incurred by the government at the trapping time under the alternative
microinsurance scheme:

Proposition 2.6.3. Consider a household enrolled in an alternative microinsurance scheme
with subsidised flexible premiums, capital barrier B � x(A)⇤ and proportionality factor 1� 2

(0, 1]. Assume an initial capital x � x(A)⇤, capital growth rates r() and r above and below
the barrier, respectively, loss intensity � > 0, exponentially distributed capital losses with
parameter ↵() > 0 and a cost to lift households further away from the area of poverty M (A)

�

x(A)⇤, with M (A)
� x(A)⇤. Then, the expected discounted cost incurred by the government at

the trapping time is

m(A)
�,w (x) =


1

↵()
+M (A)

� x(A)⇤

�
m(A)

� (x), (2.6.17)

where m(A)
� (x) is given by (2.6.1a) and (2.6.1b).

Proof. Proof follows that of Proposition 2.5.2.

As for the subsidised scheme, under the alternative scheme, the cost of social protection
incurred by the government is defined as the expected discounted subsidies provided until
trapping plus the expected discounted cost incurred at trapping, here given by (2.6.10a),
(2.6.10b) and (2.6.17), respectively.
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Figure 2.10 compares the cost of social protection for the uninsured, insured, insured sub-
sidised and insured alternatively subsidised households. Cost of social protection for the most
vulnerable is reduced with all forms of microinsurance coverage (yellow dashed, red dashed-
dotted, blue dashed-dashed, blue circular-marked and red diamond-marked lines below the
blue solid line for initial capitals close to the critical capital x⇤). As in relation to Figure 2.7,
this aligns with the high trapping probability associated with this portion of the population
when uninsured, with governments almost surely needing to lift households out of the area
of poverty. Although already eliminated when providing optimal subsidies under the insured
subsidised scheme (blue circular-marked line below the red dashed-dotted line for the most
privileged), the aforementioned drawback of governments subsidising premiums indefinitely,
almost surely under suboptimal subsidised schemes is also eliminated under both optimal and
suboptimal alternative subsidy schemes due to the ceasing of subsidies on households reaching
su�cient capital (red diamond-marked and blue dashed-dashed lines below red dashed-dotted
line for households with higher levels of capital). Furthermore, as observed in Figure 2.9a,
when the barrier level is su�ciently high, households of all capital levels experience a decrease
in their trapping probability, almost reaching that of a household enrolled in a fully subsidised
insurance scheme. Governments are not required to subsidise premiums indefinitely even for
schemes with high barrier levels, since households will pay the entire premium as soon as their
capital reaches a su�cient level. The scheme therefore facilitates a reduction in the trap-
ping probability of all households, while reducing the cost of social protection incurred by the
government, highlighting the cost-e�ciency of this alternative strategy.
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2.7 Concluding remarks

Comparing the impact of three microinsurance frameworks on the trapping probabilities of
low-income households, this chapter provides evidence for the importance of governmentally
supported inclusive insurance in the strive towards poverty alleviation. The results of Sections
2.4 and 2.5 support those of Kovacevic and Pflug (2011), highlighting a threshold below which
insurance could increase the probability of trapping. Motivated by the recent increased in-
volvement of governments in the support of insurance programmes and maintaining the idea
of “smart” subsidies, a transparent method with a mathematical foundation for calculating
optimal subsidies that can strengthen government social protection programmes while lowering
the associated costs, is introduced.

Numerical examples indicate that while many of the proposed insurance mechanisms, both
with and without subsidies, reduce the cost of social protection for the most vulnerable, they
do not reduce their probability of trapping. This undermines the faculty of inclusive insurance
as a cost-e↵ective social protection strategy for poverty alleviation and brings to light questions
as to its capability in reducing both the probability of households falling below the poverty line
and the associated social protection costs. However, analysis of a subsidised microinsurance
scheme with a premium payment barrier suggests that in general, the trapping probability of a
household covered by such a scheme is reduced in comparison to when covered by unsubsidised
and (for the most vulnerable) partially subsidised microinsurance schemes, in addition to when
uninsured, alleviating this limitation.

More significant influence is observed in relation to the governmental cost of social pro-
tection, with the cease of subsidy payments when household capital is su�cient facilitating
government savings and therefore increasing social protection e�ciency. This provides evi-
dence for the relevance of the alternative scheme as a cost-e↵ective social protection strategy
for poverty reduction. The cost of social protection for those closest to the area of poverty re-
mains lower than the corresponding uninsured cost in both subsidised frameworks considered,
achieving similar results to those obtained with the targeted-subsidisy scheme proposed by
Janzen et al. (2021). In this analysis, governments must account for their support of premium
payments, the likely need for household removal from poverty and an extra capital injection to
ensure that they will not return to poverty with some level of confidence. Total subsidies paid
by the government for the most poor have a small weight within the cost of social protection
due to the fact that those closest to the poverty line will fall into the area of poverty almost
surely. The capital injection on trapping is also much lower in comparison to that of unin-
sured households. Each of these factors enhances the reduction in the cost of social protection,
particularly for the most vulnerable.
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Chapter 3

On a low-income capital process
with deterministic growth and
multiplicative jumps

Risk theory techniques are adopted in this chapter for the study of a capital growth process
with multiplicative losses proportional to the level of accumulated capital, where proportional
jumps reflect the high-risk nature of the low-income environment. Explicit expressions for
the trapping probability are obtained via analysis of the Laplace transform of the infinitesimal
generator of the process, where trapping occurs when a household’s capital falls into the area of
poverty, from which it is di�cult to escape without external help. Introduction of an insurance
product o↵ering proportional coverage is presented and the Frobenius method considered for
asymptotic analysis of the associated Laplace and trapping side ODEs. Classical results from
risk theory are used to derive constraints on the rate parameters of the process. Comparisons
are made between the trapping probabilities of uninsured and insured households, and with
those under random-valued losses.

3.1 Introduction

As discussed in Chapter 2, capital levels in low-income economies include all forms of capital
that enable production, whether for trade or self-sustaining purposes. The prevalence of agri-
cultural work in such environments means that the threat of catastrophic events, including
floods, droughts, earthquakes and disease, is of great concern due to the typically large-scale
nature of their impact. In contrast to losses relating to health, life or death, agricultural losses
could immediately eliminate a high proportion of a household’s ability to produce through loss
of land and livestock.

In this chapter, the capital growth model of Chapter 2 is adjusted to account for such heavy
capital losses. At loss events, accumulated capital is reduced by a random proportion of itself,
rather than by an amount of random value. In addition to capturing the threat of catastrophic
events, small-scale proportional losses can be used to represent losses of lesser severity also
faced by households. A process of this structure is referred to as a growth-fragmentation or
growth-collapse process, characterised by their growth in between the random collapse times
at which downwards jumps occur, where jumps are of random size dependent on the state of
the process immediately before the jump.
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multiplicative jumps

The growth-collapse process of this chapter is also studied in the poverty trap setting by
Kovacevic and Pflug (2011), where estimates of the infinite-time trapping probability of a
discretised capital process are obtained through numerical simulation. Azäıs and Genadot
(2015) perform further numerical analysis on the same model, with mention of applications to
the capital setting of Kovacevic and Pflug (2011) and to population dynamics, where the critical
level denotes extinction. In both cases, derivation of analytical solutions of the infinitesimal
generator is not attempted. Research on growth-collapse processes with applications outside
the field of actuarial mathematics includes studies by Altman et al. (2002) and Löpker and
Van Leeuwaarden (2008) for congestion control in data networks, Eliazar and Klafter (2004)
and Eliazar and Klafter (2006) for phenomena in physical systems and Derfel et al. (2009) for
cell growth and division. Löpker and Van Leeuwaarden (2008) obtain the Laplace transform of
the transient moments of a growth-collapse process, while Eliazar and Klafter (2004) consider
the state of a growth-collapse process at equilibrium, computing Laplace transforms of the
system and of the high- and low-levels of the growth-collapse cycle. In this chapter, Laplace
transform methods are applied to derive the trapping probabilities of the capital process with
proportional losses.

The capital growth process is again considered both with and without proportional in-
surance coverage, and derivation of the associated explicit trapping probabilities undertaken.
However, due to the proportionality of losses, generators of the capital process no longer di-
rectly align with those of classical models used to describe the surplus process of an insurer.
Obtaining the solution of the infinitesimal generator equation in this case is therefore non-
trivial. Traditionally a sum of independent random variables, random absolute losses are now
correlated with one another, and with the inter-arrival times of the loss event. In addition,
only the surplus of a household’s capital above the critical capital grows exponentially, where
in the classical context, it is the surplus above zero that grows.

An outline of the remainder of the chapter is as follows. Section 3.2 introduces the capital
growth model and its alignment with the classical Crámer-Lundberg model. This connection
enables derivation of parameter constraints and an upper bound on the trapping probability.
Derivation of the infinitesimal generator is also presented in this section. Derivation of trap-
ping probabilities for uninsured losses with Beta(1, 1) (Section 3.3.1) and Beta(↵, 1) (Section
3.3.2) distributed remaining proportions of capital is presented in Section 3.3. Section 3.4 dis-
cusses the introduction of microinsurance and presents analysis on the associated infinitesimal
generator. Concluding remarks are presented in Section 3.5.

3.2 The capital model

As in Chapter 2, a piecewise deterministic Markov process of compound Poisson-type repre-
sents household capital, where accumulated capital is deterministic in-between the randomly
occurring jump times at which large capital losses occur. The growth dynamics of the model
are analogous to those in Section 2.2. Accumulated capital (Xt)t�0 grows exponentially with
rate r = (1 � a) · b · c > 0, where 0 < a < 1, b > 0 and 0 < c < 1 are household rates of con-
sumption, income generation and investment or savings, respectively. Capital growth occurs
only when the process is above the critical level of capital x⇤ > 0, below which a household
struggles to meet their basic needs.

It is again assumed that households are susceptible to large capital losses, which follow
a Poisson process with intensity �. At the i-th loss event, the capital process experiences
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a downwards jump to XTi · Zi, where Zi 2 (0, 1] is the random proportion determining the
remaining capital after loss i and XTi the level of capital accumulated up to the loss time. The
sequence {Zi}

1

i=1 is a sequence of independent and identically distributed random variables
with common distribution function GZ , independent of the Poisson process. In this chapter,
the proportion of capital remaining after each loss event Zi is assumed to follow a Beta dis-
tribution with parameters ↵ > 0 and � > 0. The stochastic capital process with deterministic
exponential growth and multiplicative losses is formally defined as follows:

Definition 3.2.1 (Kovacevic and Pflug (2011)). Let Ti be the ith event time of a Poisson
process (Nt)t�0 with parameter �, where T0 = 0. Let Zi � 0 be a sequence of i.i.d. random
variables with distribution function GZ , independent of the process Nt. For Ti�1  t < Ti, the
stochastic growth process of the accumulated capital Xt is defined as

Xt =

(�
XTi�1 � x⇤

�
er(t�Ti�1) + x⇤, if XTi�1 > x⇤

XTi�1 , otherwise.

(3.2.1a)

(3.2.1b)

At the jump times t = Ti, the process is given by

XTi =

(
[
�
XTi�1 � x⇤

�
er(Ti�Ti�1) + x⇤] · Zi, if XTi�1 > x⇤

XTi�1 · Zi, otherwise.

(3.2.2a)

(3.2.2b)

As in Chapter 2, the aim of this chapter is to study the probability of a household falling
below the poverty line, i.e. the trapping probability. As defined previously, the infinite-time
trapping probability describes the distribution of the trapping time ⌧x := inf{t � 0 : Xt <
x⇤|X0 = x} and is given by

 (x) = P(⌧x < 1),

where x is the initial capital of a household. When deriving the trapping probabilities of the
capital processes of this chapter, following the definition of the infinitesimal generator at the
end of this section,  will be denoted by f .

Consider an adjustment of the capital process in Definition 3.2.1 discretised at loss event
times such that X̃i = XTi , i.e. the capital process studied in Kovacevic and Pflug (2011).
Taking the logarithm of the adjusted process with critical capital x⇤ fixed at 0 yields

Li = Li�1 + r(Ti � Ti�1) + log(Zi),

such that

Li = log x+ rTi +
NtX

i=1

log(Zi), (3.2.3)

where Li is the logarithm of the i-th step in the discretised process X̃i and log(Zi) < 0. The
model in (3.2.3) is a version of the classical Crámer-Lundberg model introduced by Lundberg
(1903) and Cramér (1930), which assumes an insurance company collects premiums continu-
ously and pays claims of random size at random times. The corresponding surplus process is
given by

Ut = u+ ct�
NtX

k=1

Xk, (3.2.4)
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where u is the initial capital, c the constant premium rate, X1, X2, ..., XNt the random claim
sizes and Nt the number of claims in the interval [0, t]. Claim sizes are assumed to be indepen-
dent and identically distributed, Nt a homogeneous Poisson process and the sequence of claim
sizes {Xk}k�1 and Nt independent.

The relationship between the capital model of this chapter and the Crámer-Lundberg model
(3.2.4) enables specification of an upper bound for the trapping probability of the logarithmic
process, and hence the capital growth process Xt, through Lundberg’s inequality, derived in
Lundberg (1926).

Theorem 3.2.1 (Lundberg’s inequality). Assume that there exists a constant s > 0 such that
the process {esU(t)

}t2�0 is a martingale. Then, for all u � 0,

 (u)  e�Ru,

where R is the unique positive root (in s) of Lundberg’s equation, which is given by

MX(s)MT (�cs) = 1,

where MX(s) and MT (s) are the moment generating functions of the claim size and waiting
time distributions, respectively. If R exists, it is referred to as the adjustment coe�cient.

Theorem 3.2.2 (The Crámer-Lundberg approximation). Assume that the adjustment coe�-
cient R exists and that M 0

X(R) < 1. Then,

lim
u!1

 (u)eRu =
c� �µ

�M 0

X(R)� c
,

where µ =
R
1

0 (1�G(x))dx and G(x) is the claim size distribution.

For proof of Theorems 3.2.1 and 3.2.2, see, for example, Schmidli (2017).

Proposition 3.2.1. Consider a household capital process as proposed in Definition 3.2.1. For
initial capital x � x⇤, capital growth rate r, loss intensity � > 0 and remaining proportions of
capital with distribution Beta(↵, 1), the adjustment coe�cient of the corresponding Lundberg
equation exists if

�

r
< ↵.

Proof. By Theorem 3.2.1, the Lundberg equation corresponding to the logarithmised process
in (3.2.3) is

E[e�s log(Zi)]E[e�srT̃i ] = E[e�s(log(Zi)+rT̃i)] = 1, (3.2.5)

for s > 0, where T̃i = Ti �Ti�1. In order for R to exist, the following condition must therefore
hold:

E[log(Zi) + rT̃i] > 0 () E[log(Zi)] + rE[T̃i] > 0,

such that for remaining proportions of capital with distribution Beta(↵, 1),

�

r
< ↵ (3.2.6)

must hold, as required, where E[log(Zi)] = ↵
R 1
0 log(z)z↵�1dz.
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This constraint ensures that the adjustment coe�cient and thus an upper bound on the
trapping probability of the logarithmic process Li exists. This adjustment coe�cient is in fact
also the adjustment coe�cient for the capital growth process defined in Definition 3.2.1.

Proposition 3.2.2. If E[log(Zi) + rT̃i] > 0, then there exists an adjustment coe�cient R for
the capital growth process Xt in Definition 3.2.1 which is identical to that of the logarithmised
process Li, where R is the unique positive solution of (3.2.5).

Proof. The proof of Proposition 3.2.2 follows that of Proposition 2 of Kovacevic and Pflug
(2011).

Consider the process Li in (3.2.3), where i � 0 denotes the i-th loss event. Aligning with the
classical Crámer-Lundberg model, by Theorem 3.2.1, the trapping probability of Li satisfies

P(Li  0|L0 = log x)  e�Ru, (3.2.7)

where E[log(Zi) + rT̃i] > 0 such that R is the adjustment coe�cient. For x⇤ = 0, the trapping
probability in (3.2.7) is equivalent to P(X̃i  1|X̃0 = x). Therefore,

P(X̃i  0|X̃0 = x)  P(X̃i  1|X̃0 = x)  e�Ru. (3.2.8)

In order to prove that the adjustment coe�cient for X̃i at x⇤ = 0 is equivalent to that of
the process for which x⇤ is an unknown constant, consider the fact that for r > 0 and t � 0,
(x � x⇤)ert + x⇤  xert, where the left-hand side of the inequality corresponds to the process
X̃i for x⇤ constant, and the right-hand side for x⇤ = 0, which has upper bound as in (3.2.8).
By the Crámer-Lundberg approximation in Theorem 3.2.2,

R = � lim
u!1

1

u
log (u), (3.2.9)

where for constant C > 0, limu!1
logC
u = 0. Comparing the two processes in line with (3.2.9),

it therefore holds that

� lim sup
x!1

1

x
logP(X̃i  x⇤|X̃0 = x)  � lim

x!1

1

x
logP(X̃i  0|X̃0 = x) = R(r), (3.2.10)

where R(r) is the adjustment coe�cient of the process X̃i with x⇤ = 0.
Similarly consider the case x 

r
r�r1

, where r1 is close to but less than r. For su�ciently
large x, i.e. for

x �
x⇤(1� e�rt)

1� e�(r�r1)t
,

the inequality (x� x⇤)ert + x⇤ � xer1t holds. Then,

� lim inf
x!1

1

x
logP(X̃i  x⇤|X̃0 = x) � � lim

x!1

1

x
logP(X̃i  0|X̃0 = x) = R(r1).

Since r1 approaches r from below, it also holds that R(r1) approaches R(r) from below. As
such,

� lim inf
x!1

1

x
logP(X̃i  x⇤|X̃0 = x) � lim

r1!r
R(r1) = R(r). (3.2.11)

Combining (3.2.11) with (3.2.10) gives that the adjustment coe�cient for the discretised process
X̃i with critical capital x⇤ is the same as that of the same process with x⇤ = 0. In addition,
since X̃i is simply a version of the original capital process Xt discretised at loss events, this
adjustment coe�cient also holds for Xt.
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Note that, the Crámer-Lundberg approximation is applicable in the proof of Proposition
3.2.2 since losses of size � logZi, as in (3.2.3), have exponential tails.

The infinitesimal generator A of the original stochastic process (Xt)t�0 as in Definition
3.2.1 is derived by Definition 3.2.2:

Definition 3.2.2. The infinitesimal generator A of a Markov process (Xt)t�0 is defined by

Af(x) = lim
h!0

E[f(Xh)|X0 = x]� f(x)

h
,

for x 2 R. The domain of the generator A is given by the class of all real-valued, bounded,
Borel-measurable functions f defined on S such that the generator exists, i.e.

DA = {f 2 B(S) | Af(x) exists for all x}.

Consider the expected value of a function f of the capital process, conditional on the initial
starting point:

E[f(Xh)|X0 = x] =
1X

k=0

(�h)k

k!
e��hE[f(Xh)|N(h) = k]

=e��hf((x� x⇤)erh + x⇤)

+ �he��hE[f((((x� x⇤)erT + x⇤) · z)� x⇤)er(h�T ) + x⇤)|N(h) = 1]

+O(h), (3.2.12)

where T  h is the jump time. Given limh!1

O(h)
h = 0, expressing the exponential components

of the first term of (3.2.12) as their Power series representation and expanding the resulting
product, it holds that

lim
h!0

E[f(Xh)|X0 = x]� f(x)

h
= lim

h!0

e��hf((x� x⇤)erh + x⇤)� f(x)

h
+ �E[f(x · z)]

= r(x� x⇤)f 0(x)� �f(x) + �

Z 1

0
f(x · z)dG(z).

By Definition 3.2.2, the infinitesimal generator of Xt is therefore given by

(Af)(x) = r(x� x⇤)f 0(x) + �

Z 1

0
[f(x · z)� f(x)]dG(z), x � x⇤. (3.2.13)

Multiplication of the capital process by the random proportion in the integral function makes
the Laplace transform methods typically used in risk theory no longer straightforward.

3.3 Derivation of trapping probability for uninsured losses

In this section, the analytic trapping probabilities associated with (3.2.13) are derived for
Beta(1, 1), i.e. uniform (Section 3.3.1) and Beta(↵, 1) (Section 3.3.2) distributed remaining
proportions of capital.
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3.3.1 Uniformly distributed Zi

Assume Zi is uniformly distributed, such that ↵ = � = 1, and let u = x · z. Then, (3.2.13)
reduces to

(Af)(x) = r(x� x⇤)f 0(x)� �f(x) +
�

x

Z x

0
f(u)d(u)

for x � x⇤. The behaviour of the capital process above the critical capital x⇤ determines a
household’s trapping probability, with only surplus capital above the critical capital growing
exponentially. Thus, consider the change of variable h(x) = f(x + x⇤) such that for x̃ =
x� x⇤ > 0, the infinitesimal generator is instead given by

(Ah)(x̃) = rx̃h0(x̃)� �h(x̃) +
�

x̃+ x⇤

Z x̃+x⇤

0
h(u� x⇤)du. (3.3.1)

Analysis of the trapping probability can be undertaken through study of the infinitesimal
generator. Theorem 3.3.1 provides a link between the generator and the probability of interest
in the classical ruin theoretic context. This theorem is discussed in detail in Constantinescu
(2006). The change of variable adopted here aligns the domain of the generator in (3.3.1) with
the domain of the generator in Theorem 3.3.1.

Theorem 3.3.1 (Paulsen and Gjessing (1997)). Let ⌧x = inf{t � 0 : Xt < 0 |X0 = x} denote
the time of ruin given initial surplus x, where ⌧x is fixed at infinity if Xt � 0 8t. Assume f(x)
is a bounded and twice continuously di↵erentiable function on x � 0, with a bounded first
derivative. If f(x) solves Af = 0 on x � 0, together with boundary conditions

f(x) = 1 for x < 0

and
lim
x!1

f(x) = 0,

then
f(x) = P(⌧x < 1)

such that f(x) is the ruin probability.

Proof. See Paulsen and Gjessing (1997) for proof.

Theorem 3.3.1 holds analogously in the trapping probability context. The remainder of
this section therefore works towards solving Ah = 0.

Closed-form expressions for Laplace transforms of ruin (trapping) probabilities are often
more easily obtained than for the probability itself. In this section, the trapping probability
of an uninsured household is obtained by inverting the solution of the Laplace side ODE.

Solution of the integro-di↵erential equation in (3.2.13) has so far only been undertaken
numerically, see, for example, Kovacevic and Pflug (2011). In the proof of Proposition 3.3.1,
the explicit solution is derived.

Proposition 3.3.1. Consider a household capital process (as proposed in Definition 3.2.1) with
initial capital x � x⇤, capital growth rate r, loss intensity � > 0 and remaining proportions of
capital with distribution Beta(1, 1). The trapping probability is given by

f(x) = 1�
1

�(1 + �
r )�(1�

�
r )

⇣x� x⇤

x⇤

⌘�
r
2F1

⇣
1,
�

r
; 1 +

�

r
;�

(x� x⇤)

x⇤

⌘
, (3.3.2)

for �
r < 1, where 2F1(·) is the Gauss hypergeometric function as defined in Appendix B.
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Proof. Fix (Ah)(x̃) = 0 in line with Theorem 3.3.1 such that

rx̃h0(x̃)� �h(x̃) +
�

x̃+ x⇤

Z x̃+x⇤

0
h(u� x⇤)du = 0

() rx̃(x̃+ x⇤)h0(x̃)� �(x̃+ x⇤)h(x̃) + �

Z x̃

�x⇤
h(v)dv = 0

where v = u� x⇤,

() rx̃(x̃+ x⇤)h0(x̃)� �(x̃+ x⇤)h(x̃) + �

Z 0

�x⇤
h(v)dv + �

Z x̃

0
h(v)dv = 0

() rx̃(x̃+ x⇤)h0(x̃)� �(x̃+ x⇤)h(x̃) + �x⇤ + �

Z x̃

0
h(v)dv = 0. (3.3.3)

The Laplace transform of (3.3.3) is

s2F 00(s) + s
⇣
2 +

�

r
� x⇤s

⌘
F 0(s) +

⇣�
r
� x⇤s

⇣
1 +

�

r

⌘⌘
F (s) = �

�x⇤

r
. (3.3.4)

Let F (s) = s�1w(s) such that (3.3.4) reduces to

sw00(s) +
⇣�
r
� x⇤s

⌘
w0(s)�

�x⇤

r
w(s) = �

�x⇤

r
, (3.3.5)

which by (108) of Zaitsev and Polyanin (2002) has homogeneous solution

wh(s) = ex
⇤s
J

✓
0,
�

r
;�x⇤s

◆
,

where J (a, b; z) is an arbitrary solution of the degenerate hypergeometric equation. Selecting
two of the eight solutions of the degenerate hypergeometric equation, the following general
solution of (3.3.5) is constructed:

wh(s) = C1e
x⇤s + C2(�x⇤s)1�

�
r U

✓
1, 2�

�

r
, x⇤s

◆
,

where y1(s) and y2(s) are (13.1.12) and (13.1.19) of Abramowitz and Stegun (1972), respec-
tively. Proposition of a constant Ansatz wp(s) = A then gives the particular solution wp(s) = 1,
such that

w(s) = C1e
x⇤s + C2(�x⇤s)1�

�
r U

✓
1, 2�

�

r
, x⇤s

◆
+ 1.

By the initial value theorem,

lim
x̃!0

h(x̃) = lim
s!1

sF (s) = 1. (3.3.6)

Take the limit of w(s) = sF (s) and apply (3.3.6). The asymptotic behaviour of the Tricomi
function U(a, c, z) as z tends to infinity is given by z�a[1 +O(|z|�1)]. As such,

lim
s!1

s1�
�
r U

✓
1, 2�

�

r
, x⇤s

◆
= s1�

�
r (x⇤s)�1(1 +O(|x⇤s|�1)) = 0
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and so C1 = 0. The Tricomi function U(a, b; z) (see Appendix B) can be expressed in terms of
the Kummer function M(a, b; z) in the following way:

U(a, b, z) =
�(1� b)

�(1 + a� b)
M(a, b; z) +

�(b� 1)

�(a)
z1�bM(1 + a� b, 2� b; z).

As such, since

(�x⇤s)1�
�
r U

✓
1, 2�

�

r
, x⇤s

◆
= (�1)1�

�
r U

✓
�

r
,
�

r
, x⇤s

◆

by the Kummer transformations (see, for example, Abramowitz and Stegun (1972)), it holds
that lims!0 U

�
�
r ,

�
r , x

⇤s
�
= �

�
1� �

r

�
. Applying the final value theorem:

lim
x̃!1

h(x̃) = lim
s!0

sF (s) = 0

therefore yields C2 = (�1)
�
r

�(1��
r )
. Alternatively, C2 could be determined by inverting F (s) as

follows:
By Section (3.34.1) of Prudnikov et al. (1992), the inverse Laplace transform of s�vU(a, b, ws),

for Re(a+ v),Re s > 0; | arg(w)| < ⇡, is

w�axa+v�1

�(a+ v)
2F1

⇣
a, a� b+ 1; a+ v;�

x

w

⌘
.

Thus, inverting

F (s) = C2(�x⇤)1�
�
r s�

�
r U

✓
1, 2�

�

r
, x⇤s

◆
+ s�1

gives

h(x̃) =
C2(�1)1�

�
r

�
�
1 + �

r

�
⇣ x̃

x⇤

⌘�
r
2F1

✓
1,
�

r
; 1 +

�

r
;�

x̃

x⇤

◆
+ 1.

Applying the second boundary condition on h(x̃): limx̃!1 h(x̃) = 0, consider the asymp-
totic behaviour of 2F1(a, b; c; z). By (15.3.7) of Abramowitz and Stegun (1972),

2F1(a, b; c; z) =
�(c)�(b� a)

�(b)�(c� a)
(�z)�a

2F1

✓
a, 1� c+ a; 1� b+ a;

1

z

◆

+
�(c)�(a� b)

�(a)�(c� b)
(�z)�b

2F1

✓
b, 1� c+ b; 1� a+ b;

1

z

◆
(3.3.7)

for | arg(�z)| < ⇡. Therefore,

lim
x̃!1

h(x̃) =C2(�1)1�
�
r lim
x̃!1

⇣�
�
�
r � 1

�

�
�
�
r

�2
⇣ x̃

x⇤

⌘�
r �1

2F1

✓
1, 1�

�

r
; 2�

�

r
;�

x⇤

x̃

◆

+ �

✓
1�

�

r

◆
2F1

✓
�

r
, 0;

�

r
;�

x⇤

x̃

◆⌘
+ 1

=C2(�1)1�
�
r �

✓
1�

�

r

◆
+ 1
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since limz!0 2F1(a, b; c, z) = 1 and �
r < 1 by (3.2.6). Then,

lim
x̃!1

h(x̃) = 0 () C2 =
(�1)

�
r

�
�
1� �

r

� .

The explicit trapping probability under the change of variable h(x) is therefore given by

h(x̃) = 1�
1

�
�
1 + �

r

�
�
�
1� �

r

�
⇣ x̃

x⇤

⌘�
r
2F1

✓
1,
�

r
; 1 +

�

r
;�

x̃

x⇤

◆

for x̃ > 0. Then, since h(x̃) = f(x), it holds that f(x) is given by (3.3.2) for x > x⇤, as
required.

Figure 3.1a presents the trapping probability (3.3.2) for varying initial capital x and loss
rate parameter �. Note that the trapping probability tends to 1 as �

r tends to 1. Parameters a, b
and c are selected to correspond with those in Chapter 2. The low value of the rate parameter �
reflects the vulnerability of low-income households to both high and low frequency loss events,
while aligning with the constraint in Proposition 3.3.1. Figure 3.1b presents a comparison of
the trapping probabilities derived explicitly in Proposition 3.3.1 with trapping probabilities
obtained from simulations of the capital growth process.
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Figure 3.1: Trapping probability when Zi ⇠ Beta(1, 1), a = 0.1, b = 1.4, c = 0.4 (r = 0.504) and x⇤ = 1
for (a) � = 0.5, 0.45, 0.35, 0.25, 0.15, 0.05, (b) � = 0.45, 0.35, 0.25, 0.15 with comparison to the corresponding
simulated trapping probability of the capital growth process with N = 500 households, terminal time T = 1000
and time-step dt = 0.1, evaluated at 100 initial capital levels.

Particularly high levels of accumulated capital are not relevant in the microinsurance and
poverty trapping context. However, the asymptotic behaviour of the trapping probability in
(3.3.2) at infinity is interesting for understanding the behaviour of the function. Applying the
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3.3. Derivation of trapping probability for uninsured losses

transform in (3.3.7), (3.3.2) is equivalent to

�
�
�
�
r � 1

�

�
�
�
r

�2
�
�
1� �

r

�
⇣x� x⇤

x⇤

⌘�
r �1

2F1

✓
1, 1�

�

r
; 2�

�

r
;�

x⇤

x� x⇤

◆
,

which behaves asymptotically like the power function

�
�
�
�
r � 1

�

�
�
�
r

�2
�
�
1� �

r

�
⇣x� x⇤

x⇤

⌘�
r �1

. (3.3.8)

As such, the uninsured trapping probability (3.3.2) has power-law asymptotic decay as x ! 1.
Comparing the decay of the household-level trapping probability under proportional losses

with that of the random-valued losses in Chapter 2, note that the equivalent uninsured trapping
probability in (2.3.12) decays at a faster rate, following

↵
�
r �1(x� x⇤)

�
r �1e�↵(x�x⇤)(1 +O(|↵(x� x⇤)|�1)) (3.3.9)

asymptotically, where ↵ is the exponential loss parameter. The ratio of (3.3.9) to (3.3.8) is

Ae�↵(x�x⇤)(1 +O(|↵(x� x⇤)|�1)),

for constant A = �(↵x⇤)
�
r �1�

�
�
r � 1

�
�
�
�
r

��2
�
�
1� �

r

��1
, such that the trapping probability

in the random-valued case decays exponentially faster than when a household experiences
proportional losses. This result is intuitive, since proportional losses are more risky than
random-valued losses at high capital levels, due to the non-zero probability of a household
losing all (or a high proportion) of its wealth. This is particularly severe in the uniform case,
where high and low levels of proportional losses are equally likely.

Remark 3.3.1. The result presented in Remark 2.3.1 of Chapter 2, for the uninsured trapping
probability under random-valued losses, can also be derived in the Laplace transform manner
of this chapter. This alternative approach is presented in Proposition 3.3.2.

Proposition 3.3.2. Consider a household capital process (as proposed in Definition 2.2.1)
with initial capital x � x⇤, capital growth rate r, loss intensity � > 0 and exponentially
distributed capital losses with parameter ↵ > 0. The trapping probability is given by

f(x) =
�
�
�
r ;�y(x)

�

�
�
�
r

� , (3.3.10)

where y(x) = �↵(x� x⇤).
The trapping probability in (3.3.10) is plotted in comparison to the proportional case of

this chapter in Figure 3.3 of Section 3.3.2.

Proof. The infinitesimal generator of the capital growth process under random-valued losses
is given by

(Af)(x) = r(x� x⇤)f 0(x) + �

Z
1

0
[f(x� z)� f(x)] dG(z), x � x⇤ (3.3.11)
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as in (2.2.7). Applying the change of variable h(x) = f(x+ x⇤) under exponential loss events,
(3.3.11) becomes

(Ah)(x̃) = rx̃h0(x̃)� �h(x̃) + ↵�

Z
1

0
h(x̃� z)e�↵zdz (3.3.12)

= rx̃h0(x̃)� �h(x̃) + ↵�

Z x̃

0
h(x̃� z)e�↵zdz + �e�↵x̃ (3.3.13)

for x̃ � 0. For H1(x̃) = h(x̃) and H2(x̃) = e�↵x̃, the integral term in (3.3.13) is a convolution,
where the convolution of two functions f and g is denoted f ⇤ g and given by

(f ⇤ g)(t) =

Z t

0
f(⌧)g(t� ⌧)d⌧

for f, g : [0,1) ! R. As such,

(Ah)(x̃) = rx̃h0(x̃)� �h(x̃) + ↵�(H1 ⇤H2)(x̃) + �e�↵x̃. (3.3.14)

It now remains to solve (Ah)(x̃) = 0 in line with Theorem 3.3.1. Taking the Laplace
transform of (Ah)(x̃) = 0 for (Ah)(x̃) in (3.3.14) gives

sF 0(s) +
⇣
1 +

�

r
�

↵�

r(s+ ↵)

⌘
F (s) =

�

r(s+ ↵)
, (3.3.15)

where L((H1 ⇤H2)(x̃)) = L(H1(x̃))⇥L(H2(x̃)). Considering the homogeneous part of (3.3.15):

d
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ds�
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ln s+ C

= ln
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s�1(s+ ↵)�

�
r

⌘
+ C

() Fh(s) =As�1(s+ ↵)�
�
r .

To obtain a particular solution, select an Ansatz of Fp(s) =
A
s . Substitution into (3.3.15) yields

A = 1, such that the Laplace side solution of the IDE (3.3.12) is

F (s) = As�1(s+ ↵)�
�
r +

1

s
.

By Section (2.1.2) of Prudnikov et al. (1992), the inverse Laplace transform of the function
sµ(s+ a)v is given by

x�µ�v�1

�(�µ� v)
M(�v,�µ� v;�ax),

for Re(µ+ v) < 0;Re s > 0,�Re a, where µ, v /2 Z+
0 . As such,

h(x̃) = A ·
x̃

�
r

�
�
1 + �

r

�M
✓
�

r
, 1 +

�

r
;�↵x̃

◆
+ 1.
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3.3. Derivation of trapping probability for uninsured losses

The constant A can then be determined through the boundary condition of the trapping
probability at infinity: limx̃!1 h(x̃) = 0. Applying the identity M(a, b; z) = ezM(b�a, b,�z),
see, for example, (13.1.27) of Abramowitz and Stegun (1972), and by the asymptotic behaviour
of M(a, b; z) at infinity in (2.3.9), it holds that

A = �↵
�
r .

Then, by the integral representation of M(a, b; z) and by substitution of v = ↵x̃u,
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,

where �(a; z) =
R z
0 e�tta�1dt is the lower incomplete gamma function. Therefore,

f(x) = h(x̃) = 1�
�
�
�
r ,↵x̃

�

�
�
�
r

� ,

which by the identity �(a) = �(a;x) + �(a;x) gives (2.3.13), as required.

Remark 3.3.2. Due to the specification of exponential losses in Chapter 2, adjusting to the
proportional microinsurance case requires only a change of parameters. Derivation of the
trapping probability in (2.4.2) using Laplace transform methods is therefore analogous to the
proof of Proposition 3.3.2.

3.3.2 Power distributed Zi

Under assumption of remaining proportions of capital with distribution Zi ⇠ Beta(↵, 1), the
infinitesimal generator of the capital growth process in (3.2.13) is given by

(Af)(x) = r(x� x⇤)f 0(x)� �f(x) +
�↵

x↵

Z x

0
f(u)u↵�1du, (3.3.16)

for x > x⇤ and u = x · z. Aligning with the structure of the density function in this special
case, throughout the remainder of the chapter, remaining proportions Zi ⇠ Beta(↵, 1) will
be referred to as power distributed proportions. Application of the change of variable h(x) =
f(x + x⇤) in (3.3.16) induces a (x + x⇤)↵ term, for which obtaining the Laplace transform is
nontrivial. As such, in the power distributed case, the Laplace transform of the generator itself
is considered.

Proposition 3.3.3. Consider a household capital process (as proposed in Definition 3.2.1) with
initial capital x � x⇤, capital growth rate r, loss intensity � > 0 and remaining proportions of
capital with distribution Beta(↵, 1). The trapping probability is given by

f(x) =
(↵�

�
r )

�1�(↵)
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r
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r
+ 1;

x⇤

x

◆
, (3.3.17)

for �
r < ↵, where 2F1(·) is the Gauss hypergeometric function as in Appendix B.
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Proof. Fix (Af)(x) = 0. Taking the Laplace transform of (3.3.16), where the infinitesimal
generator of the process for x  x⇤ is zero, gives

s2F (↵+1)(s) + s
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↵+ 1 +

�

r

⌘
+ x⇤s

⌘
F (↵)(s) + ↵
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⌘
F (↵�1)(s) = 0. (3.3.18)

Let y(s) = F (↵�1)(s), such that y0(s) = F (↵)(s) and y00(s) = F (↵+1)(s). Then, (3.3.18) is
equivalent to

s2y00(s) + s
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⌘
+ x⇤s

⌘
y0(s) + ↵
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y(s) = 0. (3.3.19)

For y(s) = s�↵w(s), (3.3.19) reduces to give
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+ x⇤s

⌘
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which has solution

w(s) = C1

Z s
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e�x⇤tt�(1+�
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() y(s) = C1s
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Z s
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Under the substitution u = x⇤t,
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⇤(�r �↵)s�↵�

✓
↵�

�

r
, x⇤s

◆
+ C2s

�↵. (3.3.20)

for �
r < ↵.

Since d
dsF (s) = �L(xf(x)), it can be proven by induction that

dn

dsn
F (s) = (�1)nL(xnf(x)). (3.3.21)

As such, applying the inverse Laplace transform to (3.3.20) and by (3.3.21), it holds that the
general solution of (3.3.16) is

f(x) =

8
>>>>>>>>><

>>>>>>>>>:

C2
(�1)1�↵

�(↵)
+ C1x

⇤(�r �↵)�
�
↵�

�
r

�

�(↵)
(�1)1�↵, 0 < x < x⇤

C2
(�1)1�↵

�(↵)

+ C1

�
↵�

�
r

��1

�
�
�
r

� (�1)1�↵x
�
r �↵

2F1

⇣
↵�

�

r
, 1�

�

r
;↵�

�

r
+ 1;

x⇤

x

⌘
, x⇤ < x,

where the Laplace transform of the piecewise function

f(x) =
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>>>:

�(v)

�(µ)
xµ�1, 0 < x < a
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3.3. Derivation of trapping probability for uninsured losses

is s�µ�(v, as) for Re(v � µ) < 1 and Re(µ, a),Re(s) > 0 (see, for example, Section (3.10) of
Prudnikov et al. (1992)).

The boundary conditions on f(x):

lim
x!1

f(x) = 0 and lim
x!1

f(x) = 1,

yield

C2 = 0 and C1 =
�(↵)

�
�
↵�

�
r

�(�1)↵�1x⇤(↵�
�
r ),

such that the analytic trapping probability is given by (3.3.17), as required.

Note that, substitution of ↵ = 1 into (3.3.17) and application of the hypergeometric trans-
form:

2F1(a, b; c; z) =
�(c)�(c� a� b)

�(c� a)�(c� b)
z�a

2F1

✓
a, a� c+ 1; a+ b� c+ 1; 1�
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�(c)�(a+ b� c)
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(1� z)c�a�bza�c

2F1

✓
c� a, 1� a; c� a� b+ 1; 1�

1

z

◆

which holds for | arg z| < ⇡ and | arg(1 � z)| < ⇡ (see, for example, (15.3.9) of Abramowitz
and Stegun (1972)), yields exactly (3.3.2). Here, the gamma function is extended to negative
non-integer values by definition of

�(x) :=
1

x
�(x+ 1),

for x < 0, x /2 Z.
The analytic trapping probability for households susceptible to proportional losses with

power distributed remaining proportions of capital, as derived in Proposition 3.3.3, is presented
in Figure 3.2a for varying shape parameter ↵. Note that in the power distributed case, the
trapping probability tends to 1 as �

r tends to ↵. Figure 3.2b compares realisations of the explicit
trapping probability of Proposition 3.3.3 with trapping probabilities obtained via simulation.

Figure 3.3 compares the trapping probabilities in (3.3.17) and (2.4.2) for proportional and
random-valued losses, respectively, for a given set of parameters. Note that the parameter of the
exponential distribution in Chapter 2 and Proposition 3.3.2, has been changed to µ for clarity
of presentation. Trapping probabilities for a number of exponential claim size distributions are
compared to that of proportional losses with an expected value of approximately 16.7%. For
random-valued claim sizes with an expected value of 0.5 (µ = 2), the trapping probability is
greater in comparison to that of proportional losses for the most vulnerable, however as capital
increases, the trapping probability under proportional losses exceeds the random-valued case.
If the expected claim size increases to 1 (µ = 1), the trapping probability for proportional losses
is significantly lower than in the random-valued case, exceeding the random-valued trapping
probability only at the highest levels of capital. Compared to the mean loss associated with
beta distributed remaining proportions with ↵ = 5, an expected claim size of 1 is low with
respect to the highest levels of initial capital considered. For x = 6, the two loss rates coincide.
This therefore suggests that for equivalent loss size, the trapping probability for proportional
losses is reduced in comparison to random-valued losses. However, for capital levels below this
point, random-valued losses account for a greater proportion of capital than the proportional
loss case selected for comparison, and thus the increased trapping probability is intuitive.

55



3. On a low-income capital process with deterministic growth and
multiplicative jumps

Further analysis is needed to validate the consistency in the reduction of the probability for
equivalent losses.
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Figure 3.2: Trapping probabilities for parameters a = 0.1, b = 1.4, c = 0.4 (r = 0.504), � = 1 and x⇤ = 1
with Zi ⇠ Beta(↵, 1) for (a) ↵ = 2, 2.25, 2.5, 3, 5, 10, (b) ↵ = 2.25, 2.5, 3, 5 with comparison to the corresponding
simulated trapping probability of the capital growth process with N = 500 households, terminal time T = 1000
and time-step dt = 0.1, evaluated at 100 initial capital levels.
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Figure 3.3: (a) Trapping probabilities for parameters a = 0.1, b = 1.4, c = 0.4 (r = 0.504), � = 1 and x⇤ = 1
for proportional losses with Zi ⇠ Beta(5, 1) and random-valued losses with Zi ⇠ Exp(µ) for µ = 6, 2, 1.
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3.4. Introducing microinsurance

3.4 Introducing microinsurance

In line with Section 2.4 of Chapter 2, the presence of a fixed premium insurance product that
covers 100 ·(1�) percent of all household losses is now considered, where 1� for  2 (0, 1] is
the proportionality factor. Assume that coverage is purchased by all households. The capital
growth process has an analogous structure to that of Definition 3.2.1, with the remaining
proportion of capital after each loss event instead denoted Yi, where Yi = 1 � (1 � Zi) 2

(1 � , 1). As such, in between loss events, where Ti�1  t < Ti, the capital growth process
again follows (3.2.1a) and (3.2.1b), while at event times t = Ti the process is given by

XTi =

8
<

:
[
⇣
XTi�1 � x⇤()

⌘
er

()(Ti�Ti�1) + x⇤()] · Yi, if XTi�1 > x⇤()

XTi�1 · Yi, otherwise.

(3.4.1a)

(3.4.1b)

The critical capital (or poverty line) and capital growth rate associated with an insured house-
hold are denoted x⇤() and r() = (1 � a) · (b � ⇡) · c > 0, respectively, where ⇡ denotes the
premium rate. The premium is calculated according to the expected value principle as in
(2.4.1), such that

⇡ = ⇡(, ✓) = (1 + ✓) · (1� ) · � · E [1� Zi] . (3.4.2)

As discussed in Chapter 2, due to the need for premium payments, the critical capital in the
insured case is greater than that of an uninsured household, while the growth rate is reduced.

Note that for  = 1, the capital model in (3.4.1a) and (3.4.1b) exactly corresponds to that
of an uninsured household, as discussed in Section 3.3.

Proposition 3.4.1. Consider a household capital process that follows (3.2.2a) and (3.2.2b) in
between loss events and (3.4.1a) and (3.4.1b) at loss event times. For initial capital x � x⇤(),
capital growth rate r(), loss intensity � > 0 and remaining proportions of capital Zi with
distribution Beta(1, 1), the adjustment coe�cient of the corresponding Lundberg equation
exists if

�

r()
<

2

2F1(1, 2; 3;) · 
, (3.4.3)

where 2F1(·) is the Gauss hypergeometric function as defined in Appendix B.

Proof. The Lundberg equation corresponding to the logarithmised process of the capital pro-
cess of Proposition 3.4.1 at x⇤() = 0 is

E[e�s log(Zi)]E[e�sr()T̃i ] = E[e�s(log(Zi)+r()T̃i)] = 1.

The condition that must hold in order for the adjustment coe�cient R in Theorem 3.2.1
to exist is therefore

E[r()T̃i + log(1� (1� Zi))] > 0 () r()E[T̃i] + E[log(1� (1� Zi))] > 0. (3.4.4)

For power distributed remaining proportions, integrating by parts:

E[log(1� (1� Zi))] = �


↵

Z 1

0
(1� + z)�1z↵dz.
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Since the Mellin transform of the piecewise function
(
(1 + ax)�1, 0 < x < b

0, x > b

for | arg(1� ab)| < ⇡ is given by

bss�1
2F1(1, s; 1 + s;�ab)

for Re(s) > 0 by definition of the Mellin transform in Appendix A (see, for example, Chapter
6.2 of Erdelyi et al. (1954)), it holds that

E[log(1� (1� Zi))] = �


↵(↵+ 1)(1� )
2F1

✓
1,↵+ 1;↵+ 2;�



1� 

◆
.

The constraint in (3.4.4) is therefore equivalent to

r()

�
>



↵(↵+ 1)(1� )
2F1

✓
1,↵+ 1;↵+ 2;�



1� 

◆
,

which for uniformly distributed remaining capital ↵ = 1, reduces to

�

r()
<

2(1� )

2F1

⇣
1, 2; 3; �

1�

⌘
· 

=
2

2F1 (1, 2; 3;) · 
,

by the identity

2F1(a, b; c; z) = (1� z)�a
2F1

✓
a, c� b; c;

z

z � 1

◆

(see, for example, (15.3.4) of Abramowitz and Stegun (1972)), as required.

Note that for  = 1, since 2F1(a, b; c; 1) = �(c)�(c�a�b)
�(c�a)�(c�b) , (3.4.3) reduces to the uninsured

constraint in (3.2.6).
For ease of presentation, in the remainder of this section, the critical capital will be denoted

by x⇤ and the capital growth rate by r in all trapping probability computations. Superscript
() will be included if comparisons with the uninsured case of Section 3.3 are made.

Derivation of the infinitesimal generator of the insured process is analogous to that of
Section 3.2. The only adjustment appears in the domain of the random variable capturing the
remaining proportion of capital. The generator (Af)(x) is therefore given by

r(x� x⇤)f 0(x)� �f(x) + �

Z 1

1�
f(x · y)dG̃(y) = 0,

where G̃(y) is the distribution function of Yi, such that G̃(y) = G
�
1� 1

(1� y)
�
and g̃(y) =

1
g

�
1� 1

(1� y)
�
.

Note that if y 
x⇤

x , trapping has occurred with the first loss. In order to account for this
boundary on x, redefine the infinitesimal generator as a piecewise function with boundary at
x(1� ) = x⇤, where 1�  is the lower bound of Yi. Then, (Af)(x) is given by

8
>>><

>>>:

r(x� x⇤)f 0(x)� �f(x) +
�

x

Z x

x(1�)
f(u)du, x >
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�x⇤

x
+
�(� 1)


, x⇤ < x <

x⇤

1� 
.

(3.4.5a)

(3.4.5b)
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As in Section 3.2, only the behaviour of the process above the critical capital x⇤ is of
interest. Therefore, making the same change of variable h(x) = f(x + x⇤), the infinitesimal
generator in (3.4.5a) and (3.4.5b) is reformulated such that (Ah)(x̃) is
8
>>>>>>>><

>>>>>>>>:

(x̃+ x⇤)(rx̃h0(x̃)� �h(x̃)) +
�



Z x̃+x⇤

(x̃+x⇤)(1�)
h(u� x⇤)du, x̃ >
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1� 
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�



Z x̃+x⇤
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�
�x̃(1� )


, x̃ <

x⇤

1� 
,

(3.4.6a)

(3.4.6b)

where x̃ = x� x⇤.
Solution of (Ah)(x̃) = 0 is again sought to obtain the trapping probability of the insured

process. For this purpose, two approaches are considered. In line with the computations
presented so far in this chapter, in the first approach, Laplace transform methods are imple-
mented. The second approach alternatively considers the derivative of the piecewise IDE in
(3.4.6a) and (3.4.6b).

Approach 1: The Laplace transform of the piecewise IDE in (3.4.6a) and (3.4.6b) is given
by

L(rx̃(x̃+ x⇤)h0(x̃)� �(x̃+ x⇤)h(x̃)) +
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Z
1

x⇤
1�

e�sx̃
Z x̃+x⇤

(x̃+x⇤)(1�)
h(u� x⇤)dudx̃

+
�



Z x⇤
1�

0
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0
e�sx̃

⇣
�x⇤ �

�x̃(1� )



⌘
dx̃. (3.4.7)

Applying integration by parts on all double integral terms:
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such that (3.4.7) reduces to
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(1� )�

s
L(h(x̃(1� )� x⇤)) +

�x⇤

s
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Evaluating Laplace transforms and solving for (Ah)(x̃) = 0 then gives the following second
order ODE:

s2F 00(s) +
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r
. (3.4.8)
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Note that, the presence of 1 �  in the lower limit of the IDE (3.4.6a) induces a scaled
function in the ODE obtained in the evaluation of Laplace transforms. Since s = 0 is a regular
singular point of the homogeneous part of (3.4.8), consider that the homogeneous solution has
the form

Fh(s) =
1X

n=0

Ans
n+m. (3.4.9)

The homogeneous part of (3.4.8) is therefore equivalent to
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Since the exponential terms in (3.4.10) are also functions of s, consider their power series
representation:

e
�sx⇤
1� =
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k=0

(� x⇤
1� · s)k

k!
.
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Then, e
�sx⇤
1� = 1� x⇤

1� · s+O(s2) such that (3.4.10) can be expressed as
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k!
Ans
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The coe�cients of sn in (3.4.11) must vanish for all n. Considering the coe�cient of the
smallest power of s, the indicial equation is given by

m
⇣
m+ 1 +

�

r

⌘
+

�

r

⇣
1� (1� )�m

⌘
= 0, (3.4.12)

since A0 6= 0. Solution of (3.4.12) gives the value of the power m in (3.4.9).
If the ratio of coe�cients An/An�1 were a rational function, the series in (3.4.9) could be

written as the product of a power function and a generalised hypergeometric series, aligning
with the structure of the uninsured trapping probability in (3.3.2). Obtaining the coe�cients
An from (3.4.11) and (3.4.12) analytically, is however intractable.

The limit of the series as x⇤ goes to 0 provides an upper bound on the trapping probability
of the process with critical capital x⇤. However, reverting back to (3.4.10), this assumption
gives

⇣
m(m� 1) +

⇣
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�

r

⌘
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1� (1� )�m
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⌘
+

�

r

⇣
1� (1� )�(n+m)

⌘⌘
Ans

n+m�2 = 0,

which again has indicial equation (3.4.12).
The approach considered here is that of the Frobenius method. Discussed in detail in

Fedoryuk (1993), the algebraic properties of a homogeneous solution of the form (3.4.9) with
regular singular point at s = 0 are known, enabling asymptotic analysis of the desired solution.
As attempted in the approach presented here, Albrecher et al. (2012) consider the asymptotic
behaviour of a renewal risk process with stochastic investment through application of the
Frobenius method. The asymptotic decay of the ruin probability is then obtained through
application of the Karamata-Tauberian theorems.

Approach 2: In this alternative approach, each component of the piecewise function in
(3.4.6a) and (3.4.6b) is considered separately.
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Proposition 3.4.2. Consider a household capital process defined by (3.2.1a) and (3.2.1b) in
between losses and by (3.4.1a) and (3.4.1b) at loss event times, with coverage proportionality
factor 1 �  2 (0, 1]. Assume capital growth rate r, loss intensity � > 0 and remaining
proportions of capital with distribution Beta(1, 1). Then, for initial capital x⇤ < x < x⇤

1� , the
general form of the trapping probability is given by

f(x) = C ·

⇣x� x⇤
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r
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r
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x� x⇤
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◆
+ 1, (3.4.13)

for constant C and �
r < 1, where a1 + b1 + 1 = 2 � �

r , a1 · b1 = �(1� )/r and 2F1(·) is the
Gauss hypergeometric function as in Appendix B.

Proof. Consider (3.4.6b). By Theorem 3.3.1, the trapping probability for x̃ < x⇤
1� again

satisfies (Ah)(x̃) = 0. As such, the IDE that must be solved is
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Taking the derivative of (3.4.14) with respect to x gives
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the homogeneous part of which is exactly Gauss’ hypergeometric equation, as defined in Ap-
pendix B. Under the change of variable g(z) := h(x̃), where z = �

x̃
x⇤ , (3.4.15) yields
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Proposing an Ansatz of gp(x̃) = A for the particular solution of (3.4.15) yields A = 1, such
that the general solution of h(x̃) = g

�
�

x̃
x⇤
�
for x̃ < x⇤

1� is
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The lower boundary condition for h(x̃) in this interval:

lim
x̃!0

h(x̃) = 1,

then holds if and only if C1 = 0. Then, since h(x̃) = f(x) and letting C = C2 · (�1)
�
r , (3.4.13)

holds, as required.

In order to analyse the upper interval of the infinitesimal generator IDE, consider (3.4.6a).
Solving (Ah)(x̃) = 0, it holds that

rx̃(x̃+ x⇤)h0(x̃)� �(x̃+ x⇤)h(x̃) +
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for x̃ > x⇤
1� , which has derivative
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Inclusion of (1� ) in the lower interval limit in (3.4.16) again induces a non-trivial function
in the resulting second order ODE.

Since x̃ = 0 is a regular singular point of (3.4.17), consider that h(x̃) has the following
form:
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Substitution into (3.4.17) gives
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by the binomial expansion of
⇣
x̃�

x⇤
1�

⌘n
. The final term in (3.4.18) contains all powers of x̃

from 0 to nm. Since the value of m is unknown, it cannot be said that there are no coe�cients
of x̃m�1 in this latter term. Equating coe�cients to 0 and obtaining the indicial equation is
therefore not possible in the absence of knowledge on the value of m.

Taking the limit of (3.4.18) as x⇤ goes to 0 results in an indicial equation of a similar
structure to that in (3.4.11). However, it is important to note, that the parameters m in
(3.4.11) and (3.4.19) do not necessarily coincide. In Approach 2, m is the power multiplying
the series in the trapping probability defined only for x > x⇤

1� . Whereas in Approach 1, m
is the power term that appears in the Laplace transform of this probability over the whole
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interval x > x⇤. The series in (3.4.18) reduces to
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which holds if and only if
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= 0, (3.4.19)

for a0 6= 0.
Given the analytically intractable structure of the indicial equations obtained in Approaches

1 and 2, future research will involve determining the constant m numerically.
Figure 3.4 presents a comparison of trapping probabilities for the uninsured and insured

capital processes, where the insured trapping probability is obtained through simulation ofN =
1000 realisations of the capital process at 100 initial capital levels, with terminal time T = 2000
and observation intervals dt = 0.1. The increase in the trapping probability associated with
the most vulnerable when covered by insurance is again observed. However, this increase
occurs for a much smaller proportion of the low-income sample in comparison to when covered
for random-valued losses as in Chapter 2. In simulating the insured trapping probability, the
increase in the critical capital associated with the need for premium payment is accounted for
through specification of x⇤(), such that an insured household is deemed to be trapped when
their capital falls below I⇤/(b� ⇡), where the critical income I⇤ (as defined in Chapter 2) is
equal to b when x⇤ = 1. As such, in the insured case, households with capital just above x⇤ = 1
have already become trapped. However, when comparing the uninsured trapping probability
with the insured trapping probability for x⇤() = 1, as in Chapter 2, the trapping probability
is lower for insured households for all levels of capital considered. These observations suggest
that for the most poor, purchase of microinsurance for coverage of proportional losses is more
a↵ordable than classical coverage for random-valued losses.
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Figure 3.4: Trapping probabilities for the uninsured and insured capital processes when Zi ⇠ Beta(5, 1),
a = 0.1, b = 1.4, c = 0.4, � = 1,  = 0.5, ✓ = 0.5, x⇤ = 1 and x()⇤ = b/(b� ⇡), with simulation parameters for
the insured process: N = 1000, T = 2000, dt = 0.1.

3.5 Concluding remarks

This chapter considers an adjustment of the capital process of Chapter 2 in which low-income
households are susceptible to losses proportional to their capital level, as in Kovacevic and
Pflug (2011). Using Laplace transform methods, explicit trapping probabilities for Beta(1, 1)
(uniform) and Beta(↵, 1) distributed remaining proportions of capital were obtained. In com-
parison to the corresponding trapping probability for random-valued losses, in the uniform
case, the proportional trapping probability exhibits a slower rate of decay, in line with the
non-zero probability of high income households losing a large proportion of their wealth.

Consideration of proportional insurance coverage requires redefinition of the infinitesimal
generator of the process. For x < x⇤/(1 � ) and under assumption of uniformly distributed
remaining proportions of capital, use of Laplace transform methods again yields the general
form of the explicit trapping probability. This trapping probability tends to the uninsured
case as  tends to 1. However, for x � x⇤/(1� ), the structure of the proportional insurance
product considered in this analysis induces an unknown constant term in the integral limits
of the associated IDE, which further induces both scaled and shifted functional terms in the
Laplace and trapping side ODEs, making them intractable to solve analytically. Future work
will involve solving the insured IDE numerically.

Simulation analysis of the insured trapping probability suggests that the increase in trap-
ping probability observed for random-valued losses is less severe in this proportional case.
Given the results of Kovacevic and Pflug (2011), where an increase in trapping probability
similar to that of Chapter 2 is observed, this is likely to be highly dependent on the spec-
ification of parameters. It should however be noted that, the distribution of the remaining
proportion of capital considered in the numerical example of Kovacevic and Pflug (2011) is
such that losses have an expected value of 88%, an extremely high proportion given the loss
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3. On a low-income capital process with deterministic growth and
multiplicative jumps

rate parameter of 1. In turn, the associated premium rates are high and will constrain capital
growth more significantly. The lower rate associated with the distribution selected for presen-
tation in the analysis of this chapter captures losses of varying severity, as is the experience of
a low-income population, and will necessitate reduced premiums.

The findings of this chapter therefore suggest that insurance for proportional losses is more
a↵ordable than coverage for losses of random value. This aligns with the idea that premiums
are normalised to wealth under the proportional loss structure, thus improving the variability
in the a↵ordability of the associated products. As such, if the assumption of proportionality is
correct, in the context of subsidisation, the proportion of the low-income population requiring
full government support may be narrower than anticipated. However, for those closest to
the poverty line, as in Chapter 2 and in the findings of existing studies, insurance and the
associated need for premium payments again increases the probability of becoming trapped.

66



Chapter 4

A group-based approach to inclusive
insurance

Risk sharing mechanisms are widespread in low-income communities, mitigating the impact of
financial losses that are otherwise uninsured. In this chapter, the group-based nature of finan-
cial vulnerability is addressed. Adopting a highly flexible stochastic dissemination model to
the context of poverty reduction, the wealth of a group containing both uninsured and insured
agents is analysed. The model captures four types of transaction events: external arrivals,
internal redistribution events, wealth losses and premium payments, where the modelling of
premium payments is analogous to loss events, with increased frequency and reduced sever-
ity. The model is underlined by an exogenously evolving Markov background process that
represents the economic state of the system. A system of coupled di↵erential equations for
the joint transient distribution of agent wealth is derived and is reduced to a linear system
of di↵erential equations through consideration of the moments of agent wealth. Sensitivity
analysis is performed to establish the impact of each component of the system’s construction
on the wealth of the group. The probability of falling below the poverty line is then determined
through application of a normal approximation and the impact of insurance in reducing this
probability considered under varying levels of subsidisation.

4.1 Introduction

Addressing the prevalence of risk sharing among low-income communities (see Section 1.1.2),
this chapter focuses on the wealth dynamics of a group. Considering a system of wealth in
which both transactions and losses occur, an adjustment of the stochastic dissemination model
proposed by Chan and Mandjes (2022) is adopted to analyse the behaviour of group wealth over
time. This model is a highly general model describing the spread of wealth over a population
of agents and accounts for the occurrence of two types of wealth transactions. Specifically,
external arrivals of wealth, reflecting, for example, the payment of salaries from agents outside
the population or government cash-transfers, and internal wealth redistributions, reflecting
transactions such as the purchase of commodities or services from other agents within the
population, gift exchange or the informal provision of credit. Transaction rates are a↵ected
by an exogenously evolving Markov background process, which represents the state of the
economy. In the numerical analysis, a two-state background process is chosen to mimic the
fluctuation of the system between good and bad states, where a good state may represent a
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4. A group-based approach to inclusive insurance

period of economic growth and a bad state the occurrence of a pandemic or economic recession.
The background process is of particular significance in the low-income setting due to the
instability of the associated markets.

The goal in adopting this model is to study the financial vulnerability of low-income groups.
For this purpose, the probability of an agent falling below the poverty line is again consid-
ered, given they are a member of such a group. All existing theoretical studies consider this
probability on an individual agent basis. This chapter therefore considers, for the first time
mathematically, the impact of group membership and the associated group interactions on the
probability of falling below the poverty line. Risk-sharing arrangements are useful in mitigat-
ing idiosyncratic risks, however correlated risks, such as those resulting from natural disasters,
often a↵ect agents simultaneously. Formal insurance provides more robust protection against
such correlated risks. In addition to informal risk-sharing arrangements represented by internal
transactions within the group, the impact of insurance on the probability of falling below this
critical line is therefore assessed. To do this, an adjustment of the model of Chan and Mandjes
(2022) is proposed which further encompasses the susceptibility of agents to wealth losses,
due to, for example, catastrophic natural disasters, severe illness and the loss of a household
member or breadwinner. On the occurrence of a loss, agent wealth is binomially thinned, such
that losses are proportional to wealth as in Chapter 3. Insurance coverage is captured by
analogously defining a frequently occurring loss event that represents premium payments.

As discussed in Chapter 1, research on the impact of microinsurance mechanisms on the
probability of falling below the poverty line has largely been undertaken through application
of multi-equilibrium models and dynamic stochastic programming, or from a ruin-theoretic
perspective, where the probability mimics an insurer’s ruin probability. Notably, these studies
suggest that purchase of insurance and the associated need for premium payment increases the
risk of falling below the poverty line for the most vulnerable. As such, public private partner-
ships between government and private microinsurers are proposed to minimise the severity of
premium payments for the most vulnerable. Government support may be provided in the form
of cash transfers, or more cost-e↵ectively, through premium subsidies, where subsidies can be
targeted such that only the most vulnerable receive support.

In the numerical study of Will et al. (2021), the influence of the availability of insurance
on the survival of households, particularly those who cannot a↵ord coverage, above a critical
budget is observed. For households with budget below the critical level, transfers are received
from one randomly selected household with which they have an established connection. Due
to premium payments, insured households have a lower budget than uninsured households and
thus have less capacity to provide risk-sharing support, reducing the resilience of the uninsured
to income shocks as a consequence. Formal insurance is however found to be complementary
to informal insurance in the event of covariate shocks.

To analyse the wealth dynamics of a group in this chapter, as in Chan and Mandjes (2022),
a system of coupled di↵erential equations for the joint transient distribution of agent wealth
that incorporates the state of the Markov background process is derived. As in Chapters 2
and 3, the concept of wealth reflects the ability of an agent to produce and so encompasses
land, property, livestock, physical, health and human capital. Derivation of the moments of the
wealth process enables numerical analysis through reduction of the system to a system of linear
di↵erential equations. Sensitivity analysis is undertaken to provide insight into the impact of
the structure of the system on the wealth of the group. Mean and variance wealth processes
are presented to compare the vulnerability of those with and without insurance coverage and
in line with Chapter 2, the impact of both fixed and flexible (targeted) studies are considered.
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4.2. Wealth dissemination model

By the central limit theorem, a normal approximation is used to determine the probability of
falling below the poverty line and the distribution of the number of agents that fall, where the
parameters of the distribution are combinations of the stationary means and reduced second
moments of the wealth process.

The fundamental concepts forming this stochastic dissemination model follow from the
large literature on queuing network and population models. Fiems et al. (2018) implement a
similar approach in the queuing context, with randomly occurring linear transformations of the
population vector of the network aligning with the internal redistribution events of this model.
Transformations are multiplicative as in the case presented here. For thorough discussion of
stochastic networks with application to queuing and population models, see Kelly (2011) and
Serfozo (2012).

The model studied in this chapter can easily be adjusted to account for large groups or eco-
nomic entities, if, for example, risk-sharing among cities or countries is of interest. Risk-sharing
studies at the international level include those by Devereux and Smith (1994), Sørensen and
Yosha (1998) and Gardberg (2019) and largely appear in the economics literature. Considering
risk sharing in the form of risk pooling, Ni et al. (2020) discuss the pooling of flood risk expo-
sure at the continental and global levels, diversifying flood exposure through consideration of
a large geographical area. Although interesting to assess, in this analysis, the focus remains
on the subgroups prevalent in low-income communities.

The remainder of the chapter is structured as follows. Section 4.2 presents the stochastic
dissemination model and derivation of the system of coupled di↵erential equations for the
joint distribution of agent wealth. Time-dependent first and reduced second moments are
derived in Sections 4.4 and 4.5, respectively. Sensitivity analysis is presented in Section 4.6
and the normal approximation of the probability of falling below the poverty line in Section
4.7. Concluding remarks are provided in Section 4.8.

4.2 Wealth dissemination model

In this chapter, the stochastic behaviour of M(t) ⌘ (M1(t), ...,MI(t)) is studied under varying
levels of insurance coverage, whereMi(t) is the wealth of an agent i at time t for i = 1, ..., I 2 N.
Agent wealth takes only discrete values and is regarded as being composed of Mi(t) wealth
units. As proposed in Chan and Mandjes (2022), the dynamics of the wealth model are a↵ected
by an autonomously evolving continuous-time Markov background process (X(t))t�0, which is
irreducible and has state space {1, ..., d} for d 2 N.

Over time, the background process moves between states according to the transition rate
matrix Q = {qij}di,j=1, where

P(X(t) = l|X(0) = k) = (eQt)k,l.

See, for example, Norris (1997) for a thorough presentation of continuous-time Markov chains.
Concepts relevant to this chapter are defined in Appendix C.

Changes in an agent’s wealth are triggered by the occurrence of four types of transaction
events. Namely, external arrivals, internal redistribution events, catastrophic losses and pre-
mium payments. Given the background process is in state k 2 {1, ..., d}, the joint probability
generating function must therefore capture the following components, where events (i) and (ii)
are defined as in Chan and Mandjes (2022):
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4. A group-based approach to inclusive insurance

(i) All agents in receipt of an external arrival of wealth of type j, i.e. all agents i 2 Sj ✓

{1, ..., I}, experience an increase of one wealth unit, where j 2 {1, ..., J} for J 2 N.
External arrivals occur at exponentially distributed times with rate �jk > 0.

(ii) At internal shock times, transfers of wealth occur such that every wealth unit of agent
i transfers Wijk 2 N0 wealth units to agent j, where Wijk is randomly distributed. As
such, the number of wealth units at agent j after an internal shock at time t > 0 is

IX

i=1

miX

n=1

Wijkn,

where M(t�) = m is the wealth vector immediately before the shock and (Wijkn)n2N
a sequence of independent and identically distributed random variables. In the case
considered here, it is assumed that the number of wealth units transferred by each wealth
unit is Bernoulli distributed. Under this specification, each wealth unit can transfer at
most one wealth unit to any other agent. However, if transfers were instead assumed
to be binomially distributed with parameter n > 1, the possibility of wealth creation
would be captured, where wealth may be created through, for example, investment or
the adoption of productive technologies.

Each Wijkn shares the same distribution as Wijk. The random variables Wijk for i =
1, ..., I and k = 1, ...d are independent, however dependence in j is permitted. Agents
therefore redistribute their wealth independently of one another but with dependence
between the transactions made by a single agent.

Wealth is redistributed within the population at exponentially distributed times with rate
�k > 0. As such, transaction events a↵ect the entire system simultaneously. Definition of
transaction events that a↵ect only a subset of agents is also possible through specification
of multiple transaction rate parameters.

The associated probability generating functions for z = (z1, ..., zI) with max{|z1|, ..., |zI |} 

1 are defined by

gik(z) = E
h IY

j=1

z
Wijk

j

i
,

where the probability generating function of a discrete random variable gives a power
series representation of its probability mass function.

(iii) An uninsured loss forces a proportion of an a↵ected agent’s wealth to leave the system.
For a loss of type ln, all a↵ected agents, i.e. all agents i 2 Sl

nk ✓ {1, ..., I}, experience
a reduction in wealth of the corresponding claim size, where n 2 {1, ..., Nl} for a given
number of loss types Nl 2 N. In the event such a shock occurs at time t > 0, the number
of wealth units after the shock at agent i 2 Sl

nk is

mi �

miX

m=1

Linkm,

whereM(t�) = m is again the wealth vector immediately before the shock and (Linkm)m2N
is a sequence of independent and identically distributed random variables representing
the number of wealth units contributed to payment of the loss by each of the Mi(t) wealth
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4.2. Wealth dissemination model

units of the agent. Random contributions per wealth unit follow a binomial distribution
with parameters 1 and punk, such that the wealth of the a↵ected agent is binomially
thinned with thinning operator punk. Losses occur at exponentially distributed times
with rate µu

nk > 0.

By construction, the model permits the occurrence of losses with varying frequency and
severity through respecification of the binomial probability and exponential rate param-
eters. This is particularly useful in the microinsurance setting, where coverage for com-
monly occurring events, including hospital admissions and household deaths, is needed
in addition to low frequency, high severity events such as natural disasters.

For |z|  1, the associated probability generating function is given by

link(z) = E[zLink ] =
1X

n=0

p(n)zn = 1� (1� z)punk,

where Link denotes the random contribution of each wealth unit by agent i to cover an
n-type loss when the background process is in state k.

(iv) Premium payments force a proportion of an agent’s wealth to leave the system. In an
analogous manner to uninsured losses, for a premium payment of type pn, all a↵ected
agents, i.e. all agents i 2 Sp

nk ✓ {1, ..., I}, experience a reduction in wealth of the
corresponding premium, where n 2 {1, ..., Np} for Np 2 N. Then, on the premium
payment date (t > 0), given the wealth vector just before time t is M(t�) = m, the
number of wealth units after the shock at agent i is

mi �

miX

m=1

Pinkm,

where (Pinkm)m2N is a sequence of independent and identically distributed random vari-
ables representing the number of wealth units contributed to premium payment by each
of the Mi(t) wealth units of the agent. Random wealth unit contributions again fol-
low a binomial distribution, with parameters 1 and ppnk. Premium payments occur at
exponentially distributed times with rate µp

nk > 0, such that µp
nk · ppnk constitutes the

premium rate. Given the randomness of premium payment events, policyholders are
assumed to pay non-constant premiums. This specification aligns with the prevalence of
the informal sector in low-income economies and the associated pay-as-you-go nature of
insurance, with high levels of income uncertainty determining when an agent is able to
purchase coverage. Flexibility in the model allows for inclusion of varying premium rates
as for uninsured losses.

Note that, µp
nk should be low relative to µl

nk to reflect the increased frequency of premium
payments in comparison to loss events.

For |z|  1, the associated probability generating function is given by

pink(z) = E[zPink ] = 1� (1� z)ppnk,

where the contribution of each wealth unit by agent i to cover an n-type premium in
state k is denoted Pink.
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4.3 Derivation of joint probability generating function

To analyse the transient wealth of the system M(t) and its behaviour as the Markov back-
ground process X(t) evolves, the multivariate time-dependent joint probability generating
function (PGF) of (M(t), X(t))t�0 2 NI

⇥ {1, ..., d} is used. This PGF defines the joint
distribution of (M(t), X(t))t�0 and is given by

fk(z, t) := E
h IY

j=1

z
Mj(t)
j 1{X(t)=k}

i
, (4.3.1)

for z = (z1, ..., zI) with max{|z1|, ..., |zI |}  1.
In the remainder of this section, a system of coupled di↵erential equations for the time-

dependent joint PGF in (4.3.1) is established. Considering an interval of length �t, the system
is defined through observation of the change in the wealth vectorM(t) or the background state,
and the associated change in fk(z, t) induced by each event that could occur between t and
t + �t. The contribution of each event to the system is as follows, where the background
process, external arrival and internal redistribution components are as in Chan and Mandjes
(2022):

• Background process change. The background process transitions from state l to state
k 6= l between times t and �t, where the process is in state l at time t:

dX

l 6=k

qlk�tfl(z, t).

• External arrival. An external arrival of type j occurs, such that the wealth of all agents
i 2 Sj increases by one wealth unit:

JX

j=1

�jk�t
⇣ Y

i2Sj

zi
⌘
fk(z, t).

• Internal redistribution. An internal shock triggers the redistribution of the wealth of all
agents within the system. Let Rk(t) denote the occurrence of an internal redistribution
shock between times t and t + �t when the background process is in state k. Then, by
the law of total expectation:

E
h IY

j=1

z
Mj(t+�t)
j 1{X(t+�t=k)}

���Rk(t)
i

=
X

m2NI

E
h IY

j=1

z
Mj(t+�t)
j 1{X(t+�t)=k}

���M(t) = m,Rk(t)
i
P(M(t) = m)

=
X

m2NI

IY

j=1

(gjk(z))
mj P(M(t) = m, X(t) = k)

= E
h IY

j=1

(gjk(z))
Mj(t) 1{X(t)=k}

i

= fk(hk(z), t), (4.3.2)
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4.3. Derivation of joint probability generating function

where hk(z) := (g1k(z), ..., gIk(z)).

• Uninsured loss. An uninsured loss causes each wealth unit of all agents i 2 Sl
nk to

decrease by Link (0 or 1), independently of one another. In a similar manner to that of
the internal shock case, by the law of total expectation:

E
h IY

j=1

z
Mj(t+�t)
j 1{X(t+�t=k)}

��� Lk(t)
i

=
X

m2NI

E
h IY

j=1

z
Mj(t+�t)
j 1{X(t+�t)=k}

���M(t) = m,Lk(t)
i
P(M(t) = m)

=
N lX

n=1

µl
nk�t

X

m2NI

Y

i2Sl
nk

(link(zi))
�mi

IY

j=1

z
mj

j P(M(t) = m, X(t) = k)

=
NlX

n=1

µl
nk�tE

h Y

i2Sl
nk

(link(zi))
�Mi(t)

IY

j=1

z
Mj(t)
j 1{X(t)=k}

i
,

where Lk(t) denotes the occurrence of an uninsured loss event in the interval (t, t+�t).

• Premium payment. A premium payment event causes each wealth unit of all agents
i 2 Sp

nk to decrease by Pink (0 or 1), independently of one another. Since premium
payments are modelled analogously to uninsured losses, the associated term is derived in
the same way:

NpX

n=1

µp
nk�tE

h Y

i2Sp
nk

(pink(zi))
�Mi(t)

IY

j=1

z
Mj(t)
j 1{X(t)=k}

i
.

• No event. There are no transitions of the background process, external arrivals, internal
shocks, losses (for the uninsured) or premium payments (for the insured) between the
times t and t+ �t.

As such,

fk(z, t+ �t) =
dX

l 6=k

qlk�tfl(z, t) +
JX

j=1

�jk�t
⇣ Y

i2Sj

zi
⌘
fk(z, t) + �k�tfk(hk(z), t)

+
NlX

n=1

µl
nk�tE

h Y

i2Sl
nk

(link(zi))
�Mi(t)

IY

j=1

z
Mj(t)
j 1{X(t)=k}

i

+

NpX

n=1

µp
nk�tE

h Y

i2Sp
nk

(pink(zi))
�Mi(t)

IY

j=1

z
Mj(t)
j 1{X(t)=k}

i

+
⇣
1�

dX

l 6=k

qlk�t�
JX

j=1

�jk�t� �k�t�
NlX

n=1

µl
nk�t�

NpX

n=1

µp
nk�t

⌘
fk(z, t)

+ o(�t). (4.3.3)
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The system of di↵erential equations for the joint PGF is then obtained by subtracting fk(z, t)
from both sides of (4.3.3), dividing by �t and taking the limit as �t ! 0, such that

@

@t
fk(z, t) =

dX

l=1

qlkfl(z, t) +
JX

j=1

�jk
⇣ Y

i2Sj

zi � 1
⌘
fk(z, t) + �k(fk(hk(z), t)� fk(z, t))

+
NlX

n=1

µl
nk

⇣
E
h Y

i2Sl
nk

(link(zi))
�Mi(t)

IY

j=1

z
Mj(t)
j 1{X(t)=k}

i
� fk(z, t)

⌘

+

NpX

n=1

µp
nk

⇣
E
h Y

i2Sp
nk

(pink(zi))
�Mi(t)

IY

j=1

z
Mj(t)
j 1{X(t)=k}

i
� fk(z, t)

⌘
, (4.3.4)

using the fact that the row sums of Q are 0. The following proposition therefore holds:

Proposition 4.3.1. For t � 0, fk(z, t) satisfies the system of di↵erential equations in (4.3.4),
with initial condition

fk(z, 0) =
IY

i=1

z
m0,i

i 1{X0=k},

where M(0) = m0 and X(0) = X0.

The internal redistribution component (4.3.2) causes the system to be non-linear due to
the hk(z) argument. While it is possible to solve (4.3.4) numerically, for the remainder of
the chapter, the time-dependent first, reduced and mixed second moments are considered. By
reducing the system to a system of linear di↵erential equations, this enables tractable analysis
of the evolution of wealth over time and for analytical expressions for the moments of transient
wealth to be obtained.

4.4 Derivation of first moments of transient wealth

Proposition 4.4.1. Let mik(t) := E[Mi(t)1{X(t)=k}] and wijk := E[Wijk]. For t � 0, the
transient mean wealth of the system m(t) satisfies a system of dI coupled, non-homogeneous
linear di↵erential equations of the following form:

m0(t) = Am(t) + ⇤⇡(t), (4.4.1)

with initial condition
mik(0) = m0,i1{X0=k}, (4.4.2)

where M(0) = m0 and X(0) = X0.

Proof. Taking the derivative of (4.3.4) with respect to zi and evaluating at z = 1 yields

m0

ik(t) =
dX

l=1

qlkmil(t) +
X

j:i2Sj

�jk⇡k(t) + �k
⇣ IX

j=1

wjikmjk(t)�mik(t)
⌘

�

⇣ X

n:i2Sl
nk

µl
nkp

l
nk +

X

n:i2Sp
nk

µp
nkp

p
nk

⌘
mik(t),
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where ⇡k(t) = P(X(t) = k) and use of the chain rule permits computation of the derivative of
fk(hk(z), t):

@fk(hk(z), t)

@zi
=

IX

j=1

@fk(x, t)

@xj

���
x=hk(z)

@(hk(z))j
@zi

for i = 1, ..., I, where

@(hk(z))j
@zi

���
z=1

= wjik.

Define vectors m(t) 2 RdI and ⇡(t) 2 RdI such that mi(t) ⌘ (mi1(t), ...,mid(t))T and
⇡i(t) ⌘ (⇡1(t), ...,⇡d(t))T for each i 2 I. Let

Gji := diag{�1wji1, ..., �dwjid}� diag{�1, ..., �d}1{i=j}

and Mi := diag{µ̄l
i1 + µ̄p

i1, ..., µ̄
l
id + µ̄p

id}, where µ̄l
ik =

P
n:i2Sl

nk
µl
nkp

l
nk and µ̄p

ik is analogously

defined. Let

A :=

0

BBBBB@

QT +G11 �M1 G21 G31 · · · GI1

G12 QT +G22 �M2 G32 · · · GI2

G13 G23 QT +G33 �M3 · · · GI3
...

...
...

. . .
...

G1I G2I G3I · · · QT +GII �MI

1

CCCCCA

and

⇤ :=

0

BBB@

⇤1 0 · · · 0
0 ⇤2 · · · 0
...

...
. . .

...
0 0 · · · ⇤I

1

CCCA
,

where ⇤i := diag{�̄i1, ..., �̄id} and �̄ik :=
P

j:i2Sj
�jk. Then, in matrix-vector form, m0(t)

satisfies (4.4.1) as required. The initial condition in (4.4.2) follows trivially by definition of
mik(t).

The vector of transient state probabilities of the background process X(t) satisfies

⇡0(t) = (I⌦QT )⇡(t),

where ⌦ is the Kronecker product and I the identity matrix of dimension I, such that for
Q̄ = I⌦QT , it holds that

⇡(t) = eQ̄t⇡(0).

Solving for m(t) in (4.4.1) for t � 0 then gives

m(t) = eAtm(0) +

Z t

0
eA(t�s)⇤eQ̄s⇡(0)ds,

as in Proposition 4.2 of Chan and Mandjes (2022).
The probability of falling below the poverty line in Section 4.7 is considered in infinite

time. As such, the normal approximation relies upon the steady-state mean and variance of
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agent wealth. Let ⇡ := ⇡(1) be the unique solution of ⇡Q = 0, such that it is the stationary
distribution of X(t). Then, if the Markov chain (M(t), X(t))t�0 is stable, m0 = 0 and so the
steady-state mean vector m satisfies

m = �A�1⇤⇡. (4.4.3)

Proposition 4.4.2. Let ! be the eigenvalue of A in (4.4.3) with the largest real part, defining
the spectral abscissa of A. The Markov chain (M(t), X(t))t�0 is ergodic if ! < 0.

Proof. See Fiems et al. (2018) and Chan and Mandjes (2022) for proof.

The dissemination model can be adjusted to fit many constructions of a population simply
through varying the selection of parameters. In the following subsection, one special case
reflecting the question of this chapter is discussed.

4.4.1 Special case

Consider a population that consists of a single distinct agent (‘leader’) and two internally
homogeneous interacting subpopulations (‘followers’), one insured and one uninsured. Focusing
on the impact of insurance on the financial vulnerability of the group, with the exception of the
disparities in insurance coverage, the two follower groups are assumed to be homogeneous. The
insured subpopulation consists of Ip agents and the uninsured subpopulation Iu := I � Ip � 1
agents. The indices u and p are used throughout the remainder of the chapter to reflect the
uninsured group and those making premium payments, respectively.

Let mL,k(t), mu,k(t) and mp,k(t) denote the mean wealth of the leader, an arbitrary unin-
sured agent and an arbitrary insured agent, respectively, at time t, with background process
in state k. Due to the homogeneity within the follower groups, mean wealth is equal across all
agents in each group. Let J = I, Nl = Iu and Np = Ip such that there are I, Iu and Ip dif-
ferent types of external arrivals, losses and premium payments, respectively, and let Sj = {j},
Sl
n = {n} and Sp

n = {n} such that a single agent is a↵ected by each event type. For the
purpose of this example, agents a↵ected by each type of loss are assumed to be independent of
the background state. Since only the insurance coverage status di↵ers between the two groups
of followers, let �F,k denote the rate of external arrival for the uninsured and insured subpop-
ulations with background process in state k. Equivalently, let the leader’s external arrival rate
be denoted by �L,k.

Within subpopulations, the random variable Wijk describing the internal redistribution of
wealth now only depends on the state of the background process k. Therefore, let wLL,k, wLu,k,
wLp,k, wuL,k, wpL,k, wup,k, wpu,k, wuu,k and wpp,k denote the expected values of all possible
internal transactions (per wealth unit) within the population, when the background process is
in state k.

Since the two follower groups are internally homogeneous, all agents within each group
must experience loss and premium payment events in the same way. As such, the rate and
probability of loss parameters corresponding to the event experience of each agent are fixed
within the two subpopulations. Fixing the set of a↵ected agents S such that S = {1, ..., I},
where all agents are a↵ected by each event, would also facilitate the homogeneous assumption.
Let µu

k and puk denote the loss rate and probability of loss (per wealth unit) for uninsured
followers with background process in state k. Similarly, let µp

k and ppk denote the premium
payment rate and probability of payment for insured followers with background process in
state k.
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4.4. Derivation of first moments of transient wealth

The system in Proposition 4.4.1 therefore reduces to the following:

m0

L,k(t) =
dX

l=1

qlkmL,l(t) + �L,k⇡k(t) + �k((wLL,k � 1)mL,k(t) + IuwuL,kmu,k(t)

+ IpwpL,kmp,k(t)),

m0

u,k(t) =
dX

l=1

qlkmu,l(t) + �F,k⇡k(t) + �k(wLu,kmL,k(t) + (Iuwuu,k � 1)mu,k(t)

+ Ipwpu,kmp,k(t))� µu
kp

u
kmu,k(t),

m0

p,k(t) =
dX

l=1

qlkmp,l(t) + �F,k⇡k(t) + �k(wLp,kmL,k(t) + Iuwup,kmu,k(t)

+ (Ipwpp,k � 1)mp,k(t))� µp
kp

p
kmp,k(t),

such that m0(t) = Am(t) + ⇤⇡(t) for

m(t) =

0

@
mL(t)
mu(t)
mp(t)

1

A and ⇡(t) =

0

@
⇡L(t)
⇡u(t)
⇡p(t)

1

A ,

where each mi(t) = (mi,1(t), ...,mi,d(t))T and ⇡i(t) = (⇡1(t), ...,⇡d(t))T for i 2 {L, u, p} is a
d-dimensional vector,

A :=

0

@
QT +GLL GuL GpL

GLu QT +Guu �Mu Gpu

GLp Gup QT +Gpp �Mp

1

A

where Gji := Ijdiag{�1wji,1, ..., �dwji,d}�diag{�1, ..., �d}1{i=j} and Mi := diag{µi
1p

i
1, ..., µ

i
dp

i
d}

for IL = 1, and

⇤ :=

0

@
⇤L 0 0
0 ⇤u 0
0 0 ⇤p

1

A .

Remark 4.4.1. Expressions required to analyse an agent’s mean wealth can also be obtained
when increasing the heterogeneity in the population in an analogous manner. The resulting
di↵erential equations simply become more complex due to an increased number of terms.

For heterogeneous event experience, multiple agents could still be a↵ected by the same loss
(or premium payment) through the specification of S assumed in the special case considered.
This would encompass the potential for covariate losses due to, for example, natural disasters,
in addition to individually experienced losses. However, µu

nk and punk (respectively µp
nk and

ppnk) would need to coincide for all a↵ected.

Now, consider the system presented in this special case with background process reflecting
the state of the economy. As such, let k = 1, 2, where the process fluctuates been good (k = 1)
and bad (k = 2) economic states, representing growth and recession, respectively. In this
setting, the leader could, for example, be the facilitator of the insurance scheme, an informal
employer or the leader of a societal group. The leader’s wealth is obtained from outside of the
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4. A group-based approach to inclusive insurance

system, while followers obtain their wealth from the leader. External arrival parameters are
therefore defined as follows:

�L,1 = �1, �L,2 = �2, and �F,k = 0 for k = 1, 2.

Here, 0 < �2 < �1, such that the leader receives additional income at a higher rate during
periods of economic growth.

Due to the binomial specification of wealth unit transfer at redistribution events, for each
agent, transfer of wealth to the system is multinomially distributed with parameters corre-
sponding to the vectors (Wj1k, ...,WjIk), for j = 1, ..., I and k = 1, 2. Let the redistribution
of leader wealth be distributed with parameters 1 and (pk, rk, ..., rk), and redistribution of fol-
lower wealth be distributed with parameters 1 and (0, sk, ..., sk), where rk = (1 � pk)/(I � 1)
and sk = 1/(I � 1). Here, follower wealth is distributed evenly throughout the follower group.
The multinomial distribution could also be specified such that it captures variation in the
proportion of wealth saved by a follower and the proportion consumed. This is considered in
the sensitivity analysis of Section 4.6.

Remark 4.4.2. Specifying rk  (1�pk)/(I�1) or sk  1/(I�1) would enable the possibility
that wealth leaves the system at transaction events, with multinomial probabilities 1 � pk �

(I � 1)rk 2 [0, 1] and 1� (I � 1)sk 2 [0, 1], respectively.

Although, in reality, it is likely that insurance covers only a proportion of consumer wealth,
in this example, the uninsured and insured groups are assumed to be mutually exclusive. As
such, the uninsured group experiences losses in full with no premium payments and the insured
group makes premium payments with no loss experience. The associated net profit condition
is therefore

µp
nk · p

p
nk > µl

nk · p
l
nk.

One application of a wealth system of this structure would be to a pension or funeral
insurance scheme, where each agent represents a household. In such a case, the insured group
could be considered to be workers, or those with a funeral insurance contract, who make
contributions to the scheme but do not experience losses. Retired or non-workers would then
constitute the uninsured group, where the agent (household) experiences a loss on the death
of a household member. Although in this chapter, external transactions other than those to
the leader are not considered, pension payments or insurance payouts could be captured by
the receipt of external arrivals of wealth by uninsured agents.

The case in which agents are proportionally insured, experiencing both losses and premium
payments, will be mentioned in the discussion of future work.

The system of di↵erential equations corresponding to the special case of this section is given
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4.5. Derivation of reduced and mixed second moments of transient wealth

by:

m0

L,k(t) =
2X

l=1

qlkmL,l(t) + �L,k⇡k(t) + �k((pk � 1)mL,k(t),

m0

u,k(t) =
2X

l=1

qlkmu,l(t) + �k(rkmL,k(t) + (Iusk � 1)mu,k(t) + Ipskmp,k(t))

� µu
kp

u
kmu,k(t),

m0

p,k(t) =
2X

l=1

qlkmp,l(t) + �k(rkmL,k(t) + Iuskmu,k(t) + (Ipsk � 1)mp,k(t)

� µp
kp

p
kmp,k(t).

Then, where (M(t), X(t))t�0 is stable and the stationary distribution ofX(t) exists, the steady-
state mean wealth of the leader, uninsured follower and insured follower in background states
1 and 2 are as follows:

✓
mL,1

mL,2

◆
= �

✓
�q1 + �1(p1 � 1) q2

q1 �q2 + �2(p2 � 1)

◆�1

·

✓
�1⇡1
�2⇡2

◆

and

0

BB@

mu,1

mu,2

mp,1

mp,2

1

CCA = �

✓
Fu F̄p

F̄u Fp

◆�1

·

0

BB@

�1r1 0 0 0
0 �2r2 0 0
0 0 �1r1 0
0 0 0 �2r2

1

CCA

0

BB@

mL,1

mL,2

mL,1

mL,2

1

CCA ,

where

Fi :=

✓
�q1 + �1(Iis1 � 1)� µi

1p
i
1 q2

q1 �q2 + �2(Iis2 � 1)� µi
2p

i
2

◆

and F̄i = Iidiag{�1s1, �2s2}.

4.5 Derivation of reduced and mixed second moments of
transient wealth

Denote the reduced second moments of Mi(t) and the mixed second moments of Mi(t) and
Mi0(t) by

viik(t) := E[Mi(t)(Mi(t)� 1)1{X(t)=k}] =
@2fk(z, t)

@z2i

and

vii0k(t) := E[Mi(t)Mi0(t)1{X(t)=k}] =
@2fk(z, t)

@zi@zi0
,

respectively. Then, Proposition 4.5.1 holds:
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4. A group-based approach to inclusive insurance

Proposition 4.5.1. Let mik(t) := E[Mi(t)1{X(t)=k}] and wijk := E[Wijk]. For t � 0, the
transient second moment of the wealth of the system v(t) satisfies a system of dI2 coupled,
non-homogeneous linear di↵erential equations of the following form:

v0(t) = (�(Ā� I) + I)v(t) +Amm(t), (4.5.1)

with initial conditions
vii(0) = m0,i(m0,i � 1)1{X0=k} (4.5.2)

and
vii0(0) = m0,im0,i01{X0=k}, (4.5.3)

where M(0) = m0 and X(0) = X0.

Proof. Taking the derivative of (4.3.4) with respect to zi and zi0 and evaluating at z = 1 yields

v0ii0k(t) =
dX

l=1

qlkvii0l(t) + 1{i 6=i0}

X

j:i,i02Sj

�jk⇡k(t) +
X

j:i2Sj

�jkmi0k(t) +
X

j:i02Sj

�jkmik(t)

+ �k
⇣ IX

j=1

IX

j0=1

vjj0k(t)wjikwj0i0k +
IX

j=1

mjk(t)w
(2)
jii0k � vii0k(t)

⌘

+
⇣
1{i 6=i0}

⇣ X

nc:i,i02Sc
n

µc
nk(p

c
nk)

2 +
X

np:i,i02Sp
n

µp
nk(p

p
nk)

2
⌘

�

⇣ X

nc:i2Sc
n

µc
nkp

c
nk +

X

np:i2Sp
n

µp
nkp

p
nk

⌘
�

⇣ X

nc:i02Sc
n

µc
nkp

c
nk +

X

np:i02Sp
n

µp
nkp

p
nk

⌘⌘
vii0k(t)

+ 1{i0=i}

⇣ X

nc:i2Sc
n

µc
nk(p

c
nk)

2 +
X

nc:i2Sc
n

µp
nk(p

p
nk)

2
⌘
(viik(t) + 2mik(t)),

where viik(t)+2mik(t) = E[Mi(t)(Mi(t)+1)1{X(t)=k}] and the second derivative of fk(hk(z), t)
is obtained by:

@2fk(hk(z), t)

@zi@zi0
=
@

@zi

⇣ IX

j0=1

@fk(x, t)

@xj0

���
x=hk(z)

@(hk(z))j0

@zi

⌘

=
IX

j=1

IX

j0=1

@2fk(x, t)

@xj@xj0

���
x=hk(z)

@(hk(z))j
@zi

@(hk(z))j0

@zi0

+
IX

j0=1

@fk(x, t)

@xj0

���
x=hk(z)

@2(hk(z))j0

@zi@zi0

for i, i0 = 1, ..., I. For i 6= j,

w(2)
jii0k =

@2(hk(z))j
@zi@zi0

���
z=1

= E[WjikWji0k] (4.5.4)

and for i = j

w(2)
jii0k =

@2(hk(z))j
@zi@zi0

���
z=1

= E[Wjik(Wjik � 1)].
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4.5. Derivation of reduced and mixed second moments of transient wealth

Note that the random variables Wijk are dependent in j, therefore for all i 6= j, the expectation
in (4.5.4) is equivalent to

E[WjikWji0k] = Cov(Wjik,Wji0k) + E[Wjik]E[Wji0k]

= n(n� 1)wjikwji0k,

where n is the number of independent trials and Cov(X,Y ) = �npxpy for two binomially
distributed random variablesX and Y . In the case considered here, since n = 1, E[WjikWji0k] =
0. Similarly, using the fact that the second moment of a binomially distributed random variable
is np(1� p) + n2p2, it holds that

E[Wjik(Wjik � 1)] = E[W 2
jik]� E[Wjik]

= np2(n� 1),

such that for n = 1, E[Wjik(Wjik � 1)] = 0.
For ease of presentation, consider a population consisting of IL leaders, Iu uninsured fol-

lowers and Ip insured followers as in Section 4.4.1. Define the matrix

Ā :=
�
Ā1

LL Ā1
uu Ā1

pp Ā2
uu0 Ā2

pp0 Ā3
Lu Ā3

Lp Ā3
up

�
,

where
Ān

jj0 := (Ān
LLjj0 , Ā

n
uujj0 , Ā

n
ppjj0 , Ā

n
uu0jj0 , Ā

n
pp0jj0 , Ā

n
Lujj0 , Ā

n
Lpjj0 , Ā

n
upjj0)

T

for n = 1, 2, 3, and

Ā1
ii0jj0 := Ijdiag{wji1wji01, ..., wjidwji0d},

Ā2
ii0jj0 := Ij(Ij � 1)diag{wji1wji01, ..., wjidwji0d},

Ā3
ii0jj0 := IjIj0diag{wji1wj0i01 + wj0i1wji01, ..., wjidwj0i0d + wj0idwji0d}.

Let

M1
ii0 := �2diag{µi

n1p
i
n1, ..., µ

i
ndp

i
nd}+ diag{µi

n1(p
i
n1)

2, ..., µi
nd(p

i
nd)

2
}1{i0=i},

M2
i := �diag{µi

n1p
i
n1, ..., µ

i
ndp

i
nd}

and

Ī :=

0

BBBBBBBBBBB@

0 0 0 0 0 0 0 0
0 M1

uu 0 0 0 0 0 0
0 0 M1

pp 0 0 0 0 0
0 0 0 M1

uu0 0 0 0 0
0 0 0 0 M1

pp0 0 0 0
0 0 0 0 0 M2

u 0 0
0 0 0 0 0 0 M2

p 0
0 0 0 0 0 0 0 M2

u +M2
p

1

CCCCCCCCCCCA

,

such that
I = Ī + I⌦QT ,

where I denotes the 8-dimensional identity matrix. Finally, for

Wijj0 := Iidiag{�1w
(2)
ijj0,1, ..., �dw

(2)
ijj0,d}
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and

M3
i := diag{µi

n1(p
i
n1)

2, ..., µi
nd(p

i
nd)

2
},

define

Am :=

0

BBBBBBBBBB@

2⇤L +WLLL WuLL WpLL

WLuu 2⇤c +Wuuu + 2M3
u Wpuu

WLpp Wupp 2⇤p +Wppp + 2M3
p

WLuu0 2⇤u +Wuuu0 Wpuu0

WLpp0 Wupp0 2⇤p +Wppp0

⇤u +WLLu ⇤L +WuLu WpLu

⇤p +WLLp WuLp ⇤L +WpLp

WLup ⇤p +Wuup ⇤u +Wpup

1

CCCCCCCCCCA

.

Then, in matrix-vector form, v0(t) satisfies (4.5.1) as required, where

v(t) :=
�
vLLk(t),vuuk(t),vppk(t),vuu0k(t),vpp0k(t),vLuk(t),vLpk(t),vupk(t)

�T

and each vijk(t) = (vij1(t), ..., vijd(t))T is a d-dimensional vector. The initial conditions (4.5.2)
and (4.5.3) follow by definition of viik(t) and vii0k(t).

An equivalent system for a population of ungrouped agents can also be obtained. In this
case, matrices Ā, I and Am are of much higher dimension and so are not presented here.

In the following section, sensitivity analysis of the mean and variance of agent wealth in a
system aligning with the special case of Section 4.4.1 is presented.

4.6 Sensitivity analysis

Sensitivity analysis performed in this section helps to ascertain the impact of changes in the
structure of the population and of wealth dissemination events on the state of a system.
Parameter selection is aligned with that of Chapter 3 due to the proportional nature of losses.
The loss proportion parameter puk is fixed at 1� ↵

↵+� , the expected value of a beta distribution
with parameters ↵ > 0 and � > 0. The premium proportion puk required to cover losses of this
size in full, such that the insured group does not experience any loss of wealth at loss events,
is specified as in (3.4.3), for  = 0, such that

puk = (1 + ✓) · µu
k ·

✓
1�

↵

↵+ �

◆
,

where ✓ is the loading factor set by the insurer.
In Figures 4.1-4.11, initial state (X0 = 1), transition rate (q11 = 0.3, q22 = 0.7), redistribu-

tion event rate (�k = 52), loss frequency (µu
k = 1), loss proportion (↵ = 10,� = 1), premium

frequency (µp
k = 12), loading factor (✓ = 0.5), insurance coverage ( = 0) and leader reten-

tion rate (pk = 0.4) parameters remain fixed, unless otherwise specified. Loss, premium and
redistribution rate parameters are also fixed across good (state 1) and bad (state 2) economic
states.

Figures 4.1 and 4.2 consider homogeneous preference for wealth retention at redistribution
events across uninsured and insured agents. In each of these cases, di↵erences in the mean and
variance of wealth between the two groups are negligible. Rates of loss and premium payment
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are approximately 0.091 and 0.14, respectively. Coinciding mean wealth and variance processes
therefore suggests that for equal wealth retention levels, the excess cost of premium payment
is distributed throughout the group at transaction events, such that its impact on the wealth
of insured followers is unobservable.

Interestingly, a reduction in the number of agents in the system in Figure 4.1 increases the
mean wealth level, whereas for larger groups, mean wealth decreases over time. This finding
aligns with the high rate of wealth redistribution per agent, with each agent distributing
approximately 90% of their wealth, evenly across all other agents, at transaction events. Thus,
the greater the number of agents, the lower the contribution from each agent to every other
agent. Given the low-income level of agents in the system, such a high level of dissemination
reflects the limited facility for savings. Variability of wealth in the system is however much
greater when the sample size is small.

As expected, increasing the initial wealth of agents increases the mean wealth in the system,
with the impact more significant at the beginning of the observation (see Figures 4.2a and 4.2b).
In Figure 4.2c, the wealth of the leader is increased to ten times the number of follower agents.
Although mean follower wealth experiences an initial jump as a result of this parameter change,
the overall pattern in both mean and variance is the same. Increased variation appears among
the wealth of agents with greater initial wealth. However, this variation again decreases over
time. The decreasing variance observed in Figures 4.1 and 4.2 infers that the even redistribution
of wealth by each follower agent to all other followers prevents the long-term presence of any
agents of particularly high or low wealth in the system.
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Figure 4.1: Mean and variance of uninsured and insured agent wealth form0 = 10,� = (12, 6), suu = spp = 0.1
with (a) 50, (b) 25 and (c) 2 agents in each follower group.
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Figure 4.2: Mean and variance of uninsured and insured agent wealth for I = 51,� = (12, 6), suu = spp = 0.1
with (a) m0 = 5, (b) m0 = 15, (c) mu,0 = mp,0 = 10 and mL,0 = mF,0 · (I � 1).

To gain insight into the impact of premium subsidisation on the wealth of a group-based
system, Figures 4.3-4.9 present the mean and variance of uninsured and insured agent wealth
with (a) unsubsidised insurance, (b) insurance with a 50% subsidy and (c) insurance with a
100% subsidy, where subsidies are provided homogeneously across all insured agents. Compu-
tations for derivation of the first, reduced and mixed second moments of transient wealth in
Sections 4.4 and 4.5 are analogous when accounting for premium subsidies provided uniformly
to all agents in this manner, with only a change in parameter required. Insurance premiums
are specified as for Figures 4.1 and 4.2, with subsidies applied through a reduction in the
premium payment probability ppk by either 50% (case (b)) or 100% (case (c)). In this way,
subsidies may be considered to be random and are proportional to agent wealth. Structuring
subsidy provision in this way captures the uncertainty typically associated with provision of
financial support and social security in the low-income economies relevant to the microinsur-
ance and risk sharing context. Random subsidies could also reflect the prevalence of informal,
pay-as-you-go coverage in the low-income setting, due to variability in income levels aligning
with high rates of informal sector work.

Figures 4.3-4.5 assess the impact of the proportion of wealth retained by agents at trans-
action events, with all other parameters fixed. A wealth retainment parameter of 1/(I � 1)
causes an agent to distribute their wealth evenly across all other agents, without retaining a
more significant portion of wealth for themselves. Note that, altering the probability of an
agent retaining wealth at transaction events requires an adjustment of the transient mean and
variance di↵erential equations corresponding to the special case of Section 4.4.1. Mean and
variance are again observed to be equivalent for uninsured and insured agents with the same
retainment preference (Figure 4.3). If financially feasible, uninsured agents may be likely to
save a proportion of their wealth to protect against potential future losses. As such, Figures 4.4
and 4.5 consider an increased uninsured retainment parameter. In both cases, mean uninsured
wealth lies above that of the insured, with variance increasing with increasing wealth in all
plots.

Since uninsured and insured agent wealth coincide under homogeneous retainment param-
eters, the increased wealth observed in Figures 4.4a and 4.5a among the uninsured, where the
premium is paid in full, is accountable to the increased level of savings. The reduction in the
distribution of uninsured wealth lessens the tempering of excess premium payment costs at
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redistribution events. Insured wealth therefore decreases with increasing uninsured retention.
Intuitively, premium subsidies increase agent wealth in all cases, while the greater the disparity
in the proportion of retained wealth, the greater the di↵erence in the mean wealth of the two
follower groups. The sharing nature of group-based wealth systems is further exemplified by
the increase in mean wealth observed among uninsured agents when subsidies are provided to
the insured.
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Figure 4.3: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
spp = 1/(I � 1) with subsidisation of (a) 0%, (b) 50% and (c) 100% of the premium for all insured agents.
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Figure 4.4: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
0.2, spp = 0.1 with subsidisation of (a) 0%, (b) 50% and (c) 100% of the premium for all insured agents.
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Figure 4.5: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
0.2, spp = 1/(I � 1) with subsidisation of (a) 0%, (b) 50% and (c) 100% subsidy of the premium for all insured
agents.

As discussed in Chapter 2, consideration of the cost of social protection is important when
designing government subsidisation schemes. Figures 4.6-4.8 present the mean and variance of
wealth within the two follower groups under a subsidisation scheme aligning with the barrier
strategy of Chapter 2, Section 2.6, simulated for N = 500 realisations of the wealth system with
time-step dt = 0.01 over an observation period of T = 30. Premium subsidies are provided
only to those with wealth below a critical level B. Case (a), for barrier B = 2, coincides
with the optimal barrier derived in Chapter 2. Note that the decrease in wealth observed
in Figures 4.1-4.5 appears with much less severity under the barrier scheme, while wealth
variation within the system remains almost constant throughout the observation period. This
suggests that the severity of catastrophic loss and premium payment events is mitigated by
the subsidisation barrier. The high probability of falling below the poverty line observed in
Chapter 2 is eliminated in this case since agents experience neither losses or premium payments
when below the barrier under full insurance coverage. Adjusting the retainment level as in
Figures 4.3-4.5 yields analogous results in regard to the disparities between uninsured and
insured wealth, with uninsured wealth increasing with increasing retention.
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Figure 4.6: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
spp = 1/(I � 1) and subsidisation barrier (a) B = 2, (b) B = 5 and (c) B = 10.
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Figure 4.7: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
0.2, spp = 0.1 and subsidisation barrier (a) B = 2, (b) B = 5 and (c) B = 10.
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Figure 4.8: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
0.2, spp = 1/(I � 1) and subsidisation barrier (a) B = 2, (b) B = 5 and (c) B = 10.

The decreasing mean wealth behaviour observed in many of the figures presented aligns
with the low level of external arrivals of wealth to the system. Wealth is added to the system
only through external transactions experienced by the leader, which induce an increase in
leader wealth of just one wealth unit, negligible when spread evenly across the follower groups.
As such, mean wealth decreases in line with greater rates of loss and premium payment. Figure
4.9 considers the impact of increasing leader wealth on the overall state of the system under
the fixed subsidy scheme. Comparing with Figure 4.5, increasing the rate of external arrivals
decreases the rate of wealth decay in the case of no subsidies. For fully subsidised insurance,
despite the continued experience of uninsured losses and the largely even distribution of wealth,
the system’s wealth increases.
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Figure 4.9: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (52, 26), suu =
0.2, spp = 1/(I � 1) with subsidisation of (a) 0%, (b) 50% and (c) 100% of the premium for all insured agents.

The behaviour of the system is however highly dependent on the rate of loss. For ↵ = � = 1,
an uninsured agent loses, on average, 50% of their wealth at each loss event. At such a
high rate, the increase in wealth received by the leader is ine↵ective in enabling growth in
the wealth of follower groups (see Figures 4.10 and 4.11). Even with such high rates of loss,
insurance premiums decrease the wealth of the insured below that of the uninsured group when
retainment parameters are inhomogeneous. Figures 4.10 and 4.11 present the homogeneous
retainment case where it can be seen that the mean and variance of uninsured wealth falls
marginally below that of the insured, with the di↵erence increasing with increasing subsidy.
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Figure 4.10: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (52, 26), suu =
0.2, spp = 1/(I � 1),↵ = 1 with subsidisation of (a) 0%, (b) 50% and (c) 100% of the premium for all insured
agents.
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Figure 4.11: Mean and variance of uninsured and insured agent wealth for I = 51,m0 = 10,� = (12, 6), suu =
0.2, spp = 1/(I � 1),↵ = 1 with subsidisation of (a) 0%, (b) 50% and (c) 100% of the premium for all insured
agents.

The implication of this exploratory analysis is that the even redistribution of wealth at
internal transaction events and the limited facility for wealth retention (or savings), mitigates
the impact of loss and premium payments. The more even the redistribution of wealth, the
more negative financial events are felt by the group as a whole, rather than at the individual
level. Although in reality, wealth redistribution may not be completely uniform across all
agents, when considering a societal group of agents with similar socioeconomic backgrounds,
such an assumption aligns with the prevalence of risk sharing and is therefore not so out of
place.

4.7 The trapping probability

As in Chapters 2 and 3, the aim of this chapter is to determine the impact of insurance on the
financial vulnerability of low-income individuals through analysis of the trapping probability,
where the term “trapping” refers to the event at which an agent falls into an area of poverty
from which it is di�cult to escape without external help. In order to assess this measure with
the stochastic dissemination model presented here, as in Chan and Mandjes (2022), a normal
approximation is used to estimate the probability of agent wealth falling below a given critical
level. Aligning with the poverty trapping context, this critical level represents the critical level
of wealth below which an agent would struggle to meet their basic needs, i.e. the poverty
line. The critical level of wealth assessed here is equivalent to the critical capital discussed in
Chapters 2 and 3.

Let  denote the probability that the stationary wealth of an arbitrary follower lies be-
low the critical capital x⇤. As in Chapters 2 and 3, this probability represents the trapping
probability of an individual agent. Given the group-based nature of the dissemination model,
under consideration of a su�ciently large number of agents, a standard normal approximation
may be used to estimate this probability. As such, let the trapping probability of an arbitrary
uninsured follower be given by

 u = P(Mj  x⇤) ⇡  N,u := �
⇣x⇤ �mu

p
vouu

⌘
, (4.7.1)
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4. A group-based approach to inclusive insurance

where Mj denotes the stationary wealth of follower j for j = 2, ..., Iu + 1. The mean and
reduced second moments of stationary wealth are given by

mu := mu,1 +mu,2, vuu := vuu,1 + vuu,2,

where, by definition of the variance of the random variable Mj ,

vouu : = E[(Mj � E[Mj ])
2]

= E[Mj(Mj � 1)] + E[Mj ]� E2[Mj ]

= vuu +mu �m2
u,

which can be obtained by (4.4.3). The trapping probability for an insured follower is defined
analogously for j = Iu + 2, ..., I, with subscripts p replacing u.

Although the trapping probabilities of all agents are identically distributed, due to the
reliance of agent wealth on the shared background process, they are not independent. As
such, in order to analyse trapping within the full uninsured follower group, define the following
random variable:

Bu :=
Iu+1X

j=2

Bj ,

where Bj = 1{Mjx⇤}. Then, for j, j
0 = 2, ..., Iu + 1 and j 6= j0, let

 0

u := P(Mj  x⇤,Mj0  x⇤),

which has normal approximation

 0

N,u := P(Mo
j  x⇤,Mo

j0  x⇤), (4.7.2)

for bivariate normal (Mo
j ,M

o
j0) with mean (mu,mu) and covariance matrix

⌃ =

✓
vouu vouu0

vouu0 vouu

◆
.

The covariance of the wealth of two distinct uninsured follower agents is derived in the standard
manner:

vouu0 : = E[(Mj � E[Mj ])(Mj0 � E[Mj0 ])]

= E[MjMj0 ]� E2[Mj ]

= vuu0 �m2
u.

The corresponding probability for insured followers is again defined analogously.
In this analysis, the approximation presented by Cox and Wermuth (1991) for the dis-

tribution of bivariate normal random variables (X,Y ), with zero means, unit variances and
correlation coe�cient ⇢, is adopted for estimation of the joint trapping probability in (4.7.2).
The approximation is given as follows:

P(X > a, Y > b) ' �(�a)[�
⇣⇢µ(a)� bp

1� ⇢2

⌘
�

1

2

⇢2(⇢µ(a)� b)

(1� ⇢2)3/2
�
⇣⇢µ(a)� bp

1� ⇢2

⌘
�2(a)],
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4.7. The trapping probability

where �(x) is the standardised normal density,

µ(a) = E[X|X > a] =
�(a)

�(�a)

is used to approximate the random variable X and

�2(a) = V ar[X|X > a] = 1 + µ(a) + µ2(a).

This approximation relies on the near linearity of (⇢X � b)/
p
1� ⇢2 over the range of apprecia-

ble probability, which is satisfied in the case of interest here, where a = b = (x⇤�mu)/
p
vouu > 0

in all examples considered.

The mean and variance of the number of trapped agents are derived by definition of B:

E [B] = E

2

4
Iu+1X

j=2

Bj

3

5 =
Iu+1X

j=2

E [Bj ] = Iu N,u.

Similarly,

E

2

4

0

@
Iu+1X

j=2

Bj

1

A
23

5 =
Iu+1X

j=2

E
⇥
B2

i

⇤
+

Iu+1X

j=2

Iu+1X

i=2,i 6=j

E [BiBj ]

= Iu N,u(1�  N,u) + Iu 
2
N,u + Iu (Iu � 1) 0

N,u,

such that V ar[B] = Iu N,u(1 �  N,u) + Iu(Iu � 1)( 0

N,u �  2
N,u). Then, applying a normal

approximation with µB ⇡ E [B] ,�2B ⇡ V ar[B] and accounting for discontinuity, it holds that
for n = 1, ..., Iu,

P(B = n) ⇡ �

 
n+ 1

2 � µB

�B

!
� �

 
n�

1
2 � µB

�B

!
.

Figures 4.12-4.14 present density plots for the number of trapped uninsured and insured
agents for three levels of subsidisation with wealth systems as in Figures 4.3-4.5. A large sample
of size 2001 is selected to increase the accuracy of the normal approximation. The sample
constitutes one leader, and 1000 followers in each of the two groups. Initial wealth (m0 = 10)
and the rate of external arrivals (� = (12, 6)) remain fixed, with all other parameters as stated
at the beginning of Section 4.6. Trapping probabilities calculated by (4.7.1) are presented at
the top of each plot.

Note that, the shape of the count distribution is similar across all plots. Trapping proba-
bilities consistently decrease with increasing subsidy, along with the spread of the number of
trapped agents. In addition, disparities in the densities corresponding to the uninsured and in-
sured groups decrease with increasing subsidy. This again suggests that subsidisation positively
impacts the wealth of the uninsured. Trapping probabilities and corresponding density plots
are identical when retention rates are equal (Figure 4.14). When the uninsured agent retains
a greater proportion of wealth, the trapping probability of the insured group is consistently
higher.
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Figure 4.12: Distribution of number of trapped for suu = 0.2, spp = 0.1, with subsidisation of (a) 0%, (b)
50% and (c) 100% of the premium for all insured agents.
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Figure 4.13: Distribution of number of trapped for suu = 0.2, spp = 1/(I � 1), with subsidisation of (a) 0%,
(b) 50% and (c) 100% of the premium for all insured agents.
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Figure 4.14: Distribution of number of trapped for suu = spp = 1/(I � 1), with subsidisation of (a) 0%, (b)
50% and (c) 100% of the premium for all insured agents.

Based on the steady-state mean and variance of agent wealth, trapping probabilities are
high in comparison to those observed in Chapters 2 and 3 for equivalent initial wealth. However,
this could be accountable to the consideration of full, or no coverage, rather than due to the
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4.8. Concluding remarks

impact of the group structure. Chapters 2 and 3 consider a single agent (household) with
proportional insurance coverage, thus reducing the impact of wealth losses in comparison to
those experienced by the uninsured in this group setting.

4.8 Concluding remarks

This chapter addresses a fundamental feature of the low-income environment for the first
time in a rigorous mathematical context. Participation in risk sharing mechanisms and their
prevalence across the societal groups of low-income communities influences many components
of the agent decision to insure. These components, which include insurer trust and financial
education levels, must be understood in order to increase microinsurance penetration and thus
financial inclusion in the low-income market.

Observations in the sensitivity analysis presented in Section 4.6 bring to light the possibility
that within the group structure, the financial impact of both losses and premium payments
are in fact largely shared among participating agents. This aligns with the findings of Will
et al. (2021). Although this observation is dependent on the level of sharing within the group,
when considering a group of agents of the same socioeconomic background, the assumption of
even (or close to even) redistribution of wealth is not such a strict assumption. The limited
capacity for savings also increases the likelihood of agents retaining only a small proportion of
their wealth, if any wealth is retained.

In addition, subsidisation of insurance premiums benefits both the insured and the unin-
sured, providing further evidence for the benefit of government-insurer partnerships. This
finding could be due to the increased liquidity of wealth associated with the spread of premium
payments over time. Insured agents are likely to have greater access to wealth at redistribu-
tion event times, thus increasing the wealth of all agents. Trapping probabilities decrease with
increasing subsidisation as expected, however, in comparison to the results of Chapters 2 and
3, they remain high. The assumption of full or no coverage considered in this study likely
contributes to this observation. Consideration of proportional insurance in the group setting
is discussed in the presentation of future work.

While the selected model yields intuitive results, it is important to highlight its limitations.
Premium payments are required to be proportional to agent wealth. In reality, this is an un-
likely feature of insurance, requiring premiums to be consistently reviewed over the course of
the insured period. However, premium payments that increase with increasing wealth align
with the proportional structure of losses, with those of greater wealth susceptible to higher
losses and thus encountering higher premium payments. On the other hand, adjusting classical
risk theory models, such as those considered in Chapters 2 and 3, to capture randomly occur-
ring interactions between multiple capital processes is di�cult. The flexibility of the stochastic
dissemination model of this chapter facilitates re-specification of the population structure and
wealth transaction events through simple parameter adjustments, enabling analysis of an un-
limited number of scenarios.

93



Chapter 5

Stochastic mortality modelling for
dependent coupled lives

Broken-heart syndrome is the most common form of short-term dependence, inducing a tem-
porary increase in an individual’s force of mortality upon the occurrence of extreme events,
such as the loss of a spouse. Socioeconomic influences on bereavement processes allow for
suggestion of variability in the significance of short-term dependence between couples in coun-
tries of di↵ering levels of economic development. Motivated by analysis of a Ghanaian data
set, a stochastic mortality model of the joint mortality of paired lives and the causal relation
between their death times is proposed, in the context of a less economically developed country
than those considered in existing studies. The paired mortality intensities are assumed to be
non-mean-reverting Cox–Ingersoll–Ross processes, reflecting the reduced concentration of the
initial loss impact apparent in the data set. The e↵ect of the death on the mortality intensity of
the surviving spouse is given by a mean-reverting Ornstein–Uhlenbeck process which captures
the subsiding nature of the mortality increase characteristic of broken-heart syndrome. Inclu-
sion of a population wide volatility parameter in the Ornstein–Uhlenbeck bereavement process
gives rise to a significant non-diversifiable risk, heightening the importance of the dependence
assumption in this case. Applying the proposed model to an insurance pricing problem, the
appropriate premium under consideration of dependence between coupled lives is obtained
through application of the indi↵erence pricing principle. This chapter is based on Henshaw
et al. (2020).

5.1 Introduction

In this chapter, as addressed for the first time in Henshaw et al. (2020), the existence of so-
cioeconomic influences on dependence between coupled lives and the bereavement processes
of surviving spouses in less economically developed populations is considered. Analysis of
a Ghanaian dataset within which a lesser initial concentration of broken-heart syndome is ob-
served is utilised to inform the proposal of a joint mortality model. In line with observations
in the data which fit the nature of a reduced volatility, and following the results of Luciano
and Vigna (2008), correlated non-mean-reverting Cox–Ingersoll–Ross (CIR) di↵usions are in-
troduced as paired mortality intensities. A model of the joint mortality of a couple assumed to
share the same socioeconomic environment is defined based on the stochastic mortality model
proposed by Jevtić and Hurd (2017). A mean-reverting Ornstein–Uhlenbeck process is selected
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5.2. Data set

to represent the influence of the loss of a spouse on the remaining lifetime of the surviving
partner. In moving from deterministic (as presented in Jevtić and Hurd (2017)) to stochastic
bereavement, the proposed model has the ability to capture the existence of a non-diversifiable
risk, requiring a premium that accounts for the change in mortality observed in the data. Risks
associated with a deterministic bereavement process are, on the other hand, diversifiable in
nature.

Observation of an increased mortality during the first period of bereavement paired with
the findings of Lu (2017) suggests that dependence between lifetimes within the sample is
mostly causal in nature. Existence of a cause-and-e↵ect relationship between the remaining
lifetimes of paired individuals is therefore captured in the proposed model through definition
of the bereavement e↵ect, while couple specific unobserved heterogeneities are accounted for
through inclusion of correlated Brownian motions in the paired mortality processes.

An outline of the chapter is as follows, in Section 5.2, data supporting the modification
of mortality processes is discussed, before introduction of the proposed mortality model in
Section 5.3. One example of the pricing of a life insurance product incorporating the depen-
dence model is provided in Section 5.4, where the indi↵erence pricing principle is adopted.
A numerical pricing example is presented in Section 5.5 and concluding remarks in Section 5.6.

5.2 Data set

Evaluation of the existence of the broken-heart syndrome e↵ect requires data which details the
time of death of both members of a couple. Since relevant data in this socioeconomic setting
is lacking, a questionnaire was designed and distributed to students at a university in Ghana.
The questions obtained information including the subject’s current age, or age at death and
the number of years since their death, where applicable. Details of potential determinants
of dependence, including numbers of children, living circumstances and circumstances of the
death, were also obtained. Each complete questionnaire contributed two data points to the
sample, with questions relating to both maternal and paternal grandparents. A sample of the
questionnaire is provided in Appendix E.

All couples for which life status (alive or dead) or number of years since death, if dead,
were left blank or answered “I don’t know” were removed from the sample, leaving 1117 out of
1652 initial data points. Couples in which both spouses were alive do not provide any survival
information, and so 188 couples with no death experience were removed. The maximum number
of years since death included in the questionnaire was “60+”. Since survival data cannot be
obtained if both members of a couple died “60+” years ago, 8 couples were removed. Finally,
for numerical analysis purposes, if either member of the couple died “60+” years ago and their
spouse was alive, “60+” was fixed at 60 (6 couples). If the spouse died more than 40 years ago,
“60+” was fixed at 60 (14 couples), since a survival time of 20 years would not be indicative of
broken-heart syndrome. If the spouse died less than 40 years ago but the participant selected
the grandparent that was first to die inconsistently with their time of death response, the couple
was removed (3 couples). The remaining 3 couples with a “60+” response were removed since
the corresponding survival time was too short to make any assumption that would not a↵ect
the results in regard to the severity of the dependence. Data cleaning therefore left 915 couples,
consisting of 459 double deaths and 456 single deaths, with 386 female survivors.

The terminal time of the observation is determined by the survey completion date. The
data is therefore right-censored, with a number of bereaved spouses surviving the observation
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5. Stochastic mortality modelling for dependent coupled lives

period. Survival curves for the full sample and for the samples of female and male first deaths,
comprising 189 and 656 couples, respectively, are displayed in Figure 5.1, with censored data
points indicated. In the first year of bereavement, the survival probability is greater in the
sample of bereaved males than in that of bereaved females. At all subsequent time points, an
increased survival probability is observed among bereaved females. Disparities in the sample
sizes of male and female first deaths should however be noted.
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Figure 5.1: Kaplan–Meier curves for the full, male and female widowed samples.

Figures 5.2a and 5.2b present the distribution of male and female death times within
a couple and Figure 5.2c the number of deaths per year of bereavement. Here, data for the 459
samples in which both spouses have died is presented, focusing on the waiting time between
deaths as the variable of interest. A total of 41 bereaved spouses died in both the first and
second years of bereavement, corresponding to 17.86% of bereaved individuals in the sample.
The death rate steadily decreases after this time. Couples along the red line in Figure 5.2b are
those exhibiting the classical features of broken-heart syndrome, with survival time less than
one year.
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Figure 5.2: Male versus female year of death plot, (b) female year of death versus death interrarival time, and
(c) number of deaths per year of bereavement.

The Pearson correlation between male and female deaths is 0.3545 when considering the
total sample of couples that experience two deaths; however, since the range of birth years for
the male spouse subset spans approximately 95 years, the data was split into two cohorts to
test for existence of a generational e↵ect. Data splitting is undertaken by male year of birth,
however female splitting could analogously be considered. In the questionnaire, age at death
was recorded categorically through selection of an age range. The central age of each range was
therefore selected to determine an individual’s age at birth. Figures 5.3 and 5.4 correspond to
the cohorts of paired lives with male year of birth in the intervals 1876–1929 and 1930–1971,
respectively. After removal of data points with incomplete male date of birth and splitting
the data at the median birth year, 202 couples remained in cohort one and 192 couples in
cohort two.
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Figure 5.3: (a) Male versus female year of death plot, (b) female year of death versus death interrarival time,
and (c) number of deaths per year of bereavement, for cohort of couples with male spouse born between 1876
and 1929.
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Figure 5.4: Male versus female year of death plot, (b) female year of death versus death interrarival time, and
(c) number of deaths per year of bereavement, for cohort of couples with male spouse born between 1930 and
1971.

During the first year of bereavement, 16 surviving spouses, representing 7.921% of the
bereaved sample, died in cohort one. However, the peak in the number of bereaved deaths
appeared in the third year of bereavement, with 23 (11.39%) deaths observed. The proportion
of bereaved deaths experienced in the second cohort was 11.46% (22 deaths) during the first
year of bereavement, with a similar rate of death in year two (11.98% with 23 deaths). In ad-
dition to the di↵ering patterns of bereaved deaths observed in Figures 5.3 and 5.4, with the
older cohort achieving its peak frequency later in the bereavement process, the Pearson corre-
lation between male and female deaths within the sub-samples varies. Correlation coe�cients
are 0.4177 and 0.1984 in the first and second cohorts respectively, suggesting the existence of
a potential change in reactions to bereavement across generations.

Previous investigations into the impacts of the e↵ect have largely considered a high-income
group as their sample population, with the recent paper by Walter et al. (2021) the only
known exception. Rees and Lutkins (1967) present analysis on the mortality of bereaved close
relatives. The number of observed deaths vary significantly from the control group in the
first year of bereavement, with 11.6% of deaths followed by the death of a close relative in
comparison to just 1.6% in the control. Subsequently, total deaths in the bereaved group falls
to a rate of 1.99%, di↵ering negligibly from the comparative non-bereaved rate.

Focusing specifically on the bereavement e↵ect in a married couple, Rees and Lutkins (1967)
find the severity of increases in mortality to be greatest during the first year of bereavement,
after which the magnitude of rate elevation diminishes. The mortality rate of (male) widowers
within the first year after the loss is observed to be 19.6%, sizeably greater than that of
(female) widows (8.5%). For widowers, the pattern of changing mortality di↵ers slightly from
the general findings, with 13.7% dying within the first six months of bereavement and just 5.9%
in the second, a di↵erence in mortality between widows and widowers found to be significant at
the 1% level. Observations in the well-studied Canadian data mentioned in Chapter 1 further
highlight the increased mortality of both widows and widowers, particularly in the first year
of bereavement.

Although the Ghanaian survey data supports suggestion that broken-heart syndrome exists
in countries of di↵ering levels of development, comparison with existing literature prompts
suggestion that behaviours under broken-heart syndrome di↵er. The significant decrease in
mortality following survival of the first year of bereavement is a characteristic prevalent in much
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of the research in this area; however, the decreasing trend of mortality with increasing year
since bereavement, although apparent, cannot be identified with such high initial concentration
and decay in the Ghanaian data. Such dissimilarities lead to the definition of a mortality model
representing the impact of a dependence with less immediate significance. The proposed model
is introduced in the following section.

5.3 Model description

Inclusion of the probabilistic framework in the stochastic mortality model proposed by Jevtić
and Hurd (2017) prompted the decision to implement a similar model within the investigation
of this chapter. While multi-state models such as the semi-Markov chain model presented in
Ji et al. (2011) o↵er transparency and the ability to observe whether the level of risk changes
following a death event, the probabilistic mechanism further enables incorporation of the health
of both members of a couple prior to the primary death. This feature increases the accuracy of
the dependence model by permitting varied responses to the initial death, where dependence
may be irregular across the population, determined by the health circumstances of each couple
under consideration. Although only the short-term dependence of coupled lives is considered in
this chapter, the model proposed is capable of addressing both short- and long-term structures,
with the ability to encompass the existence of dependence between two lifetimes before the
death of one spouse.

Fundamental in modelling mortality risk, the survival function of an individual aged x,
denoted (x), specifies the probability that the individual survives for at least t years, and is
defined by

Sx(t) = P(⌧x > t), (5.3.1)

where ⌧x is the remaining lifetime of (x). Manipulation of this function allows for calculation
of the force of mortality, such that

�x+t = �
d

dt
logSx(t),

where �x+t is the force of mortality of (x + t) for t > 0, describing the instantaneous rate at
which the individual experiences death. The force of mortality of an individual (x) at time 0
is given by

�x = �
d

dx
logS0(x).

Analogous to the pricing at time t of a default-free zero-coupon bond with maturity s > t,
under assumption of a reduced-form credit risk setting, the conditional probability of a stopping
time ⌧ exceeding some arbitrary time s � t, where ⌧ is doubly stochastic with intensity �(t)
(or equivalently �t), can be shown to satisfy

P(⌧ > s | Gt) = E[e�
R s
t �(u)du

| Gt],

where Gt represents the information at time t. In the mortality modelling context, the stopping
time ⌧ represents the remaining lifetime of an individual.
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5. Stochastic mortality modelling for dependent coupled lives

5.3.1 Probabilistic mechanism

Fundamental concepts required to set up the probabilistic mechanism are defined in Appendix
D.

Let (⌦,F ,P) be a complete probability space where {Ft}t2[0,T ] is a filtration satisfying the
usual conditions of right continuity and completeness, large enough to carry a d-dimensional
Brownian motion W , two exponentially distributed random variables E1 and E2, and a single
uniformly distributed random variable U . Within this space, the set {W,E1, E2, U} is fully
independent, with a realisation of the time of death of each partner following from every
realisation of the randomly generated elements. Allowing T to represent a finite time horizon
of suitable length, the Brownian filtration is defined over the interval t 2 [0, T ] and is given by
Gt = �(Ws) for s  t, where Gt is a sub-filtration of Ft. When applying the model to a sizeable
population, an index n 2 {1, ..., N}, where N is the number of couples in the sample, should
be added to every element whose properties are specific to a given pair.

Consider two coupled lives aged x and y at time 0 with future lifetimes ⌧x and ⌧y, re-
spectively. The instantaneous forces of mortality at time t given by �i(t) for i 2 {x, y},
are predictable Gt-adapted processes driven by the Brownian motion W . The spouse whose
death occurs first is identified as the deceased partner and denoted p 2 {x, y}. Equivalently,
the spouse who survives the first death is denoted q and labelled the bereaved partner. The re-
maining lifetime of spouse p, conditional on the information set F0\Gt, is the first jump-time of
a nonexplosive inhomogeneous Poisson counting process N with parameter

R t
0 �x(u)+�y(u)du,

where Nt counts the number of deaths at time t, for t � 0. The remaining lifetime of spouse
q is defined in an analogous manner, with both doubly stochastic stopping times representing
⌧p and ⌧q driven by the sub-filtration Gt.

The first time of death ⌧p is given by

⌧p := inf
n
t � 0

���
Z t

0
�x(u) + �y(u)du � E1

o
,

while the uniform random variable U allows for identification of the deceased spouse through
comparison with a function of the forces of mortality at the instant of the primary death.
Recalling that p is the label given to the partner who dies first, it holds that

{x = p} = {⌧x = ⌧p} =

⇢
U 

�x(⌧p)

�x(⌧p) + �y(⌧p)

�
, (5.3.2)

{y = p} = {⌧y = ⌧p} =

⇢
U >

�x(⌧p)

�x(⌧p) + �y(⌧p)

�
.

In line with the belief that the loss of a spouse has an impact on the mortality of the
surviving spouse, �̃q(t) is defined for t � ⌧p as the mortality intensity of the bereaved partner
following the initial death. This force of mortality is an adjustment of the original process
�q(t) and the association between the two rates reflects the influence that losing a partner has
on the bereaved spouse’s health and hence their remaining lifetime. The bereavement e↵ect is
therefore defined by

rq(t) := �̃q(t)� �q(t),

the change in mortality process, where the modified process �̃q(t) is inclusive of a structural
break at ⌧p representing the instant e↵ect on the bereaved spouse’s mortality. The instanta-
neous rise at the first death time is given by a linear combination of the mortality of each
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spouse at time ⌧�p , directly before the death, such that

rq(⌧p) := �̃q(⌧p)� �q(⌧
�

p ) = �q + ✏q�q(⌧
�

p ) + ⇣q�p(⌧
�

p ), (5.3.3)

where coe�cients �q, ✏q and ⇣q are assumed to be non-negative. Intuitively, the mortality jump
reflects the short-term dependence structure of broken-heart syndrome and the modification
of �q the adaptations in the mortality intensity of the surviving spouse due to adjustments
in the life circumstances of the bereaved. Inclusion of the mortality intensity of both spouses
in the estimation of the bereavement jump in (5.3.3) allows for incorporation of unobserved
shared frailties.

Determined using a similar approach to the first time of death ⌧p, the second time of death
⌧q is given by

⌧q := inf
n
t > ⌧p

���
Z t

⌧p

�̃q(u)du � E2

o
.

The model proposed is an adjustment of the reduced form modelling approach frequently
used in the study of credit risk to model default as a stopping time whose occurrence is
unexpected. Implementation of this method in regard to lifetime dependencies in coupled
lives suggests that a change in the remaining lifetime of the bereaved spouse does not occur
following the primary death, since random variables used in the determination of the time of
death of each spouse {E1, E2, U}, are required to be independent across the index. Inclusion
of the modified intensity �̃q(t) resolves this limitation.

Determination of the structure of dependence across a population may also be of interest,
in addition to dependence within a couple. To model the dependence relationship among a
population, risk factors experienced commonly by all individuals and risks specific to each
member of the population should be considered. These factors are labelled systematic and
idiosyncratic risks, respectively, and are an independent collection of factors by construction,
with correlation between individuals induced by the risks shared among those under consider-
ation.

The objective of the probabilistic mechanism is to determine the joint probability den-
sity function of the remaining lifetimes of two coupled lives (⌧x, ⌧y). Theorem 5.3.1 provides
an expression for the joint density proposed with proof in Jevtić and Hurd (2017), where ex-
pectations are taken under the probability measure P and it is assumed that the death events
do not occur simultaneously.

Theorem 5.3.1 (Jevtić and Hurd (2017)).

1. The joint probability density function ⇢(tx, ty) of the remaining lifetimes of two coupled
lives (⌧x, ⌧y) is given by the reduced form expression

⇢(tx, ty) =

8
><

>:

E
h
�p(tx)e

�
R tx
0 �x(u)+�y(u)duE

h
�̃q(ty)e

�
R ty
tx

�̃q(u)du | GT

ii
, tx < ty

E
h
�p(ty)e

�
R ty
0 �x(u)+�y(u)duE

h
�̃q(tx)e

�
R tx
ty

�̃q(u)du
| GT

ii
, tx > ty.

2. The marginal probability density function ⇢p(t) for the time of the first occurring death
⌧p is

⇢p(t) = E
h
�p(t)e

�
R t
0�x(u)+�y(u)du

i
,

for p 2 {x, y}.
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Proof. For proof, see Jevtić and Hurd (2017).

5.3.2 Stochastic mortality model with non-mean-reverting
Cox–Ingersoll–Ross mortality processes

It is common practice in financial modelling to assume the stochastic mortality intensity �(t) to
be an a�ne process, due to their analytical tractability. Under su�cient technical conditions,
the a�ne assumption gives rise to the expression

E[e�
R T
t �(u)du

| Gt] = eA(T�t)+B(T�t)�(t), (5.3.5)

where A(t) and B(t) are unique functions satisfying generalised Riccati ordinary di↵erential
equations. Owing to the convenience of a�ne jump-di↵usions, the stochastic mortality model
presented here is proposed under the assumption of a�ne mortality intensities, assuming a co-
hort of single-life mortality models in continuous time with correlated, non-mean-reverting
Cox–Ingersoll–Ross (CIR) processes representing the paired mortality intensities �x(t) and
�y(t). For further discussion and treatment of a�ne processes, see Du�e et al. (2003).

The adapted CIR processes are defined by

d�p(t) = µp�p(t)dt+ �p
q
�p(t)dWp(t) for p 2 {x, y}, (5.3.6)

where the parameters �p(0), µp, and �p are positive. Let B = (Bx, By, Bz) be a three-
dimensional Brownian motion; each Brownian motion Wx(t) and Wy(t) is then considered
as a linear combination of two independent Brownian motions, such that

Wx(t) = �xBx(t) + �̄xBz(t),

Wy(t) = �yBy(t) + �̄yBz(t),

which gives

d�p(t) = µp�p(t)dt+ �p
q
�p(t)d(�

pBp(t) + �̄pBz(t)), for p 2 {x, y}.

Here, Bx(t) and By(t) represent the random idiosyncratic risk factors specific to each
member of the couple and Bz(t) reflects the random couple specific risk factors commonly
experienced by both members of the pair, an example of which is the mutual living environment
often shared by coupled lives. Weights �p 2 [�1, 1] and �̄p are selected in order to satisfy
⇢ = �̄x�̄y, where �̄p :=

p
1� (�p)2 and ⇢ 2 [�1, 1] is the Pearson correlation between Wx(t)

and Wy(t). Introducing correlation between the two Brownian motions in this way allows for
dependence prior to the initial death and enables the capturing of unobserved heterogeneities
assumed to be shared between coupled lives.

Remark 5.3.1. Selection of population specific risk factors for representation in the Bz(t)
component of the Brownian motions Wx(t) and Wy(t), rather than the couple specific risks
assumed in this chapter, initiates a non-diversifiable risk to insurers, creating with certainty,
a long-term e↵ect for insurance companies that should be considered in the pricing and valu-
ation of insurance products.
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The final step in establishing the model is to define the bereavement e↵ect explicitly,
since determination of the second death time requires the modified process �̃q(t), for t�⌧p.
With correlation between coupled lives reflected in the paired Brownian motions, the bereave-
ment model explains the causal relation between remaining lifetimes and the true contagion
e↵ect of the loss of a spouse. Specification of the bereavement process determines the depen-
dence structure assumed to exist between the lives of interest. Such flexibility in the model
allows for consideration of all dependence classifications, where required. Jevtić and Hurd
(2017) define rq(t) as a deterministic function with dynamics given by

drq(t) = �qrq(t)dt with rq(⌧p) = ✏q�q(⌧
�

p ),

for values of t greater than the initial death time ⌧p. In the deterministic case, the law of large
numbers implies diversification of the risk associated with the loss of a spouse. In this chapter,
an alternative approach to modelling the bereavement jump is proposed. The approach facili-
tates the existence of a non-diversifiable bereavement risk, such that the associated premiums
must account for the change in mortality experienced after the first death. Coe�cients �q and
⇣q of (5.3.3) are fixed at zero for computational simplicity; however, selection of positive values
for �q and ⇣q would allow for the incorporation of the mortality intensities of both lives, prior
to the first death, in the initial value of the bereavement e↵ect at time ⌧p.

The proposed bereavement e↵ect is presented in Definition 5.3.1.

Definition 5.3.1. The change in mortality process rq(t) has dynamics given by an Ornstein–
Uhlenbeck process, such that

drq(t) = �qrq(t)dt+ �qrdW (t) with rq(⌧p) = ✏q�q(⌧
�

p ), (5.3.8)

where W (t) is an independent d-dimensional Brownian motion, ✏q,q,�qr � 0 and q 2 {x, y}.
The explicit solution of the bereavement process for t � ⌧p is given by

rq(t) = ✏q�q(⌧
�

p )e�q(t�⌧p) + �qre
�qt

Z t

⌧p

e
qsdW (s). (5.3.9)

The bereavement process in Definition 5.3.1 is again assumed to be of a�ne type to allow
for computation of the joint probability density function.

Remark 5.3.2. The volatility of the bereavement process driven by the Brownian motion
dW (t) in (5.3.9) is a determining feature of the nature of dependence. Fixing �qr across the
population infers the occurrence of an event experienced individually by all bereaved spouses at
some future point in time. Such an event induces a non-diversifiable risk that poses a significant
threat to the insurance industry in practice, creating the need for premiums that account for
the observed change in mortality. On the other hand, assumption of a couple specific �qr means
that the future event risk is diversifiable, through the insuring of a large and varied sample
of couples.

Selection of �qr as either fixed or varying should be determined through observation of
data. Establishing a more detailed underwriting process would help in the identification of
unobserved heterogeneities, reducing the dependence risk associated with this component of
the bereavement process. Estimation of the volatilities in (5.3.6) and (5.3.8) could also be
facilitated through increased data collection; however, since the occurrence of a future event
common to all lives is not apparent in the data set analysed, �qr is assumed to be couple
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5. Stochastic mortality modelling for dependent coupled lives

specific, acknowledging the possibility that a more populated data set may support the need
for a change in this assumption.

When pricing a reversionary annuity in Section 5.4, the volatility coe�cient �qr does not
appear in the indi↵erence price. Since the risks associated with the correlated Brownian
motions are diversifiable through inclusion of only couple specific risk factors, this independence
of �qr is of no concern in the case considered here. In the non-diversifiable case discussed
in Remark 5.3.1, however, the initial value of the bereavement e↵ect in (5.3.8) should be
redefined to incorporate both �qr and the causal dependence between the members of each
couple, to ensure the price of the insurance product covers the full risk associated with a spousal
loss.

Remark 5.3.3. The Brownian motion of the bereavement process is assumed to be inde-
pendent of the paired Brownian motions associated with mortality intensity. If the Brownian
motion in (5.3.8) is instead given by Wq(t), the change in mortality of the surviving spouse
upon the death of their partner is assumed to be correlated with their mortality before the
primary death. The independence assumption adopted in this chapter increases the signifi-
cance of random risks, such as environmental factors, in determining the impact of the loss,
rather than historical mortality. The existence of dependence between the bereavement process
and the mortality of the surviving spouse before the death at time ⌧p, although an interesting
concept, is not considered in this chapter.

In the proposed Ornstein-Uhleneck model of bereavement, the mean reversion parameter is
fixed at zero. This aligns with the decreasing significance of the mortality gap over time, due to
the subsiding nature of mortality elevation characteristic of broken-heart syndrome. In contrast
to the exponential model of bereavement assumed in Jevtić and Hurd (2017), mean reversion
allows for the process to take both positive and negative values, accounting for instances when
the mortality of the bereaved improves in comparison to a non-widowed mortality.

Having established the structure of the bereavement e↵ect, expectations required for the
joint probability density and survival function calculations can be computed through applica-
tion of the a�ne framework with term structure equation determined by the Feynman–Kac
formula. In the a�ne setting, the conditional formula whose aforementioned specific form
(5.3.5) is used in the calculation of bond prices (see, for example, Grasselli and Hurd (2015)),
is given by

E[e�c1
R T
t �(u)du�c2�(T )

| Gt] = eA(T�t;✓,c1,c2)+B(T�t;✓,c1,c2)�(t), (5.3.10)

where c1 and c2 are constant and ✓p = (�p(0), µp,�p) for p 2 {x, y}.

In order to derive the explicit forms of A(T�t; ✓, c1, c2) and B(T�t; ✓, c1, c2), the Feynman-
Kac formula is first defined:

Definition 5.3.2. The existence of a function f(t, x) for t 2 [0, T ], where T > 0, x 2 R and

f(t,Xt) = E[F (XT )e
R T
t �(s,Xs)ds +

Z T

t
e
R u
t �(s,Xs)dsG(u,Xu)du | Ft]

for any functions F (x), G(t, x) and �(t, x) that are su�ciently integrable is implied by the
Markov property.
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The Feynman–Kac formula states that the solution of the non-homogeneous parabolic
partial di↵erential equation

(
@tf(t, x) + L[f ](t, x) + �(t, x)f(t, x) +G(t, x) = 0, t < T

f(T, x) = F (x)

is given by the function f .

Proposition 5.3.1. Application of the Feynman–Kac formula to (5.3.10) for a non-mean-
reverting Cox–Ingersoll–Ross (CIR) process gives

A(T � t; ✓, c1, c2) = 0

and

B(T � t; ✓, c1, c2) =
�4c21(1� e�(t�T ))� 2c1c2(� � µ)(1 + e�(t�T ))� 4c1c2µ

(� � µ)(2c1 + c2(� + µ)) + (� + µ)(2c1 � c2(� � µ))e�(t�T )
, (5.3.12)

where � =
p

µ2 + 2c1�2.
The derivative of (5.3.10) with respect to c2 is then

E[�(T )e�c1
R T
t �(u)du�c2�(T )

| Gt] =� [Ã(T � t; ✓, c1, c2) + B̃(T � t; ✓, c1, c2)�(t)]

⇥ eA(T�t;✓,c1,c2)+B(T�t;✓,c1,c2)�(t),

where Ã(t) and B̃(t) are given by @A(t)
@c2

and @B(t)
@c2

, respectively, such that

Ã(T � t; ✓, c1, c2) = 0

and

B̃(T � t; ✓, c1, c2) = �
16c21�

2e�(t�T )

(� � µ)(2c1 + c2(� + µ)) + (� + µ)(2c1 � c2(� � µ))e�(t�T )
. (5.3.13)

Proof. By (5.3.10) and in the CIR case of interest, the general form of the function f(t, x) in
Definition 5.3.2 is

f(t,�(t)) = E[e�c1
R T
t �(u)du�c2�(T )

| Gt],

where c1 and c2 are real-valued constants. It therefore holds that F (�(T )) = exp[�c2�(T )],
�(t,�(t)) = �c1�(t) and G(t,�(t)) = 0, such that

@tf(t,�(t)) + µ�(t)@�(t)f(t,�(t)) +
1

2
�2�(t)@�(t)�(t)f(t,�(t))� c1�(t)f(t,�(t)) = 0, (5.3.14)

where f(t,�(t)) = exp[A(T � t; ✓, c1, c2) +B(T � t; ✓, c1, c2)�(t)]. Substitution of f(t,�(t))
into the partial di↵erential equation (5.3.14) gives

A0(T � t; ✓, c1, c2) = 0,
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and

B0(T � t; ✓, c1, c2) = �µB(T � t; ✓, c1, c2)�
1

2
�2B2(T � t; ✓, c1, c2) + c1,

where A(T � t; ✓, c1, c2) and B(T � t; ✓, c1, c2) have boundary condition A(T � t; ✓, c1, c2) =
B(T � t; ✓, c1, c2) = 0 at t = T .

Solution of the first order ODE for B(T � t; ✓, c1, c2) involves a calculation of significant
length; however, following a number of algebraic steps,

B(T � t; ✓, c1, c2) =
�4c21(1� e�(t�T ))� 2c1c2(� � µ)(1 + e�(t�T ))� 4c1c2µ

(� � µ)(2c1 + c2(� + µ)) + (� + µ)e�(t�T )(2c1 � c2(� � µ))
,

is derived, under application of the initial conditions of the Feynman–Kac formula: f(T,�(t)) =
F (�(t)). Then,

B̃(T � t; ✓, c1, c2) =
@B(T � t; ✓, c1, c2)

@c2

simplifies to

�
16c21�

2e�(t�T )

(� � µ)(2c1 + c2(� + µ)) + (� + µ)e�(t�T )(2c1 � c2(� � µ))
.

Since A(t) = 0, it also holds that Ã(t) = 0.

Three corollaries follow Proposition 5.3.1. The explicit form of the expectations of inter-
est under conditions appropriate in the mortality context are given in Corollary 5.3.1, while
Corollaries 5.3.2 and 5.3.3 provide expressions for the joint probability density and survival
functions, respectively.

Corollary 5.3.1. The specific form of the conditional formula required for calculation of both
the probability density and survival functions occurs when constants c1 and c2 are fixed at 1
and 0, respectively. This gives

E[e�
R T
t �(u)du

| Gt] = eB(T�t;✓,1,0)�(t)

and

E[�(T )e�
R T
t �(u)du

| Gt] = �B̃(T � t; ✓, 1, 0)�(t)⇥ eB(T�t;✓,1,0)�(t),

where

B(T � t; ✓, 1, 0) = �
2(1� e�(t�T ))

(� � µ) + (� + µ)e�(t�T )
(5.3.15)

and

B̃(T � t; ✓, 1, 0) = �
8�2e�(t�T )

(� � µ) + (� + µ)e�(t�T )
.

Throughout the remainder of the chapter, for ease of presentation, functions A(T�t; ✓, 1, 0)
and B(T � t; ✓, 1, 0) will be denoted A(T � t; ✓) and B(T � t; ✓), respectively.

Corollary 5.3.2. The joint probability density function of the remaining lifetimes ⌧x and ⌧y
of individuals x and y with bereavement process of Ornstein–Uhlenbeck type is given by the
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expression

⇢(tx, ty) =[Ãr(ty � tx; ✓
r
q) + B̃r(ty � tx; ✓

r
q)rq(tx) + B̃(ty � tx; ✓q)�q(tx)]B̃(tx; ✓x)�x(0)

⇥ eA
r(ty�tx;✓rq)+Br(ty�tx;✓rq)rq(tx)+B(ty�tx;✓q)�q(tx)+B(tx;✓y)�y(0)+B(tx;✓x)�x(0),

for tx < ty, where ✓rq = (rq(0),q,�
q
r), B(t) and B̃(t) are as defined in Corollary 5.3.1, and Ar(t)

and Br(t) are unique functions satisfying the generalised Riccati ordinary di↵erential equations
for the Ornstein–Uhlenbeck bereavement process rq(t), such that

Ar(T � t; ✓) =
�2

22
((T � t) +

2


(e�(T�t)

� 1)�
1

2
(e�2(T�t)

� 1)) (5.3.16)

and

Br(T � t; ✓) =
1


(e�(T�t)

� 1).

Evaluating the derivatives of Ar(T � t; ✓, c1, c2) and Br(T � t; ✓, c1, c2) with respect to c2 in
line with Proposition 5.3.1 and Corollary 5.3.2, gives

Ãr(T � t; ✓) = �
�2

22
(2(e�(T�t)

� 1)� (e�2(T�t)
� 1))

and
B̃r(T � t; ✓) = �e�(T�t).

Proof. Consider the case tx < ty, then by Theorem 5.3.1,

⇢(tx, ty) = E[�p(tx)e�
R tx
0 �x(u)+�y(u)duE[�̃q(ty)e�

R ty
tx

�̃q(u)du | GT ]]

= E[�p(tx)e�
R tx
0 �x(u)du]⇥ E[e�

R tx
0 �y(u)duE[�̃q(ty)e�

R ty
tx

�̃q(u)du | GT ]]

holds since the mortality intensities �x and �y are independent under tx < ty when conditioning
on the information set GT . Proposition 5.3.1 implies that the first component of the joint
probability density function is given by

E[�p(tx)e�
R tx
0 �x(u)du] = �B̃(tx; ✓x, 1, 0)�x(0)⇥ eB(tx;✓x,1,0)�x(0),

where B(t) and B̃(t) are as defined in (5.3.12) and (5.3.13), respectively. For the second
component of the joint probability density function, consider

�̃q(u) = �q(u) + ✏q�q(tx)e
�q(u�tx) + �qre

�qu
Z u

tx

e
qsdW (s)

= �q(u) + rq(u),

where u � tx, then

E[�̃q(ty)e�
R ty
tx

�̃q(u)du | GT ] = E[(�q(ty) + rq(ty))e
�

R ty
tx

�q(u)due�
R ty
tx

rq(u) | GT ]

= E[�q(ty)e�
R ty
tx

�q(u)du | GT ]E[e�
R ty
tx

rq(u)du | GT ]

+E[rq(ty)e�
R ty
tx

rq(u)du | GT ]E[e�
R ty
tx

�q(u)du | GT ] (5.3.17)
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by the independence of �q and rq, given their independent Brownian motions. Since the
bereavement process is assumed to be of a�ne type, functions Ar(t) and Br(t) satisfying
generalised Riccati ordinary di↵erential equations can be obtained, such that a closed form
solution of the required conditional expectation and its derivative with respect to c2 is given
as follows for ✓ = (r(0),,�):

E[e�c1
R T
t r(u)du�c2r(T )

| Gt] = eA
r(T�t;✓,c1,c2)+Br(T�t;✓,c1,c2)r(t),

where

Br(T � t; ✓, c1, c2) =
1


((c1 � c2)e

�(T�t)
� c1)

and

Ar(T � t; ✓, c1, c2) =
�2

22
[c21(T � t)+

2c1


(c1�c2)(e
�(T�t)

�1)�
1

2
(c1�c2)

2(e�2(T�t)
�1)]

(see Jevtić and Hurd (2017)). Application of the a�ne framework therefore allows for (5.3.17)
to be expressed as

�[Ãr(ty � tx; ✓
r
q , 1, 0) + B̃r(ty � tx; ✓

r
q , 1, 0)rq(tx) + B̃(ty � tx; ✓q, 1, 0)�q(tx)]

⇥ eA
r(ty�tx;✓rq ,1,0)+Br(ty�tx;✓rq ,1,0)rq(tx)+B(ty�tx;✓q ,1,0)�q(tx),

where B(t) and B̃(t) are defined in Corollary 5.3.1. As in the CIR case of Proposition 5.3.1,

functions Ãr(t) and B̃r(t) are given by @Ar(t)
@c2

and @Br(t)
@c2

, respectively. The second component
of the joint probability density function is then

E[e�
R tx
0 �y(u)du ⇥�[Ãr(ty � tx; ✓

r
q , 1, 0) + B̃r(ty � tx; ✓

r
q , 1, 0)rq(tx) + B̃(ty � tx; ✓q, 1, 0)�q(tx)]

⇥ eA
r(ty�tx;✓

r
q ,1,0)+Br(ty�tx;✓

r
q ,1,0)rq(tx)+B(ty�tx;✓q,1,0)�q(tx)]

=� [Ãr(ty � tx; ✓
r
q , 1, 0) + B̃r(ty � tx; ✓

r
q , 1, 0)rq(tx) + B̃(ty � tx; ✓q, 1, 0)�q(tx)]

⇥ eA
r(ty�tx;✓

r
q ,1,0)+Br(ty�tx;✓

r
q ,1,0)rq(tx)+B(ty�tx;✓q,1,0)�q(tx)+B(tx;✓y,1,0)�y(0),

where ✓rq = (rq(0),q,�
q
r) and thus, it holds that the joint probability density function of

remaining lifetimes tx and ty is given by (5.3.16), as required.

Remark 5.3.4. The joint probability density function for tx > ty is analogous to Corollary
5.3.2, with indices i 2 {x, y} interchanged.

Under the assumption of independent coupled lives, the convenience of the a�ne environ-
ment allows for the survival probability of an individual aged x to be given by

Sx(t) = P(⌧x > t | G0) = E[e�
R t
0 �x(u)du | G0] = eA(t)+B(t)�x(0). (5.3.18)

Due to the changing mortality of the bereaved spouse upon the initial death at time ⌧p,
consideration of dependent lives requires the redefinition of the survival function in (5.3.18).
For t � ⌧p, the survival function is instead regarded as the product of two survival functions,
split at the first jump time ⌧p such that

Sx(t) = Sx(⌧p)Sx+⌧p(t� ⌧p).
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In accordance with the a�ne process selection for mortality intensity, the expression

Sx(t) = Sx(⌧p)⇥ E[e�
R t
⌧p

�̃x+⌧p (u)du
| G⌧p ]

therefore holds for t � ⌧p, leading to Corollary 5.3.3.

Corollary 5.3.3. The survival probability of an individual (x) assuming a mortality intensity
of non-mean reverting Cox–Ingersoll–Ross type is given by

Sx(t) =

(
eB(t)�x(0), t < ⌧p

eB(⌧p)�x(0) ⇥ eB(t�⌧p)�̃x+⌧p (⌧p), t � ⌧p,

where B(t) is defined as in (5.3.15).

Note that ⌧p is unknown, the survival probability is therefore presented as in Corollary
5.3.3 purely to highlight the change in the survival probability of the surviving spouse at the
first death time. In reality, it is not possible to know, prior to the first death, whether an
arbitrary survival time t > 0 lies above or below ⌧p. In addition, mortality information G⌧p

can only be observed after the first death.
If the first death has already occurred and the identity of the survivor is known, the survival

probability of the surviving spouse, here (x+ ⌧p), could instead be redefined as

Sx+⌧p(t) = eB(t)�̃x+⌧p (⌧p),

for t > 0.

Remark 5.3.5. The survival probability of spouse (y) is analogous to the survival probability
of spouse (x), with indices i 2 {x, y} interchanged.

One example of incorporating the proposed model in the pricing of a joint-life insurance
contract using the indi↵erence pricing principle is presented in the following section.

5.4 Indi↵erence price calculation for a joint-life
insurance product

When pricing in the incomplete financial market setting, the utility indi↵erence principle is
an approach introduced by Hodges and Neuberger (1989) which compares the maximal ex-
pected utilities of an investor with and without taking a given risk. Initially implemented in
the pricing of European options and motivated by the unrealistic assumption of no transaction
costs in the pure Black–Scholes model, extensions of the method have since been developed by
Davis et al. (1993) and Ludkovski and Young (2008) among others, with the latter considering
mortality contingent claims in a fully stochastic setting. In relation to life insurance, such
an approach involves equating the expected utility of an insurer when a certain number of
insurance policies are written to the expected utility when the same policies are not written.
The indi↵erence premium of interest to this research is therefore the change in premium that
should be charged when dependence of coupled lives is assumed.
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5. Stochastic mortality modelling for dependent coupled lives

Various articles detail application of the indi↵erence principle to pricing in the life insurance
sector. Young and Zariphopoulou (2002) implement the approach in the valuation of insur-
ance risks in the dynamic financial market setting. Extensions of their results are presented by
Delong (2009) and Liang and Lu (2017) who follow similar procedures in order to determine
indi↵erence premiums. Liang and Lu (2017) apply a jump-di↵usion model of Black–Scholes
type to model the stochastic price of a risky asset with jumps given by a shot-noise process,
while Delong (2009) makes use of a Lévy process in order to drive price dynamics. In both
cases, the mortality intensity is assumed to be a stochastic process of di↵usion type. Fur-
ther distinction between the two papers appears in the definition of the policyholder benefits,
with Delong (2009) defining benefits as fixed rates and Liang and Lu (2017) proposing the
indi↵erence premium for an equity-linked life insurance contract with benefits dependent on
the value of the underlying asset.

Choi (2016) adapts further work by Young (2003) in line with Liang and Lu (2017) through
implementation of the equivalent utility principle for valuation of equity-linked life insurance to
obtain the indi↵erence price of an insurance contract in both the deterministic and stochastic
mortality cases. Solution of a stochastic optimisation problem determined by solving the
associated Hamilton–Jacobi–Bellman equation enables calculation of the indi↵erence premium
in each of Delong (2009), Choi (2016) and Liang and Lu (2017). Explicit optimal solutions are
then obtained under the assumption of an exponential utility function.

Blanchet-Scalliet et al. (2019) consider the indi↵erence principle in pricing life insurance
portfolios under the assumption of contingent lives, with dependence introduced through cor-
relation of policyholders’ lifetimes with a Farlie–Gumbel–Morgenstern copula. Medical break-
throughs and environmental features are suggested factors associated with dependence struc-
tures between the lifetimes of individuals within a population. When restricting the model by
Blanchet-Scalliet et al. (2019) to consider just two policyholders, the surviving policyholder is
said to experience a jump in mortality intensity when the other dies, in line with the assumption
of the model proposed in Section 5.3.

An example of the pricing of a life insurance product under the assumption of dependence
between the two coupled lives involved in the contract is now provided, implementing the
indi↵erence principle to obtain the result. To illustrate how dependence between coupled lives
influences the pricing and valuation of insurance products involving mortality assumptions,
consider a reversionary annuity which insures the life of an individual (x). The annuity pays
a value of 1 to individual (y) at the end of each year with the initial payment due at the end of
the year of (x)’s death, where the beneficiary (y) is the surviving spouse of (x). The contract
terminates on the final payment at the end of the year preceding (y)’s death. If the individual
(y) dies before (x), the contract terminates before any payment is made.

In order to compute the price of such an annuity, the classical model by Merton (1969) is
first introduced. This model optimises the investment strategies of an individual seeking to
maximise their expected utility of terminal wealth given some value of initial wealth. The in-
surer may trade between a risky asset and a risk-free asset. A geometric Brownian motion is
used to model the price of the risky asset, such that

⇢
dSs = µSsds+ � SsdBs,

St = S > 0,

for some s > t, where t is fixed and Ss gives the price of the risky asset at time s. The mean rate
of return µ and volatility � are positive constants and the process Bs is a standard Brownian
motion on a probability space (⌦,F ,P) with probability measure P and filtration F containing
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information about the financial market. The price of the risk-free asset Rs with rate of return
r at time s > t is modelled such that

dRs = rRsds,

where it is assumed that µ > r > 0.
Suppose the insurer trades dynamically between the risky asset and the risk-free asset given

initial wealth w � 0 at time t > 0. Defining Ws as the wealth of the insurer for s 2 [t, T ],
where T > 0 is the terminal time, the insurer invests ⇡

rf
s in the risk-free asset and ⇡s in the

risky asset at time s, such that Ws = ⇡
rf
s +⇡s. The wealth process then satisfies the dynamics

⇢
dWs = (rWs + (µ� r)⇡s)ds+ �⇡sdBs, t  s  T

Wt = w.

Under the assumption of an absence of any additional insurance risk, the investor wishes to
maximise their expected utility of terminal wealth such that the value function V (w, t) satisfies

V (w, t) = sup
⇡t2A

E[u(WT ) |Wt = w],

where A is the set of admissible policies and u : R ! R is the utility function assumed to be
increasing, concave and smooth. The value function without insurance risk has been shown by
Björk (2009) to satisfy the Hamilton–Jacobi–Bellman (HJB) equation

8
<

:
Vt(w, t) + max

⇡t
[(µ� r)⇡tVw(w, t) +

1

2
�2⇡2t Vww(w, t)] + rwVw(w, t) = 0,

V (w, T ) = u(w),

(5.4.3a)

which has optimal investment process given by

⇡⇤(w, t) = �
(µ� r)

�2
Vw(w, t)

Vww(w, t)
.

The maximum of the HJB equation exists due to the linearity of the wealth process dynam-
ics with respect to the wealth and portfolio process and the concavity of the utility function
u, which is inherited by the value function.

Assumption of an exponential utility function reduces technical di�culties associated with
general utility functions and so enables determination of the indi↵erence price. Considering
an exponential utility function of the form u(w) = �

1
a exp[�aw], where w 2 R and a > 0 is the

coe�cient of risk aversion, substitution into the HJB (5.4.3a) gives the following closed form
solution:

V (w, t) = �
1

a
exp


�awer(T�t)

�
(µ� r)2

2�2
(T � t)

�
.

Now, suppose the insurer has the opportunity to insure an individual aged x. If the insured
individual (x+t) dies in the interval [t, t+h], the insurer pays the expected present value (EPV)
of the reversionary annuity to the surviving spouse (y+ t) at the end of the year of the primary
death at time T = ⌧p, where ⌧p is the first death time within the couple as defined in the model
proposed in Section 5.3. The expected present value of the annuity is given by

EPV =

⌧q�⌧p�1X

s=0

⇣
spy+⌧pqy+⌧p+s

s+1X

i=1

e�r((s+1)�i)
⌘
,
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where ⌧q is the death time of the surviving spouse under the assumption of dependent coupled
lives, tpy denotes the survival function Sy(t) and 1� tpy = tqy the distribution function Fy(t)
of ⌧y (or equivalently in this case, ⌧q). The expectation of the expected present value given ⌧x
represents the remaining lifetime of (x) is then

E[EPV] =
⇣ ⌧q�⌧p�1X

s=0

spy+⌧pqy+⌧p+s

s+1X

i=1

e�r((s+1)�i)
⌘
⇥ P(⌧x = ⌧p),

since the insurance contract terminates if the beneficiary dies before the insured. Note that,
in the following calculations, ⌧x and ⌧y could be used interchangeably with ⌧p and ⌧q, respec-
tively. However, for clarity, use of ⌧p and ⌧q remains. Using the survival functions derived in
Section 5.3, the expectation of the expected present value of the reversionary annuity can be
expressed such that

E[EPV] =
⌧q�⌧p�1X

s=0

⇣⇣
eB(s;✓y)�̃y+⌧p (⌧p) � eB(s+1;✓y)�̃y+⌧p (⌧p)

⌘ s+1X

i=1

e�r((s+1)�i)
⌘
⇥ P(⌧x = ⌧p),

(5.4.4)
where by (5.3.2)

P(⌧x = ⌧p) = P
⇣
U 

�x(⌧p)

�x(⌧p) + �y(⌧p)

⌘
=

�x(⌧p)

�x(⌧p) + �y(⌧p)
.

The value charged at time t to cover this payout is

E[EPV]⇥ e�r(⌧p�t).

Since the insurance contract remains standing if the individual (x+ t) survives until time
t+ h and continues under the value function without the claim if (x+ t) dies between time t
and t+ h, the insurer’s optimisation problem is defined by

U(w, t) �E[V (W ⇤

t+h � e�r(⌧p�(t+h))E[EPV], t+ h) |Wt = w]hqx+t

+ E[U(W ⇤

t+h, t+ h) |Wt = w]hpx+t, (5.4.5)

where W ⇤
s is the wealth of the insurer under the optimal strategy ⇡⇤s for t  s  t+ h.

Proposition 5.4.1. Under assumption of the appropriate conditions of regularity and inte-
grability on the value functions discussed by Björk (2009), for an insurer following optimal
investment strategy ⇡⇤s for t  s  t+ h, the HJB equation corresponding to the optimisation
in (5.4.5) is given

8
>>><

>>>:

Ut(w, t) + rwUw(w, t) + [V (w � e�r(⌧p�(t+h))E[EPV], t)� U(w, t)]�x(t)

+ max
⇡t

{(µ� r)⇡t +
1

2
�2⇡2tUww(w, t)} = 0,

U(w, T ) = u(w).

(5.4.6a)

Proof. Under the assumption that functions U(w, t) and V (w, t) are su�ciently smooth

U(Wt+h, t+ h) = U(Wt, t) +

Z t+h

t
dU,
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where by Itô’s formula,

dU = (Us + Uw(rWs + (µ� r)⇡s) +
1

2
�2⇡2sUww)ds+ �⇡sUwdB,

Then,

U(W ⇤

t+h, t+ h) =U(Wt, t) +

Z t+h

t
Ut(W

⇤

s , s) + Uw(W
⇤

s , s)(rW
⇤

s + (µ� r)⇡⇤s)

+
1

2
�2⇡⇤

2

s Uww(W
⇤

s , s)ds+

Z t+h

t
�⇡sUw(W

⇤

s , s)dB

and so

E[U(W ⇤

t+h, t+ h) |Wt = w] =E[U(w, t) +

Z t+h

t
Ut(W

⇤

s , s) + Uw(W
⇤

s , s)(rW
⇤

s + (µ� r)⇡⇤s)

+
1

2
�2⇡⇤

2

s Uww(W
⇤

s , s)ds |Wt = w].

Carrying out similar computations for E[V (W ⇤

t+h � e�r(⌧p�(t+h))E[EPV], t + h) | Wt = w]
gives the following expression for the insurer’s optimisation problem:

U(w, t) �E[U(w, t) +

Z t+h

t
Ut(W

⇤

s , s) + Uw(W
⇤

s , s)(rW
⇤

s + (µ� r)⇡⇤s)

+
1

2
�2⇡⇤

2

s Uww(W
⇤

s , s)ds |Wt = w] hpx+t

+ E[V (w � e�r(⌧p�(t+h))E[EPV], t) +
Z t+h

t
Vt(W

⇤

s � e�r(⌧p�(s+h))E[EPV], s)

+ Vw(W
⇤

s � e�r(⌧p�(s+h))E[EPV], s)(rW ⇤

s + (µ� r)⇡⇤s)

+
1

2
�2⇡⇤

2

s Vww(W
⇤

s � e�r(⌧p�(s+h))E[EPV], s)ds |Wt = w] hqx+t,

such that

U(w, t)h
qx+t

h
�V (w � e�r(⌧p�(t+h))E[EPV], t)hqx+t

h

+
1

h
E[
Z t+h

t
Ut(W

⇤

s , s) + Uw(W
⇤

s , s)(rW
⇤

s + (µ� r)⇡⇤s)

+
1

2
�2⇡2sUww(W

⇤

s , s)ds |Wt = w] hpx+t

+
1

h
E[
Z t+h

t
Vt(W

⇤

s � e�r(⌧p�(s+h))E[EPV], s)

+ Vw(W
⇤

s � e�r(⌧p�(s+h))E[EPV], s)(rW ⇤

s + (µ� r)⇡⇤s)

+
1

2
�2⇡⇤

2

s Vww(W
⇤

s � e�r(⌧p�(s+h))E[EPV], s)ds |Wt = w] hqx+t,

when subtracting U(w, t)hpx+t and dividing by h. Taking the limit as h ! 0 then yields

U(w, t)�x(t) �V (w � e�r(⌧p�t)E[EPV], t)�x(t)

+ Ut(w, t) + Uw(w, t)(rw + (µ� r)⇡t) +
1

2
�2⇡2tUww(w, t),
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5. Stochastic mortality modelling for dependent coupled lives

since limh!0
hqx+t

h = �x(t), where �x(t) is the force of mortality of an individual aged x at time
t, as previously defined, and limh!0 hqx+t = 0. Then, since the investment is optimal only if
there exists an equality, (5.4.6a) is obtained as required.

Proposition 5.4.2. The indi↵erence price P (w, t) that should be charged by an insurer with
coe�cient of risk aversion a > 0 and rate of return on investment r > 0, to insure an individual
(x + t) at time t under a reversionary annuity scheme that pays out until the death of the
dependent spouse (y + t), is given by

P (w, t) =
1

a
e�r(⌧p�t) ln

⇣
eaE[EPV](1� e�

R ⌧p
t �x(s)ds) + e�

R ⌧p
t �x(s)ds

⌘
, (5.4.7)

where ⌧p is the remaining lifetime of the insured and E[EPV] is defined as in (5.4.4).

Proof. Assume exponential utility of the form u(w) = �
1
a exp[�aw] for a > 0 and consider

the solution of the HJB equation to be of the form U(w, t) = V (w, t)�(t), as in Young and
Zariphopoulou (2002), where �(⌧p) = 1. Then, by substitution into (5.4.6a),

Vt(w, t)�(t) + V (w, t)�t(t) + rwVw(w, t)�(t)�
(µ� r)2

2�2
V 2
w(w, t)

Vww(w, t)

+ [V (w � e�r(⌧p�t)E[EPV], t)� V (w, t)�(t)]�x(t) = 0,

which reduces to

V (w, t)�t(t) + [V (w � e�r(⌧p�t)E[EPV], t)� V (w, t)�(t)]�x(t) = 0,

as V (w, t) satisfies the HJB equation for the value function under no additional insurance risk
given by (5.4.3a). Since it is possible to show that

V (w � e�r(⌧p�t)E[EPV], t) = V (w, t)⇥ eaE[EPV],

further simplification yields a first order ODE with respect to �(t), which can be solved ex-
plicitly under application of the boundary condition �(⌧p) = 1 such that

�(t) = eaE[EPV](1� e�
R ⌧p
t �x(s)ds) + e�

R ⌧p
t �x(s)ds,

where

e�
R ⌧p
t �x(s)ds = Sx+t(⌧p � t) =

Sx(⌧p)

Sx(t)

and Sx+t(⌧p� t) denotes the probability of the insured individual (x+ t) surviving ⌧p� t more
years.

By the indi↵erence principle, the minimum premium the insurer should charge in order to
insure the individual (x + t) at time t, for a reversionary annuity which pays in arrears from
the moment of death of (x+ t) until the death of (y+ t), is the indi↵erence price P (w, t) which
satisfies

V (w, t) = U(w + P (w, t), t),

where U(w + P (w, t), t) = V (w + P (w, t), t)�(t) by substitution. Then,

P (w, t) =
1

a
e�r(⌧p�t)

· ln�(t),

as required.
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5.5. Numerical example

Observe that the indi↵erence price is independent of the wealth of the insurer. Specification
of an exponential utility enables this desirable property due to the constant absolute risk
aversion incorporated in the optimal investment process. Dependence on risk aversion, however,
cannot be eliminated when applying the indi↵erence principle approach, unlike with Black–
Scholes pricing. Intuitively, this makes sense as it is impossible to completely hedge the risks
priced due to the inexistence of a relationship between tradable assets and the associated
uncertainties in relation to mortality.

Remark 5.4.1. Note that, in the indi↵erence pricing setting, the maximum premium that
the buyer of insurance (x+ t) should be willing to pay is given by solution of the expression

V (w � PB(w, t), t) = U(w, t)

with respect to PB(w, t). This is the indi↵erence price of the insurance buyer. Although un-
realistic, in the event of equivalent risk aversion of insurer and buyer, the indi↵erence prices
P (w, t) and PB(w, t) will be the same in this case, with price increasing with increasing risk
aversion.

Under the assumption of independent lifetimes, the minimum premium to be charged by
an insurer is again in the form of (5.4.7); however, the mortality process incorporated in the
expected present value is unadapted and independent of the mortality intensity of the deceased
spouse, such that

EPVI =

⌧Iq �⌧Ip�1X

s=0

⇣⇣
e
B(s;✓y)�I

y+⌧Ip
(⌧Ip )

� e
B(s+1;✓y)�I

y+⌧Ip
(⌧Ip )

⌘ s+1X

i=1

e�r((s+1)�i)
⌘
,

where ⌧ Ip and ⌧ Iq are the remaining lifetimes of individuals (x) and (y), respectively, and �Iy is
the mortality intensity of (y), given the independence of coupled lives.

Corollary 5.4.1. The di↵erence in premium that the insurer should charge when incorporating
dependence between coupled lives, and thus covering the risk of unexpected claim rates during
the first period of bereavement, is given by

P ⇤(w, t) =
1

a
e�r(⌧p�t)(ln�(t)� e�r(⌧Ip�⌧p) ln�I(t)),

where

�I(t) = eaE[EPV
I ](1� e�

R ⌧Ip
t �I

x(s)ds) + e�
R ⌧Ip
t �I

x(s)ds

and the premium P ⇤(w, t) is the di↵erence between the indi↵erence price for dependent and
independent coupled lives assuming constant risk aversion.

5.5 Numerical example

Having obtained an expression for the indi↵erence price of a reversionnary annuity, numerical
results are presented to illustrate the significance of the dependence assumption. Luciano and
Vigna (2008) calibrate a non-mean reverting CIR (or Feller) process to a number of generations
in the UK population. Comparison of historical Ghanaian life expectancies with those of the
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5. Stochastic mortality modelling for dependent coupled lives

UK populations considered in Luciano and Vigna (2008) alongside the parameter choices of
Jevtić and Hurd (2017), allows for selection of the parameters of the paired mortality processes
considered in this example. Parameters  and ✏ determining the nature of the bereavement
e↵ect were chosen through sensitivity analysis, utilising observations in the Ghanaian dataset
of Section 5.2 to inform the selection. Table 5.1 presents numerical results for the indi↵erence
price of the insurance product for three levels of risk aversion.

Dependent Price Independent Price
a = 2.0 0.8199 1.2005
a = 1.0 0.6953 0.9291
a = 0.1 0.5376 0.5764

Table 5.1: Comparison of indi↵erence price with and without dependence assumption.

For each level of risk aversion in Table 5.1, a reduced indi↵erence price is observed under
the assumption of dependent coupled lives. Increasing the risk aversion coe�cient in order to
compare the risk neutral and risk averse insurance standpoints reveals increasing variation in
the two prices. This should be expected since a risk averse insurer would consider the impact
of dependence on mortality more significantly than a risk neutral insurer, hence charging at
a more extreme rate.

During the simulation process, cases in which insurance priced higher under the depen-
dence assumption were also observed. Due to the large sample size considered, it is also
possible that the di↵erence between death interarrival times of a number of couples is greater
in the dependent case, with not all bereaved spouses experiencing such a significant mortality
jump in relation to the causal nature of broken-heart syndrome. Consideration of potential
improvements in mortality following the loss of a spouse, due to factors such as the stress
associated with caring for an ill partner, supports the occurrence of such findings in reality.
Although limitations on the accurate estimation of parameters due to the size of the data set
may have an influence on the results obtained, observation of the need for a change in price
under the assumption of dependent lives is consistent throughout all simulations.

5.6 Concluding remarks

In this chapter, the existence of short-term dependence between coupled lives in a lower-
middle income country is considered. A stochastic mortality model with non-mean-reverting
Cox–Ingersoll–Ross (CIR) mortality processes of a�ne type is proposed to represent mortality
experience. Observation of a di↵erent pattern of deaths in comparison to the findings of existing
literature prompts suggestion of the existence of socioeconomic influences on the structure of
dependence. Proposal of a CIR type model, defined by a rooted process, fits the nature of the
Ghanaian data set analysed during the investigation. The tempered volatility induced by the
process appears to be more relevant to such a sample than the non-mean-reverting Ornstein
Uhlenbeck mortality processes implemented in previous research.

Reflecting the influence of the loss of a spouse on the remaining lifetime of the surviv-
ing partner, the bereavement e↵ect is defined as an Ornstein–Uhlenbeck process with zero
mean-reversion parameter. The mean-reverting nature of the process captures the classical
features of short-term dependence and allows for improvements in the mortality intensity of
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the surviving spouse to rates above a non-widowed population. This aligns with empirical
research and is therefore more realistic than the assumption of a positive bereavement e↵ect
throughout the remaining bereaved lifetime. Although a couple specific volatility is assumed
within the bereavement process, it is important to note, that when the volatility is common
across a population, the assumption of dependence carries a non-diversifiable risk that should
be considered by insurers.

Through application of the indi↵erence pricing principle, the price at which an insurer is
indi↵erent between taking on the risk of insuring an individual and not taking the risk was
obtained for a reversionary annuity. An expression for the appropriate price change under the
assumption of dependent coupled lives, in comparison to the traditional assumption of inde-
pendence was presented. Although an Ornstein–Uhlenbeck bereavement process appears to fit
the pattern of observed data well, when pricing in the indi↵erence principle setting, an equiv-
alent result is obtained under assumption of a simpler exponential bereavement, with only
the adjusted mortality intensity at the moment of the initial death incorporated in the sur-
vival function. Increasing the sophistication of the bereavement process model is therefore
not essential when applying this pricing method, under assumption of couple specific volatility
parameters. If volatility parameters are population specific, however, redefinition of the ini-
tial adjusted mortality intensity is required in order to obtain a price which accounts for the
non-diversifiable risk.
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Chapter 6

Dependence modelling of paired
lifetimes in Egyptian families

In this chapter, analysis of a large sample of Egyptian social pension data that covers, by law,
the policyholder’s spouse, children, parents and siblings is undertaken. This data set uniquely
enables study and comparison of pairwise dependence between multiple familial relationships
beyond the well-known husband and wife case. Applying Bayesian Markov Chain Monte
Carlo (MCMC) estimation techniques with the two-step inference functions for margins (IFM)
method, dependence between lifetimes in spousal, parent-child and child-parent relationships,
is modelled, using copulas to capture the strength of association. Dependence is observed to
be strongest in child-parent relationships and, in comparison to the high-income countries of
data sets previously studied, of lesser significance in the husband and wife case, commonly
referred to as broken-heart syndrome. Given the traditional use of UK mortality tables in the
modelling of mortality in Egypt, the findings of this chapter will help to inform appropriate
mortality assumptions specific to the unique structure of the Egyptian scheme. This chapter
is based on work submitted to a peer-reviewed academic journal, currently under review, with
data provided, through Dalia Khalil, by the National Authority for Social Insurance of Egypt.

6.1 Introduction

As discussed in Chapters 1 and 5, the existence of dependence between joint lifetimes presents
the need to refine the independence assumption traditionally used in the pricing and reserving
of life insurance products that involve multiple lives and mortality assumptions. Joint lifetime
research in the existing literature largely considers dependence between husband and wife.
Previous research beyond the context of lifetimes paired through marriage includes the study
of dependence in disease incidence among fathers and sons (Clayton, 1978), lifetime dependence
and disease heritability in adult twins (Hougaard et al. 1992; Wienke et al. 2002; van den Berg
and Drepper 2022, (Denmark); Iachine et al. 1998; Lichtenstein et al. 2000, (Denmark, Sweden,
Finland)), where there is a large genetics literature, and familial dependence and its impact
on child mortality among siblings (Zenger 1993, (Bangladesh); Guo 1993, (Guatemala); Sastry
1997, (Brazil)). However, the implications for insurance are not specifically considered in these
works.

In this chapter, dependence between the lifetimes of multiple family members is therefore
assessed for the first time on this scale and in this socioeconomic context. Pairwise dependence
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between the lifetimes of husband, wife, son, daughter, father and mother is considered through
analysis of Egyptian pension data. Dependence within these relationships spans each of the
three classifications of dependence presented in Chapter 1.

Socioeconomic influences on determinants of an individual’s lifetime, including living cir-
cumstances, health, education, religious beliefs and the associated approaches to bereavement
and loss are widely accepted. Yet the study of dependence and its impact on insurance is
limited to high-income countries. Given that many low and lower-middle income countries
rely on mortality tables from high-income countries for the pricing of their mortality-based
products, it is critical to know whether patterns observed in samples from countries such as
the UK and Canada can also be seen in di↵erent socioeconomic environments. In Chapter 5, a
coupled stochastic mortality model with a tempered volatility is proposed to reflect the impact
of close familial and community structures in low-income countries on the severity of broken-
heart syndrome. Findings in this chapter provide evidence in support of the propositions of
Chapter 5, where a Ghanaian data set is considered.

Di↵erences in familial structures across socioeconomic environments are highlighted by
the structure of the Egyptian social pension scheme. In the event of a policyholder’s death,
social pension schemes typically pay out to a spouse or child, however, in Egypt, siblings and
parents are also listed as beneficiaries (see Section 6.2 for details). This policy aligns with
the fact that children often live with their parents until marriage, and for male children, even
after marriage in some cases. In addition, many families remain financially dependent on the
main income provider or breadwinner, typically the father or eldest son. Emotional ties and
living circumstances that influence dependence between family members are strongly reinforced
by such traditions and norms. Wide age di↵erences in marital relationships, polygamous
partnerships and large families are further features of the environment that may change the
strength of dependence in comparison to the samples considered in previous studies.

This chapter contributes to the dependence literature by expanding the study of depen-
dence within marital relationships through analysis of a large data set in a previously unstudied
socioeconomic context. The study focuses on male policyholders and their beneficiaries, assess-
ing the impact of the death of a father or son, i.e. the main income provider, on the lifetimes
of their relatives. Five samples are included in the analysis, where each sample considers
a di↵erent relationship. Samples are collected from the Egyptian social pension scheme for
pensioners covered under the General Social Insurance System (Law 79, 1975), a compulsory
scheme with two funds, covering the government sector and the public and private sectors,
respectively. Throughout the chapter, those covered by the pension scheme will be referred to
as the policyholder or pensioner and the beneficiaries.

Copula-based analysis is used to capture the dependence between the lifetimes in each
relationship. Comparisons are made between four Archimedean copulas, in line with the
widespread use of the Archimedean family in the modelling of bivariate lifetimes. As in
Dufresne et al. (2018), the Clayton, Frank, Gumbel and Joe copulas are assumed. Copula
dependence parameters determining the level of association between two lifetimes are esti-
mated using the two-step inference functions for margins (IFM) method. In each of the five
samples, the marginal distribution parameters are first estimated independently, before esti-
mation of the copula dependence parameter. All marginal distributions are fitted with the
informative reparametrised Gompertz law (Carriere, 1992, 1994).

For parameter estimation, the Bayesian Markov Chain Monte Carlo (MCMC) Metropolis-
Hastings (MH) algorithm is implemented. Classical estimation techniques such as maxi-
mum likelihood estimation (MLE) provide point estimates of unknown parameters. However,
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Bayesian MCMC algorithms treat the unknown parameters as random variables and derive
estimates of their distribution using random sampling techniques, thus capturing parameter
uncertainty. MCMC methods enable inclusion of prior parameter information and reduce the
risk of obtaining local rather than global maxima or minima when random walk sampling
is not used, a benefit particularly useful for high-dimensional problems. Computation time
can however be high for problems with many parameters and complex likelihood functions in
comparison to MLE. For a more detailed discussion of the workings of MCMC, the interested
reader may refer to Robert and Casella (1999), Roberts and Rosenthal (2004) and van Raven-
zwaaij et al. (2018). In the analysis of this chapter, all MCMC results are compared with MLE
point parameter estimates.

Bayesian MCMC techniques are well-used in the literature on copula-based dependence
analysis. Huard et al. (2006) and Silva and Lopes (2008) adopt Bayesian analysis to study
copula selection criteria, reparameterising the problem such that the prior distribution is on
the Kendall’s tau correlation coe�cient rather than the copula parameter. Comparison of one
and two-step Bayesian estimation techniques is made in Silva and Lopes (2008) and Ausin and
Lopes (2010). Almeida and Czado (2012) use MCMC sampling to estimate parameters of a
stochastic copula autoregressive model with time-varying dependence, again reparametrising
to estimate Kendall’s tau. A common approach in the copula literature, this reparametrisation
enables clear comparison of dependence across copula families by unifying the domains of the
estimated dependence parameters. Following the IFM two-step method with MH in the second
step, Thongkairat et al. (2019) observe a more accurate estimation of mixed copula models
when using Bayesian rather than ML estimation. MCMC methods have also been applied in
problems including claim reserve and loss prediction (de Alba, 2002; Ntzoufras and Dellaportas,
2002; da Rocha Neves and Migon, 2007; Hong and Martin, 2017); survival analysis (Arjas
and Gasbarra, 1996, use a coupled MH algorithm with joint prior distribution to account for
stochastic ordering with known di↵erences in the lifetimes of samples) and mortality modelling
(Czado et al., 2005; Cairns et al., 2011; Antonio et al., 2015; Li and Lu, 2018; Fung et al., 2019).
For a non-exhaustive list of early use of MCMC techniques in actuarial modelling, see Scollnik
(2001).

The remainder of the chapter is organised as follows. In Section 6.2, the data set is intro-
duced and empirical correlation measures for the five samples presented. Section 6.3 describes
the Gompertz survival model and the copula models used for dependence estimation. The
MCMC algorithm is introduced in Section 6.4 and the IFM method in Section 6.5. Results are
presented in Section 6.6 and concluding remarks in Section 6.7.

6.2 Data set

Between 1975 and 1980, a number of fundamental laws were issued to ensure coverage of all
working Egyptian citizens, both inside and outside of Egypt. These laws provide compulsory
coverage for employees in government, public and private sectors (Law 79, General Social Insur-
ance System, Egyptian Social Insurance and Pension (1975)), pay-as-you-go (PAYG) coverage
for employers and the self-employed (Law 108, Egyptian Social Insurance and Pension (1976)),
regulation of the voluntary social insurance system for Egyptians working abroad (Law 50,
Egyptian Social Insurance and Pension (1978)) and PAYG coverage for all working individu-
als excluded under the three aforementioned laws (Law 112, Comprehensive Social Insurance
System, Egyptian Social Insurance and Pension (1980)). Each law covers beneficiaries against
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old age, disability and death. The data analysed in this chapter consists of lifetime data for in-
dividuals covered by Law 79, i.e. those working in the government, public and private sectors.
Law 79 is a defined benefit system that provides additional benefits including injury at work,
health, unemployment and social patronage insurance, which o↵ers benefits such as provision
of housing and monetary discounts. Law 79 was restructured under Law 148 in 2019 to cover
all four social security laws. Although no significant changes were observed, in this study, only
Law 79 is relevant.

The laws determining the structure of the Egyptian social security system reflect the na-
ture of living circumstances within families in Egypt. The Egyptian social pension scheme
is designed to provide benefits to participating workers when they become of pension age,
where contributions are made by the worker throughout their employment. A worker exits
the scheme through death, partial permanent disability, total disability, or reaching retirement
age, where retirement age is to be increased from 60 (Egyptian Social Insurance and Pension,
1975, Section 18(3)) to 65 in 2040, in line with Section 41 of Egyptian Social Insurance and
Pension (2019).

Following the death of a pensioner, benefits are distributed among their beneficiaries. By
law, beneficiaries are defined as the widow or widower, sons, daughters, parents, brothers
and sisters (Egyptian Social Insurance and Pension, 2019, Section 98). Payments cease and
beneficiaries exit the scheme through, for example, death, marriage for a widow, daughter or
sister, and reaching age 21 for a son or brother, except for those incapable of earning, students
not yet aged 26 and unemployed, university degree holders not yet aged 26 and unemployed and
those with lower-level qualifications not yet aged 24 (Egyptian Social Insurance and Pension,
2019, Section 105). In the event an individual is listed as a beneficiary of multiple policyholders,
they receive only one benefit. The order in which the selected benefit is received is: personal
pension, spouse’s pension, parents’ pension, son’s pension, brother or sister’s pension (Egyptian
Social Insurance and Pension, 2019, Section 102).

Data for this analysis was collected from the Social Egyptian Pension scheme, with an
observation period of 10 years, from 2010 to 2019. A pair is included in the data set only if
the policyholder dies within the observation period. The observed distribution of the survival
time of the policyholder is therefore conditional on their death within this period. The sample
consists of 20,863 male pensioners (the policyholders) and their dependents, where dependents
are either a spouse, parents, sons or daughters. On average, the male policyholder dies at age
62.9, with 80% dying between the ages of 53 and 74. Further descriptive statistics for the full
sample are given in Table 6.1.

Count
10th

Quantile
25th

Quantile
50th

Quantile
75th

Quantile
90th

Quantile
Mean SD

20683 53 57 62 68 74 62.9 8.6

Table 6.1: Descriptive statistics of the male pensioners.

Classifying the data according to the pensioner-beneficiary relationship, five samples are
observed. Specifically, Husband & Wife (H,S), Father & Son (F,S), Father & Daughter (F,D),
Son & Father (S,F) and Son & Mother (S,M). The most commonly studied relationship in the
existing literature, the husband and wife sample contains 19,475 males and 19,937 females. The
discrepancy in size indicates instances of polygamy, where the law in Egypt permits one man
to have up to four wives. Participation in such a relationship could be a determinant of the
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6. Dependence modelling of paired lifetimes in Egyptian families

strength of dependence between husband and wife. However, although an interesting feature
in the Egyptian social context and one that does not appear among the subjects of previous
research in this area, due to the small sample size (462 duplicated husbands) polygamous
relationships are removed, such that only one spouse beneficiary is considered. Average entry
ages are approximately 58 and 50.5 for husbands and wives, respectively, with corresponding
deaths at ages 62.6 and 65. Of the 19,937 wives in the sample, just 955 (4.79%) died within
the 10-year observation period.

76 sons (0.56%) and 57 daughters (0.40%) exited the observation due to death, where
13,655 father-son and 14,274 father-daughter relationships were included in the sample. The
average ages at death of these beneficiaries were just 28 and 36, respectively. Son-father and
son-mother constitute the smallest observed samples, with 218 son-father relationships and
1067 son-mother relationships. Since the data is from a pension scheme, age at entry and age
at death of the child in child-parent relationships are relatively high in comparison to parent-
child relationships. However, within the child-parent samples, in comparison to the average
age at death of the parent the average age at death of a son is low. This is likely due to the
fact that only policyholders that die within the observation period with a parent that is still
alive are included in these samples. As such, pensioner sons dying at older ages outside of
this period and those who have already lost the relevant parent are not accounted for. Full
summary statistics for all five samples are provided in Table 6.2.

Sample Count
10th

Quantile
25th

Quantile
50th

Quantile
75th

Quantile
90th

Quantile
Mean SD

(H
,W

) Husband
Entry 19475 49 52 57 63 68 58.02 8.03
Death 19475 53 57 62 68 73 62.57 8.27
Death⇤ 955 56 61 66 73 79 67.02 8.92

Wife
Entry 19937 39 44 50 57 62 50.52 9.13
Death 955 53 59 65 71 77 64.92 9.46

(F
,S
) Father

Entry 13655 47 50 53 58 63 54.07 7.01
Death 13655 50 53 57 62 67 57.99 7.19
Death⇤ 76 51.5 54 58 65.25 78.5 61.22 11.16

Son
Entry 13655 6 10 15 18 22 14.47 7.16
Death 76 16.5 19.75 23.5 35.25 51 28.34 16.16

(F
,D

) Father
Entry 14274 47 50 55 61 67 56.17 8.55
Death 14274 51 54 59 65 71 60.17 8.7
Death⇤ 57 52.6 60 64 73 88 67.3 12.88

Daughter
Entry 14274 6 11 16 23 31 17.52 10.39
Death 57 19 25 33 41 58.4 36.12 14.66

(S
,F
) Son

Entry 218 43 48 51 55 58 49.84 8.06
Death 218 45.7 50 54 58 61.3 53.14 8.23
Death⇤ 119 49 51 55 58 61 54.67 5.13

Father
Entry 218 68 74 78 83 86 77.35 8.23
Death 119 78 82 86 89 92 85.71 5.71

(S
,M

) Son
Entry 1067 44 48 52 56 60 51.58 7.43
Death 1067 47 51 56 60 64 55.16 7.56
Death⇤ 429 49 53 57 60 65 56.61 6.39

Mother
Entry 1076 66 71 76 81 85 75.67 8.33
Death 429 76 80 85 89 93 84.63 7.16

Table 6.2: Descriptive statistics for age at entry (Entry) and age at death (Death) for each of the five samples.
“Death⇤” gives the descriptive statistics for policyholders whose beneficiaries have also died.
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6.2. Data set

Sample Count Pearson Spearman Kendall

(H
,W

) Xh >Xw 807 0.819 0.817 0.659
Xh  Xw 148 0.905 0.911 0.767
Total 955 0.769 0.771 0.604

Table 6.3: Empirical dependence measures for the husband and wife sample split by the sex of the elder spouse,
where Xh represents the lifetime of the husband and Xw the lifetime of the wife.

Empirical dependence measures for the relationships in each sample are provided in Table
6.4. Here, the Pearson, Spearman and Kendall’s tau correlation coe�cients for the lifetimes
of each pair are calculated. Note that in obtaining these measures only pairs in which both
members die within the observation period are considered.

Age di↵erences among married couples vary significantly in the data. The sample is there-
fore split by age di↵erence (d) to test whether there is an observed impact in the respective
correlations, where a positive age di↵erence indicates that the policyholder is the elder mem-
ber of the pair. In the husband and wife data set, correlation measures are also provided for
samples split by the sex of the elder spouse (Table 6.3). Although the minimum age di↵erence
between husband and wife is 0 years and the maximum 59 years, 80% of the sample di↵er in
age by between 1 and 15 years, where the husband is the elder spouse. While the impact of
age di↵erence may be less significant in parent-child relationships, comparison is also made in
these cases.

High positive correlation is observed between the lifetimes of husband and wife, father
and son, father and daughter, and son and father. Correlation decreases with increasing age
di↵erence in each of the four samples in line with the results for spousal dependence in the
literature (Youn and Shemyakin, 1999; Dufresne et al., 2018). In contrast, correlation between
the lifetimes of son and mother increases with increasing age di↵erence, indicating a greater
reliance of mother upon son with age. Although the two sample sizes are not comparable,
couples in which the wife is the elder spouse exhibit an increased correlation, aligning with the
findings of asymmetric mortality experience in Lu (2017) and Dufresne et al. (2018).

The distribution of age di↵erence and survival time within each of the samples is presented
in Figure 6.1. Increased correlation between lifetimes in child-parent relationships can also
be observed in the survival time distribution plots, with a greater proportion of bereaved
deaths occurring in the early years of bereavement, specifically years 2 and 3. This trend
also appears with less significance in the husband and wife data set, however in both parent-
child relationships, the association between survival probability and years since bereavement
is less clear. This perhaps aligns with their fairly small sample sizes. The father-son sample
experiences a gradual increase in mortality, which falls after the fifth year of bereavement,
while the father-daughter sample experiences the same year three peak as observed in the
three other samples, with an additional peak much later in the bereavement. In comparison
to the data set of Chapter 5, lifetime dependence is of much greater initial significance in the
full Ghanaian data set presented in Figure 5.2, with 17.86% of the sample dying across the
first and second years of bereavement. In the Egyptian data set presented here, the impact of
losing a spouse appears to be delayed.
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Figure 6.1: Age di↵erence and survival time distributions for all samples.
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6.3. Model description

Sample Count Pearson Spearman Kendall

(H
,W

) 0  d <4 288 0.946 0.942 0.819
4  d <8 343 0.899 0.881 0.742
d � 8 324 0.776 0.803 0.655

(F
,S
) 18  d <35 28 0.962 0.923 0.771

d � 35 48 0.892 0.779 0.647
Total 76 0.881 0.781 0.610

(F
,D

) 18  d <35 31 0.971 0.924 0.834
d � 35 26 0.916 0.825 0.688
Total 57 0.871 0.771 0.621

(S
,F
)

18  d <25 34 0.891 0.871 0.743
25  d <35 74 0.876 0.742 0.597

d � 35 11 0.758 0.704 0.594
Total 119 0.544 0.513 0.385

(S
,M

)

18  d <25 222 0.820 0.775 0.618
25  d <35 181 0.842 0.822 0.654

d � 35 26 0.932 0.943 0.832
Total 429 0.612 0.575 0.425

Table 6.4: Empirical dependence measures for each of the five samples, split by age di↵erence d.

6.3 Model description

In this section, the survival and copula models for dependence are presented. As in Chapter
5, let (x) denote an individual aged x. Then, the survival function of (x) is again defined by
(5.3.1), such that

Sx(t) = P(⌧x > t),

where ⌧x is the remaining lifetime of (x) given their survival to age x and X denotes the
remaining lifetime of an individual at birth.

Many mortality models exist and are implemented in the literature. For the purpose
of this study, Gompertz’s law of mortality is adopted. Gompertz’s law is a classical model
of mortality experience first proposed in Gompertz (1825) which states that after a given
age, the logarithm of mortality intensity is a linear function of age. The law is specified to
reflect mortality behaviours above a su�ciently high level (observed to be approximately 30
years of age), the suitability of Gompertz’s law for old-age mortality is however also widely
debated. Many studies argue the existence of a deceleration in the increase in mortality at
the highest ages (above approximately 80-90 years), with mortality observed to curve away
from the Gompertzian trend and to plateau at very high ages, see, for example, Thatcher et al.
(1998) and Thatcher (1999). However, more recently, developments in the reporting of age and
mortality data have been proposed as improvements that could contest the non-Gompertzian
nature of old-age mortality, see, for example Gavrilov and Gavrilova (2019).

In line with this ongoing debate, extensions of the classical Gompertz model and alternative
mortality models have been developed to allow for flexibility in the modelling of mortality
behaviours. The simplest extension of the Gompertz model is the Gompertz-Makeham model
(Makeham, 1860, 1867), where the addition of a constant term is introduced to capture age-
independent mortality. Willemse and Koppelaar (2000) and Willemse and Kaas (2007) propose
generalisations of the Gompertz distribution in the context of frailty-based mortality models,
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6. Dependence modelling of paired lifetimes in Egyptian families

extending the model beyond classical age dependent considerations. In more recent work,
El-Gohary et al. (2013) propose an alternative generalised Gompertz distribution that allows
for flexibility in the specification of the hazard rate to overcome the monotonic requirement
of the Gompertz hazard function. Li et al. (2021) alternatively capture the old-age mortality
curvature and plateau through proposition of a multi-factor exponential model based on the
approximation of mortality measures with Laguerre functions. For a thorough overview of
mortality models and their suitability for capturing the mortality experience of di↵erent age
ranges, see, for example, Booth and Tickle (2008) and the references therein.

With the exception of survival data in the son and daughter samples, Table 6.2 shows that
age at entry largely lies within the Gompertz range. As such, the marginal distributions of
the individuals studied in this analysis are assumed to follow the Gompertz law. MCMC (see
Section 6.4) relies on the idea that the Markov chain describing the transient behaviour of
the parameters accepted by the algorithm converges to its stationary distribution after a su�-
cient number of iterations, where the stationary distribution resembles the desired probability
distribution of the estimated parameters. For the small samples of sons and daughters with
ages largely outside of the Gompertz range, inaccurate estimates and thus greater parameter
uncertainty are more likely to appear. This is exemplified in the results of Table 6.7 and is
further noted in the discussion of Figure 6.3. However, the parameter distribution obtained
in the first IFM step captures this uncertainty. Sampling from this distribution to estimate
the marginal parameters for the second IFM step paired with the assumed convergence of the
Markov chain to its stationary distribution therefore mitigates the significance of errors in
the marginal estimation. Future work could involve fitting a more appropriate model for the
age range of child beneficiaries. In addition, while the simple construction of the Gompertz
model provides a good starting point for the exploration of mortality experience, it would be
interesting to consider the impact on the dependence results of fitting a more comprehensive
model of mortality.

The force of mortality �x and survival function S(x) associated with X are given by

�x = Bcx and S(x) = exp

✓
�

B

ln c
(cx � 1)

◆
,

respectively, for all samples, where B > 0, c > 1 and x � 0. Reparametrising the Gompertz
law such that the estimated parameters are informative (Carriere, 1992, 1994), let

e
�m
� =

B

ln c
and e

1
� = c,

where m > 0 is the modal density and � > 0 the dispersion of the density about the mode.
Then,

�x+t =
1

�
exp

✓
x+ t�m

�

◆

and

tpx = exp
⇣
e

x�m
� (1� e

t
� )
⌘
, (6.3.1)

where tpx = P(X > x+ t|X > x) = S(x+t)
S(x) .

The probability that (x) dies at a given time t, i.e. the probability density function of the
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remaining lifetime of (x), is then derived by

fx(t) = tpx�x+t.

Copulas are widely used across a broad set of disciplines for the study of dependence
between random variables. Since this chapter focuses on the estimation of dependence between
two lifetimes, bivariate copula functions will be used throughout the analysis. (Bivariate)
copula functions are defined as in Definition 6.3.1:

Definition 6.3.1. A copula function is a bivariate function C : [0, 1]2 ! [0, 1] that satisfies
the following three properties:

1. C(u, 0) = C(0, v) = 0 for every u, v 2 [0, 1].

2. C(u, 1) = u and C(1, v) = v for every u, v 2 [0, 1].

3. For every u1, u2, v1, v2 2 [0, 1] with u1  u2 and v1  v2,

C([u1, v1]⇥ [u2, v2]) = C(u2, v2)� C(u1, v2)� C(u2, v1) + C(u1, v1) � 0.

First introduced by Sklar (1959), copula functions provide a link between the marginal
and bivariate distributions of two random variables, thus facilitating tractable analysis of the
associated dependence structures. The structure of this link (or coupling), is illustrated in
Theorem 6.3.1.

Theorem 6.3.1 (Sklar’s theorem (Sklar, 1959)). Let H be a joint distribution function with
univariate marginal distribution functions F and G. Then there exists a copula C such that
for all x, y 2 R,

H(x, y) = C(F (x), G(y)). (6.3.2)

On the other hand, for any univariate marginal distribution functions F and G and any copula
C, the function H in (6.3.2) is a joint distribution function with marginals F and G. In
addition, if F and G are continuous, then C is unique. Otherwise, C is uniquely determined
on RanF⇥RanG, where Ran denotes the range of the distribution.

Definition 6.3.1 and Theorem 6.3.1 can be extended for definition of multivariate copulas
of dimension greater than two. Details of these extensions and a thorough discussion of copula
families, their definitions and properties are provided in Nelsen (2006).

The Archimedean copula family is a class of copulas well-used in the modelling of bivari-
ate survival functions due to their analytical tractability and their relation with informative
measures of association, such as Kendall’s tau. Copulas in the Archimedean family are partic-
ularly useful in high-dimensional studies as they facilitate the modelling of dependence with
a single parameter. In addition, in their theoretical study, Genest and Kolev (2021) introduce
an extension of the law of uniform seniority to two dependent lives, proving that for a bilin-
ear averaging function, paired lifetimes exhibit Archimedean dependence and have marginal
distributions from the same scale family. In two dimensions, Definition 6.3.2 holds.
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6. Dependence modelling of paired lifetimes in Egyptian families

Definition 6.3.2. Let � : [0, 1] ! [0,1) be a continuous, strictly decreasing and convex
function such that �(1) = 0 and let

�[�1](t) =

(
��1(t), if 0  t  �(0)

0, if t � �(0)

be the pseudo-inverse of the copula generator function �. Then,

C(u, v) = �[�1](t)(�(u) + �(v)),

for u, v 2 [0, 1], is an Archimedean copula.

The analysis in the remainder of this chapter focuses on the Clayton, Frank, Gumbel and
Joe copulas. Details of the structure of each copula are given in Table 6.5, where all copulas
are single parameter models and ↵ is the dependence parameter to be estimated.

Copula Generator Domain

Clayton (u�↵ + v�↵
� 1)�1/↵ t�↵

� 1 ↵ > 0

Frank �
1
↵ ln

⇣
1 + (e�↵u�1)(e�↵v�1)

(e�↵�1)

⌘
� ln

⇣
e�↵t�1
e�↵�1

⌘
↵ 6= 0

Gumbel exp
�
�[(� ln(u))↵ + (� ln(v))↵]1/↵

 
(� ln(t))↵ ↵ > 1

Joe 1� [(1� u)↵ + (1� v)↵ � (1� u)↵(1� v)↵]1/↵ � ln(1� (1� t)↵) ↵ > 1

Table 6.5: Copula function, generator and domain for the Clayton, Frank, Gumbel and Joe Archimedean
copulas.

To improve the interpretability of the results, estimates of the Kendall’s tau correlation
coe�cient given the dependence parameter estimate for each copula are also provided in Section
6.6. Table 6.6 presents the corresponding relationship for each copula.

Kendall’s tau

Clayton ↵
↵+2

Frank 1 + 4
↵ (D1(↵)� 1)

Gumbel ↵�1
↵

Joe 1 + 4
↵2

R 1
0 t log(t)(1� t)2(1�↵)/↵dt

Table 6.6: Kendall’s tau correlation coe�cient as a function of the copula dependence parameter ↵, where
D1(x) = x�1

R x

0
t(et � 1)�1dt is the Debeye function of order 1.

To fit the copulas in Table 6.5 to the Egyptian pension data set of Section 6.2, let ⌧x1 and ⌧x2

denote the remaining lifetimes of the first (pensioner) and second (beneficiary) member of each
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pair, respectively, given their current ages x1 and x2. Then, by Sklar’s theorem Sklar (1959),
if ⌧x1 and ⌧x2 are positive and continuous, there exists a unique copula C : [0, 1]2 ! [0, 1] that
describes the joint distribution function of the bivariate pair of random variables (⌧x1 , ⌧x2),
such that

P(⌧x1  t1, ⌧x2  t2) = C(F⌧x1
(t1), F⌧x2

(t2)),

where F⌧x1
(t1) and F⌧x2

(t2) are the marginal distribution functions of ⌧x1 and ⌧x2 , respectively.
The joint survival function of (⌧x1 , ⌧x2) is similarly given by

P(⌧x1 > t1, ⌧x2 > t2) = C̃(S⌧x1
(t1), S⌧x2

(t2))

= S⌧x1
(t1) + S⌧x2

(t2)� 1 + C(F⌧x1
(t1), F⌧x2

(t2)).

Considering marginal distributions conditional on survival to observation means that life-
times are coupled at the beginning of the observation period. Coupling lifetimes at an earlier
date would infer the existence of dependence prior to the observation. In the husband and wife
case, date of marriage would therefore be an appropriate starting point, however this data is
not readily available. Similarly, coupling from the date of birth of the child would be relevant
in the parent-child and child-parent relationships, however for consistency, in this chapter,
coupling is assumed from the outset of the observation for all samples.

6.4 Metropolis-Hastings MCMC

Model parameters are estimated using Bayesian Markov Chain Monte Carlo (MCMC) tech-
niques. Through this approach, Bayes’ theorem is used to update the conditional probability
of an event given some known information, as more information is obtained. Given a sample
of observed data y 2 Rn, with distribution p(y,✓), Bayes’ theorem states that

p(✓|y) =
p(y|✓)p(✓)

p(y)
=

p(y|✓)p(✓)R
p(y|✓)p(✓)d✓

,

where ✓ is the vector of parameters to be estimated. Since p(y) does not change with ✓, it
holds that

p(✓|y) / p(y|✓)p(✓). (6.4.1)

The posterior distribution p(✓|y) which describes the distribution of the parameters given
the observed data is therefore proportional to the product of the likelihood p(y|✓) and the
prior distribution of parameters p(✓). Analytical and numerical analysis of the normalising
constant p(y) is however largely intractable in higher dimensions, enforcing restrictions on full
estimation of the posterior.

MCMC methods provide algorithms for constructing Markov chains with stationary dis-
tributions replicating that of the posterior. Ensuring convergence to the target distribution,
these Markov chains are ergodic and stationary with respect to the posterior distribution (see
Appendix C). As such, the state of the chain after a su�cient number of steps can be used
to approximate the target distribution, the quality of which increases with the number of it-
erations. Early chain values are highly dependent on the initial value of the chain due to the
Markovian nature of the algorithm and are thus typically discarded. Through estimation of
(6.4.1), MCMC algorithms enable random sampling from any probability distribution defined
up to a normalisation factor, thus eliminating limitations associated with integral evaluation.
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The Metropolis-Hastings (MH) MCMC algorithm (Robert and Casella, 1999) proposes a
simple method for constructing such a Markov chain (Xt)t�0 on the state space of the posterior
distribution, where Xt 2 Rd for a parameter vector of dimension d. The algorithm explores
the state space of the posterior, progressively constructing an approximation of the target
distribution. To implement the algorithm, a proposal kernel q(✓0

|✓) must first be selected
as the distribution from which potential parameters are sampled. This kernel describes the
probability of transitioning to a new point in space ✓0 given the chain is currently in state ✓
and thus describes the movement of the Markov chain. Once specified, the algorithm proceeds
as follows:

• Initalise, i.e. X0 = ✓0.

• For t = 1, 2, ..., N

– Sample the proposal ✓0
2 Rd for ✓t from q(✓0

|✓t�1).

– Compute

A = min
⇣
1,

p(✓0
|y)q(✓t�1|✓0)

p(✓t�1|y)q(✓0
|✓t�1)

⌘
,

where A defines the acceptance probability.

– Draw u ⇠ U(0, 1). If U < A, accept the proposal, fixing ✓t = ✓0. Else, fix ✓t = ✓t�1.

Note that if the proposal kernel is specified such that it is symmetric in distribution, the
acceptance probability simplifies to

A = min
⇣
1,

p(✓0
|y)

p(✓t�1|y)

⌘
,

since q(✓|✓0) = q(✓0
|✓) for all ✓,✓0.

In the analysis of this chapter, a normal proposal distribution is selected such that ✓0 =
Xt +N(0,�), where � is the standard deviation (step-wise) parameter selected by the user to
ensure su�cient exploration of the parameter space. Due to the inclusion of the noise term,
such a proposal is referred to as a random walk proposal. Prior distributions in all simulations
undertaken in the estimations of this study are assumed to be non-informative Uniform priors.

The proportion of parameters sampled from the proposal distribution that are accepted by
the MH algorithm is the acceptance rate. This measure is used to assess the e�ciency of the
algorithm, with an acceptance rate of 0.234 considered optimal (Gelman et al., 1997). The
integrated autocorrelation (IAT) score is a further indicator of the robustness of an MCMC
simulation. The IAT estimates the number of iterations, on average, needed for an independent
sample to be drawn. When running the analysis, an estimate was therefore selected if the
acceptance rate of the chain was su�ciently close to the optimal level and if the associated
IAT score was low. For the purpose of this study, parameter estimates are given by the mean
of the estimated probability distributions.

The standard error of the MCMC sampler is given by

� =

r
IAT

N
�̂,

where N is the number of iterations of the MCMC algorithm and N
IAT the e↵ective sample size,

which provides an estimate of the sample size required to achieve the same level of precision
as if the sample was a random sample.
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6.5 Inference functions for margins

The inference functions for margins (IFM) approach of Joe and Xu (1996) is adopted to
specify the likelihood function for maximisation. Use of IFM for dependence estimation in
copula-based models in the actuarial literature has been observed in studies including those by
da Silva Filho et al. (2012) and Brechmann et al. (2013) for dependence between international
financial markets, Krämer et al. (2013) and Lee and Shi (2019) for dependence between the
number and size of insurance claims and Wang et al. (2015), Lin et al. (2015) and Dufresne
et al. (2018) for dependence in mortality models. IFM for estimation of dependence between
mortalities modelled with a�ne processes, as in Chapter 5, is also implemented by Xu et al.
(2020). For a d-dimensional multivariate distribution, IFM involves first estimating vectors
of marginal distribution parameters ✓1, ...,✓d, then substituting the marginal estimates to
maximise the associated likelihood function for the parameters of the joint distribution, which
is given by

L(↵,✓1, ...,✓d) =
NY

i=1

f(xi;✓1, ...,✓d,↵),

where xi is the observed data, ↵ the vector of parameters of the joint distribution and, for
joint distributions captured with copula-based models,

f(xi;✓1, ...,✓d,↵) = c(F1(x1;✓1), ..., Fd(xd;✓d);↵)
dY

j=1

fj(xj ;✓j),

where c(F1(x1;✓1), ..., Fd(xd;✓d);↵) is the copula density and fj(xj ;✓j) the marginal density
for variate j. Splitting parameter estimation in this way is particularly useful for reducing
computation time for multivariate problems in which large numbers of parameters are to be
estimated.

Following this two-step approach, two sets of parameter pairs, ✓1 = (m1,�1) and ✓2 =
(m2,�2), are estimated for the marginal distributions in each of the five samples, where sub-
scripts di↵erentiate between the first and second members of each pair. The univariate likeli-
hood for estimation of ✓k, where k = 1, 2 is given by

L(✓k) =
NY

i=1

[cik
pxi

k
(✓k)]

1��ik [fxi
k
(tik,✓k)]

�ik , (6.5.1)

where N is the number of pairs in the sample and xik, t
i
k and cik the age at entry, remaining

lifetime and censoring point of member k of pair i, respectively, where the censoring point
marks the time between entry into the sample and the terminal time of the observation, such
that �ik = 1

{tikcik}
. The remaining lifetime of an individual (xik) in the observed period is then

min(tik, c
i
k). Inclusion of the censoring point and conditioning on an individual’s survival to

their age at entry ensures left truncation and right censoring in the data are accounted for.

In estimating the dependence between lifetimes, the survival time is the variable of inter-
est. As such, the likelihood function for estimation of the copula dependence parameters is
constructed in relation to the joint survival function C̃(ui, vi), where

ui = S⌧
xi1
(ti1)|✓̂1 and vi = S⌧

xi2
(ti2)|✓̂2

,
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for member 1 and member 2 marginal estimates ✓̂1 and ✓̂2, respectively. Having obtained the
parameter estimates for the marginal distributions of each pair, copula dependence parameters
are estimated through maximisation of the following likelihood function:

L(↵) =
NY

i=1

"
@2C̃↵(ui, vi)

@ui@vi

#�i1�i2"
@C̃↵(ui, vi)

@ui

#�i1(1��i2)
"
@C̃↵(ui, vi)

@vi

#(1��i1)�
i
2

[C̃↵(ui, vi)]
(1��i1)(1��i2).

(6.5.2)
The four terms in (6.5.2) correspond to the likelihood of the death of both (xi1) and (xi2), the
death of (xi1) and survival of (xi2), the survival of (xi1) and death of (xi2), and the survival of
both (xi1) and (xi2), respectively, where

@C̃↵(ui, vi)

@ui
= P(⌧xi

2
> ti2|⌧xi

1
= ti1)f⌧xi1

(ti1) (6.5.3)

and
@2C̃↵(ui, vi)

@ui@vi
= f⌧

xi1
,⌧

xi2
(ti1, t

i
2).

The partial derivative of C̃(ui, vi) with respect to vi is analogous to (6.5.3). Given that all
pensioners die within the observation period, for the data considered in this study, (6.5.2)
reduces to the product of only the first and second terms.

When presenting the results in Section 6.6, labels k = 1, 2 will be replaced by labels
corresponding to the identity of each family member. The likelihood functions (6.5.1) and
(6.5.2) are also used in the comparison of the MCMC estimation with MLE. In this case,
the standard error of the parameter estimates is calculated via the inverse of the Information
matrix I(✓), where I(✓) = �E[H(✓)], the negative of the expected value of the Hessian matrix.

6.6 Results

Table 6.7 displays the MCMC and MLE marginal parameter estimation results, with accep-
tance rate, IAT score and standard error (SE) as defined in Section 6.4. Note that in all cases,
MCMC and MLE produce almost the same results. Standard errors are generally low for both
estimation techniques but are lower when MCMC is used. In all samples, the modal age at
death of the beneficiary is greater than that of the pensioner. In the husband and wife case, this
reflects the higher life expectancy of females. Modal age at death is particularly high among
beneficiaries in the son and father, and son and mother samples. This observation could be
due to the fact that here, the parent is alive at the time of the child’s (pensioner’s) death and
so may already be of high age. Each of the marginal estimates may also be influenced by the
level of censoring, with many survivors observed relative to the respective sample sizes (see
Table 6.2). The e↵ect of censoring and the associated small sample sizes can also be seen in
the IAT score, with Markov chains corresponding to samples with fewer data points exhibiting
higher scores.

Comparison between the non-parametric Kaplan-Meier distribution and the Gompertz dis-
tribution obtained from the survival function in (6.3.1) with MCMC parameters as in Table
6.7 is made in Figure 6.2. Note that in all cases, the Gompertz and Kaplan-Meier distributions
fit more closely for the marginals of the beneficiaries. Bias in the data induced by the fact that
all pensioners die within the observation period (otherwise neither pensioner or beneficiary is
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observed) could be a determinant of this observation. Confidence intervals for the son and
daughter samples are also much larger at higher ages, aligning with their small sample sizes
and thus increased uncertainty. The limited number of observation points resulting from the
data’s annual reporting of deaths could also be associated with inaccuracies in the fitting of
the continuous marginals.

MCMC MLE
Estimate Acceptance SD IAT SE Estimate SE

(H
,W

)

mh 66.79 0.2573 0.06765 9.303 0.002918 66.80 0.06923
�h 9.076 0.2573 0.04583 6.609 0.001666 9.078 0.04436
mw 86.65 0.2486 0.3638 25.77 0.02612 86.66 0.3671
�w 6.958 0.2486 0.1342 18.42 0.008143 6.955 0.1342

(F
,S
)

mf 62.61 0.2769 0.1016 9.590 0.004448 62.61 0.1004
�f 8.973 0.2769 0.06157 7.239 0.002342 8.973 0.05980
ms 75.38 0.2438 2.942 93.84 0.4030 74.48 2.583
�s 9.244 0.2438 0.6400 78.79 0.08033 9.053 0.5774

(F
,D

)

mf 65.73 0.2529 0.1091 10.36 0.004967 65.73 0.1158
�f 10.65 0.2529 0.07023 7.125 0.002651 10.64 0.07252
md 89.91 0.2348 3.649 118.9 0.5628 89.29 3.598
�d 10.15 0.2348 0.7810 99.46 0.1101 10.03 0.7776

(S
,F
)

ms 59.69 0.2478 0.4648 11.26 0.02206 56.70 0.4417
�s 6.263 0.2478 0.3441 9.471 0.01498 6.199 0.3225
mf 91.73 0.2360 0.5434 8.767 0.02275 91.70 0.5100
�f 5.636 0.2360 0.3838 7.649 0.01501 5.554 0.3708

(S
,M

)

ms 58.67 0.2601 0.2184 10.94 0.01022 58.67 0.2144
�s 6.640 0.2601 0.1482 8.864 0.006238 6.621 0.1488
mm 94.23 0.2488 0.3679 9.668 0.01617 94.20 0.3578
�m 7.289 0.2488 0.2385 7.572 0.009281 7.248 0.2323

Table 6.7: Marginal distribution parameter estimation results for all five data sets. MCMC: estimate, ac-
ceptance rate, standard deviation (SD), integrated autocorrelation score (IAT) and standard error (SE); MLE:
estimate, SE.

Figure 6.3 displays the marginal posterior density and accepted parameter traceplots for
two of the ten individual samples. Large di↵erences in the marginal sample sizes occur due to
the nature of the observed relationships. In the 10-year observation period, 19,475 husbands
exited the scheme through death, in comparison to only 57 daughters. As such, the traceplot
displaying parameters accepted in estimation of the modal age at death of a daughter does
not exhibit the same stationary behaviour as the equivalent plot in the sample of husbands.
In line with this, as mentioned previously, an increased IAT score is observed in Table 6.7
for the marginal daughter simulation. The plots in Figure 6.3 were selected to exemplify this
result, however the same is observed in the estimation of all parameters for which only small
samples are available. The impact of any inaccuracies in parameter estimation associated with
a limited sample size is overcome in the second MCMC step due to the stationarity of the
chain.

Empirical dependence measures presented in Table 6.4 suggest that the lifetimes of family
members in all relationships considered exhibit strong dependence, aligning with the findings
in the literature. However, a large number of censored data points appear in all samples,
particularly husband and wife, father and son, and father and daughter. In contrast to the
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Figure 6.2: Comparison of Kaplan-Meier (black) and Gompertz (red) distribution functions for MCMC
marginal parameter estimates.
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Figure 6.3: MCMC posterior density accepted m traceplots for husband (H,W) and daughter (F,D) marginal
distributions.

empirical correlation estimates that consider only those who have died, and so a biased sample
of the data, assumption of copula models for dependence enables censoring in the data to be
captured.

Estimation results for the dependence parameters of the Clayton, Frank, Gumbel and
Joe copulas defined in Section 6.3 are presented in Table 6.8. MCMC and MLE results are
compared, with estimates aligning consistently as in the marginal case. The IAT and SE are
low for all MCMC estimates, with the increased errors in the marginal distribution estimates
in Table 6.7 unobservable in the copula parameter estimation as expected.

In comparison to the findings of Dufresne et al. (2018), dependence parameters are relatively
low across all samples. Dependence is greatest between the lifetimes of son and mother or
father, which may be expected due to the typically unnatural ordering of the deaths. In
addition, with increasing age, elder members of Egyptian families are traditionally taken care
of by their children. As such, the loss of a son could impact the living circumstances of
the bereaved parent, particularly in cases where the son is the breadwinner. Dependence
between the lifetimes of husband and wife is stronger than parent-child and weaker than child-
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6. Dependence modelling of paired lifetimes in Egyptian families

parent relationships. Focusing on age at death dependence in historical French genealogy data,
Cabrignac et al. (2020) consider parent-child and grandparent-child dependencies in addition
to the classical marital case, noting a very weak but significant association between lifetimes
in the alternative relationships, in line with the parent-child findings of this study.

Kendall’s tau correlation coe�cient estimates obtained from the MCMC dependence pa-
rameter estimates in Table 6.8 are given in Table 6.9. Here, when comparing between relation-
ships, the same trends in dependence strength as those discussed for the copula estimation are
observed. Correlation between lifetimes modelled with a Clayton copula is much lower than
for the Frank, Gumbel and Joe copulas. This may suggest that the Clayton copula is not the
most appropriate copula for estimation of dependence within the data set of this chapter. This
finding is also observed in Dufresne et al. (2018) through comparison of IFM with the omnibus
semi-parametric procedure (or pseudo-maximum likelihood) approach.

MCMC MLE
Estimate Acceptance SD IAT SE Estimate SE

(H
,W

)

Clayton 0.1557 0.2523 0.01013 6.106 0.0003539 0.1553 0.01056
Frank 2.474 0.2603 0.1390 6.445 0.004991 2.470 0.1392
Gumbel 1.322 0.2777 0.02173 6.472 0.0007817 1.321 0.02053
Joe 1.677 0.2448 0.06180 5.745 0.002095 1.676 0.05869

(F
,S
)

Clayton 0.06314 0.2703 0.01551 5.111 0.0004960 0.06225 0.01523
Frank 1.799 0.2474 0.3997 5.848 0.01367 1.759 0.3983
Gumbel 1.179 0.2484 0.04224 5.819 0.001441 1.175 0.04116
Joe 1.412 0.2719 0.1536 5.052 0.004882 1.386 0.1456

(F
,D

)

Clayton 0.05751 0.2757 0.01816 5.360 0.0005944 0.05773 0.01859
Frank 1.738 0.2410 0.4699 6.600 0.01707 1.738 0.4613
Gumbel 1.172 0.2348 0.05206 5.314 0.001697 1.174 0.05060
Joe 1.435 0.2947 0.1720 5.101 0.005493 1.427 0.1763

(S
,F
)

Clayton 0.2863 0.2541 0.06058 5.790 0.002061 0.2774 0.06242
Frank 3.498 0.2721 0.5054 5.680 0.01703 3.457 0.4852
Gumbel 1.534 0.2444 0.09218 6.370 0.003290 1.512 0.09009
Joe 2.243 0.2835 0.2214 5.101 0.007071 2.177 0.2167

(S
,M

)

Clayton 0.3205 0.2480 0.03032 5.476 0.001003 0.3179 0.03019
Frank 3.040 0.2817 0.2325 5.213 0.007506 3.029 0.2360
Gumbel 1.459 0.2611 0.04415 5.875 0.001513 1.454 0.04267
Joe 1.832 0.2555 0.09921 6.277 0.003515 1.814 0.09694

Table 6.8: Copula dependence parameter estimation results for all five data sets. MCMC: estimate, acceptance
rate, standard deviation (SD), integrated autocorrelation score (IAT) and standard error (SE). MLE: estimate,
SE.

Clayton Frank Gumbel Joe

Husband & Wife 0.07225 0.2593 0.2435 0.2738
Father & Son 0.03061 0.1937 0.1518 0.1881
Father & Mother 0.02795 0.1873 0.1469 0.1970
Son & Father 0.1252 0.3484 0.3480 0.4046
Son & Mother 0.1381 0.3100 0.3145 0.3154

Table 6.9: Kendall’s tau from MCMC ↵ dependence parameter estimates.
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6.6. Results

Figure 6.4 presents a selection of MCMC simulation results for the copula dependence
parameter estimation. The density of the estimated parameter distribution, the traceplot of
accepted parameters and the copula likelihood (6.5.2) with estimated parameter indicated
are presented, where the traceplot depicts the behaviour of the Markov chain and is thus
a plot of the parameters accepted by the MH algorithm. Aligning with Figure 6.3, results
for the husband and wife and father and daughter samples are selected for all four copulas.
In contrast to the husband, wife and father marginal samples, the increased IAT score of
the daughter marginal parameters (Table 6.7) induces non-stationary behaviour in the chain.
However, despite the risk of inaccurate marginal estimation resulting from this non-convergent
behaviour, stationarity in the Markov traceplots presented in Figure 6.4 is observed in both
data sets for all copulas. In addition, plotting the likelihood function (6.5.2) for varying ↵
shows that the algorithm maximises the likelihood well in all cases. The MCMC estimate
consistently lies close to the ML estimate, with the ML estimate always within its distribution.
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Figure 6.4: MCMC posterior density, accepted parameter (↵) traceplots and likelihood function for estimation
of the Clayton, Frank, Gumbel and Joe dependence parameters. Results for (H,W) and (F,D) given in rows 1-3
and 4-6, respectively. MCMC estimates given by blue solid line, MLE estimates by red dashed line.

6.7 Concluding remarks

In this chapter, copula dependence parameters were estimated for five di↵erent relationships
within Egyptian families, using data from the Egyptian social pension scheme. MCMC tech-
niques with likelihood specified using IFM were implemented and compared with classical
MLE. Copula dependence parameters were found to be low in comparison to those in the
literature for all five relationships considered. However, the corresponding Kendall’s tau cor-
relation estimates imply that dependence in this data set and in this socioeconomic context
should not be ignored when pricing the associated pension products. Dependence is greatest
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among child-parent relationships, with non-negligible correlation estimates of between 0.3 and
0.4. Dependence between husband and wife is lower than that of child-parent, with parent-child
relationships exhibiting the lowest levels of dependence.

Results presented in this chapter cannot be compared with those of previous studies for
all samples, due to the absence of research into dependence between lifetimes of varying fam-
ily members. However, in the husband and wife case, the Canadian insurance data largely
considered in previous studies exhibits higher levels of dependence than the Egyptian sample.
Dependence is also of less significance here than in the Ghanaian data set of Chapter 5. The
socioeconomic influences on dependence discussed in Chapter 1 alongside the characteristics
specific to Egypt introduced in Sections 6.1 and 6.2 of this chapter likely contribute to this
observed di↵erence.

Furthermore, joint life data, such as the joint and last-survivor annuity data of the Cana-
dian insurer, consists of the lifetime data of individuals who specifically sought a joint life
policy. In contrast to the compulsory nature of the Egyptian pension scheme, this optional
participation in such a policy, over a single life policy, implies the existence of a relationship
(and hence dependence) between the policyholders, which may align with the increased depen-
dence observed in the data set. This supports the findings of Sanders and Melenberg (2016),
where a reduced significance of dependence and the associated pricing impacts is observed
among married couples under analysis of census data. Since the Egyptian pension scheme is
compulsory for all working individuals, data also spans all social classes. Although this cannot
be considered in detail here given the accessible data it may further impact the strength of
lifetime dependence and is an interesting area for further study.
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Future research

• Chapter 3: Given the intractable nature of the ODEs (3.4.8) and (3.4.17) associated
with the IDE of the infinitesimal generator in the insured case, future work will involve
solving the IDE for Af = 0 numerically, in order to determine the true behaviour of the
underlying trapping probability. In addition, insurance coverage structured di↵erently to
the proportional case considered here may allow for the analytic solution to be obtained.
As such, alternative insurance mechanisms relevant to the microinsurance environment
will be explored.

• Chapter 4: Insurance mechanisms are typically designed such that only a proportion of
losses experienced by policyholders are covered by the insurer. Following the sensitivity
analysis performed in this chapter, future work will involve adjusting the stochastic
dissemination model such that it contains a follower group that both pays premiums and
experiences losses. Subsidisation mechanisms will again be considered.

In addition, the impact of the background process will be explored further. Altering the
transaction rate parameters associated with each state, in line with the likely reality when
moving between periods of growth and recession, will provide insight into the impact on
the wealth of each type of agent and their elasticity to the change in state. A further
measure of interest is the speed of default, i.e. the time to trapping, and the way in
which this quantity changes after a change in the background process. Knowledge of
the reactions of wealth to economic change in group-based systems will help to inform
practitioners on the long-term impact and resilience of microinsurance.

Further examples of the construction of the wealth system will also be tested alongside
the impact of a changing role of the leader. In moving between economic states, it could
be the case that the leadership role also switches between agents. Finally, in line with
the barrier strategy of Chapter 2, the system of di↵erential equations corresponding to
targeted subsidy provision will be derived.

• Chapter 5: In order to improve the estimation of the impact of the dependence assump-
tion on insurance products involving mortality assumptions which are targeted towards
Ghanaian consumers, it would be beneficial to calibrate the proposed mortality model
with the data set collected.

Furthermore, it would be interesting to consider an extension of the stochastic mortality
model that captures the existence of short-term dependence beyond the coupled setting.
Such a model could be applied to the study of multivariate dependence due to the in-
creased risk of death following the spread of a communicable disease or for dependence
modelling across multiple family relationships, in line with Chapter 6.
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• Chapter 6: Performing goodness-of-fit tests on the copula estimates would enable selec-
tion of the most appropriate dependence model. Although MCMC estimation mitigates
errors associated with the miss-fitting of marginal distributions, selection of a mortality
model that fits the age range of child beneficiaries well would help to improve the accu-
racy of the complete estimation procedure. The impact of age di↵erence on the strength
of the dependence is also a quantity of interest, with wide age ranges observed in all
samples.

In order to determine the impact of the varying levels of dependence observed, it would
be useful to adjust the pricing of the insurance and pension products of the Egyptian
social security scheme to account for the increased risk where present, and to compare
with existing prices and premium rates under the assumption of independence.
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Final remarks

Penetration of insurance and microinsurance in low-income economies is typically low, leaving
the most financially vulnerable without su�cient protection. Addressing the a↵ordability
constraints associated with microinsurance and the accuracy of insurance pricing is therefore
crucial to improving financial inclusion and in turn, the rate of poverty reduction. Motivated
by the absence of adequate insurance coverage, this thesis adopts classical techniques from risk
theory, queuing and population modelling, credit risk and dependence modelling to explore
fundamental questions in the low-income insurance environment, with the overarching goal of
improving protection for the poor.

Chapters 2-4 explicitly focus on the impact of insurance for poverty reduction. Chapters
2-3 consider the probability of falling below the poverty line on an individual agent basis at
the household level. Classical risk theory techniques are adopted to study this critical prob-
ability, which mimics an insurer’s probability of ruin. Chapter 4 extends consideration to
the group-based setting prevalent in the low-income environment through implementation of
a highly flexible stochastic wealth dissemination model. Addressing a feature of the mortality
environment traditionally disregarded by practitioners, Chapters 5-6 consider the existence of
lifetime dependence and its implications for insurance pricing. Largely unstudied in this socioe-
conomic context. Chapter 5 considers dependence between coupled lives with application to
private mortality-based insurance products. Chapter 6 considers pairwise dependence between
policyholder and beneficiary in a public insurance scheme, where beneficiaries are uniquely
defined, by Egyptian law, as the spouse, parents, children and siblings of policyholders. A
summary of the findings of each chapter is as follows:

In Chapter 2, the impact of microinsurance frameworks with (i) unsubsidised premiums,
(ii) subsidised constant premiums and (iii) subsidised flexible premiums, on the probability
of low-income households falling below the poverty line (the trapping probability) is assessed
through introduction of a capital model with determinstic growth and random-valued claims.
This chapter highlights the importance of governmentally supported inclusive insurance. In
line with the existing literature, a level of capital below which unsubsidised insurance increases
the probability of falling below the poverty line is observed. Under fixed premium subsidis-
ation, this finding is again observed with reduced severity. The subsidised microinsurance
scheme with premium payment barrier reduces a household’s trapping probability in com-
parison to when covered by unsubsidised and (for the most vulnerable) partially subsidised
microinsurance, in addition to when uninsured. Social protection costs associated with the
provision of government subsidies in the strategies considered in this chapter are accounted for
by optimising the subsidy level with respect to the uninsured trapping probability. Costs are
reduced under the constant subsidy and barrier strategies.

Chapter 3 adjusts the capital process of Chapter 2 such that households are subject to
losses proportional to their level of capital, with accumulated capital given by a risk process
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with deterministic investment and multiplicative jumps. Laplace transform analysis of the
infinitesimal generator of the capital process enables derivation of the explicit trapping prob-
ability in the uninsured case. Intuitively, this probability decays more slowly than that of
Chapter 2. Proportional insurance is again introduced and its impact on the probability of
trapping considered. Simulation analysis suggests that the increase in trapping probability
observed for random-valued losses is less severe in this proportional case. Thus inferring that
insurance for proportional losses is more a↵ordable than coverage for losses of random value.
Establishing the true loss experience of low-income consumers would therefore be beneficial to
understanding the need for government subsidisation and to improve the e�ciency of social
protection schemes. Government support for microinsurance in the proportional loss environ-
ment remains of importance. Although less significant, the increase in the trapping probability
associated with the most financially vulnerable is again observed when proportional insurance
coverage is purchased.

Chapter 4 considers wealth behaviours in a low-income group and addresses, for the first
time mathematically, the prevalence of risk sharing and group-based insurance in the low-
income setting. Subsets of agents are assumed to be susceptible to wealth transaction events,
including wealth losses and premium payments, while an exogeneously evolving Markov back-
ground process reflects the state of the economy. As in Chapter 3, losses are proportional to
agent wealth. In this group setting, the implications of loss events and the increased costs
associated with premium payment are mitigated by the sharing of wealth among all agents.
Increasing homogeneity within a group increases the level of sharing. This implies that for
risk-sharing groups of agents with the same socioeconomic background, the severity of nega-
tive wealth transaction events is lessened. In addition, premium subsidisation supports both
the insured and the uninsured, providing further evidence for the benefit of government-insurer
partnerships, while trapping probabilities decrease with increasing subsidisation, as expected.

In Chapter 5, credit risk methods are applied to the study of joint-life dependence. Al-
though well-studied in the high-income setting, dependence analysis in alternative socioeco-
nomic environments is lacking. In this chapter, data collected from a Ghanaian sample mo-
tivates selection of the joint mortality model. Paired mortality processes are assumed to be
correlated non-mean-reverting Cox-Ingersoll-Ross processes, with bereavement e↵ect, reflect-
ing the influence of the loss of a spouse on the remaining lifetime of the surviving partner,
given by an Ornstein–Uhlenbeck process with zero mean-reversion parameter. Comparing the
Ghanaian data set with observations of empirical research in the literature, a di↵erent mortality
pattern appears. The initial increase in mortality is of lesser significance than previously ob-
served, supporting suggestion of socioeconomic influences on the structure of dependence. The
impact of the dependence assumption on the pricing of a reversionary annuity is determined
through derivation of the indi↵erence price, which is equivalent under Ornstein-Uhlenbeck and
deterministic bereavement processes for equivalent jump parameters. As in the literature, in-
surance products capturing the dependence assumption are, in general, priced lower than those
for independent lives.

Chapter 6 considers the existence of lifetime dependence beyond the classical husband and
wife case. Using a large data set from the Egyptian social pension scheme, pairwise dependence
within multiple familial relationships is analysed through estimation of copula dependence
parameters. Adopting the two-step inference functions for margins method for specification
of the likelihood function, parameter estimation is undertaken through implementation of the
Metropolis-Hastings Markov Chain Monte Carlo algorithm. Dependence is greatest among
child-parent relationships, with lifetimes in parent-child relationships exhibiting the lowest
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Final remarks

levels of association. Although reduced in comparison to previous studies, the findings of this
chapter confirm that dependence in this data set and in this socioeconomic context should not
be ignored when pricing pension products involving beneficiaries and mortality assumptions.

In this thesis, analysis of public and private, life and non-life insurance products for couples,
families and communities in low-income populations is presented, with two key takeaways.

The first surrounds public-private-partnerships for subsidisation of insurance. Insurance
without subsidies increases the risk of falling below the poverty line for the most poor. However,
well-designed, targeted subsidies have the potential to mitigate this additional risk, while
decreasing the associated governmental costs. Thus, increasing the e�ciency of social support
and lessening the financial vulnerability of the low-income target population. In addition, it
is important to consider the impact of risk sharing on the benefits of insurance coverage and
subsidisation, in order to support design of appropriate subsidy schemes.

Secondly, there is evidence that lifetime dependence exists across socioeconomic environ-
ments and within relationships other than those typically studied. The results of this thesis
highlight the importance of understanding the lifetime behaviours of all of those protected by
a given insurance product. In order to improve insurance product pricing, particularly in the
understudied mortality environments such as those considered in this thesis, the existence of
dependence cannot be ignored.

Through the chapters of this thesis, we advocate both for the provision of a↵ordable, accurately
priced insurance to those who need it most, and for the place for rigorous mathematical analysis
and classical theoretical concepts in the strive to reduce the financial vulnerability of the poor.
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Löpker, A. H. and J. S. Van Leeuwaarden (2008). Transient moments of the TCP window size
process. Journal of applied probability 45 (1), 163–175.

Lu, Y. (2017). Broken-heart, common life, heterogeneity: Analyzing the spousal mortality
dependence. ASTIN Bulletin: The Journal of the International Actuarial Association 47 (3),
837–874.

Luciano, E., J. Spreeuw, and E. Vigna (2008). Modelling stochastic mortality for dependent
lives. Insurance: Mathematics and Economics 43 (2), 234–244.

Luciano, E., J. Spreeuw, and E. Vigna (2016). Spouses dependence across generations and
pricing impact on reversionary annuities. Risks 4 (2), 16.

153



Bibliography

Luciano, E. and E. Vigna (2005). Non-mean reverting a�ne processes for stochastic mortality.
International Centre for Economic Research Applied Mathematics Working Paper No. 4 .

Luciano, E. and E. Vigna (2008). Mortality risk via a�ne stochastic intensities: Calibration
and empirical relevance. Belgian Actuarial Bulletin 8 (1), 5–16.

Ludkovski, M. and V. Young (2008). Indi↵erence pricing of pure endowments and life annuities
under stochastic hazard and interest rates. Insurance: Mathematics and Economics 42 (1),
14 – 30.
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Appendix A: Integral transforms

Definition A.1 (Laplace transform) Let f(t) be a function of t for t 2 R+. Then, the Laplace
transform of f(t), denoted L{f(t)}, is defined by

L{f(t)} = F (s) =

Z
1

0
e�stf(t)dt

for s 2 C. The Laplace transform of f(t) exists if the integral converges for some s.

Definition A.2 (Mellin transform) Let f(t) be a function of t for t 2 R+. Then, the Mellin
transform of f(t) denoted M{f(t)}, is defined by

M{f(t)} = F (s) =

Z
1

0
ts�1f(t)dt,

for s 2 C, with a1 < Re(s) < a2. The Mellin transform of f(t) exists if f(t) is piecewise
continuous in every closed interval [a, b] ⇢ (0,1) and if

Z 1

0
ta1�1

|f(t)|dt < 1 and

Z
1

1
ta2�1

|f(t)|dt < 1.
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Appendix B: Hypergeometric
functions

Definition B.1 (Confluent hypergeometric functions) Let a and b be real numbers, the ODE

x
d2y

dx2
+ (b� x)

dy

dx
� ay = 0

is the confluent hypergeometric equation or Kummer’s equation. The simplest solution to this
ODE is Kummer’s function, given by

M(a, c; z) = 1F1(a, c; z) =
1X

n=0

(a)n
(c)n

zn

n!
,

where (·)n is the Pochhammer symbol defined by (a)n ⌘ a(a + 1)(a + n � 1) for n � 1 and
(a)0 = 1. The series is convergent for all a, b, x 2 R excluding b = 0,�1,�2, ... Kummer’s
function has integral representation

M(a, c; z) =
�(b)

�(b� a)�(a)

Z 1

0
eztta�1(1� t)b�a�1dt.

A second solution of Kummer’s equation is Kummer’s function of the second kind, or Tricomi’s
function, given by

U(a, b, z) =
⇡

sin⇡b


M(a, b; z)

�(1 + a� b)�(b)
� z1�bM(1 + a� b, 2� b; z)

�(a)�(2� b)

�
,

and defined even as b ! ±n, 0. Tricomi’s function has integral representation

U(a, c; z) =
1

�(a)

Z
1

0
e�ztta�1(1 + t)b�a�1dt.

For full details of the properties of the confluent hypergeometric equations, see Abramowitz
and Stegun (1972).

Definition B.2 (Gauss hypergeometric function) Let a, b, c 2 R and c /2 Z0. The Gauss
hypergeometric function is defined by the following hypergeometric series:

2F1(a, b; c; z) =
1X

n=0

(a)n(b)n
(c)n

zn

n!
,
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Appendix B: Hypergeometric functions

which converges for all |z| < 1 (given c /2 Z0, as specified) and on the unit circle |z| = 1 if
Re(c� a� b) > 0. This function is a solution of the Gauss hypergeometric equation, given by

x(1� x)
d2y

dx2
+ [c� (a+ b+ a)x]

dy

dx
� abx = 0

and has integral representation

2F1(a, b; c; z) =
�(c)

�(b)�(c� b)

Z 1

0
tb�1(1� t)c�b�1(1� tz)�adt,

for Re c > Re b > 0. For full details of the properties of the hypergeometric function, see
Abramowitz and Stegun (1972).
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Appendix C: Markov chains

Definition C.1 Suppose (X(t))t�0 is a Markov chain with state space S, such that all states
i, j 2 S. Then,

(i) The chain is irreducible if all states belong to a single closed communicating class, such
that each state can be reached from every other state with a non-zero probability, i.e.
for all pairs of states i, j, if the chain is in state i at time 0, the probability of being in
state j at time t > 0 is non-zero.

(ii) The chain is stationary with stationary distribution ⇡ if:

a) (continuous-time Markov chain) ⇡Q = 0, where Q = {qij}di,j=1 is the transition
rate matrix and

P(X(t) = l|X(0) = k) = (eQt)k,l.

b) (discrete-time Markov chain) ⇡P = ⇡, where P = {pij}di,j=1 is the transition
probability matrix and

P(X(t) = l|X(0) = k) = (P t)k,l.

(iii) The chain is ergodic if it is irreducible and aperiodic, where a chain is aperiodic if for all

states i, the set {n � 0 : p(n)ii > 0} has no common divisor other than 1, where p(n)ij is the
n-step transition probability from i to j.
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Appendix D: Stochastic processes

Definition D.1 (Martingale) The process {Xn : n 2 N} is a martingale with respect to the
filtration Fn if the following three properties hold:

(i) E(|Xn|) < 1, n 2 N,

(ii) Xn is adapted to Fn,

(iii) E(Xn+1|Fn) = Xn.

Definition D.2 (Sigma-algebra) A sigma-algebra (�-algebra or �-field) F is a set of subsets
! 2 ⌦ that satisfies the following three conditions:

(i) ; 2 F ,

(ii) if B 2 F then its complement Bc
2 F ,

(iii) if B1, B2, ... is a countable collection of sets in F , then their union
S

1

n=1Bn 2 F .

Definition D.3 (Sub-sigma-algebra) Let A and B be �-algebras. Then, A is said to be a
sub-sigma-algebra (or sub-�-algebra) of B if and only if A ✓ B.

Definition D.4 (Borel sigma-algebra) The Borel �-algebra of R, denoted B(R), is the smallest
�-algebra containing the open subsets of R.

Definition D.5 (Measurable) A random variable X is said to be measurable with respect to
the �-algebra F if for every Borel set B 2 B(R)

X�1(B) := {! 2 ⌦ : X(!) 2 B} 2 F .

Definition D.6 (Filtration) Let (⌦,F ,P) be a probability space and let (Xt)t�0 be a stochastic
process defined on (⌦,F ,P). Then, the following definitions hold:

(i) A set {Fn : n 2 N} is called a filtration if

F0 ✓ F1 ✓ · · · ✓ Fn : Ft = �{X(s); s  t},

i.e. a filtration is a non-decreasing family of sub-�-algebras of F .

(ii) A set of random variables {Xn : n 2 N} is said to be adapted to the filtration {Fn : n 2 N}
if Xn is Fn-measurable for all n 2 N.
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Appendix E: Questionnaire

Title: An Investigation Into the Existence of Broken-Heart Syndrome in Ghana

Participants were presented with questions 1-3, where appropriate, for each of their four grand-
parents. Questions relating to the paternal grandmother are presented below. If the partici-
pant answered that both maternal or paternal grandparents had died, they were additionally
presented with question 4. The questionnaire was completed through an online platform.

1. Is your paternal grandmother alive? (Select the appropriate answer).

· Yes

· No

(If yes, the online platform presents the participant with question 2, if no, the online
platform presents question 3).

2. a) How old is your paternal grandmother? (Response options presented in drop-
down menu).

b) How many children does your paternal grandmother have today? (Response
options presented in drop-down menu).

c) What are your paternal grandmother’s living circumstances? (Select all appro-
priate responses)

· Lives alone

· Lives with paternal grandfather

· Lives with partner (other than paternal grandfather)

· Lives with children

· Lives with other family (someone who is not your grandmother’s partner or
children)

· Lives in care home

· Hospital patient

· I don’t know

· Other (please specify)

3. a) How many years ago did your paternal grandmother die? Note: Select 0 if your
grandmother died less than 1 year ago. (Response options presented in drop-down
menu).
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Appendix E: Questionnaire

b) How old was your paternal grandmother when she died? (Response options
presented in drop-down menu).

c) How would you describe the circumstances of your paternal grandmother’s
death? (Circumstances of the death should be classified as accidental if the death
was due to the occurrence of an unexpected shock event such as a car accident).

· Following a long period of illness (3 months or more)

· Following a short period of illness (less than 3 months)

· Old age

· Accidental

· I don’t know

· Other (please specify)

d) How many children did your paternal grandmother have at the time of her death?
(Response options presented in drop-down menu).

e) What were your paternal grandmother’s living circumstances at the time of her
death? (Select all appropriate responses).

· Lived alone

· Lived with paternal grandfather

· Lived with partner (someone who is not your paternal grandfather)

· Lived with children

· Lived with other family (someone who is not your grandmother’s partner or
children)

· Lived in residential care

· Hospital patient

· I don’t know

· Other (please specify)

4. If there was less than one year between the deaths of your paternal (or maternal) grand-
mother and your paternal (or maternal) grandfather, which grandparent was the first to
die?

• Grandmother

• Grandfather

• I don’t know

• Other, i.e. if your grandparents died in a car accident, they may have died at the
same time (please specify)
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