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Abstract 

Introduction Phase III oncology trials have significantly high attrition rates, 

where many treatments fail to show efficacy over standard treatments. Design 

of phase II trials contribute to these inefficiencies and there is much debate 

regarding optimal phase II design. The effect of the relationship between phase 

II and III trial endpoints, randomisation, using one-stage or two stages and the 

operating characteristics of phase II trials in oncology, on the efficiency of the 

phase II and III process, are all investigated in this thesis.  

Methods Evaluation of design parameters was based on simulating multiple 

phase II and III trials until a successful phase III trial is observed, assuming 

many treatments are available for testing. Phase II and III trials were conducted 

assuming the true effect of each treatment was drawn from a standard normal 

distribution. Phase III trials were assumed to be randomised, with a continuous 

primary endpoint, 80% power and 5% significance level. Specific design 

scenarios were considered. The effect of the correlation between the phase II 

and III trial endpoints was explored analytically, by ranging the variance of the 

true treatment effect, while randomisation, number of stages and operating 

characteristics of phase II trials were explored using simulations. The number of 

phase II and III patients required to lead to the first successful phase III trial was 

used to measure efficiency of design parameters.  

Results For the scenarios considered, the number of patients required to lead 

to the first successful phase III trial decreased from 3200 to 1000 patients, on 

average, as the correlation between endpoints increased from 0 to 1. 

Randomised single-stage phase II trials required 730 patients to lead to the first 

successful phase III, while Jung’s randomised two-stage design required 554. 

A’hern’s exact single-arm single-stage design required 463 phase II and III 

patients while Simon’s single-arm two-stage design required 438. The type I 

error, α, and power, 1-β, significantly affected the efficiency of phase II trials. 

Less stringent α= 0.1,0.15 and 0.2 combined with powers 1-β = 0.4, 0.45, 0.5, 

0.55, 0.6 yielded 417 phase II and III patients on average, while stringent α= 

0.01 or 0.05 combined with any choice of power required 555 phase II and III 

patients to lead to the first successful phase III trial. 

Discussion Understanding the impact of differing design parameters on the 

efficiency of phase II trials better equips us with the tools needed to improve 

their design. Based on the scenarios considered Simon’s single-arm two-stage 

design with a less stringent type I error and small type II error yielded the 

greatest efficiency in phase II trials. 
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Chapter 1 Introduction 

Upon discovering a potential new cancer drug, it must undergo several stages 

of testing before it can be widely used among patients. First, the activity and 

toxicity of the novel drug is tested in preclinical trials involving both experiments 

in the laboratory and on animals (1). If the drug shows promise it is then 

rigorously tested on humans in four phases of clinical trials (1). In phase I trials 

information about how the drug interacts with the body (pharmacokinetics), and 

how the body reacts to the drug (pharmacodynamics), is gathered from a limited 

number of patients (2).  

Dosing schemes, based on the data from the preclinical stage, are adjusted in 

order to establish patients’ tolerance to the novel therapy, and to determine 

appropriate dosing levels. Therapies that are deemed safe are then tested in 

phase II trials (2). Here, the preliminary signal of efficacy of the drug is 

assessed with a small number of patients (2). A pivotal decision is made at this 

stage: if the new therapy shows sufficient evidence of activity, then a phase III 

trial can be initiated, otherwise the process may be terminated. 

Phase III trials proceed after successful phase II trials and usually require 

several hundreds, or even thousands, of patients and can take many years to 

complete (1). If the drug shows definitive evidence regarding the superiority of 

the novel therapy over the standard treatment, it is licensed and marketed and 

then further tested for long-term safety and efficacy in phase IV post-marketing 

trials (1). 

Although, theoretically, this process seems linear and each phase has confined 

requirements, it is actually very flexible which may result in overlapping phases 

or combining two phases (3). The complexity of the drug development process 

also means that it requires a substantial amount of investment, in terms of 

money, patients and time. The cost of researching and discovering a single new 

drug is estimated to be £1.15 billion and takes an average of 12.5 years (4). 

Such high costs for finding a single efficacious drug are attributable to the 

resources used in trials that investigate futile treatments. While the failure of 

trials (i.e., objectives of the trial have not been met, therefore the therapy under 

investigation in that trial is terminated) may add to the knowledge about the 

treatments under investigation (5), the main purpose of the drug development 

process is to benefit patients by allowing them access to innovative and 

effective treatments. The current drug development process indicates that this 
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is not the case and it is of Kaitin’s opinion that the process is slow, inefficient, 

risky and expensive (6).  

In oncology, the attrition rates are particularly high compared to other 

specialties: only 5% of therapies entering clinical development are licensed, 

while 20% of therapies for cardiovascular disease are approved (7). The 

demand for more effective therapies, due to the increasing number of people 

developing cancer and often a poor prognostic outlook, has resulted in a lower 

clinically relevant threshold during preclinical oncology trials, which may explain 

the reason for the low therapy approval rates reported (8). However, this is not 

the only reason contributing to these poor statistics; other contributing factors 

include the design of trials (8) and the quality of reporting of the trials (9), which 

is often the trial’s only representation available. 

The largest risk in the drug development process is associated with the 

transition from a relatively small-scale phase II trial to a large confirmatory 

phase III trial, where attrition rates are particularly high. This is due to the large 

resource investment that is required for phase III. The sheer volume of the 

resources required in phase III pressurises the researcher to make the right 

decision at phase II (often referred to as the go/no-go decision), and therefore, 

phase II trials need to be designed in a manner that can adequately fulfil this 

objective. However, it is reported that in 2011 the failure rates in phase III 

oncology trials were between 50-60% (10) and this has not improved even 

recently where oncology phase III success rates are reported to be at 45% (11). 

This long-standing attrition of oncology phase III trials suggests that the phase II 

trials are not fulfilling their purpose of rejecting futile treatments early and 

identifying truly efficacious treatments for further study.  

Given the large number of therapies available for investigation (10) and the 

need to approve new therapies in order to benefit patients, as efficiently as 

possible, in addition to the high attrition rates in oncology, it is of vital 

importance that improvements to the efficiency of the drug development 

process are made. Since a key element of the drug development process is the 

phase II trial, this research will focus on investigating the effect of its design 

parameters on its ability to lead to successful phase III trials. 

1.1 The role and importance of phase II trials 

Traditionally, phase II cancer trials accrue a small number of patients into a 

single-arm design and compare the effect of the experimental therapy, with 

historical control data (12). The effect of the treatment is usually quantified by a 

short-term outcome, such as tumour response rate, particularly when the 
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treatment’s mechanism of action is thought to have cytotoxic effects (12). 

Historically, when the therapies available to treat cancer were limited, phase II 

trials that were designed in this way screened out ineffective treatments as 

quickly as possible, while limiting the number of patients that were exposed to 

the ineffective agents (12).  

As mentioned above, phase II trials occur prior to a confirmatory phase III trial, 

assessing whether the novel therapy shows sufficient clinical efficacy for further 

investigation. Unlike phase III trials, phase II trials in cancer are designed to 

take a relatively short period of time, hence a short-term endpoint is utilised to 

demonstrate whether the experimental treatment is promising. Phase II trials 

assess the holistic potential benefit of an experimental treatment, therefore their 

role includes proof-of-concept of clinical improvement of the experimental 

treatment over the standard care and gathering information on dose levels and 

schedules. Occasionally, these roles are investigated separately: phase IIa 

trials aim to provide proof-of-concept and/or determine the dose range and 

phase IIb trials are designed to confirm the short-term clinical efficacy of the 

treatment. Throughout this research, the term ‘phase II trial’ is used to refer to a 

trial that involves a go/no-go decision regarding proceeding to phase III, where 

appropriate dose levels have already been found in prior trials. 

In the current era of drug development, the number of novel therapies in cancer 

is ever increasing (13). Mandrekar and Sargent (14) state that the number of 

novel therapies are no longer limited, rather there are currently many potentially 

efficacious drugs to investigate, with restricted resources for their development 

and evaluation. As critical and vital as phase III trials are in their ability to 

determine the efficacy of novel and experimental treatments, testing all 

available treatments in phase III trials is not only difficult, due to the lack of 

available patients (13), but it is also inefficient, expensive and could take an 

extensive amount of time. As such, the role of the phase II trial, in the current 

era, is profound: it can streamline the treatments that proceed to phase III, by 

rejecting futile treatments, without unnecessarily (and unethically (15)) 

subjecting a large group of patients to them in phase III. Consequently, the role 

of phase II trials is important and necessary as it may lead to more efficient 

exploration of the treatments available in terms of resources and benefit to 

patients. 

The current era has also seen the emergence of a myriad of different types of 

cancer treatments (13). Chemotherapy has been the gold standard treatment 

for cancer for many years (16), however, new technologies have allowed the 

emergence of novel therapies such as those with cytostatic mechanisms of 

action, immunotherapies and targeted therapies (13). Testing combinations of 
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these treatments, rather than single agents are more likely to result in a greater 

effect since each treatment targets a different pathway (13). As a result, the role 

of phase II trials is not limited to evaluating whether a single drug is active 

enough to proceed to phase III, rather which combination of treatment is the 

most effective (13). Therefore, the role of phase II trials is not only important, 

but also how it is designed: it is vital that it is appropriate and of value to the 

current era. 

The introduction of cytostatic agents has meant that the same definition of 

activity can no longer apply to all types of cancer treatments. Activity of 

cytotoxic treatments is usually measured with response rate (12) and this 

measure may not be able to adequately identify the activity of cytostatic 

therapies. These novel treatments have shown that they improve survival 

despite low tumour response rates in patients, which has led some researchers 

to question the relevance of phase II trials in their entirety (17). It is clear 

though, that rather than dismiss phase II trials as a whole, there is a need to 

assess the applicability of traditional designs of phase II trials to the ever-

changing drug development process in oncology.  

The importance of the role that phase II trials has on the drug development 

process is highlighted by the INTACT1 phase III trial, which aimed to compare 

the effect of adding gefitinib to gemcitabine and cisplatin versus gemcitabine 

and cisplatin alone in patients with advanced or metastatic non-small-cell lung 

cancer. Gefininib on its own showed promise in phase II trials, however using it 

in combination with gemcitabine and cisplatin was not tested in a phase II trial. 

INTACT1 was initiated as a result of promising results of a phase I trial where 

this combination therapy showed “favourable tolerability” (18). INTACT1 

recruited more than 1000 patients and failed to confirm the results found in its 

preceding phase I trial (18). Therefore, phase II trials with appropriate designs 

are an important screening tool to limit the number of ineffective therapies that 

are investigated in resource-intensive phase III trials.  

The importance of phase II trials is highlighted further by the fact that on 

occasion they alone may be used to lead to regulatory approval when phase III 

trials are not feasible. An example of this was a phase II study comparing 

different doses of imatinib in a two-arm study conducted in advanced 

gastrointestinal stromal tumour patients (19). The novel therapy showed very 

promising results: more than 80% of patients responded to the treatment or 

their disease did not progress, while also the treatment was tolerated well by 

patients. As a consequence of having such encouraging results, the resource-

intensive phase III trial was not initiated and patients were able to access a safe 

and efficacious new treatment. The trial, however, did recruit 147 more patients 
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after an interim analysis showed such promising results. This addition of such a 

small number of patients, relative to what is usually required in phase III, 

confirmed initial findings and as a result the resources saved in this trial may 

have been used elsewhere.  

Differences in the role of phase II trials may exist depending on whether they 

are designed and analysed in pharmaceutical companies or in academic 

settings. The main difference arises in the decision-making process, namely, 

whether the trial is successful, i.e., has found an active treatment. As a result, 

the criteria which is used to deem a trial successful in both settings are different: 

in academia the criterion of success is pre-specified and is based on a 

particular aim that the trial is designed to fulfil. In pharmaceutical companies, 

the criteria of success of a phase II trial are not taken in isolation and may be 

based on many external factors, such as the company’s objectives and funding. 

As such, pharmaceutical companies may have the capacity and funds to run 

multiple trials for a single disease area, which allows the rapid development of 

potentially beneficial treatments in the current era, where many treatments are 

available for testing. 

1.2 Design options for phase II trials 

Historically, single-arm designs were frequently the chosen method for phase II 

trials in oncology (12). They were typically designed to test the hypothesis that 

the novel treatment is promising if the response rate is equal to or above a 

certain threshold, usually at 20%, and a lack of promise, usually at or below 5% 

(12). This design was used frequently as it was believed that a treatment that 

had a 20% response rate would result in clinically meaningful outcomes in 

subsequent phase III trials measuring long-term time-to-event outcomes, such 

as overall survival (OS), which is typically used (12). 

Phase II trials have since changed and many researchers have conducted 

reviews of phase II trials that highlight which phase II designs are widely used, 

common features between them, and how they have evolved. One such review 

by Mariani and Marubini (20) surveyed phase II trials published in 1997, only. 

They identified 308 phase II trials, of which more than 95% used a single-arm 

design with objective response as the primary endpoint; separating these two 

parameters, 98.7% of the trials were single-arm designs and 96.8% used 

objective response as the primary endpoint. They also found that only 58 of the 

308 articles reported a statistically identifiable design, of which the two-stage, 

hypothesis testing methods were the most common. They also reported some 

of the key features of the single-arm designs they identified: 78.6% of the 

single-arm trials used chemotherapy as the experimental treatment, with 33.9% 
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taking up to two years and 30.8% taking longer to complete (35.3% of trials 

didn’t report the duration). They also reported the sample sizes of the single-

arm trials they surveyed: 27.1% of trials required up to 20 patients and an equal 

amount required 46 or more patients. The remaining single-arm trials used 21 to 

41 patients. 

Langrand-Escure et al. (9) carried out a more recent review which included 

phase II trials published between 2010 to 2015, with the same aim as the 

review presented by Mariani and Marubini (20). Comparisons between the 

findings in both these reviews highlight the evolution of the use of designs of 

phase II trials. Of the 557 trials identified, 56.6% of them were single-arm 

designs and 80.7% used response rate as the primary endpoint. These results 

show that the traditional design is still the most common choice for phase II 

trials, however, there is a clear reduction in the number of trials that implement 

it, particularly in the use of the single-arm design, as more researchers opt to 

conduct the phase II trial using a randomised approach (34.6%). This may be 

due to the fact that single-arm phase II trials use historical control data for 

comparisons and many problems arise from using them. These include their 

lack of reliability and the fact that the quality of the data available may be poor 

(21). In addition, randomised trials become more popular as the standard of 

care improves so that there are more potential control treatments. Furthermore, 

endpoints measured in historical data may be different from the endpoint 

measured in the current trial, therefore rendering the data incomparable (21). 

Given the significant shifts in drug development, it is clear that researchers have 

recognised that the designs of phase II trials need to adapt in order to fulfil their 

objectives in the current era. Recognising that many methods have become 

available, Brown et al. (22) reviewed 122 articles describing new or adapted 

phase II designs and from them the researchers produced a structured 

framework to aid researchers during the design process of phase II oncology 

trials. The main thought process to identifying an appropriate phase II design 

included therapeutic considerations, which include the mechanism of action of 

the treatment in question, the phase II trial aim, the outcome of interest and how 

it will be measured, whether the trial should include randomisation, the design 

category of the trial (including whether it is a single-stage or two-stage design 

etc.) and practical considerations which may include availability or reliability of 

previous data and whether the trial should be terminated early for, either a lack 

of activity or evidence of a very active treatment. These encompass clinical and 

statistical considerations, highlighting the need for multi-disciplinary 

collaboration in the adequate design of phase II trials, allowing them to be 

efficient in the current era. 
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The choice of endpoint in phase II trials is an important consideration and has 

become so due to the emergence of targeted therapies. As previously 

mentioned, the most commonly used endpoint in phase II trials is tumour 

response rate. Variations for tumour response rate exist including standard 

criteria such as Response Evaluation Criteria in Solid Tumours (RECIST), 

which categorise tumour measurements of the lesion prior to and after receiving 

the treatment (23). However, response rate has come under question as it fails 

to capture the effect of cytostatic treatments. This is evidenced by the novel 

therapy sorafenib, which is used for patients with advanced renal cell carcinoma 

and hepatocellular carcinoma, which showed low response rates in phase II 

studies (24, 25), but subsequent phase III trials showed that it is clinically 

beneficial as it prolongs progression-free survival and overall survival (26, 27). 

Another drawback with response rate – a short-term outcome – is that it does 

not always reflect long-term efficacy in phase III trials (20), where the outcome 

of interest may be survival or quality of life of patients. Historically, this endpoint 

was chosen as it is a short-term outcome, only used to provide an indication of 

efficacy, rather than confirm it. Despite response rate’s obvious drawbacks, 

researchers lean towards it due to the fact that it is standardised, easily 

applicable and yields early outcomes (28).  

Alternatives to response rate have emerged, in order to accommodate 

cytostatic treatments, such as RECIST (version 1.1) (29), which incorporate 

stable disease as a positive outcome to the treatment. In addition, some 

researchers forego the categorisation of the change in tumour size before and 

after the treatment is administered, and use it as a continuous endpoint, which 

avoids the loss of data that may occur when the outcome is categorised. 

However, this endpoint is not commonly used and can be statistically intensive 

(28).  

Due to the problems that exist with response rate as an appropriate endpoint, 

many researchers recommend the use of time-to-event outcomes in phase II 

trials (23, 30-32). The advantages of using overall survival (OS) in phase II trials 

is that it is an objective measure and is clinically meaningful, however, it can be 

argued that it is simply not appropriate to fulfil the purpose of phase II trials, as it 

requires a long follow-up period, and is ultimately the endpoint typically used in 

phase III trials (33). Progression-free survival (PFS) is more suited to phase II 

trials due to the fact that it typically requires a shorter follow-up period (in 

comparison to OS) and that it is more reflective of a longer-term clinical benefit 

(in comparison with response rate). However, PFS can be prone to biases 

particularly in unblinded trials and frequent tumour assessments are required 

during the follow-up period (34). Other endpoints are available such as 
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measures for quality of life, functional imaging and the use of biomarkers. 

However, these also have drawbacks including subjectivity, complex analyses, 

being time consuming and not being valid surrogates of efficacy (34). 

The appropriateness of the design of phase II trials has also been questioned 

due to the change in the current era. Novel treatments often require the use of 

different endpoints, such as PFS, and the lack of historical data for these newer 

endpoints means that randomised phase II trials are required more often. 

However, this shift in design is not without reservation; the main concern 

against randomised designs is that it requires too many patients (35), 

particularly for the purpose of phase II trials which is to screen treatments for 

initial activity (as mentioned above). In addition, it is not as easy to implement 

and statistical analysis can be intense (35). Despite this, randomised phase II 

designs’ main attraction is the fact that a valid and reliable control is present, so 

that robust conclusions can be made about the treatment effects. For this 

reason, some researchers argue that randomised designs can be the answer to 

increasing the efficiency of the drug development process in oncology (31).  

In addition to randomisation, phase II trials can also be designed with a single-

stage or two-stage or even multi-stage designs. Jung (36) discusses statistical 

issues with design and analysis of single arm two-stage designs. He states that 

these are the most common phase II trial designs, despite the vast availability of 

new designs (36). In two-stage designs, trials are conducted with an interim 

analysis separating the two stages. Critical values, or cut off boundaries, are 

obtained by pre-specifying the operating characteristics of the trial. The critical 

values are then used at each stage of the trial and are compared with the 

observed responses; the go/no-go decision made in these trials is based on the 

critical values. Jung states that the planned sample sizes at each stage are 

oftentimes not attained in the trial, due to practical challenges, such as lack of 

available patients, consequently the critical values become meaningless and 

cannot be used to make the pivotal decision at phase II (36).  

In phase III trials, this problem rarely arises due to the fact that rigid protocols, 

with well-established methodologies, are created and adhered to, which include 

the statistical analysis of the trial which is conditional on the sample size. Phase 

III trial statistical designs and methodologies are generally agreed upon by 

researchers (37). A phase III trial usually compares an experimental treatment 

with standard care in a two-arm randomised design (37), although there are 

other design options for phase III trials, such as multi-arm multi-stage (MAMS) 

designs (38). Under the frequentist framework, the sample size of the phase III 

trial is obtained so that the trial is powered to detect a clinically significant 

difference at a pre-specified type I error rate. The type I error rate is also known 
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as the significance level and it refers to the probability of obtaining a false-

positive result, i.e., recommending an ineffective treatment. In the event that this 

occurs, harm may befall the population, hence this error rate is restricted to a 

low level. A second error can also occur under the frequentist method, known 

as the type II error and this is the probability of failing to recommend a positive 

treatment i.e., false-negative. The power is the complement of the type II error. 

Conventionally, phase III trials have a pre-specified significance level of 0.05 

and power set to 0.8 or 0.9 (39).  

While phase III statistical methods are well-established, no consensus for phase 

II trial operating characteristics has been reached, due to differences in phase II 

trial purposes (proof-of-concept or dose-finding) and the fact that it is not a 

definitive, registrational trial, for which minimum standards exist. In Langrand-

Escure et al.’s (9) review they reported that 37.7% of the 557 phase II trials they 

identified used 0.05 for the type I error value, while 5% used a type I error less 

than 0.05 and 27.7% used a value larger than 0.05. They also found that of the 

articles they reviewed 80% and 90% power were most commonly used, with 

80% used more often (28.2% compared with 25.3%). Only 2.7% of articles used 

a power smaller than 80%, 9% used a power between 80% and 90% and 5.9% 

used a power larger than 90%. However, the striking thing revealed in 

Langrand-Escure et al.’s (9) review is that 28.9% of the articles did not report 

such an important statistical requirement in clinical trial designs.  

The majority of clinical trial designs adopt the frequentist approach, where the 

probability of a particular event occurring is calculated, given the operating 

characteristics. The advantage of this approach is not only that it is well-known 

and familiar, but also that it is a rigorous and thorough process. However, some 

of its disadvantages include the fact that it is limiting: once a trial has been 

initiated, amendments to the design have to be rigorously thought out and thus 

may be difficult to implement (28).  

An alternative framework to clinical trials is the Bayesian approach. This 

approach to designing trials involves prior information about the outcome 

measure to generate a prior distribution, which quantifies the uncertainty about 

the measure. The clinical trial is then conducted and the data is combined with 

the prior distribution to obtain a posterior distribution. Inferences can then be 

made based on the updated posterior distribution, including posterior 

probabilities, prediction intervals and credible intervals. One of the virtues of this 

approach is that it is flexible and data driven, so is suited to adaptive 

assignment of patients to therapies that prove to be more efficacious during the 

trial (28). Its usage can be particularly useful for rare diseases as prior 

information can help supplement the lack of data available in the study itself 
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(40). Despite the increase in Bayesian methodologies proposed there is a low-

uptake of them in clinical trials (41). As such, throughout this research phase II 

trial design parameters that are investigated are based on the frequentist 

approach, as it is still the most widely used framework in clinical trials, 

particularly for common cancers (40)   

The design options, highlighted in this section, by reviewing previous choices of 

phase II trial parameters, has emphasised that an updated review is needed. 

This is presented in Chapter 2 of this research and aims to answer the following 

question: how are phase II trials in oncology currently conducted? A detailed 

overview of this chapter is provided in Section 1.4. 

1.3 The importance of adequately designed phase II trials 

It is clear from Section 1.2 that a consensus on the optimal design of phase II 

trials has not been reached and it is still a subject of ongoing deliberation (35). 

The consequence of this is that phase II trials in oncology are conducted 

without strong evidence that they will lead to a positive outcome in phase III 

trials. Kola and Landis (42) state that the majority (60%)  of novel agents, that 

showed promise in phase II trials, failed to translate this success in proceeding 

phase III trials. Maitland et al. (43) also revealed that phase II trials that 

evaluated combination therapies between 2001 to 2002 were successful 72% of 

the time, however, the chances that the proceeding phase III trial would result in 

a significant outcome was only 3.8%. Furthermore, Zia et al. (44) showed that 

the response rates in phase III trials were frequently found to be lower than their 

preceding phase II trial. There is a clear disconnect between the decision made 

at the end of phase II, and despite researcher’s efforts to bridge the gap 

between the results of the two phases, there remains a need for guidance 

around the efficiency of phase II designs.  

The go/no-go decision that occurs at the end of phase II trials hinges on an 

appropriately designed study. In order to investigate truly efficacious treatments 

in phase III trials, the preceding phase II trial must reject futile treatments, and 

accurately identify treatments that are likely to benefit patients. The design 

considerations of phase II trials include (but are not limited to) the aims of the 

trial, statistical design, randomisation and endpoints. Each of these require 

rigorous thought and need to be appropriately implemented in order to ensure 

the phase II trials allow informed decisions to be made, prior to embarking on a 

resource-intensive phase III trial. Doing so will ensure that patients have access 

to the best treatments available, therefore improving their chances of survival, 

while also ensuring that costs (monetary and ethical) are kept to a minimum. 



11 
 

1.4 Aims and structure of thesis 

It is clear that phase II trials play a pivotal role in the drug development process 

in oncology. However, they are not fulfilling their purpose of being an adequate 

filter for phase III trials: recommending truly efficacious treatments and rejecting 

futile treatments as efficiently as possible. It is also clear that there are many 

designs available for phase II trials and researchers need to contemplate a 

number of clinical and statistical considerations for phase II trials in order to 

choose the most appropriate design. The aim of the research, presented in this 

thesis, is to aid researchers to make informed decisions about the design of 

phase II trials, by investigating and revealing the effects of oncology phase II 

design parameters on the efficiency of the drug development process as a 

whole. While each phase II trial is different and choosing a specific design 

parameter will depend on external factors, recommendations will be made to 

help guide these decisions, based on the findings of this research. 

As previously mentioned, the design parameters of the phase II trials will be 

limited to those associated with the frequentist statistical framework, due to its 

popularity among researchers. With many design parameters available for 

phase II trials, the most commonly used ones were identified in a systematic 

review, which is presented in Chapter 2. The systematic review also aims to 

reveal how phase II trials are designed, and how the current designs and 

methods differ from previous years. The quality of reporting of phase II trials is 

also discussed. The phase II design parameters identified in the systematic 

review is the focus of future chapters in this thesis, where the aim is to reveal 

their effect on successfully screening new treatments.  

With the design parameters selected from the systematic review, a literature 

review was conducted in Chapter 3 with the purpose of identifying a measure to 

use to evaluate the efficiency of phase II trials. The aim here was to find a 

measure that can be used to quantify the effect of a design parameter on the 

overall performance of the drug development process. Several criteria were 

applied in order to identify one measure which would be used to assess 

efficiency of phase II trials. 

In Chapter 4, the overall methodology used to evaluate the effect of phase II 

design parameters on the drug development process is explained; here findings 

from the literature review are used to inform the assumptions made, to facilitate 

the investigations. While the main aim of the research is to evaluate the impact 

of design parameters of oncology phase II trials on their ability to successfully 

screen new treatments, specific research questions can be derived once the 

design parameters to study have been selected (Chapter 2) and what measure 
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to use to quantify their effect on oncology phase II trial efficiency has been 

identified (Chapter 3). Therefore, Chapter 4 will outline the specific research 

questions that will be reported in the remainder of the thesis. Hence, Chapters 

5, 6 and 7 are dedicated to investigating the effect of the chosen three different 

design parameters on the performance of the drug development process. In 

addition, the methods employed to investigate the effect of the specific design 

parameters in each of the chapters (5, 6 and 7) are also explained and the 

results for each parameter are presented. Each chapter (5, 6 and 7) also 

included a discussion where the specific results to the corresponding chapter 

are interpreted and compared to previous literature. Key limitations and 

potential implications specific to each parameter are also presented in the 

corresponding chapter. 

Finally, Chapter 8 summarises the findings of the research, while providing a 

critical evaluation of the assumptions and methods. In addition, the applicability 

of these methods and findings are also addressed, so that researchers are clear 

about the implications of the findings, presented in this research project, on 

future designs of phase II trials and, thus the drug development process as a 

whole. 
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Chapter 2 A systematic review exploring the design 

characteristics of phase II trials published in three leading 

oncology journals in 2015 and 2019 

In this chapter, a systematic review is carried out with the aim of highlighting the 

design parameters currently used in oncology phase II trials. The findings from 

this chapter will help the selection of the design parameters that will be 

considered in this research. 

2.1 Introduction 

Phase II trials are typically designed to assess whether a novel therapy shows 

sufficient clinical efficacy for further investigation (45). A pivotal decision is 

made at this stage regarding the appropriateness and feasibility of proceeding 

to a resource-intensive phase III trial. The phase II-III decision point poses the 

highest financial risk due to the large resource investment required for phase III 

trials, as a result of increased patient numbers required and associated 

increases in time, and therefore cost. Subsequently, if the decision criteria, used 

in phase II trials, to ascertain whether to proceed to a phase III trial, is set too 

high or too low, the consequences can be wasteful: too high a threshold leads 

to potentially efficacious treatments being terminated, while too low a threshold 

means that too many inefficacious treatments proceed to phase III testing. 

Therefore, phase II trials are required to be designed in a manner that can most 

effectively inform this decision-making process.  

In cancer drug development attrition rates are very high (46). Compared to 

other specialties, only 5% of therapies entering clinical development are 

ultimately licensed, compared to 20% of therapies entering clinical development 

for cardiovascular disease (7). Harrison (47) conducted a review of a total of 

174 articles comprising of a mixture of phase II and III trials published during 

2013 to 2015. They found that oncology trials failed 32% of the time, compared 

to only 7% in cardiovascular trials. More specifically, Kola and Landis (42) 

highlighted the failure rates of oncology phase III trials to be between 50-60%, 

which is significantly larger than other disease areas, such as cardiovascular 

disease where the failure rate is between 20-30%. These data suggest that 

oncology phase II trials require improved designs to better fulfil their purpose of 

rejecting futile treatments early and selecting truly efficacious treatments for 

further study. There is a significant demand for more effective therapies due to 

frequent poor outcomes for patients diagnosed with cancer, the increasing 
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number of people developing cancer and increasing understanding of cancer 

biology, leading to increased targets and the ability to define more discrete sub-

populations within or across disease sites. This has contributed to a lower 

clinically relevant threshold during preclinical oncology trials, which may explain 

the reason for the low therapy approval rates reported (8). However, this is not 

the only reason contributing to these poor statistics; a key contributing factor is 

the design of these trials (8). 

Understanding the key design characteristics of phase II trials is necessary to 

be able to explore their impact on the efficiency of the phase II to phase III 

pathway. Characteristics such as sample size, operating characteristics, 

endpoints, trial design and decision criteria all impact the ability to successfully 

screen treatments for appropriateness of continuing clinical development.  

Previous literature has addressed the issue of the design, and quality of 

reporting, of phase II trials. In 2000, Mariani and Marubini (20) published a 

review with the aim of investigating which designs are frequently used in phase 

II trials. Their review was limited to phase II trials published during one year, 

specifically, 1997. They found that the statistical components of these trials 

were poorly reported, with only 61 out of 308 studies having an identifiable 

design. Grellety et al. (48) also conducted a review, focusing on highly ranked 

oncology journals, and found that even in journals with strict editorial policies, 

vital information about the designs was often omitted. Langrand-Escure et al. 

(9) reviewed the quality of reporting of phase II trials published in three high 

impact journals during 2010-2015, reporting also on the study characteristics of 

the trials. They concluded that the quality of reporting was poor and raised as 

topics for further investigation the evaluation of the design and methodological 

choices within phase II trials. This highlights the need to better understand the 

design characteristics of phase II oncology trials in order to evaluate the impact 

of these choices on the efficiency of decision making at phase II. 

Recognising there are many phase II trial designs available, Brown et al. (22) 

reviewed methodological articles describing phase II designs and produced a 

structured framework to aid researchers during the design process of phase II 

oncology trials. Core components for design choice included type of endpoint 

and use of randomisation. In addition, in 2005 Lee and Feng (49) reviewed the 

use of randomised phase II trials, in comparison to the conventional single-arm 

design, and found that their use was increasing in cancer research. Given the 

shifts in drug development, where many novel treatments are available for 

testing and the emergence of novel types of therapies, researchers have 

recognised that the designs of phase II trials need to adapt to fulfil their 

objectives in the current era.  
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This chapter describes a systematic review to determine design characteristics 

of high-quality phase II trials in the current cancer clinical trial environment. 

Understanding how phase II trials are designed, and the key design parameters 

used, will enable future research to evaluate the impact of current design 

choices on the efficiency of phase II decision-making. This will ultimately allow 

researchers to make more informed choices when designing phase II oncology 

trials. Another objective of this systematic review is to explore how the designs 

of phase II trials have changed in recent years. The results of the review will 

feed into the methods for the research reported in the remainder of the thesis. 

2.2 Methods  

A systematic review was undertaken based on Mariani and Marubini’s original 

systematic review published in 2000 (20), however a pragmatic streamlined 

approach was taken to capture a snapshot of the design characteristics of 

phase II trials published in high impact journals, reflecting the methods of 

Langrand-Escure et al. (9). High impact journals reviewed by Langrand-Escure 

et al. (9) were selected: Journal of Clinical Oncology, Annals of Oncology and 

British Journal of Cancer. This approach represents a focused review of high-

quality trials that may be seen to reflect common practice in the design and 

conduct of oncology phase II trials. The aim of the review is to provide an 

overview of design characteristics, rather than to undertake an exhaustive 

review of the literature. Articles published in two years at the beginning and 

towards the end of the PhD (2015 and 2019) were therefore chosen, and the 

phase II oncology trial designs used, were compared. 

2.2.1 Study selection  

The studies included in the systematic review were identified through a 

literature search using the Ovid MEDLINE database and was last consulted 1st 

August 2021. Searches were performed for the years 2015 and 2019; the 

search strategies are presented in Table 2.1. The search was limited to articles 

that mentioned phase II trials, in different forms, in either the keywords, abstract 

or the title and that were focused on trials of antineoplastic agents. The search 

also included phase II/III trials, in order to include all trials with a go/no-go 

decision to be made. 

Table 2.1 Left panel: search strategy used to identify published phase II 
cancer trials from three high impact journals. Right panel: key data 
extracted from articles 

1. exp antineoplastic agents/ 

2. Phase ii.tw. 

1. Journal name 
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3. Phase 2.tw. 

4. “phase ii/iii”.tw. 

5. “phase 2/3”.tw. 

6. 2 or 3 or 4 or 5 

7. 1 and 6 

8. limit 7 to English language 

9. limit 8 to yr=”2015” or "2019" 

10. "British journal of cancer".jn 

11. "annals of oncology".jn. 

12. "journal of clinical 

oncology".jn. 

13. 10 or 11 or 12 

14. 9 and 13 

2. Statistical objectives (hypothesis 

testing/estimation/selection)  

3. Disease site 

4. Experimental treatment type 

5. Recruitment duration 

6. Follow-up duration 

7. Number of primary endpoints 

8. Type of primary endpoints 

9. Randomisation incorporated 

10. Randomisation ratio  

11. Number of arms in the trial 

12. Single-stage or two-stage 

design 

13. Statistical design referenced 

14. Bayesian or frequentist methods  

15. Statistical test used 

16. Target sample size 

17. Type I error and sidedness 

18. Type II error  

19. Study result 

The abstracts of the identified articles were reviewed for inclusion, with a 

selection of five of the papers that were included for full-text evaluation 

additionally reviewed independently by a second reviewer, for inclusion and 

data extraction. Articles describing pre-clinical, phase I, phase I/II or dose-

finding trials were excluded. Phase II trials that were not evaluating an 

experimental treatment/combination for any cancer type were also excluded. 

These included trials evaluating prognostic factors, trials with the sole purpose 

of assessing the role of a biomarker, or trials evaluating the efficiency of 

diagnostic methods. In addition, updated results from previously published 

phase II trials were also excluded.  

2.2.2 Data extraction and analysis 

The following information was extracted from the full-text articles: journal name; 

statistical objectives of the study, defined as whether the trial tested a 

hypothesis, estimated a treatment effect or selected a treatment (statistical 

considerations reported were used to determine this); disease site; 

experimental treatment type; recruitment duration (months); follow-up duration 

(months); number of primary endpoints evaluated; type of primary endpoint; 

whether the design was randomised to either a control or experimental arm and 

number of arms in the trial; randomisation ratio used; whether the trial used a 

single-stage or two/multi-stage design; whether a specific statistical design was 
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referenced, and if so what design was used; whether the trial used Bayesian or 

frequentist methods; whether it was a comparative study; the test(s) used to 

compare the treatment; target sample size; type I and II error rates; whether 

biomarkers were assessed as a secondary objective; and the study result 

(Table 2.1). 

The type of experimental treatment was classified as cytotoxic chemotherapy, 

immunotherapy, targeted therapy, hormonal therapy, radiation therapy, 

combination or other. When patients were given more than one treatment, only 

the experimental element was classified. In addition, if the experimental 

treatment was a combination of the same type of treatment, it was recorded as 

that type of treatment, rather than a combination; if the combination was of 

different treatment types, then a combination was recorded. Each treatment 

classification was extracted from three drug indexes (50-52) and was double-

reviewed independently by myself and the clinical supervisor of this research 

(FC). 

Trials were deemed to have specified a design if a single-arm or a non-

comparative randomised trial referenced a specific design, or discussed the 

statistical test used to compare findings with historical data. In the case of 

comparative randomised designs, a design was considered specified if the test 

used to compare treatment arms was stated. In addition, the type I error 

requires two elements to be specified: the value at which it is set and whether it 

is one-tailed or two-tailed. If the article did not specify the number of tails, then it 

was recorded that they did not report it. As such, both elements were extracted 

from the articles, however, for consistency, the corresponding two-sided value 

is reported here.  

Endpoints were categorised as response rate, safety, and time-to-event 

endpoints, such as progression-free survival, based on the articles reviewed. 

Time-to-event outcomes were often dichotomised to become a binary outcome 

depending on whether the event had occurred by a specified time; thus, they 

were extracted as dichotomised time-to-event outcomes. 

Data were extracted and stored in Microsoft Excel. Rstudio 1.4 (53) was used to 

summarise the data using frequencies (percentage), means (standard 

deviation) and medians (interquartile range), where appropriate. Data were 

summarised overall and by year.  

2.3 Results  

For the year 2015, 97 articles were found, while 74 articles were identified for 

the year 2019. In 2015, 74 articles met the inclusion criteria, compared to 54 
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articles in 2019. Of the 74 articles selected from 2015, the majority were 

identified from Annals of Oncology (44.6%) and Journal of Clinical Oncology 

(44.6%). In 2019 the majority of papers identified were published in Journal of 

Clinical Oncology (57.4%). Figure 2.1 displays a detailed summary of the 

selection process and reasons for the exclusions. 

 

Figure 2.1 Flowchart summarising the selection of articles included in the 
review (AO: Annals of Oncology, BJC: British Journal of Cancer, JCO: 
Journal of Clinical Oncology) 

Table 2.2 shows the characteristics of the phase II trials identified. The main 

statistical objective, which was derived from the statistical considerations and 

sample size calculation details, where otherwise not directly specified, was 

predominantly focused on hypothesis testing (overall 83.6%; 2015: 86.5%; 

2019: 79.6%). Of note, in 2019 three (3.7%) papers used phase II trials to 

evaluate more than one main aim, namely estimation and hypothesis testing. 

They aimed to estimate a treatment effect, and thus used estimation methods to 

2019 full-text exclusions: 2 
Reasons  

• Secondary analysis 

• Phase I/II 

Total citations included:  

2015: 74; AO: 33; BJC: 8; JCO:33 

2019: 54; AO: 13; BJC: 10; JCO:31 

Full-text screened for relevance 

2015: 82 

2019: 56 

Abstracts screened for relevance 

2015: 97 

2019: 74 

2019 abstract exclusions: 18 

Reasons 

• Secondary analysis (× 5) 

• Biomarker study (× 3) 

• Non-treatment trial 

• Phase I/II (× 7) 

• Pre-clinical trial 

• Treatment for side effect 

2015 abstract exclusions: 15 

Reasons 

• Secondary analysis (× 3) 

• Biomarker study (× 3) 

• Phase I study  

• Phase I/II (× 4) 

• Dose finding 

• Evaluation of prognostic 

values (× 3) 

2015 full-text exclusions: 8 
Reasons 

• Non-treatment trial 

• Secondary analysis (× 3) 

• Dose finding 

• Evaluation of prognostic 
factors 

• Biomarker study 

• Phase I/II 
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derive their sample size, but also included cut-off decision criteria to proceed to 

phase III, in the form of hypothesis testing (54-56).  

Table 2.2 Characteristics of the identified phase II trials published in 2015 
and 2019 meeting inclusion criteria (* frequency (%) presented unless 
otherwise stated; ** median (IQR) presented) 

Characteristics  Overall  

n (%) 

Year  

2015 n(%)* 2019 n (%)* 

Journal Annals of 

Oncology 

46 (35.9) 33 (44.6) 13 (24.1) 

British Journal 

of Cancer 

18 (14.1) 8 (10.8) 10 (18.5) 

Journal of 

Clinical 

Oncology 

64 (50.0) 33 (44.6) 31 (57.4) 

Follow-up 

duration 

(months) 

Mean(SD) 24(12-36) ** 24(12-27) ** 31.2(19.7) 

Not reported 78 (60.9) 46(62.2) 32(59.3) 

Study aims Treatment 

Selection 

4 (3.1) 2(2.7) 2(3.7) 

Estimation  12 (9.4) 8(10.8) 4(7.4) 

Hypothesis 

testing 

107 (83.6) 64(86.5) 43(79.6) 

More than one 

aim  

3 (2.3) 0(0) 3(3.7) 

Not specified 2 (1.6) 0(0) 2(5.6) 

Disease site Brain  2 (1.6) 1(1.4) 2(3.7) 

Breast  18 (14.1) 9(12.2) 9(16.7) 

Gastrointestinal 

tract 

24 (18.8) 16(21.6) 8(14.8) 

Gynaecology  6 (4.7) 2(2.7) 4(7.4) 

Head & neck 10 (7.8) 4(5.4) 6(11.1) 

Haematology  16 (12.5) 10(13.5) 6(11.1) 

Lung  22 (17.2) 14(18.9) 8(14.8) 

Many sites 3 (2.3) 1(1.4) 2(3.7) 

Sarcoma  5 (3.9) 3(4.1) 2(3.7) 
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Skin 5 (3.9) 3(4.1) 2(3.7) 

Urology 13 (10.2) 9(12.1) 4(7.4) 

Other 3 (2.3) 2(2.7) 1(1.9) 

Type of 

experimental 

treatment 

Cytotoxic 

chemotherapy 

33 (25.8) 23(31.1) 10(18.5) 

Hormone 

therapy 

3 (2.3) 1(1.4) 2(3.7) 

Immunotherapy 11 (8.6) 1(1.4) 10(18.5) 

Targeted 

therapy 

67 (52.3) 43(58.1) 24(44.4) 

Radiation 

therapy 

3 (2.3) 0(0) 3(5.6) 

Combination 8 (6.3) 4(5.4) 4(7.4) 

Other  3 (2.3) 2(2.7) 1(1.9) 

Duration of 

recruitment 

(months) 

Mean(SD) 31 (20.8-41)** 27(18-28) ** 37.3(19. 8) 

Not reported 12 (9.4) 7(9.5) 5(9.3) 

Single-stage or 

multi-stage 

Single-stage 91 (71.1) 54(73.0) 37(68.5) 

Multi-stage 37 (28.9) 20(27.1) 17(31.5) 

Single-arm or 

randomised 

Single-arm 58 (45.3) 33(44.6) 25(46.3) 

Randomised  67 (52.3) 41(55.4) 26(48.1) 

Multiple-arm 

non-

randomised 

3 (2.3) 0(0) 3(5.6) 

Number of 

arms 

1-arm 58 (45.3) 33(44.6) 25(46.3) 

2-arm 57 (44.5) 32(43.2) 25(46.3) 

3-arm 10 (7.8) 7(9.6) 3(5.6) 

4-arm 3 (2.3) 2(2.7) 1(1.8) 

Multiple-arm 

trials 

Comparative 59 (84.2) 36(87.8) 23(79.3) 

Non-

comparative 

11 (15.7) 5(12.2) 6(20.7) 

Randomisation 

ratio 

Equal  58 (82.9) 34(82.9) 22(84.6) 

Unequal 12 (17.1) 7(17.1) 4(15.3) 

Yes  115 (89.8) 65(87.8) 50(92.6) 
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Design 

specified 

No 13 (10.2) 9(12.2) 4(7.4) 

Number of 

primary 

endpoints 

Unique  123 (96.1) 71(95.9) 52(96.3) 

Multiple  5 (3.9) 3(4.1) 2(3.7) 

Type of 

Primary 

endpoint 

Response rate 65 (50.8) 35(45.5) 30(52.6) 

Safety 5 (3.9) 1(1.3) 4(7.0) 

Time-to-event 30 (23.4) 22(28.6) 8(14.0) 

Dichotomised 

time-to-event 

32 (25.0) 18(23.4) 14(24.6) 

Other  2 (1.6) 1(1.3) 1(1.8) 

Target sample 

size met 

Yes 79 (61.7) 47(63.5) 32(59.3) 

No 35 (27.3) 19(25.7) 16(29.6) 

Not assessable 14 (10.9) 8(10.8) 6(11.1) 

Total target 

sample size 

Median(IQR) 81(50-132.5) 80(51-150) 85 (50-120) 

10-50 30 (23.4) 17(23.0) 13(24.1) 

51-100 40 (31.3) 22(29.7) 18(33.3) 

101-150 25 (19.5) 13(17.6) 12(22.2) 

151+ 19 (14.8) 14(18.9) 5(9.3) 

Not reported 14 (10.9) 8(10.8) 6(11.1) 

Type I error 

value 

<0.025 1 (0.8) 0(0) 1(1.9) 

0.025 19 (14.8) 7(9.5) 12(22.2) 

0.025< 𝛼 <0.05 4 (3.1) 2(2.7) 2(3.7) 

0.05 31 (24.2) 22(29.7) 9(16.7) 

0.05< 𝛼 <0.1 7 (5.5) 5(6.8) 2(3.7) 

0.1 32 (25.0) 14(18.9) 18(33.3) 

>0.1 3 (2.3) 3(4.1) 0(0) 

Not reported 16 (12.5) 11(14.9) 5(9.3) 

Not applicable 16 (12.5) 10(13.5) 6(11.1) 

One or two 

tailed 𝛼 

One-sided 35 (27.3) 23(31.1) 12(38.9) 

Two-sided 20 (15.6) 9(12.2) 11(20.4) 

Not reported 48 (37.5) 32(43.2) 16(29.6) 



22 
 

Not applicable 16 (12.5) 10(13.5) 6(11.1) 

Type II error 

value 

<0.1 9 (7.0) 6(8.2) 3(5.6) 

0.1 35 (27.3) 21(28.4) 14(24.6) 

0.1<β<0.2 13 (10.2) 7(9.5) 6(11.1) 

0.2 34 (26.6) 16(21.6) 18(33.3) 

>0.2 2 (1.6) 1(1.4) 1(1.9) 

Not reported 20 (15.6) 13(17.6) 7(13.0) 

Not applicable 16 (12.5) 10(13.5) 6(11.1) 

Biomarker 

analysis 

Yes 35 (27.3) 19 (25.7) 16 (29.6) 

No  93 (72.7) 55 (74.3) 38 (70.4) 

Statistical 

method 

Frequentist  127 (99.2) 73(98.6) 54(100) 

Bayesian  1 (0.8) 1 (1.4) 0(0) 

Study result Positive  90 (70.3) 48(64.9) 42(77.8) 

Negative 36 (28.1) 24(32.4) 12(22.2) 

Inconclusive 2(1.6) 2(2.7) 0(0) 

Overall, the most common types of experimental therapies evaluated were 

targeted therapy (52.3%) and cytotoxic chemotherapy (25.8%). The proportion 

of trials testing cytotoxic chemotherapies reduced from 31.1% in 2015 to 18.5% 

in 2019, reflected by the increase in the proportion of trials evaluating 

immunotherapies in 2019 (18.5% compared to 1.4% in 2015). 

In both years, phase II trials utilised multiple-arm designs more frequently than 

single-arm designs. Overall, single-arm trials were used 45.3% of the time, 

while multiple arm designs (including randomised and non-randomised) were 

used 54.6% of trials. In 2015, all multiple-arm trials were randomised, however, 

in 2019, 26/29 (89.7%) were randomised and 3/29 (10.3%) were non-

randomised. Multiple-arm non-randomised trials included multiple cohorts of 

patients stratified into different arms. Of the trials that were multi-arm, the 

majority were comparative in nature, however, there is a slight reduction in their 

use from 2015 (87.8%) to 2019 (79.3%). Multiple-arm non-comparative trials 

included trials with more than one arm, each assessed independently. The 

majority of randomised trials used equal randomisation ratios (84.6%). Master 

protocol designs were also used in four phase II trials investigated: one basket 

trial was identified in each year (57, 58) and there were two trials in 2019 that 

used a similar structure to a basket trial (59, 60), where patients were recruited 
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into different cohorts to answer different questions, however, they did not 

specifically refer to the design as a basket trial. 

Of the 58 single-arm trials identified (2015: n=33, 2019: n=25), 31 referenced a 

statistical design (2015: n=17, 2019: n=14), and of the 67 randomised trials 

(2015: n=41, 2019: n=26), 7 referenced a design (2015: n=4, 2019: n=3). Table 

2.3 shows the distribution of the referenced designs across the two years. Of 

the seven randomised trials that referenced a design two were comparative (61, 

62), while the rest were non-comparative. Of the 38 articles that explicitly 

mentioned a design, Simon’s design (63) was the most used across both years 

(n=23; 60.5%). Fleming’s two-stage (64) and A’hern single-stage designs (65) 

were also frequently referenced. One trial employed a Bayesian design in 2015.  

Table 2.3 statistical designs referenced in the trials with single arm or 
randomised designs 

Referenced design Overall (n 

(%)) 

2015 (n 

(%)) 

2019 (n 

(%)) 

Randomised (n) 7 4 3 

Simon’s minimax design 1 (14.3) 0 1 (33.3) 

Simon’s optimal design 1 (14.3) 1 (25.0) 0 

Simon’s design, not further specified 1 (14.3) 0 1 (33.3) 

Bryant and Day design 1 (14.3) 0 1 (33.3) 

A’hern/Fleming design 2 (28.6) 2 (50.0) 0 

Fleming’s two-stage design 1 (14.3) 1 (25.0) 0 

Single-arm (n) 31 17 14 

Simon’s optimal design 9 (29.0) 4 (23.5) 5 (35.7) 

Simon’s minimax design 3 (9.7) 2 (11.8) 1 (7.1) 

Simon’s design, modified 1 (3.2) 1 (5.9) 0 

Simon’s design, not further specified 7 (22.6) 3 (17.6) 4 (28.6) 

A’hern/Fleming design 7 (22.6) 6 (35.3) 1 (7.1) 

Fleming’s two-stage design 2 (6.4) 0 2 (14.2) 

Group sequential design 1 (3.2) 0 1 (7.1) 

Bayesian multi-stage design  1 (3.2) 1 (5.9) 0 

Of all 128 articles identified 96.1% of them used one primary endpoint, while the 

remaining trials used two primary outcomes. The majority of trials in both years 

used response rate as their primary endpoint. However, in 2019 response rate 
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was used slightly more than in 2015 (45.5% vs 52.6%). In 2015, the second 

most frequent type of primary endpoint was time-to-event (28.6%); however, the 

usage of time-to-event outcomes was approximately half this (14%) in 2019. It 

is clear that the most common type of endpoint for both years is a binary 

outcome (response rate: 50.8%; safety: 3.9%; dichotomised time-to-event; 

25.0%). 

Overall, 61.7% trials met their target sample size, similar across both years. 

Median sample size was 81 (IQR 50-132.5), again similar across both years. In 

2015, phase II trials used a wider range of target sample sizes than in 2019, 

with almost 20% of trials in 2015 reporting sample sizes of over 150. Strikingly, 

approximately 10% of the total identified trials did not report the target sample 

size, and this remained true across both years.  

Given the number of trials that did not report the target sample size, it is not 

surprising that some trials also did not report the type I and II error rates, 

despite their importance in trial design and interpreting trial results; 12.5% of all 

trials identified did not report the type I error rate (𝛼), while 15.6% of all trials did 

not report the type II error rate. In addition, 37.5% of all trials did not report 

whether a one-sided or two-sided significance level was used, however this 

decreased from 43.2% in 2015 to 29.6% in 2019. Furthermore, two trials (66, 

67) were not statistically powered, rather the sample size was chosen based on 

practical considerations. In both 2015 and 2019, one-sided significance levels 

were the most commonly used (31.1% and 38.9%, respectively). Two-sided 

significance levels were only used in 12.2% of the trials in 2015 and increased 

to 20.4% in 2019. Upon converting type I error rates to two-sided values, the 

most common type I error used was 0.05 (29.7%) in 2015, while in 2019, the 

most common converted two-sided type I error increased to 0.1 (33.3%), 

indicating that more stringent type I error rates were used in 2015. A small type 

II error of 0.1 was also used most often in 2015 (28.4%), while in 2019 the most 

common type II error rate was 0.2 (33.3%). 

The use of biomarker analyses, as a secondary objective, were limited in the 

phase II trials identified, with only 25.7% of trials published in 2015 including 

biomarker investigations; this did not increase by much in 2019 (29.6%). The 

use of Bayesian methods in the design of phase II trials was also extremely 

limited with only one article (68), out of the 128 articles identified, using a 

Bayesian design and another (69) designing interim analysis cut-offs using 

Bayesian methods, but with frequentist methods in the final analysis. 
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2.4 Discussions 

Given the large number of therapies available for investigation (10), the need to 

approve new effective therapies as quickly as possible in order to benefit 

patients, and the high attrition rates of drugs in oncology, it is of vital importance 

that the efficiency of the drug development process is optimised. Since a key 

element of the drug development process is the phase II trial, understanding the 

decisions that are made by researchers when designing phase II trials reveals 

areas where their efficiency can be improved. The purpose of this systematic 

review was to identify current design parameters in use for phase II oncology 

trials, by assessing trials published in three high impact journals in two years. 

Simon’s design remains commonly used, both response rate and dichotomised 

time-to-event outcomes are used as primary endpoints, and there are similar 

numbers of randomised and single-arm designs being used.   

While the primary aim of this review was not to identify differences in phase II 

design choices between the years 2015 and 2019, key comparisons can still be 

made to reveal possible directions for future phase II designs. The choice of the 

significance levels used are larger, and the power of the trials are lower. 

Consequently, large phase II sample sizes have become less frequently used. 

The review also revealed shifts in the designs used in phase II trials, where 

A’hern’s design has become less frequently used. It was also revealed that 

there have been slight changes to the type of endpoints used in phase II trials. 

While most trials still use response rate in recent years, there is a clear rise in 

the use of time-to-event outcomes, particularly when they are dichotomised. 

This change could be linked to the types of treatments assessed in the phase II 

trials: with less cytotoxic chemotherapies and more targeted therapies being 

tested, it is not surprising that trialists are opting to use time-to-event outcomes, 

and dichotomising them, so that they span a shorter period of time. 

The extent to which comparisons with the reviews of Mariani and Marubini (20) 

and Langrand-Escure et al. (9) can be made is limited, acknowledging that 

these reviews had slightly different objectives, focussing on evaluating the 

incorporation of new designs and quality of reporting, and therefore addressed 

a few differing parameters. However, where comparisons can be made, these 

findings highlight the evolution of the use of phase II designs over the years. 

Mariani and Marubini (20) found 98.7% of phase II trials in their review were 

single arm, while Langrand-Escure et al. (9) showed that single-arm designs 

were still the majority (56.6%). This review revealed that randomised designs 

were more commonly used in recent years, as more researchers opt to conduct 

the phase II trial using a formal comparative approach. This may be because 
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single-arm phase II trials use historical control data for comparisons and many 

problems arise from using them. These include their lack of reliability and the 

fact that the quality of historical data available may be poor (70). In addition, 

endpoints measured in historical data may be different from the endpoint 

measured in the current trial, therefore rendering the data incomparable. This is 

further highlighted by the review conducted by Mariani and Marubini (20), where 

they found that 96.8% of trials, published in 1997, used objective response rate 

and 77.6% of them assessed cytotoxic chemotherapies. The emergence of 

novel treatment types has meant that other endpoints may be considered more 

appropriate.  

Novel designs, such as basket trials and phase II trials with multiple cohorts 

assessed within one trial, were also identified. This may be one of the ways by 

which the efficiency of phase II trials improves, so that they are powered to 

extract as much information as possible to feed into the proceeding phase III 

trial, increasing its chances of finding a beneficial treatment (38). The 

improvement in efficiency is linked to better selection criteria of patients with 

disease harbouring most appropriate molecular signature. With increasing 

knowledge and understanding of cancer biology, it is being realised that many 

genomic aberrations occur across multiple histologies, and a specific molecular 

profile may be more predictive of drug sensitivity than histology alone (20). 

As a consequence of investigating the design parameters used in phase II trials, 

the quality of reporting also emerged. Reporting of important statistical elements 

of the design was poor: the target sample size was omitted in approximately 

10% of the trials reviewed. The type I and II error rates were also omitted 

frequently, however, the quality of reporting of phase II trials is improving. 

Langrand-Escure et al. (9) showed that type I and II error rates were not 

reported in approximately a quarter of phase II trials. However, in this review, 

these operating characteristics were included in most of the trials reviewed and, 

in 2019 they were very rarely omitted. In terms of specifying the statistical 

design used, Mariani and Marubini (20) reported that only 19.8% of trials 

reported this information. Again, an improvement in the reporting of the 

statistical design is evidenced here, where only 10% of trials omitted reporting 

statistical design parameters, however, the criteria used in this review to 

establish whether a trial specified the design differs from Mariani and Marubini 

(20). This is due to the differences in designs found in each period. In their 

review most trials published in 1997 used single-arm designs, hence they 

deemed trials with a referenced design as one that specified their methods. In 

the current era, and as confirmed here, the number of single-arm designs has 

given way to randomised designs. Therefore, it is no longer appropriate to 
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assess the specification of a design in the same way as Mariani and Marubini 

(20). The perspective used here was that if a trial specified the test used for the 

sample size calculation, then the trial was deemed to have specified the design.  

This review also highlighted that more than a quarter of the phase II trials did 

not meet their target sample size due to poor recruitment. This highlights the 

need to design feasible phase II trials where the sample size is attainable. 

Decisions for other design parameters become irrelevant if the trial does not 

reach its planned completion. It is also clear that phase II trials, in this review, 

have a positive outcome about 70% of the time, indicating that they should 

proceed to phase III. The results from subsequent phase III trials were not 

evaluated here, however, clearly, if the number of robustly designed phase II 

trials that lead to phase III trials increases, more of them are likely to approve a 

larger number of novel treatments. It is, therefore, important that phase II trials 

are designed so that the answers they provide can increase the chances of 

success in phase III trials.  

There are several limitations to this review. There were only three journals 

included in this review, all of which were of high quality (i.e., possess a high 

impact factor). The expectation is that this provides information about common 

practice for the design of phase II trials. However, it does mean that the findings 

cannot be extrapolated to phase II trials in other journals. This review was also 

limited to two years only. Despite this the aim of the review, which was to reveal 

how phase II trials are designed in the current era, was fulfilled and an overview 

of the designs was presented. 

The inclusion criteria, used here, allowed phase II/III trials, however phase I/II 

trials were excluded. While this may be a limitation, the majority of phase I/II 

trials aim to establish a dose of treatment and provide estimates for the 

treatment effect, rather than typically making a decision as to whether or not to 

proceed to phase III. While standalone phase II trials are sometimes designed 

to estimate the treatment effect, this review highlights that this is only a minority. 

In addition, the aim of this review was to explore the choices used for designing 

a phase II trial that has potential to proceed directly to a phase III trial, hence 

their exclusion was justified. 

In conclusion, it is clear from trials reported in this review that phase II trial 

sample sizes range between 10 to 150 patients, with type I error commonly set 

to two-sided 0.05 or 0.1, and type II error typically chosen to be 0.1 or 0.2. The 

review also identified that Simon’s two-stage design (63) and A’ Hern’s one-

stage single-arm design (65) are commonly used, that randomisation and 

single-arm trials are equally popular choices of designs in phase II, with a binary 
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endpoint as the chosen outcome. Therefore, even as recently as 2019, it is 

clear that still there are a broad range of designs, size, endpoints, and error 

rates. In addition, there are still improvements to be made in terms of the quality 

of reporting and designing appropriate phase II trials for different settings. There 

are many options available, and it is important that researchers design phase II 

trials to fulfil their purpose: to minimise the risk of taking ineffective drugs to 

phase III or discounting a potentially effective drug at phase II. The parameters 

identified here are the main choices of oncology phase II trials and therefore will 

be used in future chapters where their effect on phase II efficiency will be 

explored. 
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Chapter 3 Literature Review: what is the best measure to 

quantify the efficiency of phase II trials? 

In Chapter 1, I highlighted that phase II trials lead on to too many unsuccessful 

phase III trials that fail to identify an efficacious novel treatment. Amongst other 

factors, this high attrition in phase III trials, can be attributable to the design of 

phase II trials, which is the focus of this research. 

In Chapter 2, I conducted a systematic review which identified how current 

phase II trials are carried out, in terms of their designs. I found that there is a 

broad range of designs, sample sizes and endpoints that are used in phase II 

trials with no clear consensus among researchers as to which parameters 

contribute to an efficient phase II design.  

In this Chapter, I review the literature with the aim of identifying the most 

appropriate measure to quantify the efficiency of phase II trials. 

3.1 Introduction 

It is clear from the systematic review (Chapter 2) that current phase II trials are 

designed using a variety of different methods and statistical techniques. This 

gives rise to the main question that this research aims to address: what is the 

impact of using different design parameters on the efficiency of phase II trials 

and the phase II and III drug evaluation process? This question contains two 

elements that need to be clarified: Chapter 2 highlighted the design parameters 

that were selected for evaluation, namely, the choice of endpoint in phase II, the 

design, specifically whether randomisation and/or multiple stages are 

incorporated and the sample size of the phase II trials. The second element of 

the research question is the definition of efficiency of phase II trials. Defining 

how the efficiency of phase II trials is measured is vital as it is the basis of this 

thesis, from which conclusions may be drawn. 

With different methods and perspectives available to assess the efficiency of 

phase II trials, the aim of this literature review is to critically evaluate the 

appropriateness of the measures. Upon doing so, the most appropriate 

measure for the efficiency of phase II trials will be used to evaluate the effect of 

different design parameters.  

In this literature review, I identify articles describing measures of phase II trial 

efficiency and assess how applicable they may be to evaluating the 

performance of the phase II and III trial pathway, on the basis of several criteria. 
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An appropriate measure of efficiency in this setting needs to fulfil the following 

criteria: 

1. The measure needs to capture the long-term benefits of an efficient 

phase II design with respect to the phase III outcome. By this I mean the 

measure needs to include the probability of phase III trial success 

(probability of whether treatment has been deemed efficacious) under a 

variety of different scenarios, e.g., when there is a treatment effect and 

when there is not, and also needs to include the probability of phase II 

success, under these scenarios. This is vital due to the purpose of 

phase II trials, which is to screen treatments to evaluate whether further 

testing in phase III is warranted. 

2. The measure needs to be appropriate for testing the efficiency of a 

series of trials, assessing different treatments, rather than looking at an 

individual phase II trial with its subsequent phase III trial in isolation. This 

is important as there are many treatments available for testing yet 

limited resources to do so. This requirement also follows the sequential 

nature of the drug development pathway, where testing treatments is an 

ongoing process.  

3. The measure needs to be flexible so that it is able to identify the 

efficiency of phase II trials under various underlying assumptions, 

independent of the phase III design choices. This means that an 

appropriate measure is one that is not confined by parameters other 

than those attributable to phase II, i.e., the design choice of the phase II 

are not limited by the design choices in phase III. This would allow the 

exploration of a wider variety of phase II design parameters. 

4. The measure needs to be generalisable so that it can be used to 

measure the performance of phase II trials for a variety of scenarios and 

settings. This would ensure that the conclusions made here are not 

limited to a particular era time or place.  

The measure that fulfils all these criteria will be the one chosen to evaluate the 

effect of the design parameters of phase II trials. 

3.2 Methods  

The main aim of the literature review is to explore the measures used by 

researchers to quantify the efficiency of phase II trials. Consequently, the 

inclusion criteria for this literature review were that articles had to incorporate a 

measure of efficiency for phase II trial designs. In addition, articles were limited 

to ones which look at go/no-go phase II trials, i.e., decision making trials, since 
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the aim of this research is to improve the decision-making process to go from 

phase II to phase III trials.  

A keyword search was conducted using the Ovid MEDLINE database 

identifying articles published during 1946 to 26th July 2021 and included all the 

possible variations of terms for phase II and phase III trials, to fulfil the aim of 

the literature review. The search terms used can be found in Table 3.1. 

Table 3.1 keyword terms and combinations used to find relevant data for 
the literature review 

phase II.mp. 

phase 2.mp. 

pilot stud*.mp. 

early-phase.mp. 

optim*.mp. 

Decision Making/ or Clinical Trials, Phase II as Topic/ 

phase III.mp. 

phase 3.mp. 

"go/no-go".mp. 

decision point.mp. 

1 or 2 or 3 or 4 

7 or 8 

6 or 9 or 10 

11 and 13 

5 and 14 

12 and 13 

15 and 16 

Key: [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading 

word, keyword heading word, organism supplementary concept word, protocol supplementary concept 

word, rare disease supplementary concept word, unique identifier, synonyms]; *truncates word and finds 

variant word endings 

“Decision making” was included as a term in the search strategy and was 

mapped to the subheadings “clinical trials” and “phase II”. This limited the 

search to articles that discuss decision making in phase II clinical trials. 

“Decision point” and “go/no-go” were also included in the keyword search to 

expand the number of relevant articles. In addition, different forms of the word 
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“optimising” was combined with the other search terms to obtain the articles of 

potential interest. The Boolean operators “OR” and “AND” were used: OR was 

used to encompass all forms of similar words; AND was used to limit the search 

by combining two or more words together. Relevant articles were reviewed and 

from them the search was expanded by a method called pearl growing. This is 

when relevant articles are chosen from the reference list of articles found. While 

pearl growing was used to find articles from the relevant articles identified in the 

search, no further pearl growing was done from those pearl grown articles.  

Data from the selected articles were extracted into Microsoft Excel. Findings 

were summarised narratively, specifically, the authors, year of publication, the 

aim of the phase II trial (used to whittle down papers if it was not based on a 

go/no-go trial), the aim/perspective from which the evaluation was taking place, 

whether the evaluation was considered using a single phase II trial or multiple 

phase II trials and the measure of efficiency of phase II trials. Articles that did 

not have a measure of efficiency were excluded, in addition to exploring the 

performance of a phase II trial that does not have a go/no-go aim. 

3.3 Results 

The search yielded 291 articles, of which only 55 were deemed relevant, 

regarding the aims of the literature review and the inclusion criteria highlighted 

above. These articles’ abstracts were reviewed and 18 were excluded. The 

remaining 37 full text articles were reviewed and as a result 15 articles were 

included, directly from the search, from which a further 10 articles were included 

by pearl growing. Therefore, a total of 25 articles were reviewed with the aim to 

identify the most appropriate measure that can be used to quantify the 

efficiency of phase II trials. The flow diagram of this process can be seen in 

Figure 3.1. 

Differences in the literature, regarding the measure to quantify the efficiency of 

phase II trials, were present. These differences arose due to the choice of 

context the authors used. Specifically, some researchers explored the effects of 

design parameters on the efficiency of individual phase II trials, occurring once 

with a proceeding phase III trial. Others have looked at the efficiency of phase II 

trials under the context of a more holistic view, where multiple phase II trials are 

conducted, each testing a different treatment, and if successful lead to a phase 

III trial, with this process repeated several times. In this case, the efficiency of 

phase II trials is measured by the long-term performance of the whole drug 

development process. For each of these approaches, the measure of efficiency 

used was reviewed in order to identify the most appropriate measure to be used 

in this research. 
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Figure 3.1 Flow diagram of the results of articles found, excluded, and 
included from the search strategy 

The contexts considered are therefore individual and multiple phase II trials. 

Thus, the following sections review the measures of efficiency within these 

perspectives. Table 3.2 summarises the measures of efficiencies used by 

previous researchers. 

Table 3.2 measures of efficiencies within the two contexts and broken 
down by the individual/ multiple perspective taken by the articles 

Context Authors  Measure of efficiency 

Individual 

phase II 

trials 

Sharma and Karrison et al. 

(71), Sharma and Gray et al. 

Proportion of concordant resampled phase 

II conclusions with parent phase III 

conclusions  

10 articles included from 

pearl growing 

Articles identified through search strategy: 291 

Abstracts screened for relevance: 55 

Full text screened for relevance: 37 

Total citations reviewed: 25 

Titles screened for 

relevance and 236 

articles excluded 

Abstracts screened for 

relevance and 18 articles 

excluded 

Full text screened for 

relevance and 15 articles 

excluded 
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Context Authors  Measure of efficiency 

(72), Fridlyand et al. (73), An 

and Han et al.(74) 

Ayanlowo and Redden (75), 

Cellamare and Sambucini 

(76) 

Number of patients required in phase II 

trials 

Chen et al. (77) Proportion of incorrect decisions to 

proceed/terminate to a phase III trial, given 

that the experimental treatment is 

inefficacious/efficacious 

Taylor et al. (70), Tang et 

al.(78), Sambucini (79) 

Probability of a phase II trial making an 

accurate conclusion when there is a 

treatment effect and when there is not 

Chen, Sun and Li (80) Number of patients required in phase II and 
III trials 

Preussler et al. (81) Utility function which takes into account the 

cost of the program and possible gains after 

successfully launching the product on the 

market 

Gottë et al. (82) Probability of making the correct decision to 

proceed to phase III and the probability that 

phase III is successful 

Multiple 

phase II 

trials 

Pond and Abbasi (83) Proportion of phase III trials conducted 

using promising agents. 

Marchenko et al. (84), Parke 
et al. (85) 

Expected net present value 

Ding et al. (86), Yao et al. 

(87), Stallard (88), Leung and 

Wang (89) 

Expected number of patients treated until 

the first promising treatment is identified in 

phase II 

Kirchner et al. (90), Hee and 

Stallard (91) and Keiser, 

Kirchner et al. (92) 

Utility function, specifies cost and gains 

Stallard (39) Total number of patients required to lead to 

a successful phase III result 
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3.3.1 Individual phase II trials 

Many authors have investigated the efficiency of phase II trials using resampling 

methods. This is when patients are resampled from completed phase III trials 

into simulated phase II trials. The findings in the simulated phase II trials are 

compared to the conclusions of the phase III trials, from which they were 

resampled. The efficiency of phase II trials is then measured using the 

percentage of matching conclusions between the phase II and III trials. 

Sharma and Karrison et al. (71) used this resampling method to compare 

different designs and endpoints used in phase II trials. They used two 

completed phase III trials; one was positive while the other had a negative 

outcome. They defined a positive phase III trial as one where the experimental 

treatment showed statistically significant superiority over the standard or control 

treatment. Patients were sampled from the experimental and control arm of the 

phase III trials into the respective arm in the randomised phase II trials. The 

measure of efficiency used was the percentage of positive phase II trials. To 

demonstrate efficiency, a high percentage was required when the phase II trials 

were sampled from the positive trial, while a low percentage of positive phase II 

trials was required when the patients were sampled from the negative phase III 

trial. 

Another study which assesses the performance of phase II trials through 

resampling methods was conducted by Sharma and Gray et al. (72). They 

assessed the performance of different endpoints in terms of their ability to 

correctly decide to proceed to a phase III trial. They resampled 5000 phase II 

trials from data from one completed phase III trial in metastatic colorectal 

cancer. Since the phase III trial was positive, the measure of efficiency was the 

proportion of positive phase II trials out of the total number of simulated trials. 

One of the limitations of this study was that they only included one phase III 

trial, therefore the results were not generalisable, therefore limited to that 

particular phase III design and the disease area. As such, conclusions cannot 

be extrapolated to negative phase III trials.  

To make their results more generalisable, Fridlyand et al. (73) resampled 

patients from six phase III trials spanning several disease areas. The studies 

were a mixture of phases II and III trials and included five trials with a positive 

outcome and one with a negative outcome. They aimed to compare 

progression-free survival with percentage change in tumour burden as efficient 

endpoints for phase II trials. The measure of efficiency was the estimated 

probability of a correct decision to start a phase III trial, by calculating the 

number of successful phase II trials out of the 2000 replications of randomised 
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phase II trials. Even though, they included data from six different trials, they only 

included one negative trial, which does not reflect the current failure rates of 

phase III trials in oncology, where 50-60% of phase III trials do not recommend 

their experimental treatment (10).  

Another study, conducted by An and Han et al. (74), used resampling methods 

comparing the endpoints of phase II trials which included absolute changes in 

tumour measurements, relative changes in tumour size and tumour response as 

defined by RECIST. The authors resampled 90 patients into 2000 randomised 

phase II trials from four completed phase III trials. Two of the phase III trials 

were positive while the others were negative. The authors assessed the 

endpoints’ ability to inform a correct decision to start a phase III trial by 

calculating the positive predictive value (PPV) and negative predictive value 

(NPV). These were defined as the probability that a positive or negative phase 

III trial is yielded given that the preceding phase II trial was also positive or 

negative, respectively. An and Han et al. (74) recommend the use of PPV and 

NPV as they allow the direct measurement of the probability of a positive and 

negative phase III trial given a positive or negative phase II trial. However, 

unlike the measures of success used in the other articles (71-73), PPV and 

NPV require the false-positive rate and the false negative rates, which cannot 

be estimated from the data. Consequently, the authors treated these as 

parameters with a range of specified values, and they obtained a range of PPV 

and NPV values, instead of a single value, by assuming that a certain 

proportion of treatments would be positive and the remainder negative. 

While resampling methods have the advantage of including phase III trial 

conclusions in the assessment of phase II trial efficiency, allowing the 

assessment of long-term benefits of the phase II trial, there is also a clear 

disadvantage. Namely, it confines the resampled phase II trials to include 

patients with the same type of cancer as in the completed phase III trials, which 

consequently means that the type of endpoint and relationship between the 

endpoints are fixed to that particular disease, and therefore, the evaluations are 

not generalisable. Another problem it poses is the choice of phase III trial to 

use: if a positive trial is used then a phase II design that gives more positive 

results will inevitably perform better, whereas it would perform worse if a 

negative phase III trial was chosen. 

Several authors proposed new designs and methods to carry out phase II trials. 

They evaluated their efficiency by comparing them to some standard phase II 

designs. The measure of efficiency used by these authors vary depending on 

the aim of the new design they proposed. Since the aim of this literature review 

is to identify an appropriate measure of efficiency of phase II trials to use within 
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my research, critical evaluation of the proposed designs is outside the scope of 

this research. 

Ayanlowo and Redden (75) discuss the efficiency of phase II trials in terms of 

the number of patients entered into the trial when there is an efficacious 

treatment and when there is not. They discuss that, in both situations, phase II 

trials should recruit a restricted number of patients to see the benefit quickly or 

limit the time patients are exposed to a futile treatment. They argue that current 

designs do not allow the termination of a futile treatment early enough, and their 

solution to remedy this is to utilise stochastic curtailment in the phase II designs. 

This allows researchers to include unplanned interim analyses at unspecified 

times during the trial. The measure of efficiency they used, to assess their 

method, was the number of patients recruited into the phase II trial. However, 

this does not incorporate the conclusions of the phase III trial, and therefore the 

long-term benefits of a successful phase II trial cannot be assessed. 

Cellamare and Sambucini (76) propose a two-arm two-stage design based on a 

Bayesian predictive approach. The purpose of their design is to ensure a large 

probability of obtaining substantial posterior evidence that the experimental 

treatment is efficacious given that it is. They compare their proposed design 

with Jung’s two arm two-stage design (93), in terms of the expected number of 

patients for the phase II trial. The more patients required the less efficient the 

design. This is similar to Ayanlowo and Redden’s (75) measure and also has 

the same drawback: it does not include phase III conclusions. 

Chen et al. (77) attempted to improve the transitional decision made from phase 

II trials to phase III by proposing a new statistical decision rule. The decision 

rule is based on the p-value from hypothesis testing and their new testing 

confidence value (TCV), that depends on the uncertainty associated with the 

specified null hypothesis. A simulation study was used to compare the 

traditional decision rule with their proposed rule. The measure of efficiency was 

the proportion of incorrect decisions to proceed to a phase III trial, given that the 

experimental treatment is inefficacious, and the proportion of the incorrect 

decisions to terminate the development of the drug, given that it is efficacious. 

While this measure of efficiency is adaptable to different scenarios and can 

therefore be applied to a number of evaluations, it does not consider the 

outcome in phase III trials, however this could be incorporated in the measure, if 

the design of the phase III trial is known.  

In the articles reviewed, some authors aimed to evaluate the efficiency of phase 

II trials with different established design choices. Since the aim of this research 

is the same, I will evaluate authors design choices in addition to identifying the 
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measure they used to quantify phase II trial efficiency. The design parameters 

that have been explored frequently in the literature are whether the phase II trial 

should be randomised or a single-arm trial, what endpoints should be used and 

the sample size of phase II trials.  

Randomisation in phase II trials was explored by Taylor et al. (70). They 

compared the efficiency of one-arm phase II trials versus randomised phase II 

trials, taking into account the historical rate uncertainty (occurs when running a 

single-arm phase II trial), and ranging the true treatment effects. One of the 

weaknesses of this study was that they only looked at one type of randomised 

design and one type of single-arm design. In addition, their statistical definition 

of significant success of a phase II trial was if the experimental treatment was 

superior to the control, regardless of the magnitude of the difference between 

treatment arms, i.e., even if the difference was 0.1 the trial would be deemed 

successful. The measure of efficiency Taylor et al. (70) used to compare 

randomised and single-arm designs was the probability of launching a phase III 

trial when the novel therapy was truly more efficacious than the standard 

treatment and when it was not. This measure allows the exploration of phase II 

trial efficiency under different assumptions; however, its drawback is that it does 

not capture phase III conclusions, therefore there is no way of knowing that a 

successful phase II will lead on to a successful phase III. 

Tang et al. (78) also encourage the use of randomised phase II trials based on 

simulated error rates of randomised and single-arm designs from individual 

patient data from a colorectal phase III study and statistical models. The 

statistical models they created incorporated random and systematic variation in 

the historical control data. They found that variability in historical control rates 

and outcome drifts in patient populations over time can result in inaccurate 

false-positive and false-negative error rates in single-arm designs, however, 

these factors have little effect on the rates in randomised designs. The measure 

of efficiency used by Tang et al. (78) is the probability of a phase II trial making 

an accurate conclusion when there is a treatment effect and when there is not. 

This is the same as Taylor et al.’s (70) measure and has the same drawbacks. 

Sambucini (79) also used the same measure of efficiency as Taylor et al. (70) 

and Tang et al. (78) when comparing single-arm and randomised phase II 

designs. However, his explorations were carried out with a Bayesian framework. 

They assume that the probability of success for the experimental and standard 

treatments are regarded as random variables, under this framework, as 

opposed to fixed parameters, under the frequentist framework. Similar to Taylor 

et al. (70), they also conclude that randomised and single-arm phase II trials are 

both appropriate in certain situations: when the historical data is correctly 
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estimated single-arm phase II trials are preferred. If this is not the case, a 

randomised phase II trial is preferred.  

Moving away from the designs of phase II trials to the endpoints of phase II 

trials, Chen, Sun and Li (80) evaluated early efficacy endpoints for phase II 

trials. They propose that the choice of endpoint should be determined by 

evaluating the ratio of benefit of running a trial to its cost. The benefit of running 

a trial was calculated as the probability of a positive outcome at the end of the 

phase III, given that the treatment is efficacious. This is contrasted with the cost 

of running a phase II and a phase III trial, to get a successful phase III trial, and 

the number of patients required in each. Including the cost of trials is complex 

and often requires estimates, rather than actual projections, of the cost of a trial. 

They are also difficult to estimate under different settings and differ between 

academic and pharmaceutical trials, and even national and international trials. 

These estimates can quickly become outdated. For these reasons, this 

measure of efficiency can be difficult to implement or interpret, and may not be 

generalisable. To remedy this, Chen, Sun and Li (80) use a simplified version of 

this measure where the benefit term is ignored, and they assumed that the only 

cost of running a phase II and a subsequent phase III trial is driven by their 

sample size, i.e., the number of patients required in the phase II and III trials.  

Optimising the sample size of phase II trials has been the aim of many articles 

identified in this literature review. Preussler et al. (81) focus their sample size 

optimisation on instances where a phase II trial is proceeded by multiple phase 

III trials assessing the same treatment. They state the regulatory authorities 

usually require statistical significance in two or more phase III trials. The 

measure of efficiency they used to optimise the sample size of phase II trials 

was a utility function, which takes into account the cost of the program and 

possible gains after successfully launching the product on the market. The 

inaccuracy of estimating costs and gains of running a trial and the ever-

changing costs of trials, renders this measure inappropriate to use.  

Gottë et al. (82) also presented an approach in which the phase II sample size 

was addressed. Their proposed approach involved a decision rule informing the 

transition to go from phase II to phase III studies. The decision boundaries were 

selected such that the phase II sample size is minimised given that the 

probability of making the correct decision to proceed to phase III and the 

probability that phase III is successful, when the treatment is efficacious. This 

measure has the advantage of incorporating phase II and III trial conclusions 

but does not allow the long-term efficiency to be established. 
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3.3.2 Multiple phase II trials  

An alternative approach that authors have used, is optimising, or assessing, 

phase II trial designs in the context of running the phase II to phase III program 

and repeating it over a long period of time. Under this context, the measure of 

efficiency of phase II trials is different and these are reviewed in this section. 

Articles in this section evaluated different design options for phase II trials. 

These included evaluating statistical designs of phase II trials and their sample 

size. 

Pond and Abbasi (83) compared randomised with single-arm phase II trials, 

assuming that a series of phase II trials will be conducted in a particular 

population over a fixed period of time. They assumed that 1000 patients are 

available only for the phase II trials. The measure of efficiency they used to 

compare the phase II designs was the proportion of phase III trials conducted 

using promising agents. They calculated this measure using the number of 

correctly successful phase III trials divided by the total number of phase III trials 

conducted. This measure has many advantages: it includes the outcome of 

phase III trials; therefore, it captures the long-term benefit of a successful phase 

II trial; it allows the exploration of different designs and assumptions and is also 

generalisable to many different scenarios. However, since the drug 

development process is ongoing, this measure is inappropriate as it takes a 

snapshot of the efficiency of phase II trials, when no more resources are left to 

be used. In Pond and Abbasi’s (83) case they fix the number of patients 

available for phase II trials. 

Marchenko et al. (84) compared different phase II designs, such as two-arm 

phase II trials or including interim analyses in the design or conducting 

Bayesian phase II trials. These designs were compared, mainly using expected 

net present value which takes into account the total revenue minus the cost of 

phase II trial minus the cost of phase III. Parke et al. (85) builds on the work 

done by Marchenko et al. (84) to further compare other phase II designs in 

combination with subsequent phase III designs in a whole development 

program. They utilised the same measure to compare the efficiency of the 

designs. While this measure’s strength is that it takes into account the phase III 

findings, the inaccuracy of estimating the expected revenue and the cost of 

running trials, in addition to the everchanging prices of running a trial means 

that the conclusions of these two studies may become outdated.  

Ding et al. (86) proposed a decision-making approach which incorporates a 

Bayesian hierarchical model that allows combining information across several 

treatments and includes a utility function which considers sampling costs and 
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possible future payoff. The measure of efficiency was the expected number of 

patients treated until the first promising treatment is identified in phase II. This 

measure of efficiency implies that the process of discovering new effective 

treatments stops when one is found, however, this is not the case in practice 

and successful phase II trials proceed to phase III.  

Stallard (88) also considered optimising the sample size of phase II trials. He 

assumes that multiple phase II trials are conducted in sequence, each of which 

can lead to the decision to start a phase III trial or conduct another phase II trial 

with an alternative intervention. The approach described maximises a gain 

function including cost of drug development and the benefit from a successful 

therapy. The gain function is based on the expected gain per patient in the 

combined phase II and III program. Leung and Wang (89) built on Stallard’s (88) 

work, and therefore used the same measure of efficiency, except instead of just 

maximising the expected gain per phase II trial, they maximise the rate of gain 

or total gain for a fixed length of time, since the rate of gain depends on the 

proportion of treatments that go on to the phase III trial. This is a similar 

approach as Pond and Abbasi (83), where they the total number of patients is 

fixed. Leung and Wang’s (89) use of a utility function requires specification of 

cost and gains, which are ever-changing and therefore, this measure may not 

be generalisable to the future.  

Since the sample size calculation of phase III is based on the treatment effect 

observed in phase II, Kirchner et al. (90) investigated the performance of the 

phase II/III program as a whole. They state that success in the whole program 

depends on the allocation of the resources to phases II and III by appropriate 

choice of the sample size and the rule applied to decide whether to stop the 

program after phase II or to proceed. Their optimisation was based on a utility 

function that takes into account the costs and incorporates cost and future 

revenue gain, corresponding to the expected net present value (NPV), after a 

successful phase III trial is found.  

Hee and Stallard (91) also used a utility function to investigate the size of the 

population, specifically the impact of a small population on the design of 

multiple phase II trials. They proposed a Bayesian decision theoretic approach, 

and an optimal action is taken by considering the design of phase II and III 

trials, simultaneously. An action is chosen by optimising a gain function which 

includes economic gains and costs associated with drug development. A 

decision as to whether to proceed with the current phase II trial is made after 

observation of each patient.  
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Keiser, Kirchner et al. (92) also optimised the sample size of phase II trials, but 

from the perspective that the resulting phase III trials test multiple primary 

endpoints. They argue that the efficacy of a treatment is often not approved 

without the confirmation from multiple endpoints in phase III trials. They obtain 

optimal phase II sample sizes by evaluating a utility function, which again 

incorporates costs of recruiting patients into the trials and the gains of finding a 

successful treatment. 

All of these articles’ (Kirchner et al. (90), Hee and Stallard (91) and Keiser, 

Kirchner et al. (92)) use of a utility function, specifies cost and gains which are 

difficult to estimate correctly, and therefore give rise to potential inaccuracies. In 

addition, these costs may change in the future and are dependent on the setting 

they are based on, which consequently would mean their findings may not be 

relevant or generalisable. 

In order to improve the rate of success of phase III trials Yao et al. (87) focused 

on optimising the sample size of phase II trials, which were assumed to be 

carried out consecutively, in the setting of vaccine development for cancer 

therapeutics. Specifically, they discussed the appropriate criteria for identifying 

a sufficiently encouraging therapy and to what extent the sample size depends 

on the chance that any individual new treatment will be successful in a phase III 

trial. The measure of efficiency was the total number of patients required before 

the first promising vaccine is identified. Wang and Leung (94) built on the work 

presented in Yao et al. (87) but they consider a sequential design of phase II 

trials. Following Yao et al. (23), they also propose a method where they 

optimise the number of patients required in each phase II trial.  

Stallard (39) also proposed an analytical approach in order to optimise the 

sample size of phase II trials. He assumed that there is an unlimited number of 

treatments available for consecutive phase II testing. The author also assumes 

that the phase II trials are randomised. The measure of efficiency he aimed to 

minimise was the expected total number of patients required to lead to a 

successful phase III result, which over the duration of multiple phase II trials is 

equivalent to maximising the expected number of successful phase III trials. 

The difference between the frameworks used by Stallard (39) and Yao et al. 

(87) (and therefore Wang and Leung (94)) is very subtle; they all assume that 

multiple phase II trials are conducted, however, Stallard (39) assumes that a 

phase II trial is only successful if it leads to a successful phase III trial, whereas 

Yao et al. (87) do not incorporate phase III trial conclusions.  
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3.4 Discussion  

In order to investigate the efficiency of different phase II trial design parameters, 

a measure to quantify the impact of the design choices is needed. The aim of 

this literature review was to evaluate the measures previously used by authors 

evaluating different aspects of phase II trials. An appropriate measure was 

considered to be one that included both the phase II and phase III conclusions. 

It also needed to be a flexible measure not confined to specific trials or data. It 

should also be generalisable to different scenarios and disease areas, and 

applicable to future advancements and changes. Finally, it needed to be 

appropriate for testing the efficiency of phase II trials when a series of trials are 

run. This is important in the current era where there is a plethora of treatments 

available, yet not enough resources to test them all. Table 3.3 summarises the 

measures of efficiency against the criteria I proposed to identify an appropriate 

measure to use in this research. 

In order to align the methods of this research with the current era, the measure 

of efficiency used in articles that evaluated phase II trials under the individual 

trial context were deemed inappropriate. Assuming a framework with an 

individual phase II trial was perhaps suitable when there was a smaller number 

of therapies available for testing. However, Sargent and Taylor (95) highlight 

that currently there are too many drugs that need to be tested in a timely 

manner. Thus, a more realistic assumption is that several phase II and phase III 

trials can run either simultaneously or consecutively in a continuous process as 

developments in medicine constantly occur.  

Under the multiple trials framework, several measures of phase II trial efficiency 

were identified. One of the measures was expected net present value. The main 

drawback of this measure was the fact that included it included costs and prices 

of running trials. These values are difficult to estimate with accuracy and even if 

it is estimated correctly, these costs are open to change due to the inflations in 

pricing. It is also not generalisable to other currencies. Another measure which 

had the same issues was the use of utility function with included costs and 

gains of finding an efficient treatment.  

A further measure of efficiency used was the proportion of successful phase III 

trials out of the number of phase III trials run. This is the measure that is often 

used to highlight the inadequacy of phase II trials. Using this measure means 

that a limit is placed on the number of patients or trials to be used.  
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Table 3.3 checklist of the appropriateness of the measures reviewed 

Measure of efficiency Measure 
includes 

phase II and 
III trial 

outcomes  

Series of 
trials 

incorporated 

Measure 
has 

flexibility 
to apply to 
different 

parameters 

Measure is 
generalisable 
& applicable 

to future 

Proportion of concordant 
resampled phase II 
conclusions with parent 
phase III conclusions  

✓  ✓  

Number of patients 
required in phase II trials 

  ✓ ✓ 

Proportion of incorrect 
decisions to proceed to a 
phase III trial, given that 
the experimental 
treatment is inefficacious, 
and the proportion of the 
incorrect decisions to 
terminate the 
development of the drug, 
given that it is efficacious 

  ✓ ✓ 

Probability of a phase II 
trial making an accurate 
conclusion when there is 
a treatment effect and 
when there is not 

  ✓ ✓ 

Number of patients 
required in phase II and 
III trials 

✓  ✓ ✓ 

Utility function which 
takes into account the 
cost of the program and 
possible gains after 
successfully launching 
the product on the market 

✓  ✓  

Probability of making the 
correct decision to 
proceed to phase III and 
the probability that phase 
III is successful 

✓  ✓ ✓ 

Proportion of phase III 
trials conducted using 
promising agents. 

✓ ✓ ✓  

Expected net present 
value 

✓ ✓ ✓  

Expected number of 
patients treated until the 
first promising treatment 
is identified in phase II 

 ✓ ✓  

Utility function, specifies 
cost and gains 

✓ ✓ ✓  

Total number of patients 
required to lead to a 
successful phase III result 

✓ ✓ ✓ ✓ 

The measure of efficiency which does not have such restrictions and 

consequently allows the evaluation of the long-term impact of a phase II design 

parameter is the number of patients required to lead to the first successful 
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phase III trial. This measure is flexible enough to explore the effects of different 

assumptions, such as different underlying treatment effects. It is also 

generalisable to changes in drug development, that may occur in the future, and 

to different cancer types. Additionally, it accommodates the need to conduct 

multiple trials, in order to increase the number of efficacious treatments 

available to patients. This measure has been used by several authors, such as 

Ding et al.(86), Yao et al. (87) and Wang and Leung (94), however, Stallard (39) 

stated that this measure is equivalent to the number of successful phase III 

trials over a long period of time. It is with this measure that the long-term 

efficiency of phase II trials, with different designs, can be evaluated. For these 

reasons it was chosen to quantify the efficiency of the design parameters of 

phase II trials, identified in the systematic review (Chapter 2).
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Chapter 4 Evaluating phase II trial efficiency – Methodology 

In the previous chapter, measures of efficiency of phase II trials, used by other 

researchers, were reviewed. With many treatments available for testing, but 

insufficient resources to do so, the most appropriate measure of efficiency is 

one that minimises the number of patients required in phase II trials and 

maximises the number of successful, subsequent phase III trials. Therefore, the 

number of patients required to lead to the first successful phase III trial, is the 

measure which best captures these quantities. This measure was used by 

Stallard (39) where he aimed to optimise phase II trial sample sizes. Therefore, 

a brief description of the methods employed by Stallard (39) is provided, before 

describing in detail the methods I use in this research. This chapter also 

explains which methods are adopted from Stallard (39) and where I build on his 

methods to meet the aims of this research. 

4.1 Stallard’s (39) methods and assumptions 

The aim of Stallard’s research (39) was to optimise the phase II trial sample 

sizes. This optimisation problem was viewed from the perspective of a large 

pharmaceutical company or funding body, who have the capacity to test a large 

number of experimental therapies in multiple trials, either consecutively or 

simultaneously. This perspective has also been used by other researchers such 

as Pond and Abbasi (83) and Ding et al. (86). Their approaches are further 

discussed, later in this chapter (Section 4.2.1). In order to make this process as 

efficient as possible Stallard (39) aimed to maximise the number of 

experimental treatments that showed efficacy for a variety of phase II sample 

sizes. 

Due to the phase II trials’ place in the clinical evaluation of a new therapy, the 

phase II trial cannot be investigated in isolation. Stallard (39), therefore, 

considers the optimisation problem with the whole drug development pathway in 

mind. Figure 4.1 depicts the drug development process used; this image was 

adapted from Stallard (39). It was assumed that the treatments available have 

already been deemed safe in phase I trials, and therefore are available for 

testing in phase II trials. Each treatment is tested consecutively; if the treatment 

shows sufficient efficacy it proceeds to a phase III trial. However, if the 

treatment is found to be futile, the process terminates and another therapy is 

tested in a new phase II trial. Once a treatment proceeds to phase III, the 
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therapy is tested and is deemed successful if it shows superiority over the 

standard treatment. If the therapy is unsuccessful at phase III, the investigations 

for this particular therapy terminates and a different treatment is then selected 

to be tested in another phase II trial. The process continues until the first 

successful phase III trial is found. Stallard (39) assumed that the objective of the 

optimisation problem is to minimise the expected total number of patients 

required to lead to a successful phase III trial. Stallard (39) states that over a 

long run of experimentation, this outcome is equivalent to maximising the 

expected number of successful phase III trials.  

 

 

Figure 4.1 An illustration depicting the phase II-III component of the drug 
development process and assumptions of the research project; green 
indicating trial success and red indicating trial failure 

4.1.1 Obtaining the measure of phase II trial efficiency 

Stallard (39) assumed that the phase II and III trials are single-stage and 

randomised with patients assigned into two parallel groups with a 1:1 ratio. He 

also assumed that the endpoint in phase II and III trials is the same, continuous 

and follows a normal distribution with a known variance. In addition, he 

assumed that there is an underlying true treatment effect distribution for each 

therapy that is evaluated and each of these distributions are identical.  

The clinically relevant difference between the means for the treatments in the 

control and experimental arms was assumed to be fixed and known, denoted by 

𝛿. The patient responses were assumed to have a known variance equal to 1, 

so that it represents a standardised effect size. Since Stallard (39) assumed the 

phase II and III trials were randomised two-arm studies, the sample size of the 

phase II and III trials, 𝑛1 and 𝑛2, were obtained using the following formula:  

𝑛𝑖 =
4𝜎2(𝑧1−𝛼𝑖 + 𝑧1−𝛽𝑖)

𝛿2
, 𝑖 = 1, 2 

Phase II Phase II Phase II Phase II 

Phase III Phase III 

… 
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where 𝜎2 = 1, since the variance was known and equal to 1 (as mentioned 

above), 𝑖 = 1 represents the parameters associated with the phase II trial, while 

𝑖 = 2 represents the parameters associated with the phase III trial, 𝑧1−𝛼𝑖 and 

𝑧1−𝛽𝑖 are the standard z-score evaluated at the one-sided type I error rate, 𝛼𝑖, 

and the power, 1 − 𝛽𝑖, respectively. 

The phase III trial operating characteristics were fixed and thus the sample size 

of the phase III trial was also fixed, while the phase II trial sample size depends 

on the values of 𝛼1 and 𝛽1. He utilised power functions for the trials which 

represented the probability of a significant result at 𝛼𝑖 when the true 

standardised treatment effect is equal to 𝜃:  

𝑃𝑖(𝜃, 𝛼𝑖 , 𝛽𝑖) = Φ(
(𝑧1−𝛼𝑖 + 𝑧1−𝛽)𝜃

𝛿
− 𝑧1−𝛼𝑖) , 𝑖 = 1, 2                                                   (4.1) 

𝑃𝑖(𝜃) = 𝑃𝑖(𝜃, 𝛼𝑖, 𝛽𝑖), 𝑖 = 1, 2  

Therefore, 𝑃1(𝜃) and 𝑃2(𝜃) denote the probability that a true effect size, 𝜃, leads 

to a significant result in a phase II and a phase III trial, respectively. Given the 

fact that a phase III trial is only conducted after a significant result in the 

preceding phase II trial, the probability of conducting the phase III trial is given 

by 𝑃1(𝜃), while the probability of conducting a phase III trial and finding it to be 

successful is equal to the product of 𝑃1(𝜃)𝑃2(𝜃). 

Stallard (39) came to the conclusion that the total expected sample size (over 

phase II and III) per significant result in a phase III trial is equal to  

𝑛1+𝑛2 𝐸(𝑃1)

𝐸(𝑃1𝑃2)
    (4.2) 

Where 𝑛1 is the sample size required for the phase II trial and depends on the 

type I and II error rates selected for the phase II trial, denoted by 𝛼1 and 𝛽1, 

respectively; 𝑛2 is the sample size required for the phase III trial and depends 

on the type I and II error rates set for the phase III trial, denoted by 𝛼2 and 𝛽2, 

respectively; and 𝐸(𝑃1) is the expected probability of a successful phase II trial 

over the assumed prior distribution of the treatment effect; while 𝐸(𝑃1𝑃2) is the 

expected probability that the phase II trial was a success and the subsequent 

phase III trial is also successful. 

As mentioned above, 𝐸(𝑃1) and 𝐸(𝑃1𝑃2) depend on the form of the assumed 

prior distribution for the treatment effect 𝜃. Stallard (39) presented two examples 

with different prior distributions, in order to demonstrate what the optimal 

sample sizes of phase II trials are under the assumptions given. The first prior 

distribution he assumed was the two-point prior, with the aim of illustrating how 

the calculations are implemented. The treatment effect, 𝜃, is assumed to follow 
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a two-point prior with mass at values 0 (no effect) and 𝛿 (effect of size equal to 

clinically relevant difference), such that 𝑝(𝜃 = 𝛿) =  𝜋 and 𝑝(𝜃 = 0) =  1 − 𝜋 so 

that, 𝜋 is the probability that the therapies, assessed in consecutive phase II 

trials, are effective.  

In order to obtain the formula for the expected number of patients per 

successful phase III trial, for this two-point prior distribution, 𝐸(𝑃1) and 𝐸(𝑃1𝑃2) 

need to be calculated, as shown in Equation 4.2. In calculating 𝐸(𝑃1) and 

𝐸(𝑃1𝑃2), I use the fact that if 𝑋 is a discrete random variable with probability 

mass function 𝑝(𝑥), then the expectation of 𝑋 is defined as 𝐸(𝑋) = ∑ 𝑥 𝑝(𝑥)𝑥 . 

In the two-point prior example the probabilities of the random variable are 

𝑝(𝜃 = 𝛿) =  𝜋 and 𝑝(𝜃 = 0) =  1 − 𝜋, therefore the expected value of 𝑃1 is given 

by: 

𝐸(𝑃1) = 𝑝(𝜃 = 0) × 𝑃1(0, 𝛼1, 𝛽1) + 𝑝(𝜃 = 𝛿) × 𝑃1(𝛿, 𝛼1, 𝛽1) 

Since, 𝑝(𝜃 = 0) = 1 − 𝜋 and 𝑝(𝜃 = 𝛿) =  𝜋, these can be substituted into the 

equation to give 

𝐸(𝑃1) = (1 − 𝜋) × 𝑃1(0, 𝛼1, 𝛽1) + 𝜋 × 𝑃1(𝛿, 𝛼1, 𝛽1)  (4.3) 

𝑃1(0, 𝛼1, 𝛽1) =  𝛼1 and 𝑃1(𝛿, 𝛼1, 𝛽1) = 1 − 𝛽1; hence substituting these values into 

Equation 4.3 yields 

𝐸(𝑃1) = (1 − 𝜋)𝛼1 + 𝜋(1 − 𝛽1)                                                    (4.4) 

Similarly to calculate the expectation of 𝑃1𝑃2, the same methods are utilised: 

𝐸(𝑃1𝑃2) = 𝑝(𝜃 = 0)𝑃1(0, 𝛼1, 𝛽1)𝑃2(0, 𝛼2, 𝛽2) + 𝑝(𝜃 = 𝛿)𝑃1(𝛿, 𝛼1, 𝛽1)𝑃2(𝛿, 𝛼2, 𝛽2) 

Recall 𝑝(𝜃 = 0) = 1 − 𝜋, 𝑝(𝜃 = 𝛿) =  𝜋, 𝑃1(0, 𝛼1, 𝛽1) =  𝛼1, 𝑃1(𝛿, 𝛼1, 𝛽1) = 1 − 𝛽1 

and since 𝑃2(0, 𝛼2, 𝛽2) =  𝛼2 and 𝑃2(𝛿, 𝛼2, 𝛽2) = 1 − 𝛽2, thus these can be 

substituted into the equation to give: 

𝐸(𝑃1𝑃2) = (1 − 𝜋)𝛼1𝛼2 + 𝜋(1 − 𝛽1)(1 − 𝛽2)   (4.5) 

Hence, the expected number of patients required per successful phase III trial, 

under the assumption of a two-point prior distribution, can be obtained by 

substituting Equations 4.4 and 4.5 into Equation 4.2. Varying the value of 𝛼1 

and 𝛽1, while fixing the values of 𝛼2 and 𝛽2, can be used to investigate which 

pair of error rates give an optimal choice for phase II trials.  

Stallard (39) recognised that the two-point prior was not very realistic and was 

only presented for demonstrative purposes. Therefore, Stallard’s (39) second 

example was based on a more realistic situation in which the prior distribution 

for 𝜃 was assumed to take the normal form, specifically 𝜃 ~𝑁(𝜇0, 𝜎0
2). Similar 
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methods to the two-point prior example were employed in order to obtain the 

formula for the expected number of patients per successful phase III trial, given 

a normal prior distribution. In this case I use the result that if X is a continuous 

random variable with a probability density 𝑓(𝑥) then 𝐸(𝑋) = ∫ 𝑥𝑓(𝑥) 𝑑𝑥
∞

−∞
. 

Therefore, the expected probability of success in a phase II trial, 𝐸(𝑃1), can be 

found by integrating, under the assumed prior normal distribution and the power 

function of the phase II trial (Equation 4.1) with respect to 𝜃. Similarly, the 

probability of success in both phase II and III trials, 𝐸(𝑃1𝑃2), can be found by 

integrating, under the normal prior distribution, the power function of the phase 

II trial and the power function of the phase III trial (Equation 4.1) with respect to 

𝜃.   

Mathematically, this translates to Equations 4.6 and 4.8, respectively: 

 𝐸(𝑃1) = ∫
1

𝜎0
𝜙 (

𝜃−𝜇0

𝜎0
)  𝜙 (

(𝑧𝛼1+𝑧𝛽1)𝜃

𝛿
− 𝑧𝛼1) 𝑑𝜃

∞

−∞
               (4.6) 

 

Let 𝑓(𝜃, 𝜇, 𝜎2) ≡
1

𝜎
𝜙(

𝜃−𝜇

𝜎
) and 𝑃1(𝜃) = ∫ 𝑓(𝑥, 𝜇1, 𝜎1

2)
𝜃

−∞
 𝑑𝑥 = ∫ 𝑓(𝑥 +

0

−∞

𝜃, 𝜇1, 𝜎0
2)  𝑑𝑥 

 

Therefore, 𝐸(𝑃1) = ∫ 𝑓(𝜃, 𝜇0, 𝜎0
2) ∫ 𝑓(𝑥 + 𝜃, 𝜇1, 𝜎1

2)
0

−∞
 𝑑𝑥𝑑𝜃

∞

−∞
 

       𝐸(𝑃1) = ∫ ∫ 𝑓(𝜃, 𝜇0, 𝜎0
2)𝑓(𝑥 + 𝜃, 𝜇1, 𝜎1

2)
∞

−∞
 𝑑𝜃𝑑𝑥

0

−∞
 

       𝐸(𝑃1) = ∫ 𝑓(𝑥, 𝜇1 − 𝜇0, 𝜎0
2 + 𝜎1

2) 𝑑𝜃𝑑𝑥
0

−∞
 

 

Hence, the expected probability that a phase II trial is successful can be found 

when 𝑃(𝑋 < 0) where 𝑋~ 𝑁(𝜇1 − 𝜇0, 𝜎0
2 + 𝜎1

2)                         (4.7) 

 

Similarly, Stallard (39) found 𝐸(𝑃1𝑃2) to be equal to 

𝐸(𝑃1𝑃2) = ∫
1

𝜎0
𝜙 (

𝜃−𝜇0

𝜎0
)  𝜙 (

(𝑧𝛼1+𝑧𝛽1)𝜃

𝛿
− 𝑧𝛼1)  𝜙 (

(𝑧𝛼2+𝑧𝛽2)𝜃

𝛿
− 𝑧𝛼2) 𝑑𝜃

∞

−∞
          (4.8) 

and 𝑃(𝑋1 < 0, 𝑋2 < 0) where 

 (
𝑋1
𝑋2
) ~ 𝐵𝑉𝑁 ((

𝜇1 − 𝜇0
𝜇2 − 𝜇0

) , (
𝜎0
2 + 𝜎1

2 𝜎0
2

𝜎0
2 𝜎0

2 + 𝜎2
2))              (4.9) 

where 𝜇𝑖 =
𝑧𝛼𝑖𝛿

𝑧𝛼𝑖+𝑧𝛽𝑖
, 𝑖 = 1,2 and 𝜎𝑖 =

𝛿

𝑧𝛼𝑖+𝑧𝛽𝑖
, 𝑖 = 1,2 
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Given values for the type I and II error terms for phase II and III trials, the 

probabilities were obtained and thus substituted into Equation 4.2 to calculate 

the expected number of patients per successful phase III trial. The values of the 

type I and II errors which yield the smallest expected number of patients yielded 

the optimal sample size for phase II trials. 

4.2 Methods and assumptions employed in this research 

In this section, I will detail the methods I have adopted from Stallard (39) and 

how I adapt his methods to meet the aims of this research. Recall that, as 

mentioned previously, the aim of this research is to investigate the effect of 

different phase II design parameters on the efficiency of phase II trials. As 

reported in the systematic review (Chapter 2), the design choices of phase II 

trials are varied, with multiple options available, specifically, the use of 

randomisation and single-arm designs, running multiple stage designs, the 

sample size, determined by the choice of the type I and II error and the endpoint 

choice in phase II trials. Thus, the objective of this research is to explore the 

effect of these design choices on phase II trial efficiency. Specifically, the 

questions I will address are: 

• Endpoints of phase II trials:  

1. Do the phase II and III endpoints need to be correlated in order to 

improve efficiency? 

2. What other factors influence the efficiency of phase II trials; is 

correlation the most important factor to ensure phase II efficiency 

or is there other factors that also have an impact? 

• Design of phase II trials: 

1. Is a randomised design more efficient than a single-arm design 

using either two-stage or single-stage designs? 

2. Is it more efficient to use a single-stage design over a two-stage 

design? 

3. Which design is the most efficient? 

• Sample size of phase II trials: 

1. Does increasing the sample size increase efficiency or is there a 

point where growing the sample size would lead to inefficiencies? 

2. What is the effect of different type I and II errors on the efficiency 

of phase II trials? 

Answering these questions will equip researchers, designing phase II trials, with 

the information they need to understand the impact of their choices of the 

design parameters. In addition, recommendations about the most efficient 
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design can be made. The context and methods used to answer these research 

questions are described below. 

4.2.1 Context 

The literature review (Chapter 3) highlighted different contexts that authors used 

to investigate the efficiency of phase II trials. It was concluded that the most 

appropriate context for assessing the efficiency of phase II trials is from the 

perspective of running multiple phase II and III trials in a continuous manner. 

This is due to the fact that in the current era there are a number of treatments 

available for testing, but the resources available to test these treatments are 

extremely limited (96). It is, therefore, this context that is used in this research to 

explore the effects of different design parameters on the efficiency of phase II 

trials.  

This context has been used by many authors, including (but not limited to) Pond 

and Abbasi (83), Ding et al. (86) and, as explained above, Stallard (39). Pond 

and Abbasi (83) compare the efficiency of randomised two-stage and single-

arm two-stage phase II trials from the point of view of a “clinical research 

organisation, industrial sponsor, or cooperative group”. They specify that, via 

simulation, they will run multiple phase II trials in a specific group of patients 

over a known period of time. Consequently, they limit the number of patients to 

1000. The fact that Pond & Abbasi (83) limit the population size is unrealistic 

and not widely generalisable, as the population size is often not known, and 

usually much larger. This is evidenced by the fact that cancer patients are 

constantly increasing, with about 1000 new cases each day (97). 

A more realistic approach was the one proposed by Ding et al. (86) and Stallard 

(39). Ding et al. (86) consider the phase II trials to run sequentially with an 

indefinite number of new treatments available. Stallard (39) also considers 

optimising phase II trials from the point of view of a “large funder of clinical 

trials, such as a public sector research body or large pharmaceutical company”. 

He states that such bodies have the capacity to run multiple trials, however, 

each trial needs be executed as efficiently as possible. Therefore, the context of 

the evaluations of phase II design parameters is a simple model of the drug 

development process. I assume an infinite number of treatments are available 

for testing in phase II, i.e., they have already been deemed safe and a 

recommended phase II dose is available, and that testing occurs in a sequential 

manner. Each treatment is tested consecutively first in a phase II trial and if 

successful proceeds to phase III (Figure 4.1).  
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Both Stallard (39) and Ding et al.’s (86) context lends itself to minimising the 

number of patients required to lead on to the first successful phase III trial. It is, 

therefore, this measure that is used in this research, however, where previous 

authors have aimed to optimise this measure, I will report the effect of different 

design parameters of phase II trials on this measure. I will therefore build a 

profile of how each parameter choice, in different combinations, affects the 

efficiency of phase II trials. Ultimately, this will allow trialists to design efficient 

phase II trials, under different scenarios. 

4.2.2 Statistical evaluations 

The narrative for the evaluations of the endpoint, design and sample size of the 

phase II trials is that there exists an underlying true treatment effect, ∆, for the 

treatments under evaluation. This is assumed to follow a normal distribution. 

This was the distribution chosen by Stallard (39), stating that it is a realistic 

scenario. This is due to the fact that it incorporates an array of effective and 

ineffective treatments, and therefore incorporates the uncertainty about the true 

treatment effects. By specifying a distribution for the treatment effects, the 

efficiency of phase II trials can be assessed for both effective and ineffective 

treatments. A treatment effect, 𝜃, is randomly selected from this distribution to 

be evaluated in phase II, and if the treatment shows sufficient efficacy, the 

same treatment is tested with the same true treatment effect, 𝜃, in phase III. 

Stallard (39) states that he used Bayesian decision theory to evaluate phase II 

sample sizes. Even though the methods employed here are strictly frequentist, 

some of his methods are used as a basis of this research. The true treatment 

effect distribution was inspired by Stallard (39), where he assumed a prior 

distribution about the treatment effect of the available treatments. The treatment 

under evaluation is assumed to have an effect drawn from that distribution. In 

Bayesian methodology the prior distribution would be updated to obtain the 

distribution conditional on the observed data. This is the posterior distribution 

and would be used to draw inferences in the analysis of the phase II and III 

trials. However, the role of the true treatment effect distribution in this research, 

and in Stallard’s (39) work, is used in a manner analogous of the frequentist 

methods. When evaluating the effect of an experimental treatment, compared 

with a concurrent control or historical control, the effect of the experimental 

treatment, is drawn from the assumed distribution of available treatments. The 

observed data is then drawn from a distribution that has a mean given by this 

treatment effect. The observed effect between the experimental and concurrent 

control or historical control is compared to a prespecified minimum clinically 
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important difference (MCID), which is estimated by trialists and experts based 

on previous research. Under the frequentist approach, the true treatment effect 

is unknown and is fixed. A test is conducted to decide whether or not the 

observed treatment effect is clinically and statistically promising as denoted by 

MCID. In order to make these conclusions regarding the observed treatment 

effect, the probability of all possible data in the sample space given the pre-

specified fixed value of the unknown parameter (the treatment effect), is 

obtained, and then used to see how concordant the observed data are with the 

pre-specified assumption of the MCID. 

The conclusions made at the end of the trial are based on observed data. This 

means that there is scope for errors to occur. The errors that may arise are 

known as the type I and II errors. The type I error is the probability that the 

treatment has no or limited effect, yet is indicated to be of benefit to patients in 

the trial. The other error that can also occur is the type II error, which is defined 

as the probability of not accepting an efficacious treatment. The power of the 

trial is the probability of making the correct decision, and is the complement of 

the type II error. To ensure that the conclusions of the trial can be made with 

high certainty, these errors are controlled by the trialists at the design and 

analysis stages: the type I error is usually set in the design and the power set by 

the choice of sample size. It is important to note that at the analysis stage, 

decisions are based on hypothesis tests, while at the design stage, decisions 

are based on the pre-specified operating characteristics of these hypothesis 

tests, in other words, the design of the trial is dependent on the choice of the 

type I and II errors. Details of the designs of phase II and III trials is provided 

later in Section 4.2.3. 

While the true treatment effect distribution is assumed to follow a normal 

distribution with a mean of zero throughout the investigations, its variance 

changes depending on the parameters investigated, in this research. In Chapter 

5, where the aim is to investigate the effect of the correlation between phase II 

and III trial endpoints, the variance of the true treatment effect distribution varies 

between 0.1-10 in increments of 0.3. This was chosen as it was found that the 

correlation was dependent on the variance of the true treatment effect (more 

details on this is provided in Chapter 5). However, when investigating the effect 

of design and sample size of phase II trials (Chapters 6 and 7, respectively), the 

true treatment effect follows a standard normal distribution, with a mean of zero 

and variance of one. In Chapters 5, 6 and 7, a sensitivity analysis is conducted 

to assess the robustness of the conclusions to the assumption that the mean 

treatment effect is zero on average. Table 4.1 summarises the values for the 
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true treatment effect distribution and the parameter values for the designs of the 

phase II and III trials. Details and explanations for the choices of the designs 

are provided in the next section (Section 4.2.3). 

Table 4.1 summary of parameter values and design of phase II trials 

Parameters Value Notes 

Chapter 5 Chapters 6 &7  

Underlying treatment effect, ∆ 

Mean, 𝜇 0 0 Standard normal 

distribution – 

realistic example 

from Stallard (39) 

Variance, 𝜎2 0.1-10 (increases 

of 0.3) 

1 

Phase III design 

Type I error, 

𝛼3 

0.05, two-sided 0.05, two-sided conventional 

levels: 5% for type 

I error, 80% or 

90% for power 

(98) 

Type II error, 

𝛽3 

0.2 0.2 

Clinically 

significant 

difference 

(csd), 𝛿3 

0.3 0.3 Most common in 

(98) 

Endpoints  Continuous  Continuous  

True 

treatment 

effect, 𝜃 

Randomly 

selected from ∆  

Randomly selected 

from ∆  

 

Phase III 

control, 𝜇1 

0 (fixed) 0 (fixed) True mean 

response in 

control arm 

Phase III 

experimental, 

𝜇2 

Equivalent to 𝜃 +

𝜇1 

Equivalent to 𝜃 + 𝜇1 True mean 

response in 

experimental arm 

 

Phase II design 
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Parameters Value Notes 

Chapter 5 Chapters 6 &7  

True 

treatment 

effect, 𝜃 

 

Randomly 

selected from ∆ 

(continuous 

scale) 

Randomly selected 

from ∆ (continuous 

scale) 

In chapters 6 and 

7 the phase II 

endpoint is binary 

therefore 𝜃, which 

is the mean 

difference needs 

to be transformed 

to the log-odds 

scale using  𝜃
𝜋

√3
 

Phase II 

control, 𝑝1 

N/A endpoint 

continuous 

0.25 (fixed) Proportion of 

success in control 

arm (concurrent or 

historical) 

Phase II 

experimental, 

𝑝2 

N/A endpoint 

continuous   
(𝑒
𝜃
𝜋

√3𝑝1)

(𝑝1 (𝑒
𝜃
𝜋

√3  −  1)  +  1)

 

Proportion of 

response in phase 

II experimental 

arm 

Phase II 

control, 𝜇1 

0 (fixed) N/A endpoint binary True mean 

response in 

control arm 

Phase II 

experimental, 

𝜇2 

Equivalent to 𝜃 +

𝜇1 

N/A endpoint binary True mean 

response in 

experimental arm 

Endpoints  Continuous Binary   

Clinically 

significant 

difference 

(csd), 𝛿2 

0.3 (same as the 

phase III csd) 

 0.2 

(Difference in 

proportions)  

Systematic review 

Type I error, 

𝛼2 

One-sided 0.05 One-sided 0.05 

(Chapter 6 only, 

varied in Chapter 7) 

Systematic review 
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Parameters Value Notes 

Chapter 5 Chapters 6 &7  

Type II error, 

𝛽2 

0.2 0.2 (Chapter 6 only, 

varied in Chapter 7) 

Systematic review 

 

4.2.3 Trial designs 

4.2.3.1 Phase III trials 

Throughout all the evaluations the phase III design is fixed. It was assumed to 

be randomised with a 1:1 ratio of patients allocated to the control and 

experimental arm, with a purpose of confirming whether the experimental drug 

is superior to the control arm therapy. The design of the phase III trial was fixed 

with a type I error rate, 𝛼3 = 0.05, power, 1 − 𝛽3 = 0.8 and a standardised 

targeted treatment effect, 𝛿3 = 0.3. The clinically significant difference that is 

targeted in phase III is assumed to be 0.3 on the continuous scale. This was 

found to be the most common targeted effect in a systematic review exploring 

common operating characteristics in phase III trials (98).The type I and II errors 

were chosen as they represent what is typically used in phase III clinical trials 

(98). Using these values, the sample size of the phase III trial was determined 

using Equation 4.10,  

                                                       𝑛3 =
4(𝑧

1−
𝛼3
2
+ 𝑧1−𝛽3)

2

𝛿3
2                                               (4.10) 

where 𝑧1−𝛼3
2

 and 𝑧1−𝛽3 are the standard z-score evaluated at the 5% level and 

20% level, respectively. For each of the phase III trials that were initiated, the 

significance level was two-sided. The formula yielded a phase III trial total 

sample size of 348 patients. 

Patients for the phase III trial were randomly sampled from the true distributions 

for each treatment arm – patients accrued into the control arm were sampled 

from the true control arm distribution, and similarly patients enrolled into the 

experimental arm were sampled from the true experimental arm distribution. 

Since the endpoint in the phase III trials was assumed to be continuous (e.g., 

size of tumour in cm), the true patient distributions for phase III trials were 

assumed to be normally distributed. The value for the mean of the true control 

distribution was assumed to be 𝜇1 = 0, while the mean for the true experimental 

distribution was assumed to be 𝜇2, which was obtained, as explained above. 
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The standard deviation for both true patient distributions were assumed to be 

the same and took values 𝜎1 = 𝜎2 = 1. 

A t-test was used to determine whether the phase III trial indicated that the 

experimental treatment is better than the standard therapy. The phase III trial 

was deemed successful if the p-value is smaller than or equal to the type I error 

which was set to 𝛼3 = 0.05, otherwise the phase III trial was deemed to be 

unsuccessful.  

4.2.3.2 Phase II trials  

The design of the phase II trial differs when I am evaluating different design 

parameters. In Chapter 5, when evaluating the relationship between the 

endpoints, the phase II and III trial endpoints are both continuous. As the same 

treatment is tested in phase III, if it is found to be efficacious in the preceding 

phase II trial, the clinically significant difference (CSD) (= 0.3) and power 

(= 0.8) in phase II is the same as that in the phase III trial design. Therefore, 

the only difference that arises in phase II compared to the phase III is the choice 

of the significance level. In the phase II trial, it is a one-sided significance level 

of 0.05, while in phase III it is a two-sided significance level of 0.05. It is not 

surprising that the sample sizes of the phase II and III trials are very similar. 

This set up does not reflect what occurs in the drug development process: 

phase II and III trials sample sizes are different and the endpoints are typically 

not the same. However, this is done to lay the theoretical foundations so that 

the relationship between the phase II and III trial endpoints can be explored. 

The results from these evaluations will then be used to feed into more realistic 

scenarios where the sample sizes in phase II are smaller and the endpoints in 

phase II and III are different.  

In Chapters 6 and 7, the phase II design is assumed to have a binary outcome. 

This was the most common endpoint type found in the systematic review. For 

those articles that used a binary outcome the median difference in proportions 

commonly targeted was 0.2. For this reason, this was the clinically significant 

difference used to design the phase II trials in these chapters. In Table 4.1, the 

phase II control rate, 𝑝1,refers to the largest unacceptable response rate and 

represents the fixed true response rate in the control population (since this is a 

single-arm trial). The true phase II experimental rate, 𝑝2 is equal to 𝑝1 plus the 

true treatment effect, 𝜃 , i.e., 𝑝2 = 𝑝1 + 𝜃, and refers to the true underlying 

response rate of the experimental treatment. In specific phase II designs, such 

as Simon’s two-stage design 𝑝2 is defined as the smallest acceptable response 

rate required to be observed in the experimental arm to warrant further 
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evaluation in phase III, and reflects the targeted treatment effect. This value is 

required to calculate the sample size and decision criteria for the trial. In this 

thesis, this value is referred to as 𝑝1 + 𝛿2, and is fixed at 0.45, since 𝑝1 = 0.25 

and the targeted treatment effect, 𝛿2, is fixed at 0.2. 

Success in phase II trials is reached if the treatment effect tested is significant 

at a one-sided significance level of 0.05 (in Chapter 6), power of 0.8 (in Chapter 

6) and a difference in proportions larger than 0.2 between the control (historical 

or concurrent) and experimental arm. The treatment effect, selected from the 

normal distribution, when tested in the phase II trials with a binary endpoint 

needs to be transformed to the log odds scale using 𝜃
𝜋

√3
. Therefore, if the p-

value < 0.05 then phase II is deemed successful. In Chapter 7, when assessing 

the effect of the phase II trial sample sizes, 𝑛2, the choice for the type I and II 

errors (𝛼2 and 𝛽2 respectively) will vary to a range of values, however, when 

assessing the effect of phase II trial endpoints and designs, 𝛼2 is fixed at the 

one-sided level of 0.05, as previously mentioned, and 𝛽2 is set to 0.2. 

The findings of each evaluation will determine the design choice of the phase II 

trial. In Chapter 5 the objective is to explore the relationship between the 

endpoints and the findings in this chapter will be used in subsequent 

evaluations of the design in Chapter 6 and sample size in Chapter 7. Similarly, 

the most efficient design in Chapter 6 will be the design used to explore the 

effect of the sample size in Chapter 7. Further details of the sample size 

calculation and designs of the phase II trials will be explained in the specific 

chapters for each of the parameter evaluations. Refer to Table 4.1 for the 

summary of the design parameters of the phase II and III trials. 

4.2.4 Evaluating phase II trial efficiency   

The chosen measure used in this research to quantify the efficiency of phase II 

trials, is the one used by Stallard (39), namely, the number of patients required 

to lead on to the first successful phase III trial. As explained in section 4.1.1, 

𝐸(𝑃1) denotes the expected probability of a successful phase II trial averaged 

over the prior distribution (39). Similarly, the expected probability of successful 

phase II and III trials is denoted by 𝐸(𝑃1𝑃2). Therefore, to calculate the expected 

conditional probability of success in a phase III trial given the preceding phase II 

was successful is defined as 
𝐸(𝑃1𝑃2)

𝐸(𝑃1)
. Stallard (39) uses this result to define the 

number of patients required to lead to the first successful phase III trial 

(repeated here for ease of reference):  

                                        
𝑛2+𝑛3 𝐸(𝑃1)

𝐸(𝑃1𝑃2)
                                   (4.2) 
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Using this measure, I will evaluate the effect of the correlation between 

endpoints in phase II and III trials, the design of phase II trials, when they are 

single-arm, randomised, single-stage or two-stage, and the sample size of 

phase II trials. 

Initially, the evaluations are conducted analytically: the methods used by 

Stallard (39), described in section 4.1.1, are adapted to allow the exploration of 

the effect of the relationship between the phase II and III trial endpoints. 

Simulations, conducted on the statistical software R, are then used to explore 

the effect of the design and sample size of phase II trials. Since these 

parameters have multiple varieties to explore, simulations provide flexibility and 

efficiency; the parameter choices explored in Chapters 6 and 7 would have 

been computationally intensive.  

The most efficient set up of the simulations was to define a population of 

patients, 𝑁, that can be entered in multiple phase II and III trials. This was set to 

be a large number so that it can reflect what occurs over a very long period of 

time, and so it does not affect the results and conclusions. Stallard (39) notes 

that the measure of phase II efficiency, namely the number of patients required 

to lead to the first successful phase III trial, is equivalent in its conclusions to the 

number of successful phase III trials, 𝑁𝑡𝑟𝑖𝑎𝑙. Hence, this was the measure used 

to compare the designs evaluated in the simulations (Chapters 6 and 7). 

However, in order to obtain the number of patients required to lead to the first 

successful phase III trial, a simple calculation (
𝑁

𝑁𝑡𝑟𝑖𝑎𝑙
) is done to obtain the 

number of patients required, so as to make the conclusions for each evaluation 

comparable.
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Chapter 5 Investigating the effect of the relationship between 

phase II and III endpoints 

In Chapter 4, I outlined the methods for this research, stating that the aim is to 

investigate the effect of the endpoint, design and sample size of phase II trials 

on their efficiency. In this chapter, the first parameter is investigated. Here, I aim 

to discover what the impact of the relationship between phase II and III trial 

endpoints is and how influential it is, in terms of the number of patients required 

to lead to the first successful phase III trial. The problem is answered 

analytically and provides a basis for future investigations in the coming 

chapters. 

5.1 Introduction 

In clinical trials, an endpoint is used to measure how a patient responds to an 

intervention. It can quantify the wellness, certain body functions or survival of 

patients (99). In oncology, phase III trials usually measure patients’ overall 

survival, or in some disease areas disease-free or progression-free survival. 

This is an example of a true clinical endpoint (100) and usually requires a long 

follow-up time. While this may be acceptable in confirmatory phase III trials, 

phase II trials typically use a short-term endpoint, since their purpose is to 

quickly and efficiently move treatments on to phase III trials, for further 

investigation. Using the most appropriate endpoint can influence the 

conclusions of the trial and therefore contribute to the advancement or 

hindrance of medical discoveries. 

Oftentimes, oncology phase II trials are conducted with the proportion of 

objective responders as the primary measure of efficacy. This is reflected in the 

findings of Chapter 2 where the majority of phase II trials, included in the 

systematic review, used binary outcomes (80%; response rate, 51%; 

dichotomised time-to-event, 25%; safety rate, 4%). Langrand-Escure et al.’s (9) 

systematic review also reiterates this: they report that 80.7% of phase II trials 

carried out between the years of 2010 to 2015 used response rate as the 

primary endpoint. Nonetheless, there is still much dispute in the literature in 

regards to the most appropriate endpoint for oncology phase II trials. An et al. 

(10) discuss a number of issues with response rate as an outcome measure in 

phase II trials, including the lack of concordance between response rate in 

phase II trials and endpoints used in definitive phase III trials. They also state 
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that for solid tumours, dichotomising tumour measurements, which is a 

continuous measure, can lead to a loss of potentially valuable information. In 

addition, the cut off points for each category in the binary endpoint is arbitrarily 

defined. Also, with the emergence of cytostatic treatments, which may not 

directly cause tumour shrinkage, stable disease can no longer be categorised 

as a negative outcome in phase II trials as patients with stable disease may 

have long-term survival benefits. Despite these issues, they found that 

response rate was a more appropriate endpoint than the continuous endpoints 

they proposed (total sum of tumour measurements, average sum of tumour 

measurements, relative change from baseline and average change from 

baseline), as it better predicted the phase III endpoint, overall survival, and 

therefore resulted in phase III success. 

Sharma and Karrison et al. (71) found that randomised phase II designs with a 

continuous outcome, specifically, the log ratio of tumour sizes between the two 

arms, yield better results for predicting phase III trial success compared with 

randomised designs with progression-free survival and single-arm designs. 

However, Fridlyand et al. (73) and Kaiser (101) recommend the use of 

progression-free survival (PFS) as the primary phase II outcome, as they found 

that it led to an increased probability of correctly terminating the development of 

a futile treatment. With the increase in cytostatic therapies, Stone et al. (102) 

also advocate the use of PFS in phase II trials. 

An important role of the phase II trial is the fact that it is used to inform 

decisions in the phase III trial, one of which is the choice of the phase III 

endpoint. Therefore, the phase II trial endpoints cannot be considered in 

isolation, rather they have to be investigated with the phase III endpoint in mind, 

as the choice of endpoint in phase II should be closely related to the outcome 

used in phase III trials. In order to incorporate the phase III trial endpoint, the 

investigations carried out in this chapter focus on the correlation between 

treatment effects on the endpoints used in phase II and III trials, rather than the 

type of endpoints used in phase II trials. When choosing an endpoint for the 

phase II trial, there are both clinical and statistical considerations to be taken 

into account. Clinical considerations include whether the endpoint addresses 

the trial objectives and can capture the benefit of the treatment, which can be 

measured in different ways, including how a patient feels, functions or survives 

(103). The statistical considerations, which is the focus of this chapter, include 

the distribution of the endpoint and how the phase II endpoint relates to the 

phase III.  
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The evaluation of the relationship between endpoints in phase II and III and the 

validation of surrogate endpoints are closely related but have a different focus 

(80). Correlation between treatment effects on differing endpoints of trials is 

evaluated in the validation of surrogate endpoints. A surrogate endpoint may be 

used to replace a true endpoint in a trial. This can happen for a number of 

reasons, including when the true endpoint is difficult to measure or requires a 

long follow-up time (100). However, surrogate endpoints cannot be used to 

replace a true endpoint unless they have been properly validated. One 

approach to surrogate endpoint validation is to evaluate the trial-level and 

individual-level surrogacy. Trial-level surrogacy captures “the precision one can 

achieve in the prediction of a trial-specific treatment effect in the true endpoint 

from the effect on the surrogate. It is based on a linear regression model built 

using trial specific treatment effects on the true and surrogate endpoints 

observed in previous” clinical trials (104). Individual-level surrogacy is defined 

as correlation between the surrogate and the true endpoint (80), on the basis of 

individual patient data. Values close to one for both these parameters indicate 

that the surrogate endpoint is valid to replace the true endpoint.  

Surrogacy validation depends on these two measures however, the methods 

used to evaluate the strength of relation between phase II and III endpoints can 

be based on the trial-level surrogacy, in addition to the treatment effect of a 

phase II endpoint relative to the treatment effect of the phase III endpoint (80), 

and does not require establishing perfect surrogacy. In this chapter, I will 

explore the effect of the relationship between the endpoints used in phase II 

and III trials on the efficiency of phase II trials. This chapter will also highlight 

what the extent of the impact of the relationship between the endpoints in phase 

II and III trials and whether there are any other parameters, such as (but not 

limited to) the variance in the effect of the phase II and III trial endpoints, that 

can impact the choice of the phase II trial endpoint. 

Since only the trial-level surrogacy is required to evaluate phase II endpoints, 

elements of the surrogacy methodologies are employed. Burzykowski et al. 

(100) used these methods and present a hierarchical model to capture the 

relationship between different endpoint types. In this chapter, the hierarchical 

model is employed, not to validate a surrogate endpoint, but rather to explore 

the impact of the strength of relationship between the endpoints used in phase 

II and III trials. This is done within the context of the methods outlined in 

Chapter 4: using a frequentist approach to design the phase II and III trials, 

while assuming a distribution for the true treatment effect.  
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5.2 Methods 

Burzykowski et al. (100) indicated that the easiest situation, when evaluating the 

surrogacy of endpoints, is where the treatment effect of the phase II endpoint, 

and that of the phase III are realisations of random variables which are normally 

distributed. In addition, Stallard (39) optimised the sample size of phase II trials 

under the assumption that they both use continuous normally distributed 

endpoints. Consequently, here the phase II and III endpoints are assumed to be 

continuous. Similar to Stallard (39), I assumed an underlying true treatment 

effect, ∆, for the treatments under evaluation, that follows a normal distribution. 

This distribution, ∆, represents the effects of all the possible treatments available 

for investigation and was assumed to have mean 𝜇 and standard deviation 𝜎.  

Let 𝜃1 denote the true treatment effect for the surrogate endpoint in the phase II 

trial and 𝜃2 denote the true treatment effect for the true endpoint in the phase III 

trial. Both 𝜃1 and 𝜃2 are normally distributed with the same mean ∆ and 

variance 𝜏2, i.e., 𝜃1~ 𝑁(∆, 𝜏
2) and 𝜃2~ 𝑁(∆, 𝜏

2). This means that 𝜃1 and 𝜃2 are 

independent given ∆, the mean for both treatment effects, which is itself random 

and normally distributed ∆~ 𝑁(𝜇, 𝜎2), as previously mentioned. In other words, 

𝜃1 and 𝜃2 are independent but have the same mean, which is random itself. 

Assuming the same mean for the phase II and phase III effects is vital for the 

exploration of the correlation between the treatment effects and how the 

correlation is derived is discussed below. Figure 5.1 shows a visual 

representation of the assumptions made. Assuming that the mean treatment 

effects for both phase II and III trials are the same, the joint prior distribution for 

the treatment effects 𝑓(𝜃1, 𝜃2), is calculated. Despite the fact that the treatment 

effect distributions of an endpoint are the same, in phase II and III trials, the 

actual endpoints used in both phases may be different.  

In general, the joint distribution for 𝜃1 and 𝜃2 combines information about the 

distribution of treatment effects and about surrogacy of endpoints; this is 

because the two design parameters (treatment effect distribution and surrogacy 

of endpoints) are closely related. In this situation surrogacy has two levels: 

within treatment which represents the correlation between the endpoints given 

𝜃1 and 𝜃2, i.e. a patient who has a high value of the surrogate endpoint will have 

a high value of the true endpoint, as these are correlated. The second level is 

the between treatment effect which is captured by the correlation between the 

true treatment effects for the phase II and III endpoints, 𝜃1 and 𝜃2, i.e., a 

treatment which has a large effect on the surrogate endpoint will have a large 

effect on the true endpoint if the correlation is high. The within treatment level of 
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surrogacy is also referred to as the individual patient level surrogacy, denoted 

by 𝑅𝑖𝑛𝑑
2  and the between treatment level is referred to as the trial-level 

surrogacy, denoted by 𝑅𝑡𝑟𝑖𝑎𝑙
2 . As previously mentioned, when validating whether 

an endpoint is a true surrogate of another, both these levels of surrogacy are 

used. However, here, the objective is to investigate the effect of the relationship 

between the treatment effect on the phase II and III trial endpoints on phase II 

trial efficiency, rather than validating a surrogate endpoint in order to replace a 

true one. In this setting, the relationship between the endpoints is summarised 

by the correlation between the treatment effect distributions at phase II and III, 

only, i.e., the trial-level surrogacy, and not at the individual patient level. 

Therefore, in this research the joint distribution for 𝜃1 and 𝜃2 combines 

information about the distribution of the treatment effects and trial-level 

surrogacy. 

 

Figure 5.1 The true treatment effect distributions for phase II, 𝜽𝟏, and 

phase III, 𝜽𝟐, both follow a normal distribution with mean ∆, where ∆ is the 

distribution of effects of the available treatments ∆ ~ 𝑵(𝝁, 𝝈𝟐)  

The chosen measure used to quantify the phase II trials’ efficiency is the 

expected total number of patients required to lead to a successful phase III trial, 

as discussed in Chapter 4. Recall, the total expected number of patients 

required to lead to the first successful phase III trial is given by: 

𝑛1+𝑛2𝐸(𝑃1)

𝐸(𝑃1𝑃2)
                         (5.1) 

∆~ 𝑵(𝝁, 𝝈𝟐) 

𝝁 

𝜽𝟏~ 𝑵(∆, 𝝉
𝟐) 

∆ ∆ 

𝜽𝟐~ 𝑵(∆, 𝝉
𝟐) 
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Where 𝑛1 and 𝑛2 denote the total sample size required in the phase II and III 

trials, respectively. The probability of success in a phase II trial is denoted by 

𝐸(𝑃1), and 𝐸(𝑃1𝑃2) is the probability of success in phase III given the success of 

the preceding phase II trial. 

In this chapter, it is assumed that both the phase II and III trials are two-arm 

randomised controlled trials with an equal number of patients in both arms, 

comparing an experimental treatment with a control. Success in a phase II or a 

phase III trial is defined as the experimental therapy showing statistically 

significant evidence that it is more promising than the control treatment, i.e., 

superiority. If the phase II trial is found to be successful, then investigation of 

the experimental treatment would continue in a phase III trial. A phase III trial is 

only initiated if the preceding phase II trial is a success; if it failed then the 

treatment under investigation is dropped and no further investigations are 

carried out for that treatment, and another phase II is initiated with a different 

treatment. 

The type I and type II error rates for the phase II and III trials were fixed: they 

were set to 𝛼1 = 0.05 (one-sided) in phase II, 𝛼2 = 0.05 (two-sided) in phase III, 

while the type II errors were equal in both phases  𝛽1 = 𝛽2 = 0.2. These were 

used to calculate the total sample sizes for the phase II and III trials, 𝑛1 and 𝑛2 

respectively. The sample size formula used was the standard formula for a two-

arm trial comparing a continuous endpoint with an equal number of patients 

enrolled to both arms.  

                                            𝑛𝑖 =
4𝜎𝑖

2(𝑧1−𝛼𝑖 + 𝑧1−𝛽𝑖)
2

𝛿𝑖
2 ; 𝑖 = 1,2                                          (5.2) 

The targeted treatment difference between the experimental and the control 

arm denoted by, 𝛿𝑖 was fixed, for both the phase II and III trials. In order to 

reflect what occurs in a typical phase III clinical trial the targeted treatment 

effect was set to 𝛿2 = 0.3; this is based on a systematic review exploring the 

quality of reporting of phase III trial operating characteristics (98). The most 

common effect size used for a continuous outcome was 0.3. The targeted 

treatment effect for phase II trials was also set to 𝛿1 = 0.3. This was chosen as 

the same endpoint scale is used in phase II and III trials (in this chapter only). 

The variance of the underlying true treatment effect for the population of 

patients in the phase II and III trials was estimated to be 𝜎1 = 𝜎2 = 1, so that 

they represent a standardised effect. Using the sample size Equation 5.2, the 

total sample size for the phase III trials was calculated to be 𝑛2 =  348 patients 

(note 
𝛼2

2
 is used as the significance level is two-sided);  174 subjects required in 
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each arm. The total sample size in the phase II trial was calculated to be 𝑛1 =

274 patients; this means that a total of 137 patients were in each of the control 

and experimental arm. 

The between treatment correlation, i.e. trial level surrogacy measure is captured 

by the joint distribution of the true treatment effect distributions for the phase II 

and III trial endpoints, 𝑓(𝜃1, 𝜃2). Therefore, the joint distribution was calculated 

and was used to calculate the probability of success in a phase II trial, 𝐸(𝑃1) and 

the probability of success in phase II and phase III trials, given that the phase II 

succeeded, 𝐸(𝑃1𝑃2).  

5.2.1 Calculating the joint prior treatment effect distribution, 

𝒇(𝜽𝟏, 𝜽𝟐) 

In order to calculate the probability density function, 𝑓(𝜃1, 𝜃2), the probability 

densities of ∆, 𝜃1 and 𝜃2 will be multiplied and integrated as follows:  

𝑓(𝜃1, 𝜃2) = ∫𝑓(𝜃1, 𝜃2| 𝜃) 𝑓(𝜃) dθ 

𝑓(𝜃1, 𝜃2) = ∫
1

2𝜋𝜏2
 𝑒
−
1
2
[
(𝜃1− 𝜃)

2−(𝜃2−𝜃)
2

𝜏2
]
 
1

𝜎√2𝜋
𝑒
−
1
2
[
(𝜃−𝜇)2

𝜎2
]
  dθ

∞

−∞

 

𝑓(𝜃1, 𝜃2) = ∫
1

(2𝜋)
3
2𝜏2𝜎

 𝑒
−
1
2
[
(𝜃1− 𝜃)

2−(𝜃2−𝜃)
2

𝜏2
+ 
(𝜃−𝜇)2

𝜎2
]

∞

−∞

dθ 

From here it can be derived that  𝑓(𝜃1, 𝜃2) follows a bivariate normal distribution: 

𝑓(𝜃1, 𝜃2) ~ 𝐵𝑉𝑁((
𝜇
𝜇) , (

𝜎2 + 𝜏2 𝜎2

𝜎2 𝜎2 + 𝜏2
))      (5.3) 

Since the trial level surrogacy is captured through the distribution of 𝑓(𝜃1, 𝜃2), 

the correlation between the treatment effects was derived from Equation 5.3. 

Therefore, the correlation between 𝜃1 and 𝜃2 is  
𝜎2

𝜎2+𝜏2
(= 𝑅𝑡𝑟𝑖𝑎𝑙

2 ).  

5.2.2 Calculating the probability of success in phase II trials, 𝑬(𝑷𝟏) 

Equation 5.3 is used to calculate the probability of success in a phase II 

trial, 𝐸(𝑃1). In order to do this, �̅�1 is assumed to be the observed treatment 

effect in a phase II trial. It is assumed to be normally 

distributed, �̅�1| 𝜃1, 𝜃2~ 𝑁 (𝜃1,
4𝜎1

2

𝑛1
). Since the phase II trials are analysed using 

the frequentist approach, success in the phase II trial only occurs if and only if 

�̅�1 is larger than the critical value associated with the phase II trial, 𝑘1. It is 

concluded that the phase II trial was successful if the observed treatment 

effect, �̅�1 is larger than the critical value; 𝑘1 is dependent on the type I error rate 
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and the estimated standard deviation associated with the phase II trial 

population, 𝜎1, and is given by the following formula: 

                                                                𝑘1 = 𝑧1−𝛼1
2𝜎1

√𝑛1
                                                         (5.4) 

Therefore, since the distribution of �̅�1 only depends on  𝜃1: 

𝑃(�̅�1 > 𝑘1) = ∫ ∫ 𝑓(�̅�1|𝜃1)
−∞

∞

∞

𝑘1

𝑓(𝜃1) 𝑑𝜃1𝑑�̅�1 

Using the fact that 𝑓(�̅�1|𝜃1)~ 𝑁 (𝜃1,
4𝜎1

2

𝑛1
)  and 𝑓(𝜃1)~𝑁(𝜇, 𝜎

2 + 𝜏2), the 

probability of success in a phase II trial becomes: 

𝑃(�̅�1 > 𝑘1) =  ∫ ∫
1

√2𝜋√𝜎2 + 𝜏2

1

√8𝜋
𝜎1
2

𝑛1

𝑒

{−[
(�̅�1−𝜃1)

2

8
𝜎1
2

𝑛1

+
(𝜃1−𝜇)

2

2(𝜎2+𝜏2)
]}

−∞

∞

∞

𝑘1

 𝑑𝜃1𝑑�̅�1 

 

𝑃(�̅�1 > 𝑘1) =  ∫ ∫
√𝑛1

2√2 𝜋𝜎1√𝜎2 + 𝜏2
𝑒

{−[
(�̅�1−𝜃1)

2

8
𝜎1
2

𝑛1

+
(𝜃1−𝜇)

2

2(𝜎2+𝜏2)
]}

−∞

∞

∞

𝑘1

 𝑑𝜃1𝑑�̅�1 

Therefore, 𝑥1~ 𝑁 (𝜇,
4𝜎1

2

𝑛1
+ 𝜎2 + 𝜏2 ) 

From here, the probability of success in a phase II trial is given as: 

 𝐸(𝑃1) = 𝑃(�̅�1 > 𝑘1) = 1 −  

(

 
 𝑘1− 𝜇

√
4𝜎1
2

𝑛1
+𝜎2+𝜏2

)

 
 

     (5.5) 

5.2.3 Calculating the probability of success in phase II and III trials, 

𝑬(𝑷𝟏𝑷𝟐) 

Equation 5.3 was used, again, to calculate the probability of success in phase II 

and III trials, 𝐸(𝑃1𝑃2). In order to do this, let �̅�2 be the observed treatment effect 

in a phase III trial. Similar to  �̅�1, it was assumed to be normally 

distributed �̅�2| 𝜃1, 𝜃2~ 𝑁 (𝜃2,
4𝜎2

2

𝑛2
). It should be noted that �̅�1 and �̅�2 are 

independent (given  𝜃1 and 𝜃2) as the data come from different patients. Since 

the phase II and III trials are analysed using the frequentist approach, success 

in the phase III trial can only occur if and only if �̅�2 was found to be larger than 

the critical value associated with the phase III trial, 𝑘2, where  
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                                                                𝑘2 = 𝑧1−𝛼2
2𝜎2

√𝑛2
                                                         (5.6) 

The probability of success in both phase II and III trials is calculated by 

obtaining the joint distribution of �̅�1, �̅�2, 𝜃1, 𝜃2, shown below: 

𝑓( �̅�1, �̅�2, 𝜃1, 𝜃2) = 𝑓(𝜃1, 𝜃2)𝑓( �̅�1|𝜃1)𝑓(�̅�2|𝜃2)  

Using the fact that 𝑓(𝜃1, 𝜃2) ~ 𝐵𝑉𝑁((
𝜇
𝜇) , (

𝜎2 + 𝜏2 𝜎2

𝜎2 𝜎2 + 𝜏2
)), 

𝑓(�̅�1|𝜃1)~ 𝑁 (𝜃1,
4𝜎1

2

𝑛1
) and 𝑓(�̅�2|𝜃2)~ 𝑁 (𝜃2,

4𝜎2
2

𝑛2
) gives: 

𝑓(𝜃1, 𝜃2)𝑓( �̅�1|𝜃1)𝑓(�̅�2|𝜃2) =  
1

2𝜋(𝜎2+𝜏2)√1−(
𝜎2

𝜎2+𝜏2
)
2

 

exp{−
1

2(1−(
𝜎2

𝜎2+𝜏2
)
2

)

[
(𝜃1−𝜇)

2

(𝜎2+𝜏2)
−

2
𝜎2

𝜎2+𝜏2
(𝜃1−𝜇)(𝜃2−𝜇)

𝜎2+𝜏2
+
(𝜃2−𝜇)

2

𝜎2+𝜏2
]} ×

1

√8𝜋
𝜎1

√𝑛1

1

√8𝜋
𝜎2

√𝑛2

exp {−
1

2
(
(�̅�1−𝜃1)

2

4𝜎1
2

𝑛1

+
(�̅�2−𝜃2)

2

4𝜎2
2

𝑛2

)}  

The correlation 𝜌 denotes the 𝑅𝑡𝑟𝑖𝑎𝑙
2  so therefore, let 𝜌 =

𝜎2

𝜎2+𝜏2
 and 𝛾 = 𝜎2 + 𝜏2 

Therefore, 

𝑓(𝜃1, 𝜃2)𝑓( �̅�1|𝜃1)𝑓(�̅�2|𝜃2) =  
1

2𝜋𝛾√1−𝜌2 
exp {−

1

2(1−𝜌2)
[
(𝜃1−𝜇)

2

𝛾
−
2𝜌(𝜃1−𝜇)(𝜃2−𝜇)

𝛾
+

(𝜃2−𝜇)
2

𝛾
]} ×

1

2√2 𝜋
𝜎1

√𝑛1

𝜎2

√𝑛2

exp {−
1

2
(
(�̅�1−𝜃1)

2

4𝜎1
2

𝑛1

+
(�̅�2−𝜃2)

2

4𝜎2
2

𝑛2

)}  

𝑓(𝜃1, 𝜃2)𝑓( �̅�1|𝜃1)𝑓(�̅�2|𝜃2) =

 
1

4√2 𝜋𝛾√1−𝜌2
𝜎1

√𝑛1

𝜎2

√𝑛2
 
exp {−

1

2
[
(𝜃1−𝜇)

2−2𝜌(𝜃1−𝜇)(𝜃2−𝜇)+(𝜃2−𝜇)
2

𝛾(1−𝜌2)
+
(�̅�1−𝜃1)

2

4𝜎1
2

𝑛1

+
(�̅�2−𝜃2)

2

4𝜎2
2

𝑛2

]}   

It follows that 𝑓(𝜃1, 𝜃2)𝑓( �̅�1|𝜃1)𝑓(�̅�2|𝜃2) = 𝑓(�̅�1, �̅�2, 𝜃1, 𝜃2) which follows a 

multivariate normal distribution which in matrix form can be expressed in the 

following way: 

(

�̅�1
�̅�2
𝜃1
𝜃2

)~ 𝑀𝑉𝑁 (𝝁, 𝚺) 

Where 𝝁 is the vector of means for each of the parameters, �̅�1, �̅�2, 𝜃1, 𝜃2, and 𝚺 

is the variance-covariance matrix. 

By comparing coefficients in the exponent term, to the terms in 

(

�̅�1 −𝑀1
�̅�2 −𝑀2
𝜃1 −𝑀3
𝜃2 −𝑀4

)

𝑇

(

𝑄11 𝑄12 𝑄13 𝑄14
𝑄21 𝑄22 𝑄23 𝑄24
𝑄31 𝑄32 𝑄33 𝑄34
𝑄41 𝑄42 𝑄43 𝑄44

)(

�̅�1 −𝑀1
�̅�2 −𝑀2
𝜃1 −𝑀3
𝜃2 −𝑀4

) (where 𝑀𝑖 denote the means 
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and 𝑄𝑖𝑗 denotes the variance-covariance matrix), the means, 𝝁, and variance-

covariance matrix, 𝚺, was found to be: 

(

𝑀1
𝑀2
𝑀3
𝑀4

) = (

𝜇
𝜇
𝜇
𝜇

) 

And 

 𝑄 =

1

4(1−𝜌2)𝛾
𝜎1
2

𝑛1

𝜎2
2

𝑛2

(

 
 
 
 
 

(1 − 𝜌2)𝛾
𝜎2
2

𝑛2
0 −(1 − 𝜌2)𝛾

𝜎2
2

𝑛2
0

0 (1 − 𝜌2)𝛾
𝜎1
2

𝑛1
0 −(1 − 𝜌2)𝛾

𝜎1
2

𝑛1

−(1 − 𝜌2)𝛾
𝜎2
2

𝑛2
0 4

𝜎1
2

𝑛1

𝜎2
2

𝑛2
+ (1 − 𝜌2)𝛾

𝜎2
2

𝑛2
−4𝜌

𝜎1
2

𝑛1

𝜎2
2

𝑛2

0 −(1 − 𝜌2)𝛾
𝜎1
2

𝑛1
−4𝜌

𝜎1
2

𝑛1

𝜎2
2

𝑛2
4
𝜎1
2

𝑛1

𝜎2
2

𝑛2
+ (1 − 𝜌2)𝛾

𝜎1
2

𝑛1)

 
 
 
 
 

 

Calculating the inverse of Q, denoted by S, the variance-covariance yields the 

joint distribution between �̅�1, �̅�2, 𝜃1, 𝜃2, referred to as Equation 5.7: 

𝑓(�̅�1, �̅�2, 𝜃1, 𝜃2) ~ 𝑀𝑉𝑁

(

 
 
 
 
 

(

  
 









)

  
 
,

(

 
 
 
 

4𝜎1
2

𝑛1
+ 𝜎2 + 𝜏2 𝜎2 𝜎2 + 𝜏2 𝜎2

𝜎2
4𝜎2

2

𝑛2
+ 𝜎2 + 𝜏2 𝜎2 𝜎2 + 𝜏2

𝜎2 + 𝜏2 𝜎2 𝜎2 + 𝜏2 𝜎2

𝜎2 𝜎2 + 𝜏2 𝜎2 𝜎2 + 𝜏2)

 
 
 
 

)

 
 
 
 
 

 

Note that Equation 5.5 could have also been derived from Equation 5.7. The 

proof to verify that Q and S are the inverse of one another (i.e., 𝑄𝑆 = 𝐼 ) is 

shown in Appendix A. The marginal distribution for 𝑓(�̅�1, �̅�2) used to calculate 

the conditional probability of success in phase II and III trials, 𝐸(𝑃1𝑃2) is thus 

given by Equation 5.8: 

𝑓(�̅�1, �̅�2) ~ 𝐵𝑉𝑁

(

 (
𝜇
𝜇) , (

4𝜎1
2

𝑛1
+ 𝜎2 + 𝜏2 𝜎2

𝜎2
4𝜎2

2

𝑛2
+ 𝜎2 + 𝜏2

)

)

              (5.8) 

5.2.4 Analytic Evaluations  

Using the algebraic solutions described, the probabilities of success in phase II 

trials, 𝐸(𝑃1), and conditional success in phase II and III trials, 𝐸(𝑃1𝑃2), were 

obtained. These values were then substituted into Equation 5.1 in order to 

obtain the expected number of patients required to lead to a successful phase 

III trial. Since the design parameter under investigation here is the relationship 

between the treatment effects on endpoints in phase II and III trials, which is 
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summarised by 𝜌(= 𝑅𝑡𝑟𝑖𝑎𝑙
2 ), a range of values were investigated for 𝜌. However, 

two variables affect the value of 𝜌: the variance about the true treatment effect 

distribution, 𝜎, and the variance about the true effect of the treatments on the 

endpoints used in phase II and III trials, 𝜏. Therefore, a range of values for each 

of these variables were explored; 𝜎 ranged from 0.1 to 10, in increments of 0.3, 

while 𝜏 ranged from 0 to 2 in increments of 0.5. These were selected as they are 

extreme values of these parameters and therefore allow the evaluations to be 

exhaustive. The correlation depends on 𝜎, so when 𝜎 = 0 the correlation is 𝜌 =

0 and increases as 𝜎 increases, approaching 1 as 𝜎 approaches infinity. This is 

due to the fact the 𝜌 =
𝜎2

𝜎2+𝜏2
 therefore, when 𝜏 = 0 and 𝜎 > 0 the correlation is 

equal to 1, and the treatment effects are perfectly correlated (e.g., the same 

endpoint was used in both trial phases and the observed treatment effects were 

the same). However, when 𝜏 > 0, the treatment effects of the endpoints are not 

perfectly correlated; in fact an increase in 𝜏 means the treatment effects of the 

endpoints are less correlated as 𝜏 tends to infinity. Setting 𝜏 =  0 is equivalent 

to having a single endpoint throughout the phase II and III evaluations, in other 

words, the same endpoint is used in phase II and III trials. 

As mentioned in Chapter 4, the mean of the true treatment effect distribution 

was set to 𝜇 = 0. This implies that the treatments available for testing have no 

effect, on average. The impact of different means for the true treatment effect 

was explored through a sensitivity analysis. Two situations were considered: the 

average effect of the treatments available was assumed to be positive, i.e., 𝜇 =

0.5, and negative 𝜇 = −0.5. Recall also that the targeted treatment effect is the 

same in phase II and III and set to 0.3. As mentioned above, success in the 

phase II trial can only occur if and only if the observed mean is larger than some 

critical value, 𝑘1. The critical value was found from the normal distribution and is 

dependent on the type I error rate, the standard deviation associated with the 

observed patients in the phase II trial and the sample size of the phase II trial, 

as shown in Equation 5.4. Given these values the probability of success in 

phase II trials, 𝐸(𝑃1) was obtained using the standard function “pnorm” in R 

(105) (Appendix B shows the R code for the investigations in this chapter).  

The probability of success in phase II and III trials, 𝐸(𝑃1𝑃2), was obtained in a 

similar way. However, in addition to phase II trial values, phase III trial variables 

were specified. The type I and II error rates for the observed phase III trial were 

assumed to be the same as the error rates in phase II, except that a two-sided 

significance level is used in phase III and one-sided in phase II. Success in the 

phase III trial only occurred if and only if the observed mean was larger than 

some critical value, 𝑘2, (Equation 5.6). Given these values for 
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𝑘1, 𝑘2, 𝜇, 𝜎1, 𝜎2, 𝑛1, 𝑛2, 𝜎 and 𝜏 the probability of success in phase II and III 

trials,  𝐸(𝑃1𝑃2), was obtained using the standard function “pmvnorm” in R (106) 

(Appendix B).  

Hence with values for 𝐸(𝑃1) and 𝐸(𝑃1𝑃2), the expected number of patients 

required to lead to the first successful phase III trial were obtained for a range of 

𝜌 values in order to explore the effect of phase II and III endpoints on the 

efficiency of phase II trials. Table 5.1 provides a summary of the parameter 

values and definitions. 

Table 5.1 parameter definition and values 

Parameter  Nomenclature  Value/range  

𝝁 Mean effect of the 

treatments available 

0 

𝝈 Standard deviation of 

effect of treatments 

available 

0.1 − 10 

𝝉 Standard deviation of 

the treatment effects in 

both phase II and III 

trials 

0 − 2 

𝝆 =
𝜎2

𝜎2 + 𝜏2
 Trial-level surragacy/ 

𝑅𝑡𝑟𝑖𝑎𝑙
2  

0.02 − 1 

Phase II trials 

 𝒌𝟏 = 𝒛𝟏−𝜶𝟏
𝟐𝝈𝟏

√𝒏𝟏
 Phase II critical value 0.2 

𝝈𝟏 Standard deviation of 

phase II population, 

known 

1 

𝒏𝟏 Phase II sample size 274 

𝜶𝟏 Phase II significance 

level 

One-sided 0.05  

𝜷𝟏 Phase II type II error 0.2 

Phase III trials 



73 
 

 

 

Parameter  Nomenclature  Value/range  

 𝒌𝟐 = 𝒛𝟏−𝜶𝟐
𝟐𝝈𝟐

√𝒏𝟐
 Phase III critical value 0.21 

𝝈𝟐 Standard deviation of 

phase III population, 

known 

1 

𝒏𝟐 Phase III sample size 348 

𝜶𝟐 Phase III significance 

level 

Two-sided 0.05 

𝜷𝟐 Phase III type II error 0.2 

 

5.3 Results 

5.3.1 Same phase II and III endpoint, perfect correlation 

In the single endpoint scenario, which is the simplest scenario, it is assumed 

that the endpoint used in the phase II trials is the same as the one used in the 

phase III trials, i.e., that the treatment effects on the endpoints in phase II and III 

are the same. In order to investigate this scenario, the correlation, 𝜌, associated 

with the true treatment effects of the phase II and III trials (𝜃1and 𝜃2), is equal to 

1 (𝜌 = 1). In order to attain a perfect correlation between the endpoints in 

phase II and III trials, the variances (𝜏) of the individual phase II and phase III 

treatment effects, 𝜃1 and 𝜃2, about the true treatment effect, ∆, are set to zero. 

This means that the true treatment effect for the endpoints in phase II and III 

trials, are perfectly correlated. Hence the question, in this situation, is reduced 

to the effect of the variance about the true effects of the treatments available on 

the efficiency of phase II trials, 𝜎.  

Recall that the true treatment effect follows a normal distribution with mean 𝜇 =

0, implying that on average the treatments available have no effect. In addition, 

the targeted treatment effects in both phase II and III trials were both set to 0.3. 

With this in mind, the probabilities of success in phase II trials, and phase II and 

III were obtained, following the methods described above, and are shown in 

Figure 5.2. It is clear that as the standard deviation of the true treatment effect 

distribution, 𝜎, increases the probability of success in phase II trials and the 

probability of success in phase II and III trials also increases, under the 

assumption of a true treatment effect following a normal distribution with mean 
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0. It is also clear that the probability of success tends towards 0.5 as 𝜎 

increases. This is because the treatment effects are far from zero when the 

variance is large, but as the mean is zero have equal probability of being a large 

positive or a large negative, with only one of these leading to a phase II 

success. Figure 5.2 also shows that the probability of success in both phases is 

smaller than or equal to the probability of success in phase II trials alone. It is 

clear that both probabilities of successes increase when 𝜎 increases and then 

begin to plateau when 𝜎 is greater than 2. 

 

Figure 5.2 Shows the probabilities of success in phase II trials,𝑬(𝑷𝟏), and 

in phase II and phase III trials, 𝑬(𝑷𝟏𝑷𝟐). 

 

Figure 5.3 The relationship between the variance in the true treatment 
effect (𝝈) and the total number of patients required before a successful 
phase III trial is observed 
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The probabilities were substituted into Equation 5.1 to obtain the total expected 

number of patients required until the first successful phase III trial is observed. It 

is clear from Figure 5.3 that the total expected number of patients required 

before a successful phase III trial is observed decreases as 𝜎 (variance in the 

treatment effect) increases. When 𝜎  goes from 0.1 to 0.4, a drastic decrease in 

the number of patients required occurs: the number of patients required is 

almost ten times more at 𝜎 = 0.1 than when 𝜎 = 0.4. It also shows that after 

approximately 𝜎 = 2 the number of patients starts to plateau. This implies that a 

large variance (>2) in the true treatment effect distribution does not significantly 

affect the efficiency of phase II trials, as indicated by the constant level in the 

number of patients required. With a mean of zero, a larger 𝜎 means that some 

treatments will have a very large treatment effect, leading to the low number of 

patients required per successful phase III trial. This coincides with the results 

presented in Figure 5.2 where the probabilities of success also start to plateau 

at that value of 𝜎. This means that beyond a certain level for the variance about 

the true treatment effects, it does not play a big role in the efficiency of phase II 

trials, particularly when the treatment effects of the phase II and III trial 

endpoints are perfectly correlated or the same. 

5.3.2 Different phase II and phase III endpoints 

In the different endpoint scenario, which is more realistic, it is assumed that the 

treatment effects on the endpoints in both the phase II and III trials are not the 

same but are related. The level of this relationship is captured by 𝜌 = 𝑅𝑡𝑟𝑖𝑎𝑙
2 , and 

is dependent on the variances of the true treatment effects of the phase II and 

III trials, 𝜏. The correlation between the treatment effects for the two endpoints, 

used in phase II and III trials, ranges from approximately 𝜌 = 0, implying the two 

endpoints are not correlated, and 𝜌 = 1 suggesting that they have a perfect 

correlation. Increasing 𝜏 from 0.5 to 2, in increments of 0.5, decreases the value 

of the correlation, 𝜌.  

Using the same values for 𝑘1, 𝑘2, 𝜎1, 𝜎2, 𝑛1 and 𝑛2, as in the single endpoint 

scenario, the effect of the correlation between the endpoints, 𝜌, and the two 

variables that affect it, 𝜎 and 𝜏, was explored. Figure 5.4 shows the relationship 

between the variance in the underlying treatment effect (𝜎) and the total number 

of patients required before a successful phase III trial is observed for a range of 

values for 𝜏. Initially the effect of increasing 𝜏, and therefore decreasing the 

correlation, 𝜌, appears to increase the number of patients required to lead to the 

first successful phase III trial, and therefore decreases efficiency. However, it 

should be noted that when this occurs the variance of the true treatment effect 
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distribution is small. This implies that the effect of the variance of the true 

treatment effect is larger than the correlation effect. It is clear that an increase in 

𝜏 increases the expected number of patients required. This can be explained by 

the fact that as 𝜏 increases, the correlation parameter, 𝜌 decreases, given that 𝜎 

is fixed. The effect of the 𝜏 decreases as 𝜎 increases, as the difference between 

the lines in Figure 5.4 reduce. Similar to the single endpoint scenario, when 𝜏 =

0.5, 1, 1.5 and 2, the effect of 𝜎 wanes off when 𝜎 > 2, as indicated by the fact 

that the number of patients required plateaus. This implies that as we increase 

the variance to a certain level, the total number of patients required in the phase 

II and III trials decrease, however it no longer has an effect after a certain point. 

Note Appendix C provides the graphs for the probabilities of success in phase II 

and phase II and III trials, used to obtain the total number of patients required 

per successful phase III trial, for when 𝜏 = 0.5, 1, 1.5 and 2. 

 

Figure 5.4 Shows the relationship between the variance in the true 
treatment effect (𝝈) and the total number of patients required before a 
successful phase III trial is observed for different values of 𝝉 

The extent of the impact of 𝜌 on the efficiency of phase II trials is explored and 

is shown in Figure 5.5. It shows the relationship between correlation, 𝜌 and the 

total number of patients required before a phase III success is observed, was 

drawn. When  𝜏 = 0.5, 1, 1.5 and 2, it is clear that the expected number of 

patients per successful phase III trial decreases as the correlation increases; 

the degree of decrease in the expected number of patients decreases as 𝜏 

increases. The larger the value of 𝜏 the smaller the difference in the number of 

patients required to lead to the first successful phase III trial, and as the 

correlation increases the difference between the efficiency of phase II trials 
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becomes very minimal. This implies that the correlation has a larger influence 

than the variance of the treatment effect on the phase II and III trial endpoint, 

except when the variance is very small, so that all available treatment effects 

are close to 0 and the number of patients per successful phase III trial is very 

large as shown earlier.  

 

Figure 5.5 Shows the relationship between the correlation between the 
true treatment effects 𝜽𝟏 and 𝜽𝟐 and the total number of patients required 
before a successful phase III trial is observed 

 

Figure 5.6 Contour plots showing the relationship between 𝝆 and 𝝈 and 
their effect on the expected number of patients required to lead to a 
successful phase III trial (𝑵) 
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Combining the information in Figure 5.4 and Figure 5.5, reveals that a high 

variance in the treatment effect in phase II and III trials, 𝜏, yields more efficient 

phase II trials when the variance of the true treatment effect, 𝜎, is small. 

Conversely, when 𝜎 is large (between 0.4 and 2) and 𝜏 is small the efficiency of 

phase II trials increases. This is further emphasised in the contour plots shown 

in Figure 5.6 where the panels show the plots for 𝜏 = 0.5,1,1.5 and 2; as 𝜏 

increase the efficiency of phase II trials decreases. Additionally, it’s clear that 

increasing 𝜌 increases the efficiency, and increasing 𝜎 also increases efficiency. 

However, the contour plots confirm that the effect of 𝜎 is larger than the effect of 

𝜌. 

5.3.3 Sensitivity analysis 

The robustness of the results made was assessed via a sensitivity analysis by 

changing the assumption that the mean of the treatment effects available for 

testing was equal to zero. Two further scenarios were conducted: when the 

treatment effect mean was positive and equal to 𝜇 = 0.5 and when it was 

negative and set to 𝜇 = −0.5. Figure 5.7 shows the results for 𝜇 = 0.5. 

It is clear that when the mean of the treatment effects available is positive, the 

number of patients required to lead to the first successful phase III trial is 

reduced. In the single endpoint scenario (top graph in Figure 5.7), it is clear that 

as 𝜎 increases the number of patients increases and then plateaus at about 𝜎 =

2. This is because when the variability increases about the mean of the 

treatment effects there is more chance that the treatment being tested is not 

beneficial. The effect of 𝜎 is reduces when the variability becomes very large. 

When 𝜏 > 0 the endpoints in phase II and III are different. As 𝜏 increases the 

number of patients required increases i.e., the phase II trials become less 

efficient. This is due to the fact that increasing 𝜏 decreases 𝜌. In the different 

endpoint scenario, an increase in 𝜎 increases 𝜌, therefore the middle and 

bottom graphs in Figure 5.7 show that increasing 𝜎 reduces the number of 

patients required (which is the opposite to what happens in the single endpoint 

scenario), due to the fact that 𝜌 increases with 𝜎. Consequently, when the mean 

of the treatment effects available is positive (𝜇 = 0.5) the correlation is a key 

contributor to the efficiency of phase II trials. 
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Figure 5.7 The effect of the variability about the treatment effect and the 
correlation when 𝝁 = 𝟎. 𝟓 in both the single endpoint scenario (top) and 
different endpoint scenario (middle & bottom) 
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Figure 5.8 The effect of the variability about the treatment effect and the 
correlation when 𝝁 = −𝟎. 𝟓 in both the single endpoint scenario (top) and 
different endpoint scenario (middle & bottom) 
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Figure 5.8 shows the results for the scenario where the treatment effect of the 

available treatments is negative, set at 𝜇 = −0.5. In the negative mean 

scenario, the number of patients required increased dramatically compared to 

the scenarios where 𝜇 = 0.5  and 𝜇 = 0. This is particularly prominent when the 

endpoints in the phase II and III trial are the same (top graph in Figure 5.8) and 

when the variability about the mean of the treatment effects is small. This is to 

be expected since the treatment effects are centred about a non-beneficial 

treatment, so that the majority of trials run would conclude that the treatment is 

futile. In the different endpoint scenario, the effect of increasing 𝜏 increased the 

number of patients required to lead to the first successful phase III trial (refer to 

middle graph of Figure 5.8), despite the fact that 𝜌 decreases when 𝜏 increases. 

This occurs when the variability about the mean of the treatment effects is 

small. This implies that the effect of the variance of the true treatment effect is 

larger than the correlation effect. This was the same result that arose when 𝜇 =

 0. Similarly, increasing 𝜎 reduces the number of patients required, however, the 

effect of 𝜎 reduces when 𝜎 > 2, as indicated by the fact that the number of 

patients required plateaus. The bottom graph of Figure 5.8 clearly shows that 

the expected number of patients per successful phase III trial decreases as the 

correlation increases, particularly when 𝜏 is small. This implies that the effect of 

the correlation exists so long as the variance in the treatment effects is 

sufficiently large.  

5.4 Discussion 

The use of short-term endpoints in phase II trials that are closely related to the 

phase III endpoint is a well-established phenomenon. Researchers have 

proposed many methods to try to find out whether the endpoint used in phase II 

is correlated with the endpoint used in phase III. Evaluating surrogacy is one 

such method. When validating whether an endpoint is a surrogate of another, 

both the correlation at the trial level, 𝑅𝑡𝑟𝑖𝑎𝑙
2  and the correlation at the individual 

patient level, 𝑅𝑖𝑛𝑑𝑖𝑣
2  are used. If both these values are close to one then it can 

be concluded that an endpoint is a valid surrogate of a true endpoint. In this 

research, the effect of the relationship between phase II and III trial endpoints 

on phase II trial efficiency was explored. The intention of this research was not 

to validate whether an endpoint is a good surrogate of another, but to measure 

the effect of different strengths of correlation between the treatment effects on 

phase II trial success. Therefore, only the correlation between the treatment 

effects on the endpoints used in phase II and III trials was of interest and so the 

measure used was 𝑅𝑡𝑟𝑖𝑎𝑙
2  or 𝜌. This is due to the fact that it is also important to 
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note that the focus of this research is to look at phase II and III endpoints where 

a valid surrogate endpoint does not replace the true endpoint in the phase III 

trial. It is, therefore, expected that the two endpoints may be strongly correlated 

but not perfectly correlated. 

From the single endpoint scenario, it was assumed that the phase II and III trials 

were both designed to measure the exact same endpoint. This, of course, does 

not reflect what usually occurs in oncology trials, as the endpoint of the phase II 

trial is different to that used in phase III, due to their different objectives. 

However, in doing so, the variance about the treatment effects was found to 

have an impact on the efficiency of phase II trials. The effect of the variance is 

because some treatments have big effects and some small ones, with this more 

pronounced as the variance increases. As such, it was concluded that the 

efficiency of phase II trials increases when the variance of the true treatment 

effects increases. Furthermore, beyond a certain level of the variance, 

particularly, after it becomes large (𝜎 > 2), the effect on the efficiency of phase 

II trials plateaus. This may be expected, given the assumption that the 

underlying true treatment effect is drawn from a normal distribution with mean 0, 

therefore the larger the variance, the more likely a true treatment effect greater 

than the targeted effect of 0.3 is observed.  

In the different endpoint setting, the correlation between the treatment effects in 

phase II and phase III were assumed to range from no correlation to a near-

perfect correlation. It was concluded that the efficiency of phase II trials 

increases when there is a strong correlation between the treatment effects in 

phase II and III trials. It was also clear that the variance in the underlying 

treatment effects in phase II and III trials has a large effect on the efficiency of 

phase II trials. If the variance of the underlying treatment effect is adequately 

high (𝜎 > 2) then the phase II trial is likely to be efficient regardless of the 

correlation between the treatment effects on the phase II and III trials endpoints. 

This was clear in the number of patients required to lead to the first successful 

phase III trial: the difference between the number of patients required when 𝜌 =

0 and 𝜌 = 1 is small so long as 𝜎 is large. This shows that the more influential 

parameter is the value of the variance of the true treatment effect. This may be 

expected, similarly as observed in the single endpoint scenario, given the 

underlying assumption of no treatment effect on average.  

The conventional choice for the phase II endpoint is response rate (categorised 

using RECIST) (107). With the emergence of different types of treatments 

(cytostatic, as opposed to cytotoxic), the call for different endpoints soon grew 

(35) and much debate exits regarding the most appropriate endpoint to use in 



83 
 

 

 

phase II. As previously mentioned, Sharma and Karrison et al. (71) proposed 

the use of a continuous outcome. While other authors such as, Fridlyand et al. 

(73) and Kaiser (101) recommend the use of PFS. While these authors 

considered the choice of endpoint using resampling methods, there is little 

consideration in the literature to the statistical aspects for this choice. The key 

aspect that may lead to better efficiency in phase II trials is to ensure that the 

treatment effects on the phase II and III trial endpoints are correlated. Chen et 

al. (80) also found that this relationship is important in choosing the phase II 

outcome. The findings presented here also highlight that the variance in the true 

effects of the available treatments also plays a role in the efficiency of phase II 

trials. This, however, can be overcome by ensuring that the treatment effects of 

the phase II and III trials are correlated.  

As noted, the scenario investigated here is where the average treatment effect 

is zero. This has a significant bearing on the results, therefore, a sensitivity 

analysis was carried out to explore the impact of the mean of the true treatment 

effect. Values of the mean were adjusted to 𝜇 = −0.5 and 𝜇 = 0.5. These 

represent the average treatments available have a negative effect, so that the 

standard treatment is better than the experimental, and a positive average 

effect signifying that the experimental treatment is better than the control. In the 

negative scenario the results and conclusions are the same as the zero average 

effect scenario: the variance of the true treatment effect has an overriding 

impact on the efficiency of phase II trials over the correlation, particularly when 

it is small. However, in the positive average effect scenario the correlation is 

more important than the variance, in terms of phase II trial efficiency. In all 

scenarios, it can be concluded that the stronger the correlation between the 

phase II and III trial treatment effects results in more efficient phase II trials, 

suggesting that the conclusions are robust to the mean value of the treatment 

effect distribution.  

Formal investigations into the effect of the average treatment effect 𝜇 were 

outside the scope of this research, as the focus is to guide the design choices a 

trialist can make, hence the parameters investigated here are limited to this. 

The mean of the true treatment effect can only be estimated by historical data 

on similar treatments, for example collating estimates in a meta-analysis. 

However, with such high attrition rates in oncology phase III trials (46) (as 

discussed in Chapter 1) an average of no effect can be deemed appropriate as 

it reflects the current treatment availability in cancer. As developments are 

made though, this trend may change. In such cases the treatment effect 

distribution can be modelled using a more flexible distribution, such as a beta 
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distribution, which can give rise to different distribution shapes, instead of the 

normal distribution, assumed here. The fact that the true treatment effect was 

assumed to follow a distribution at all was based on the work done by Stallard 

(39). This was deemed a realistic scenario for the treatments available, 

particularly in the current era of cancer drug development, where a plethora of 

new treatments are available for testing (96). Further research may investigate 

the effect of the true treatment effect distribution as a parameter that affects 

phase II trial efficiency, and more broadly, can focus on parameters that are 

outside a trialists control, to investigate their impact. 

The endpoints of phase II and III trials that were assumed in this chapter were 

limited to continuous endpoints which follow a normal distribution. As 

highlighted earlier, this is the simplest scenario and perhaps does not reflect 

reality in most cases. This scenario was chosen to allow for analytical 

evaluation to be conducted. Incorporating binary outcomes in phase II and 

continuous outcomes in phase III would need intense computations of 

mathematical models. Therefore, the investigations of this chapter are used as 

the foundations of future chapters, where the phase II trial endpoint is different 

from that of the phase III endpoint. An example of a type of continuous endpoint 

that may be used in oncology phase II and III trials, is the tumour size after a 

certain follow-up period. However, in many phase II and III trials in cancer 

response rate and overall survival are usually used, respectively. Both the test 

statistics on these endpoints are asymptotically normal (108). This means that 

the use of the normal distribution for the treatment effect in phase II and III trial 

endpoints is valid. 

In this research specific endpoints relevant to cancer were not considered, as 

only the relationship between treatment effect of the endpoints in phase II and 

III trials was modelled. Specific endpoint types were not investigated in this 

research, however, previous research has already been dedicated to 

investigating the appropriateness of specific endpoints (34, 71-74, 101, 109) 

and these were discussed in detail in the Literature Review (Chapter 3). 

However, more research is required in order to understand the effect of an 

appropriate endpoint for phase II trials, and as indicated in this research, 

ensuring it is correlated with the endpoint used in phase III trials; this should, 

therefore, be part of the endpoint verification process. 

In conclusion, what has been highlighted in this chapter is that when designing 

a phase II trial and considering a suitable endpoint, there is a trade-off between 

the correlation between the treatment effects and the variance of the true 

treatment effect. It is therefore useful to know the effects each of these 
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parameters has on the efficiency of phase II trials, particularly when faced with 

a situation where a choice between different phase II endpoints is required, 

where one is more closely correlated with the phase III endpoint but has a 

higher variance than another. Historical data can be used to gather information 

about the correlation of the treatment effects on the endpoints being considered 

for the phase II trial and the subsequent phase III trial; it is clear that the impact 

of these parameters play a vital role in the efficiency of phase II trials and 

should be added into their design process.
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Chapter 6 Investigating the impact of different phase II trial 

designs 

From the systematic review (Chapter 2), phase II trials are designed using a 

variety of methods, including specific designs such as Simon’s single-arm two-

stage design, randomised designs and single-arm single-stage designs. The 

purpose of this chapter is to evaluate the effects of different designs on the 

efficiency of phase II trials, where the efficiency of phase II trials is defined as 

the number of patients required to lead to the first successful phase III trial, as 

found in the literature review (Chapter 3). The designs under investigation in 

this chapter include those that were found in the systematic review, namely 

randomised single-stage, A’hern’s single-arm single-stage (65) and Simon’s 

single-arm two-stage design (63). In addition, the efficiency of Jung’s 

randomised two-stage design (93) is also evaluated (despite not appearing in 

the systematic review), as it is a randomised version of Simon’s single-arm two-

stage design (63). Evaluating the efficiency of these designs allows trialists to 

make informed decisions when setting up a new phase II trial.  

Throughout this chapter, I use the terms: single-stage single-arm trials to refer 

to A’hern’s design (65), single-arm two-stage when discussing Simon’s design 

(63) and randomised two-stage design to refer to Jung’s design (93). 

6.1 Introduction 

When designing phase II trials there are many elements that need to be 

considered. Brown et al. (22) conducted a systematic review which aimed to 

provide a summary of the elements applicable to cancer phase II trials. These 

elements are important to consider in order to extract the maximum benefit from 

the phase II trial. One of the considerations they highlighted was the statistical 

design of the phase II trial, including whether the phase II trial should 

incorporate randomisation and whether the trial should be a single-stage, two-

stage or multi-stage design. These parameters, among others mentioned in 

Brown et al. (22), can impact the outcome of phase II trials, and consequently 

the success rates of phase III trials. Hence, the aim of this chapter is to quantify 

the effect of the design of phase II trials in terms of their ability to successfully 

screen new treatments. 

In the past, phase II trials were typically conducted as a single-arm design, 

where patients are enrolled to receive the novel therapy (12). Outcomes are 

compared to fixed historical control data from recent studies with standard of 
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care treatment, which is incorporated in the hypotheses. A test is conducted at 

a pre-specified level of significance to conclude whether the new therapy is 

statistically better than the historical control data. The level of significance is 

also known as the type I error rate (𝛼) and it represents the probability of 

recommending an ineffective treatment for further evaluation. The type II error 

(𝛽) is defined as the probability of incorrectly rejecting an effective treatment. 

The power (1 − 𝛽) of the trial is the complement of the type II error. Both the 

type I and II errors are required in designing phase II trials using a frequentist 

approach.  

Despite the single-arm design’s simplicity, it has obvious disadvantages, 

including the fact that it compares current data to potentially outdated historical 

data, rendering the comparison moot. For this reason, randomised designs with 

concurrent arms are often recommended as they distinguish true effects of the 

novel treatment. While this advantage of randomisation makes it desirable, it is 

not always practical due to the fact that it requires two to four times more 

patients than the single-arm design (31). Sharma, Stadler and Ratain (110) 

highlight other drawbacks of randomised phase II trials: they state that they 

require more initial effort in the design and conduct than single-arm designs and 

therefore require a prolonged amount of time to complete. They also state that 

randomised designs may be unethical as they subject patients to a potentially 

harmful treatment: if the experimental treatment is futile then patients are 

subjected to potential harm and if the standard therapy is futile then a beneficial 

treatment is withheld from them. However, despite these disadvantages, they 

do not believe that these are enough reasons for randomised phase II trials to 

remain the exception, as their advantages outweigh their disadvantages. 

Sharma, Stadler and Ratain’s (110) recommendations come from a practical 

perspective of incorporating randomisation, however, its effect on efficiency of 

phase II trials has not been explored in the literature, under the context of 

running multiple trials over a long period of time. 

Given the rise of cancer therapies with a cytostatic mechanism of action, and 

the lack of historical data available for these types of treatments, the need for 

randomisation in phase II trials is amplified. Despite this, the systematic review 

in Chapter 2 revealed that both single-arm and randomised designs are equally 

popular in recent years: of the 128 trials a total of 58 (45.3%) used single-arm 

designs and 67 (52.3%) trials opted to use randomised designs (the remaining 

three trials (2.3%) used multiple arms but were not randomised). While these 

statistics reveal that the use of randomised designs is on the rise, they are still 

not the gold standard in phase II trials, unlike their use in phase III trials. This 

implies that no consensus exists for the choice of design in phase II trials. 
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Hence, it is of profound importance to evaluate the effect of these designs on 

their ability to successfully screen new treatments. This, in combination with an 

understanding of the benefits and practicalities of each design, will allow 

researchers to design phase II trials that truly fulfil their purpose.  

As mentioned in Chapter 2, the most popular single-arm two-stage phase II trial 

design used was that of Simon (63). Given a binary outcome of interest, such 

as patients’ response to treatment, the design is based on testing a null 

hypothesis that the true response probability is less than or equal to a historical 

control value, while the alternative hypothesis states that the true response is 

larger than or equal to the historical control value plus a desirable target level. 

During the first stage of the trial, 𝑛2,1 patients are accrued. If the number of 

responders in the first stage is lower than or equal to some critical value 𝑟1, the 

trial is stopped for futility, otherwise, the second stage of the trial can 

commence. During the second stage, 𝑛2,2 patients are recruited and the total 

number of patients who responded in both stages is compared to the critical 

value 𝑟. If the total number of responders is larger than 𝑟, the treatment is 

recommended for further study in a phase III trial, otherwise futility is concluded 

at the end of the trial. Simon’s design (63) only allows early termination for 

futility at the first stage, rather than efficacy. 

While there are many two-stage randomised designs proposed, the systematic 

review (Chapter 2) showed that of the trials included, these were not used in 

recent phase II trials. However, for completeness and to provide a randomised 

comparator to Simon’s single-arm design (63), I consider, also, the design of 

Jung (93), who proposed a two-stage randomised design which builds on the 

structure of Simon’s two-stage single-arm design (63). The design is based on 

testing whether the experimental arm has a higher response rate than the 

control arm. In the first stage of the trial 𝑛2,1 patients are accrued in each of the 

experimental and control arms. The number of responders in each arm is 

observed; let 𝑥1 denote the number of patients who responded in the 

experimental arm and 𝑦1 are the responders in the control arm. Success in the 

first stage of the trial is achieved if the difference between the numbers of 

responders is larger than or equal to some critical value, 𝑥1 − 𝑦1 ≥ 𝑎1, 

otherwise, the trial is terminated, concluding that the experimental treatment is 

futile.  

Upon the success of the first stage of the trial, 𝑛2,2 patients are accrued into 

each of the experimental and control arms in the second stage, and the number 

of responders in this stage are observed. Let 𝑥2 denote the number of patients 

who responded in the experimental arm and 𝑦2 are the responders in the 

control arm. The total number of responders in both stages is then calculated 
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for both arms so that 𝑋 denotes the total number of responders in the 

experimental arm and 𝑌 denotes the total number of responders in the control 

arm. Success in the trial is determined by evaluating the difference between the 

total numbers of responders in both arms and comparing it to some critical 

value, 𝑎. If  𝑋 − 𝑌 ≥ 𝑎 then the experimental treatment is recommended for 

further study in a phase III trial, otherwise the experimental therapy is deemed 

futile. 

Despite the frequency of use of two-stage designs in phase II trials, their effects 

on the phase II trial efficiency, in comparison with single-stage designs, are not 

yet known. Therefore, just as the effects on the phase II trial efficiency of 

randomised and single-arm phase II trials will be investigated in this chapter, 

the effect on the phase II trial efficiency of the two-stage designs will also be 

compared in order to improve the efficiency of phase II trials, in terms of 

successfully screening new treatments. 

6.2 Methods 

Each of the phase II designs investigated, namely A’hern’s exact design (single-

stage single-arm), single-stage randomised design, Simon’s optimal design 

(two-stage single-arm) and Jung’s design (two-stage randomised), are assumed 

to measure a binary outcome, e.g., response, as opposed to the continuous 

outcome used in Chapter 5. This is chosen to represent realistic design choices 

in phase II trials in oncology. Despite investigating different designs, each 

requiring different sample sizes, the operating characteristics are held the same 

in each design. For all four designs the control rate was assumed to be fixed at 

𝑝1 = 0.25. This means that 25% of patients in the control arm (for randomised 

designs) or historical control (for single-arm designs) respond to the standard 

treatment. For simplicity, the effect of the standard treatment (𝑝1 = 0.25) is fixed 

for all phase II trials and does not change throughout the evaluations, however, 

in randomised designs this value is the average response rate in that arm of 

patients, while in single-arm designs it is assumed to be a fixed value of what 

has been previously observed, so that it represents how historical control rate is 

obtained. The four phase II designs were also designed using a one-sided 

significance level (of those that reported it, this was the most used in phase II 

trials evaluated in the systematic review (Chapter 2)) of 𝛼2 = 0.05 and power 

1 − 𝛽2 = 0.8. The clinically significant difference that the phase II trials were 

designed to detect was set at 𝛿2 = 0.2, i.e., a 20% difference in the response 

rate between the two-arms, whether concurrent in the randomised design or 

historical control in the single-arm design, indicating a response rate of 45% to 

be clinically significant for the experimental arm. As mentioned in Chapter 4, the 
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choice of the targeted treatment effect was derived from the systematic review 

(Chapter 2), where the average effect size was 0.2, for those phase II trials that 

reported an effect size and had a binary endpoint. 

In order to calculate the sample size for each design the appropriate methods 

were used corresponding to the reference literature. For the randomised single-

stage phase II trials with a binary endpoint the following formula was used: 

𝑛2,𝑅 =
2 × (𝑝1(1 − 𝑝1) + (𝑝1 + 𝛿2)(1 − (𝑝1 + 𝛿2))) ((𝑧1−𝛼2 + 𝑧1−𝛽2)

2
)

𝛿2
2          (6.1) 

Where 𝑧1−𝛼2 and 𝑧1−𝛽2 are the standard Z scores evaluated at the (1 − 𝛼2)% 

significance level and 80% power, respectively. As mentioned above, in the 

randomised single-stage design 𝑝1 (= 0.25) is the expected patients’ response 

rate to the control treatment in phase II trials. The total number of patients 

required in the randomised single-stage phase II trial with this design was 𝑛2,𝑅 =

134.  

The sample size for the single-arm single-stage phase II trial was obtained from 

the tables presented in A’hern (65). The same operating characteristics were 

used as above and the sample size for this design was found to be 𝑛2,𝑆 = 36 for 

a one-sided 5% significance level and with 80% power. In the single-arm single-

stage design 𝑝1 = 0.25 is patients response rate derived from historical data. 

Success in phase II trials using this design is concluded when the number of 

responders is more than or equal to 14 patients. 

With the same operating characteristics as the single-stage randomised and 

single-arm designs, the total and first-stage sample size for the single-arm two-

stage phase II trials were obtained following Simon (63). Several designs satisfy 

the constraints of the type I and II errors (𝛼 and 𝛽); the minimax design is the 

design with the smallest total sample size that corresponds to both error 

constraints and the optimal design is the design that has the minimum expected 

value of the total sample size in both stages (63). The minimax design was 

chosen as it is the one with the smallest total sample size and closer in size to 

the single-arm single-stage design. With these assumptions the total sample 

size required in the single-arm two-stage phase II trials was 𝑛2,𝑆𝑇 =  36, with 

𝑛2,𝑆𝑇1 = 17 patients recruited in the first stage and the remaining 𝑛2,𝑆𝑇2 = 19 

recruited in the second stage, if the treatment showed promise, i.e. passed the 

pre-specified boundary at stage one. Proceeding to the second stage would 

only occur if 𝑟1 = 4 or more patients responded to the treatment in the first 

stage. The single-arm two-stage phase II trial would be deemed successful if 

the total number of patients who responded was more than or equal to 𝑟 = 13.  
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Design Total sample size and cut-off boundaries 

Total First stage 
Second stage 

Randomised single-

stage 

134 𝑛2,𝑅 = 134 - 

Single-arm single-

stage 

36 𝑛2,𝑆 = 36,         𝑟 = 14 - 

Single-arm two-stage 36 𝑛2,𝑆𝑇1 = 17, 𝑟1 = 4 𝑛2,𝑆𝑇2 = 19, 𝑟 = 13 

Randomised two-

stage 

112 𝑛2,𝑅𝑇1 = 26, 𝑎1 = 2 𝑛2,𝑅𝑇2 = 86, 𝑎 = 8 

Table 6.1 Summary of the total sample sizes of the four phase II designs 
using the operating characteristics 𝜶𝟐 = 𝟎. 𝟎𝟓, 𝟏 − 𝜷𝟐 = 𝟎. 𝟖, 𝜹𝟐 = 𝟎. 𝟐, 𝒑𝟏 =
𝟎. 𝟐𝟓 

The sample size for the randomised two-stage design was also calculated in a 

similar way. With the same operating characteristics the sample size required in 

each arm of the randomised two-stage phase II trials is 𝑛2,𝑅𝑇 =  56 (total of 

112), with 𝑛2,𝑅𝑇1 = 13 patients recruited to each arm in the first stage (total of 

26) and the remaining 𝑛2,𝑅𝑇2 = 43 recruited to each arm in the second stage 

(total of 86), if the treatment showed promise. Proceeding to the second stage 

would only occur if the difference between the number of patients who 

responded in both arms in the first stage was larger than or equal to 𝑎1 = 2. The 

two-stage randomised phase II trial would be deemed successful if the 

difference between the total number of patients who responded in both stages 

was more than or equal to 𝑎 = 8. It should be noted that the cut off boundaries 

and total sample size of Jung’s design (93) are obtained using the exact 

binomial distribution, unlike the use of chi-squared distribution for the 

randomised single-stage design, which is why Jung’s design results in a smaller 

sample size. Table 6.1 summarises the sample sizes and cut-off boundaries of 

each phase II trial design investigated in this chapter. 

For the randomised phase II designs, patients were randomly sampled from the 

true underlying distributions corresponding to the control and experimental arms 

in the trial. Both of these were binomially distributed with probability of success 

of 𝑝1 and 𝑝2, respectively. For the randomised single-stage phase II trial the two 

groups were compared using the chi-squared test. Success in the randomised 

single-stage phase II trial is obtained by observing a statistically significant 

difference at the one-sided 5% level between the two groups, in favour of the 
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novel therapy. While in the randomised two-stage design the superiority of the 

novel therapy needs to be observed at both stages: the difference between the 

number of responders between the two groups is compared with the critical 

values. If the difference between them is larger than the critical value after both 

stages of the trial, then the phase II trial is deemed successful. 

A similar construct was established for the single-arm designs, however, 

patients were only sampled from the true underlying distribution corresponding 

to the experimental arm. The response rate of the sample was then compared 

to the fixed historical control rate. The single-stage phase II trials were deemed 

successful by the binomial test if the response rate of the novel treatment was 

found to be statistically significantly better than the historical control rate. 

However, the success of the two-stage design was established by comparing 

the number of responders with the critical values; if the number of responders 

were higher than the calculated critical value at both stages of the trial, the 

phase II trial was deemed successful. 

The value of 𝑝2 used in the binomial distribution for all four designs is not fixed, 

rather it is related to the true treatment effect distribution for the available 

treatments, i.e., 𝑝2 represents the underlying true treatment effect in the sample 

population, rather than the targeted treatment effect in the experimental arm 

(which is denoted by 𝑝1 + 𝛿2 in this thesis). Recall from Chapter 4, that the 

effects of the treatments available were assumed to follow a standard normal 

distribution, denoted by ∆~𝑁 (𝜇 = 0, 𝜎2 = 1). Consequently, the treatment effect 

that is randomly selected from this distribution, 𝜃, is a mean difference and 

therefore on the continuous scale. This is used in the phase III trial since it is 

based on a continuous endpoint (as mentioned in Chapter 4; see Chapter 4 

section 4.2.3.1 for more details regarding the phase III design). However, in the 

phase II trial, where the endpoint is binary, the treatment effect, 𝜃, is 

transformed to the log-odds scale in order to obtain 𝑝2, the underlying treatment 

effect in the experimental population, and is derived using the following 

Equation (6.2) (111). 

                                                    𝑝2 =
(𝑒
𝜃
𝜋

√3𝑝1)

(𝑝1 (𝑒
𝜃
𝜋

√3  −  1)  +  1)

                                            (6.2)   

Using this transformation, the true treatment effects for the novel therapy in 

phase II and III trials are equivalent but measured on a different scale. The 

relationship between the true treatment effects in the experimental arm of the 

phase II and III trials is depicted in Figure 6.1. The treatment effects on the two 

endpoints in phase II and III are functionally related, albeit in a non-linear way 
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(as shown in Figure 6.1). This correlation was included as the findings in 

Chapter 5 showed that a strong correlation between the treatment effects of the 

phase II and III endpoints increases the efficiency of phase II trials. Including it 

in the design evaluations also ensures that the only parameter investigated here 

is the effect of different designs of phase II trials. In Chapter 5, the treatment 

effects of the two endpoints were drawn from the same distribution but they 

cannot be directly derived from one another, thus correlation was not embedded 

in the model, unlike in this chapter (and in Chapter 7; see Section 7.2). 

 

Figure 6.1 The relationship between the true treatment effects of the novel 
therapy in the phase II and III trials 

The investigation of the phase II design with a binary outcome, resulted in any 

attempt at analytical evaluations to be computationally intensive. Simulations 

were therefore used to explore the effect of the designs and sample size 

(Chapter 7) of phase II trials. A large population of size 𝑁 = 500,000 patients 

was set. To replicate the drug development process, patients in the population 

were sampled without replacement in the phase II and III trial pathway, 

sequentially, until not enough patients were available for both a phase II and a 

III trial to be performed. This meant that if a successful phase II trial were found, 

the pathway continues if enough patients were available to run the proceeding 

phase III trial, and if an unsuccessful phase II trial was found, the pathway 

would continue only if enough patients were available for another phase II and 

III trial.  

The simulations were set up such that a treatment with corresponding treatment 

effect randomly selected from the true treatment effect distribution (∆~ 𝑁(𝜇 = 0,

𝜎2 = 1)), is tested in phase II and III trials. A sensitivity analysis was conducted 

where 𝜇 = 0.5, representing a positive treatment effect and 𝜇 = −0.5, 

representing a negative effect. In doing so, the simulations would reveal if the 
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efficiency of the designs is affected by this assumption. The simulations were 

also conducted for each of the four designs separately i.e., simulations are 

conducted consecutively for one design at a time. Having obtained 𝑝2 from the 

normal distribution, binomial phase II data are then simulated with this 𝑝2. If a 

phase II trial reveals that the treatment is efficacious the same treatment is 

investigated in the proceeding phase III trial, i.e., successful phase II trial is 

followed by a phase III trial with the same novel treatment. However, 

development of the novel therapy was terminated if the phase II trial was 

unsuccessful and a new phase II trial is initiated with a different treatment i.e., 

with a different, randomly selected, treatment effect. Following the methods 

applied in Chapter 5, it was assumed that the process terminates after the first 

successful phase III trial is found. However, in order to compare the 

performance of the phase II trial designs over a long period of time, the 

measure of efficiency used in the simulations is the number of successful phase 

III trials, 𝑁𝑡𝑟𝑖𝑎𝑙, as opposed to the number of patients required to lead to the first 

successful phase III trial (used in Chapter 5). This endpoint was suggested by 

Stallard (39), where he also considers conducting multiple phase II and III trials 

consecutively and uses the number of patients required to lead to the first 

successful phase III trial, but also states that over a long period of time these 

two measures are equivalent. As mentioned in Chapter 4, both these measures 

are presented in this chapter in order to make the findings throughout this thesis 

comparable. A simple calculation is conducted in order to obtain the average 

number of patients required per successful phase III trial: (
𝑁

𝑁𝑡𝑟𝑖𝑎𝑙
). 

With this set up, the total number of phase II and III trials run was obtained. In 

addition, the total number of unsuccessful phase II trials were recorded. Of the 

phase III trials that were run, the total number of failed trials and successful 

trials were also noted and were used to further understand the impact the 

designs have on the efficiency of phase II trials. Using these values, the 

percentage success and failure rates were also obtained for each design 

investigated in this chapter by dividing the number of successful or failed trials 

by the total number of trials conducted. These supplement the results by 

providing a different perspective: while the number of successful phase III trials 

portrays the efficiency of a phase II design in the long-term (i.e., over a long 

sequence of trials, provided there is sufficient resources), the success/failure 

rates show the short-term efficiency of the phase II trial using these designs. 

For example, in the event that a researcher has resources and funding for one 

trial only, it would be desirable to design this trial with the highest probability of 

success. However, it should be noted that the main outcome of interest for this 

research is the number of successful phase III trials, as I am considering 
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efficiency from the perspective of the wider drug development pathway (more 

details in the Literature Review (Chapter 3)). With these assumptions and set 

up, the effect of the phase II trial design, on their efficiency, was investigated, 

using simulations in the statistical software R. Appendix D shows the R code 

employed to obtain the results. 

6.3 Results 

Table 6.2 shows the median number of phase II and III trials run, along with the 

number of failed and successful phase II and III trials, for one-stage randomised 

and single-arm trials and two-stage randomised and single arm trials. Table 6.3 

shows percentage success and failure rates for the phase II and III trials run 

using the four designs.  

Interestingly, Table 6.2 show that the single-stage and two-stage single-arm 

designs, perform in a similar way, however, the two-stage design lead to slightly 

more successful phase III trials. The design with the highest number of 

successful phase III trials (1144 (IQR 1140-1148)) is the single-arm two-stage 

design. The single-stage single-arm design yielded similar results with 1080 

(IQR: 1076-1086) successful phase III trials found using this design in phase II. 

The similarity between the single-stage and two-stage single-arm designs is 

also reflected in the number of patients required to lead to the first successful 

phase III trial. On average, the number of patients required to lead to the first 

successful phase III trial using single-arm two-stage phase II trials is 438, while 

the single-arm single-stage design yielded 463. Despite the fact that the single-

arm single-stage and two-stage designs have similar total sample size, the two-

stage requires fewer patients (due to the fact that it can stop early for futility) 

and yields more successful phase III trials as the two-stage design provides an 

opportunity to test the efficacy of the treatment at the first stage and allows the 

trial to terminate if an insufficient number of patients respond to the treatment. It 

is for this reason that more phase II trials are run using the single-arm two-stage 

design compared to the single-stage design. Consequently, using the two-stage 

design means more phase II trials are initiated and as a result more successful 

phase III trials are yielded. Even though the number of single-stage and two-

stage single-arm trials have a difference in the number of phase II and III trials 

initiated, the difference in the percentage success and failure rates using those 

designs is not discernible, as seen in Table 6.3.  

The phase II design with the lowest number of successful phase III trials 

(n=685, IQR: (677-691)) is the randomised single-stage design. Comparing the 

randomised single-stage and two-stage designs, it is clear that the two-stage 

randomised design is more efficient as it yields 904 (IQR: 902-906) successful 
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phase III trials. This is also confirmed in the number of patients required per 

successful phase III trial: more patients are needed when using the single-stage 

randomised design than Jung’s design (730 compared to 554, respectively). 

Similar to the single-arm trials, the randomised two-stage design allows more 

trials to be run, compared to the randomised single-stage design, however 

unlike the single-arm designs the percentage success and failure rates between 

the randomised single-stage and two-stage designs are quite different. Table 

6.3 shows that the two-stage randomised design has a higher phase II trial 

failure rate than the single-stage randomised design (67.78% in comparison to 

61.62%, respectively). In fact, the randomised single-stage design has the 

lowest phase II failure and the highest phase II success. Therefore, single-stage 

randomised phase II trials yield the best success rate in phase II trials. 

Therefore, in the short-term this design is more likely to allow a phase III trial to 

be initiated, than the other designs investigated. 

Overall, it is clear from Table 6.3 that Jung’s randomised two-stage design 

allows more trials to be started but that the success rate is much lower than the 

other phase II designs, suggesting that Jung’s design has a lower power. 

Consequently, this would result in fewer treatments going through to phase III, 

so it would be expected that, of the ones that do go through to phase III, they 

would be successful, therefore resulting in higher success rates in phase III. In 

other words, it would be expected that the phase III success rate for Jung’s 

randomised two-stage design to be higher than the other designs, as seen in 

Table 6.3.  

The number of failed phase III trials is also of interest as it can provide an 

indication of efficiency. Similarities between the two-stage and single-stage 

designs can also be seen here. The designs with the lowest number of phase III 

trial failures are the single-arm and two-stage randomised design, with a total of 

just 32 (IQR: 29-35) trials. While the design with the highest number of failed 

phase III trials is Simon’s single-arm two-stage design with a total of 53 (IQR: 

49-55) failed trials. The single-stage single-arm design yields a similar number 

of failed phase III trials as Simon’s two-stage design, on average (44 compared 

with 53, respectively). 

Table 6.2 The median number of phase II and III trials run and the median 
number of successful and failed phase II and III trials for all four designs 
investigated 

One-stage designs Median (IQR) (
𝑵 = 𝟓𝟎𝟎, 𝟎𝟎𝟎

𝑵𝒕𝒓𝒊𝒂𝒍
) 

Randomised phase II trials run 1868 (1852-1892)  
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Randomised phase II trials failed  1151 (1129-1185) 

Randomised phase II trials successful 717 (708-723) 

Phase III trials run 717 (708-723) 

Phase III trials failed 32 (29-35) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 685 (677-691) 730 

Single-arm phase II trials run 3004 (2968-3028)  

Single-arm phase II trials failed  1879 (1839-1905) 

Single-arm phase II trials successful 1125 (1123-1129) 

Phase III trials run 1125 (1123-1129) 

Phase III trials failed 44 (41-51) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 1080 (1076-1086) 463 

Two-stage designs 

Randomised phase II trials run 2908 (2885-2978)  

Randomised phase II trials failed  1971 (1946-2050) 

Randomised phase II trials successful 937 (930-938) 

Phase III trials run 937 (930-938) 

Phase III trials failed 32 (29-35) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 904 (902-906) 554 

Single-arm phase II trials run 3183 (3143-3232)  

Single-arm phase II trials failed  1987 (1944-2040) 

Single-arm phase II trials successful 1196 (1192-1198) 

Phase III trials run 1196 (1192-1198) 

Phase III trials failed 53 (49-55) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 1144 (1140-1148) 438 

Table 6.3 comparison of the percentage of phase II and III trial successes 
and failures between the four designs investigated 

Design % phase II 

fails 

% phase II 

success 

% phase 

III fails 

% phase III 

successes 

One-stage randomised 61.62 38.38 4.46 95.53 
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One-stage single-arm 62.55 37.45 3.91 96.00 

Two-stage randomised 67.78 32.22 3.42 96.48 

Two-stage single-arm 62.43 37.57 4.43 95.65 

6.3.1 Sensitivity analysis  

A sensitivity analysis was conducted in order to assess the robustness of the 

assumption that the mean of the treatments available have an effect of zero. 

Two scenarios were considered: a positive treatment effect where 𝜇 = 0.5 

(results shown in Table 6.4) and a negative treatment effect where 𝜇 =  −0.5 

(results shown in Table 6.5).  

Table 6.4 The median number of phase II and III trials run and the median 
number of successful and failed phase II and III trials for all four designs 
investigated when there is a positive treatment effect (𝝁 = 𝟎. 𝟓) 

One-stage designs Median (IQR) (
𝑵 = 𝟓𝟎𝟎, 𝟎𝟎𝟎

𝑵𝒕𝒓𝒊𝒂𝒍
) 

Randomised phase II trials run 1512 (1491-1518)  

Randomised phase II trials failed  658 (630-667) 

Randomised phase II trials successful 854 (852-862) 

Phase III trials run 854 (852-862) 

Phase III trials failed 22 (21-25) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 832 (829-837) 601 

Single-arm phase II trials run 2153 (2128-2158)  

Single-arm phase II trials failed  940 (912-945) 

Single-arm phase II trials successful 1213 (1213-1216) 

Phase III trials run 1213 (1213-1216) 

Phase III trials failed 32 (28-36) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 1183 (1178-1186) 423 

Two-stage designs 

Randomised phase II trials run 1979 (1958-1988)  

Randomised phase II trials failed  972 (950-982) 

Randomised phase II trials successful 1008 (1004-1010) 

Phase III trials run 1008 (1004-1010) 
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Phase III trials failed 20 (18-25) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 986 (980-991) 508 

Single-arm phase II trials run 2197 (2174-2238)  

Single-arm phase II trials failed  947 (925-992) 

Single-arm phase II trials successful 1248 (1246-1250) 

Phase III trials run 1248 (1246-1250) 

Phase III trials failed 32 (30-34) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 1217 (1213-1220) 411 

 

Table 6.5 The median number of phase II and III trials run and the median 
number of successful and failed phase II and III trials for all four designs 
investigated when there is a positive treatment effect (𝝁 = 𝟎. 𝟓) 

One-stage designs Median (IQR) (
𝑵 = 𝟓𝟎𝟎, 𝟎𝟎𝟎

𝑵𝒕𝒓𝒊𝒂𝒍
) 

Randomised phase II trials run 2401 (2382-2432)  

Randomised phase II trials failed  1889 (1862-1932) 

Randomised phase II trials successful 512 (500-519) 

Phase III trials run 512 (500-519) 

Phase III trials failed 34 (28-40) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 478 (468-485) 1046 

Single-arm phase II trials run 4491 (4472-4576)  

Single-arm phase II trials failed  3519 (3498-3576) 

Single-arm phase II trials successful 972 (963-974) 

Phase III trials run 972 (963-974) 

Phase III trials failed 61 (58-64) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 910 (902-915) 550 

Two-stage designs 

Randomised phase II trials run 4686 (4654-4764)  

Randomised phase II trials failed  3876 (3840-3956) 

Randomised phase II trials successful 812 (808-815) 
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Phase III trials run 812 (808-815) 

Phase III trials failed 43 (41-46) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 769 (763-773) 651 

Single-arm phase II trials run 5251 (5220-5291)  

Single-arm phase II trials failed  4158 (4126-4200) 

Single-arm phase II trials successful 1092 (1090-1094) 

Phase III trials run 1092 (1090-1094) 

Phase III trials failed 68 (66-71) 

Phase III trials successful, 𝑵𝒕𝒓𝒊𝒂𝒍 1024 (763-773) 489 

It is clear that the mean of the treatment effects available for testing impacts the 

number of successful phase III trials found and therefore the number of patients 

required to lead to the first successful phase III trial. When the mean is positive, 

the number of successful phase III trials increases for all four designs. In 

contrast when the mean is negative, the number of successful phase III trials 

decreases for all four designs. However, the conclusions regarding the design 

with the greatest number of successful phase III trials remained the same in all 

scenarios investigated, hence the findings in this chapter are robust to the 

assumptions made about the mean of the treatment effect distribution. Simon’s 

two-stage single-arm design required the least number of patients to lead to the 

first successful phase III trial and therefore yielded the highest number of 

successful phase III trials. 

6.4 Discussion 

An important element of setting up a phase II trial is its design. With so many 

designs available, it is vital that researchers understand the effect of each of 

these choices on the efficiency of the phase II trial, and ultimately, the drug 

development process as a whole. In this chapter, I have investigated the effects 

of randomised, single-arm, single-stage and two-stage designs. The efficiency 

of phase II trials was defined as the number of successful phase III trials. This 

measure is taken from the point of view of running multiple phase II and III trials 

consecutively, as may be done in large pharmaceutical companies. To 

supplement the main measure of efficiency, I also incorporated the number of 

failed phase III trials and the total number of phase II and III trials run, as this 

reveals the resources required to lead to the successful phase III trials found. 

To investigate the short-term benefit of each of the designs, I also presented the 

percentage success and failure rate of the phase II and III trials run. 
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The findings in this chapter suggest that single-arm designs are more efficient 

than randomised designs in terms of the number of successful phase III trials; 

the number of patients required to lead to the first successful phase III trial is 

also lower in single-arm designs than in randomised designs. This finding can 

be attributable to the fact that the sample size of the randomised designs 

investigated was almost three or four times more than that required in the 

single-arm designs (two-stage and single-stage designs, respectively). It can be 

concluded that, in the long-term, single-arm designs are more efficient than 

randomised designs, particularly, if there is a limitation on the number of 

patients available. The discrepancy in sample size between the randomised and 

single-arm designs was overcome by supplementing the findings with the 

percentage success and failure rates of the phase II and III trials. This short-

term measure does not incorporate the designs’ sample sizes, only the 

conclusions made using the design. Based on the findings, it was clear that the 

randomised single-stage design was the most efficient as it had the lowest 

phase II failure rate and highest phase II success rate.  

One of the limitations of this research is the fact that the simulations do not 

capture the benefits of using a randomised design over a single-arm design, in 

terms of the variability of the historical control data. If the rate of the control arm 

success were known to be true then a one-arm trial would be more efficient, but 

if there is any doubt that it is not reliable then a two-arm trial would lead to more 

efficiency for the whole drug development process as it would be based on facts 

rather than speculation. An assumption in the simulations conducted is that the 

control reference value used in the one-arm trial comparisons is the same as 

the true control arm success probability used in the two-arm trial simulations 

(and equivalent to the implied control mean in the phase III simulations), which 

is the scenario where a two-arm design is not needed. Using a concurrent arm 

protects against the control group mean being different to that estimated. Since 

this advantage of randomised designs is not captured in the simulations, in 

addition to its short-term efficiency presented here, exploring the effect of its 

sample size is necessary. Another advantage of randomised trials that warrants 

its further investigation is the fact that randomised phase II trials balance 

prognostic factors between arms, which allows the efficacy of the treatment to 

be assessed more reliably (35). 

The most efficient design is Simon’s two-stage single-arm design as it yielded 

the highest number of successful phase III trials. However, A’hern’s single-arm 

single-stage design yielded marginally less successful phase III trials, so the 

difference between the two designs was small, in terms of phase III successes. 

Despite the fact that Simon’s two-stage single-arm design required more 
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resources than A’hern’s single-arm design, namely patients, and therefore may 

cost more to run, it yielded the highest number of successful phase III trials 

consequently these costs are more worthwhile. Also, it should be noted, that the 

two-stage design can stop earlier than a single stage design (for futility), 

therefore patients and resources can be saved and accrued into more phase II 

trials that use Simon’s two-stage design.  

When comparing the randomised trials, namely Jung’s two-stage design and 

the randomised single-stage design, Jung’s design was the better option in the 

long term, as it yielded a considerably higher number of phase III trial 

successes. In fact, the number of phase III successes yielded using Jung’s 

design in phase II is similar to the single-arm designs, relative to the sample 

size requirements of each design (almost a quarter of Jung’s design). Even 

though this drastic difference in sample size exists, the efficiency of Jung’s 

design in the long-term is very similar. Despite the fact that there is an 

increasing trend in the use and recommendations of randomised designs, as 

suggested in Chapter 2 and in several other literature (31, 96, 110), the results 

presented show that a two-stage design, rather than a one-stage design is more 

efficient and therefore the preferred option over the randomised one-stage 

design. This is more profound given the fact that in the systematic review 

(Chapter 2), Jung’s design was not identified as one of the options that are 

used. It is therefore concluded that when considering a randomised design, 

Jung’s two-stage design should be prioritised as an option for the phase II 

design, in the context of running multiple phase II trials.  

In terms of the short-term effects of the designs investigated (i.e., an individual 

phase II trial and its subsequent phase III trial), it was clear that the worst 

performing design was Jung’s two-stage design, as it had the highest rate of 

failure and the lowest rate of success in phase II trials. Since the treatment 

effects are sampled from a distribution with an average of no effect present, 

many treatments do not work. Jung's design stops early for these treatments, 

giving a high failure rate but meaning that other treatments can be assessed in 

other trials, which results in a high number of promising treatments going into 

phase III. The randomised single-stage designs performed the best overall, in 

terms of the short-term effects. It had the lowest phase II failure rate and 

highest phase II success rate, as previously mentioned. Given these results, it 

can be concluded that, in the short-term i.e., running an individual phase II trial, 

the least efficient design is Jung’s two-stage randomised design, while the most 

efficient design was randomised single-stage design.  

Several authors have previously compared the performance of randomised and 

single-arm designs in phase II. Taylor et al. (70) compared the efficiency of one-
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arm phase II trials versus randomised phase II trials. The authors recommend 

two-arm phase II trials when the uncertainty in the historical control rate is large 

or when a large number of patients are available. However, when these two 

conditions are not met, the authors advocate the use of single-arm phase II 

trials. Pond and Abbasi (83) agree with Taylor et al. (70), as they also 

recommend the use of either trial design in certain situations. However, unlike 

Taylor et al. (70), they assumed that the phase II trials were two-stage: single-

arm phase II trials were conducted using Simon’s optimal design (63), and 

randomised phase II trials used Jung’s design (93). Sambucini (79) used a 

Bayesian approach to compare single-arm and randomised phase II trials, in 

terms of their abilities of obtaining the correct decision regarding the new 

therapy. Similar to Pond and Abbasi (83) and Taylor et al. (70), they also 

conclude that randomised and single-arm phase II trials are both appropriate in 

certain situations: when the historical data is correctly estimated single-arm 

phase II trials are preferred. If this is not the case, a randomised phase II trial is 

preferred. It is clear from the literature that randomised and single-arm phase II 

trials have their uses in certain situations and they all point out that randomised 

designs are better when the historical control rate is unreliable. This research 

builds on these findings and adds another element to consider when choosing 

between these designs, namely, whether the phase II trials is conducted 

individually or in a series of experimentation. I have shown that depending on 

the context randomised and single-arm phase II trials can both be efficient. In 

addition, the fact that the efficiency of single-stage and two-stage designs were 

also investigated further elaborates on the literature, as only randomised and 

single-arm single-stage or randomised and single-arm two-stage designs were 

compared rather than assessing all four of these designs. 

The designs investigated in this chapter were chosen due to their simplicity and 

popularity in phase II trials in oncology. However, there are other designs that 

can also be evaluated and compared in order to gain a deeper understanding of 

how they affect the efficiency of phase II trials. These designs could include 

different uses of randomisation, for example the randomised discontinuation 

trial, which subsets the enrolled patients, by important prognostic factors and 

randomising only these patients (28). Another design which can also be 

investigated is multi-stage designs. However, these designs were not included 

due to their complexity and lack of popularity in oncological trials. 

These findings are subject to the design choices made for each of the phase II 

and III trials. In the phase II trials, the endpoint choice was assumed to be 

binary. This was chosen as the findings from the systematic review (Chapter 2), 

showed that binary outcomes are used most frequently in phase II trials. In 
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addition, the endpoint in phase III, was assumed to be continuous. Although 

phase III trials in oncology are not typically conducted with a continuous 

outcome, rather a time-to-event endpoint is used, such as overall survival, the 

test statistics based on both time-to-event outcomes and continuous ones are 

asymptotically normal (108). Hence, a continuous endpoint in phase III was 

deemed appropriate.  

The choice of the operating characteristics of the phase II trials was based on 

the findings of the systematic review in Chapter 2. Most phase II trials are 

designed with a one-sided significance level, with the majority of trials selecting 

a value larger than 0.025 and smaller than or equal to 0.1. As such a one-sided 

significance value of 0.05 was chosen. The most common power chosen in 

phase II trials was between 90 − 80%. Thus, an 80% power was chosen for the 

phase II trials. It was important to fix the operating characteristics in this chapter 

as each design has different sample sizes. Chapter 7 explores the effect of 

different operating characteristics of phase II trials, in the best performing 

designs found in this chapter, namely Simon’s single-arm two-stage, for its long-

term efficiency, and randomised single-stage, for its short-term efficiency. 

Other assumptions that may influence the results is the choice of the value of 

the response to the standard therapy. This was assumed to be the same for 

each phase II trial run regardless of design, i.e., it did not change throughout the 

simulations. This may not reflect what occurs in reality as oftentimes the 

information we obtain from one trial feeds into the next trial design. However, 

this was the same for all the trials investigated, i.e., was kept constant, so did 

not have any bearing on the conclusions derived from the simulations. The true 

effect changes between phase II trials as each trial was assumed to assess 

different treatments. If the same control treatment is assumed to be used in all 

trials it is reasonable to keep the response rate to the standard treatment fixed. 

However, future work incorporating changes in the value of the response to the 

standard therapy would be beneficial.  

These findings are also subject to the assumptions made in the simulations. 

Firstly, the treatments available for testing was assumed to follow a standard 

normal distribution. This implied that there is an equal number of efficacious 

treatments as inefficacious treatments. In reality, this may not be the case: there 

may be an imbalance in efficacy of the available treatments. In order to assess 

the effect of assuming that the treatments available have no effect on average, 

a sensitivity analysis was conducted. The average effect of the available 

treatments was assumed to be either positive (0.5) or negative (−0.5). As 

expected, all the designs were more efficient (i.e., number of successful phase 

III trials increased) when there was a positive treatment effect on average. 
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Similarly, all the designs were less efficient when there was a negative 

treatment effect, on average. However, in terms of the most efficient design, 

Simon’s two-stage design yielded the most successful phase III trials. 

Therefore, regardless of the mean of underlying treatment effect the most 

efficient design was Simon’s two-stage design.  

Another assumption made in the simulations was using a fixed number of 

patients available. The value chosen was exceptionally large and was only 

chosen to provide an end to the simulations. Increasing this value or decreasing 

it would change the number of trials run, as more or less patients would be 

required, respectively, however, the conclusions made would be unchanged. 

Hence, the findings are robust to this assumption.  

It is acknowledged that one of the limitations of this research is that the 

conclusions made are limited to the two-stage and single-stage designs I have 

chosen to investigate. If a less stringent two-stage design was considered, this 

may have resulted in more phase III trials and a resulting increase in the 

number of phase III successes.  

Another limitation is that the simulations were conducted one design at a time, 

therefore there is a potential that the same treatment that is randomly selected 

may not be the same one for each design, for example there may be more 

positive treatment effects tested in the randomised phase II trials than in the 

single-arm designs. However, this is unlikely to drastically affect the results as 

the average effect for the treatments available was assumed to be the same 

between the four designs investigated. Therefore, any discrepancies in the 

treatments tested would not affect the conclusions, particularly that a large 

number of patients, treatments and trials were assumed and conducted 

(respectively) for all four simulations. 

In conclusion, the most efficient phase II designs are two-stage designs, with 

Simon’s two-stage single-arm design being the most efficient, over a long run of 

experimentation, where multiple phase II and III trials are initiated consecutively. 

In the short-term scenarios, where a funding body has the means to run one 

phase II trial and its proceeding phase III trial, if successful, the randomised 

single-stage design was found to be efficient. Since Simon’s two-stage single-

arm and the randomised single-stage design are the most efficient, they are 

therefore incorporated in the sample size evaluations in Chapter 7. 



 

Chapter 7 Investigating the impact of the sample size of a 

phase II trial 

In Chapter 6, I found that, of the designs investigated, the most efficient design 

of phase II trials is Simon’s two-stage single-arm design (63) as it yielded the 

most successful number of phase III trials. In addition, I found that randomised 

single-stage designs have the best success rate in phase II trials. As such, in 

this chapter, these designs are chosen to investigate the effect of different 

sample sizes of phase II trials, on their efficiency. The same methods are 

employed in this chapter as was described in Chapter 6, namely the simulations 

and the measure of efficiency used to compare the designs.  

7.1 Introduction 

The problem of the optimal sample size of the phase II trial has been frequently 

discussed in the literature. Despite this an optimum sample size for phase II 

trials has not yet been established. The sample size of the phase II trial typically 

requires a small number of patients, however guidelines about sample size are 

inconsistent. Taylor et al. (70) suggested that typical single-arm phase II trials 

have sample sizes between 30-80 patients, while Khan et al. (112) suggested 

that typical sample sizes range from 40-70 patients in single-arm phase II trials. 

Furthermore, Gotte et al. (82) recommended larger randomised phase II trials, 

with a maximum of 100 patients. While the FDA state that, in general, phase II 

trials can require up to several hundred patients (113). With different sample 

size recommendations and different designs, each requiring different sample 

sizes, available for researchers it is important to understand the impact each of 

these recommendations have on the success of phase II trials. Knowing this will 

improve the drug development process for both patients and the pharmaceutical 

industry. This is particularly useful for cancer patients where drastic 

improvements are required, due to the fact that phase III trials in oncology fail 

more frequently than other specialties (11). The aim of this chapter is not to 

determine an optimum sample size of the phase II trials, rather it is to 

investigate the effect of different sample sizes of phase II trials on their ability to 

screen new treatments. However, upon fulfilling this aim, recommendations 

about the size of phase II trials will be suggested.  

Assuming the phase II trial will be analysed using a frequentist approach, the 

sample size is calculated so that the trial has a certain power to detect a 

clinically significant difference when conducting a hypothesis test at a pre-
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specified (one-sided) level of significance. The level of significance is also 

known as the type I error rate and it represents the probability of recommending 

an ineffective treatment. The power of the trial is the complement of the type II 

error, which is defined as the probability of incorrectly discarding an effective 

treatment. The clinically significant difference is the targeted treatment effect 

required in order to conclude that the treatment is efficacious. The value of 

these three parameters influence the size of the trial, thus using different 

combinations of these values enables the investigation of the effect of different 

sample sizes of phase II trials on their ability to successfully screen new 

treatments.  

Larger sample sizes of the phase II trial are more likely to detect a treatment 

effect. However, the objective here is to reveal whether there is a limit to the 

number of patients required in phase II trials. In other words, in this chapter the 

aim is to reveal whether increasing the sample size of phase II trials increases 

their efficiency or is there a point where increasing the sample size does not 

improve the efficiency of the phase II trial. Discovering this would save a lot of 

time and money that would otherwise be unnecessarily used. In addition, 

patients that would have opted into the clinical trial unnecessarily, may well be 

needed, and indeed, may benefit more, in other trials.  

In my investigation of the effect of the sample size of phase II trials, the design 

of each phase II trial is fixed; they all are assumed to be either Simon’s two-

stage single-arm (63) phase II trials enrolling patients to take the experimental 

treatment, or randomised phase II trials with an allocation ratio of 1:1 into a 

control and an experimental arm. In either case, each phase II trial is assumed 

to have a binary outcome, namely, whether patients respond to the treatment or 

not e.g., as assessed by RECIST criteria v1.1 (114) . Differences in the design 

of the two-stage single-arm and randomised phase II trials only arise by altering 

the type I and II error rates. The effect of the sample sizes of the phase II trials 

was investigated assuming that the true treatment effect of all the available 

treatments followed the standard normal distribution, which included both 

efficacious and inefficacious treatments, so that the efficiency of the designs 

can be explored for a variety of treatment effects – moving truly efficacious 

treatments onto further study and rejecting inefficacious treatments early. Each 

phase II trial was assumed to test a different treatment whose true treatment 

effect was randomly selected from this distribution.   

As previously described, the measure used to quantify the effect of the phase II 

trial sample sizes was explained by Stallard (39), where he states that over a 

long run of experimentation minimising the total number of patients required to 
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lead to the first successful phase III trial is equivalent to maximising the number 

of successful phase III trials. Assuming a fixed total number of patients were 

available, the total number of successful phase III trials was used to quantify the 

effect of the sample size of phase II trials on their ability to successfully screen 

new treatments.  

7.2 Methods 

The methods used in this chapter closely resemble those employed to carry out 

the design investigations in Chapter 6. As such the design of Simon’s two-stage 

single-arm and randomised designs are the same in this chapter as in Chapter 

6, namely, the designs are assumed to measure a binary outcome, with a fixed 

control rate, 𝑝1 = 0.25. This means that 25% of patients in the control arm or 

historical control respond to the standard treatment. In addition, a clinically 

significant difference of 𝛿2 = 0.2 was selected as the targeted treatment effect 

due to the findings in Chapter 2 (Systematic Review). The only difference in the 

methods between Chapter 6 and this chapter is that here a range of sample 

sizes for each design is used. 

The sample size for the randomised design was determined using the following 

formula:  

𝑛2,𝑅 =
2 × (𝑝1(1 − 𝑝1) + (𝑝1 + 𝛿2)(1 − (𝑝1 + 𝛿2))) ((𝑧1−𝛼2 + 𝑧1−𝛽2)

2
)

𝛿2
2          (7.1) 

Where 𝑧1−𝛼2 and 𝑧1−𝛽2 are the standard score evaluated at the (1 − 𝛼2)% 

significance level and (1 − 𝛽2)% power, respectively. To explore differing 

sample sizes the values of type I and II error rates were varied. The values for 

the type I error rate were set to 𝛼2 = 0.01, 0.05, 0.1, 0.15, 0.2, and were assumed 

to be one-sided, while the type II error was set to 𝛽 =  0.1 − 0.6, in increments 

of 0.05, so that the power ranges from (1 − 𝛽2) = 0.4 − 0.9. The choice for the 

values of the type I and II error include what is typically chosen in trials (type I 

error rate 0.01-0.2, type II error rate 0.1- 0.2), as was found in the systematic 

review (Chapter 2). In addition, the extreme values included in the 

investigations were based on Stallard’s (39) results, where he found that the 

optimal choice of 𝛼2 and 1 − 𝛽2 for the phase II trial were 0.2 and 0.4, 

respectively. Other extreme values were also included to allow the 

investigations to be exhaustive. 

The sample size of Simon’s design was determined using an R package called 

“clinfun”(115), using the same range of type I error and power values as 

described above, but with fixed 𝑝1 = 0.25 and 𝑝1 + 𝛿2 = 0.45. This provided the 

designs, i.e., the total and first-stage sample sizes in addition to the cut-off 
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responses needed to conclude whether the stage or trial is successful, that 

satisfy these operating characteristics. Both the minimax and optimal designs 

are outputted but the minimax design was chosen as it was the design 

investigated in Chapter 6. The minimax designs that satisfy the operating 

characteristics and are investigated in this chapter are shown in Appendix E. 

From Chapter 6, recall that the total sample size for Simon’s design is denoted 

by 𝑛2,𝑆𝑇, with 𝑛2,𝑆𝑇1 patients recruited in the first stage and the remaining 𝑛2,𝑆𝑇2 

recruited in the second stage, if the treatment showed promise, i.e., passed the 

pre-specified boundary. Proceeding to the second stage would only occur if 

more than 𝑟1 patients responded to the treatment in the first stage. The single-

arm two-stage phase II trial would be deemed successful if the total number of 

patients who responded was more than 𝑟.  

For the randomised phase II designs, patients were randomly sampled from the 

true underlying distributions corresponding to the control and experimental arms 

in the trial. Both of these were binomially distributed with probability of success 

of 𝑝1(= 0.25) and 𝑝2, respectively, i.e., patients accrued into the randomised 

design were sampled from a Binomial distribution, 𝐵𝑖𝑛(
𝑛2,𝑅

2
, 𝑝1 or 𝑝2). For the 

randomised single-stage phase II trial the two groups were compared using the 

chi-squared test. Success in the randomised single-stage phase II trial is 

obtained by observing a statistically significant difference at the (1 − 𝛼2)% level 

between the two groups, in favour of the experimental arm.  

Unlike 𝑝1, the value of 𝑝2, used in the binomial distribution for both designs, is 

not fixed, rather it is related to the true treatment effect distribution for the 

available treatments. Recall, from Chapter 4, that the treatment effects were 

assumed to follow a standard normal distribution, denoted ∆~𝑁 (𝜇 = 0, 𝜎2 = 1). 

Consequently, the treatment effect that is randomly selected from this 

distribution, ∆, is a mean difference and therefore on the continuous scale. This 

is used in the phase III trial since it is assumed that the phase III trial is 

designed with a continuous primary endpoint (as mentioned in Chapter 4; see 

Chapter 4 section 4.2.3.1 for more details regarding the phase III design). 

However, in the phase II trial, where the endpoint is binary, the treatment effect, 

𝜃 (randomly selected from ∆), is transformed to the log-odds scale in order to 

obtain 𝑝2 and is derived using the following Equation (7.2) (111). 

                                                    𝑝2 =
(𝑒
𝜃
𝜋

√3𝑝1)

(𝑝1 (𝑒
𝜃
𝜋

√3  −  1)  +  1)

                                            (7.2)   

This transformation was used to ensure that there is a correlation between the 

true treatment effects in the experimental arm of the phase II and III trials. This 
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model was previously used in Chapter 6 (for more details regarding this model 

see Section 6.2). Refer to Figure 6.2 in Chapter 6 for a depiction of the 

relationship between the true treatment effects in the experimental arm of the 

phase II and III trials. 

A sensitivity analysis was conducted in order to assess the robustness of the 

assumption of the mean of the treatments effect of the available treatments. 

The mean of the distribution was set to 0, implying that the treatments available 

have no effect, on average. Two additional scenarios were assessed in order to 

reveal the phase II efficiency: when there is a positive treatment effect (𝜇 = 0.5) 

and when there is a negative treatment effect (𝜇 = −0.5).  

Simulations were used to explore the effect of the sample size of Simon’s 

design and randomised single-stage design. For each combination of 𝛼 and 𝛽 

investigated, a large population of size 𝑁 = 500,000 patients was assumed. To 

replicate the drug development process, patients in the population were 

sampled in the phase II and III trial pathway, sequentially, until not enough 

patients were available for both a phase II and a III trial. This meant that if a 

successful phase II trial was found, the pathway continues if enough patients 

were available to run the proceeding phase III trial, and if an unsuccessful 

phase II trial was found, the pathway would continue only if enough patients 

were available for another phase II and III trial.  

In the randomised design setting the control sample was selected from the 

binomial distribution as mentioned above, while in the single-arm two-stage 

design (Simon’s design (63)) a historical control rate with the same 𝑝1 value as 

the randomised design, is used to compare to the patients accrued in the 

experimental arm. The simulations were set up so the experimental treatment 

under investigation has a treatment effect that is randomly selected from the 

true treatment effect distribution to be tested in phase II and III trials. If a phase 

II trial reveals that the treatment is efficacious the same treatment is 

investigated in the proceeding phase III trial, i.e., successful phase II trial is 

followed by a phase III trial with the same novel treatment. However, 

development of the novel therapy was terminated if the phase II trial was 

unsuccessful and a new phase II trial is initiated with a different treatment. It 

was assumed that the process terminates after the first successful phase III trial 

is found. This process is repeated for each combination of 𝛼2 and (1 − 𝛽2).  

In order to compare the performance of the phase II trial designs, over a long 

period of time, the measure of efficiency is the number of successful phase III 

trials, 𝑁𝑡𝑟𝑖𝑎𝑙, as opposed to the number of patients required to lead to the first 

successful phase III trial (used in Chapter 5). This endpoint was suggested by 
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Stallard (39), where he also considers multiple testing of phase II and III trials 

and uses the number of trials required to lead to the first successful phase III 

trial, but also states that over a long period of time these two measures are 

equivalent. As mentioned in Chapter 4, both these measures are presented in 

this chapter in order to make the findings throughout this thesis comparable.  

A simple calculation is conducted in order to obtain the number of patients 

required per successful phase III trial: (
𝑁

𝑁𝑡𝑟𝑖𝑎𝑙
). With these assumptions and set 

up, the efficiency of the phase II trial sample size for randomised and Simon’s 

two-stage single arm design, was investigated, using simulations in the 

statistical software R. Appendix F shows the R code employed to obtain the 

results. 

7.3 Results 

7.3.1 Simon’s two-stage single-arm phase II trials 

The total sample sizes, 𝑛2 yielded for Simon’s two-stage single-arm (63) phase 

II trial ranged from 5 to 71 patients, for the varying combinations of type I error 

and power. A total of 54 combinations of 𝛼 and 𝛽 were investigated. Figure 7.1 

shows the total number of successful phase III trials for the range of phase II 

sample sizes investigated, while Figure 7.2 is a panel plot of the number of 

phase III successes for different values of the power (1 − 𝛽). Overall, Figure 7.1 

shows that there is a decreasing trend in the number of successful phase III 

trials yielded as the sample size of the phase II trial increases. Initially, however, 

the decreasing trend has a much smaller magnitude than when the sample 

sizes exceed 20 patients. This means that the two-stage phase II design is most 

efficient when there is a smaller number of patients. The efficiency of phase II 

trials is at its peak when the phase II trial reaches a total of approximately 5 −

 15 patients on average, corresponding to 𝛼 values of 0.05 − 0.15 and power 

values of 0.4 − 0.6. Figure 7.1 reveals that increasing the sample size of single-

arm phase II trials beyond a total of approximately 20 patients decreases the 

number of successful phase III trials, for the parameters investigated, 

specifically when the average effect of the treatments available was assumed to 

be 0 and with a 𝑝1 = 0.25 and 𝛿2 = 0.2. A decrease in the number of successful 

phase III trials means that the efficiency of the phase II trial decreases. 

It is also clear from Figure 7.1 that the choice of the type I error has a very 

profound impact on the efficiency of the phase II trial. The designs with a type I 

error larger than or equal to 0.05 result in the largest number of successful 

phase III trials. While designs with a stringent type I error of 𝛼 = 0.01 yields a 

smaller number of successful phase III trials.  
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Figure 7.1 The total number of successful phase III trials depending on the 
number of patients in Simon’s two-stage single-arm phase II trials 
differentiated by the value of 𝜶 

 

Figure 7.2 The total number of successful phase III trials, shown by the 
power of each Simon’s two-stage single-arm phase II trial 

As previously described, each phase II trial design had a range of type II error 

rates, ranging from 𝛽 = 0.1 to 0.6 which correspond to power rates ranging from    

(1 − 𝛽) = 0.4 to 0.9, in increments of 0.05. Figure 7.2 shows the effect the 

power of each phase II design has on the number of successful phase III trials. 

It shows that as the power increases the points on the graphs shift to the right, 

that larger powers increase the sample size, as expected. Figure 7.2 shows that 

the small increasing increments in power does not impact the number of 

successful phase III trials, as the range of the points in each of the graphs, 

corresponding to the investigated powers, differ very little from each other. 

However, when comparing the number of phase III successes yielded when a 
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power of 0.4 and 0.9 is used, the advantage is clearly in favour of using a power 

of 0.4. Figure 7.1 and Figure 7.2 reveal that the choice of the type I error of the 

phase II trial is profound so long as the power is high. However, when the 

power is low the impact of the type I error is not prominent. 

In order to further explore the impact of the sample size of the single-arm two-

stage phase II trial has on their efficiency, the success rates of the phase II and 

phase III trials were obtained. The success rate of the phase III trials was 

calculated using the total number of successful phase III trials divided by the 

total number of phase III trials run. Similarly, the success rate of the single-arm 

two-stage phase II trials was obtained using the total number of successful 

phase II trials and the total number of phase II trials run. Figure 7.3 shows the 

success rates of the phase II and III trials, with the points corresponding to the 

designs with different type I error rates. The overall success rate of phase II 

trials is smaller than the success rate of phase III trials, with the phase II 

success rate ranging from approximately 0.29 to 0.44, while the phase III 

success rate ranges from approximately 0.88 to 0.99. It is clear that initially the 

phase II trial success rate increases as the sample size increases. However, at 

about 40 patients the success rate of the phase II trials plateaus. The phase III 

trial success rate increases as the sample size increases. The sample size 

increases with increasing power, which also increases the probability of 

success. Decreasing 𝛼 (which decreases the probability of success) also 

increases the sample size. So, this is quite a complicated relationship, which 

also depends on the distribution of the treatment effects (e.g., if all treatments 

had no effect (at the null) then the probability of success would depend only on 

(in fact, equal) 𝛼, whereas if all were at the specified target value the probability 

of success would depend only on (equal) the power. The fact that the probability 

of success in phase III is higher than in phase II shows that phase II is leading 

to poor treatments being dropped, with this happening more when the sample 

size is larger. 

Furthermore, it is clear from Figure 7.3 that the choice of the phase II type I 

error has a major effect on the success rates of the phase II and III trials. 

Stringent type I error rates (𝛼 ≤ 0.05) lead to higher success rates in phase III 

trials. Comparatively, phase II trials with less stringent type I error (𝛼 > 0.05) 

have a lower success rate at phase III, but a high success rate at phase II. This 

implies that over a long run of experimentation stringent 𝛼’s may not be the 

most efficient choice (as found when looking at the number of successful phase 

III trials), but in an individual phase II that leads to one phase III trial, a stringent 

𝛼 would be more appropriate, so that the success rate is optimised. 
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Figure 7.3 The success rate of the phase II trials (top); the success rate of 
the phase III trials (bottom) 

7.3.1.1 Sensitivity analysis for Simon’s two-stage design 

As mentioned in Section 7.2, a sensitivity analysis was conducted to verify the 

robustness of the findings under the scenarios where there is a positive 

treatment effect and a negative effect, on average. This meant that the value of 

𝜇 for the distribution of the treatments available was set to ∆~ 𝑁(𝜇 = 0.5, 1) and 

∆~ 𝑁(𝜇 = −0.5, 1), respectively.  

Changing the mean of the treatment effects of the available treatments affect 

the number of successful phase III trials found over a long period of 

experimentation. It is clear that when there is a positive treatment effect, on 

average, the number of successful phase III trials increases, while the opposite 

is true when the treatment effects are negative, on average.  
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Figure 7.4 The total number of successful phase III trials depending on the 
number of patients in Simon’s phase II trials differentiated by the value of 
𝜶; positive treatment effect 𝝁 = 𝟎. 𝟓 (top); negative treatment effect 𝝁 = 𝟎. 𝟓 
(bottom) 

 

Figure 7.5 The total number of successful phase III trials, shown by the 
power of each Simon’s two-stage single-arm phase II trial with the 
corresponding value of 𝜶 for the negative treatment effect scenario 
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Figure 7.6 The total number of successful phase III trials, shown by the 
power of each Simon’s two-stage single-arm phase II trial with the 
corresponding value of 𝜶 for the positive treatment effect scenario 

The optimal sample size is unchanged in the two scenarios, compared to the 

mean of 0 scenario, described above, however the variability for each value of 𝛼 

investigated is quite large in the negative treatment effect scenario. It is clear 

from Figure 7.5 that the variability occurs due to changes in power. The most 

efficient design is where the power is set between 0.4 − 0.6. When the power is 

larger than 0.6 the effect of 𝛼 becomes more prominent, as shown by the large 

difference between the less stringent 𝛼 (0.1, 0.15 & 0.2) and the stringent values 

(0.01 & 0.05) in the number of phase III successes. Despite this difference in the 

number of successful phase III trials, these conclusions were unchanged in the 

positive treatment effect scenario, presented in Figure 7.6, indicating that the 

findings are robust to changes in the mean of the treatment effect distribution. 

7.3.2 Randomised phase II trials 

The total randomised phase II trial sample sizes yielded, ranged from 8 to 284 

patients. The systematic review (Chapter 2) revealed that phase II trials are 

usually designed to recruit around 100 patients, on average. The range chosen 

for the sample size investigations is larger than that found in the systematic 

review however, it was selected for the purpose of being exhaustive. This would 

reveal whether there is a point in which increasing the sample size of 

randomised phase II trials leads to inefficiencies in the drug development 

process. 

A total of 55 randomised phase II design combinations with different 𝛼 and 𝛽’s 

were investigated. Figure 7.7 shows the total number of successful phase III 
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trials for the range of sample sizes investigated. The number of successful 

phase III trials ranges from approximately 447 to 1074. Initially, the number of 

successful phase III trials increase as the sample size increases, however, after 

a certain point, it is clear that the number of phase III trial successes decrease 

as the sample size of the phase II trials increase. Given the assumptions made, 

namely an average effect of the treatments available of 0, a 𝑝1 = 0.25 and 𝛿2 =

0.2 this indicates that, randomised phase II trials shouldn’t be designed to be 

too small (𝑛2 < 10). In addition, the most efficient sample size for randomised 

designs ranges from a total of 14 − 30 patients and anything above this actually 

causes a decline in the efficiency of phase II trials. 

 

Figure 7.7 The total number of successful phase III trials depending on the 
number of patients in two-arm phase II trials 

In the randomised design scenario, it can be seen that the type I error has a 

profound effect on the number of phase III trials, and therefore the efficiency of 

the phase II trials. Figure 7.7 shows that stringent 𝛼’s (𝛼 ≤ 0.05) yield the lowest 

number of successful phase III trials, while less stringent type I errors 0.1 ≤ 𝛼 ≥

0.2 result in a higher number of successful phase III trials. 

The impact of the power was assessed in Figure 7.8. As previously stated, the 

number of successful phase III trials decreases with an increase in sample size. 

Consequently, too high a power yields the lowest number of phase III trial 

successes. The number of successful phase III trials drastically decreases as 

the power increases. The range of power which results in the highest phase III 

trial successes is between 0.4 –  0.6. However, it is also clear that the value of 𝛼 

has a negative impact on the efficiency of phase II trials when it is equal to 0.01 

and 0.05. So long as the power is at 0.4 −  0.6 and 𝛼 is larger than 0.1 then the 

randomised design in phase II would be optimised, over a series of 

experimentation. 
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Figure 7.8 The total number of successful phase III trials, shown by the 
power of each randomised phase II trial design 

The impact of the sample size was supplemented by exploring the success 

rates of the phase II and III trials. Figure 7.9 shows the success rates of the 

phase II and III trials, with the points corresponding to the designs with different 

type I error rates. The overall success rate of phase II trials is smaller than the 

success rate of phase III trials, with the phase II success rate ranging from 

approximately 0.30 to 0.44, while the phase III success rate ranges from 

approximately 0.77 to 0.99. It is clear that both the phase II and III trial success 

rates increase as the randomised phase II sample size increases. However, the 

magnitude of success rate in phase III is much larger than the phase II. The 

success rates in phase II and III are affected by the sample size of a 

randomised design in phase II, in much the same way as that of Simon’s two-

stage design. The phase III trial success rate increases as the sample size 

increases. The sample size increases with increasing power, which also 

increases the probability of success. Decreasing 𝛼 (which decreases the 

probability of success) also increases the sample size. Similar to Simon’s 

design, the fact that the probability of success in phase III is higher than in 

phase II shows that phase II is leading to poor treatments being dropped, with 

this happening more when the sample size is larger. 

Of interest is how the type I error affects the success rates of the phase II and 

III trials. It is clear that very stringent type I errors (𝛼 = 0.01 and 𝛼 = 0.05) result 

in the highest success rates in phase III trials but yield the lowest success rates 

in phase II, overall. This means that randomised phase II trials with stringent 

type I errors are more likely to lead to successful phase III trials, as the stringent 

𝛼 rarely allows futile treatments to proceed to phase III, therefore only those that 

are truly efficacious at phase II are allowed to proceed to phase III. This 
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contradicts the earlier conclusion regarding the use of different values of 𝛼 in 

randomised phase II trials, that less stringent 𝛼 rates in randomised phase II 

trials lead to a higher number of successful phase III trials. However, this can be 

reconciled, as the number of successful phase III trials is a long-term measure 

of efficiency, suitable for carrying out multiple phase II and III trials over a long 

period of time, whereas the success rate indicates the short-term benefit of the 

phase II trial. For example, in an individual phase II that leads to one phase III 

trial, a stringent 𝛼 would be more efficient, in terms of the percentage success 

rate of phase III. It should be noted, though, that making the phase II type I error 

rate more stringent means that the phase II trials are less likely to lead to a 

phase III, but when they do, the phase III trials are more likely to be successful. 

 

Figure 7.9 The success rate of the randomised phase II trials (top); the 
success rate of the phase III trials (bottom) 

7.3.2.1 Sensitivity analysis for the randomised design 

The effect of the sample size of randomised designs in phase II trials was 

assessed in a sensitivity analysis, where the mean of the treatment effects 

available was assumed to be either positive or negative, rather than no effect, 

on average. In Figure 7.10 the effect of changing the mean of the true treatment 

effect is highlighted: it is clear that when there is a negative treatment effect 
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there is more of an increase in the number of successful phase III trials than the 

negative situation initially, and therefore the peak is more prominent in the 

negative scenario.  

Overall, the number of phase III successes is also reduced between the two 

scenarios. The optimal total sample size differs very slightly between the two 

scenarios: in the positive treatment effect scenario, the optimal sample size is 

between 10 − 25, while in the negative scenario, the total sample size is most 

efficient when it is between 14 − 35. This is also only slightly different to the no 

effect scenario where the range was between 14 − 30. The most efficient 

designs are those with an 𝛼 = 0.1, 0.15 & 0.2, in all scenarios. 

 

Figure 7.10 The total number of successful phase III trials depending on 
the number of patients in randomised phase II trials differentiated by the 
value of 𝜶; positive treatment effect 𝝁 = 𝟎. 𝟓 (top); negative treatment 
effect 𝝁 = 𝟎. 𝟓 (bottom) 
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Figure 7.11 The total number of successful phase III trials, shown by the 
power of each randomised phase II trial with the corresponding value of 𝜶 
for the negative treatment effect scenario 

 

Figure 7.12 The total number of successful phase III trials, shown by the 
power of each randomised phase II trial with the corresponding value of 𝜶 
for the positive treatment effect scenario 

The effect of the power in the negative and positive scenarios are shown in 

Figure 7.11 and Figure 7.12, respectively. Both figures show that the lower the 

power the more efficient the phase II trial. The optimum range of power, in 

either scenario, is between 0.4 − 0.6. It is also clear that the effect of 𝛼 becomes 
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more prominent as the power increases, as indicated by the fact the differences 

in phase III successes differ greatly between the 𝛼’𝑠 investigated, particularly as 

the power increases. Therefore, with higher power less stringent 𝛼′𝑠 are more 

efficient than using stringent values. This was the case for all values of the 

mean of the available treatment effects investigated, hence the findings for the 

sample size were robust.  

7.4 Discussion 

The purpose of this chapter was to assess the impact of the sample size of 

phase II trials on their ability to successfully screen new treatments in phase III 

trials. The sample size of any trial is an important element and can be a 

contributing factor to the trial’s success. Too small a sample in phase II means 

that the treatment effect is potentially missed, while too large a sample size 

means that resources could be wasted. The aim of this chapter was to find out if 

the efficiency of phase II trials always increases with an increase in its sample 

size or whether there is a point where increasing the sample size adds no value 

to the drug development process. The measure of efficiency was defined as the 

number of successful phase III trials, given a large, fixed population size, so that 

the interpretation of the results apply to the scenario where multiple testing in 

phase II and III trials occurs, such as in large pharmaceutical companies. 

Two designs of phase II trials were chosen, specifically Simon’s two-stage 

single-arm design (63) and the randomised single-stage design with an with 1:1 

ratio in each arm. These were chosen based on the findings in Chapter 6, 

where they were found to have the most advantages over the other designs 

investigated. It should be noted that the purpose of choosing two designs to 

investigate their sample size was not to compare their performance (this was 

discussed in detail in Chapter 6), rather it was to provide a profile of their 

efficiency, so that trialists may use this information to guide the process of 

designing phase II trials that better fulfil their purpose. 

Both the two-stage single-arm and randomised phase II trials with the highest 

number of successful phase III trials were those that require a small number of 

patients. The sample sizes yielding the highest number of successful phase III 

trials was found to be between 5 − 15 patients, in total for Simon’s design, while 

the highest number of patients required in a randomised design was between 

14 − 30 patients, in total. Since the randomised phase II trials were assumed to 

have 1:1 randomisation ratio, only 7 − 15 patients are required in each of the 

control and experimental arm. It was also concluded that total sample sizes 

larger than around 20 patients using Simon’s design and 50 patients using the 

randomised design lead to a dramatic decrease in the number of successful 
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phase III trials, over a long period of time. Thus, anything higher than these 

totals would reduce the efficiency of phase II trials and, as a result, negatively 

impact the drug development process. The two-stage single-arm phase II trial 

recommendations made here contradict Schoenfeld(116), who suggested that 

25 patients are required for single-arm single-stage phase II trial. This could be 

attributable to the different designs used here and by Schoenfeld (116). 

However, Julious’s (117) recommendation of a minimum of 12 patients per arm 

in phase II studies coincides with the randomised sample size range 

recommended here, though my findings suggest randomised phase II trials 

could be as low as 7 patients per arm. Stallard (39) also recommends a sample 

size of 35 in a randomised phase II trial designed to detect an effect size of 0.2. 

This also coincides with the findings reported in this chapter. The sample sizes 

recommended here are not what is typically used in phase II trials. The 

systematic review (Chapter 2) showed that, of the phase II trials investigated, 

65.6% of them recruited more than 50 patients in total and more than half of 

those (34.3%) accrued more than 100 patients. Such sizes of phase II trials 

would lead to inefficiencies over a long period of time as reported in this 

chapter. 

The effects of the type I and II errors, which determine the sample size, were 

explored in this chapter. The one-sided type I error rate which yielded the most 

efficient Simon’s two-stage single-arm (63) and randomised phase II designs 

was found to range from 0.1 − 0.2, of those that were investigated. Higher type I 

error rates resulted in more efficient phase II trials, set up using both Simon’s 

two-stage single-arm and randomised designs. This coincides with Stallard’s 

(39) recommendation of 0.2 for the value of the type I error. Sharma, Karrison et 

al. (71) also suggest that a one-sided significance level of 0.1 is consistent with 

the more exploratory nature of a phase II study, and therefore is more 

appropriate, which is demonstrated in this chapter. Ratain & Sargent (96) also 

hold this opinion as they believe that the sample size of a phase II trial should 

be as small as possible. 

My findings also showed that stringent type I error rates (𝛼 ≤ 0.05) resulted in a 

decrease in the number of successful phase III trials, using both Simon’s and 

randomised designs, compared with the other type I error values. Such 

stringent type I error rates resulted in high success rates in phase III but low 

success rates in phase II trials. This is due to the fact that the smaller the value 

of 𝛼 the harder it is to get through to phase III, so with a small 𝛼 fewer 

treatments get through, but those that do are truly efficacious, so are therefore 

more likely to be successful in the subsequent phase III trial. High success rates 

using stringent 𝛼, combined with the fact that they result in a lower number of 
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successful phase III trials, implies that, the short-term benefits (when looking at 

the success rates) of using a stringent type I error is more profound than using 

a more relaxed type I error. Comparatively, less stringent type I errors should be 

used in the long term where there are a plethora of phase II and III trials and 

sufficient funds and resources to carry them out. Pond and Abbasi (83) also 

found that stringent type I error rates increases the success rate of phase III 

trials, and they, therefore, advocate stringent type I error rates. However, it 

should be noted that Pond and Abbasi (83) only explored the success rate of 

the phase III trial, and did not incorporate the long term number of successful 

phase III trials. With so many drugs available for testing in the current era, it is 

not the success rates of phase II or III trials that determine the efficiency of 

phase II trials, where success rate is defined as the proportion of successful 

trials out of the trials which are carried out; rather it is the number of successful 

phase III trials that need to be increased, which is the measure reported in this 

thesis. Further justification for the choice of the measure of efficiency is 

provided in Chapter 8, Section 8.3.  

The effect of the power, which is the complement of the type II error rate, on the 

efficiency of phase II trials was found to have a profound impact. The results of 

efficiency of Simon’s and randomised designs of phase II trials indicated that as 

the power increases the number of successful phase III trials decreases, 

indicating that phase II trials are more efficient with smaller power. It was also 

found that, for all the designs investigated, an acceptable range to use for 

power was between 0.4 − 0.6, with 0.4 yielding the most efficiency. Using this 

range with any value of 𝛼 (= 0.05, 0.1, 0.15, 0.2), except 0.01, would not 

jeopardise the efficiency of phase II trials. However, beyond this power (1 − 𝛽 >

0.6), the value of 𝛼 needs to be carefully selected: with higher power, less 

stringent 𝛼’s (= 0.1, 0.15, 0.2) are better for the efficiency of phase II trials. The 

optimal combination of 𝛼 and 1 − 𝛽 was found be 0.15 and 0.4, respectively. 

This is in line with Stallard’s (39) recommendations of a power of 0.4 and is very 

close to the recommendation he made for the value of 𝛼 (= 0.2, as mentioned 

earlier). However, these recommendations are not in line with what is, currently, 

used in practice. The systematic review (Chapter 2) revealed that the type I 

error is very rarely larger than 0.1 (only 2.3% of the phase II trials investigated). 

In addition, the value for the power of 0.4 was never used in the phase II trials, 

reviewed. Only two trials used a power smaller than 0.8: one used 0.75 and the 

other used 0.7. The recommendations in this chapter highlight the need to use 

much smaller powers and high 𝛼’s in order to maximise the efficiency of phase 

II trials.  
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It is clear that many assumptions have been made in order to reach the 

conclusions in this chapter. It was assumed that there is an unlimited number of 

treatments available and that their effect sizes were assumed to come from a 

known distribution that is independently and identically distributed from a 

standard normal distribution. While there are currently many treatments 

available for testing, the number of treatments is not unlimited. However, as 

technology enhances and as we strive to provide better treatments for cancer 

patients, this assumption is optimistic but seems reasonable. 

It is acknowledged that using a standard normal distribution for the effects of the 

treatments available for testing is likely to affect the conclusions made in this 

chapter. As such, a sensitivity analysis, adjusting the distribution, was 

conducted in order to assess the robustness of my findings. Two further 

scenarios were investigated: when there is a positive treatment effect and when 

there is a negative treatment effect. Differences in these two scenarios arose in 

the number of successful phase III trials found in all scenarios investigated 

however, the conclusions regarding the sample size, and as a result of this, the 

operating characteristics, 𝛼 and 𝛽 remained the same. Therefore, the 

conclusions made are robust to this assumption. 

Another assumption that may have had an influence on the conclusions made is 

the choice for the value of the effect size, 𝛿 = 0.2 and the choice of 𝑝1 = 0.25. It 

is acknowledged that the effect size varies from trial to trial and that the choice 

of 𝛿 affects the sample size, however, the chosen value was selected based on 

the fact that it was the average effect size used in the phase II trials evaluated 

in the systematic review (Chapter 2). The choice of 𝑝1 was also based on 

previous literature, where Taylor et al. (70) used values of 0.1 and 0.3 to 

evaluate the benefits of single-arm and randomised phase II trials. With the 

same aim, Pond and Abbasi (83) ranged their 𝑝1 value from 0.05 to 0.75 by 

increments of 0.05. Combining these two articles, it was decided that 0.25 is a 

reasonable value. It is also clear that previous authors varied these values to 

assess their impact and this could be a potential avenue that could be taken to 

enhance the work reported.  

In the simulations, it was also assumed that there are a large number of 

patients available for the drug development process, including phase II and III 

trials. This is a reasonable assumption as the number of cancer patients is 

constantly increasing (118). Since some conclusions were found to be sensitive 

to these assumptions, exploring the effect the different distributions for the prior 

treatment effects would be of benefit. Furthermore, assuming that a small 

number of patients is available would allow us to explore the effects of the 

sample size on the efficiency of phase II trials in rare disease sites. 
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Another strong assumption that was made was the fact that the effect sizes of 

the endpoints in phase II and phase III trials were strongly correlated. Ensuring 

a strong correlation increased the number of successful phase III trials in 

comparison to the situation where the treatment effects of the endpoints in 

phase II and III trials were uncorrelated. In reality this assumption is unlikely to 

be met, however, this assumption was made in order to assess the impact of 

the sample size without other factors affecting the efficiency of phase II trials. 

Furthermore, this assumption was made as a result of the findings in Chapter 5, 

where the phase II trial efficiency was enhanced with a strong correlation 

between treatment effects of the trial endpoints, therefore this is an important 

design parameter that needs to be incorporated in the design process of phase 

II trials. 

In conclusion, I have found that both Simon’s two-stage single-arm design and 

the randomised design for phase II trials are the most efficient with small 

sample sizes. It was also found that the choice of the type I and II errors has a 

profound impact on the efficiency of phase II trials, and as such, it is 

recommended that a less stringent one-sided 𝛼 =  0.1, 0.15 and 0.2 is used with 

small power ranging between 0.4 − 0.6. This is not what is typically used in 

practice however, in the long run, designing phase II trials with the 

recommended values would be more efficient.  
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Chapter 8 Discussion  

Over the years, the design of phase II trials has evolved, mainly due to the 

increase in the number and variety of the treatments available for testing (35). 

When the number of treatments were limited, the gold standard design for 

oncology phase II trials was Gehan’s single-arm two-stage design (119), where 

14 patients are recruited to ascertain whether the true response rate was less 

than 20% with 95% confidence (35). If one response was found, a second stage 

would be initiated to estimate the true response rate. With the increase in the 

number of treatments available for testing and the demand for a higher standard 

of evidence of potential clinical benefit (35), Simon’s single-arm two-stage 

design (63), evaluating tumour response rate of novel treatments, became 

popular (12). In the current era, where there is a plethora of treatments that 

need to be tested in phase II trials, coupled with the emergence of molecularly 

targeted agents that may be more likely to be cytostatic, rather than cytotoxic, 

the most efficient design of the oncology phase II trial is again open to much 

debate. In addition to this, the depressing statistics that are prevalent in 

oncology phase III trials, where they are reported to fail more than 50% of the 

time (10) has meant that the efficiency of phase II trial designs need to be 

evaluated.  

As such, the aim of this thesis was to explore the effects of phase II design 

parameters in terms of their ability to successfully screen new treatments. With 

the knowledge of the findings presented here, researchers are fully aware of the 

implications of their chosen design. This is an important tool for researchers as 

it may inform decisions about the design parameters that will increase the 

current efficiency of phase II trials, and therefore improve the efficiency of the 

drug development process as a whole. Specific recommendations about the 

most efficient choices for the design parameters investigated are also provided, 

as a result of the findings.  

The design parameters that were investigated were based on the results of the 

systematic review (Chapter 2). The correlation between phase II and III 

endpoints was explored. Here, the aim was to reveal the effects of correlation 

between the endpoints on the efficiency of phase II trials. In addition, the model 

used included other parameters, such as the variance of the treatment effect, 

that affected the efficiency of phase II trials, and thus allowed the exploration of 

their effect on phase II trial efficiency. Another design parameter explored was 

the decision to use a randomised design and the decision to use two-stage 
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designs or their counter parts. The goal was to reveal which design is the most 

efficient. The final design parameter explored was the sample size of phase II 

trials, and as a result, the trial’s operating characteristics. Here, the aim was to 

find out if increasing the sample size of phase II trials would increase efficiency 

or whether there is a point where recruiting patients beyond this point would 

lead to inefficiencies. In addition, the effect of the operating characteristics on 

efficiency, namely the type I and II errors of the phase II trials was explored. 

These parameters were investigated given a pre-specified set of underlying 

assumptions regarding the effects of the available treatments and the targeted 

treatment effect in each of the phase II and III trials, with efficiency defined 

based on the number of patients required to observe a positive phase III trial, 

and evaluation of treatments over a prolonged period of time. Given these 

assumptions, the conclusions made, in this thesis, regarding optimising the 

efficiency of phase II trial design was that the relationship between the 

treatment effects of the phase II and III endpoints should be correlated. In 

addition, the most efficient phase II design was Simon’s two-stage single-arm 

design. Finally, the sample size of the phase II trial is at its most efficient when 

the type I error is less stringent and when the power is small. Interestingly, the 

phase II trials do not increase in efficiency as the sample size increases.  

In this chapter, a critical evaluation of the methods used in this research is 

presented and potential areas where further work may be warranted is 

highlighted, in addition to a discussion of how this research can impact the 

future design of phase II trials. 

8.1 Phase II design parameters 

The phase II design parameters investigated in this thesis were selected based 

on the findings in the systematic review (Chapter 2). The main aim of this 

chapter was to reveal how phase II trials are designed in the current era. 

Consequently, this would reveal whether there is a consensus among 

researchers about the design of phase II trials. It is acknowledged that the 

systematic review was limited to three high impact journals and only looked at 

phase II trials published during two years. The high impact journals were 

chosen to evaluate how the most impactful phase II trials are designed, and 

therefore potentially the most likely to influence future decision making, whilst 

being pragmatic about the size and scope of the review. It also was an update 

of the systematic reviews that were previously conducted by other researchers 

and therefore some methods were adapted from them: Langrand-Escure et al. 

(9) reviewed phase II trials published in three high impact journals between the 

years 2010-2015. Mariani and Marubini (20) also reviewed phase II trials but 
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only those that were published in 1997. Instead of reviewing phase II trials 

published in one year, Chapter 2 reports findings from phase II trials published 

during two years, and since Langrand-Escure’s et al. (9) review  spanned 

across five years, the two years reviewed were selected to be four years apart 

to capture any potential changes to phase II designs during that time. The 

studies included in the systematic review (Chapter 2) were selected using the 

same keyword search as Mariani and Marubini (20).  

Using only three journals over two years to reach the conclusions limited the 

findings, possibly resulting in a lack or representation of the use of novel 

treatments that may be more commonly used in higher impact journals, than the 

ones used. In addition, the choice of journals was based on Langrand-Escure’s 

et al. (9), where they chose three high impact journals. The impact of their 

chosen journals may have changed since their review was published, which 

may have further resulted in the lack of representation of novel designs. 

Another limitation of the systematic review was the use of a single database, 

namely, Medline. While it can be very useful, using one database can also 

restrict the findings and run the risk of excluding relevant studies. However, the 

systematic review helped identify the design parameters that are in contention 

among researchers, therefore it fulfilled its purpose, efficiently (using only three 

journals).  

Ultimately the design parameters that were selected for evaluation in this thesis 

were the correlation between phase II and III trial (i.e., the choice of the phase II 

endpoint that determines the correlation), the design choice, specifically 

incorporating randomisation or two-stage designs, and the sample size (and as 

a result the operating characteristics) of phase II trials. These parameters were 

chosen due to the fact that decisions about them can be controlled by the 

researcher. Other parameters such as population wide shifts in outcomes, 

caused by improved treatments (78) can influence phase II trial efficiency. 

However, while this parameter is an important consideration for the researcher 

to take into account during the planning of a trial, it is not a parameter that they 

can influence directly.  

Two endpoint types were used for the phase II trials, throughout the 

evaluations. A continuous endpoint was assumed when the correlation between 

the treatment effects of the phase II and III endpoint was investigated. It is 

acknowledged that phase II trials rarely incorporate continuous outcomes, in 

fact in the systematic review, none of the included phase II trials used a 

continuous outcome. However, this was chosen due to the mathematical ease 

of using a normal distribution to quantify the effect of the treatments on both the 

phase II and III endpoints. This endpoint was then changed to a binary endpoint 
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when simulations were used. A binary endpoint was selected based on the fact 

that it is the most commonly used endpoint in phase II trials, as demonstrated in 

the systematic review (Chapter 2) where 79.7% of phase II trials utilised a 

binary outcome. Future work could investigate the impact of phase II trials that 

use a time-to-event outcome since they were used in 23.4% of the trials 

included in the review.  

The focus of the phase II trials in this research was to determine whether the 

treatment was efficacious. However, many phase II trials fail to proceed to 

phase III trials due to the treatment’s toxicity. There are designs that incorporate 

both endpoints into their design, such as the Bryant and Day design (120). 

Therefore, an extension to this research project could be the explorations of 

such designs, in terms of their effect on phase II trial efficiency.  

Other designs could have also been included in the evaluations such as 

Fleming’s two-stage design (64) or even the use of Bayesian designs in phase 

II trials. Berry et al. (121) looked at Bayesian designs of phase II trials in 

oncology. They investigated Simon’s two-stage design (63) and a Bayesian 

adaptive design with frequent interim analyses and a Bayesian adaptive design 

with frequent interim analysis and hierarchical modelling across patient groups. 

They defined this as “borrowing” information from one group to estimate the 

treatment effect of another (121). They found that phase II trials that use a 

Bayesian hierarchical design is more powerful than other designs investigated, 

i.e., trial comes to the correct conclusion. Fleming’s two-stage design and 

Bayesian designs were not included in this thesis as they were not found to be 

popular in the systematic review (Chapter 2). Fleming’s design was only used 

2.3% and a Bayesian multi-stage design was used in one phase II trial (0.78% 

of the trials investigated). 

When designing a phase II trial, the choice between the designs available are 

broad and may be affected by external factors. For example, the choice 

between randomisation and single-arm designs may be affected by the rarity of 

a disease, the seriousness of the condition or high unmet medical need (122). 

The value of historical controls may be of importance and regulators have 

accepted the use of historical controls in these cases (123). One such method 

is to apply a Bayesian (informative) prior to the historical data (123) and 

analysing the data using frequentist methods. This is known as a hybrid 

approach as it combines elements from both Bayesian and frequentist methods 

(92). Such designs and methodologies demonstrate the breadth of the choices 

available to researchers when designing phase II trials. It is acknowledged that 

the results and recommendations do not cover all options available and that 

these were outside the scope of this research. However, the parameter choices 
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were based on the findings of the systematic review outlining what is currently 

used in phase II trials.  

Throughout the parameter evaluations, the design of phase II trials was specific 

to a single scenario where the targeted treatment effect was set to 0.2. In reality 

the targeted treatment effect in phase II trials can be variable, which would 

affect the sample size, and hence the design and outcome of the phase II trial. 

A difference of 0.2 is characterised by Cohen’s d as a small difference (124, 

125) and is more difficult to find than a larger value. This was chosen as a 

conservative value and also based on the systematic review where this 

difference was the most common choice on average (see Chapter 4). This 

effect size was extracted only from those phase II trials which reported it or 

reported their hypothesis and used a binary endpoint.  

8.2 The perspective of running multiple trials  

The evaluations of the impact of phase II design parameters in this thesis were 

carried out under the assumption that phase II and III trials can occur in a 

sequential manner, spanning several years. This assumption gives rise to three 

consequential assumptions that are needed. The first is that there is a large 

number of patients available for testing, in the simulations this was set to five 

hundred thousand. Given the fact that the trials are assumed to run over several 

years this assumption is realistic, particularly that there is increasing number of 

people developing cancer, with about an average of 1000 new cases every day 

in the years between 2016 to 2018 (97).  

The second assumption is that there are a large number of treatments available 

for testing. This is not so farfetched given the fact that in the current era where 

there is a rise in treatments available for testing. Of course, with a large number 

of treatments to test, the resources required to launch and run these trials are 

great and therefore the application of my findings are well suited to 

pharmaceutical companies where they have the capacity to run multiple phase 

II and III trials, sequentially. As a result, the findings do not have a direct 

application to individuals designing a single phase II trial.   

The third consequential assumption that arose from running multiple trials is 

that the treatments are assumed to follow some distribution. Throughout the 

thesis this has been referred to as the true treatment effect distribution. This 

was chosen to follow a standard normal distribution. A normal distribution was 

chosen as it was thought to be a close reflection of reality, given the central limit 

theorem which states that if a sufficiently large sample is selected from a 

population, in this case treatments available, then the sample means follow a 
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normal distribution (126). The choice of the mean for the treatment effect 

distribution was zero which is interpreted as the treatments available having no 

effect on average. The proportion of phase III success, seen in the results in 

earlier chapters was quite high (>90%) but in reality, such numbers are not 

seen. Harrison (47) indicated that phase III trials fail 32% of the time. This 

indicates that the distribution of the treatments available is far more pessimistic 

in cancer than the scenarios investigated.  

A sensitivity analysis was conducted to assess the robustness of the 

assumption of a mean of no effect in the distribution of the treatments available. 

Two scenarios were considered: a positive treatment effect and a negative one. 

It was concluded that the phase II trial design recommendations do not change 

with a different mean in the treatment effects available, indicating that the 

sensitivity analysis have led to establishing that the findings in this research are 

robust. However, what does change is the number of patients required to lead 

to the first successful phase III trial and over the long run the number of 

successful phase III trials. In the positive mean treatment effect scenario, the 

number of patients required decreased, phase III trial successes increased and 

therefore the efficiency of phase II trials increased, while in the negative mean 

treatment effect scenario, the opposite happened. Other sensitivity analyses 

could have been conducted, namely, investigating changes to the variance of 

the normal distribution. This was only done in Chapter 5 to capture the effect of 

the correlation between the treatment effects of phase II and III endpoint. 

However, further work is warranted to explore what would be concluded about 

the best design and sample size, given changes to the variance. In addition, 

instead of a normal distribution, the effect of the true treatment effect 

distribution, could take a more flexible form such as a beta distribution, so that a 

variety of shapes can be used, which can incorporate the pessimistic outlook in 

cancer.  

8.3 Measure of phase II trial efficiency 

The measure of phase II trial efficiency was chosen by reviewing the literature 

to evaluate the methods used by other researchers. A set criteria were used in 

order to identify the most appropriate measure that can be used to measure the 

impact of the phase II trial parameters. The most important criteria was that the 

measure needed to incorporate the long term benefits of a phase II trial, given 

the fact the perspective is running multiple trials spanning several years. Many 

measures have been used by other authors, those that used utility functions 

were ruled out due to the fact that they included costs, which are difficult to 

estimate and differ between academic and pharmaceutical trials both nationally 



133 
 

 

and internationally. An alternative measure used was the proportion of 

successful phase III trials out of the total number of phase III trials conducted in 

a limited population.  

With so many treatments available for testing, it is not the success rate of phase 

II or III trials that determine the efficiency of phase II trials, where success rate 

is defined as the proportion of successful trials out of the trials which are carried 

out; rather it is the number of successful phase III trials that need to be 

increased, where there is truly a positive treatment effect. Therefore, 

maximising the number of successful phase III trials results in the availability of 

more beneficial treatments for patients. Consequently, the most appropriate 

measure of efficiency of phase II trials is the number of patients required to lead 

to the first successful phase III trial. This measure was used by several authors 

previously: Stallard (39) minimised the number of patients required to lead to 

the first successful phase III trial to obtain the optimal phase II sample size. Yao 

et al. (87) minimised the number of patients required before the first promising 

treatment was identified in a phase II trial. They stated that this was appropriate 

as there are no real limitations on the number of patients available for enrolment 

into trials or on the number of treatments worthy of screening. Over a long run 

of experimentation, with several phase II and III trials, the endpoint used  by 

Stallard (39) is equivalent to the total number of successful phase III trials, 

which was used in Chapters 6 and 7. 

8.4 Phase III design  

The design of the phase III trial was fixed throughout the evaluations of the 

parameters in this thesis. It was assumed that the phase III trials were 

randomised with two arms with a 1:1 allocation ratio measuring a continuous 

outcome. It is acknowledged that phase III trials are not typically conducted with 

a continuous outcome, rather a time-to-event endpoint is used, such as overall 

survival (127). However, the test statistics based on both time-to-event 

outcomes and continuous ones are asymptotically normal, in other words, the 

correlations are between these normal test statistics (108). Therefore, it was 

deemed appropriate to use this outcome. It also simplified the analytical 

evaluations conducted in Chapter 5 and the simulations in Chapters 6 and 7. 

The operating characteristics used in phase III trials may also have had an 

impact on the findings presented in this thesis. In phase III trials the significance 

level was set at 0.05 and was two-sided, while the power was set to 80%. 

These values are typical choices made in phase III trials (98). However, other 

significance levels and powers could be chosen, which may increase or 

decrease the number of successful phase III trials found. However, since this 
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was fixed for all designs, it does not have a bearing on the conclusions made. 

Further research may be warranted to explore the effect of different phase III 

designs on the efficiency of the drug development process. This would be of 

great value particularly that  the usage of MAMS trials are becoming more 

popular (128).  

8.5 Implications of findings  

In this research, I explored the effects of the key parameters used in phase II 

trials. For this reason, the findings presented are transferable to future phase II 

clinical trials. Applying these findings to the planning and design stage of phase 

II trials will improve their efficiency, and by extension the efficiency of the drug 

development process. Benefits to both patients and drug companies will thus be 

seen. However, this research cannot be used on its own; rather experience can 

also guide researchers to inform phase II trial design decisions. 

Another area where this research can be used to improve matters is in rare 

cancers. Therapies for rare diseases are often not commercially beneficial and, 

despite efficacious drugs, these are not developed further as profit will not be 

large enough to sustain its production. Knowing the effect of the phase II design 

parameters on the efficiency of the drug development process can be 

particularly helpful in these cases, as researchers can design efficient phase II 

trials with more assurance of patient and commercial benefit. Perhaps a 

difficulty of applying these methods to rare cancer trials is the assumption of 

running multiple trials, implying that a large number of patients is available for 

testing. However, due to the setup of the simulations, where the population 

value was specified, an extension of the work presented here could easily be 

implemented by reducing the population size to evaluate the effect of each of 

the phase II design parameters where the population is limited. This extension 

would supplement existing research such as those presented by Hee and 

Stallard (91) and Stallard et al. (129) where they evaluate the optimal design for 

conducting clinical trials under the assumption of a limited population.  

The implications of my findings can also extend to novel designs, such as, 

MAMS, platform trials, basket trials and umbrella trials. Platform trials are 

defined by the broad objective of finding the most efficient treatment for a 

disease by investigating multiple treatments, within one master protocol where 

there are multiple treatments available in quick succession of each other (130). 

Basket trials are used to establish the efficiency of a treatment for a mutation, 

found in several cancer types, where patients with a specific mutation are 

accrued into multiple arms of the trial (131). In contrast, umbrella trials accrue 

patients with the same cancer type (but different mutations), into one trial with 
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multiple arms, each of which is testing a different treatment (131). It is thought 

that these types of designs can help make the drug development process more 

efficient and are thought to be particularly useful within oncology, since it is a 

medical condition that has multiple therapies worth investigating (128). This is 

due to the fact that knowledge and understanding of cancer biology is 

constantly developing and it is being recognised that there are treatment 

options that target cancer cells, not just at a tissue level but at a molecular level. 

Multiple phase II trials are set up within a basket trial design and if one or more 

treatments show efficacy then they are tested in phase III confirmatory trials 

(130). This structure is similar to the assumption of running multiple trials, used 

in this research, except rather than simultaneous evaluations of treatments in 

basket trials, the multiple trial assumption lends itself to consecutive testing. 

However, both methods depend on the need to have multiple treatments and 

multiple patients available for accrual. Although in simultaneous trials having an 

exceptionally large number of patients available at any one time would be 

difficult, however, the recommendations here is that the sample size of phase II 

trials should be small (for the scenarios investigated), meaning that the large 

availability of patients is not necessary. Therefore, the recommendations made 

in this thesis can be applied to such designs.  

Another advancement that is occurring in oncology drug development is the use 

of biomarkers in phase II trials (9). Before a biomarker can be used in a phase II 

trial it needs to be validated as a predictive marker of efficacy. In addition, 

historical data is not available for these biomarkers and therefore randomisation 

would need to be utilised in such trials. As seen in Chapter 6, the use of 

randomisation was found to be less efficient than using Simon’s single-arm 

design, however, as stated in Section 6.4, when the historical control is not 

robust or is inaccurate, randomisation in phase II becomes the preferred and 

more efficient design. However, this advantage was not observed, as the 

uncertainty about the historical control rate was not a parameter incorporated in 

the simulations. Taylor et al. (70) and Pond and Abbasi (83) investigated the 

short-term effects of randomised and single-arm trials, where the accuracy of 

the historical control rate was incorporated. The authors recommended two-arm 

phase II trials when the uncertainty in the historical control rate is large or when 

a large number of patients are available. However, when these two conditions 

are not met, the authors advocated the use of single-arm phase II trials. Further 

work could investigate the long-term impact (over a series of multiple trials) of 

the estimate of the historical control rate comparing randomised and single-arm 

phase II trials. 
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While the focus throughout this thesis has been improving the efficiency of 

cancer phase II trials, the methods and subsequent results are generalisable 

and can be applied to different disease areas where phase II design can be 

improved due to the high attrition rates seen in subsequent phase III trials. 

Vaduganathan et al. (131) review phase II trials conducted in heart failure in 

order to identify the reasons for the disconnect between phase II and III trials. 

They found that discrepancies lie in the concept, design, execution and 

interpretation of phase II trials, and despite this phase III trials are initiated. 

Recommendations made in this thesis regarding the design of phase II trials, 

namely, a high correlation between endpoints, using Simon’s single-arm two-

stage design and a less stringent type I error and large type II error (equivalent 

to small power) to reduce the sample size, is relevant to other disease areas. 

While these recommendations are not currently used in oncology phase II trials, 

as seen in the systematic review (Chapter 2), this research suggests that over a 

long period of experimentation, continuing with the same methods of designing 

phase II trials may mean that a great deal of resources are wasted, that could 

otherwise be used elsewhere.   

As the cancer clinical trial environment constantly changes, it is important that 

considerations to completely novel designs, such as biomarker-based designs 

which incorporate multiple targeted therapies (includes umbrella trials and 

basket trials), in addition to traditional means, should be made. This ensures 

that the best decisions for phase II trial designs may be used for specific 

situations, to improve the efficiency of phase II trials, and in doing so we ensure 

the drug development process in cancer will also improve.  
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Appendix A Proof of 𝑸𝑺 = 𝑰 

The variance-covariance matrix S was confirmed by multiplying it by its’ inverse, 

Q to give the identity matrix,𝐼, where Q is: 
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; where 𝜌 is the Let 

correlation between the true treatment effects associated with the phase II and 

III trials, 𝜃1 and𝜃2, and 𝛾 is the distribution’s variance. 
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So off-diagonal terms are all 0 and the leading diagonal terms are all equal to 1; 

hence the variance-covariance S is verified as the inverse of Q. 
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Appendix B R code for the results presented in Chapter 5 – 

investigating the relationship between the phase II and III 

endpoints  

# loading the necessary packages 

library(mvtnorm) 

#setting the variance of the true treatment effect of 

available treatments  

sigma<-seq(0.1,10,0.3)  

Lsig<-length(sigma) # number of scenarios to be explored 

diff1<-0.3 # clinically significant difference between the 

# means of the two arms in phase II 

diff2<-0.3 # clinically significant difference between the 

#means of the two arms in phase III 

# treatments tested in the phase II/ phase III trial 

sigma1<-1 # sigma1/sigma2 part of the variance of 

#difference in treatments in phase II/III 

sigma2<-1 # needs the sqrt(n1) to be the variance 

mu<- 0 # mean of the underlying treatment effect 

 

alpha1<-0.05 # significance level for phase II 

alpha2<-0.05 # significance level for phase III 

power1<-0.8 # Power phase II 

power2<-0.8 # Power phase III 

 

get.n1 <- function(alpha1,power1,diff1,sigma1) 

{# randomised phase II design with continuous outcome 

  # one-sided sig. level 

  n1 = round(4*sigma1^2 * (qnorm(1-alpha1) + 

qnorm(power1))^2/(diff1^2)/2)*2 

  n1 # total sample size of phase II trial 

} 
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get.n2 <- function(alpha2,power2,diff2,sigma2) 

{# randomised phase III design with continuous outcome 

  # two-sided sig. level 

  n2 = round(4*sigma2^2 * (qnorm(1-alpha2/2) + 

qnorm(power2))^2/(diff2^2)/2)*2 

  n2 # total sample size of phase III trial 

} 

#obtain phase II sample size 

n1<- get.n1(alpha1,power1,diff1,sigma1) 

 

# obtain phase III sample size 

n2<-get.n2(alpha2,power2,diff2,sigma2) 

 

# critical value for the phase II 

k1<-qnorm(1-alpha1)*(2*sigma1/sqrt(n1)) 

 

# critical value for the phase III 

k2<-qnorm(1-alpha2/2)*(2*sigma2/sqrt(n2)) 

 

#--------# 

# tau==0 # 

#--------# 

tau<-0 # variance of the true response to treatment; same 

#for phase II  

#and phase III  

# when tau =0 means the endpoint treatment effects have a 

perfect correlation 

# in other words they are the same endpoint in both 

rho0<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

gam0<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 
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for (i in 1:Lsig ) { 

  # using sigma and tau we can calculate the correlation 

rho 

  rho0[i,1]<- (sigma[i]^2)/(sigma[i]^2 +tau^2)   

  gam0[i,1]<- sigma[i]^2 +tau^2   

} 

# empty array for S matrix 

s110<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s220<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s120<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s210<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

 

for (i in 1:Lsig)  

{ #matrix The marginal distribution to calculate the 

  #probability of success in phase II and III trials 

  s110[i,1]<- (4*sigma1^2/n1)+ gam0[i] 

  s220[i,1]<- (4*sigma2^2/n2)+ gam0[i] 

  s120[i,1] = s210[i,1] <- sigma[i]^2 

 } 

fx1x2vc0<-  array(1:2*2*Lsig, dim=c(2,2,Lsig)) 

for (i in 1:Lsig){ 

  # f(x1,x2) 

  fx1x2vc0[,,i]<-  

matrix(c(s110[i],s120[i],s210[i],s220[i]) , nrow = 2, ncol= 

2)  

} 

#probability of successful phase II and III when tau=0 

probsucph2and30<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 
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for (i in 1:Lsig){ 

  probsucph2and30[i,1] <- 

pmvnorm(lower=c(k1,k2),upper=c(Inf,Inf),mean=c(mu,mu),sigma

=fx1x2vc0[,,i])  

} 

# probability of successful phase II 

probsucph20<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph20[i,1]<- pnorm(k1, mean = mu, sd = 

sqrt(4*sigma1^2/n1 + sigma[i]^2 + tau^2) , lower.tail = 

FALSE) 

} 

# total number of patients required to lead to the first 

#successful phase III 

totalexp.n0<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig) { 

  totalexp.n0[i,1]<-(n1 + n2*probsucph20[i]) / 

probsucph2and30[i]   

} 

# collating all the results into the dataset 

alldata0 <-

cbind(gam0,sigma,rho0,probsucph20,probsucph2and30,totalexp.

n0) 

alldata0<-data.frame(alldata0) 

sigma<-data.frame(sigma) 

names(alldata0) 

names(alldata0)[names(alldata0)=="V1"] <- "gam0" 

names(alldata0)[names(alldata0)=="V3"] <- "rho0" 

names(alldata0)[names(alldata0)=="V4"] <- "probsucph20" 

names(alldata0)[names(alldata0)=="V5"] <- "probsucph2and30" 
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names(alldata0)[names(alldata0)=="V6"] <- "totalexp.n0" 

# the same methods used for tau=0.5, 1, 1.5 & 2 

#----------# 

# tau==0.5 # 

#----------# 

sigma<-seq(0.1,10,0.3)  

tau<-0.5 # variance of the true response to treatment; same 

#for phase II and phase III  

# when tau =0.5 means the endpoint treatment effects have a 

#perfect correlation in other words they are the same 

#endpoint in both 

rho<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

gam<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

for (i in 1:Lsig ) { 

# using sigma and tau we can calculate the correlation rho 

  rho[i,1]<- (sigma[i]^2)/(sigma[i]^2 +tau^2)   

  gam[i,1]<- sigma[i]^2 +tau^2   

} 

s11<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s22<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s12<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s21<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

for (i in 1:Lsig)  

{#matrix The marginal distribution to calculate the 

# probability of success in phase II and III trials 

  s11[i,1]<- (4*sigma1^2/n1)+ gam[i] 

  s22[i,1]<- (4*sigma2^2/n2)+ gam[i] 

  s12[i,1] = s21[i,1] <- sigma[i]^2 

} 

fx1x2vc<-  array(1:2*2*Lsig, dim=c(2,2,Lsig)) 

for (i in 1:Lsig){ 
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# f(x1,x2) 

  fx1x2vc[,,i]<-  matrix(c(s11[i],s12[i],s21[i],s22[i]) , 

nrow = 2, ncol= 2) 

} 

#probability of successful phase II and III when tau=0.5 

probsucph2and3<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph2and3[i,1] <- 

pmvnorm(lower=c(k1,k2),upper=c(Inf,Inf),mean=c(mu,mu),sigma

=fx1x2vc[,,i])  

} 

# probability of successful phase II 

probsucph2<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

# total number of patients required to lead to the first 

successful phase III 

  probsucph2[i,1]<- pnorm(k1, mean = mu, sd = 

sqrt(4*sigma1^2/n1 + sigma[i]^2 + tau^2) , lower.tail = 

FALSE) 

} 

totalexp.n<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig) { 

  totalexp.n[i,1]<-(n1 + n2*probsucph2[i]) / 

probsucph2and3[i]  

} 

# collating results into the dataset  

alldata <- 

cbind(gam,sigma,rho,probsucph2,probsucph2and3,totalexp.n) 

alldata<-data.frame(alldata) 

sigma<-data.frame(sigma) 
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names(alldata) 

names(alldata)[names(alldata)=="V1"] <- "gam" 

names(alldata)[names(alldata)=="V3"] <- "rho" 

names(alldata)[names(alldata)=="V4"] <- "probsucph2" 

names(alldata)[names(alldata)=="V5"] <- "probsucph2and3" 

names(alldata)[names(alldata)=="V6"] <- "totalexp.n" 

#--------# 

# tau==1 # 

#--------# 

sigma<-seq(0.1,10,0.3)  

tau<-1 # variance of the true response to treatment; same 

#for phase II and phase III 

#when tau =1 means the endpoint treatment effects have a 

#perfect correlation in other words they are the same 

endpoint in both 

rho1<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

gam1<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

for (i in 1:Lsig ) { 

# using sigma and tau we can calculate the correlation rho 

  rho1[i,1]<- (sigma[i]^2)/(sigma[i]^2 +tau^2)   

  gam1[i,1]<- sigma[i]^2 +tau^2   

} 

s111<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s221<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s121<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s211<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

 

for (i in 1:Lsig)  

{#matrix - the marginal distribution to calculate the 

  # probability of success in phase II and III trials 

  s111[i,1]<- (4*sigma1^2/n1)+ gam1[i] 
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  s221[i,1]<- (4*sigma2^2/n2)+ gam1[i] 

  s121[i,1] = s211[i,1] <- sigma[i]^2 

} 

fx1x2vc1<-  array(1:2*2*Lsig, dim=c(2,2,Lsig)) 

for (i in 1:Lsig){ 

# f(x1,x2) 

  fx1x2vc1[,,i]<-  

matrix(c(s111[i],s121[i],s211[i],s221[i]) , nrow = 2, ncol= 

2) 

} 

#probability of successful phase II and III when tau=1 

probsucph2and31<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph2and31[i,1] <- 

pmvnorm(lower=c(k1,k2),upper=c(Inf,Inf),mean=c(mu,mu),sigma

=fx1x2vc1[,,i])  

} 

# probability of successful phase II 

probsucph21<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph21[i,1]<- pnorm(k1, mean = mu, sd = 

sqrt(4*sigma1^2/n1 + sigma[i]^2 + tau^2) , lower.tail = 

FALSE) 

} 

# total number of patients required to lead to the first 

#successful phase 

totalexp.n1<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig) { 

  totalexp.n1[i,1]<-(n1 + n2*probsucph21[i]) / 

probsucph2and31[i]  
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} 

# collating all the results into the dataset 

alldata1 <- 

cbind(gam1,sigma,rho1,probsucph21,probsucph2and31,totalexp.

n1) 

alldata1<-data.frame(alldata1) 

sigma<-data.frame(sigma) 

names(alldata1) 

names(alldata1)[names(alldata1)=="V1"] <- "gam1" 

names(alldata1)[names(alldata1)=="V3"] <- "rho1" 

names(alldata1)[names(alldata1)=="V4"] <- "probsucph21" 

names(alldata1)[names(alldata1)=="V5"] <- "probsucph2and31" 

names(alldata1)[names(alldata1)=="V6"] <- "totalexp.n1" 

#----------# 

# tau==1.5 # 

#----------# 

sigma<-seq(0.1,10,0.3)  

tau<-1.5 # variance of the true response to treatment; same 

#for phase II and phase III when tau =1.5 means the 

endpoint #treatment effects have a perfect correlation in 

other #words they are the same endpoint in both 

rho1.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

gam1.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig ) { 

# using sigma and tau we can calculate the correlation rho 

  rho1.5[i,1]<- (sigma[i]^2)/(sigma[i]^2 +tau^2)   

  gam1.5[i,1]<- sigma[i]^2 +tau^2   

} 

s111.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 
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s221.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

s121.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

s211.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

 

for (i in 1:Lsig)  

{ #matrix the marginal distribution to calculate the 

  # probability of success in phase II and III trials 

  s111.5[i,1]<- (4*sigma1^2/n1)+ gam1.5[i] 

  s221.5[i,1]<- (4*sigma2^2/n2)+ gam1.5[i] 

  s121.5[i,1] = s211.5[i,1] <- sigma[i]^2 

} 

fx1x2vc1.5<-  array(1:2*2*Lsig, dim=c(2,2,Lsig)) 

for (i in 1:Lsig){  

# f(x1,x2) 

  fx1x2vc1.5[,,i]<-  

matrix(c(s111.5[i],s121.5[i],s211.5[i],s221.5[i]) , nrow = 

2, ncol= 2) 

   

} 

#probability of successful phase II and III when tau=1.5 

probsucph2and31.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph2and31.5[i,1] <- 

pmvnorm(lower=c(k1,k2),upper=c(Inf,Inf),mean=c(mu,mu),sigma

=fx1x2vc1.5[,,i])  

} 

# probability of successful phase II 
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probsucph21.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph21.5[i,1]<- pnorm(k1, mean = mu, sd = 

sqrt(4*sigma1^2/n1 + sigma[i]^2 + tau^2) , lower.tail = 

FALSE) 

} 

# total number of patients required to lead to the first 

#successful phase 

totalexp.n1.5<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig) { 

  totalexp.n1.5[i,1]<-(n1 + n2*probsucph21.5[i]) / 

probsucph2and31.5[i]  

} 

# collating all the results into the dataset 

alldata1.5 <- 

cbind(gam1.5,sigma,rho1.5,probsucph21.5,probsucph2and31.5,t

otalexp.n1.5) 

alldata1.5<-data.frame(alldata1.5) 

sigma<-data.frame(sigma) 

names(alldata1.5) 

names(alldata1.5)[names(alldata1.5)=="V1"] <- "gam1.5" 

names(alldata1.5)[names(alldata1.5)=="V3"] <- "rho1.5" 

names(alldata1.5)[names(alldata1.5)=="V4"] <- 

"probsucph21.5" 

names(alldata1.5)[names(alldata1.5)=="V5"] <- 

"probsucph2and31.5" 

names(alldata1.5)[names(alldata1.5)=="V6"] <- 

"totalexp.n1.5" 

#--------# 

# tau==2 # 

#--------# 
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sigma<-seq(0.1,10,0.3)  

tau<-2 # variance of the true response to treatment; same 

#for phase II and phase III when tau =0 means the endpoint 

#treatment effects have a perfect correlation in other 

#words they are the same endpoint in both 

rho2<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

gam2<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

 

for (i in 1:Lsig ) { 

# using sigma and tau we can calculate the correlation rho 

  rho2[i,1]<- (sigma[i]^2)/(sigma[i]^2 +tau^2)   

  gam2[i,1]<- sigma[i]^2 +tau^2   

} 

s112<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s222<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s122<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

s212<- matrix(nrow=Lsig, ncol=1,dimnames = list(c(1:Lsig))) 

 

for (i in 1:Lsig)  

{#matrix The marginal distribution to calculate the  

# probability of success in phase II and III #trials 

  s112[i,1]<- (4*sigma1^2/n1)+ gam2[i] 

  s222[i,1]<- (4*sigma2^2/n2)+ gam2[i] 

  s122[i,1] = s212[i,1] <- sigma[i]^2 

} 

fx1x2vc2<-  array(1:2*2*Lsig, dim=c(2,2,Lsig)) 

for (i in 1:Lsig){ 

# f(x1,x2) 

  fx1x2vc2[,,i]<-  

matrix(c(s112[i],s122[i],s212[i],s222[i]) , nrow = 2, ncol= 

2)  
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} 

#probability of successful phase II and III when tau=0 

probsucph2and32<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph2and32[i,1] <- 

pmvnorm(lower=c(k1,k2),upper=c(Inf,Inf),mean=c(mu,mu),sigma

=fx1x2vc2[,,i])  

} 

# probability of successful phase II 

probsucph22<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig){ 

  probsucph22[i,1]<- pnorm(k1, mean = mu, sd = 

sqrt(4*sigma1^2/n1 + sigma[i]^2 + tau^2) , lower.tail = 

FALSE) 

} 

# total number of patients required to lead to the first 

successful phase 

totalexp.n2<- matrix(nrow=Lsig, ncol=1,dimnames = 

list(c(1:Lsig))) 

for (i in 1:Lsig) { 

  totalexp.n2[i,1]<-(n1 + n2*probsucph22[i]) / 

probsucph2and32[i]  

} 

# collating all the results into the dataset 

alldata2 <- 

cbind(gam2,sigma,rho2,probsucph22,probsucph2and32,totalexp.

n2) 

alldata2<-data.frame(alldata2) 

sigma<-data.frame(sigma) 

names(alldata2) 

names(alldata2)[names(alldata2)=="V1"] <- "gam2" 
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names(alldata2)[names(alldata2)=="V3"] <- "rho2" 

names(alldata2)[names(alldata2)=="V4"] <- "probsucph22" 

names(alldata2)[names(alldata2)=="V5"] <- "probsucph2and32" 

names(alldata2)[names(alldata2)=="V6"] <- "totalexp.n2" 

 

########################################################### 

#plots for the results 

#same endpoint 

 

# plot of sigma and number of patients required 

plot(c(0,10),c(900,14000), 

xlab=expression(italic(sigma)),ylab= "Number of Patients 

Per Successful Phase III", main= "Same Endpoints in Phase 

II and III Trials", type='n',family='serif') 

lines(alldata0$sigma,alldata0$totalexp.n0, col = "red", 

lty=1) 

 

#plot comparing the probability of successes of phase II 

only and phase II and III trials when both trials use the 

same endpoints (tau=0, 0.5, 1, 1.5, 2) 

plot(c(0,10),c(0,0.5), xlab=expression(italic(sigma)),ylab= 

"Probability of Success", main= "Same Endpoints in Phase II 

and III Trials", type='n',family='serif') 

lines(alldata0$sigma,alldata0$probsucph20, col = "red", 

lty=1) 

lines(alldata0$sigma,alldata0$probsucph2and30, col = 

"blue", lty=1) 

legend("bottomright", legend=c("Phase II","Phase II and 

III"), 

       col=c("red", "blue"), lty=c(1,1)) 

# tau=0.5 

plot(c(0,10),c(0,0.55), 

xlab=expression(italic(sigma)),ylab= "Probability of 
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Success",  main = bquote(~ tau == 0.5), 

type='n',family='serif') 

lines(alldata$sigma,alldata$probsucph2, col = "red", lty=1) 

lines(alldata$sigma,alldata$probsucph2and3, col = "blue", 

lty=1) 

legend("bottomright", legend=c("Phase II","Phase II and 

III"), 

       col=c("red", "blue"), lty=c(1,1)) 

# tau=1 

plot(c(0,10),c(0,0.55), 

xlab=expression(italic(sigma)),ylab= "Probability of 

Success",  main = bquote(~ tau == 1), 

type='n',family='serif') 

lines(alldata1$sigma,alldata1$probsucph21, col = "red", 

lty=1) 

lines(alldata1$sigma,alldata1$probsucph2and31, col = 

"blue", lty=1) 

legend("bottomright", legend=c("Phase II","Phase II and 

III"), 

       col=c("red", "blue"), lty=c(1,1)) 

# tau=1.5 

plot(c(0,10),c(0,0.55), 

xlab=expression(italic(sigma)),ylab= "Probability of 

Success",  main = bquote(~ tau == 1.5), 

type='n',family='serif') 

lines(alldata1.5$sigma,alldata1.5$probsucph21.5, col = 

"red", lty=1) 

lines(alldata1.5$sigma,alldata1.5$probsucph2and31.5, col = 

"blue", lty=1) 

legend("bottomright", legend=c("Phase II","Phase II and 

III"), 

       col=c("red", "blue"), lty=c(1,1)) 

# tau=2 
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plot(c(0,10),c(0,0.55), 

xlab=expression(italic(sigma)),ylab= "Probability of 

Success",  main = bquote(~ tau == 2), 

type='n',family='serif') 

lines(alldata2$sigma,alldata2$probsucph22, col = "red", 

lty=1) 

lines(alldata2$sigma,alldata2$probsucph2and32, col = 

"blue", lty=1) 

legend("bottomright", legend=c("Phase II","Phase II and 

III"), 

       col=c("red", "blue"), lty=c(1,1)) 

######################################################### 

#different endpoint scenario 

 

#plot of sigma and number of patients required; comparison 

of the effect of having the same endpoint in both trials 

and different endpoints 

plot(c(0,10),c(900,4000), 

xlab=expression(italic(sigma)),ylab= "Number of Patients 

Per Successful Phase III", type='n',family='serif') 

lines(alldata$sigma,alldata$totalexp.n, col = "orange", 

lty=1)  

lines(alldata1$sigma,alldata1$totalexp.n1, col = "blue", 

lty=1)  

lines(alldata1.5$sigma,alldata1.5$totalexp.n1.5, col = 

"purple", lty=1) 

lines(alldata2$sigma,alldata2$totalexp.n2, col = "black", 

lty=1) 

legend("topright", legend = c(#expression(paste(tau, " = ", 

0)), expression(paste(tau, " = ", 0.5)), 

expression(paste(tau, " = ", 1)),                             

expression(paste(tau, " = ", 1.5)),                              

expression(paste(tau, " = ", 2))),col=c("orange", 

"blue","purple","black"),lty = c(1,1,1,1)) 
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#plot showing the effect of correlation between endpoints 

and phase II efficiency 

plot(c(0,1),c(900,4000), xlab=expression(italic(rho)),ylab= 

"Number of Patients Per Successful Phase III", main= 

"Different Endpoint in Phase II and III 

trials",type='n',family='serif') 

lines(alldata$rho,alldata$totalexp.n, col = "orange", 

lty=1) 

lines(alldata1$rho1,alldata1$totalexp.n1, col = "blue", 

lty=1) 

lines(alldata1.5$rho1.5,alldata1.5$totalexp.n1.5, col = 

"purple", lty=1) 

lines(alldata2$rho2,alldata2$totalexp.n2, col = "black", 

lty=1) 

legend("topright", legend = c(expression(paste(tau, " = ", 

0.5)), expression(paste(tau, " = ", 1)),                              

expression(paste(tau, " = ", 1.5)),                              

expression(paste(tau, " = ", 2))),col=c("orange", 

"blue","purple","black"),lty = c(1,1,1,1)) 

########################################################### 

###################### CONTOUR PLOTS ###################### 

########################################################### 

# Contour plot NOT NEEDED for TAU=0 as RHO=1 so  

# expected number of patients required to reach the first 

successful phase III trial 

# only ranges with sigma 

# when tau>0 rho and sigma both have a range of values and 

therefore both affect the  

# expected number of patients required to lead to the first 

successful phase III trial 

install.packages("plotly") # ggplot need for this 

library(plotly) 

p <- plot_ly(data = alldata, x=~sigma,y=~rho, 

z=~totalexp.n, type = "contour", colorscale='Viridis') 
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p # tau=0.5 

 

p1 <- plot_ly(data = alldata1, x=~sigma,y=~rho1, 

z=~totalexp.n1, type = "contour", colorscale='Viridis') 

p1 # tau=1 

 

p1.5 <- plot_ly(data = alldata1.5, x=~sigma,y=~rho1.5, 

z=~totalexp.n1.5, type = "contour", colorscale='Viridis') 

p1.5 # tau=1.5 

 

p2 <- plot_ly(data = alldata2, x=~sigma,y=~rho2, 

z=~totalexp.n2, type = "contour", colorscale='Viridis') 

p2 # tau=2 

  



166 
 

 

Appendix C Graphs for the probability of success in phase II 

and probability of success in phase II and III trials for 

different values of 𝝉 
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Appendix D R code for the design evaluations 

D.1 Randomised single-stage design evaluations 

# loading needed packages 

library("plyr") 

# fixing a seed to obtain reproducible results 

set.seed(2212022) 

#true treatment effects 

truedelta<- rnorm(10000, 0, 1) 

logdelta<- truedelta*(pi/sqrt(3)) 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(Delta)) 

curve(dnorm(x, mean(truedelta), sd(truedelta)), add=TRUE, 

col="darkblue", lwd=2) 

 

p.1<- 0.25 # control arm's probability of success 

 

# corresponding true phase II treatment effects 

c <- log(p.1/(1-p.1)) # log odds ratio of the control arm's 

#probability of success  

p.2 <- ((exp(truedelta*pi/sqrt(3))*p.1 

))/((p.1*(exp(truedelta*pi/sqrt(3))  - 1)  + 1))   

# the inverse log of the normally distributed treatment 

effects 

# how the true delta is correlated to p.2 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(mu[2])) 

plot(truedelta, p.2, xlim = c(-4,4), ylim = c(0,1),xlab = 

expression(mu[2]), ylab =expression(p[2]) ) 

Deltatrue<- data.frame(p.2,truedelta) 
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get.sample.sizeph2 <- function(alpha,power,p.1, delta2) 

  # function to do standard sample size calculation for a 

#1:1 randomised ph2 trial 

  # N.B. alpha is one-sided error rate and sample size is 

#total for two arms 

{    

 round((2*(p.1*(1 - p.1) + (p.1+delta2)*(1 - 

(p.1+delta2)))*((qnorm(1-alpha)+qnorm(power))^2)/ 

(delta2^2)/2)*2) 

}  

 

get.sample.sizeph3 <- function(sigma,alpha,power,delta1) 

  # function to do standard sample size calculation 

#assuming sigma = 1 

  # N.B. alpha is two-sided error rate and sample size is 

#total for two arms 

{ 

  round((2 * 2 *sigma*sigma*(qnorm(1-

(alpha/2))+qnorm(power))^2/(delta1^2))/2)*2 

} 

alpha=0.05 # type I error for phase II and III trials 

power=0.8 # 1-type II error for phase II and III trials 

delta1=0.3 # delta1 is the clinically significant 

#difference we wish to detect in phase III 

delta2=0.2# delta2 is the csd we wish to detect in phase II 

sigma<-1 # sd for underlying treatment effect 

 

n3<-get.sample.sizeph3(sigma, alpha, power, delta1) 

# sample size of the phase III trial depends on alpha, 

#power, sigma and delta1 which is the treatment effect we 

#wish to detect  
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n2<-get.sample.sizeph2(alpha,power, p.1, delta2) 

# sample size of the phase II trial depends on alpha, 

#power, p.1 and delta1 which is the treatment effect we 

#wish to detect 

mu1<-0 # control arm mean 

sigma1<- sigma2 <-1 # variance of phase II and III trial 

#responses 

l<-15 

control3<- rnorm(10000,mu1,sigma1) # patients available for 

control arm in phase III 

mu2<-list() 

experimental3<-list() 

ph3samplecontrol <- list() 

ph3sampleexp <- list() 

ph3test<-list() 

pv3<-list() 

control2<-rbinom(10000,1,p.1) # patients available for 

control arm in phase II 

ph2delta<-c() 

experimental2<-list() 

ph2samplecontrol<-list() 

ph2sampleexp<-list() 

total<- list() 

ph2test<-list() 

pv2<-c() 

ph2tabexp<-list() 

ph2tab<-list() 

ph2tabcont<-list() 

ph2vecs<-vector() 

ph2grp<-vector() 

total<- list() 
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ph2test<-list() 

pv2<-c() 

ph2tabexp<-list() 

ph2tabcont<-list() 

x<-c() 

n<-c() 

phase_III_ready <- FALSE 

phase_II_ready<- TRUE 

r2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

result<-lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

 

for (i in 1:l){ 

# loop to start the simulation 

  pop <- 500000 # patients in the population 

  while( pop > (n3)){ 

    # continues until there’s enough patients for the phase 

#III trial 

    if(phase_III_ready & phase_II_ready){ 

      #run phase III trial 

      mu2<- (sqrt(3)*log(((p.1*ph2delta)-

ph2delta)/(p.1*(ph2delta-1))))/pi 

      # mu2 is the treatment effect tested in phase 3 and 

#corresponds to p.2 

      experimental3<-rnorm(10000,mu2,sigma2) 

      # patients available to be entered in the 

#experimental arm 

      ph3samplecontrol<- sample(control3, n3/2, 

replace=FALSE) # sample n2/2 patients for the phase III 
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      #half patients sampled in control arm 

      ph3sampleexp<- sample(experimental3, n3/2, 

replace=FALSE) # sample the remaining patients for the 

#phase III 

      #half patients sampled in experimental arm 

      ph3test<-t.test(ph3samplecontrol,ph3sampleexp, 

var.equal= TRUE, mu= 0, alternative = "t")  

#running the two-sample t-test: 

    pv3 <- ph3test$p.value # pvalue extracted    

      if (pv3 <= alpha & mu2>0){ 

        # ph3 successful if pvalue<=alpha and the treatment 

#effect>0 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<- c(r3[[i]],1) 

        pop <- pop - n3 

      }  

      else { 

        # ph3 unsuccessful 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<-c(r3[[i]],0) 

        pop<- pop - n3 

      } 

       

      phase_III_ready <- FALSE  

       

    } else { 

      if(pop> n3 + n2) { 

# enough patients in population to run both ph. II and III 

        phase_II_ready<- TRUE 

        #phase II simulations  

        ph2delta<- sample(p.2,1,replace = FALSE) 
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        experimental2<-rbinom(10000,1,ph2delta) 

        ph2samplecontrol <- sample(control2, n2/2, 

replace=FALSE) # sampled 1/2 n in control 

        ph2sampleexp <- sample(experimental2,n2/2, 

replace=FALSE) # sampled 1/2 n in experimental 

        ph2samplecontrol<- factor(ph2samplecontrol,c(0,1), 

labels = c('fail','success')) 

        ph2sampleexp<- factor(ph2sampleexp,c(0,1), labels = 

c('fail','success')) 

        ph2tabexp<-table(ph2sampleexp) 

        ph2tabcont<-table(ph2samplecontrol) 

        x<-c(ph2tabcont[2],ph2tabexp[2]) 

        n<-c(ph2tabcont[2]+ph2tabcont[1], 

ph2tabexp[2]+ph2tabexp[1]) 

        ph2test<-prop.test(x, n, alternative = c("l"), 

conf.level = (1- alpha), correct = FALSE) # run ph2 trial 

        pv2 <- ph2test$p.value # extract the p-value 

        if (pv2 <= alpha & !is.na(pv2)){ 

          #ph2 success 

          td2[[i]]<- c(td2[[i]], ph2delta) 

          r2[[i]] <- c(r2[[i]],1) 

          phase_III_ready <- TRUE 

          pop <- pop - n2 # take away patients used 

        }  

        else { 

          # phase II failure 

          td2[[i]]<- c(td2[[i]], ph2delta) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2[[i]] <- c(r2[[i]],0) 

          phase_III_ready <- FALSE 

          r3[[i]] <- c(r3[[i]], 3) 
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          pop <- pop - n2 

        } 

      } else {break 

} 

    } 

   } 

  } 

tot.ph2<-list() 

tot.ph3succ<- list() 

tot.ph3fail<- list() 

tot.ALL<- list() 

tot.ph3<-list() 

tot.ph2succ<-list() 

tot.ph2fail<- list() 

b <-list() 

r3.f<-list() 

r2.f<-list() 

a<-list() 

for (i in 1:l){ 

  # collating results 

  result[[i]]<- cbind(r2[[i]],r3[[i]], td2[[i]], td3[[i]])  

  result[[i]]<-data.frame(result[[i]])  

  result[[i]]<-result[[i]][-1,] 

  names(result[[i]])<- c("ph2out", "ph3out", "p2", "m2") 

  tot.ph2[[i]]<-nrow(result[[i]]) 

  r3.f[[i]] <- factor(result[[i]][,2], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f[[i]] <- factor(result[[i]][,1], levels = 

c(1,0),labels = c("success", "fail")) 
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  b[[i]]<- data.frame(table(r3.f[[i]])) 

  a[[i]]<- data.frame(table(r2.f[[i]]) 

  tot.ph3fail[[i]]<- b[[i]][2,2] # no. phase 3 fails 

  tot.ph3succ[[i]]<-b[[i]][1,2] # no. phase 3 successes 

  tot.ph2fail[[i]]<- a[[i]][2,2] # no. phase 2 fails 

  tot.ph2succ[[i]]<-a[[i]][1,2] # no. phase 2 success 

  tot.ph3[[i]]<- b[[i]][1,2] + b[[i]][2,2] # total phase 

#III run 

# collating results 

ph2<-unlist(tot.ph2) 

ph3<-unlist(tot.ph3) 

ph2fail<-unlist(tot.ph2fail) 

ph3fail<-unlist(tot.ph3fail) 

ph2succ<- unlist(tot.ph2succ) 

ph3succ<- unlist(tot.ph3succ) 

randss.res<- data.frame(ph2) 

randss.res<-cbind(randss.res, ph3) 

randss.res<-cbind(randss.res, ph2fail) 

randss.res<-cbind(randss.res, ph3fail) 

randss.res<-cbind(randss.res, ph2succ) 

randss.res<-cbind(randss.res, ph3succ) 

# descriptive stats 

summary(randss.res$ph3succ) # phase 3 success 

summary(randss.res$ph3fail) # phase 3 fails 

summary(randss.res$ph3) # total phase 3 

summary(randss.res$ph2) # total phase 2 

summary(randss.res$ph2succ) # phase 2 success 

summary(randss.res$ph2fail) # phase 2 fails 
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D.2 Randomised two-stage (Jung’s) design evaluations 

# loading needed packages 

library("plyr") 

# fixing a seed to obtain reproducible results 

set.seed(2512022) 

#true treatment effects 

truedelta<- rnorm(10000, 0, 1) 

# histogram of true treatment effect 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(Delta)) 

curve(dnorm(x, mean(truedelta), sd(truedelta)), add=TRUE, 

col="darkblue", lwd=2) 

p.1<- 0.25 # control arm's probability of success 

# corresponding true phase II treatment effects 

c <- log(p.1/(1-p.1)) # log odds ratio of the control arm's 

#probability of success  

p.2 <- ((exp(truedelta*pi/sqrt(3))*p.1 

))/((p.1*(exp(truedelta*pi/sqrt(3))  - 1)  + 1))  # the 

#inverse log of the normally distributed treatment effects 

# how the true delta is correlated to p.2 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(mu[2])) 

plot(truedelta, p.2, xlim = c(-4,4), ylim = c(0,1),xlab = 

expression(mu[2]), ylab =expression(p[2]) ) 

Deltatrue<- data.frame(p.2,truedelta) 

 

get.sample.sizeph3 <- function(sigma,alpha,power,delta1) 

  # function to do standard sample size calculation 

#assuming sigma = 1 

  # N.B. alpha is two-sided error rate and sample size is 

#total for two arms 

{ 
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  round((2 * 2 *sigma*sigma*(qnorm(1-

(alpha/2))+qnorm(power))^2/(delta1^2))/2)*2 

} 

 

alpha=0.05 # type I error for phase III trials 

power=0.8 # 1-type II error for phase III trials 

delta1=0.3 # delta1 is the clinically significant 

#difference we wish to detect in phase III 

delta2=0.2 #delta2 is the csd we wish to detect in phase II 

sigma<-1 # sd for underlying treatment effect 

 

n3<-get.sample.sizeph3(sigma, alpha, power, delta1) 

# sample size of the phase III trial depends on alpha, 

#power, sigma and delta1 which is the treatment effect we 

#wish to detect  

# get the sample size for the two-stage phase II trials 

# sample size and critical values obtained from Fortran 

code for Jung’s design 

# OC for this design is alpha=0.05, beta=0.2, delta2=0.2 

and p0=0.25 therefore p1=0.45 

n2 <- 112 # total sample size for a randomised two-stage 

design 

n2.1 <- 13 # number of patients in each arm in the first 

stage 

n2.2<- 43 # number of patients in each arm in the second 

stage 

a1 <- 2 # critical value in the 1st stage 

a <- 8 # cumulative critical value of 1st and 2nd stage 

mu1<-0 # control arm mean 

sigma1<- sigma2 <-1 

l=15 
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control3<- rnorm(10000,mu1,sigma1) # patients available for 

control arm in phase III 

mu2<-list() 

experimental3<-list() 

ph3samplecontrol <- list() 

ph3sampleexp <- list() 

ph3test<-list() 

pv3<-list() 

control2<-rbinom(n=10000,size=1, prob=p.1) # patients 

available for control arm in phase II 

ph2delta<-c() 

experimental2<-list() 

ph2sample.1<-list() 

ph2sample.2<-list() 

ph2sample2.1<- list() 

ph2sample2.2<- list() 

ph2table2.2<- list() 

ph2table2.1<- list() 

ph2vecs<-vector() 

ph2grp<-vector() 

total<- list() 

ph2test<-list() 

pv2<-c() 

ph2table<-list() 

response.1<- list() 

response.2<- list() 

response<- list() 

ph2table.1<- list() 

ph2table.2<- list() 

x1<- list() 
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y1<- list()   

obs_a1<- list() 

x2<- list() 

y2<- list() 

obs_y<- list() 

obs_x<- list() 

obs_a<- list() 

 

x<-c() 

n<-c() 

phase_III_ready <- FALSE 

phase_II_2ndstage_ready<- FALSE 

phase_II_1ststage_ready<- TRUE 

 

r2.1<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r2.2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

 

r3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

result<-lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2.1<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2.2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

rr<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

 

for (i in 1:l){ 

  pop <- 500000 #population available 

  while( pop > (n3)){ 

    # run loop until there isn’t enough patients to run 

#phase III trial 
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    if(phase_III_ready & phase_II_1ststage_ready & 

phase_II_2ndstage_ready){ 

      #run phase III trial 

      mu2<- (sqrt(3)*log(((p.1*ph2delta)-

ph2delta)/(p.1*(ph2delta-1))))/pi 

      # mu2 is the treatment effect tested in phase 3 and 

#corresponds to p.2 

      experimental3<-rnorm(10000,mu2,sigma2) 

      # patients available to be entered in the 

#experimental arm 

      ph3samplecontrol<- sample(control3, n3/2, 

replace=FALSE) # sample n3/2 patients for the phase III 

      #half patients sampled in control arm 

      ph3sampleexp<- sample(experimental3, n3/2, 

replace=FALSE) # sample the remaining patients for the 

#phase III 

      #half patients sampled in experimental arm 

      ph3test<-t.test(ph3samplecontrol,ph3sampleexp, 

var.equal= TRUE, mu= 0, alternative = "t")  

#running the two-sample t-test: 

       pv3 <- ph3test$p.value     

      if (pv3 <= alpha & mu2>0){ 

        #successful phase III 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<- c(r3[[i]],1) 

        td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

        pop <- pop - n3 

      }  

      else { 

        # failed phase III 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<-c(r3[[i]],0) 
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        td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

        pop<- pop - n3 # take out patients from the 

population 

      }       

      phase_III_ready <- FALSE  

      } else { 

      if(pop> n3 + n2) { 

        phase_II_1ststage_ready<- TRUE 

        #first stage phase II simulations  

        ph2delta<- sample(p.2,1,replace = FALSE) 

        experimental2<-rbinom(10000,1,ph2delta) 

        ph2sample.1<- sample(experimental2, n2.1, 

replace=FALSE) # sample the patients for the phase II 

        # trial from the experimental patients distribution 

        ph2sample.1 <- factor(ph2sample.1,levels = c(0,1), 

labels = c("0", "1")) 

        ph2table.1<-table(ph2sample.1)  

        x1<-table(ph2sample.1)["1"] 

        ph2sample.2<- sample(control2, n2.1, replace=FALSE) 

# sample the patients for the phase II 

        # trial from the control patients distribution 

        ph2sample.2 <- factor(ph2sample.2,levels = c(0,1), 

labels = c("0", "1")) 

        ph2table.2<-table(ph2sample.2)  

        y1<-table(ph2sample.2)["1"] 

        obs_a1<- x1 - y1 

        if (obs_a1 >= a1){ 

          # successful 1st stage of phase II 

          phase_II_2ndstage_ready <- TRUE 

          pop <- pop - (n2.1*2)  

        } 
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        else { 

          # failed 1st stage phase II 

          td2.2[[i]]<- c(td2.2[[i]], NA) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2.2[[i]] <- c(r2.2[[i]],3)  

# 2nd stage didn't run 

          r2.1[[i]] <- c(r2.1[[i]],0)  

# 1st stage unsuccessful 

          phase_II_2ndstage_ready<- FALSE 

          phase_III_ready <- FALSE 

          phase_II_1ststage_ready<- TRUE 

          r3[[i]] <- c(r3[[i]], 3) # phase III didn't run 

          td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

          pop <- pop - (n2.1*2) # take out patients used 

#first stage 

        } 

        if (phase_II_2ndstage_ready == TRUE) { 

          # run 2nd stage 

          ph2sample2.1<- sample(experimental2, n2.2, 

replace=FALSE) # sample the patients for the phase II 

          # trial from the experimental patients 

distribution 

          ph2sample2.1 <- factor(ph2sample2.1,levels = 

c(0,1), labels = c("0", "1")) 

          ph2table2.1<-table(ph2sample2.1)  

          x2<-table(ph2sample2.1)["1"] 

          obs_x<- x1 + x2 

         ph2sample2.2<- sample(control2, n2.2, 

replace=FALSE) # sample the patients for the phase II 

          # trial from the control patients distribution 
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          ph2sample2.2 <- factor(ph2sample2.2,levels = 

c(0,1), labels = c("0", "1")) 

          ph2table2.2<-table(ph2sample2.2)  

          y2<-table(ph2sample2.2)["1"] 

          obs_y<- y1 + y2 

          obs_a<-obs_x - obs_y 

         if (obs_a >= a){ 

            # phase II success 

            td2.2[[i]]<- c(td2.2[[i]], ph2delta) 

            r2.1[[i]] <- c(r2.1[[i]],1) 

            r2.2[[i]] <- c(r2.2[[i]],1) 

            phase_III_ready <- TRUE 

            pop <- pop - (n2.2*2)# take out patients used 

in second stage 

          } 

         else {  

            # failed second stage 

            td2.2[[i]]<- c(td2.2[[i]], ph2delta) 

            td3[[i]]<- c(td3[[i]], NA) 

            r2.1[[i]] <- c(r2.1[[i]],1) 

            r2.2[[i]] <- c(r2.2[[i]],0) 

            phase_III_ready <- FALSE 

            r3[[i]] <- c(r3[[i]], 3) 

            td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

            phase_II_1ststage_ready<- TRUE 

            phase_II_2ndstage_ready<- FALSE 

            pop <- pop - (n2.2*2)# take out patients used 

in second stage 

          } 

        }  

       } 
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else {break 

} 

   } 

  } 

}   

tot.ph2<-list() 

tot.ph3succ<- list() 

tot.ph3fail<- list() 

tot.ALL<- list() 

tot.ph3<-list() 

tot.ph2succ<-list() 

tot.ph2fail<- list() 

b <-list() 

r3.f<-list() 

r2.f.1<-list() 

r2.f.2<-list() 

a<-list() 

c<- list() 

#collating results 

for (i in 1:l){ 

  result[[i]]<- cbind(r2.1[[i]], r2.2[[i]],r3[[i]], 

td2.1[[i]], td2.2[[i]], td3[[i]])  

  result[[i]]<-data.frame(result[[i]])  

  result[[i]]<-result[[i]][-1,] 

  names(result[[i]])<- c("ph2out.1","ph2out.2", "ph3out", 

"p2", "p2", "m2") 

  tot.ph2[[i]]<-nrow(result[[i]]) 

  r3.f[[i]] <- factor(result[[i]][,3], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f.2[[i]] <- factor(result[[i]][,2], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 
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  r2.f.1[[i]] <- factor(result[[i]][,1], levels = 

c(1,0),labels = c("success", "fail")) 

  c[[i]]<- data.frame(table(r3.f[[i]])) # table of 

successful/unsuccessful phase III  

  a[[i]]<- data.frame(table(r2.f.1[[i]])) # table of 

successful/unsuccessful phase II st1 

  b[[i]]<- data.frame(table(r2.f.2[[i]])) # table of 

successful/unsuccessful phase II st2 

tot.ph3fail[[i]]<- c[[i]][2,2]# no. phase 3 fails 

tot.ph3succ[[i]]<-c[[i]][1,2] # no. phase 3 successes 

tot.ph2fail[[i]]<- a[[i]][2,2] + b[[i]][2,2]# no. phase 2 

#fails 

tot.ph2succ[[i]]<-b[[i]][1,2]# no. phase 2 success 

tot.ph3[[i]]<- c[[i]][1,2] + c[[i]][2,2]# total phase  

#III run 

# collating results 

ph2<-unlist(tot.ph2) 

ph3<-unlist(tot.ph3) 

ph2fail<-unlist(tot.ph2fail) 

ph3fail<-unlist(tot.ph3fail) 

ph2succ<- unlist(tot.ph2succ) 

ph3succ<- unlist(tot.ph3succ) 

 

randts.res<- data.frame(ph2) 

randts.res<-cbind(randts.res, ph3) 

randts.res<-cbind(randts.res, ph2fail) 

randts.res<-cbind(randts.res, ph3fail) 

randts.res<-cbind(randts.res, ph2succ) 

randts.res<-cbind(randts.res, ph3succ) 

# descriptive stats 

summary(randts.res$ph3succ) # phase 3 success 
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summary(randts.res$ph3fail) # phase 3 fails 

summary(randts.res$ph3) # total phase 3 

summary(randts.res$ph2) # total phase 2 

summary(randts.res$ph2succ) # phase 2 success 

summary(randts.res$ph2fail) # phase 2 fails 
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D.3 Single-arm single-stage (A’hern’s) design evaluations 

# loading needed packages 

library("plyr") 

# fixing a seed to obtain reproducible results 

set.seed(1212022) 

#true treatment effects 

truedelta<- rnorm(10000, 0, 1) 

logdelta<- truedelta*(pi/sqrt(3)) 

# histogram of distribution of treatment effect of 

#available treatments  

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(Delta)) 

curve(dnorm(x, mean(truedelta), sd(truedelta)), add=TRUE, 

col="darkblue", lwd=2) 

p.1<- 0.25 # control arm's probability of success 

# corresponding true phase II treatment effects 

c <- log(p.1/(1-p.1)) # log odds ratio of the control arm's 

#probability of success  

p.2 <- ((exp(truedelta*pi/sqrt(3))*p.1 

))/((p.1*(exp(truedelta*pi/sqrt(3))  - 1)  + 1))  # the 

#inverse log of the normally distributed treatment effects 

 

# how the true delta is correlated to p.2 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(mu[2])) 

plot(truedelta, p.2, xlim = c(-4,4), ylim = c(0,1),xlab = 

expression(mu[2]), ylab =expression(p[2]) ) 

Deltatrue<- data.frame(p.2,truedelta) 

get.sample.sizeph3 <- function(sigma,alpha,power,delta1) 

  # function to do standard sample size calculation 

#assuming sigma = 1 
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  # N.B. alpha is two-sided error rate and sample size is 

#total for two arms 

{ 

 round((2 * 2 *sigma*sigma*(qnorm(1-

(alpha/2))+qnorm(power))^2/(delta1^2))/2)*2 

} 

alpha=0.05 # type I error for phase II and III trials 

power=0.8 # 1-type II error for phase II and III trials 

delta1=0.3 # delta1 is the clinically significant 

difference we wish to detect in phase III 

delta2=0.2# delta2 is the csd we wish to detect in phase II 

sigma<-1 # sd for underlying treatment effect 

 

n3<-get.sample.sizeph3(sigma, alpha, power, delta1) 

# sample size of the phase III trial depends on alpha, 

power, sigma  

# and delta1 which is the treatment effect we wish to 

detect  

# sample size of the phase II trial depends on alpha, 

power, p.1 

# and delta1 which is the treatment effect we wish to 

detect.  

# A'hern exact single-stage design is used to obtain the 

sample size  

# and the success cut off value. 

# from the paper n2=36 and r =14  

n2<-36 # total sample size 

r<-14 # more than or equal to 14 then phase II is a success  

mu1<-0 # control arm mean 

sigma1<- sigma2 <-1 # variance of phase II and III trial 

#responses 

l<-15 
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control3<- rnorm(10000,mu1,sigma1) # patients available for 

control arm in phase III 

mu2<-list() 

experimental3<-list() 

ph3samplecontrol <- list() 

ph3sampleexp <- list() 

ph3test<-list() 

pv3<-list() 

control2<-rbinom(10000,1,p.1) # patients available for 

control arm in phase II 

ph2delta<-c() 

experimental2<-list() 

ph2samplecontrol<-list() 

ph2sampleexp<-list() 

total<- list() 

ph2test<-list() 

pv2<-c() 

ph2tabexp<-list() 

ph2tab<-list() 

ph2tabcont<-list() 

response<- list() 

 

phase_III_ready <- FALSE 

phase_II_ready<- TRUE 

 

r2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

result<-lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 
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rr<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

for (i in 1:l){ 

  pop <- 500000 

# population of patients available 

  while( pop > (n3)){ 

    #loop continues until not enough patients for phase III  

    if(phase_III_ready & phase_II_ready){ 

      #run phase III trial 

      mu2<- (sqrt(3)*log(((p.1*ph2delta)-

ph2delta)/(p.1*(ph2delta-1))))/pi 

      experimental3<-rnorm(10000,mu2,sigma2) 

       

      ph3samplecontrol<- sample(control3, n3/2, 

replace=FALSE) # sample n2/2 patients for the phase III 

      ph3sampleexp<- sample(experimental3, n3/2, 

replace=FALSE) # sample the remaining patients for the 

phase III 

      ph3test<-t.test(ph3samplecontrol,ph3sampleexp, 

var.equal= TRUE, mu= 0, alternative = "t")  

#running the two-sample t-test:           

      pv3 <- ph3test$p.value 

           

      if (pv3 <= alpha & mu2>0){ 

# phase III successful 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<- c(r3[[i]],1) 

        pop <- pop - n3 #take out used patients in trial 

      }  

      else { 

# phase III fail 

        td3[[i]]<- c(td3[[i]], mu2) 
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        r3[[i]]<-c(r3[[i]],0) 

        pop<- pop - n3 #take out used patients in trial 

      } 

      phase_III_ready <- FALSE  

    } else { 

# if there’s enough patients for phase II and III run loop 

      if(pop> n3 + n2) { 

        phase_II_ready<- TRUE 

        #phase II simulations  

        ph2delta<- sample(p.2,1,replace = FALSE) 

        experimental2<-rbinom(10000,1,ph2delta) 

       ph2sample<- sample(experimental2, n2, replace=FALSE) 

# sample the patients for the phase II 

       # trial from the experimental patients distribution 

       ph2sample <- factor(ph2sample,levels = c(0,1), 

labels = c("0", "1")) 

       ph2expdata<-data.frame(ph2sample) 

       names(ph2expdata)[names(ph2expdata) == 

"ph2sampleexp"] <- "ph2" 

       ph2table<-table(ph2sample)  

       response<-table(ph2sample)["1"] 

        if (response >= r){ 

          td2[[i]]<- c(td2[[i]], ph2delta) 

          r2[[i]] <- c(r2[[i]],1) 

          phase_III_ready <- TRUE 

          pop <- pop - n2 #take out used patients in trial 

        }  

        else { 

          td2[[i]]<- c(td2[[i]], ph2delta) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2[[i]] <- c(r2[[i]],0) 
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          phase_III_ready <- FALSE 

          r3[[i]] <- c(r3[[i]], 3) 

          pop <- pop - n2 #take out used patients in trial 

        } 

      } else {break 

}  

    }  

  } 

} 

tot.ph2<-list() 

tot.ph3succ<- list() 

tot.ph3fail<- list() 

tot.ALL<- list() 

tot.ph3<-list() 

tot.ph2succ<-list() 

tot.ph2fail<- list() 

b <-list() 

r3.f<-list() 

r2.f<-list() 

a<-list() 

# collating results 

for (i in 1:l){ 

  result[[i]]<- cbind(r2[[i]],r3[[i]], td2[[i]], td3[[i]])  

  result[[i]]<-data.frame(result[[i]])  

  result[[i]]<-result[[i]][-1,] 

  names(result[[i]])<- c("ph2out", "ph3out", "p2", "m2") 

  tot.ph2[[i]]<-nrow(result[[i]]) 

  r3.f[[i]] <- factor(result[[i]][,2], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 
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  r2.f[[i]] <- factor(result[[i]][,1], levels = 

c(1,0),labels = c("success", "fail")) 

   

  b[[i]]<- data.frame(table(r3.f[[i]])) 

  a[[i]]<- data.frame(table(r2.f[[i]])) 

  tot.ph3fail[[i]]<- b[[i]][2,2] # no. phase 3 fails 

  tot.ph3succ[[i]]<-b[[i]][1,2] # no. phase 3 successes 

  tot.ph2fail[[i]]<- a[[i]][2,2] # no. phase 2 fails 

  tot.ph2succ[[i]]<-a[[i]][1,2] # no. phase 2 success 

  tot.ph3[[i]]<- b[[i]][1,2] + b[[i]][2,2] # total phase 

#III run 

# collating results 

ph2<-unlist(tot.ph2) 

ph3<-unlist(tot.ph3) 

ph2fail<-unlist(tot.ph2fail) 

ph3fail<-unlist(tot.ph3fail) 

ph2succ<- unlist(tot.ph2succ) 

ph3succ<- unlist(tot.ph3succ) 

singless.res<- data.frame(ph2) 

singless.res<-cbind(singless.res, ph3) 

singless.res<-cbind(singless.res, ph2fail) 

singless.res<-cbind(singless.res, ph3fail) 

singless.res<-cbind(singless.res, ph2succ) 

singless.res<-cbind(singless.res, ph3succ) 

# descriptive stats 

summary(singless.res$ph3succ) # phase 3 success 

summary(singless.res$ph3fail) # phase 3 fails 

summary(singless.res$ph3) # total phase 3 

summary(singless.res$ph2) # total phase 2 

summary(singless.res$ph2succ) # phase 2 success 
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summary(singless.res$ph2fail) # phase 2 fails 
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D.4 Single-arm two-stage design (Simon’s minimax) design 

# loading needed packages 

library("plyr") 

install.packages("clinfun") 

library('clinfun') 

# fixing a seed to obtain reproducible results 

set.seed(2622022) 

#true treatment effects 

truedelta<- rnorm(10000, 0, 1) 

# histogram of distribution for treatment effects available 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(Delta)) 

curve(dnorm(x, mean(truedelta), sd(truedelta)), add=TRUE, 

col="darkblue", lwd=2) 

p.1<- 0.25 # control arm's probability of success 

# corresponding true phase II treatment effects 

c <- log(p.1/(1-p.1)) # log odds ratio of the control arm's 

#probability of success  

p.2 <- ((exp(truedelta*pi/sqrt(3))*p.1 

))/((p.1*(exp(truedelta*pi/sqrt(3))  - 1)  + 1))  # the 

#inverse log of the normally distributed treatment effects 

# how the true delta is correlated to p.2 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(mu[2])) 

plot(truedelta, p.2, xlim = c(-4,4), ylim = c(0,1),xlab = 

expression(mu[2]), ylab =expression(p[2]) ) 

Deltatrue<- data.frame(p.2,truedelta) 

get.sample.sizeph3 <- function(sigma,alpha,power,delta1) 

  # function to do standard sample size calculation 

assuming sigma = 1 

  # N.B. alpha is one-sided error rate and sample size is 

total for two arms 
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{ 

  round((2 * 2 *sigma*sigma*(qnorm(1-

(alpha/2))+qnorm(power))^2/(delta1^2))/2)*2 

} 

alpha=0.05 # type I error for phase II and III trials 

power=0.8 # 1-type II error for phase II and III trials 

delta1=0.3 # delta1 is the clinically significant 

#difference we wish to detect in phase III 

delta2=0.2# delta2 is the csd we wish to detect in phase II 

sigma<-1 # sd for underlying treatment effect 

 

n3<-get.sample.sizeph3(sigma, alpha, power, delta1) 

# sample size of the phase III trial depends on alpha, 

power, sigma  

# and delta1 which is the treatment effect we wish to 

detect  

 

# get the sample size for the two-stage phase II trials 

minimax 

ph2simon(p.1, p.1+delta2, 0.05, 0.2) 

n2<-36 # total 

n2.1<-17 # stage 1 sample size 17 

r1<- 4 #need to see more than 4 responses to proceed to 2nd 

#stage 

# if we see more than 4 responses proceed to stage 2 and 

proceed to phase III with the novel treatment 

n2.2<-36 - 17 # stage 2 sample size is 41-17=24 

r<-13 #need to see more than 14 responses in total  

mu1<-0 # control arm mean 

sigma1<- sigma2 <-1 

l=15 
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control3<- rnorm(10000,mu1,sigma1) # patients available for 

#control arm in phase III 

mu2<-list() 

experimental3<-list() 

ph3samplecontrol <- list() 

ph3sampleexp <- list() 

ph3test<-list() 

pv3<-list() 

control2<-p.1 # patients available for control arm in phase 

II 

ph2delta<-c() 

experimental2<-list() 

ph2sample.1<-list() 

ph2sample.2<-list() 

ph2vecs<-vector() 

ph2grp<-vector() 

total<- list() 

ph2test<-list() 

ph2table<-list() 

response.1<- list() 

response.2<- list() 

response<- list() 

phase_III_ready <- FALSE 

phase_II_2ndstage_ready<- FALSE 

phase_II_1ststage_ready<- TRUE 

 

r2.1<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r2.2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

result<-lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 
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td2.1<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2.2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

rr<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

 

for (i in 1:l){ 

# population of patients available  

  pop <- 500000 

  while( pop > (n3)){ 

 #loop only runs if enough patients exist for phase III 

    if(phase_III_ready & phase_II_1ststage_ready & 

phase_II_2ndstage_ready){ 

      #run phase III trial 

      mu2<- (sqrt(3)*log(((p.1*ph2delta)-

ph2delta)/(p.1*(ph2delta-1))))/pi 

  experimental3<-rnorm(10000,mu2,sigma2) 

  ph3samplecontrol<- sample(control3, n3/2, replace=FALSE) 

# sample n2/2 patients for the phase III 

      ph3sampleexp<- sample(experimental3, n3/2, 

replace=FALSE) # sample the remaining patients for the 

#phase III 

ph3test<-t.test(ph3samplecontrol,ph3sampleexp, var.equal= 

TRUE, mu= 0, alternative = "t") #running the two-sample t-

test: 

      pv3 <- ph3test$p.value # extract p-value 

      if (pv3 <= alpha & mu2>0){ 

        #successful phase III 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<- c(r3[[i]],1) 

        td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

        pop <- pop - n3 #take out used patients in trial 

      }  
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      else { 

        # failed phase III 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<-c(r3[[i]],0) 

        td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

        pop<- pop - n3 #take out used patients in trial 

      } 

      phase_III_ready <- FALSE  

    } else { 

# run if enough patient in population for phase II and III 

      if(pop> n3 + n2) { 

        phase_II_1ststage_ready<- TRUE 

        #first stage phase II simulations  

        ph2delta<- sample(p.2,1,replace = FALSE) 

        experimental2<-rbinom(10000,1,ph2delta) 

        ph2sample.1<- sample(experimental2, n2.1, 

replace=FALSE) # sample the patients for the phase II 

        # trial from the experimental patients distribution 

        ph2sample.1 <- factor(ph2sample.1,levels = c(0,1), 

labels = c("0", "1")) 

        ph2expdata.1<-data.frame(ph2sample.1) 

        names(ph2expdata.1)[names(ph2expdata.1) == 

"ph2sampleexp.1"] <- "ph2.1" 

        ph2table.1<-table(ph2sample.1)  

        response.1<-table(ph2sample.1)["1"] 

        if (response.1 > r1){ 

          # successful 1st stage of phase II 

          phase_II_2ndstage_ready <- TRUE 

    pop <- pop - n2.1#take out used patients in first stage 

        } 

        else { 
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          # failed 1st stage phase II 

          td2.2[[i]]<- c(td2.2[[i]], NA) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2.2[[i]] <- c(r2.2[[i]],3) # 2nd stage didn't 

run 

          r2.1[[i]] <- c(r2.1[[i]],0) # 1st stage 

unsuccessful 

          phase_II_2ndstage_ready<- FALSE 

          phase_III_ready <- FALSE 

          phase_II_1ststage_ready<- TRUE 

       r3[[i]] <- c(r3[[i]], 3) # phase III also didn't run 

          td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

pop <- pop - n2.1 #take out used patients in first stage 

      } 

        if (phase_II_2ndstage_ready == TRUE) { 

          # run 2nd stage 

          ph2sample.2<- sample(experimental2, n2.2, 

replace=FALSE) # sample the patients for the phase II 

       # trial from the experimental patients distribution 

          ph2sample.2<- factor(ph2sample.2,levels = c(0,1), 

labels = c("0", "1")) 

          ph2table.2<-table(ph2sample.2)  

          response.2<-table(ph2sample.2)["1"] 

          response<- response.1 + response.2 

        if (response > r){ 

          # phase II success 

          td2.2[[i]]<- c(td2.2[[i]], ph2delta) 

          r2.1[[i]] <- c(r2.1[[i]],1) 

          r2.2[[i]] <- c(r2.2[[i]],1) 

          phase_III_ready <- TRUE 

     pop <- pop - n2.2 #take out used patients in 2nd stage          
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        } 

        else {  

          # failed second stage 

          td2.2[[i]]<- c(td2.2[[i]], ph2delta) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2.1[[i]] <- c(r2.1[[i]],1) 

          r2.2[[i]] <- c(r2.2[[i]],0) 

          phase_III_ready <- FALSE 

          r3[[i]] <- c(r3[[i]], 3) 

          td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

          phase_II_1ststage_ready<- TRUE 

          phase_II_2ndstage_ready<- FALSE 

     pop <- pop - n2.2#take out used patients in 2nd stage 

        } 

      }  

    }else {break 

} 

  } 

 } 

}   

 

tot.ph2<-list() 

tot.ph3succ<- list() 

tot.ph3fail<- list() 

tot.ALL<- list() 

tot.ph3<-list() 

tot.ph2succ<-list() 

tot.ph2fail<- list() 

b <-list() 

r3.f<-list() 
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r2.f.1<-list() 

r2.f.2<-list() 

a<-list() 

c<- list() 

for (i in 1:l){ 

  result[[i]]<- cbind(r2.1[[i]], r2.2[[i]],r3[[i]], 

td2.1[[i]], td2.2[[i]], td3[[i]])  

  result[[i]]<-data.frame(result[[i]])  

  result[[i]]<-result[[i]][-1,] 

  names(result[[i]])<- c("ph2out.1","ph2out.2", "ph3out", 

"p2", "p2", "m2") 

  tot.ph2[[i]]<-nrow(result[[i]]) 

  r3.f[[i]] <- factor(result[[i]][,3], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f.2[[i]] <- factor(result[[i]][,2], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f.1[[i]] <- factor(result[[i]][,1], levels = 

c(1,0),labels = c("success", "fail")) 

   

  c[[i]]<- data.frame(table(r3.f[[i]])) # table of 

successful/unsuccessful phase III  

  a[[i]]<- data.frame(table(r2.f.1[[i]])) # table of 

successful/unsuccessful phase II st1 

  b[[i]]<- data.frame(table(r2.f.2[[i]])) # table of 

successful/unsuccessful phase II st2 

  tot.ph3fail[[i]]<- c[[i]][2,2] # ph3 fail 

  tot.ph3succ[[i]]<-c[[i]][1,2] # ph3 success 

  tot.ph2fail[[i]]<- a[[i]][2,2] + b[[i]][2,2] # ph2 fail 

  tot.ph2succ[[i]]<-b[[i]][1,2] # ph2 success 

  tot.ph3[[i]]<- c[[i]][1,2] + c[[i]][2,2] # total phase 3  

#collating results 

ph2<-unlist(tot.ph2) 
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ph3<-unlist(tot.ph3) 

ph2fail<-unlist(tot.ph2fail) 

ph3fail<-unlist(tot.ph3fail) 

ph2succ<- unlist(tot.ph2succ) 

ph3succ<- unlist(tot.ph3succ) 

 

singlets.res<- data.frame(ph2) 

singlets.res<-cbind(singlets.res, ph3) 

singlets.res<-cbind(singlets.res, ph2fail) 

singlets.res<-cbind(singlets.res, ph3fail) 

singlets.res<-cbind(singlets.res, ph2succ) 

singlets.res<-cbind(singlets.res, ph3succ) 

#descriptive statistics 

summary(singlets.res$ph3succ) # phase 3 success 

summary(singlets.res$ph3fail) # phase 3 fail 

summary(singlets.res$ph3) # total phase 3 

summary(singlets.res$ph2) # total phase 2 

summary(singlets.res$ph2succ) # phase 2 success 

summary(singlets.res$ph2fail) # phase 2 fail 
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Appendix E Sample sizes of Simon’s single-arm two-stage 

minimax design  

No of designs  alpha beta  n2.1 r1 n2.2 r n2 

1 0.01 0.1 66 23 5 26 71 

2 0.05 0.1 26 6 23 17 49 

3 0.1 0.1 23 5 16 13 39 

4 0.15 0.1 18 4 14 10 32 

5 0.2 0.1 12 2 15 8 27 

6 0.01 0.15 30 8 34 24 64 

7 0.05 0.15 25 6 17 15 42 

8 0.1 0.15 22 6 8 10 30 

9 0.15 0.15 12 2 13 8 25 

10 0.2 0.15 8 1 15 7 23 

11 0.01 0.2 24 6 31 21 55 

12 0.05 0.2 17 4 19 13 36 

13 0.1 0.2 15 3 11 9 26 

14 0.15 0.2 15 3 6 7 21 

15 0.2 0.2 12 2 4 5 16 

16 0.01 0.25 47 18 2 19 49 

17 0.05 0.25 14 3 16 11 30 

18 0.1 0.25 13 3 10 8 23 

19 0.15 0.25 10 2 8 6 18 

20 0.2 0.25 5 0 8 4 13 

21 0.01 0.3 20 6 26 18 46 

22 0.05 0.3 10 2 17 10 27 

23 0.1 0.3 9 2 11 7 20 

24 0.15 0.3 9 2 6 5 15 

25 0.2 0.3 6 1 7 4 13 

26 0.01 0.35 21 6 21 17 42 

27 0.05 0.35 9 2 15 9 24 

28 0.1 0.35 6 1 11 6 17 

29 0.15 0.35 6 1 6 4 12 

30 0.2 0.35 3 0 7 3 10 

31 0.01 0.4 17 5 22 16 39 

32 0.05 0.4 6 1 15 8 21 

33 0.1 0.4 3 0 11 5 14 

34 0.15 0.4 9 2 2 4 11 

35 0.2 0.4 6 1 5 3 11 

36 0.01 0.45 22 8 12 14 34 

37 0.05 0.45 8 2 10 7 18 

38 0.1 0.45 6 1 7 5 13 

39 0.15 0.45 5 1 4 3 9 

40 0.2 0.45 4 0 2 2 6 

41 0.01 0.5 8 2 23 13 31 

42 0.05 0.5 13 5 2 6 15 

43 0.1 0.5 5 1 6 4 11 
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44 0.15 0.5 3 0 5 3 8 

45 0.2 0.5 3 0 3 2 6 

46 0.01 0.55 10 3 18 12 28 

47 0.05 0.55 7 1 7 6 14 

48 0.1 0.55 6 2 2 3 8 

49 0.15 0.55 2 0 4 2 6 

50 0.2 0.55 2 0 4 2 6 

51 0.01 0.6 10 3 15 11 25 

52 0.05 0.6 5 1 7 5 12 

53 0.1 0.6 2 0 6 3 8 

54 0.15 0.6 3 0 2 2 5 
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Appendix F R code for sample size evaluations 

F.1 Simon’s two-stage single-arm design   

# loading needed packages 

library("plyr") 

# fixing a seed to obtain reproducible results 

set.seed(1212022) 

# Single-arm phase II trials; sample size effect 

# two-sided phase III 

#true treatment effects 

truedelta<- rnorm(10000, 0, 1) 

logdelta<- truedelta*(pi/sqrt(3)) 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(Delta)) 

curve(dnorm(x, mean(truedelta), sd(truedelta)), add=TRUE, 

col="darkblue", lwd=2) 

p.1<- 0.25 # control arm's probability of success 

# corresponding true phase II treatment effects 

c <- log(p.1/(1-p.1)) # log odds ratio of the control arm's 

#probability of success  

p.2 <- ((exp(truedelta*pi/sqrt(3))*p.1 

))/((p.1*(exp(truedelta*pi/sqrt(3))  - 1)  + 1))  # the 

#inverse log of the normally distributed treatment effects 

# how the true delta is correlated to p.2 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(mu[2])) 

plot(truedelta, p.2, xlim = c(-4,4), ylim = c(0,1),xlab = 

expression(mu[2]), ylab =expression(p[2]) ) 

Deltatrue<- data.frame(p.2,truedelta) 

 

pop <- 500000 # population size for each design (i.e. 

#sample size) 
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alpha=0.05 # type I error for phase II and III trials 

power=0.8 # 1-type II error for phase II and III trials 

delta1=0.3 # delta1 is the clinically significant 

difference we wish to detect in phase III 

delta2=0.2# delta2 is the csd we wish to detect in phase II 

sigma<-1 # sd for underlying treatment effect 

data.sample <- 

read.table("C:/Users/enada/OneDrive/Desktop/Nada Elbeltagi- 

PhD 17.01.22/Write up/samplesizeSATS.csv", header=TRUE, 

sep=",")# loading the sample sizes from an excel file 

(these are from Appendix E) 

data.sample$power<-1-data.sample$beta # calculate power 

data.sample<-data.sample[!(data.sample$n2>300),] #getting 

rid of any combinations where n2 is larger than 300 

data.sample<-data.sample[!(data.sample$n2<=2),] #getting 

rid of any combinations where n2 is larger than 300 

 

l<- length(data.sample$alpha) 

get.sample.sizeph3 <- function(sigma,alpha,power,delta1) 

  # function to do standard sample size calculation 

#assuming sigma = 1 

  # N.B. alpha is two-sided error rate and sample size is 

#total for two arms 

{ 

  round((2 * 2 *sigma*sigma*(qnorm(1-

(alpha/2))+qnorm(power))^2/(delta1^2))/2)*2 

} 

n3<-get.sample.sizeph3(sigma, alpha, power, delta1) 

# sample size of the phase III trial depends on alpha, 

power, sigma  

# and delta1 which is the treatment effect we wish to 

detect  
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mu1<-0 # control arm mean 

sigma1<- sigma2 <-1 # sd of the outcome 

control3<- rnorm(10000,mu1,sigma1) 

# patients available for control arm in phase III 

mu2<-list() 

experimental3<-list() 

ph3samplecontrol <- list() 

ph3sampleexp <- list() 

ph3test<-list() 

pv3<-list() 

control2<-p.1 # patients available for control arm in phase 

II 

ph2delta<-c() 

experimental2<-list() 

ph2sample.1<-list() 

ph2sample.2<-list() 

ph2vecs<-vector() 

ph2grp<-vector() 

total<- list() 

ph2test<-list() 

ph2table<-list() 

response.1<- list() 

response.2<- list() 

response<- list() 

phase_III_ready <- FALSE 

phase_II_2ndstage_ready<- FALSE 

phase_II_1ststage_ready<- TRUE 

r2.1<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r2.2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 
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r3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

result<-lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2.1<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2.2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

rr<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

 

for (i in 1:l){ 

# population size for each sample size iteration 

  pop <- 500000 

  while( pop > (n3)){ 

# loop continues until not enough patients can enter phase 

#III 

    if(phase_III_ready & phase_II_1ststage_ready & 

phase_II_2ndstage_ready){ 

      #run phase III trial 

      mu2<- (sqrt(3)*log(((p.1*ph2delta)-

ph2delta)/(p.1*(ph2delta-1))))/pi 

      experimental3<-rnorm(10000,mu2,sigma2) 

      ph3samplecontrol<- sample(control3, n3/2, 

replace=FALSE) # sample n2/2 patients for the phase III 

      ph3sampleexp<- sample(experimental3, n3/2, 

replace=FALSE) # sample the remaining patients for the 

#phase III 

       ph3test<-t.test(ph3samplecontrol,ph3sampleexp, 

var.equal= TRUE, mu= 0, alternative = "t") #running the 

two-sample t-test:       

      pv3 <- ph3test$p.value     

      if (pv3 <= alpha & mu2>0){ 

        #successful phase III 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<- c(r3[[i]],1) 
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        td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

        pop <- pop - n3 # take out patients used in trial 

      }  

      else { 

        # failed phase III 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<-c(r3[[i]],0) 

        td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

        pop<- pop - n3 

      } 

    phase_III_ready <- FALSE  

    } else { 

      if(pop> n3 + data.sample$n2[i]) { 

        phase_II_1ststage_ready<- TRUE 

        #first stage phase II simulations  

        ph2delta<- sample(p.2,1,replace = FALSE) 

        experimental2<-rbinom(10000,1,ph2delta) 

        ph2sample.1<- sample(experimental2, 

data.sample$n2.1[i], replace=FALSE) # sample the patients 

for the phase II 

        # trial from the experimental patients distribution 

        ph2sample.1 <- factor(ph2sample.1,levels = c(0,1), 

labels = c("0", "1")) 

        ph2expdata.1<-data.frame(ph2sample.1) 

        names(ph2expdata.1)[names(ph2expdata.1) == 

"ph2sampleexp.1"] <- "ph2.1" 

        ph2table.1<-table(ph2sample.1)  

        response.1<-table(ph2sample.1)["1"] 

     if (response.1 > data.sample$r1[i]){ 

          # successful 1st stage of phase II 

          phase_II_2ndstage_ready <- TRUE 
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          pop <- pop - data.sample$n2.1[i] #take out phase 

#II patients used in stage 1 

        } 

        else { 

          # failed 1st stage phase II 

          td2.2[[i]]<- c(td2.2[[i]], NA) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2.2[[i]] <- c(r2.2[[i]],3) # 2nd stage didn't 

run 

          r2.1[[i]] <- c(r2.1[[i]],0) # 1st stage 

unsuccessful 

          phase_II_2ndstage_ready<- FALSE 

          phase_III_ready <- FALSE 

          phase_II_1ststage_ready<- TRUE 

          r3[[i]] <- c(r3[[i]], 3) # phase III also didn't 

run 

          td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

          pop <- pop - data.sample$n2.1[i] #take out phase 

#II patients used in stage 1 

        } 

        if (phase_II_2ndstage_ready == TRUE) { 

          # run 2nd stage 

          ph2sample.2<- sample(experimental2, 

data.sample$n2.2[i], replace=FALSE) # sample the patients 

#for the phase II 

    # trial from the experimental patients distribution 

          ph2sample.2<- factor(ph2sample.2,levels = c(0,1), 

labels = c("0", "1")) 

          ph2table.2<-table(ph2sample.2)  

          response.2<-table(ph2sample.2)["1"] 

          response<- response.1 + response.2 

        if (response > data.sample$r[i]){ 
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            # phase II success 

            td2.2[[i]]<- c(td2.2[[i]], ph2delta) 

            r2.1[[i]] <- c(r2.1[[i]],1) 

            r2.2[[i]] <- c(r2.2[[i]],1) 

            phase_III_ready <- TRUE 

            pop <- pop - data.sample$n2.2[i]#take out phase 

#II patients used in stage 2  

          } 

       else {  

            # failed second stage 

            td2.2[[i]]<- c(td2.2[[i]], ph2delta) 

            td3[[i]]<- c(td3[[i]], NA) 

            r2.1[[i]] <- c(r2.1[[i]],1) 

            r2.2[[i]] <- c(r2.2[[i]],0) 

            phase_III_ready <- FALSE 

            r3[[i]] <- c(r3[[i]], 3) 

            td2.1[[i]]<- c(td2.1[[i]], ph2delta) 

            phase_II_1ststage_ready<- TRUE 

            phase_II_2ndstage_ready<- FALSE 

            pop <- pop - data.sample$n2.2[i] #take out 

phase #II patients used in stage 2 

        } 

        } 

      }else {break 

} 

    } 

  } 

}   

tot.ph2<-list() 

tot.ph3succ<- list() 
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tot.ph3fail<- list() 

tot.ALL<- list() 

tot.ph3<-list() 

tot.ph2succ<-list() 

tot.ph2fail<- list() 

b <-list() 

r3.f<-list() 

r2.f.1<-list() 

r2.f.2<-list() 

a<-list() 

c<- list() 

#collating results 

for (i in 1:l){ 

  result[[i]]<- cbind(r2.1[[i]], r2.2[[i]],r3[[i]], 

td2.1[[i]], td2.2[[i]], td3[[i]])  

  result[[i]]<-data.frame(result[[i]])  

  result[[i]]<-result[[i]][-1,] 

  names(result[[i]])<- c("ph2out.1","ph2out.2", "ph3out", 

"p2", "p2", "m2") 

  tot.ph2[[i]]<-nrow(result[[i]]) 

  r3.f[[i]] <- factor(result[[i]][,3], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f.2[[i]] <- factor(result[[i]][,2], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f.1[[i]] <- factor(result[[i]][,1], levels = 

c(1,0),labels = c("success", "fail")) 

   

  c[[i]]<- data.frame(table(r3.f[[i]])) # table of 

successful/unsuccessful phase III  

  a[[i]]<- data.frame(table(r2.f.1[[i]])) # table of 

successful/unsuccessful phase II st1 
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  b[[i]]<- data.frame(table(r2.f.2[[i]])) # table of 

successful/unsuccessful phase II st2 

  tot.ph3fail[[i]]<- c[[i]][2,2] # ph3 fail 

  tot.ph3succ[[i]]<-c[[i]][1,2] # ph3 success 

  tot.ph2fail[[i]]<- a[[i]][2,2] + b[[i]][2,2] # ph2 fail 

  tot.ph2succ[[i]]<-b[[i]][1,2] # ph2 success 

  tot.ph3[[i]]<- c[[i]][1,2] + c[[i]][2,2]  

ph2<-unlist(tot.ph2) 

ph3<-unlist(tot.ph3) 

ph2fail<-unlist(tot.ph2fail) 

ph3fail<-unlist(tot.ph3fail) 

ph2succ<- unlist(tot.ph2succ) 

ph3succ<- unlist(tot.ph3succ) 

data.sample<-cbind(data.sample, ph2) 

data.sample<-cbind(data.sample, ph3) 

data.sample<-cbind(data.sample, ph2fail) 

data.sample<-cbind(data.sample, ph3fail) 

data.sample<-cbind(data.sample, ph2succ) 

data.sample<-cbind(data.sample, ph3succ) 

# calculating the success rates 

data.sample$prob3_succ<-ph3succ/ph3 

data.sample$prob2_succ<-ph2succ/ph2 

######################## 

# understanding results 

#alpha 

alph3s0.01<-data.sample$ph3succ[data.sample$alpha == 0.01] 

aln2s0.01<-data.sample$n2[data.sample$alpha == 0.01] 

alph3s0.05<-data.sample$ph3succ[data.sample$alpha == 0.05] 

aln2s0.05<-data.sample$n2[data.sample$alpha == 0.05] 

alph3s0.1<-data.sample$ph3succ[data.sample$alpha == 0.1] 
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aln2s0.1<-data.sample$n2[data.sample$alpha == 0.1] 

alph3s0.15<-data.sample$ph3succ[data.sample$alpha == 0.15] 

aln2s0.15<-data.sample$n2[data.sample$alpha == 0.15] 

alph3s0.2<-data.sample$ph3succ[data.sample$alpha == 0.2] 

aln2s0.2<-data.sample$n2[data.sample$alpha == 0.2] 

par(mfrow=c(1,1)) 

# plot sample size against number of phase 3 successes 

plot(c(0,80), c(800,1500), type="n", xlab=expression(n[2]), 

ylab="Successful Phase III trials", pch=1) 

points(aln2s0.01, alph3s0.01, pch= 16) 

points(aln2s0.05, alph3s0.05, pch= 16, col="red") 

points(aln2s0.1, alph3s0.1, pch= 16, col="blue") 

points(aln2s0.15, alph3s0.15, pch= 16, col="darkmagenta") 

points(aln2s0.2, alph3s0.2, pch= 16, col="green") 

lines(lowess(data.sample$n2, data.sample$ph3succ)) 

legend("topright",  legend = c(expression(paste(alpha, " = 

", 0.01)),                               

expression(paste(alpha, " = ", 0.05)),                               

expression(paste(alpha, " = ", 0.1)),                               

expression(paste(alpha, " = ", 0.15)),                               

expression(paste(alpha, " = ", 0.2))),       

col=c("black","red", "blue","darkmagenta","green"),lty = 

c(1,1,1,1,1))  

###########################################################  

# power and alpha of the phase II trials and their effect 

on 

#extract the number of ph3 successes with a power of 0.4  

#AND ALL ALPHAS 

#pow=0.4 

powalphph3s0.40.01<-data.sample$ph3succ[data.sample$power 

== 0.4 & data.sample$alpha == 0.01] 

powalphph3s0.40.05<-data.sample$ph3succ[data.sample$power 

== 0.4 & data.sample$alpha == 0.05] 
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powalphph3s0.40.1<-data.sample$ph3succ[data.sample$power == 

0.4 & data.sample$alpha == 0.1] 

powalphph3s0.40.15<-data.sample$ph3succ[data.sample$power 

== 0.4 & data.sample$alpha == 0.15] 

powalphph3s0.40.2<-data.sample$ph3succ[data.sample$power == 

0.4 & data.sample$alpha == 0.2] 

 

powalphn2s0.40.01<-data.sample$n2[data.sample$power == 0.4 

& data.sample$alpha == 0.01] 

powalphn2s0.40.05<-data.sample$n2[data.sample$power == 0.4 

& data.sample$alpha == 0.05] 

powalphn2s0.40.1<-data.sample$n2[data.sample$power == 0.4 & 

data.sample$alpha == 0.1] 

powalphn2s0.40.15<-data.sample$n2[data.sample$power == 0.4 

& data.sample$alpha == 0.15] 

powalphn2s0.40.2<-data.sample$n2[data.sample$power == 0.4 & 

data.sample$alpha == 0.2] 

 

#0.45 

powalphph3s0.450.01<-data.sample$ph3succ[data.sample$beta 

== 0.55 & data.sample$alpha == 0.01] 

powalphph3s0.450.05<-data.sample$ph3succ[data.sample$beta 

== 0.55 & data.sample$alpha == 0.05] 

powalphph3s0.450.1<-data.sample$ph3succ[data.sample$beta == 

0.55 & data.sample$alpha == 0.1] 

powalphph3s0.450.15<-data.sample$ph3succ[data.sample$beta 

== 0.55 & data.sample$alpha == 0.15] 

powalphph3s0.450.2<-data.sample$ph3succ[data.sample$beta == 

0.55 & data.sample$alpha == 0.2] 

 

powalphn2s0.450.01<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.01] 

powalphn2s0.450.05<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.05] 
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powalphn2s0.450.1<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.1] 

powalphn2s0.450.15<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.15] 

powalphn2s0.450.2<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.2] 

 

# 0.5 

powalphph3s0.50.01<-data.sample$ph3succ[data.sample$power 

== 0.5 & data.sample$alpha == 0.01] 

powalphph3s0.50.05<-data.sample$ph3succ[data.sample$power 

== 0.5 & data.sample$alpha == 0.05] 

powalphph3s0.50.1<-data.sample$ph3succ[data.sample$power == 

0.5 & data.sample$alpha == 0.1] 

powalphph3s0.50.15<-data.sample$ph3succ[data.sample$power 

== 0.5 & data.sample$alpha == 0.15] 

powalphph3s0.50.2<-data.sample$ph3succ[data.sample$power == 

0.5 & data.sample$alpha == 0.2] 

 

powalphn2s0.50.01<-data.sample$n2[data.sample$power == 0.5 

& data.sample$alpha == 0.01] 

powalphn2s0.50.05<-data.sample$n2[data.sample$power == 0.5 

& data.sample$alpha == 0.05] 

powalphn2s0.50.1<-data.sample$n2[data.sample$power == 0.5 & 

data.sample$alpha == 0.1] 

powalphn2s0.50.15<-data.sample$n2[data.sample$power == 0.5 

& data.sample$alpha == 0.15] 

powalphn2s0.50.2<-data.sample$n2[data.sample$power == 0.5 & 

data.sample$alpha == 0.2] 

 

# 0.55 

powalphph3s0.550.01<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.01] 



218 
 

 

powalphph3s0.550.05<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.05] 

powalphph3s0.550.1<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.1] 

powalphph3s0.550.15<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.15] 

powalphph3s0.550.2<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.2] 

 

powalphn2s0.550.01<-data.sample$n2[data.sample$power == 

0.55 & data.sample$alpha == 0.01] 

powalphn2s0.550.05<-data.sample$n2[data.sample$power == 

0.55 & data.sample$alpha == 0.05] 

powalphn2s0.550.1<-data.sample$n2[data.sample$power == 0.55 

& data.sample$alpha == 0.1] 

powalphn2s0.550.15<-data.sample$n2[data.sample$power == 

0.55 & data.sample$alpha == 0.15] 

powalphn2s0.550.2<-data.sample$n2[data.sample$power == 0.55 

& data.sample$alpha == 0.2] 

 

# 0.6 

powalphph3s0.60.01<-data.sample$ph3succ[data.sample$power 

== 0.6 & data.sample$alpha == 0.01] 

powalphph3s0.60.05<-data.sample$ph3succ[data.sample$power 

== 0.6 & data.sample$alpha == 0.05] 

powalphph3s0.60.1<-data.sample$ph3succ[data.sample$power == 

0.6 & data.sample$alpha == 0.1] 

powalphph3s0.60.15<-data.sample$ph3succ[data.sample$power 

== 0.6 & data.sample$alpha == 0.15] 

powalphph3s0.60.2<-data.sample$ph3succ[data.sample$power == 

0.6 & data.sample$alpha == 0.2] 

 

powalphn2s0.60.01<-data.sample$n2[data.sample$power == 0.6 

& data.sample$alpha == 0.01] 
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powalphn2s0.60.05<-data.sample$n2[data.sample$power == 0.6 

& data.sample$alpha == 0.05] 

powalphn2s0.60.1<-data.sample$n2[data.sample$power == 0.6 & 

data.sample$alpha == 0.1] 

powalphn2s0.60.15<-data.sample$n2[data.sample$power == 0.6 

& data.sample$alpha == 0.15] 

powalphn2s0.60.2<-data.sample$n2[data.sample$power == 0.6 & 

data.sample$alpha == 0.2] 

 

# 0.65 

powalphph3s0.650.01<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.01] 

powalphph3s0.650.05<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.05] 

powalphph3s0.650.1<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.1] 

powalphph3s0.650.15<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.15] 

powalphph3s0.650.2<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.2] 

 

powalphn2s0.650.01<-data.sample$n2[data.sample$power == 

0.65 & data.sample$alpha == 0.01] 

powalphn2s0.650.05<-data.sample$n2[data.sample$power == 

0.65 & data.sample$alpha == 0.05] 

powalphn2s0.650.1<-data.sample$n2[data.sample$power == 0.65 

& data.sample$alpha == 0.1] 

powalphn2s0.650.15<-data.sample$n2[data.sample$power == 

0.65 & data.sample$alpha == 0.15] 

powalphn2s0.650.2<-data.sample$n2[data.sample$power == 0.65 

& data.sample$alpha == 0.2] 

 

# 0.7 
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powalphph3s0.70.01<-data.sample$ph3succ[data.sample$power 

== 0.7 & data.sample$alpha == 0.01] 

powalphph3s0.70.05<-data.sample$ph3succ[data.sample$power 

== 0.7 & data.sample$alpha == 0.05] 

powalphph3s0.70.1<-data.sample$ph3succ[data.sample$power == 

0.7 & data.sample$alpha == 0.1] 

powalphph3s0.70.15<-data.sample$ph3succ[data.sample$power 

== 0.7 & data.sample$alpha == 0.15] 

powalphph3s0.70.2<-data.sample$ph3succ[data.sample$power == 

0.7 & data.sample$alpha == 0.2] 

 

powalphn2s0.70.01<-data.sample$n2[data.sample$power == 0.7 

& data.sample$alpha == 0.01] 

powalphn2s0.70.05<-data.sample$n2[data.sample$power == 0.7 

& data.sample$alpha == 0.05] 

powalphn2s0.70.1<-data.sample$n2[data.sample$power == 0.7 & 

data.sample$alpha == 0.1] 

powalphn2s0.70.15<-data.sample$n2[data.sample$power == 0.7 

& data.sample$alpha == 0.15] 

powalphn2s0.70.2<-data.sample$n2[data.sample$power == 0.7 & 

data.sample$alpha == 0.2] 

 

# 0.75 

powalphph3s0.750.01<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.01] 

powalphph3s0.750.05<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.05] 

powalphph3s0.750.1<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.1] 

powalphph3s0.750.15<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.15] 

powalphph3s0.750.2<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.2] 
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powalphn2s0.750.01<-data.sample$n2[data.sample$power == 

0.75 & data.sample$alpha == 0.01] 

powalphn2s0.750.05<-data.sample$n2[data.sample$power == 

0.75 & data.sample$alpha == 0.05] 

powalphn2s0.750.1<-data.sample$n2[data.sample$power == 0.75 

& data.sample$alpha == 0.1] 

powalphn2s0.750.15<-data.sample$n2[data.sample$power == 

0.75 & data.sample$alpha == 0.15] 

powalphn2s0.750.2<-data.sample$n2[data.sample$power == 0.75 

& data.sample$alpha == 0.2] 

 

# 0.8 

powalphph3s0.80.01<-data.sample$ph3succ[data.sample$power 

== 0.8 & data.sample$alpha == 0.01] 

powalphph3s0.80.05<-data.sample$ph3succ[data.sample$power 

== 0.8 & data.sample$alpha == 0.05] 

powalphph3s0.80.1<-data.sample$ph3succ[data.sample$power == 

0.8 & data.sample$alpha == 0.1] 

powalphph3s0.80.15<-data.sample$ph3succ[data.sample$power 

== 0.8 & data.sample$alpha == 0.15] 

powalphph3s0.80.2<-data.sample$ph3succ[data.sample$power == 

0.8 & data.sample$alpha == 0.2] 

 

powalphn2s0.80.01<-data.sample$n2[data.sample$power == 0.8 

& data.sample$alpha == 0.01] 

powalphn2s0.80.05<-data.sample$n2[data.sample$power == 0.8 

& data.sample$alpha == 0.05] 

powalphn2s0.80.1<-data.sample$n2[data.sample$power == 0.8 & 

data.sample$alpha == 0.1] 

powalphn2s0.80.15<-data.sample$n2[data.sample$power == 0.8 

& data.sample$alpha == 0.15] 

powalphn2s0.80.2<-data.sample$n2[data.sample$power == 0.8 & 

data.sample$alpha == 0.2] 
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# 0.85 

powalphph3s0.850.01<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.01] 

powalphph3s0.850.05<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.05] 

powalphph3s0.850.1<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.1] 

powalphph3s0.850.15<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.15] 

powalphph3s0.850.2<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.2] 

 

powalphn2s0.850.01<-data.sample$n2[data.sample$power == 

0.85 & data.sample$alpha == 0.01] 

powalphn2s0.850.05<-data.sample$n2[data.sample$power == 

0.85 & data.sample$alpha == 0.05] 

powalphn2s0.850.1<-data.sample$n2[data.sample$power == 0.85 

& data.sample$alpha == 0.1] 

powalphn2s0.850.15<-data.sample$n2[data.sample$power == 

0.85 & data.sample$alpha == 0.15] 

powalphn2s0.850.2<-data.sample$n2[data.sample$power == 0.85 

& data.sample$alpha == 0.2] 

 

# 0.9 

powalphph3s0.90.01<-data.sample$ph3succ[data.sample$power 

== 0.9 & data.sample$alpha == 0.01] 

powalphph3s0.90.05<-data.sample$ph3succ[data.sample$power 

== 0.9 & data.sample$alpha == 0.05] 

powalphph3s0.90.1<-data.sample$ph3succ[data.sample$power == 

0.9 & data.sample$alpha == 0.1] 

powalphph3s0.90.15<-data.sample$ph3succ[data.sample$power 

== 0.9 & data.sample$alpha == 0.15] 

powalphph3s0.90.2<-data.sample$ph3succ[data.sample$power == 

0.9 & data.sample$alpha == 0.2] 
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powalphn2s0.90.01<-data.sample$n2[data.sample$power == 0.9 

& data.sample$alpha == 0.01] 

powalphn2s0.90.05<-data.sample$n2[data.sample$power == 0.9 

& data.sample$alpha == 0.05] 

powalphn2s0.90.1<-data.sample$n2[data.sample$power == 0.9 & 

data.sample$alpha == 0.1] 

powalphn2s0.90.15<-data.sample$n2[data.sample$power == 0.9 

& data.sample$alpha == 0.15] 

powalphn2s0.90.2<-data.sample$n2[data.sample$power == 0.9 & 

data.sample$alpha == 0.2] 

# panel plot of the effect of power (0.4-0.9 increments of 

#0.5) and alpha (0.01,0.05,0.1,0.15,0.2) 

par(mar=c(5.1,1,1,1)) 

par(oma=c(1,1,1,1)) 

par(mfrow=c(3,4)) 

# 0.4 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.4), pch = 1) 

points(powalphn2s0.40.01, powalphph3s0.40.01,pch= 16, 

col="black") 

points(powalphn2s0.40.05, powalphph3s0.40.05,pch= 16, 

col="red") 

points(powalphn2s0.40.1, powalphph3s0.40.1,pch= 16, 

col="blue") 

points(powalphn2s0.40.15, powalphph3s0.40.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.40.2, powalphph3s0.40.2,pch= 16, 

col="green") 

# 0.45 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.45), pch = 1) 
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points(powalphn2s0.450.01, powalphph3s0.450.01,pch= 16, 

col="black") 

points(powalphn2s0.450.05, powalphph3s0.450.05,pch= 16, 

col="red") 

points(powalphn2s0.450.1, powalphph3s0.450.1,pch= 16, 

col="blue") 

points(powalphn2s0.450.15, powalphph3s0.450.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.450.2, powalphph3s0.450.2,pch= 16, 

col="green") 

# 0.5 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.5), pch = 1) 

points(powalphn2s0.50.01, powalphph3s0.50.01,pch= 16, 

col="black") 

points(powalphn2s0.50.05, powalphph3s0.50.05,pch= 16, 

col="red") 

points(powalphn2s0.50.1, powalphph3s0.50.1,pch= 16, 

col="blue") 

points(powalphn2s0.50.15, powalphph3s0.50.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.50.2, powalphph3s0.50.2,pch= 16, 

col="green") 

# 0.55 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.55), pch = 1) 

points(powalphn2s0.550.01, powalphph3s0.550.01,pch= 16, 

col="black") 

points(powalphn2s0.550.05, powalphph3s0.550.05,pch= 16, 

col="red") 

points(powalphn2s0.550.1, powalphph3s0.550.1,pch= 16, 

col="blue") 
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points(powalphn2s0.550.15, powalphph3s0.550.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.550.2, powalphph3s0.550.2,pch= 16, 

col="green") 

# 0.6 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.6), pch = 1) 

points(powalphn2s0.60.01, powalphph3s0.60.01,pch= 16, 

col="black") 

points(powalphn2s0.60.05, powalphph3s0.60.05,pch= 16, 

col="red") 

points(powalphn2s0.60.1, powalphph3s0.60.1,pch= 16, 

col="blue") 

points(powalphn2s0.60.15, powalphph3s0.60.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.60.2, powalphph3s0.60.2,pch= 16, 

col="green") 

# 0.65 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.65), pch = 1) 

points(powalphn2s0.650.01, powalphph3s0.650.01,pch= 16, 

col="black") 

points(powalphn2s0.650.05, powalphph3s0.650.05,pch= 16, 

col="red") 

points(powalphn2s0.650.1, powalphph3s0.650.1,pch= 16, 

col="blue") 

points(powalphn2s0.650.15, powalphph3s0.650.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.650.2, powalphph3s0.650.2,pch= 16, 

col="green") 

# 0.7 plot all alpha 
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plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.7), pch = 1) 

points(powalphn2s0.70.01, powalphph3s0.70.01,pch= 16, 

col="black") 

points(powalphn2s0.70.05, powalphph3s0.70.05,pch= 16, 

col="red") 

points(powalphn2s0.70.1, powalphph3s0.70.1,pch= 16, 

col="blue") 

points(powalphn2s0.70.15, powalphph3s0.70.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.70.2, powalphph3s0.70.2,pch= 16, 

col="green") 

# 0.75 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.75), pch = 1) 

points(powalphn2s0.750.01, powalphph3s0.750.01,pch= 16, 

col="black") 

points(powalphn2s0.750.05, powalphph3s0.750.05,pch= 16, 

col="red") 

points(powalphn2s0.750.1, powalphph3s0.750.1,pch= 16, 

col="blue") 

points(powalphn2s0.750.15, powalphph3s0.750.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.750.2, powalphph3s0.750.2,pch= 16, 

col="green") 

# 0.8 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.8), pch = 1) 

points(powalphn2s0.80.01, powalphph3s0.80.01,pch= 16, 

col="black") 
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points(powalphn2s0.80.05, powalphph3s0.80.05,pch= 16, 

col="red") 

points(powalphn2s0.80.1, powalphph3s0.80.1,pch= 16, 

col="blue") 

points(powalphn2s0.80.15, powalphph3s0.80.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.80.2, powalphph3s0.80.2,pch= 16, 

col="green") 

# 0.85 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.85), pch = 1) 

points(powalphn2s0.850.01, powalphph3s0.850.01,pch= 16, 

col="black") 

points(powalphn2s0.850.05, powalphph3s0.850.05,pch= 16, 

col="red") 

points(powalphn2s0.850.1, powalphph3s0.850.1,pch= 16, 

col="blue") 

points(powalphn2s0.850.15, powalphph3s0.850.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.850.2, powalphph3s0.850.2,pch= 16, 

col="green") 

# 0.9 plot all alpha 

plot(c(0,80), c(800,1400), type="n", xlab=expression(n[2]), 

ylab = "Successful Phase III", main = bquote( ~ 1-beta == 

0.9), pch = 1) 

points(powalphn2s0.90.01, powalphph3s0.90.01,pch= 16, 

col="black") 

points(powalphn2s0.90.05, powalphph3s0.90.05,pch= 16, 

col="red") 

points(powalphn2s0.90.1, powalphph3s0.90.1,pch= 16, 

col="blue") 

points(powalphn2s0.90.15, powalphph3s0.90.15,pch= 16, 

col="darkmagenta") 
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points(powalphn2s0.90.2, powalphph3s0.90.2,pch= 16, 

col="green") 

 

########################################################## 

#success rate of phase III 

par(mfrow=c(1,1)) 

rph3alph3s0.01<-data.sample$prob3_succ[data.sample$alpha == 

0.01] 

rph3aln2s0.01<-data.sample$n2[data.sample$alpha == 0.01] 

 

rph3alph3s0.05<-data.sample$prob3_succ[data.sample$alpha == 

0.05] 

rph3aln2s0.05<-data.sample$n2[data.sample$alpha == 0.05] 

 

rph3alph3s0.1<-data.sample$prob3_succ[data.sample$alpha == 

0.1] 

rph3aln2s0.1<-data.sample$n2[data.sample$alpha == 0.1] 

 

rph3alph3s0.15<-data.sample$prob3_succ[data.sample$alpha == 

0.15] 

rph3aln2s0.15<-data.sample$n2[data.sample$alpha == 0.15] 

 

rph3alph3s0.2<-data.sample$prob3_succ[data.sample$alpha == 

0.2] 

rph3aln2s0.2<-data.sample$n2[data.sample$alpha == 0.2] 

#phase III success rate 

plot(c(0,35), c(0.92,1), type="n", xlab=expression(n[2]), 

ylab="Rate of Successful Phase III trials", pch=1) 

points(rph3aln2s0.01, rph3alph3s0.01, pch= 16) 

points(rph3aln2s0.05, rph3alph3s0.05, pch= 16, col="red") 

points(rph3aln2s0.1, rph3alph3s0.1, pch= 16, col="blue") 
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points(rph3aln2s0.15, rph3alph3s0.15, pch= 16, 

col="darkmagenta") 

points(rph3aln2s0.2, rph3alph3s0.2, pch= 16, col="green") 

lines(lowess(data.sample$n2, data.sample$prob3_succ)) 

legend("bottomright", legend = c(expression(paste(alpha, " 

= ", 0.01)),                                 

expression(paste(alpha, " = ", 0.05)),                                 

expression(paste(alpha, " = ", 0.1)),                                 

expression(paste(alpha, " = ", 0.15)),                                 

expression(paste(alpha, " = ", 0.2))),       

col=c("black","red", "blue","darkmagenta","green"),lty = 

c(1,1,1,1,1)) 

########################################################### 

# success rate of phase II 

par(mfrow=c(1,1)) 

rph2alph3s0.01<-data.sample$prob2_succ[data.sample$alpha == 

0.01] 

rph2aln2s0.01<-data.sample$n2[data.sample$alpha == 0.01] 

 

rph2alph3s0.05<-data.sample$prob2_succ[data.sample$alpha == 

0.05] 

rph2aln2s0.05<-data.sample$n2[data.sample$alpha == 0.05] 

 

rph2alph3s0.1<-data.sample$prob2_succ[data.sample$alpha == 

0.1] 

rph2aln2s0.1<-data.sample$n2[data.sample$alpha == 0.1] 

 

rph2alph3s0.15<-data.sample$prob2_succ[data.sample$alpha == 

0.15] 

rph2aln2s0.15<-data.sample$n2[data.sample$alpha == 0.15] 

 

rph2alph3s0.2<-data.sample$prob2_succ[data.sample$alpha == 

0.2] 



230 
 

 

rph2aln2s0.2<-data.sample$n2[data.sample$alpha == 0.2] 

#phase III success rate 

plot(c(0,35), c(0,.4), type="n", xlab=expression(n[2]), 

ylab="Rate of Successful Phase II trials", pch=1) 

points(rph2aln2s0.01, rph2alph3s0.01, pch= 16) 

points(rph2aln2s0.05, rph2alph3s0.05, pch= 16, col="red") 

points(rph2aln2s0.1, rph2alph3s0.1, pch= 16, col="blue") 

points(rph2aln2s0.15, rph2alph3s0.15, pch= 16, 

col="darkmagenta") 

points(rph2aln2s0.2, rph2alph3s0.2, pch= 16, col="green") 

lines(lowess(data.sample$n2, data.sample$prob2_succ)) 

legend("topleft", legend = c(expression(paste(alpha, " = ", 

0.01)),                              

expression(paste(alpha, " = ", 0.05)),                              

expression(paste(alpha, " = ", 0.1)),                              

expression(paste(alpha, " = ", 0.15)),                              

expression(paste(alpha, " = ", 0.2))),       

col=c("black","red", "blue","darkmagenta","green"),lty = 

c(1,1,1,1,1)) 
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F.2 Randomised single-stage  

# loading needed packages 

library("plyr") 

# fixing a seed to obtain reproducible results 

set.seed(2212022) 

# randomised phase II trials; sample size effect 

# two-sided phase III 

#true treatment effects 

truedelta<- rnorm(10000, 0, 1) 

# histogram of the distribution treatment effect available  

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(Delta)) 

curve(dnorm(x, mean(truedelta), sd(truedelta)), add=TRUE, 

col="darkblue", lwd=2) 

p.1<- 0.25 # control arm's probability of success 

# corresponding true phase II treatment effects 

p.2 <- ((exp(truedelta*pi/sqrt(3))*p.1 

))/((p.1*(exp(truedelta*pi/sqrt(3))  - 1)  + 1))  # the 

#inverse log of the normally distributed treatment effects 

 

# how the true delta is correlated to p.2 

hist(truedelta,prob=TRUE, breaks=20, main = "True Treatment 

Effect", xlab = expression(mu[2])) 

plot(truedelta, p.2, xlim = c(-4,4), ylim = c(0,1),xlab = 

expression(mu[2]), ylab =expression(p[2]) ) 

Deltatrue<- data.frame(p.2,truedelta) 

alpha=0.05 # type I error for phase II and III trials 

power=0.8 # 1-type II error for phase II and III trials 

delta1=0.3 # delta1 is the clinically significant 

#difference we wish to detect in phase III 

delta2=0.2# delta2 is the csd we wish to detect in phase II 
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sigma<-1 # sd for underlying treatment effect 

 

# designs used in evaluation of randomised designs’ sample 

#size 

data.sample <- 

read.table("C:/Users/enada/OneDrive/Desktop/Nada Elbeltagi- 

PhD 17.01.22/Write up/samplesize.csv", header=TRUE, 

sep=",") 

data.sample$power<-1-data.sample$beta 

data.sample$n2<- (round((p.1*(1 - p.1) + (p.1+delta2)*(1 - 

(p.1+delta2)))*((qnorm(1-

data.sample$alpha)+qnorm(data.sample$power))^2)/ 

(delta2^2)/2)*2)*2 # formula to calculate sample sizes in 

#randomised phase II 

 

data.sample<-data.sample[!(data.sample$n2>300),] #getting 

rid of any combinations where n2 is larger than 300 

data.sample<-data.sample[!(data.sample$n2<=0),] #getting 

rid of any combinations where n2 is larger than 300 

data.sample$halfn2<-data.sample$n2/2 

l<- length(data.sample$alpha) 

 

get.sample.sizeph3 <- function(sigma,alpha,power,delta1) 

  # function to do standard sample size calculation 

assuming sigma = 1 

  # N.B. alpha is one-sided error rate and sample size is 

total for two arms 

{ 

 round((2 * 2 *sigma*sigma*(qnorm(1-

(alpha/2))+qnorm(power))^2/(delta1^2))/2)*2 

} 

n3<-get.sample.sizeph3(sigma, alpha, power, delta1) 
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# sample size of the phase III trial depends on alpha, 

#power, sigma  

# and delta1 which is the treatment effect we wish to 

#detect  

mu1<-0 # control arm mean 

sigma1<- sigma2 <-1 

control3<- rnorm(10000,mu1,sigma1) # patients available for 

#control arm in phase III 

ph3delta<-c() 

mu2<-list() 

experimental3<-list() 

ph3samplecontrol <- list() 

ph3sampleexp <- list() 

ph3test<-list() 

pv3<-list() 

control2<-rbinom(10000,1,p.1) # patients available for 

control arm in phase II 

ph2delta<-c() 

experimental2<-list() 

ph2samplecontrol<-list() 

ph2sampleexp<-list() 

ph2vecs<-vector() 

ph2grp<-vector() 

total<- list() 

ph2test<-list() 

pv2<-c() 

ph2tabexp<-list() 

ph2tabcont<-list() 

x<-c() 

n<-c() 

phase_III_ready <- FALSE 



234 
 

 

 

phase_II_ready<- TRUE 

 

r2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

r3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

result<-lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td2<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

td3<- lapply(1:l, matrix, data=NA,nrow=1, ncol=1) 

 

for (i in 1:l){ 

  pop <- 500000 

# population of patients  

  while( pop > (n3)){ 

    # discontinue loop if pop less than phase 3 sample size 

    if(phase_III_ready & phase_II_ready){ 

      #run phase III trial 

      mu2<- (sqrt(3)*log(((p.1*ph2delta)-

ph2delta)/(p.1*(ph2delta-1))))/pi 

      # mu2 is the treatment effect tested in phase 3 and 

#corresponds to p.2 

      experimental3<-rnorm(10000,mu2,sigma2) 

      # patients available to be entered in the 

#experimental arm 

      ph3samplecontrol<- sample(control3, n3/2, 

replace=FALSE) # sample n2/2 patients for the phase III 

      #half patients sampled in control arm 

      ph3sampleexp<- sample(experimental3, n3/2, 

replace=FALSE) # sample the remaining patients for the 

#phase III 

      #half patients sampled in experimental arm 
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      ph3test<-t.test(ph3samplecontrol,ph3sampleexp, 

var.equal= TRUE, mu= 0, alternative = "t") #running the 

two-sample t-test:       

      pv3 <- ph3test$p.value # pvalue extracted    

      if (pv3 <= alpha & mu2>0){ 

        # ph3 successful if pvalue<=alpha and the treatment 

#effect>0 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<- c(r3[[i]],1) 

        pop <- pop - n3# take out used patients in trial 

      }  

      else { 

        # ph3 unsuccessful 

        td3[[i]]<- c(td3[[i]], mu2) 

        r3[[i]]<-c(r3[[i]],0) 

        pop<- pop - n3# take out used patients in trial      

} 

     phase_III_ready <- FALSE  

    } else { 

# continue loop if pop > phase II and 3 sample size 

      if(pop> n3 + data.sample$n2[i]) { 

        phase_II_ready<- TRUE 

        #phase II simulations  

        ph2delta<- sample(p.2,1,replace = FALSE) 

        experimental2<-rbinom(10000,1,ph2delta) 

        ph2samplecontrol <- sample(control2, 

data.sample$halfn2[i], replace=FALSE) # sampled 1/2 n in 

control 

        ph2sampleexp <- 

sample(experimental2,data.sample$halfn2[i], replace=FALSE) 

# sampled n/2 in experimental 
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        ph2samplecontrol<- factor(ph2samplecontrol,c(0,1), 

labels = c('fail','success')) 

        ph2sampleexp<- factor(ph2sampleexp,c(0,1), labels = 

c('fail','success')) 

        ph2tabexp<-table(ph2sampleexp) 

        ph2tabcont<-table(ph2samplecontrol) 

        x<-c(ph2tabcont[2],ph2tabexp[2]) 

        n<-c(ph2tabcont[2]+ph2tabcont[1], 

ph2tabexp[2]+ph2tabexp[1]) 

        ph2test<-prop.test(x, n, alternative = c("l"), 

conf.level = (1- alpha), correct = FALSE) # run ph2 trial 

        pv2 <- ph2test$p.value # extract the p-value 

        if (pv2 <= data.sample$alpha[i] & !is.na(pv2)){ 

          #ph2 success 

          td2[[i]]<- c(td2[[i]], ph2delta) 

          r2[[i]] <- c(r2[[i]],1) 

          phase_III_ready <- TRUE 

          pop <- pop - data.sample$n2[i] # take out used 

#patients in trial 

        }  

        else { 

          # phase II failure 

          td2[[i]]<- c(td2[[i]], ph2delta) 

          td3[[i]]<- c(td3[[i]], NA) 

          r2[[i]] <- c(r2[[i]],0) 

          phase_III_ready <- FALSE 

          r3[[i]] <- c(r3[[i]], 3) 

          pop <- pop - data.sample$n2[i] # take out used 

#patients in trial 

        } 

      } else {break 



237 
 

 

} 

    } 

  } 

} 

tot.ph2<-list() 

tot.ph3succ<- list() 

tot.ph3fail<- list() 

tot.ALL<- list() 

tot.ph3<-list() 

tot.ph2succ<-list() 

tot.ph2fail<- list() 

b <-list() 

r3.f<-list() 

r2.f<-list() 

a<-list() 

#collate results 

for (i in 1:l){ 

  result[[i]]<- cbind(r2[[i]],r3[[i]], td2[[i]], td3[[i]])  

  result[[i]]<-data.frame(result[[i]])  

  result[[i]]<-result[[i]][-1,] 

  names(result[[i]])<- c("ph2out", "ph3out", "p2", "m2") 

  tot.ph2[[i]]<-nrow(result[[i]]) 

  r3.f[[i]] <- factor(result[[i]][,2], levels = c(1,0,3), 

labels = c("success", "fail", "not run")) 

  r2.f[[i]] <- factor(result[[i]][,1], levels = 

c(1,0),labels = c("success", "fail")) 

   

  b[[i]]<- data.frame(table(r3.f[[i]])) 

  a[[i]]<- data.frame(table(r2.f[[i]])) 
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  tot.ph3fail[[i]]<- b[[i]][2,2] 

  tot.ph3succ[[i]]<-b[[i]][1,2] 

   

  tot.ph2fail[[i]]<- a[[i]][2,2] 

  tot.ph2succ[[i]]<-a[[i]][1,2] 

   

  tot.ph3[[i]]<- b[[i]][1,2] + b[[i]][2,2] 

   

  tot.ALL[[i]]<- (data.sample$n2[i]*tot.ph2[[i]])+ 

(n3*tot.ph3[[i]]) 

  assign(paste0("res",i),as.data.frame(result[[i]])) 

}  

ph2<-unlist(tot.ph2) 

ph3<-unlist(tot.ph3) 

ph2fail<-unlist(tot.ph2fail) 

ph3fail<-unlist(tot.ph3fail) 

ph2succ<- unlist(tot.ph2succ) 

ph3succ<- unlist(tot.ph3succ) 

 

data.sample<-cbind(data.sample, ph2) 

data.sample<-cbind(data.sample, ph3) 

data.sample<-cbind(data.sample, ph2fail) 

data.sample<-cbind(data.sample, ph3fail) 

data.sample<-cbind(data.sample, ph2succ) 

data.sample<-cbind(data.sample, ph3succ) 

# calculate success rates 

data.sample$prob3_succ<-ph3succ/ph3 

data.sample$prob2_succ<-ph2succ/ph2 
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######################## 

# understanding results# 

par(mar=c(5.1, 4.1, 4.1, 2.1)) 

#alpha 

alph3s0.01<-data.sample$ph3succ[data.sample$alpha == 0.01] 

aln2s0.01<-data.sample$n2[data.sample$alpha == 0.01] 

 

alph3s0.05<-data.sample$ph3succ[data.sample$alpha == 0.05] 

aln2s0.05<-data.sample$n2[data.sample$alpha == 0.05] 

 

alph3s0.1<-data.sample$ph3succ[data.sample$alpha == 0.1] 

aln2s0.1<-data.sample$n2[data.sample$alpha == 0.1] 

 

alph3s0.15<-data.sample$ph3succ[data.sample$alpha == 0.15] 

aln2s0.15<-data.sample$n2[data.sample$alpha == 0.15] 

 

alph3s0.2<-data.sample$ph3succ[data.sample$alpha == 0.2] 

aln2s0.2<-data.sample$n2[data.sample$alpha == 0.2] 

# plot: sample size against randomised design sample sizes 

plot(c(0,300), c(350,1500), type="n", 

xlab=expression(n[2]), ylab="Successful Phase III trials", 

pch=1) 

points(aln2s0.01, alph3s0.01, pch= 16) 

points(aln2s0.05, alph3s0.05, pch= 16, col="red") 

points(aln2s0.1, alph3s0.1, pch= 16, col="blue") 

points(aln2s0.15, alph3s0.15, pch= 16, col="darkmagenta") 

points(aln2s0.2, alph3s0.2, pch= 16, col="green") 

lines(lowess(data.sample$n2, data.sample$ph3succ)) 

legend("topright",  legend = c(expression(paste(alpha, " = 

", 0.01)),                               



240 
 

 

expression(paste(alpha, " = ", 0.05)),                               

expression(paste(alpha, " = ", 0.1)),                               

expression(paste(alpha, " = ", 0.15)),                               

expression(paste(alpha, " = ", 0.2))),       

col=c("black","red", "blue","darkmagenta","green"),lty = 

c(1,1,1,1,1), cex=.5)  

########################################################### 

# power and alpha of the phase II trials and their effect  

#extract the number of ph3 successes with a power of 0.4  

#AND ALL ALPHAS 

#pow=0.4 

powalphph3s0.40.01<-data.sample$ph3succ[data.sample$power 

== 0.4 & data.sample$alpha == 0.01] 

powalphph3s0.40.05<-data.sample$ph3succ[data.sample$power 

== 0.4 & data.sample$alpha == 0.05] 

powalphph3s0.40.1<-data.sample$ph3succ[data.sample$power == 

0.4 & data.sample$alpha == 0.1] 

powalphph3s0.40.15<-data.sample$ph3succ[data.sample$power 

== 0.4 & data.sample$alpha == 0.15] 

powalphph3s0.40.2<-data.sample$ph3succ[data.sample$power == 

0.4 & data.sample$alpha == 0.2] 

 

powalphn2s0.40.01<-data.sample$n2[data.sample$power == 0.4 

& data.sample$alpha == 0.01] 

powalphn2s0.40.05<-data.sample$n2[data.sample$power == 0.4 

& data.sample$alpha == 0.05] 

powalphn2s0.40.1<-data.sample$n2[data.sample$power == 0.4 & 

data.sample$alpha == 0.1] 

powalphn2s0.40.15<-data.sample$n2[data.sample$power == 0.4 

& data.sample$alpha == 0.15] 

powalphn2s0.40.2<-data.sample$n2[data.sample$power == 0.4 & 

data.sample$alpha == 0.2] 

 

#0.45 
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powalphph3s0.450.01<-data.sample$ph3succ[data.sample$beta 

== 0.55 & data.sample$alpha == 0.01] 

powalphph3s0.450.05<-data.sample$ph3succ[data.sample$beta 

== 0.55 & data.sample$alpha == 0.05] 

powalphph3s0.450.1<-data.sample$ph3succ[data.sample$beta == 

0.55 & data.sample$alpha == 0.1] 

powalphph3s0.450.15<-data.sample$ph3succ[data.sample$beta 

== 0.55 & data.sample$alpha == 0.15] 

powalphph3s0.450.2<-data.sample$ph3succ[data.sample$beta == 

0.55 & data.sample$alpha == 0.2] 

 

powalphn2s0.450.01<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.01] 

powalphn2s0.450.05<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.05] 

powalphn2s0.450.1<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.1] 

powalphn2s0.450.15<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.15] 

powalphn2s0.450.2<-data.sample$n2[data.sample$beta == 0.55 

& data.sample$alpha == 0.2] 

 

# 0.5 

powalphph3s0.50.01<-data.sample$ph3succ[data.sample$power 

== 0.5 & data.sample$alpha == 0.01] 

powalphph3s0.50.05<-data.sample$ph3succ[data.sample$power 

== 0.5 & data.sample$alpha == 0.05] 

powalphph3s0.50.1<-data.sample$ph3succ[data.sample$power == 

0.5 & data.sample$alpha == 0.1] 

powalphph3s0.50.15<-data.sample$ph3succ[data.sample$power 

== 0.5 & data.sample$alpha == 0.15] 

powalphph3s0.50.2<-data.sample$ph3succ[data.sample$power == 

0.5 & data.sample$alpha == 0.2] 
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powalphn2s0.50.01<-data.sample$n2[data.sample$power == 0.5 

& data.sample$alpha == 0.01] 

powalphn2s0.50.05<-data.sample$n2[data.sample$power == 0.5 

& data.sample$alpha == 0.05] 

powalphn2s0.50.1<-data.sample$n2[data.sample$power == 0.5 & 

data.sample$alpha == 0.1] 

powalphn2s0.50.15<-data.sample$n2[data.sample$power == 0.5 

& data.sample$alpha == 0.15] 

powalphn2s0.50.2<-data.sample$n2[data.sample$power == 0.5 & 

data.sample$alpha == 0.2] 

 

# 0.55 

powalphph3s0.550.01<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.01] 

powalphph3s0.550.05<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.05] 

powalphph3s0.550.1<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.1] 

powalphph3s0.550.15<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.15] 

powalphph3s0.550.2<-data.sample$ph3succ[data.sample$power 

== 0.55 & data.sample$alpha == 0.2] 

 

powalphn2s0.550.01<-data.sample$n2[data.sample$power == 

0.55 & data.sample$alpha == 0.01] 

powalphn2s0.550.05<-data.sample$n2[data.sample$power == 

0.55 & data.sample$alpha == 0.05] 

powalphn2s0.550.1<-data.sample$n2[data.sample$power == 0.55 

& data.sample$alpha == 0.1] 

powalphn2s0.550.15<-data.sample$n2[data.sample$power == 

0.55 & data.sample$alpha == 0.15] 

powalphn2s0.550.2<-data.sample$n2[data.sample$power == 0.55 

& data.sample$alpha == 0.2] 
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# 0.6 

powalphph3s0.60.01<-data.sample$ph3succ[data.sample$power 

== 0.6 & data.sample$alpha == 0.01] 

powalphph3s0.60.05<-data.sample$ph3succ[data.sample$power 

== 0.6 & data.sample$alpha == 0.05] 

powalphph3s0.60.1<-data.sample$ph3succ[data.sample$power == 

0.6 & data.sample$alpha == 0.1] 

powalphph3s0.60.15<-data.sample$ph3succ[data.sample$power 

== 0.6 & data.sample$alpha == 0.15] 

powalphph3s0.60.2<-data.sample$ph3succ[data.sample$power == 

0.6 & data.sample$alpha == 0.2] 

 

powalphn2s0.60.01<-data.sample$n2[data.sample$power == 0.6 

& data.sample$alpha == 0.01] 

powalphn2s0.60.05<-data.sample$n2[data.sample$power == 0.6 

& data.sample$alpha == 0.05] 

powalphn2s0.60.1<-data.sample$n2[data.sample$power == 0.6 & 

data.sample$alpha == 0.1] 

powalphn2s0.60.15<-data.sample$n2[data.sample$power == 0.6 

& data.sample$alpha == 0.15] 

powalphn2s0.60.2<-data.sample$n2[data.sample$power == 0.6 & 

data.sample$alpha == 0.2] 

 

# 0.65 

powalphph3s0.650.01<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.01] 

powalphph3s0.650.05<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.05] 

powalphph3s0.650.1<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.1] 

powalphph3s0.650.15<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.15] 

powalphph3s0.650.2<-data.sample$ph3succ[data.sample$power 

== 0.65 & data.sample$alpha == 0.2] 
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powalphn2s0.650.01<-data.sample$n2[data.sample$power == 

0.65 & data.sample$alpha == 0.01] 

powalphn2s0.650.05<-data.sample$n2[data.sample$power == 

0.65 & data.sample$alpha == 0.05] 

powalphn2s0.650.1<-data.sample$n2[data.sample$power == 0.65 

& data.sample$alpha == 0.1] 

powalphn2s0.650.15<-data.sample$n2[data.sample$power == 

0.65 & data.sample$alpha == 0.15] 

powalphn2s0.650.2<-data.sample$n2[data.sample$power == 0.65 

& data.sample$alpha == 0.2] 

 

# 0.7 

powalphph3s0.70.01<-data.sample$ph3succ[data.sample$power 

== 0.7 & data.sample$alpha == 0.01] 

powalphph3s0.70.05<-data.sample$ph3succ[data.sample$power 

== 0.7 & data.sample$alpha == 0.05] 

powalphph3s0.70.1<-data.sample$ph3succ[data.sample$power == 

0.7 & data.sample$alpha == 0.1] 

powalphph3s0.70.15<-data.sample$ph3succ[data.sample$power 

== 0.7 & data.sample$alpha == 0.15] 

powalphph3s0.70.2<-data.sample$ph3succ[data.sample$power == 

0.7 & data.sample$alpha == 0.2] 

 

powalphn2s0.70.01<-data.sample$n2[data.sample$power == 0.7 

& data.sample$alpha == 0.01] 

powalphn2s0.70.05<-data.sample$n2[data.sample$power == 0.7 

& data.sample$alpha == 0.05] 

powalphn2s0.70.1<-data.sample$n2[data.sample$power == 0.7 & 

data.sample$alpha == 0.1] 

powalphn2s0.70.15<-data.sample$n2[data.sample$power == 0.7 

& data.sample$alpha == 0.15] 

powalphn2s0.70.2<-data.sample$n2[data.sample$power == 0.7 & 

data.sample$alpha == 0.2] 
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# 0.75 

powalphph3s0.750.01<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.01] 

powalphph3s0.750.05<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.05] 

powalphph3s0.750.1<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.1] 

powalphph3s0.750.15<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.15] 

powalphph3s0.750.2<-data.sample$ph3succ[data.sample$power 

== 0.75 & data.sample$alpha == 0.2] 

 

powalphn2s0.750.01<-data.sample$n2[data.sample$power == 

0.75 & data.sample$alpha == 0.01] 

powalphn2s0.750.05<-data.sample$n2[data.sample$power == 

0.75 & data.sample$alpha == 0.05] 

powalphn2s0.750.1<-data.sample$n2[data.sample$power == 0.75 

& data.sample$alpha == 0.1] 

powalphn2s0.750.15<-data.sample$n2[data.sample$power == 

0.75 & data.sample$alpha == 0.15] 

powalphn2s0.750.2<-data.sample$n2[data.sample$power == 0.75 

& data.sample$alpha == 0.2] 

 

# 0.8 

powalphph3s0.80.01<-data.sample$ph3succ[data.sample$power 

== 0.8 & data.sample$alpha == 0.01] 

powalphph3s0.80.05<-data.sample$ph3succ[data.sample$power 

== 0.8 & data.sample$alpha == 0.05] 

powalphph3s0.80.1<-data.sample$ph3succ[data.sample$power == 

0.8 & data.sample$alpha == 0.1] 

powalphph3s0.80.15<-data.sample$ph3succ[data.sample$power 

== 0.8 & data.sample$alpha == 0.15] 
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powalphph3s0.80.2<-data.sample$ph3succ[data.sample$power == 

0.8 & data.sample$alpha == 0.2] 

 

powalphn2s0.80.01<-data.sample$n2[data.sample$power == 0.8 

& data.sample$alpha == 0.01] 

powalphn2s0.80.05<-data.sample$n2[data.sample$power == 0.8 

& data.sample$alpha == 0.05] 

powalphn2s0.80.1<-data.sample$n2[data.sample$power == 0.8 & 

data.sample$alpha == 0.1] 

powalphn2s0.80.15<-data.sample$n2[data.sample$power == 0.8 

& data.sample$alpha == 0.15] 

powalphn2s0.80.2<-data.sample$n2[data.sample$power == 0.8 & 

data.sample$alpha == 0.2] 

 

# 0.85 

powalphph3s0.850.01<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.01] 

powalphph3s0.850.05<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.05] 

powalphph3s0.850.1<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.1] 

powalphph3s0.850.15<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.15] 

powalphph3s0.850.2<-data.sample$ph3succ[data.sample$power 

== 0.85 & data.sample$alpha == 0.2] 

 

powalphn2s0.850.01<-data.sample$n2[data.sample$power == 

0.85 & data.sample$alpha == 0.01] 

powalphn2s0.850.05<-data.sample$n2[data.sample$power == 

0.85 & data.sample$alpha == 0.05] 

powalphn2s0.850.1<-data.sample$n2[data.sample$power == 0.85 

& data.sample$alpha == 0.1] 

powalphn2s0.850.15<-data.sample$n2[data.sample$power == 

0.85 & data.sample$alpha == 0.15] 
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powalphn2s0.850.2<-data.sample$n2[data.sample$power == 0.85 

& data.sample$alpha == 0.2] 

 

# 0.9 

powalphph3s0.90.01<-data.sample$ph3succ[data.sample$power 

== 0.9 & data.sample$alpha == 0.01] 

powalphph3s0.90.05<-data.sample$ph3succ[data.sample$power 

== 0.9 & data.sample$alpha == 0.05] 

powalphph3s0.90.1<-data.sample$ph3succ[data.sample$power == 

0.9 & data.sample$alpha == 0.1] 

powalphph3s0.90.15<-data.sample$ph3succ[data.sample$power 

== 0.9 & data.sample$alpha == 0.15] 

powalphph3s0.90.2<-data.sample$ph3succ[data.sample$power == 

0.9 & data.sample$alpha == 0.2] 

 

powalphn2s0.90.01<-data.sample$n2[data.sample$power == 0.9 

& data.sample$alpha == 0.01] 

powalphn2s0.90.05<-data.sample$n2[data.sample$power == 0.9 

& data.sample$alpha == 0.05] 

powalphn2s0.90.1<-data.sample$n2[data.sample$power == 0.9 & 

data.sample$alpha == 0.1] 

powalphn2s0.90.15<-data.sample$n2[data.sample$power == 0.9 

& data.sample$alpha == 0.15] 

powalphn2s0.90.2<-data.sample$n2[data.sample$power == 0.9 & 

data.sample$alpha == 0.2] 

# panel plots of the effect of the power 

par(mar=c(5.1,1,1,1)) 

par(oma=c(1,1,1,1)) 

par(mfrow=c(3,4)) 

# 0.4 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.4), pch = 1) 
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points(powalphn2s0.40.01, powalphph3s0.40.01,pch= 16, 

col="black") 

points(powalphn2s0.40.05, powalphph3s0.40.05,pch= 16, 

col="red") 

points(powalphn2s0.40.1, powalphph3s0.40.1,pch= 16, 

col="blue") 

points(powalphn2s0.40.15, powalphph3s0.40.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.40.2, powalphph3s0.40.2,pch= 16, 

col="green") 

# 0.45 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.45), pch = 1) 

points(powalphn2s0.450.01, powalphph3s0.450.01,pch= 16, 

col="black") 

points(powalphn2s0.450.05, powalphph3s0.450.05,pch= 16, 

col="red") 

points(powalphn2s0.450.1, powalphph3s0.450.1,pch= 16, 

col="blue") 

points(powalphn2s0.450.15, powalphph3s0.450.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.450.2, powalphph3s0.450.2,pch= 16, 

col="green") 

# 0.5 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.5), pch = 1) 

points(powalphn2s0.50.01, powalphph3s0.50.01,pch= 16, 

col="black") 

points(powalphn2s0.50.05, powalphph3s0.50.05,pch= 16, 

col="red") 

points(powalphn2s0.50.1, powalphph3s0.50.1,pch= 16, 

col="blue") 
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points(powalphn2s0.50.15, powalphph3s0.50.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.50.2, powalphph3s0.50.2,pch= 16, 

col="green") 

# 0.55 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.55), pch = 1) 

points(powalphn2s0.550.01, powalphph3s0.550.01,pch= 16, 

col="black") 

points(powalphn2s0.550.05, powalphph3s0.550.05,pch= 16, 

col="red") 

points(powalphn2s0.550.1, powalphph3s0.550.1,pch= 16, 

col="blue") 

points(powalphn2s0.550.15, powalphph3s0.550.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.550.2, powalphph3s0.550.2,pch= 16, 

col="green") 

# 0.6 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.6), pch = 1) 

points(powalphn2s0.60.01, powalphph3s0.60.01,pch= 16, 

col="black") 

points(powalphn2s0.60.05, powalphph3s0.60.05,pch= 16, 

col="red") 

points(powalphn2s0.60.1, powalphph3s0.60.1,pch= 16, 

col="blue") 

points(powalphn2s0.60.15, powalphph3s0.60.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.60.2, powalphph3s0.60.2,pch= 16, 

col="green") 

# 0.65 plot all alpha 
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plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.65), pch = 1) 

points(powalphn2s0.650.01, powalphph3s0.650.01,pch= 16, 

col="black") 

points(powalphn2s0.650.05, powalphph3s0.650.05,pch= 16, 

col="red") 

points(powalphn2s0.650.1, powalphph3s0.650.1,pch= 16, 

col="blue") 

points(powalphn2s0.650.15, powalphph3s0.650.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.650.2, powalphph3s0.650.2,pch= 16, 

col="green") 

# 0.7 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.7), pch = 1) 

points(powalphn2s0.70.01, powalphph3s0.70.01,pch= 16, 

col="black") 

points(powalphn2s0.70.05, powalphph3s0.70.05,pch= 16, 

col="red") 

points(powalphn2s0.70.1, powalphph3s0.70.1,pch= 16, 

col="blue") 

points(powalphn2s0.70.15, powalphph3s0.70.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.70.2, powalphph3s0.70.2,pch= 16, 

col="green") 

# 0.75 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.75), pch = 1) 

points(powalphn2s0.750.01, powalphph3s0.750.01,pch= 16, 

col="black") 



251 
 

 

points(powalphn2s0.750.05, powalphph3s0.750.05,pch= 16, 

col="red") 

points(powalphn2s0.750.1, powalphph3s0.750.1,pch= 16, 

col="blue") 

points(powalphn2s0.750.15, powalphph3s0.750.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.750.2, powalphph3s0.750.2,pch= 16, 

col="green") 

# 0.8 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.8), pch = 1) 

points(powalphn2s0.80.01, powalphph3s0.80.01,pch= 16, 

col="black") 

points(powalphn2s0.80.05, powalphph3s0.80.05,pch= 16, 

col="red") 

points(powalphn2s0.80.1, powalphph3s0.80.1,pch= 16, 

col="blue") 

points(powalphn2s0.80.15, powalphph3s0.80.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.80.2, powalphph3s0.80.2,pch= 16, 

col="green") 

# 0.85 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.85), pch = 1) 

points(powalphn2s0.850.01, powalphph3s0.850.01,pch= 16, 

col="black") 

points(powalphn2s0.850.05, powalphph3s0.850.05,pch= 16, 

col="red") 

points(powalphn2s0.850.1, powalphph3s0.850.1,pch= 16, 

col="blue") 

points(powalphn2s0.850.15, powalphph3s0.850.15,pch= 16, 

col="darkmagenta") 
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points(powalphn2s0.850.2, powalphph3s0.850.2,pch= 16, 

col="green") 

# 0.9 plot all alpha 

plot(c(0,300), c(350,1400), type="n", 

xlab=expression(n[2]), ylab = "Successful Phase III", main 

= bquote( ~ 1-beta == 0.9), pch = 1) 

points(powalphn2s0.90.01, powalphph3s0.90.01,pch= 16, 

col="black") 

points(powalphn2s0.90.05, powalphph3s0.90.05,pch= 16, 

col="red") 

points(powalphn2s0.90.1, powalphph3s0.90.1,pch= 16, 

col="blue") 

points(powalphn2s0.90.15, powalphph3s0.90.15,pch= 16, 

col="darkmagenta") 

points(powalphn2s0.90.2, powalphph3s0.90.2,pch= 16, 

col="green") 

 

########################################################### 

# success rate of phase III 

par(mfrow=c(1,1)) 

rph3alph3s0.01<-data.sample$prob3_succ[data.sample$alpha == 

0.01] 

rph3aln2s0.01<-data.sample$n2[data.sample$alpha == 0.01] 

 

rph3alph3s0.05<-data.sample$prob3_succ[data.sample$alpha == 

0.05] 

rph3aln2s0.05<-data.sample$n2[data.sample$alpha == 0.05] 

 

rph3alph3s0.1<-data.sample$prob3_succ[data.sample$alpha == 

0.1] 

rph3aln2s0.1<-data.sample$n2[data.sample$alpha == 0.1] 
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rph3alph3s0.15<-data.sample$prob3_succ[data.sample$alpha == 

0.15] 

rph3aln2s0.15<-data.sample$n2[data.sample$alpha == 0.15] 

 

rph3alph3s0.2<-data.sample$prob3_succ[data.sample$alpha == 

0.2] 

rph3aln2s0.2<-data.sample$n2[data.sample$alpha == 0.2] 

# plot rate of phase III success 

plot(c(0,300), c(0.8,1), type="n", xlab=expression(n[2]), 

ylab="Rate of Successful Phase III trials", pch=1) 

points(rph3aln2s0.01, rph3alph3s0.01, pch= 16) 

points(rph3aln2s0.05, rph3alph3s0.05, pch= 16, col="red") 

points(rph3aln2s0.1, rph3alph3s0.1, pch= 16, col="blue") 

points(rph3aln2s0.15, rph3alph3s0.15, pch= 16, 

col="darkmagenta") 

points(rph3aln2s0.2, rph3alph3s0.2, pch= 16, col="green") 

lines(lowess(data.sample$n2, data.sample$prob3_succ)) 

legend("bottomright", legend = c(expression(paste(alpha, " 

= ", 0.01)),                               

expression(paste(alpha, " = ", 0.05)),                                 

expression(paste(alpha, " = ", 0.1)),                                 

expression(paste(alpha, " = ", 0.15)),                                 

expression(paste(alpha, " = ", 0.2))),       

col=c("black","red", "blue","darkmagenta","green"),lty = 

c(1,1,1,1,1)) 

###########################################################

# success rate of phase II 

par(mfrow=c(1,1)) 

rph2alph3s0.01<-data.sample$prob2_succ[data.sample$alpha == 

0.01] 

rph2aln2s0.01<-data.sample$n2[data.sample$alpha == 0.01] 
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rph2alph3s0.05<-data.sample$prob2_succ[data.sample$alpha == 

0.05] 

rph2aln2s0.05<-data.sample$n2[data.sample$alpha == 0.05] 

 

rph2alph3s0.1<-data.sample$prob2_succ[data.sample$alpha == 

0.1] 

rph2aln2s0.1<-data.sample$n2[data.sample$alpha == 0.1] 

 

rph2alph3s0.15<-data.sample$prob2_succ[data.sample$alpha == 

0.15] 

rph2aln2s0.15<-data.sample$n2[data.sample$alpha == 0.15] 

 

rph2alph3s0.2<-data.sample$prob2_succ[data.sample$alpha == 

0.2] 

rph2aln2s0.2<-data.sample$n2[data.sample$alpha == 0.2] 

# plot of phase II success rate 

plot(c(0,300), c(0,.6), type="n", xlab=expression(n[2]), 

ylab="Rate of Successful Phase II trials", pch=1) 

points(rph2aln2s0.01, rph2alph3s0.01, pch= 16) 

points(rph2aln2s0.05, rph2alph3s0.05, pch= 16, col="red") 

points(rph2aln2s0.1, rph2alph3s0.1, pch= 16, col="blue") 

points(rph2aln2s0.15, rph2alph3s0.15, pch= 16, 

col="darkmagenta") 

points(rph2aln2s0.2, rph2alph3s0.2, pch= 16, col="green") 

lines(lowess(data.sample$n2, data.sample$prob2_succ)) 

legend("topleft", legend = c(expression(paste(alpha, " = ", 

0.01)), expression(paste(alpha, " = ", 0.05)),                              

expression(paste(alpha, " = ", 0.1)),                              

expression(paste(alpha, " = ", 0.15)),                              

expression(paste(alpha, " = ", 0.2))),       

col=c("black","red", "blue","darkmagenta","green"),lty = 

c(1,1,1,1,1))
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