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Abstract

A hole is a chordless cycle of length at least four, and is even or odd depending on

the parity of its length. Many interesting classes of graphs are defined by excluding

(possibly among other graphs) holes of certain lengths. Most famously perhaps is

the class of Berge graphs, which are the graphs that contain no odd hole and no

complement of an odd hole. A graph is perfect if the chromatic number of each of its

induced subgraphs is equal to the size of a maximum clique in that subgraph. It was

conjectured in the 1960’s by Claude Berge that Berge graphs and perfect graphs are

equivalent, that is, a graph is perfect if and only if it is Berge. This conjecture was

finally resolved by Chudnovsky, Robertson, Seymour and Thomas in 2002, and it is

now called the strong perfect graph theorem.

Graphs that do not contain even holes are structurally similar to Berge graphs,

and for this reason Conforti, Cornuéjols, Kapoor and Vušković initiated the study of

even-hole-free graphs. One of their main results was a decomposition theorem and

a recognition algorithm for even-hole-free graphs, and many techniques developed in

the pursuit of a decomposition theorem for even-hole-free graphs proved useful in the

study of perfect graphs. Indeed, the proof of the strong perfect graph theorem relied

on decomposition, and many interesting graph classes have since then been understood

from the viewpoint of decomposition.

In this thesis we study several classes of graphs that relate to even-hole-free graphs.

First, we focus on β-perfect graphs, which form a subclass of even-hole-free graphs.

While it is unknown whether even-hole-free graphs can be coloured in polynomial time,

β-perfect graphs can be coloured optimally in polynomial time using the greedy colour-

ing algorithm. The class of β-perfect graphs was introduced in 1996 by Markossian,

Gasparian and Reed, and since then several classes of β-perfect graphs have been iden-

tified but no forbidden induced subgraph characterisation is known. In this thesis we

identify a new class of β-perfect graphs, and we present forbidden induced subgraph

characterisations for the class of β-perfect hyperholes and for the class of claw-free β-

perfect graphs. We use these characterisations to decide in polynomial time whether a

given hyperhole, or more generally a claw-free graph, is β-perfect.

A graph is ℓ-holed (for an integer ℓ ≥ 4) if every one of its holes is of length ℓ.

Another focus of the thesis is the class of ℓ-holed graphs. When ℓ is odd, the ℓ-holed

graphs form a subclass of even-hole-free graphs. Together with Preissmann, Robin,

Sintiari, Trotignon and Vušković we obtained a structure theorem for ℓ-holed graphs



where ℓ ≥ 7. Working independently, Cook and Seymour obtained a structure theorem

for the same class of graphs. In this thesis we establish that these two structure

theorems are equivalent. Furthermore, we present two recognition algorithms for ℓ-

holed graphs for odd ℓ ≥ 7. The first uses the structure theorem of Preissmann, Robin,

Sintiari, Trotignon, Vušković and the present author, and relies on decomposition by a

new variant of a 2-join called a special 2-join, and the second uses the structure theorem

of Cook and Seymour, and relies only on a process of clique cutset decomposition. We

also give algorithms that solve in polynomial time the maximum clique and maximum

stable set problems for ℓ-holed graphs for odd ℓ ≥ 7.

Finally, we focus on circular-arc graphs. It is a long standing open problem to char-

acterise in terms of forbidden induced subgraphs the class of circular-arc graphs, and

even the class of chordal circular-arc graphs. Motivated by a result of Cameron, Chap-

lick and Hoàng stating that even-hole-free graphs that are pan-free can be decomposed

by clique cutsets into circular-arc graphs, we investigate the class of even-hole-free

circular-arc graphs. We present a partial characterisation for the class of even-hole-free

circular-arc graphs that are not chordal.
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Chapter 1

Introduction

A graph is a pair (V,E) of sets where E ⊆
(
V
2

)
. The elements of V are the vertices of

G and the elements of E are the edges of G. In this thesis we deal primarily with finite

and simple graphs, that is, graphs with a finite number of vertices and edges, with at

most one edge between any two distinct vertices and with no edge between a vertex

and itself.

Many real world problems can naturally be modelled as a graph problem, and

as such graph theory sees applications in a wide range of fields, including genomics,

electrical engineering, computer science and operations research. Suppose we want to

find the shortest route from Leeds to London. By modeling the UK road network

as a graph (by letting edges represent roads and vertices represent intersections of

roads), the task of finding the shortest route from Leeds to London becomes a problem

of finding the shortest path (that is, an alternating sequence of distinct vertices and

edges) between two vertices of this graph. This problem of finding the shortest path

between two vertices in a graph is well understood and efficient algorithms for solving

this problem are known. However, many graph problems that correspond to problems

from industry are computationally hard (formally, they are NP-hard, and it is widely

believed that NP-hard problems cannot be solved in polynomial time).

We illustrate this by describing an NP-hard graph problem that arises from (a

simplified version of) the task of assigning frequencies to cell towers. When making

a phone call, a mobile phone connects to a nearby cell tower, which transmits voice

and other data between the two parties of the call. Different cell towers broadcast at

different frequencies, and these frequencies must be assigned to cell towers in a way

that minimises interference. Two nearby cell towers should not broadcast at the same

frequency. One way to ensure that there is no interference is to assign to each cell

1
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tower a unique frequency, but for practical reasons one is interested in minimising the

number of distinct frequencies used. This problem can be modelled as a graph colouring

problem. Build a graph by creating a vertex for each cell tower, and link two vertices

by an edge if the two corresponding cell towers are within a certain distance (this

distance should correspond to the range of transmission of the cell towers). An optimal

assignment of frequencies to cell towers can now be found by computing an optimal

colouring of this graph; that is, an assignment of colours to the vertices of this graph

in such a way that no two adjacent vertices receive the same colour, and such that the

number of colours used is as small as possible. Graph colouring is well known to be

NP-hard, and therefore it is unlikely that one can find in polynomial time an optimal

colouring for any graph.

Towards finding efficient algorithms for colouring and other NP-hard problems, one

might restrict the problem to a specific class of graphs instead of the class of all graphs.

In this thesis we the study the structure of, and algorithmic consequences for, classes

of graphs defined by forbidding certain substructures.

More specifically, our focus will be on so-called hereditary graph classes. Two graphs

G and H are isomorphic if there exists a bijection φ : V (G) → V (H) such that for all

u, v ∈ V (G), u and v are adjacent in G if and only if f(u) and f(v) are adjacent in H.

An induced subgraph of a graph G is any graph H with V (H) ⊆ V (G) such that any

two vertices u, v ∈ V (H) are adjacent in H if and only if they are adjacent in G. A

class of graphs is hereditary if it is closed under isomorphism and under taking induced

subgraphs. Many well studied graph classes are hereditary, including forests, planar

graphs, k-colourable graphs, and any class of graphs defined by forbidden induced

subgraph (that is, graphs that do not contain some fixed set of graphs as induced

subgraphs).

For graphs G and H, we say that G contains H if some induced subgraph of G

is isomorphic to H, and that G is H-free if G does not contain H. For a family of

graphs H, we say G is H-free if G is H-free for every H ∈ H. An induced subgraph

F of G is proper if V (F ) ̸= V (G). A graph G is a minimal forbidden induced subgraph

for a hereditary class of graphs C if G does not belong to C but every proper induced

subgraph of G belongs to C.
A property of hereditary graph classes is that they can be characterised by a list of

minimal forbidden induced subgraphs.

Theorem 1.1. Let C be a hereditary class of graphs, and let H be the set of all minimal

forbidden induced subgraphs for C. Then C is exactly the class of H-free graphs.
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Proof. If G ∈ C, then by the definition of C, every induced subgraph of G also belongs

to C, and since no graph in H belongs to C, it follows that G is H-free. Thus, every

graph in C is H-free. To see that every H-free graph belongs to C, let G be H-free and

suppose that G ̸∈ C. Let H be a minimum induced subgraph of G that does not belong

to C. Then H ∈ H, and therefore G is not H-free, a contradiction. Thus, every H-free

graph belongs to C.

For many interesting hereditary graph classes, finding a characterisation in terms of

minimal forbidden induced subgraphs is no simple task. For instance, it was conjectured

by Claude Berge in the 1960’s that for the class of perfect graphs (which we will

discuss soon) there are two types of minimal forbidden induced subgraphs: odd holes

(a chordless cycle on an odd number of at least five vertices) and odd antiholes (the

complement of an odd hole, where the complement of a graph G is the graph G with

vertex set V (G) such that distinct u, v ∈ V (G) are adjacent in G if and only if they are

nonadjacent in G). This conjecture received much attention over 40 years, and it was

finally proved by Maria Chudnovsky, Neil Robertson, Paul Seymour and Robin Thomas

in 2002. In this thesis (in Chapters 2 and 4) we work towards finding characterisations

in terms of minimal forbidden induced subgraphs for β-perfect graphs and for a subclass

of circular-arc graphs.

A graph is connected if there is a path between any two vertices, and is disconnected

otherwise. A cutset is any set C of vertices or edges of a graph G such that the graph

obtained from G by removing the vertices and edges from C is disconnected. The use

of decomposition has proven very useful in the study of hereditary graph classes. In

this thesis we will often be concerned with “decomposition theorems” for hereditary

graph classes. A decomposition theorem for a class of graphs C is any theorem of the

form “if G is a graph that belongs to C, then G is ‘basic’ or G has a certain type of

cutset.”

For decomposition theorems to be useful, what it means to be “basic” and the types

of cutset used must satisfy certain properties. Suppose, for instance, that we have a

decomposition theorem for a class of graphs C, and we want to use this decomposition

theorem in order to solve the recognition problem for this class. That is, we wish to

give an algorithm that decides whether a given graph belongs to the class C. In this

case, we need that the basic graphs are “easily” recognisable, and that decomposition

by the cutsets used is class preserving.

What we mean by class preserving is the following. When decomposing a graph G

by a cutset C, one removes C from G and the resulting graph has several components,
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from which one forms so-called blocks of decomposition, one for each component, by

taking each component and adding vertices or edges. A clique is a set of pairwise

adjacent vertices, and a clique cutset is a cutset that is a clique. To form the blocks

of decomposition with respect to a clique cutset, for example, take each component of

the graph obtained by removing the cutset, and add back the vertices of the cutset

and any edges of the original graph between vertices of the cutset and vertices of the

component. A type of cutset is class preserving for a class C provided that a graph G

belongs to C if and only if all the blocks of decomposition of G with respect to any

cutset of that type also belong to C.
Each of the next three chapters focuses on a class of graphs that in some way

relates to the class of even-hole-free graphs. We mentioned holes informally earlier

when talking about perfect graphs, but let us now define them formally. A cycle

(of length k) is a graph C with vertex set {x1, . . . , xk} (where k ≥ 3) and edge set

{x1x2, x2x3, . . . , xk−1xk, xkx1}. A hole of a graph G is an induced cycle of length at

least 4, and a hole is odd or even depending on the parity of its length. For k ≥ 4, a

k-hole is a hole of length k, and we denote such a hole by Ck. A graph is even-hole-free

if it contains no even hole.

For a graph G, we denote by χ(G) the chromatic number of G, i.e., the minimum

number of colours needed to colour the vertices of G so that no two adjacent vertices

receive the same colour; and by ω(G) we denote the size of a largest clique in G. A

graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G. Claude Berge

was the first to study perfect graphs, in part motivated by a problem from information

theory. Perfect graphs also have connections to linear and integer programming, see

e.g. [1]. Many NP-hard graph problems, such as colouring, finding a maximum clique

and finding a maximum stable set (a stable set is a set of pairwise nonadjacent vertices)

can all be solved in polynomial time for perfect graphs. By the strong perfect graph

theorem [12], a graph is perfect if and only if it contains no odd hole and no odd

antihole. Since a graph that contains no hole of length 4 also contains no antihole of

length at least 6, even-hole-free graphs are structurally quite similar to perfect graphs.

This observation was the initial motivation for the study of even-hole-free graphs.

Techniques discovered from the study of even-hole-free graphs were used in the

context of perfect graphs, and it was a decomposition based approach that ultimately

led to the proof of the strong perfect graph theorem. The nature of even-hole-free

graphs has been studied through their generalisation to so-called odd-signable graphs.

A signing of a graph G is an assignment of 0,1 weights to each edge of G. The weight

of an induced subgraph of G is the sum of the weights of its edges. A graph is odd-
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signable if it admits a signing in which every triangle and every hole has odd weight. A

graph is even-signable if it admits a signing in which every triangle has odd weight and

every hole has even weight. By considering the signing that assigns weight 1 to every

edge, one sees that even-hole-free graphs are odd-signable and odd-hole-free graphs are

even-signable.

Odd-signable and even-signable graphs can be characterised by the fact that they do

not contain certain types of special graphs called Truemper configurations as induced

subgraphs.

A triangle is a complete graph on three vertices. A prism is a graph made of three

vertex-disjoint paths P1 = a1, . . . , b1, P2 = a2, . . . , b2 and P3 = a3, . . . , b3, each of length

at least 1, such that {a1, a2, a3} and {b1, b2, b3} induce triangles, and there are no edges

between these three paths except those of the two triangles. A pyramid is a graph

made of three paths P1 = a, . . . , b1, P2 = a, . . . , b2 and P3 = a, . . . , b3, each of length

at least 1, two of which have length at least 2, with V (P1) ∩ V (P2) ∩ V (P3) = {a},
and such that {b1, b2, b3} induces a triangle and there are no edges between these three

paths except those of the triangle and those incident to a. A theta is a graph made of

three internally vertex-disjoint paths (that is, intersecting possibly only at their ends)

P1 = a, . . . , b, P2 = a, . . . , b and P3 = a, . . . , b of length at least 2 such that there are

no edges between these three paths except the three edges incident to a and the three

edges incident to b. We may denote prisms, pyramids and thetas with three paths

as above by 3PC(a1a2a3, b1b2b3), 3PC(b1b2b3, a) and 3PC(a, b) respectively. A three-

path-configuration (or 3PC for short) is any prism, pyramid or theta. A wheel consists

of a hole H, called the rim, together with an additional vertex x, called the centre,

that has at least 3 neighbors in the hole; we sometimes denote such a wheel by (H,x).

A wheel is odd if it contains an odd number of triangles, and is even if the centre has

an even number of neighbours in the rim. A Truemper configuration is any 3PC or

wheel (see Figure 1.1). We refer the reader to [52] for a survey on the use of Truemper

configurations in the study of hereditary graph classes.

Theorem 1.2 (Conforti, Cornuéjols, Kapoor and Vušković [17]). A graph is odd-

signable if and only if it contains no theta, prism, or even wheel.

Theorem 1.3 (Conforti, Cornuéjols, Kapoor and Vušković [17]). A graph is even-

signable if and only if it contains no pyramid or odd wheel.

The first decomposition theorem for even-hole-free graphs was in fact a decom-

position theorem for 4-hole-free odd-signable graphs [17], and this led to the first

polynomial-time recognition algorithm [18] for the class of even-hole-free graphs (with
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Figure 1.1: From left-to right: a theta, pyramid, prism and wheel. Dashed lines denote
paths of length at least 1.

running time of about O(n40) for an n-vertex graph). Chudnovsky, Kawarabayashi and

Seymour [10] used a method called cleaning (which is also used in algorithms for recog-

nising perfect graphs) to obtain a faster recognition algorithm for even-hole-free graphs,

with running time O(n31). da Silva and Vušković [22] strengthened the decomposition

theorem for 4-hole-free odd-signable graphs from [17] and as a consequence obtained a

recognition algorithm for even-hole-free graphs with running time O(n19). Chang and

Lu [9], also using the decomposition theorem from [22], gave a recognition algorithm

for even-hole-free graphs with running time O(n11). The fastest known algorithm to

date for recognising even-hole-free graphs runs in O(n9) time and is due to Lai, Lu and

Thorup [39]. The class of even-hole-free graphs is still an active object of research. It

remains open whether one can solve the colouring and maximum stable set problems

in polynomial time for even-hole-free graphs.

Even-hole-free graphs are also of interest due to their connection to β-perfect graphs,

which form the focus of Chapter 2. We now outline the contributions of the thesis.

1.1 Contributions of the thesis

Chapter 2: β-perfect graphs

For a graph G, let β(G) be the maximum of δ(H) + 1 taken over all induced

subgraphs H of G, where δ(G) denotes the minimum degree of a vertex in G. A

graph G is β-perfect if χ(H) = β(H) for every induced subgraph H of G. The class

of β-perfect graphs is a subclass of the class of even-hole-free graphs. By colouring

greedily with respect to an easily-computable ordering of the vertices of a β-perfect

graph, one can optimally colour β-perfect graphs in polynomial time (we explain this

in more detail in the introduction to Chapter 2). The class of β-perfect graphs was
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first introduced in 1996 by Markossian, Gasparian and Reed. Since then, a number of

classes of graphs have been shown to be β-perfect, but it remains open to characterise

the class of β-perfect graphs in terms of forbidden induced subgraphs and to give an

algorithm that in polynomial time decides whether a graph is β-perfect.

A twin wheel is a wheel whose centre has exactly three neighbours in the hole, and

these three neighbours form a path. A cap is any graph that consists of a hole together

with an additional vertex that has exactly two neighbours in the hole, and these two

neighbours are adjacent. In Section 2.1, we prove that (even hole, twin wheel, cap)-free

graphs are β-perfect. This generalises a result of Markossian, Gasparian and Reed [42],

who showed that (even hole, diamond, cap)-free graphs are β-perfect (where a diamond

is the graph obtained from the complete graph on four vertices by removing one edge).

A hyperhole is any graph G consisting of k ≥ 4 cliques X1, . . . , Xk such that (with

subscripts modulo k) Xi is complete to Xi−1∪Xi+1 and anticomplete to V (G)\(Xi−1∪
Xi ∪Xi+1) for all i ∈ {1, . . . , k}. In Section 2.2, we give a forbidden induced subgraph

characterisation of β-hyperholes, and we use this characterisation to decide in linear

time whether a given hyperhole is β-perfect.

The claw is the graph that consists of three pairwise nonadjacent vertices that are

all adjacent to an additional fourth vertex (in other words, it is the complete bipartite

graph K1,3). In Section 2.3, we give a forbidden induced subgraph characterisation of

claw-free β-perfect graphs. This result relies heavily on a forbidden induced subgraph

characterisation of β-perfect “rings”, which are a generalisation of hyperholes. Thus,

in proving the main result of Section 2.3, we obtain a generalisation of the result of

Section 2.2. From our characterisation of claw-free β-perfect graphs, we derive an

algorithm that decides in polynomial time whether a given claw-free graph is β-perfect.

Chapter 3: Graphs with all holes the same length

For an integer ℓ ≥ 4, a graph G is ℓ-holed if every hole of G is of length ℓ. Chapter 3

is concerned with ℓ-holed graphs. A group consisting of Myriam Preissmann, Cléophée

Robin, Ni Luh Dewi Sintiari, Nicolas Trotignon, Kristina Vušković and the present

author worked on obtaining a structure theorem for the class of ℓ-holed graphs (where

ℓ ≥ 7). It was discovered during this work that another group of researchers, consisting

of Linda Cook and Paul Seymour, were working on this same problem at the same

time. Both groups independently obtained structure theorems, but came together to

submit work as a joint publication [19]. Each structure theorem describes exactly the

structure of ℓ-holed graphs that have no clique cutset and no universal vertex (a vertex

is universal if it is adjacent to every other vertex in the graph). Since piecing together
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two ℓ-holed graphs along a clique (in other words, reversing a clique cutset) yields

another ℓ-holed graph, and similarly so does adding a universal vertex to an ℓ-holed

graph, theorems that describe the structure of ℓ-holed graphs that have no clique cutset

and no universal vertex tell us how all ℓ-holed graphs may be generated.

In Section 3.1 we present the structure theorem of Cook and Seymour, and in

Section 3.2 we present the structure theorem of Preissmann, Robin, Sintiari, Trotignon,

Vušković and the present author. The joint publication [19] contains the first structure

theorem. Since only one of these structure theorems is to be peer reviewed, it is of

interest to establish that the two structure theorems are equivalent; in Section 3.3, we

prove that they are indeed equivalent.

In Section 3.4, we introduce a variant of 2-joins called special 2-joins. (2-joins are a

type of edge cutset that are used in the decomposition of perfect graphs [12] and even-

hole-free graphs [17], for instance.) In Section 3.4.3, we give a clique cutset and special

2-join based decomposition theorem for ℓ-holed graphs (where ℓ ≥ 7 is odd), and we

use this decomposition theorem in Section 3.5.2 to decide in polynomial time whether a

graph is ℓ-holed for some odd ℓ ≥ 7. In Section 3.5, we give polynomial time algorithms

that solve the maximum clique and maximum stable set problems for ℓ-holed graphs

when ℓ ≥ 7 is odd, and we present a second recognition algorithm for ℓ-holed graphs

when ℓ ≥ 7 is odd which is based on a process of clique cutset decomposition. Finally,

we conclude the chapter of ℓ-holed graphs in Section 3.5.4 with a discussion on how

one can recognise ℓ-holed graphs without the use of decomposition.

Chapter 4: Even-hole-free circular-arc graphs

Let C be a circle and let A be a collection of arcs of C. Consider the graph whose

vertex set consists of the arcs from A such that A,A′ ∈ A are adjacent if and only if

A ∩ A′ ̸= ∅. Any graph constructible in this way is called a circular-arc graph. These

graphs generalise the well known class of interval graphs, which are the intersection

graphs of intervals of the real line. Interval graphs are well understood, in the sense

that we have a number of characterisations for the class of interval graphs, among

them a forbidden induced subgraph characterisation. Many problems on graphs that

are NP-hard in general, such as colouring and finding a maximum clique or stable

set, are solvable in polynomial time on interval graphs. However, things are more

complicated when one turns to circular-arc graphs. First, there is no known forbidden

induced subgraph characterisation of circular-arc graphs, and second, problems such as

colouring remain NP-complete when restricted to circular-arc graphs. In [6], even-hole-

free graphs that are pan-free (a pan is a hole together with a vertex that has exactly one
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neighbour in the hole) are decomposed by clique cutsets into so-called unit circular-arc

graphs, which gives way to a linear-time recognition algorithm and a polynomial-time

colouring algorithm for this class. Motivated by this connection between even-hole-free

graphs and circular-arc graphs, in Chapter 4 we work towards characterising even-

hole-free circular-arc graphs. Since it is a long standing open problem to characterise

chordal circular-arc graphs, we restrict our focus to even-hole-free circular-arc graphs

that are not chordal. We obtain a partial result in this direction; namely, we give a

forbidden induced subgraph characterisation of even-hole-free circular-arc graphs that

are not chordal that furthermore do not contain so-called crossing vertices.

1.2 Terminology and notation

Let G be a graph. The vertex set of G is denote by V (G) and the edge set of G by

E(G). When referring to an edge {x, y} of G, we may simply write xy, and we say that

x, y are the ends of the edge. For a vertex x ∈ V (G), we denote by NG(x) (or simply

N(x) when G is clear from context) the set of all neighbours of x in G, and NG[x]

denotes the closed neighbourhood of x in G, i.e., the set NG(x) ∪ {x}. If S ⊆ V (G),

then we denote by NS(x) the set N(x) ∩ S, and similarly if S is an induced subgraph

of G, then we denote by NS(x) the set N(x) ∩ V (S). For a set S ⊆ V (G), we denote

by NG(S) the set of vertices of G not in S that have a neighbour in S. We denote by

dG(x) (or d(x) if G is clear from context) the degree of x in G, i.e., dG(x) = |NG(x)|.
By δ(G) we denote the minimum degree of a vertex in G, and by ∆(G) we denote the

maximum degree of a vertex in G.

If A and B are disjoint subsets of V (G), then we say that A is complete to B if

every vertex of A is adjacent to every vertex of B, and that A is anticomplete to B if

every vertex of A is nonadjacent to every vertex of B. If A is a singleton, say A = {a},
then we may say that a is complete or anticomplete to B.

A clique is a set of pairwise adjacent vertices, and a stable set is a set of pairwise

nonadjacent vertices. The size of a maximum clique in G is denoted by ω(G) and the

size of a maximum stable set in G is denoted by α(G). A complete graph is a graph

whose vertex set is a clique. We refer to the complete graph on three vertices as the

triangle, and denote by Kk the complete graph on k vertices. A graph G is bipartite if

V (G) admits a partition (A,B) such that every edge of G has one end in A and the

other end in B; under these circumstances, the partition (A,B) is referred to as the

bipartition of G. A bipartite graph with bipartition (A,B) is complete if A is complete

to B. For integers m,n ≥ 1 we denote by Km,n the complete bipartite graph with
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bipartition (A,B) where |A| = m and |B| = n.

For a set S ⊆ V (G) we denote by G[S] the subgraph of G induced by S, and by

G \ S the subgraph of G induced by V (G) \ S. For two graphs G and H we denote

by G ∪H the disjoint union of G and H, i.e., the graph with vertex set V (G) ∪ V (H)

and edge set E(G) ∪ E(H). For a graph G, the complement of G is the graph G with

vertex set V (G) such that distinct vertices u, v ∈ V (G) are adjacent in G if and only if

they are nonadjacent in G.

In this thesis, by a path we mean an induced (i.e., chordless) path. If P is a path with

V (P ) = {x1, . . . , xk} and edge set {x1x2, . . . , xk−1xk}, we may write P = x1, . . . , xk.

The two vertices of degree 1 of a path are called its ends. If P is a path, say with ends

x and y, then P is called an xy-path; we denote by P ∗ the set V (P ) \ {x, y}, and call

this set the interior of P . The length of a path is the number of its edges. For vertices

x, y of G we denote by dG(x, y) (or simply d(x, y)) the distance between x and y, i.e.,

the length of a shortest xy-path. For an integer k ≥ 1 we denote by Pk the path on k

vertices, and for an integer k ≥ 4, we denote by Ck the hole on k vertices. A graph is

chordal if it has no hole.

A graph G is connected if between any two distinct vertices u, v of G there is a

uv-path, and is disconnected otherwise. A graph is k-connected if it has more than k

vertices and there exists no set of k − 1 vertices whose removal yields a disconnected

graph. A component of a graph G is a maximal connected subgraph of G. A clique C

in a graph G is a clique cutset if G \ C is disconnected. A tree is a connected graph

with no cycles. The vertices of a tree of degree 1 are called the leaves of the tree.

If C is a clique cutset of a graph G and C1, . . . , Ck are the components of G \ C,

then the blocks of decomposition of G with respect to C are the graphs G[V (Ci) ∪ C]

for i ∈ {1, . . . , k}. A clique cutset decomposition tree of a graph G is a tree T satisfying

the following:

� the root of T is G;

� each non-leaf node H of T has a clique cutset C such that V (H) \ C admits a

partition (A,B) where A is anticomplete to B in H, and the children of H in T

are the graphs G[A ∪ C] and G[B ∪ C], one of which has no clique cutset and is

a leaf of T ;

� the leaves of T are induced subgraphs of G that have no clique cutset.



Chapter 2

β-perfect graphs

In 1996, Markossian, Gasparian and Reed introduced in [42] the class of β-perfect

graphs. For a graph G, let β(G) be the maximum of δ(H) + 1 taken over all induced

subgraphs H of G. A graph G is β-perfect if χ(H) = β(H) for every induced subgraph

H of G. We say that G is β-imperfect if G is not β-perfect, and that G is minimally

β-imperfect if G is β-imperfect but all the proper induced subgraphs of G are β-perfect.

The class of β-perfect graphs is a subclass of the class of even-hole-free graphs:

Lemma 2.1 (Markossian, Gasparian and Reed [42]). If G is a β-perfect graph, then

G is even-hole-free.

Proof. If H is an even hole, then χ(H) = 2 and β(H) = 3.

Figure 2.1: An even-hole-free graph that is not β-perfect.

Since there are even-hole-free graphs that are not β-perfect (see Figure 2.1), the

class of all β-perfect graphs forms a proper subclass of even-hole-free graphs.

For any graph G, the parameter β(G) is an upper bound on χ(G), as we now show.

Let V (G) = {v1, . . . , vn} say, and let v1, . . . , vn be any ordering of V (G). Now colour

the vertices of G greedily with respect to this ordering; that is, consider each vertex

among v1, . . . , vn in order, and assign to the vertex vi the smallest positive integer not

11
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already assigned to any neighbour of vi in G[{v1, . . . , vi}]. It is easily seen that this

algorithm produces a colouring of G that uses at most ∆(G) + 1 colours (and that it

runs in time O(|V (G)| + |E(G)|)). Suppose now that V (G) is ordered as v1, . . . , vn

so that, for each i ∈ {1, . . . , n}, the vertex vi is of minimum degree in G[{v1, . . . , vi}].
Colouring greedily with respect to this ordering produces a colouring of G that uses at

most β(G) colours. Thus, for any graph G, the parameter β(G) is an upper bound on

the chromatic number of G. It now follows from the definition of β-perfect that the

greedy colouring algorithm, applied in the way just described, produces (in polynomial

time) optimal colourings for β-perfect graphs. It is unknown whether even-hole-free

graphs in general can be coloured in polynomial time.

Throughout this chapter we will use several known properties of minimal β-imperfect

graphs, the first being:

Lemma 2.2. If G is a minimal β-imperfect graph, then β(G) = δ(G) + 1.

Proof. Let G be a minimal β-imperfect graph and let H be an induced subgraph of

G such that β(G) = δ(H) + 1. Suppose H is a proper induced subgraph of G. By

our choice of H we have that β(H) = β(G), and therefore, since H is β-perfect,

χ(H) = β(H) = β(G). But then, since χ(G) ≥ χ(H), we have that χ(G) ≥ β(G), and

hence χ(G) = β(G), contradicting our assumption that G is minimally β-perfect. So

H = G and β(G) = δ(G) + 1.

For the proof of the next property of minimal β-imperfect graphs, we need the

following well-known result of Dirac about chordal graphs. A vertex is simplicial if its

neighbourhood is a clique, and is a simplicial extreme if it is simplicial or has degree 2.

Theorem 2.3 (Dirac [25]). If G is a chordal graph that is not a complete graph, then

G contains at least two nonadjacent simplicial vertices.

Lemma 2.4 (Markossian, Gasparian and Reed [42]). If G is a minimal β-imperfect

graph that is not an even hole, then G contains no simplicial extreme.

Proof. On the contrary, suppose G is a minimal β-imperfect graph that contains a

simplicial extreme v. If NG(v) is a clique, then by Lemma 2.2, β(G) = δ(G) + 1 ≤
dG(v) + 1 ≤ ω(G) ≤ χ(G), and hence β(G) ≤ χ(G), a contradiction. So G contains

no simplicial vertex, and therefore dG(v) = 2. Furthermore, by Theorem 2.3, G is

not chordal, and therefore G contains a hole H. Since G is not an even hole, and

since even holes are minimally β-imperfect, it follows that G is even-hole-free, and

therefore H is an odd hole. Thus χ(H) = 3, and hence χ(G) ≥ 3. By Lemma 2.2,

β(G) = δ(G) + 1 ≤ 3 ≤ χ(G), a contradiction.
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By the definition of β-perfect, the class of β-perfect graphs is hereditary, and there-

fore there exists some forbidden induced subgraph characterisation for this class. In

the case of perfect graphs, it was conjectured by Berge in 1961 [2], and proved by

Chudnovsky, Robertson, Seymour and Thomas in 2002 [12], that a graph is perfect if

and only if it contains no odd hole and no complement of an odd hole. At present, no

forbidden induced subgraph characterisation for the class of β-perfect graphs is known

or has been conjectured, and there exists no known algorithm that decides whether

a given graph is β-perfect. However, several classes of graphs defined by forbidden

induced subgraphs have been identified as subclasses of the class of β-perfect graphs.

We now survey these results.

A diamond is any graph obtained by removing exactly one edge from the complete

graph on four vertices. A cap is any graph consisting of a hole together with an

additional vertex whose neighbourhood in the hole consists of two adjacent vertices.

Theorem 2.5 (Markossian, Gasparian and Reed [42]). If G is an (even hole, diamond,

cap)-free graph, then G is β-perfect.

A 6-cap is a cap on exactly 6 vertices. de Figueiredo and Vušković generalised

Theorem 2.5 with the following.

Theorem 2.6 (de Figueiredo and Vušković [24]). If G is an (even hole, diamond,

6-cap)-free graph, then G is β-perfect.

Another subclass of (even hole, diamond)-free graphs shown to be β-perfect

is the following. A net is the graph on six vertices a, b, c, x, y, z with edge set

{ab, bc, ac, ax, by, cz}.

Theorem 2.7 (Keijsper and Tewes [37]). If G is an (even hole, diamond, net)-free

graph, then G is β-perfect.

This result was further strengthened by Keijsper and Tewes, who showed that in-

stead of forbidding the diamond it suffices to forbid graphs D1, D2, D4, D5 and D6, each

of which contains the diamond as a proper induced subgraph, and instead of forbidding

the 6-cap it suffices to forbid S1 and S2, both of which contain the 6-cap as a proper

induced subgraph. (Note that S1 and S2 both contain the net as a proper induced sub-

graph, and therefore the following result also generalises Theorem 2.7.) See Figure 2.2

for depictions of graphs D1, D2, D4, D5, D6, S1 and S2.

Theorem 2.8 (Keijsper and Tewes [37]). If G is an (even hole, D1, D2, D4, D5, D6,

S1, S2)-free graph, then G is β-perfect.
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Figure 2.2: From left-to-right and top-to-bottom: the graphs D1, D2, D3, D4, D5, D6,
S1 and S2 from [37].

The authors of [24] conjectured a strengthening of Theorem 2.6, namely that one

need only forbid even holes and the diamond to ensure β-perfection.

In [38], Kloks, Müller and Vušković gave a decomposition theorem for (even hole,

diamond)-free graphs, from which they derived the following, thereby answering posi-

tively the conjecture of de Figueiredo and Vušković.

Theorem 2.9 (Kloks, Müller and Vušković [38]). If G is an (even hole, diamond)-free

graph, then G is β-perfect.

We conclude our survey of known results with the following. The claw is the graph

on four vertices that has three pairwise nonadjacent vertices each adjacent to the re-

maining fourth vertex. (In other words, the claw is the complete bipartite graph K1,3.)

Theorem 2.10 (Keijsper and Tewes [37]). If G is a (claw, even hole, D1, D2, D3)-free

graph, then G is β-perfect.

All of the above results, besides Theorem 2.8, that identify classes of β-perfect

graphs establish β-perfection by showing that every graph in the class in question

has a simplicial extreme. To illustrate this technique, suppose C is a hereditary class

of even-hole-free graphs. Suppose we are able to show that every graph in C has a

simplicial extreme. It follows from Lemma 2.4 that C contains no minimal β-imperfect

graph. Now suppose G ∈ C is β-imperfect; then some induced subgraph H of G is

minimally β-imperfect, and since C is hereditary, H ∈ C, a contradiction. Thus, if C is

a hereditary class of even-hole-free graphs each of which has a simplicial extreme, then
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every graph in C is β-perfect. In this way, it follows from Theorem 2.3 that chordal

graphs are β-perfect; this fact is used often throughout this chapter, so we state it here:

Theorem 2.11. Chordal graphs are β-perfect.

Notice also that all the classes of β-perfect graphs identified by the above results

are defined by forbidding possibly among other graphs at least one chordal graph, and

consequently, none of these classes contain all chordal graphs. For our first result of

this chapter, in Section 2.1, we identify a class of graphs that (1) contains graphs with

no simplicial extreme, (2) contains the class of chordal graphs, and (3) contains the

class of (even hole, diamond, cap)-free graphs, and we prove that every graph in this

class is β-perfect.

Our second result, in Section 2.2, concerns “hyperholes”; these are graphs consist-

ing of cliques arranged in a circular fashion with the property that between any two

consecutive cliques there are all possible edges and between two nonconsecutive cliques

there are no edges (we give a more formal definition in Section 2.2). We give a com-

plete structural characterisation of β-perfect hyperholes, which we then use to give a

linear-time algorithm for deciding whether a hyperhole is β-perfect.

Figure 2.3: A minimal β-imperfect graph that has a clique cutset.

Our third result builds upon the second, but in order to put the final result of

this chapter into context, we briefly discuss the use of clique cutset decomposition in

obtaining structural characterisations of hereditary graph classes.

Suppose C is a hereditary class of graphs (that is, one closed under the induced

subgraph relation), and consider the task of proving that a graph G belongs to C if and

only if G is F-free, for some family of graphs F . When proving the “if” direction, i.e.,

that if G is F-free, then G belongs to C, one often supposes for the sake of contradiction

that it fails to hold and then considers a minimum counterexample, i.e., a graph that is

F-free, does not belong to C, but all its proper induced subgraphs do belong to C. If it
can be shown that no such minimum counterexample has a clique cutset, then we may

assume that G has no clique cutset, which greatly simplifies any structural analysis.

However, returning to β-perfect graphs, there are minimally β-imperfect graphs

with clique cutsets (see Figure 2.3 for an example), so it seems that the above strategy

fails when C is taken to be the class of β-perfect graphs. Having said this, it turns out
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that certain types of clique cutsets (called “double clique cutsets”) do not appear in

minimal β-imperfect graphs. Therefore, if for some class of graphs we can show that

the existence of a clique cutset implies the existence of a double clique cutset, then

we may assume that no minimal β-imperfect graph in the class has a clique cutset.

In Section 2.3, we do exactly this for the class of claw-free graphs; we show that a

claw-free graph (satisfying a number of additional assumptions) has a double clique

cutset whenever it has a clique cutset, and therefore no minimal β-imperfect claw-free

graph admits a clique cutset. Then, by a result of Boncompagni, Penev and Vušković,

the problem of characterising the class of claw-free β-perfect graphs reduces to the

problem of characterising β-perfect “rings” (which are a generalisation of hyperholes,

also defined formally later).

In Section 2.3, we characterise β-perfect rings, from which we derive a characterisa-

tion of claw-free β-perfect graphs. This result is a generalisation of Theorem 2.10. Using

this characterisation, we give an algorithm that decides in polynomial time whether a

claw-free graph is β-perfect.

The results from Sections 2.1 and 2.2 appear in [36]. A paper containing the results

from Section 2.3 will be submitted for publication.

2.1 β-perfection of (even hole, twin wheel, cap)-free graphs

Recall that a wheel consists of a hole, called the rim, together with an additional vertex,

called the centre, that has at least 3 neighbours in the hole. If the centre is complete

to the hole, then we say that the wheel is a universal wheel, and if its neighbourhood

in the hole consists precisely of three consecutive vertices of the hole, then we say that

the wheel is a twin wheel. A wheel that is neither a universal wheel nor a twin wheel

is called a proper wheel.

In this section we prove that (even hole, twin wheel, cap)-free graphs are β-perfect.

Note that chordal graphs are properly contained in the class of (even hole, twin wheel,

cap)-free graphs. Furthermore, since diamond-free graphs do not contain twin wheels,

this result generalises Theorem 2.5.

The following well-known characterisation of chordal graphs, and the construction

of (cap, 4-hole)-free graphs with a hole and no clique cutset given by Theorem 2.13

are used to prove Lemma 2.14, a decomposition theorem for (even hole, twin wheel,

cap)-free graphs.

Theorem 2.12 (Dirac [25]). If G is a chordal graph, then either G is a complete graph

or it has a clique cutset.
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Given graphs G and F , we say that G is obtained by blowing up vertices of F into

cliques provided that there exists a partition {Xv}v∈V (F ) of V (G) into nonempty cliques

such that for all distinct u, v ∈ V (F ), if uv ∈ E(F ) then Xu is complete to Xv in G,

and if uv ̸∈ E(F ) then Xu is anticomplete to Xv in G.

A vertex v in a graph G is universal if v is complete to V (G) \ {v}, and a clique

C ⊆ V (G) is universal if every vertex in C is a universal vertex of G.

Theorem 2.13 (Cameron, da Silva, Huang and Vušković [7]). Let G be a (cap, 4-

hole)-free graph that contains a hole and has no clique cutset. Let F be any maximal

induced subgraph of G with at least 3 vertices that is triangle-free and has no clique

cutset. Then G is obtained from F by first blowing up vertices of F into cliques, and

then adding a universal clique. Furthermore, any graph obtained by this sequence of

operations starting from a (triangle, 4-hole)-free graph with at least 3 vertices and no

clique cutset is (cap, 4-hole)-free and has no clique cutset.

Lemma 2.14. If G is an (even hole, twin wheel, cap)-free graph, then one of the

following holds:

(i) G is a complete graph;

(ii) G consists of a triangle-free graph on at least 3 vertices that has no clique cutset

together with a (possibly empty) universal clique; or

(iii) G has a clique cutset.

Proof. Let G be an (even hole, twin wheel, cap)-free graph and assume that (i) and

(iii) do not hold. By Theorem 2.12, G contains a hole. Let F be any maximal induced

subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset. By

Menger’s theorem, every vertex v of F is contained in a cycle, and since F is triangle-

free, such a cycle contains a hole that contains v. Since G does not contain a twin wheel,

Theorem 2.13 implies that (ii) holds, i.e. V (G) \ V (F ) is a clique that is complete to

V (F ).

Lemma 2.15. If G is a graph whose vertex set can be partitioned into (possibly empty)

sets A and B so that:

� A is a clique of G;

� if B ̸= ∅, then G[B] is a (triangle, even hole)-free graph; and

� A is complete to B;

then G is β-perfect.



18 CHAPTER 2. β-PERFECT GRAPHS

Proof. It suffices to show that χ(G) = β(G). Clearly we may assume that B ̸= ∅. By

Theorem 2.5, χ(G[B]) = β(G[B]). But then β(G) = β(G[B]) + |A| = χ(G[B]) + |A| =
χ(G).

Let S ⊆ V (G) be a clique cutset of G and let C1, . . . , Ck be the connected compo-

nents of G \ S. The blocks of decomposition of G with respect to the clique cutset S

are graphs Gi = G[V (Ci) ∪ S], for i = 1, . . . , k. If, for some i, Gi has no clique cutset

then Gi is an extreme block and S is an extreme clique cutset. To complete our proof

we will use the following well-known property of clique cutsets.

Lemma 2.16. If a graph G has a clique cutset, then it has an extreme clique cutset.

Lemma 2.17 (Markossian, Gasparian and Reed [42]). Let G be a (triangle, even hole)-

free graph. Let x be a vertex of G. Then either {x} is complete to V (G) \ {x} or there

is some vertex y in G \N [x] such that y has degree at most 2 in G.

A graph is k-degenerate if every one of its subgraphs has a vertex of degree at most

k. It is well known that the chromatic number of a k-degenerate graph is at most k+1.

Theorem 2.18. If G is an (even hole, twin wheel, cap)-free graph, then G is β-perfect.

Proof. Suppose not and let G be a minimally β-imperfect (even hole, twin wheel, cap)-

free graph. By Lemma 2.2, β(G) = δ(G) + 1.

Lemmas 2.14 and 2.15 together imply that G has a clique cutset. Let K be an

extreme clique cutset of G (it exists by Lemma 2.16). Let C1, . . . , Ck be the connected

components of G\K, and G1, . . . , Gk their respective blocks of decomposition. Without

loss of generality, let G1 = G[V (C1) ∪K] be an extreme block. Since G1 has no clique

cutset, by Lemma 2.14 G1 is either a complete graph or a 2-connected triangle-free

graph together with a universal clique.

If G1 is a clique, then every vertex of C1 is a simplicial extreme in G1 and hence in

G, contradicting Lemma 2.4. So V (G1) may be partitioned into sets A1 and B1 such

that A1 is a clique, G[B1] is 2-connected triangle-free, and A1 is complete to B1. Since

G[B1] is 2-connected triangle-free, by Lemma 2.17 B1 contains 2 nonadjacent distinct

vertices y1 and y2 that are both of degree 2 in G[B1]. It follows that y1 and y2 are

both of degree 2 + |A1| in G1. Without loss of generality, assume that y1 ∈ V (C1). It

follows that dG(y1) = 2 + |A1|. Since G[B1] contains an odd hole and is 2-degenerate,

χ(G[B1]) = 3 and so χ(G1) = 3 + |A1|. But then

β(G) = δ(G) + 1 ≤ dG(y1) + 1 = 3 + |A1| = χ(G1) ≤ χ(G),
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and hence β(G) = χ(G), contradicting our assumption that G is minimally β-imperfect.

We observe that the class of (even hole, twin wheel, cap)-free graphs can be recog-

nised in polynomial time. In [16] it was shown that (even hole, cap)-free graphs can

be recognised in polynomial time. To recognise whether a graph contains a twin

wheel it suffices to test for every {u, v, x, y} ⊆ V (G) that induces a diamond, with

say uv ̸∈ E(G), whether there is a path from u to v in G \ ((N [x] ∪N [y]) \ {u, v}).

2.2 β-perfect hyperholes

A ring is any graph R whose vertex set can be partitioned into k ≥ 4 nonempty sets

Y1, . . . , Yk such that for all i ∈ {1, . . . , k} the following hold (where, throughout this

chapter, subscripts are to be taken modulo k):

� Yi is a clique;

� Yi is anticomplete to V (R) \ (Yi−1 ∪ Yi ∪ Yi+1);

� some vertex of Yi is complete to Yi−1 ∪ Yi+1; and

� for all distinct y, y′ ∈ Yi, NR[y] ⊆ NR[y
′] or NR[y

′] ⊆ NR[y].

Under these circumstances we say that R is of length k and that R is a k-ring. Further-

more, R is even or odd according to the parity of k, and is long if k ≥ 5. We sometimes

refer to the sets Y1, . . . , Yk as the bags of R, and to (Y1, . . . , Yk) as a ring partition of

R.

A hyperhole is any ring R = (Y1, . . . , Yk) such that, for each i ∈ {1, . . . , k}, Yi is
complete to Yi−1∪Yi+1. The terminology defined for rings applies to hyperholes, so we

may speak of even and odd hyperholes, long hyperholes, k-hyperholes, and hyperholes

of length k. The graph in Figure 2.1 is a 5-hyperhole. Observe that rings are a gener-

alisation of hyperholes; in this section we consider only rings that are also hyperholes,

but in Section 2.3 we will often work with rings that are not hyperholes.

In this section we present a forbidden induced subgraph characterisation for the

class of β-perfect hyperholes, and using this characterisation we obtain an algorithm

that decides in linear time whether a hyperhole is β-perfect.

We use frequently the following result on the chromatic number of a hyperhole.
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Theorem 2.19 (Narayanan and Shende [43]). If H is a hyperhole, then

χ(H) = max

{
ω(H),

⌈
|V (H)|
α(H)

⌉}
.

Corollary 2.20. If H is a minimally β-imperfect k-hyperhole with k odd, then

|V (H)| ≤ (β(H)− 1)(k − 1)

2
.

Proof. Since k is odd, α(H) = k−1
2 , and hence by Theorem 2.19, χ(H) ≥ 2|V (H)|

k−1 . Since

H is minimally β-imperfect, β(H) > χ(H). It follows that β(H)− 1 ≥ 2|V (H)|
k−1 .

The following lemma will be used repeatedly throughout this section.

Lemma 2.21. Let H = (X1, . . . , Xk) be a minimally β-imperfect k-hyperhole. Then

for all i ∈ {1, . . . , k}, the following hold:

(i) if |Xi−1| = |Xi+1| = 1, then |Xi| ≥ β(H)− 2;

(ii) if |Xi| = 1, then |Xi−2 ∪Xi−1 ∪Xi| ≥ β(H) and |Xi ∪Xi+1 ∪Xi+2| ≥ β(H);

(iii) if |Xi| = |Xi+1| = 1, then |Xi+2| ≥ β(H)− 2 and |Xi−1| ≥ β(H)− 2.

Proof. Suppose that for some i ∈ {1, . . . , k}, |Xi−1| = |Xi+1| = 1 and |Xi| ≤ β(H)− 3.

Fix a vertex x ∈ Xi. Then d(x) ≤ β(H) − 2 and so β(H) ≥ d(x) + 2 ≥ δ(H) + 2,

contradicting Lemma 2.2. So (i) holds.

To prove (ii), by symmetry it suffices to prove that if |X1| = 1, then |X1∪X2∪X3| ≥
β(H). Suppose that |X1| = 1 but |X1 ∪ X2 ∪ X3| ≤ β(H) − 1. Fix a vertex x ∈ X2.

Then d(x) ≤ β(H)− 2 and so β(H) ≥ d(x) + 2 ≥ δ(H) + 2, contradicting Lemma 2.2.

So (ii) holds.

It follows directly from (ii) that (iii) holds.

Lemma 2.22. Let H = (X1, . . . , Xk) be a k-hyperhole such that |Xi| ≥ 2 for all

i ∈ {1, . . . , k}. Then H is not β-perfect.

Proof. If k is even then clearly H is not β-perfect, so we may assume that k is odd, and

hence k ≥ 5. Consider a k-hyperhole H ′ = (X ′
1, . . . , X

′
k) such that for all i ∈ {1, . . . , k},

|X ′
i| = 2. Clearly δ(H ′) = 5, and so β(H ′) ≥ 6. Using Theorem 2.19 we obtain

χ(H ′) = max{4, ⌈ 4k
k−1⌉}. Since ⌈ 4k

k−1⌉ = 5 for all k ≥ 5, χ(H ′) = 5 < β(H ′). Therefore

H ′ is not β-perfect. Since we may find an induced subgraph of H that is isomorphic to

H ′, it follows that H is not β-perfect.
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2.2.1 The 5-hyperholes and 7-hyperholes

We begin by characterising β-perfect 5-hyperholes and 7-hyperholes.

Theorem 2.23. Let H = (X1, . . . , X5) be a 5-hyperhole. Then H is β-perfect if and

only if some bag of H is of size 1.

Proof. If H is β-perfect, then some bag of H is of size 1, for otherwise Lemma 2.22 is

contradicted.

Now suppose, without loss of generality, that |X1| = 1 but that H is not β-perfect.

Since every induced subgraph ofH is either chordal or is a 5-hyperhole, by Theorem 2.11

we may assume that H is minimally β-imperfect. By Lemma 2.21, |X1 ∪X2 ∪X3| ≥
β(H) and |X4∪X5∪X1| ≥ β(H). So |V (H)| ≥ 2β(H)−1 = 4(β(H)−1)

2 +1, contradicting

Corollary 2.20.

So the graph in Figure 2.1 is the only minimally β-imperfect 5-hyperhole.

Theorem 2.24. Let H = (X1, . . . , X7) be a 7-hyperhole. Then H is β-perfect if and

only if for some i ∈ {1, . . . , 7}, either |Xi| = |Xi+1| = 1 or |Xi| = |Xi+2| = 1.

Proof. Suppose that H is β-perfect but (|Xi|, |Xi+1|) ̸= (1, 1) and (|Xi|, |Xi+2|) ̸= (1, 1)

for all i ∈ {1, . . . , 7}. By Lemma 2.22, we may assume without loss of generality that

|X1| = 1. We begin by claiming that we may assume that for all i ∈ {1, . . . , 7} \ {1, 4},
|Xi| ≥ 2. Suppose that |Xj | = 1 for some j ∈ {1, . . . , 7} \ {1, 4}. From our assumption

that (|Xi|, |Xi+1|) ̸= (1, 1) and (|Xi|, |Xi+2|) ̸= (1, 1) for all i ∈ {1, . . . , 7}, it follows

that j ∈ {4, 5}. So, without loss of generality, we may assume that |X4| = 1. It follows

from the same assumption that all remaining bags are of size at least 2.

Therefore H contains a hyperhole H ′ = (X ′
1, . . . , X

′
7) such that |X ′

1| = |X ′
4| = 1

and with all remaining bags being of size 2. By Theorem 2.19,

χ(H ′) = max{ω(H ′),

⌈
|V (H ′)|

3

⌉
} = max{4, ⌈12

3
⌉} = 4.

But β(H ′) ≥ δ(H ′) + 1 = 5 > χ(H ′), and hence H ′ is not β-perfect, contradicting our

assumption that H is β-perfect.

Suppose now that |X1| = |X2| = 1 but that H is not β-perfect. Since every

induced subgraph of H is chordal or a 7-hyperhole with two consecutive bags of size 1,

by Theorem 2.11 we may assume that H is minimally β-imperfect. By Lemma 2.21,

|X3| ≥ β(H)− 2 and |X7| ≥ β(H)− 2. If |X4| ≥ 2, then χ(H) ≥ ω(H) ≥ |X3 ∪X4| ≥
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Figure 2.4: A minimally β-imperfect 7-hyperhole.

β(H) and so χ(H) = β(H), contradicting our assumption that H is minimally β-

imperfect. So |X4| = 1, and by symmetry |X6| = 1. It then follows from Lemma 2.21

that |X5| ≥ β(H)−2. But now |V (H)| ≥ 3(β(H)−2)+4 = 6(β(H)−1)
2 +1, contradicting

Corollary 2.20.

Finally, suppose that |X1| = |X3| = 1 but that H is not β-perfect. As before,

by Theorem 2.11 we may assume that H is minimally β-imperfect. It follows from

Lemma 2.21 that |X2| ≥ β(H)−2, |X3∪X4∪X5| ≥ β(H), and |X6∪X7∪X1| ≥ β(H).

Therefore |V (H)| ≥ 3β(H) − 2 = 6(β(H)−1)
2 + 1, contradicting Corollary 2.20. This

completes the proof.

It follows from Theorem 2.24 that the graph in Figure 2.4 is the only minimally

β-imperfect 7-hyperhole.

2.2.2 Odd hyperholes of length at least 9

We now define some terminology. Let R = (Y1, . . . , Yk) be an odd ring. For i, j,m ∈
{1, . . . , k}, the tuple (Yi, . . . , Yj) is a sequence of m bags of R if for ℓ ∈ {1, . . . ,m},
the ℓ-th element of the sequence is Yi+ℓ−1 (and in particular the m-th element of the

sequence is the bag Yj). A sector of R is a sequence (Yi, . . . , Yj) of at least 2 bags such

that |Yi| = |Yj | = 1, and all the other bags in the sequence have size at least 2, and Ys is

complete to Ys+1 for each s ∈ {i, . . . , j − 1}. We say that Yi and Yj are the end bags of

the sector, and all the other bags are called the interior bags of the sector. The length of

a sector is the number of its interior bags. A sector is an n-sector, for an integer n ≥ 0, if

it is of length n. A sector is safe if it has length 1 or length at least 3. A super-sector of

R is a sequence (Yi, . . . , Yj) of at least 5 bags such that |Yi| = |Yi+1| = |Yj−1| = |Yj | = 1,

and for each h ∈ {i+1, . . . , j−2}, (|Yh|, |Yh+1|) ̸= (1, 1), and for each s ∈ {i, . . . , j−1},
Ys is complete to Ys+1. If (Yi, . . . , Yj) is a super-sector of R then we say that R
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contains a super-sector. We say that a super-sector (Yi, . . . , Yj) contains an n-sector if

some subsequence of (Yi+1, . . . , Yj−1) is an n-sector of R (note that although (Yi, Yi+1)

and (Yj−1, Yj) are 0-sectors of R, they are, by definition of “contains an n-sector”, not

contained in the super-sector (Yi, . . . , Yj)).

We point out that some of these terms appear in [36] but with slightly different

meanings. For instance, we want a “sector” to mean a sequence of bags whose end

bags are of size 1, and whose interior bags of size at least 2, with any two consecutive

interior bags being complete. When dealing with hyperholes, the latter condition about

consecutive interior bags being complete is redundant (and is therefore not present in

the definition of “sector” given in [36]), but in Section 2.3 we focus on rings, and there

this condition is important.

Figure 2.5: From left to right: hyperholes satisfying parts (i), (ii), and (iii) of the
definition of a trivial hyperhole.

A k-hyperhole H = (X1, . . . , Xk) is trivial if at least one of the following holds:

(i) for some i ∈ {1, . . . , k}, |Xi| = |Xi+1| = |Xi+2| = 1;

(ii) H contains a super-sector that contains only 2-sectors;

(iii) H contains exactly one 0-sector, and all its other sectors are of length 2.

See Figure 2.5 for examples of trivial hyperholes. A nontrivial hyperhole is a hyperhole

that is not trivial.

Lemma 2.25. Let H = (X1, . . . , Xk) be an odd k-hyperhole. If |Xi| = |Xi+1| = 1 and

|Xi+2|, |Xi+3| ≥ 2 for some i ∈ {1, . . . , k}, then H is not minimally β-imperfect.

Proof. We may assume, by symmetry, that |X1| = |X2| = 1 and |X3|, |X4| ≥ 2. Let x be

the vertex in X2, and suppose that H is minimally β-imperfect. Then, by Lemma 2.2,

β(H) = δ(H)+1. Therefore β(H) ≤ d(x)+1 = |X3|+2 ≤ |X3|+ |X4| ≤ ω(H) ≤ χ(H).

But then χ(H) = β(H), a contradiction.
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Lemma 2.26. If H is a trivial odd hyperhole, then H is β-perfect.

Proof. Let H = (X1, . . . , Xk) be a trivial odd hyperhole, and assume that H is not

β-perfect. Since every induced subgraph of H is either chordal or a trivial hyperhole,

by Theorem 2.11 we may assume that H is minimally β-imperfect. By Lemma 2.25,

H cannot satisfy (ii) or (iii) of the definition of a trivial hyperhole, and hence for some

i ∈ {1, . . . , k}, |Xi| = |Xi+1| = |Xi+2| = 1. Let x be the vertex of Xi+1. Then d(x) = 2,

and hence x is a simplicial extreme of H, contradicting Lemma 2.4.

A base hyperhole is any odd hyperhole H = (X1, . . . , Xk) such that for all i ∈
{1, . . . , k}: |Xi| ≤ 2, (|Xi|, |Xi+1|, |Xi+2|) ̸= (1, 1, 1), and (|Xi|, |Xi+1|) ̸= (2, 2). It

follows that every sector of H is of length 0 or 1, and hence every proper induced

subgraph of a base hyperhole is either chordal or a trivial hyperhole. Note that if H

is a base hyperhole, then ω(H) = 3 and β(H) = 4. We say that a base hyperhole H

is good if it has exactly one sector of length 0, and bad otherwise. Note that, up to

isomorphism, there is only one good base hyperhole of length k. Also, observe that

since k is odd, every base hyperhole must have a sector of length 0, and hence bad base

hyperholes have at least two sectors of length 0. See Figure 2.6 for examples of base

hyperholes.

Figure 2.6: The unique (up to isomorphism) good base hyperhole of length 9 (left) and
a bad base hyperhole that has three sectors of length 0 (right).

We now characterise β-perfect base hyperholes. First, we prove the following useful

lemma on the number of vertices in a base hyperhole.

Lemma 2.27. Let H be a base hyperhole of length k. The following hold.

(i) If H is good, then |V (H)| = 3(k−1)
2 + 1.

(ii) If H is bad, then |V (H)| ≤ 3(k−1)
2 .

Proof. Suppose that H is good. Then H contains exactly one 0-sector, and all other

sectors are of length 1. It follows that H has k−1
2 bags of size 2 and k−1

2 + 1 bags of

size 1. Therefore |V (H)| = 3(k−1)
2 + 1, and (i) holds.
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Now suppose that H is bad. Let (Xi, Xi+1) and (Xj , Xj+1) be distinct 0-sectors of

H (their existence follows from the definition of a bad base hyperhole). Let m denote

the number of bags in the sequence (Xi+2, . . . , Xj−1), and let m′ denote the number of

bags in the sequence (Xj+2, . . . , Xi−1). Since k = m+m′ + 4, we may assume without

loss of generality that m is even and m′ is odd. It follows from H being a base hyperhole

and from |Xi+1| = |Xj | = 1 that |Xi+2∪· · ·∪Xj−1| ≤ 2 (m/2)+m/2 = 3m/2. Similarly,

we can obtain the bound |Xj+2∪· · ·∪Xi−1| ≤ 2 ⌈m′/2⌉+⌊m′/2⌋ = m′+1+(m′−1)/2.

Now, using these bounds together with the fact that m+m′ = k− 4 and |Xi ∪Xi+1 ∪
Xj ∪Xj+1| = 4, we obtain

|V (H)| ≤ 3m

2
+m′ +

m′ − 1

2
+ 5

=
3m

2
+

3m′

2
+

9

2

=
3(k − 4)

2
+

9

2

=
3(k − 1)

2
.

Therefore (ii) holds.

Lemma 2.28. Let H = (X1, . . . , Xk) be a base hyperhole. Then H is β-perfect if and

only if H is good. Furthermore, if H is bad, then H is minimally β-imperfect.

Proof. Since H is a base hyperhole, ω(H) = 3 and β(H) = 4. Suppose that H is bad.

Substituting the upper bound on |V (H)| given by Lemma 2.27 (ii) into the equation in

Theorem 2.19 (observing that since k is odd, α(H) = k−1
2 ) gives

χ(H) ≤ max

ω(H),


2
(
3(k−1)

2

)
k − 1


 = max

{
3,

⌈
3(k − 1)

k − 1

⌉}
= 3.

Therefore χ(H) < β(H), and hence H is not β-perfect. Since any proper induced

subgraph of H is either a chordal graph or a trivial hyperhole, by Theorem 2.11 and

Lemma 2.26, every proper induced subgraph of H is β-perfect. Therefore H is mini-

mally β-imperfect.

Now suppose thatH is good but not β-perfect. Since every proper induced subgraph

ofH is chordal or a trivial hyperhole, by Theorem 2.11 and Lemma 2.26, H is minimally
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β-imperfect. By Corollary 2.20,

2|V (H)|
k − 1

≤ β(H)− 1 = 3,

which implies that |V (H)| ≤ 3(k−1)
2 . But this contradicts Lemma 2.27 (i).

Lemma 2.29. Every nontrivial odd hyperhole contains a base hyperhole.

Proof. Let H = (X1, . . . , Xk) be a nontrivial odd hyperhole. Suppose that at most one

bag of H is of size 1. Without loss of generality, we may assume that for i ∈ {2, . . . , k},
|Xi| ≥ 2. For i ∈ {1, . . . , k}, if i is odd then let X ′

i be any one-element subset of Xi,

and otherwise let X ′
i be any two-element subset of Xi. Then clearly H ′ = (X ′

1, . . . , X
′
k)

is a base hyperhole that is contained in H.

So we may assume that there are at least two distinct bags of H that are of size 1,

and hence H contains at least 2 sectors. Let j1, . . . , jt be the indices of the bags of H

that are of size 1, ordered such that j1 < · · · < jt, and let S1, . . . , St be the sectors of

H such that for i = 1, . . . , t− 1, Si = (Xji , . . . , Xji+1), and St = (Xjt , . . . , Xj1).

We construct a hyperhole H ′ = (X ′
1, . . . , X

′
k), where for i = 1, . . . , k, X ′

i ⊆ Xi, as

follows. For i = 1, . . . , t, X ′
ji

= Xji . For every safe sector Si, we reduce the interior

bags of Si according to the following rules:

� If the length of Si is odd, then for h ∈ {ji + 1, . . . , ji+1 − 1},

|X ′
h| =

1 if h− ji is even,

2 otherwise.

� If the length of Si is even, then |X ′
ji+1−1| = 2, |X ′

ji+1−2| = 1, and for h ∈ {ji +
1, . . . , ji+1 − 3},

|X ′
h| =

1 if h− ji is even,

2 otherwise.

To finish off the construction of H ′ we now need to reduce all 2-sectors. To do so, we

consider the following cases.

Case 1. H has no 0-sector.

For every 2-sector Si, we ensure that |X ′
ji+1| = 2 and |X ′

ji+2| = 1. The resultant

hyperhole H ′ is clearly a base hyperhole.
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Case 2. H has exactly one 0-sector.

Since H is nontrivial, it must contain a safe sector. Without loss of generality, let

us say that S1 is the 0-sector and Ss is a safe sector. For every 2-sector Si we reduce

its interior bags according to the following rule:

� If 1 < i < s, then |X ′
ji+1| = 2 and |X ′

ji+2| = 1, and otherwise |X ′
ji+1| = 1 and

|X ′
ji+2| = 2.

The resultant hyperhole H ′ is clearly a base hyperhole.

Case 3. H has at least two 0-sectors.

Since H is nontrivial, any two consecutive 0-sectors together with intermediate bags

form a super-sector. We consider each super-sector S = (Xl, . . . , Xr) separately. Since

H is nontrivial, S contains a safe sector Ss. Let Si be a 2-sector contained in S. If Si

is contained in the subsequence (Xl, . . . , Xjs) of S, then |X ′
ji+1| = 2 and |X ′

ji+2| = 1,

and otherwise |X ′
ji+1| = 1 and |X ′

ji+2| = 2. The resultant hyperhole H ′ is clearly a

base hyperhole.

Lemma 2.30. Let H = (X1, . . . , Xk) be a minimally β-imperfect k-hyperhole. For

integers i, j,m ∈ {1, . . . , k} and with m ≥ 3 and m odd, let (Xi, . . . , Xj) be a sequence

of m bags of H such that for all h ∈ {i, . . . , j}, |Xh| = 1 if h− i is even and |Xh| ≥ 2

otherwise. Then |Xi ∪ · · · ∪Xj | ≥ (β(H)−1)(m−1)
2 + 1.

Proof. Observe that in the sequence (Xi, . . . , Xj) there are m−1
2 bags of size at least 2

and m+1
2 bags of size 1. It now follows from Lemma 2.21 that

|Xi ∪ · · · ∪Xj | ≥ (β(H)− 2)

(
m− 1

2

)
+

m+ 1

2

=
(β(H)− 1) (m− 1)

2
− m− 1

2
+

m+ 1

2

=
(β(H)− 1)(m− 1)

2
+ 1,

as required.

Let H ′ = (X ′
1, . . . , X

′
k) be a good base hyperhole with k odd and k ≥ 9. Without

loss of generality, let us assume that |X ′
3| = |X ′

4| = 1. Let A be one of the sets {1, 3},
{1, 6}, {3, 4}, {4, 6}. We call A a free set of H ′. A hyperhole H = (X1, . . . , Xk) is an
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extension of H ′ if for all i ∈ {1, . . . , k}, X ′
i ⊆ Xi and for some free set A of H ′, for all

i ∈ {1, . . . , k} \ A, |X ′
i| = 1 if and only if |Xi| = 1. (Such a free set A of H ′ is called

a free set of H.) We now give a structural characterisation of β-perfect k-hyperholes

with k odd and k ≥ 9.

Lemma 2.31. Let H be a k-hyperhole with k odd and k ≥ 9. If H is nontrivial and is

not an extension of a good base hyperhole, then H contains a bad base hyperhole.

Proof. Suppose that H is neither trivial nor an extension of a good base hyperhole.

Since H is nontrivial, by Lemma 2.29 it contains a base hyperhole H ′ = (X ′
1, . . . , X

′
k)

(with X ′
i ⊆ Xi for all i ∈ {1, . . . , k}). We may assume that H ′ is good, for otherwise

we are done. Without loss of generality we assume that |X ′
3| = |X ′

4| = 1. Since H is

not an extension of H ′, one of the following holds:

� for some even i ∈ {8, . . . , k}, |Xi| ≥ 2;

� |X1| ≥ 2 and |X4| ≥ 2;

� |X3| ≥ 2 and |X6| ≥ 2.

First, let us suppose that for some even i ∈ {8, . . . , k}, |Xi| ≥ 2. Consider a

hyperhole H ′′ = (X ′′
1 , . . . , X

′′
k ) such that for all h ∈ {1, . . . , k}:

|X ′′
h | =


1 if h ∈ {1, 3, i− 1, i+ 1},

1 if h ∈ {4, . . . , i− 2} ∪ {i+ 2, . . . , k} and h is even,

2 otherwise.

Clearly H ′′ is a base hyperhole that is contained in H. Furthermore, (X ′′
i−2, X

′′
i−1) and

(X ′′
i+1, X

′′
i+2) are two distinct 0-sectors of H ′′, and hence H ′′ is bad.

Suppose that |X1| ≥ 2 and |X4| ≥ 2. Consider a hyperhole H ′′ = (X ′′
1 , . . . , X

′′
k )

such that for all h ∈ {1, . . . , k}:

|X ′′
h | =


1 if h ∈ {2, 3, 5, k},

1 if h ∈ {6, . . . , k − 1} and h is even,

2 otherwise.

Clearly H ′′ is a base hyperhole that is contained in H. Furthermore, (X ′′
2 , X

′′
3 ) and

(X ′′
5 , X

′′
6 ) are two distinct 0-sectors of H ′′, and hence H ′′ is bad. A symmetric argument

may be used for the case where |X3| ≥ 2 and |X6| ≥ 2.
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Theorem 2.32. A k-hyperhole H with k odd and k ≥ 9 is β-perfect if and only if it is

trivial or it is an extension of a good base hyperhole.

Proof. Let H = (X1, . . . , Xk) be a k-hyperhole with k odd and k ≥ 9. By Lemma 2.28

and Lemma 2.31 it follows that if H is β-perfect then it is trivial or an extension of a

good base hyperhole.

Now suppose that H is either trivial or is an extension of a good base hyperhole,

but H is not β-perfect. By Lemma 2.26, H is an extension of a good base hyperhole

H ′ = (X ′
1, . . . , X

′
k). Furthermore, since every induced subgraph of H is either chordal,

a trivial hyperhole, or an extension of a good base hyperhole, we may assume that

H is minimally β-imperfect. Let A be a free set of H. By symmetry, it suffices to

consider the following three cases. In each case, we obtain a lower bound on |V (H)|
which contradicts the bound given in Corollary 2.20.

Case 1. A = {1, 3}.

Applying Lemma 2.30 to the sequence (X4, . . . , Xk−1) gives the lower bound

|X4 ∪ · · · ∪Xk−1| ≥ (β(H)− 1)

(
k − 5

2

)
+ 1.

It follows from Lemma 2.21 applied to Xk−1, Xk, X1 and to X2, X3, X4 that |Xk−1 ∪
Xk ∪ X1| ≥ β(H) and |X2 ∪ X3 ∪ X4| ≥ β(H). Adding together these bounds, and

subtracting 2 to account for double counting, we obtain

|V (H)| ≥ (β(H)− 1)

(
k − 5

2

)
+ 2β(H)− 1

= (β(H)− 1)

(
k − 1

2

)
− 2 (β(H)− 1) + 2β(H)− 1

= (β(H)− 1)

(
k − 1

2

)
+ 1,

contradicting Corollary 2.20. This completes Case 1.

Case 2. A = {1, 6}.

Using Lemma 2.21, we easily obtain the following bounds: |Xk−1 ∪Xk ∪X1| ≥ β(H),

|X2 ∪X3 ∪X4| ≥ β(H), |X3 ∪X4 ∪X5| ≥ β(H), and |X6 ∪X7 ∪X8| ≥ β(H). If k = 9,

then adding together these bounds and subtracting 3 to account for double counting
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gives the bound

|V (H)| ≥ 4β(H)− 3 = (β(H)− 1)

(
k − 1

2

)
+ 1,

contradicting Corollary 2.20. So k > 9. By applying Lemma 2.30 to the sequence

(X8, . . . , Xk−1), we obtain the additional bound

|X8 ∪ · · · ∪Xk−1| ≥ (β(H)− 1)

(
k − 9

2

)
+ 1.

Adding this to the above bounds, and subtracting 4 to account for double counting, we

obtain

|V (H)| ≥ (β(H)− 1)

(
k − 9

2

)
+ 4β(H)− 3

= (β(H)− 1)

(
k − 1

2

)
− 4 (β(H)− 1) + 4β(H)− 3

= (β(H)− 1)

(
k − 1

2

)
+ 1,

contradicting Corollary 2.20. This completes Case 2.

Case 3. A = {3, 4}.

Applying Lemma 2.30 to the sequence (X6, . . . , Xk, X1) gives the lower bound

|X6 ∪ · · · ∪Xk ∪X1| ≥ (β(H)− 1)

(
k − 5

2

)
+ 1.

It follows from Lemma 2.21 applied to the sets X1, X2, X3 and to X4, X5, X6 that

|X1 ∪ X2 ∪ X3| ≥ β(H) and |X4 ∪ X5 ∪ X6| ≥ β(H). Adding together these bounds,

and subtracting 2 to account for double counting, we obtain

|V (H)| ≥ (β(H)− 1)

(
k − 5

2

)
+ 2β(H)− 1

= (β(H)− 1)

(
k − 1

2

)
− 2 (β(H)− 1) + 2β(H)− 1

= (β(H)− 1)

(
k − 1

2

)
+ 1,

contradicting Corollary 2.20. This completes Case 3.
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2.2.3 Forbidden induced subgraph characterisation

By putting together previously obtained results we obtain the following forbidden in-

duced subgraph characterisation of β-perfect hyperholes (in which all the excluded

induced subgraphs are minimally β-imperfect). Let H1 be the graph in Figure 2.1, and

let H2 be the graph in Figure 2.4.

Theorem 2.33. A hyperhole is β-perfect if and only if it is (even hole, bad base hy-

perhole, H1, H2)-free.

Proof. Suppose that H is a β-perfect hyperhole. Clearly H must be even-hole-free. It

follows from Lemma 2.22 that H is H1-free, from Theorem 2.24 that H is H2-free, and

from Theorem 2.28 that H does not contain a bad base hyperhole.

Now suppose that H = (X1, . . . , Xk) is a k-hyperhole that does not contain an

even hole, H1, H2, or a bad base hyperhole. In particular, k is odd. If k = 5, then

it follows from H being H1-free that some bag of H has size 1. Therefore H is β-

perfect by Theorem 2.23. If k = 7, then it follows from H being H2-free that for

some i ∈ {1, . . . , k}, either |Xi| = |Xi+1| = 1, or |Xi| = |Xi+2| = 1. Therefore, by

Theorem 2.24, H is β-perfect. Now suppose that k ≥ 9. Since H contains no bad base

hyperhole, by Lemma 2.31 it is either trivial or an extension of a good base hyperhole,

and hence it is β-perfect by Theorem 2.32.

2.2.4 A recognition algorithm for β-perfect hyperholes

In this section, we give a linear-time algorithm that decides whether an input hyperhole

is β-perfect. We observe that in [4] it is shown that hyperholes can be recognised in

linear-time, and that a hyperhole partition can be found also in linear-time.

Theorem 2.34. There is an algorithm with the following specifications:

Input: A k-hyperhole H = (X1, . . . , Xk).

Output: Yes if H is β-perfect, and No otherwise.

Running time: O(k).

Proof. Consider the following algorithm:

Step 1. If k is even, then return No.

Step 2. If k = 5, then check whether some bag of H is of size 1. If so, then return

Yes. Otherwise, return No.
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Step 3. If k = 7, then check whether |Xi| = |Xi+1| = 1 or |Xi| = |Xi+2| = 1 for some

i ∈ {1, . . . , k}. If so, then return Yes. Otherwise, return No.

Step 4. From now on, we may assume that k is odd and k ≥ 9. Check whether H is

trivial. If so, then return Yes.

Step 5. We may now assume that H is nontrivial. Using the reduction rules given in

Lemma 2.29, construct a base hyperhole H ′ = (X ′
1, . . . , X

′
k) such that V (H ′) ⊆

V (H).

Step 6. Check whether H ′ is bad. If so, then return No.

Step 7. Check whether H is an extension of H ′. If so, then return Yes. Otherwise,

return No.

We now prove that the algorithm is correct. Suppose that the algorithm returns Yes

when given a k-hyperhole H = (X1, . . . , Xk) as input. As a result of Step 1, we may

assume that k is odd. If k = 5, then by Step 2, |Xi| = 1 for some i ∈ {1, . . . , k}.
It follows from Theorem 2.23 that H is β-perfect. If k = 7, then by Step 3, either

|Xi| = |Xi+1| = 1 or |Xi| = |Xi+2| = 1 for some i ∈ {1, . . . , k}. It follows from

Theorem 2.24 that H is β-perfect. If k ≥ 9, then by Steps 4 and 7, either H is trivial

or H is an extension of a good base hyperhole. It follows from Theorem 2.32 that H is

β-perfect.

Suppose now that the algorithm returns No, but that H is β-perfect. Since even

holes are not β-perfect, we may assume that k is odd. If k = 5, then by Theorem 2.23,

|Xi| = 1 for some i ∈ {1, . . . , k}. But then the algorithm returns Yes in Step 2. If k = 7,

then by Theorem 2.24, |Xi| = |Xi+1| = 1 or |Xi| = |Xi+2| = 1 for some i ∈ {1, . . . , k}.
But then the algorithm returns Yes in Step 3. So we may assume that k ≥ 9. By

Theorem 2.32, H is either trivial or an extension of a good base hyperhole. If H is

trivial, then the algorithm returns Yes in Step 4. If H is an extension of a good base

hyperhole, then H is an extension of the hyperhole H ′ constructed in Step 5 of the

algorithm. But then the algorithm returns Yes in Step 7. This completes the proof

that the algorithm is correct.

Each step of the algorithm can clearly be performed in O(k) time.

2.3 Claw-free β-perfect graphs

In this section we give a forbidden induced subgraph characterisation for the class of

claw-free β-perfect graphs and present an algorithm which uses this characterisation
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for deciding in polynomial time whether a claw-free graph is β-perfect.

2.3.1 Minimal β-imperfect graphs

Recall that a clique cutset of a graph G is a clique C ⊆ V (G) such that V (G) \ C

admits a partition (V1, V2) where V1 is anticomplete to V2. In this case we say that G

is the clique-sum of G[V1 ∪ C] and G[V2 ∪ C]. A double clique cutset of a graph G is a

clique cutset C such that C admits a partition (C1, C2) and V (G)\C admits a partition

(V1, V2) such that the only edges between V1 ∪ C1 and V2 ∪ C2 are those between C1

and C2; in particular, the sets C1, C2, V1 and V2 are all nonempty. In this case we say

that G is the double clique-sum of G[V1∪C] and G[V2∪C], and that G admits a double

clique cutset.

In [13], Chudnovsky and Seymour observe that clique-sums do not necessarily pre-

serve the property of being claw-free, but double clique-sums do. The same phenomenon

occurs with respect to the property of β-perfection, that is, β-perfection is not neces-

sarily preserved under the operation of clique-sums (see Figure 2.3), but it is under

the operation of double clique-sums. The proof of this fact will use the following; it is

well-known.

Lemma 2.35. Let G be a graph, C a clique cutset of G, and (V1, V2) a partition of

V (G)\C such that V1 is anticomplete to V2. Then χ(G) = max{χ(G[V1∪C]), χ(G[V2∪
C])}.

Lemma 2.36. No minimal β-imperfect graph admits a double clique cutset.

Proof. On the contrary, suppose G is a minimal β-imperfect graph that admits a double

clique cutset C. Let sets C1, C2, V1 and V2 be as in the definition of double clique

cutset, and set G1 = G[V1 ∪ C] and G2 = G[V2 ∪ C]. By minimality, G1 and G2 are

β-perfect, and hence χ(G1) = β(G1) and χ(G2) = β(G2). By Lemma 2.2, δ(G) + 1 =

β(G) > χ(G) ≥ χ(G1) = β(G1) ≥ δ(G1) + 1, and therefore δ(G) > δ(G1). Similarly,

δ(G) > δ(G2). Let v ∈ V (G) be such that dG(v) = δ(G). Since dG(u) = dG1(u) for all

u ∈ V1 ∪ C1 and since δ(G) > δ(G1), it follows that v ∈ C2. By symmetry, it follows

that v ∈ C1, a contradiction.

We now prove that if a claw-free graph having certain properties has a clique cutset,

then it has a double clique cutset.

Lemma 2.37. Let G be a connected (claw, C4)-free graph that contains no simplicial

vertex. If G admits a clique cutset, then G admits a double clique cutset.
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Proof. Suppose G has a clique cutset. Among all clique cutsets of G, let C be one that

minimises |C|. Let (V1, V2) be a partition of V (G) \ C such that V1 is anticomplete to

V2. By the minimality of C, every vertex in C has a neighbour in both V1 and V2, and

C is nonempty since G is connected.

(1) For every vertex c ∈ C, both N(c) ∩ V1 and N(c) ∩ V2 are cliques.

Proof of (1): If a vertex c ∈ C has two nonadjacent neighbours u and v in V1, then

for any neighbour w of c in V2, the set {c, u, v, w} induces a claw, a contradiction.

Therefore N(c) ∩ V1 is a clique, and by symmetry so is N(c) ∩ V2. This proves (1).

Set N1 = N(C) ∩ V1 and N2 = N(C) ∩ V2.

(2) At least one of N1 and N2 is a clique.

Proof of (2): Suppose that neither of N1 and N2 is a clique, and let x, y be two

nonadjacent vertices of N1. Fix u ∈ NC(x) and v ∈ NC(y); by (1), u ̸= v, and u, y are

nonadjacent, and v, x are nonadjacent. If NV2(u) ̸= NV2(v), then up to symmetry there

exists a vertex w ∈ NV2(u) \N(v), yielding a claw G[{x, u, v, w}], a contradiction. So

NV2(u) = NV2(v); set N ′
2 = NV2(u) = NV2(v). By (1), N ′

2 is a clique, so there exists

a vertex z ∈ N2 \ N ′
2. Fix w ∈ NC(z); clearly w ̸∈ {u, v}. If w, x are adjacent, then

{w, x, v, z} induces a claw, a contradiction. So w, x are nonadjacent, and by symmetry

so are w and y. It follows that there exists some s ∈ NV1(w) \ {x, y}, and s is adjacent

to u, for otherwise {w, s, u, z} induces a claw; and similarly, s is adjacent to v. By (1),

s is adjacent to both x and y, but now {s, x, y, w} induces a claw, a contradiction. So

at least one of N1 and N2 is a clique, and this proves (2).

By (2), we may assume N1 is a clique. Since C is also a clique, and since G is

C4-free (so, in particular, G[N1 ∪C] is C4-free), it follows that G[N1 ∪C] is chordal. If

G[V1 ∪C] is chordal, then by Theorem 2.3, some vertex belonging to V1 is simplicial in

G[V1 ∪ C] and hence in G, a contradiction. Therefore G[V1 ∪ C] is not chordal, so in

particular G[V1 ∪ C] ̸= G[N1 ∪ C]; that is, V1 \N1 ̸= ∅.

Let ℓ denote the maximum distance in G[V1 ∪ C] from a vertex of V1 to C. Since

V1 \ N1 is nonempty, ℓ ≥ 2. Set L0 = C and L1 = N1, and for each i ∈ {2, . . . , ℓ} let

Li = N(Li−1) \ Li−2. Observe that (L0, . . . , Lℓ) is a partition of V1 ∪ C, and that if

there is an edge between Li and Lj , then |i− j| ≤ 1. Let k ∈ {0, . . . , ℓ} be the smallest

integer such that some hole H of G[V1 ∪ C] intersects Lk. (Since no vertex of G is
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simplicial, G[V1 ∪ C] is not chordal by Theorem 2.3, and hence k is well-defined.) So

every hole of G[V1∪C] is a hole of G[Lk∪· · ·∪Lℓ], and since G[N1∪C] (or, equivalently,

G[L0 ∪ L1]) is chordal, k ≥ 1.

(3) For every i ∈ {1, . . . , ℓ− 1} and every v ∈ Li, N(v) ∩ Li+1 is a clique.

Proof of (3): For otherwise the vertex v together with any one of its neighbours in

Li−1 and any two of its nonadjacent neighbours in Li+1 forms a claw, a contradiction.

This proves (3).

(4) For all i ∈ {2, . . . , ℓ}, if x, y are two nonadjacent vertices of Li, then there exists

an xy-path of length at least 3 with interior in L1 ∪ · · · ∪ Li−1.

Proof of (4): The statement holds for i = 2 by (3) together with the fact that ev-

ery vertex of L2 has a neighbour in L1. Let i > 2, let x, y be two nonadjacent vertices

of Li, and fix x′ ∈ N(x)∩Li−1 and y′ ∈ N(y)∩Li−1. By (3), x, y′ are nonadjacent and

y, x′ are nonadjacent, so in particular x′ ̸= y′. If x′ and y′ are adjacent, then xx′y′y

is the desired path; and if x′ and y′ are nonadjacent, then by induction there is an

x′y′-path of length at least 3 with interior in L1∪ · · ·∪Li−2, which together with x and

y forms the desired path. This proves (4).

For brevity we introduce the following terminology: if i ∈ {2, . . . , ℓ} and x, y ∈ Li

are nonadjacent, then an xy-link is any xy-path of length at least 3 with interior in

L1 ∪ · · · ∪ Li−1; at least one such path exists by (4).

(5) For every i ∈ {1, . . . , k} and every v ∈ Li, N(v) ∩ Li−1 is a clique.

Proof of (5): Fix i ∈ {1, . . . , k} and v ∈ Li, and suppose N(v) ∩ Li−1 contains two

nonadjacent vertices x and y. Since C and N1 are cliques, i ≥ 3. But now any xy-link

together with the vertex v forms a hole that intersects Li−1, contrary to the minimality

of k. This proves (5).

Recall that H is a hole of G that intersects Lk.

(6) |V (H) ∩ Lk| = 2, and the two vertices of V (H) ∩ Lk are adjacent.

Proof of (6): Suppose G[V (H) ∩ Lk] contains a 3-vertex path xyz, and let P be an

xz-link. But now the graph induced by V (P ) ∪ (V (H) \ {y}) contains a hole that
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intersects Lk−1, contrary to the definition of k. So G[V (H) ∩ Lk] is P3-free.

To prove the second statement, it suffices to show that G[V (H) ∩ Lk] has only

one component, and that this component is of size two. By (3), every component of

G[V (H) ∩ Lk] contains at least two vertices, and thus it follows from P3-freeness that

every component is of size two. Suppose G[V (H) ∩ Lk] has at least two components,

let S be any one of its components, and fix s ∈ V (S). Then there exists a path P from

s to some t ∈ (V (H)∩Lk) \ V (S) with interior in Lk+1 ∪ · · · ∪Lℓ, which together with

an st-link forms a hole that contradicts the minimality of k. This proves (6).

In view of (6), let us say V (H) ∩ Lk = {v, w}. Let u be the neighbour of v in

H different from w, and u′ the neighbour of w in H different from v. Note that

u, u′ ∈ Lk+1, and since G is C4-free, u is not adjacent to u′.

(7) N(v) ∩ Lk−1 = N(w) ∩ Lk−1.

Proof of (7): For if not, then up to symmetry there exists some z ∈ Lk−1 adjacent

to v and nonadjacent to w, yielding a claw G[{u, v, w, z}]. This proves (7).

In view of (7), let X = N(v) ∩ Lk−1 = N(w) ∩ Lk−1 and let Y = {y ∈ Lk :

N(y) ∩X ̸= ∅}. So in particular {v, w} ⊆ Y .

(8) X ∪ Y is a clique.

Proof of (8): The set X is a clique by (5). Fix y ∈ Y and suppose that y is non-

adjacent to some x ∈ X. Clearly y ̸∈ {v, w}. Since v and w are complete to X and

N(y)∩X ̸= ∅, it follows from (3) that y is adjacent to both v and w. By (3), and since

uu′ is not an edge, we may assume without loss of generality that y is nonadjacent to

u. But now {u, v, y, x} induces a claw, a contradiction. So X is complete to Y . It now

follows from (3) and since X ̸= ∅ that Y is a clique. This proves (8).

Let Y ′ = {y ∈ Y : N(y) ∩ Lk−1 ̸= X}. By (8), X ⊊ N(y) ∩ Lk−1 for every y ∈ Y ′.

(9) Y ′ is anticomplete to Lk+1.

Proof of (9): Fix y ∈ Y ′ and z ∈ N(y) ∩ (Lk−1 \X), and suppose that y has a neigh-

bour a in Lk+1. By (8), y is complete to {v, w}. If y is adjacent to u, then {y, u, w, z}
induces a claw, a contradiction. So by symmetry y is anticomplete to {u, u′} and hence

a ̸∈ {u, u′}. If a and v are nonadjacent, then {y, a, v, z} induces a claw, a contradiction.
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So a is adjacent to v and by symmetry a is adjacent to w. By (3), a is complete to

{u, u′}. But now, since uu′ is not an edge, {a, u, u′, y} induces a claw, a contradiction.

So Y ′ is anticomplete to Lk+1. This proves (9).

(10) There is no path P from Lk \Y to Y \Y ′ with P ∗ ⊆ Lk+1∪ · · ·∪Lℓ. In particular,

Lk \ Y is anticomplete to Y \ Y ′.

Proof of (10): Suppose there exists a path P with ends a ∈ Lk \ Y and y ∈ Y \ Y ′

and with (possibly empty) interior in Lk+1 ∪ · · · ∪ Lℓ. Fix x ∈ N(y) ∩ Lk−1 and

z ∈ N(a) ∩ Lk−1. Since a ̸∈ Y , a is nonadjacent to x and z ̸∈ X, and therefore (since

y ∈ Y \ Y ′) y is nonadjacent to z. But now an xz-link (or the edge xz, if x, z are

adjacent) together with P forms a hole that intersects Lk−1, a contradiction. This

proves (10).

(11) X ∪ Y is a clique cutset of G.

Proof of (11): By (8), X∪Y is a clique. Suppose that X∪Y is not a clique cutset of G.

Observe that, by the existence of u, u′ ∈ Lk+1, k < ℓ, and therefore Lk+1∪ · · ·∪Lℓ ̸= ∅.
If Lk = Y , then it follows from (8) that Y is a clique cutset of G, and therefore so is

X ∪ Y , a contradiction. So Lk ̸= Y , and hence there exists a path P in G \ (X ∪ Y )

from u to some vertex z in Lk \Y and with interior in Lk+1∪· · ·∪Lℓ. But now P ∪{v}
contains a path that violates (10). This proves (11).

(12) If F is a component of G\ (X ∪Y ), then either N(V (F )) ⊆ Y \Y ′ or N(V (F )) ⊆
X ∪ Y ′.

Proof of (12): Let F be a component of G \ (X ∪ Y ), and suppose there exist ver-

tices s, t ∈ V (F ) such that s has a neighbour y ∈ Y \ Y ′ and t has a neighbour

y′ ∈ X ∪ Y ′. By (9), t ̸∈ Lk+1, and therefore either k ≥ 2 and t ∈ Lk−2 ∪ Lk−1 ∪ Lk,

or k = 1 and t ∈ V2 ∪ L0 ∪ L1. Since s ̸∈ X and y ∈ Y \ Y ′, it follows that s ̸∈ Lk−1.

Furthermore, s ̸∈ Lk by (10), and therefore s ∈ Lk+1. Since F contains an st-path,

there exists a path in G\(X∪Y ) from s to some vertex in (Lk∪Lk−1∪Lk−2)\(X∪Y ).

By choosing such a path of minimum length, we obtain a path P from s to some vertex

a ∈ Lk \Y whose interior lies in Lk+1 ∪ · · · ∪Lℓ. But now P ∪{y} contains a path that

contradicts (10). This proves (12).

Clearly G \ (X ∪ Y ) contains at least one component some vertex of which has a
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neighbour in Y \Y ′, and at least one component some vertex of which has a neighbour in

X∪Y ′. It now follows from (11) and (12) that the setX∪Y , partitioned (Y \Y ′, X∪Y ′),

is a double clique cutset of G.

Lemma 2.38. No minimal β-imperfect claw-free graph admits a clique cutset.

Proof. Let G be a minimally β-imperfect claw-free graph that admits a clique cutset.

By minimality, G is connected. We may assume that G is not an even hole (since an

even hole admits no clique cutset), so G is even-hole-free (and, in particular, C4-free)

by minimality and has no simplicial vertex by Lemma 2.4. But now, by Lemma 2.37,

G admits a double clique cutset, contrary to Lemma 2.36.

2.3.2 Structure of (claw, even hole)-free graphs

In this section we derive from a result of Boncompagni, Penev and Vušković [4] a de-

composition theorem for (claw, even hole)-free graphs. We first need the following ter-

minology. We refer the reader to Chapter 1 for definitions of three-path-configurations

(thetas, pyramids, prisms) and wheels.

A component of G is a maximal connected induced subgraph of G. A graph is

anticonnected if its complement is connected. An anticomponent of G is a maximal

anticonnected induced subgraph of G. A component or anticomponent is trivial if it has

only one vertex, and nontrivial otherwise. Since the complements of anticomponents of

G are components of G, between any two anticomponents of G there is every possible

edge. Therefore the set of all vertices belonging to trivial anticomponents is a clique.

Lemma 2.39. If a graph is (claw, even hole)-free, then it is (3PC, proper wheel)-free.

Proof. Let G be a (claw, even hole)-free graph. Since G is even-hole-free, G is odd-

signable, and therefore it follows from Theorem 1.2 that G contains no even wheel,

no theta and no prism. A pyramid contains a claw, so G contains no pyramid, and

therefore G contains no 3PC. It remains to show that G contains no proper wheel.

Towards a contradiction, suppose G contains a proper wheel W with rim H and

centre x. Let C be any component of G[NH(x)]. If C consists of a single vertex, say c,

then x is anticomplete to NH(c), and hence NH [c]∪{x} induces a claw, a contradiction.

So |V (C)| ≥ 2. If C = H, then W is a universal wheel, a contradiction. So C ̸= H,

and therefore C is a path. If |V (C)| ≥ 5, then any three pairwise nonadjacent vertices

of C together with x induce a claw, a contradiction. So each component of G[NH(x)]

is a path on at least 2 and at most 4 vertices.
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Suppose G[NH(x)] contains only one component C. By definition, x has at least 3

neighbours in H, and W is not an even wheel, so C is a path on 3 vertices. But then W

is a twin wheel, and hence not a proper wheel, a contradiction. So G[NH(x)] contains at

least two components. Suppose one of them, say C, contains two nonadjacent vertices

u and v. Then the vertices u, v, x together with one vertex from any other component

of G[NH(x)] besides C induce a claw, a contradiction. It follows that each component

of G[NH(x)] has exactly 2 vertices. But then W is an even wheel, a contradiction.

We refer the reader back to Section 2.2 for the definition of a ring and associated

terminology.

Lemma 2.40 (Boncompagni, Penev and Vušković [4]). If R is a ring of length k, then

every hole in R is of length k.

A hole is long if it is of length at least 5.

Theorem 2.41 (Boncompagni, Penev and Vušković [4]). If G is a (3PC, proper wheel)-

free graph, then one of the following holds.

(i) G has exactly one nontrivial anticomponent, and this anticomponent is a long

ring;

(ii) G is (long hole, K2,3, C6)-free;

(iii) α(G) = 2, and every anticomponent of G is either a 5-hyperhole or a (C5, C6)-free

graph;

(iv) G admits a clique cutset.

By specialising Theorem 2.41 to (claw, even hole)-free graphs, we obtain the fol-

lowing decomposition theorem.

Lemma 2.42. If G is a (claw, even hole)-free graph, then G is a complete graph or an

odd ring, or G contains a universal vertex, or G admits a clique cutset.

Proof. Let G be a (claw, even hole)-free graph. By Theorem 2.12, we may assume that

G contains a hole, and since G is even-hole-free, G contains an odd hole, and hence a

long hole. By Lemma 2.39, G is (3PC, proper wheel)-free, and hence G satisfies one

of (i)-(iv) in the statement of Theorem 2.41. Since G contains a long hole, (ii) does

not hold; and if (iv) holds, i.e., if G has a clique cutset, then we are done; so we may

assume (iv) does not hold. Therefore (i) or (iii) holds. That is:
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� G has exactly one nontrivial anticomponent, and this anticomponent is a long

ring; or

� α(G) = 2, and every anticomponent of G is either a 5-hyperhole or a (C5, C6)-free

graph.

In the first case, G contains a universal vertex (if some anticomponent of G is trivial),

or G is an odd ring (if no anticomponent of G is trivial), and we are done. So we

may assume that α(G) = 2 and every anticomponent of G is either a 5-hyperhole or a

(C5, C6)-free graph. Since α(G) = 2, H is of length 5, and therefore H belongs to an

anticomponent F of G that is a 5-hyperhole. If G\F contains two nonadjacent vertices,

then they together with two nonadjacent vertices of H induce a C4, a contradiction.

So G \F is a clique, and hence G contains a universal vertex if G \F is nonempty, and

G is a 5-hyperhole (and therefore an odd ring) otherwise.

2.3.3 β-perfect rings

In this section we give a forbidden induced subgraph characterisation for the class of

β-perfect rings.

We will make use of the following fact about the chromatic number of a ring.

Theorem 2.43 (Maffray, Penev and Vušković [41]). Let k ≥ 4 be an integer and let R

be a k-ring. Then χ(R) = max{χ(H) : H is a k-hyperhole in R}.

Throughout the remainder of the chapter we may use Theorem 2.43 implicitly, i.e.,

we may write “let H be a hyperhole contained in R such that χ(H) = χ(R)” without

reference to Theorem 2.43.

Small rings

Figure 2.7: The two minimal β-imperfect rings of length 5.

Let R5 denote the graph on the left of Figure 2.7 and H5 the graph on the right.

We summarise Lemma 2.22 and Theorem 2.23 in the following.
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Lemma 2.44. The following hold:

� H5 is minimally β-imperfect.

� A 5-hyperhole H = (X1, . . . , X5) is β-perfect if and only if |Xi| = 1 for some

i ∈ {1, . . . , 5}.

Lemma 2.45. R5 is minimally β-imperfect.

Proof. Let (Y1, . . . , Y5) be a ring partition of R5, say with |Y1| = 1. Let H be a

hyperhole contained in R5 such that χ(H) = χ(R5). Since Y3 is not complete to Y4 we

see that Y3 ∪ Y4 ̸⊆ V (H) and therefore |V (H)| ≤ |V (R5)| − 1. Now, by Theorem 2.19,

χ(H) ≤ max

{
ω(R5),

⌈
|V (R5)| − 1

2

⌉}
≤ 4,

so χ(R5) ≤ 4. It follows that χ(R5) ≤ 4 < 5 = δ(R5) + 1 ≤ β(R5) and therefore

χ(R5) < β(R5).

It remains to prove that every proper induced subgraph of R5 is β-perfect. To the

contrary, suppose some proper induced subgraph R of R5 is minimally β-imperfect. Let

y3 ∈ Y3 and y4 ∈ Y4 be nonadjacent vertices of R5. By Lemma 2.11, R is not chordal,

so R contains a vertex from each of Y1, . . . , Y5; and R is not a hyperhole, for otherwise

(since |Y1| = 1) it follows from Lemma 2.44 that R is β-perfect, a contradiction. So

R is a ring that is not a hyperhole, and therefore R contains both y3 and y4. If

Y3 ∪ Y4 ̸⊆ V (R), then one of y3, y4 is a simplicial vertex of R, contrary to Lemma 2.4;

so Y3 ∪ Y4 ⊆ V (R). Let y1 be the unique vertex of Y1. By Lemma 2.4, dR(y1) ≥ 3 and

therefore Y2 ⊆ V (R) without loss of generality. Since Y2 ∪ Y3 is a clique of R5, we now

have that Y2 ∪ Y3 is also a clique of R. But now, by Lemma 2.2, β(R) = δ(R) + 1 =

4 = |Y2 ∪ Y3| = ω(R) ≤ χ(R) and hence β(R) = χ(R), a contradiction.

Lemma 2.46. A 5-ring is β-perfect if and only if it is (H5, R5)-free.

Proof. A β-perfect 5-ring is (H5,R5)-free by Lemmas 2.44 and 2.45. To prove the

converse, let R = (Y1, . . . , Y5) be a (H5, R5)-free 5-ring. We begin by proving the

following two claims.

(1) Let i ∈ {1, . . . , 5}, yi ∈ Yi and yi+1 ∈ Yi+1. If yi and yi+1 are nonadjacent, then

|N(yi) ∩ Yi−1| = 1 or |N(yi+1) ∩ Yi+2| = 1.

Proof of (1): Suppose otherwise. Then, up to symmetry, there exist nonadjacent
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vertices y1 ∈ Y1 and y2 ∈ Y2 such that |N(y1) ∩ Y5| ≥ 2 and |N(y2) ∩ Y3| ≥ 2. For

each i ∈ {1, . . . , 5}, let xi be a vertex of Yi that is complete to Yi−1 ∪ Yi+1. Since

y1 and y2 are nonadjacent, x1 ̸= y1 and x2 ̸= y2. Fix y3 ∈ (N(y2) ∩ Y3) \ {x3} and

y5 ∈ (N(y1)∩Y5)\{x5}. But now the graph induced by {x1, y1, x2, y2, x3, y3, x4, x5, y5}
is isomorphic to R5, a contradiction. This completes the proof of (1).

(2) There exists an integer i ∈ {1, . . . , 5} and a vertex xi ∈ Yi that is complete to

Yi−1 ∪ Yi+1 such that Yi \ {xi} is anticomplete to (Yi−1 ∪ Yi+1) \ {xi−1, xi+1} for some

xi−1 ∈ Yi−1 and xi+1 ∈ Yi+1.

Proof of (2): Suppose otherwise. Then, for every i ∈ {1, . . . , 5}, there exist distinct

vertices xi, yi ∈ Yi such that xi is complete to Yi−1 ∪ Yi+1 and yi has at least one

neighbour in (Yi−1 ∪ Yi+1) \ {xi−1, xi+1}. Up to symmetry we may assume that y1 has

a neighbour y′2 ∈ Y2 \ {x2} and y4 has a neighbour y′5 in Y5 \ {x5}. By (1), vertices y1

and y′5 are adjacent. Since R is H5-free, y3 is not adjacent to both y′2 and y4, so we

may assume without loss of generality that y3 and y4 are nonadjacent. Since y4 has at

least two neighbours in Y5, we see by (1) that |N(y3)∩Y2| = 1, and in particular y′2 and

y3 are nonadjacent. Now by a symmetric argument applied to y′2 and y3 it follows that

|N(y3) ∩ Y4| = 1, which contradicts our assumption that y3 has at least one neighbour

in (Y2 ∪ Y4) \ {x2, x4}. This completes the proof of (2).

Towards a contradiction, suppose R is not β-perfect. Since every proper induced

subgraph of R contains a simplicial vertex or is a 5-ring (that is also (H5, R5)-free,

thereby satisfying (1) and (2)), it follows from Lemma 2.4 that we may assume R is

minimally β-imperfect.

(3) Let i ∈ {1, . . . , 5} and suppose that there exists a vertex xi ∈ Yi that is complete to

Yi−1 ∪ Yi+1 such that Yi \ {xi} is anticomplete to (Yi−1 ∪ Yi+1) \ {xi−1, xi+1} for some

xi−1 ∈ Yi−1 and xi+1 ∈ Yi+1. Then at least one of Yi−1 and Yi+1 is of size 1.

Proof of (3): Without loss of generality, suppose i = 1, and towards a contradic-

tion suppose that |Y2| ≥ 2 and |Y5| ≥ 2. Fix vertices y2 ∈ Y2 and y5 ∈ Y5 such that

NR[y2] ⊆ NR[y
′
2] for every y′2 ∈ Y2 and NR[y5] ⊆ NR[y

′
5] for every y′5 ∈ Y5. Let Y ′

3

be the subset of Y3 such that y2 is complete to Y ′
3 and anticomplete to Y3 \ Y ′

3 , and

similarly let Y ′
4 be the subset of Y4 such that y5 is complete to Y ′

4 and anticomplete to

Y4 \ Y ′
4 . Now, since Y ′

3 is complete to Y2 and Y ′
4 is complete to Y5, it follows from (1)

that Y ′
3 is complete to Y ′

4 , and therefore {x1}∪Y2∪Y ′
3 ∪Y ′

4 ∪Y5 induces a hyperhole H.



2.3. CLAW-FREE β-PERFECT GRAPHS 43

Observe that NR(y2) = {x1}∪(Y2 \{y2})∪Y ′
3 and NR(y5) = {x1}∪(Y5 \{y5})∪Y ′

4 , and

therefore, by Lemma 2.2, the sets Y2 ∪ Y ′
3 and Y ′

4 ∪ Y5 both have size at least β(R)− 1.

It follows that |V (H)| ≥ 2β(R) − 1, and hence χ(H) ≥ β(R) by Theorem 2.19. But

now χ(R) ≥ β(R), a contradiction. This proves (3).

By (2), and without loss of generality, there is a vertex x1 ∈ Y1 that is complete

to Y2 ∪ Y5 and Y1 \ {x1} is anticomplete to (Y2 ∪ Y5) \ {x2, x5}. By (3), at least one

of Y2 and Y5 is of size 1; without loss of generality, suppose |Y2| = 1. Now we may

apply (3) with i = 2 to get that at least one of Y1 and Y3 is of size 1. That is, R has two

consecutive bags of size 1; so suppose without loss of generality that |Y1| = |Y2| = 1,

and let x1 and x2 be the unique vertices from Y1 and Y2 respectively. Observe that

dR(x1) = 1 + |Y5| and dR(x2) = 1 + |Y3|, and therefore it follows from Lemma 2.2 that

|Y3| ≥ β(R)−2 and |Y5| ≥ β(R)−2. Let x4 be a vertex of Y4 that is complete to Y3∪Y5,
and consider the hyperhole H induced by Y1 ∪ Y2 ∪ Y3 ∪ {y4} ∪ Y5. From the above

bounds, we get that |V (H)| ≥ 2β(R) − 1, and therefore it follows from Theorem 2.19

that χ(H) ≥ β(R). So χ(R) ≥ β(R), but this contradicts the fact that R is minimally

β-imperfect.

Figure 2.8: The two minimal β-imperfect rings of length 7.

Let R7 denote the graph on the left of Figure 2.8 and H7 the graph on the right.

From Lemma 2.24 we get the following.

Lemma 2.47. The following hold:

� H7 is minimally β-imperfect.

� A 7-hyperhole H = (X1, . . . , X7) is β-perfect if and only if |Xi| = |Xi+1| = 1 or

|Xi| = |Xi+2| = 1 for some i ∈ {1, . . . , 7}.

Lemma 2.48. R7 is minimally β-imperfect.

Proof. Let (Y1, . . . , Y7) be a ring partition of R7 and assume without loss of generality

that Y5 is not complete to Y6. Clearly every proper induced subgraph of R7 contains a
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vertex of degree at most 2, and therefore, by Lemma 2.4, every proper induced subgraph

of R7 is β-perfect. So it suffices to show that χ(R7) < β(R7). Let H be a hyperhole in

R such that χ(H) = χ(R). Since Y5 is not complete to Y6, we have that Y5∪Y6 ̸⊆ V (H)

and hence |V (H)| ≤ |V (R7)| − 1 = 9. Now by Theorem 2.19 applied to H we see that

χ(R7) = χ(H) ≤ 3 < β(R7) ≤ 4. Therefore R7 is minimally β-imperfect.

Lemma 2.49. A 7-ring is β-perfect if and only if it is (H7, R7)-free.

Proof. A β-perfect 7-ring is (H7, R7)-free by Lemmas 2.47 and 2.48. We now prove

the converse. Let R = (Y1, . . . , Y7) be a (H7, R7)-free 7-ring. The following fact is an

immediate consequence of R being R7-free.

(1) For all i ∈ {1, . . . , 7}, if |Yi| ≥ 2, then Yi+3 is complete to Yi+4.

We now establish the following.

(2) There exists an integer i ∈ {1, . . . , 7} such that |Yi| = |Yi+1| = 1 or |Yi| = |Yi+2| = 1.

Proof of (2). Suppose otherwise. If each of Y1, . . . , Y7 has size at least 2, then it

follows from (1) that R is a hyperhole each bag of which has size at least 2, and hence

it contains H7, a contradiction. So we may assume without loss of generality that

|Y1| = 1. Thus each of Y2, Y3, Y6 and Y7 contain at least two vertices, and up to

symmetry so does Y4. Now by (1) we see that Y2 is complete to Y3, Y3 is complete to

Y4, and Y6 is complete to Y7, and hence R contains H7, a contradiction. This completes

the proof of (2).

Towards a contradiction, suppose that R is not β-perfect. Since every proper in-

duced subgraph of R contains a simplicial vertex or is a 7-ring, by Lemma 2.4 we may

assume that R is minimally β-imperfect. In view of (2), we may assume without loss

of generality that |Y1| = 1, and |Y2| = 1 or |Y3| = 1.

First suppose that |Y2| = 1. Let y1 be the unique vertex of Y1, and observe that

dR(y1) = |Y7| + 1. Thus, by Lemma 2.2, |Y7| ≥ β(R) − 2, and by symmetry |Y3| ≥
β(R) − 2. In particular, since no vertex of R is of degree 2 by Lemma 2.4, it follows

that both Y3 and Y7 have size at least 2. Now by (1) we see that Y3 is complete to Y4

and Y6 is complete to Y7. Since ω(R) ≤ χ(R) < β(R), it follows that |Y4| = |Y6| = 1.

But now R is a hyperhole, and it is β-perfect by Lemma 2.47, a contradiction.

So |Y3| = 1. Observe that vertices from Y2 have degree |Y2| + 1, and hence |Y2| ≥
β(R)−2 by Lemma 2.2. In particular, since no vertex of R is of degree 2 by Lemma 2.4,

we have that |Y2| ≥ 2, and hence Y5 is complete to Y6 by (1). Fix vertices y4 ∈ Y4
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and y7 ∈ Y7 such that NR[y4] ⊆ NR[y
′
4] for every y′4 ∈ Y4 and NR[y7] ⊆ NR[y

′
7]

for every y′7 ∈ Y7. Let Y ′
5 ⊆ Y5 and Y ′

6 ⊆ Y6 be such that y4 is complete to Y ′
5

and anticomplete to Y5 \ Y ′
5 , and y7 is complete to Y ′

6 and anticomplete to Y6 \ Y ′
6 .

Observe that dR(y4) = |Y4 ∪ Y ′
5 | and dR(y7) = |Y ′

6 ∪ Y7|, and hence, by Lemma 2.2,

|Y4 ∪ Y ′
5 | ≥ β(R)− 1 and |Y ′

6 ∪ Y7| ≥ β(R)− 1. It follows that the graph H induced by

(V (R) \ (Y5 ∪ Y6)) ∪ Y ′
5 ∪ Y ′

6 is a hyperhole on at least 3β(R) − 2 vertices. Therefore,

by Theorem 2.19, χ(H) ≥ β(R), and hence χ(R) ≥ β(R), a contradiction.

Big rings

We now turn to odd rings of length at least 9. For the sake of brevity, we call such

rings big. We use terminology (such as “sector” and “super-sector”) that was defined

in Section 2.2.2.

If R = (Y1, . . . , Yk) is a ring, then a triad of R is any triple (Yi−1, Yi, Yi+1) such that

i ∈ {1, . . . , k} and |Yi−1| = |Yi| = |Yi+1| = 1. A bad ring is any big ring R = (Y1, . . . , Yk)

that satisfies the following:

� for every i ∈ {1, . . . , k}, |Yi| ≤ 2;

� for every i ∈ {1, . . . , k}, if |Yi| = |Yi+1| = 2, then Yi is not complete to Yi+1 and

|Yi−2| = |Yi−1| = |Yi+2| = |Yi+3| = 1;

� R has no triad; and

� there exists at least one integer i ∈ {1, . . . , k} such that |Yi| = |Yi+1| = 2.

Lemma 2.50. If R is a bad ring, then R is minimally β-imperfect.

Proof. Let R = (Y1, . . . , Yk) be a bad ring. Clearly every proper induced subgraph of

R contains a vertex of degree at most 2, and therefore, by Lemma 2.4, every proper

induced subgraph of R is β-perfect. So it remains to prove that χ(R) < β(R). The

minimum degree of R is 3, so β(R) = 4. LetH = (X1, . . . , Xk) be a hyperhole contained

in R such that χ(H) = χ(R) (note that H exists by Theorem 2.43). Then H is a proper

induced subgraph of R, and hence, by our earlier observation, H contains a vertex of

degree 2. So without loss of generalityX1, X2 andX3 each consist of exactly one vertex,

say x1, x2 and x3 respectively. The graphH\{x2} is a chordal graph with clique number

at most 3, and hence there exists a 3-colouring of H \ {x2}. Such a colouring can be

extended to a 3-colouring of H by assigning to x2 one of the three colours that has

not been assigned to either of x1 and x3. Therefore χ(R) = χ(H) = 3 < β(R) = 4, so

χ(R) < β(R), and this completes the proof that R is minimally β-imperfect.
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For the remainder of the chapter, whenever we speak of a ring R = (Y1, . . . , Yk)

that contains a hyperhole H = (X1, . . . , Xk), we implicitly assume that Xi ⊆ Yi for

each i ∈ {1, . . . , k}. Moreover, if H is a base hyperhole, we assume in addition that

|X3| = |X4| = 1.

We use the following notation: if i ∈ {1, . . . , k}, then Y 1
i denotes a set consisting of

any one vertex from Yi that is complete to Yi−1∪Yi+1, and Y 2
i denotes any set obtained

from Y 1
i by adding a single vertex from Yi \ Y 1

i (provided Yi \ Y 1
i ̸= ∅).

Lemma 2.51. Let R = (Y1, . . . , Yk) be a ring that contains a base hyperhole H =

(X1, . . . , Xk). If R contains no bad base hyperhole and no bad ring, then the following

hold:

� |Yi| = 1 for all even i ∈ {8, . . . , k};

� min(|Y1|, |Y4|) = min(|Y3|, |Y6|) = 1;

� Y1 ∪ Y2, Y3 ∪ Y4 and Y5 ∪ Y6 are cliques.

Proof. Since R contains a base hyperhole but no bad base hyperhole, R contains a good

base hyperhole, and hence |Yi| ≥ 2 for i = 2 and for each odd i ∈ {5, . . . , k}.
Suppose for some even i ∈ {8, . . . , k} that |Yi| ≥ 2. But now

R[(V (H) \ (Xi−1 ∪Xi ∪Xi+1)) ∪ Y 1
i−1 ∪ Y 2

i ∪ Y 1
i+1]

is a bad base hyperhole with 0-sectors (X3, X4), (Xi−2, Y
1
i−1) and (Y 1

i+1, Xi+2), a con-

tradiction. This proves that the first bullet holds.

Suppose |Y1| ≥ 2 and |Y4| ≥ 2. But now

R[Y 1
k ∪ Y 2

1 ∪ Y 1
2 ∪X3 ∪ Y 2

4 ∪ Y 1
5 ∪X6 ∪ · · · ∪Xk−1]

is a bad base hyperhole with 0-sectors (Y 1
2 , X3), (Y

1
5 , X6), and (Xk−1, Y

1
k ), a contradic-

tion. So min(|Y1|, |Y4|) = 1, and by a symmetric argument we get that min(|Y3|, |Y6|) =
1. This proves that the second bullet holds.

Suppose Y1 ∪ Y2 is not a clique, and fix nonadjacent vertices v1 ∈ Y1 and v2 ∈ Y2.

But now

R[Y 1
k ∪ (Y 1

1 ∪ {v1}) ∪ (Y 1
2 ∪ {v2}) ∪X3 ∪ · · · ∪Xk−1]

is a bad ring, a contradiction. So Y1 ∪ Y2 is a clique, and by symmetry so is Y5 ∪ Y6. If

Y3 ∪ Y4 is not a clique, then there exist nonadjacent vertices v3 ∈ Y3 and v4 ∈ Y4, and

R[X1 ∪ Y 1
2 ∪ (Y 1

3 ∪ {v3}) ∪ (Y 1
4 ∪ {v4}) ∪ Y 1

5 ∪X6 ∪ · · · ∪Xk]
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is a bad ring, a contradiction. So Y3 ∪ Y4 is a clique, and this completes the proof that

the third bullet holds.

Lemma 2.52. Let R = (Y1, . . . , Yk) be an odd ring. Suppose that R is minimally β-

imperfect. Then R has no triad, and for all i ∈ {1, . . . , k}, if |Yi| = |Yi+1| = 1, then

|Yi+2| = β(R)− 2 and exactly one vertex of Yi+3 is complete to Yi+2.

Proof. If (Yi−1, Yi, Yi+1) is a triad of R, then the unique vertex in Yi is a simplicial

extreme, contrary to Lemma 2.4. So R has no triad. Fix i ∈ {1, . . . , k}, and suppose

|Yi| = |Yi+1| = 1. Let v be the unique vertex in Yi+1, and observe that dR(v) = 1+|Yi+2|.
It now follows from Lemma 2.2 that |Yi+2| ≥ β(R) − 2. Since ω(R) ≤ χ(R) < β(R),

every clique of R has size at most β(R)− 1, and since Yi+2 ∪ Y 1
i+3 is a clique, |Yi+2| ≤

β(R)−2. Thus |Yi+2| = β(R)−2. If there are two vertices in Yi+3 that are complete to

Yi+2, then they together with the set Yi+2 form a clique of size β(R), a contradiction;

so exactly one vertex of Yi+3 is complete to Yi+2.

Lemma 2.53 (Lemma 2.7 from [41]). Let k ≥ 4 be an integer. Then every induced

subgraph of a k-ring either contains a simplicial vertex or is a k-ring.

Lemma 2.54. Let R = (Y1, . . . , Yk) be a ring that is not β-perfect. Let F be an

induced subgraph of R that is minimally β-imperfect, and let Fi = V (F ) ∩ Yi for each

i ∈ {1, . . . , k}. Then F = (F1, . . . , Fk) is a ring.

Proof. If F is an even hole, then F is a ring. So we may assume that F is not an even

hole, and therefore F contains no simplicial vertex by Lemma 2.4.

Lemma 2.55. Let R = (Y1, . . . , Yk) be a big ring that contains a base hyperhole H =

(X1, . . . , Xk). Then R is β-perfect if and only if R contains no bad base hyperhole and

no bad ring.

Proof. If R is β-perfect, then R contains no bad base hyperhole and no bad ring by

Lemmas 2.28 and 2.50 respectively.

For the converse, suppose, towards a contradiction, that R contains no bad base

hyperhole and no bad ring but R is not β-perfect. By Lemma 2.51, the following three

claims hold.

(1) |Yi| = 1 for all even i ∈ {8, . . . , k}.

(2) min(|Y1|, |Y4|) = min(|Y3|, |Y6|) = 1.

(3) Y1 ∪ Y2, Y3 ∪ Y4 and Y5 ∪ Y6 are cliques.
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Let F be an induced subgraph of R that is minimally β-imperfect, and let Fi =

V (F ) ∩ Yi for each i ∈ {1, . . . , k}. By Lemma 2.54, F = (F1, . . . , Fk) is a ring.

In view of (2), there are, up to symmetry, three cases as follows:

� |Y1| = |Y4| = |Y3| = |Y6| = 1; or

� |Y1| ≥ 2 and |Y4| = 1; or

� |Y1| = 1 and |Y4| ≥ 2.

In the first case, it follows from (1), (2) and (3) that R is a hyperhole, and R clearly

contains no even hole, bad base hyperhole, H5 or H7; but then, by Theorem 2.33, R is

β-perfect, a contradiction. So the first case does not hold.

(4) F contains a base hyperhole.

Proof of (4): By (1), |Fi| = 1 for each even i ∈ {8, . . . , k}. Suppose |F1| = |F6| = 1. By

Lemma 2.52, F has no triad, and hence |Fi| ≥ 2 for each odd i ∈ {7, . . . , k}. Suppose

|F2| = 1. By Lemma 2.52, |F3| ≥ 2, and then by the same Lemma (together with (3)),

|F4| = 1, and therefore |F5| ≥ 2. Now clearly F contains a base hyperhole. So |F2| ≥ 2,

and by symmetry |F5| ≥ 2, and again clearly F contains a base hyperhole. So we may

assume it is not the case that |F1| = |F6| = 1.

Suppose |F1| ≥ 2. Then |Y1| ≥ 2, and hence by (2), |Y4| = 1, and therefore |F4| = 1.

If |F3| = 1, then (since (F2, F3, F4) is not a triad by Lemma 2.52) |F2| ≥ 2; but, by (3),

F1 is complete to F2, and the four bags F1, F2, F3, F4 contradict Lemma 2.52. So

|F3| ≥ 2, and hence |Y6| = 1 by (2). Since |F4| = |F6| = 1, it follows from Lemma 2.52

that |F5| ≥ 2. It is now easily seen that F contains a base hyperhole. Thus, if |F1| ≥ 2,

then F contains a base hyperhole, and a symmetric argument shows that if |F6| ≥ 2,

then F contains a base hyperhole. This proves (4).

By (4), F contains a base hyperhole, and since R contains no bad base hyperhole or

bad ring, neither does F . So all our assumptions about R also hold for F , and therefore

we may assume that R = F ; i.e., we may assume R is minimally β-perfect. Recall from

above that there are two cases: |Y1| ≥ 2 and |Y4| = 1; or |Y1| = 1 and |Y4| ≥ 2.

Suppose |Y1| ≥ 2 and |Y4| = 1. If |Y3| = 1, then by Lemma 2.52, Y1 is not complete

to Y2, contradicting (3). So |Y3| ≥ 2, and therefore, by (2), |Y6| = 1. So for any vertex

v ∈ Y5, dR(y5) = |Y5| + 1, and hence |Y5| ≥ β(R) − 2 by Lemma 2.2. By a similar

argument, and since |Y6| = 1 and (by (1)) |Yi| = 1 for each even i ∈ {8, . . . , k}, we have
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that |Yj | ≥ β(R)− 2 for each odd j ∈ {7, . . . , k − 2}. So among Y4, . . . , Yk−1, there are⌊
k−4
2

⌋
bags of size at least β(R)− 2, and the remaining

⌈
k−4
2

⌉
bags are of size 1.

Fix y3 ∈ Y3 with |NR(y3)∩Y2| minimum and yk ∈ Yk with |NR(yk)∩Y1| minimum;

and set Z2 = NR(y3)∩ Y2 and Z1 = NR(yk)∩ Y1. By assumption, |Y4| = 1, and by (1),

|Yk−1| = 1, and therefore dR(y3) = 1 + (|Y3| − 1) + |Z2| = |Y3| + |Z2|, and similarly

dR(yk) = |Yk|+ |Z1|. By Lemma 2.2, δ(R) = β(R)−1, and hence |Y3|+ |Z2| ≥ β(R)−1

and |Yk| + |Z1| ≥ β(R) − 1. Now Z = R[Z1 ∪ Z2 ∪ Y3 ∪ Y4 ∪ · · · ∪ Yk] is a hyperhole,

and by adding together the above bounds, we get that

|V (Z)| ≥ 2 (β(R)− 1) +

⌊
k − 4

2

⌋
(β(R)− 2) +

⌈
k − 4

2

⌉
= 2 (β(R)− 1) +

k − 5

2
(β(R)− 2) +

k − 3

2

=
k − 1

2
β(R)− k − 1

2
+ 1.

Thus, by Theorem 2.19,

χ(Z) ≥
⌈
(k − 1)β(R)− (k − 1) + 2

k − 1

⌉
=

⌈
β(R)− 1 +

2

k − 1

⌉
,

and since 2
k−1 > 0 for all k > 1, we get that χ(Z) ≥ β(R), and hence χ(R) ≥ β(R), a

contradiction.

So |Y1| = 1 and |Y4| ≥ 2. If |Y6| ≥ 2, then by (2), |Y3| = 1, and hence (after

relabeling the indices of Y1, . . . , Yk) we may apply the earlier argument which handles

the case where |Y1| ≥ 2 and |Y4| = 1. So we may assume |Y6| = 1; and it follows

from this assumption together with (1) that for each odd i ∈ {7, 9, . . . , k}, |Yi−1| =
|Yi+1| = 1. By Lemma 2.2, δ(R) = β(R) − 1, and therefore |Yi| ≥ β(R) − 2 for each

odd i ∈ {7, 9, . . . , k}. So, among the bags Y6, . . . , Yk, Y1, there are
⌊
k−4
2

⌋
= k−5

2 bags of

size at least β(R)− 2, and the remaining
⌈
k−4
2

⌉
= k−3

2 bags are of size 1.

Fix y2 ∈ Y2 with |NR(y2)∩ Y3| minimum and y5 ∈ Y5 with |NR(y5)∩ Y4| minimum.

Set Z3 = NR(y2) ∩ Y3 and Z4 = NR(y5) ∩ Y4. Since dR(y2) = |Y2|+ |Z3| and dR(y5) =

|Y5|+|Z4|, it follows from Lemma 2.2 that |Y2|+|Z3| ≥ β(R)−1 and |Y5|+|Z4| ≥ β(R)−
1. Since, by (3), Y3 is complete to Y4, it follows that Z = R[Y1∪Y2∪Z3∪Z4∪Y5∪· · ·∪Yk]
is a hyperhole, and by adding together the above bounds we get that

|V (Z)| ≥ 2(β(R)− 1) +
k − 5

2
(β(R)− 2) +

k − 3

2

=
k − 1

2
β(R)− k − 1

2
+ 1.
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Thus, by Theorem 2.19,

χ(Z) ≥
⌈
(k − 1)β(R)− (k − 1) + 2

k − 1

⌉
=

⌈
β(R)− 1 +

2

k − 1

⌉
,

and since 2
k−1 > 0 for all k > 1, we get that χ(Z) ≥ β(R), and hence χ(R) ≥ β(R), a

contradiction.

A super-sector is a 2-super-sector if it contains only 2-sectors.

Lemma 2.56. Let R be an odd ring. If R has a triad or a 2-super-sector, then R is

β-perfect.

Proof. Towards a contradiction, suppose R has a triad or a 2-super-sector but is not

β-perfect. Let F be an induced subgraph of R that is minimally β-imperfect, and let

Fi = V (F ) ∩ Yi for each i ∈ {1, . . . , k}. By Lemma 2.11, F is not chordal, and hence

F1, . . . , Fk are all nonempty. By Lemma 2.54, F = (F1, . . . , Fk) is a ring. It follows

that if (Yi−1, Yi, Yi+1) is a triad of R, then F has a vertex of degree 2, contrary to

Lemma 2.4; thus, R has no triad. So R has a 2-super-sector, say S = (Yℓ, . . . , Yr).

We now show for each 2-sector (Ys, Ys+1, Ys+2, Ys+3) contained in S that |Fs+1| =
β(F )−2 and |Fs+2| = 1. Since Yℓ, Yℓ+1 are of size 1, so are Fℓ, Fℓ+1, and hence it follows

from Lemma 2.52 that |Fℓ+2| = β(F ) − 2 and exactly one vertex in Fℓ+3 is complete

to Fℓ+2. More specifically, since Yi is complete to Yi+1 for each i ∈ {ℓ, ℓ+ 1, . . . , r− 1}
(and hence every vertex in Fℓ+3 is complete to Fℓ+2), we get that |Fℓ+3| = 1. So our

claim holds for the 2-sector (Yℓ+1, Yℓ+2, Yℓ+3, Yℓ+4). Since we now have that |Fℓ+3| =
|Fℓ+4| = 1, we may repeat this argument for the 2-sector (Yℓ+4, Yℓ+5, Yℓ+6, Yℓ+7), if

it exists, to get that |Fℓ+5| = β(F ) − 2 and |Fℓ+6| = 1; and then for the 2-sector

(Yℓ+7, Yℓ+8, Yℓ+9, Yℓ+10), if it exists, to get that |Fℓ+8| = β(F )− 2 and |Fℓ+9| = 1; and

so on, until we get that |Fr−3| = β(F )− 2 and |Fr−2| = 1. But now the unique vertex

of Fr−1 is of degree 2 in F , contrary to Lemma 2.4.

Lemma 2.57. Let R = (Y1, . . . , Yk) be an odd ring that has no triad, no 2-super-sector,

and contains no bad ring. Then some induced subgraph H of R is a hyperhole that has

no triad and no 2-super-sector.

Proof. Towards a contradiction, suppose every hyperhole in R has a triad or a 2-super-

sector. For any hyperhole H = (X1, . . . , Xk) in R, let t(H) be the number of triads of

H; i.e., t(H) denotes the size of the set

{i ∈ {1, . . . , k} : (Xi−1, Xi, Xi+1) is a triad of H};
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and let s(H) be the number of 2-super-sectors of H; i.e., s(H) denotes the size of the

set

{(ℓ, r) : ℓ, r ∈ {1, . . . , k} and (Xℓ, . . . , Xr) is a 2-super-sector of H}.

Fix a hyperhole H = (X1, . . . , Xk) in R that minimises t(H), and subject to that, also

minimises s(H). For each i ∈ {1, . . . , k}, if |Xi| = 1, then we assume that the unique

vertex in Xi is complete to Yi−1∪Yi+1 (such a vertex exists by the definition of a ring).

(1) If (Xi−1, Xi, Xi+1) is a triad of H, then Xi = Yi. Consequently, there exist no five

bags Xj , Xj+1, . . . , Xj+4 of H all of size one.

Proof of (1): Suppose that (Xi−1, Xi, Xi+1) is a triad but Xi ̸= Yi. But now for

any y ∈ Yi \ Xi the graph H ∪ {y} is a hyperhole with t(H ∪ {y}) < t(H), a con-

tradiction. We now prove the second statement of the claim. Suppose, without loss

of generality, that X1, X2, . . . , X5 are all of size 1. It follows from the first statement

of the claim applied to each of the triads (X1, X2, X3), (X2, X3, X4) and (X3, X4, X5)

that |Y2| = |Y3| = |Y4| = 1. But then (Y2, Y3, Y4) is a triad of R, a contradiction. This

proves (1).

(2) Let (Xi−1, Xi, Xi+1) be a triad of H. If Yi−1 \Xi−1 ̸= ∅, then:

� |Xi−2| ≥ 2;

� |Xi−4| = |Xi−3| = |Yi−3| = 1; and

� no vertex in Yi−1 \Xi−1 has at least two neighbours in Yi−2.

Similarly, if Yi+1 \Xi+1 ̸= ∅, then:

� |Xi+2| ≥ 2;

� |Yi+3| = |Xi+3| = |Xi+4| = 1; and

� no vertex in Yi+1 \Xi+1 has at least two neighbours in Yi+2.

Proof of (2): If |Xi−4| ≥ 2 or |Xi−3| ≥ 2, then the graph H ′ = (H \ (Xi−2 ∪Xi−1)) ∪
Y 1
i−2 ∪ Y 2

i−1 is a hyperhole with t(H ′) < t(H), a contradiction. So |Xi−4| = |Xi−3| = 1.

If |Xi−2| = 1, then (Xi−2, Xi−1, Xi) is a triad and Yi−1 \Xi−1 ̸= ∅, contrary to (1); so

|Xi−2| ≥ 2. If |Yi−3| ≥ 2, then the graph H ′ = (H \ (Xi−3 ∪ Xi−2 ∪ Xi−1)) ∪ Y 2
i−3 ∪

Y 1
i−2 ∪ Y 2

i−1 is a hyperhole with t(H ′) < t(H), a contradiction; so |Yi−3| = 1. Suppose

that some vertex y ∈ Yi−1 \ Xi−1 has two neighbours y′, y′′ ∈ Yi−2. Then the graph
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H ′ = (H \Xi−2) ∪ {y, y′, y′′} is a hyperhole with t(H ′) < t(H), a contradiction. The

analogous statements when Yi+1 \Xi+1 ̸= ∅ follow by symmetry. This proves (2).

(3) We may assume that no super-sector of H contains a sector of length at least 3.

Proof of (3): Suppose that some super-sector S = (Xℓ, . . . , Xr) of H contains a sec-

tor T = (Xs, . . . , Xt) of length at least 3. For each i ∈ {ℓ, . . . , r} with |Xi| = 1, let

X ′
i = Xi. Let Q = (Xa, . . . , Xb) be any sector contained in the super-sector S. Suppose

that Q is not a 2-sector. If the length of Q is odd, then for each j ∈ {a+ 1, . . . , b− 1}
let X ′

j = X2
j if j − a is odd, and let X ′

j = X1
j if j − a is even. If the length of Q

is even, then let X ′
b−1 = X2

b−1, let X ′
b−2 = X1

b−2, and for each j ∈ {a + 1, . . . , b − 3}
let X ′

j = X2
j if j − a is odd, and let X ′

j = X1
j if j − a is even. For each 2-sector

(Xs, Xs+1, Xs+2, Xs+3) contained in S, let X ′
s = Xs, X

′
s+1 = Xs+1, X

′
s+2 = Xs+2, and

X ′
s+3 = Xs+3. Now the graph H ′ induced by X ′

ℓ ∪ · · · ∪X ′
r ∪ (V (H) \ (Xℓ ∪ · · · ∪Xr))

is a hyperhole with t(H ′) = t(H), s(H ′) = s(H), and with one fewer super-sector that

contains a sector of length at least 3. By repeating this process, we obtain a hyperhole

with the same number of triads as H and the same number of 2-super-sectors as H but

with no super-sector that contains a sector of length at least 3. Thus we may assume

that H has no super-sector that contains a sector of length at least 3. This proves (3).

By (3), we may assume that each sector contained in a super-sector of H is of

length 1 or 2.

(4) Let (Xℓ, . . . , Xr) be a 2-super-sector of H. Then, for all i ∈ {ℓ + 1, . . . , r − 1}, if
|Xi| = 1 then |Yi| = 1.

Proof of (4): Observe that |Xℓ+1| = |Xr−1| = 1. Suppose that |Yℓ+1| ≠ 1. For each

i ∈ {ℓ, . . . , r} \ {ℓ+ 1} such that |Xi| = 1, let X ′
i = Xi. Let X ′

ℓ+1 = Y 2
ℓ+1. For each 2-

sector (Xs, Xs+1, Xs+2, Xs+3) in (Xℓ, . . . , Xr), let X
′
s+1 = X1

s+1, and let X ′
s+2 = X2

s+2.

Now the graph H ′ induced by X ′
ℓ ∪ · · · ∪X ′

r ∪ (V (H) \ (Xℓ ∪ · · · ∪Xr)) is a hyperhole

with t(H ′) = t(H) but with s(H ′) < s(H), a contradiction. So |Yℓ+1| = 1, and by a

symmetric argument we get that |Yr−1| = 1.

Now suppose that |Xi| = 1 but |Yi| ≠ 1 for some i ∈ {ℓ + 2, . . . , r − 2}. For

each j ∈ {ℓ, . . . , r} \ {i} such that |Xj | = 1, let X ′
j = Xj . Let X ′

i = Y 2
i . For each

2-sector (Xs, Xs+1, Xs+2, Xs+3) in the subsequence (Xℓ, . . . , Xi), let X
′
s+1 = X2

s+1 and

let X ′
s+2 = X1

s+2; and for each 2-sector (Xs, Xs+1, Xs+2, Xs+3) in the subsequence

(Xi, . . . , Xr), let X ′
s+1 = X1

s+1 and let X ′
s+2 = X2

s+2. Now the graph H ′ induced by
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X ′
ℓ ∪ · · · ∪ X ′

r ∪ (V (H) \ (Xℓ ∪ · · · ∪ Xr)) is a hyperhole with t(H ′) = t(H) but with

s(H ′) < s(H), a contradiction. Thus, for every i ∈ {ℓ+ 2, . . . , r − 2}, if |Xi| = 1 then

|Yi| = 1. This proves (4).

(5) Let (Xℓ, . . . , Xr) be a 2-super-sector of H. If |Yℓ| ≥ 2, then |Xℓ−3| = |Xℓ−2| =
|Yℓ−2| = 1. Similarly, if |Yr| ≥ 2, then |Yr+2| = |Xr+2| = |Xr+3| = 1.

Proof of (5): We prove the statement when |Yℓ| ≥ 2, and the case where |Yr| ≥ 2 follows

by symmetry. Suppose that |Yℓ| ≥ 2. Let X ′
ℓ = Y 2

ℓ and X ′
r = Xr. For each 2-sector

(Xs, Xs+1, Xs+2, Xs+3) in (Xℓ, . . . , Xr), let X ′
s = Xs, X

′
s+1 = X1

s+1, X
′
s+2 = X2

s+2,

and X ′
s+3 = Xs+3. Let X ′

ℓ−1 = X1
ℓ−1. If |Xℓ−3| ≥ 2, then let X ′

ℓ−2 = X1
ℓ−2; now

X ′
ℓ−2∪X ′

ℓ−1∪X ′
ℓ∪· · ·∪X ′

r∪ (V (H)\ (Xℓ−2∪Xℓ−1∪Xℓ∪· · ·∪Xr)) induces a hyperhole

H ′ with t(H ′) = t(H) but with s(H ′) < s(H), a contradiction. So |Xℓ−3| = 1. If

|Xℓ−2| ≥ 2, then X ′
ℓ−1 ∪X ′

ℓ ∪ · · · ∪X ′
r ∪ (V (H) \ (Xℓ−1 ∪Xℓ ∪ · · · ∪Xr) again induces

a hyperhole H ′ with t(H ′) = t(H) but with s(H ′) < s(H), a contradiction. A similar

contradiction arises if |Yℓ−2| ≥ 2. Thus, if |Yℓ| ≥ 2, then |Xℓ−3| = |Xℓ−2| = |Yℓ−2| = 1.

This proves (5).

(6) Let (Xℓ, . . . , Xr) be a 2-super-sector of H. Then we may assume that no vertex in

Yℓ \Xℓ has at least two neighbours in Yℓ−1. Similarly, we may assume that no vertex

in Yr \Xr has at least two neighbours in Yr+1.

Proof of (6): On the contrary, suppose that some vertex y ∈ Yℓ \ Xℓ has two neigh-

bours u, v ∈ Yℓ−1. It follows that |Yℓ| ≥ 2, and hence |Xℓ−3| = |Xℓ−2| = 1 by (5).

Now consider the graph H ′ = R[{u, v, y} ∪ (V (H) \ Xℓ−1)]; it is a hyperhole, with

t(H ′) = t(H) and s(H ′) = s(H), of which (Xℓ−3, Xℓ−2, {u, v}, Xℓ ∪ {y}, Xℓ+1, . . . , Xr)

is a 2-super-sector. If some vertex in Yℓ−3 \Xℓ−3 has at least two neighbours in Yℓ−4

or if some vertex in Yr \ Xr has at least two neighbours in Yr+1, then we may re-

peat this process. Since this process must terminate, we obtain in the end a hy-

perhole H+ (say with bags X ′
1, . . . , X

′
k satisfying X ′

i ⊆ Yi for each i ∈ {1, . . . , k})
with t(H+) = t(H), s(H+) = s(H), and having a 2-super-sector (X ′

ℓ′ , . . . , X
′
r′) where

{ℓ, . . . , r} ⊆ {ℓ′, . . . , r′}, and no vertex in Yℓ′ \X ′
ℓ′ has at least two neighbours in Yℓ′−1,

and no vertex in Yr′ \X ′
r′ has at least two neighbours in Yr′+1. This proves (6).

(7) Let S = (Xℓ, . . . , Xr) be a super-sector of H. If S contains a 2-sector, then we may

assume that S is a 2-super-sector.
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Proof of (7): Suppose that S contains at least one 2-sector. If S contains only 2-

sectors, then we are done; thus, we may assume that S contains a sector of some other

length, and by (3), each such sector is of length 1. Let (Xt−1, Xt, Xt+1) be a 1-sector

contained in S. For each i ∈ {ℓ, . . . , r} with |Xi| = 1, let X ′
i = Xi. For each 1-

sector (Xs−1, Xs, Xs+1), let X
′
s = Xs, and for each 2-sector (Xs, Xs+1, Xs+2, Xs+3), let

X ′
s+1 = X2

s+1 and X ′
s+2 = X1

s+2 if (Xs, Xs+1, Xs+2, Xs+3) appears in the subsequence

(Xℓ, . . . , Xt−1), and otherwise, let X ′
s+1 = X1

s+1 and X ′
s+2 = X1

s+2. Now the graph H ′

induced by X ′
ℓ ∪ · · · ∪X ′

r ∪ (V (H) \ (Xℓ ∪ · · · ∪Xr)) is a hyperhole with t(H ′) = t(H),

s(H ′) = s(H), and (X ′
ℓ, . . . , X

′
r) is not a super-sector of H ′. After repeating this pro-

cedure for each super-sector that contains a 2-sector, we obtain a hyperhole in which

every super-sector containing a 2-sector is a 2-super-sector. This proves (7).

(8) Let (Xℓ, . . . , Xr) be a 2-super-sector of H. If |Yℓ| ≥ 2, then |Xℓ−1| ≥ 2. Similarly,

if |Yr| ≥ 2, then |Xr+1| ≥ 2.

Proof of (8): Suppose that |Yℓ| ≥ 2 but |Xℓ−1| = 1. Let X ′
ℓ = Y 2

ℓ , for each i ∈
{ℓ + 2, ℓ + 5, ℓ + 8, . . . , r − 3}, let X ′

i = X1
i , and for every other i ∈ {ℓ, . . . , r} let

X ′
i = Xi. Now the graph H ′ induced by X ′

ℓ ∪ · · · ∪X ′
r ∪ (V (H) \ (Xℓ ∪ · · · ∪Xr)) is a

hyperhole with t(H ′) = t(H) but with s(H ′) < s(H), a contradiction. Thus, if |Yℓ| ≥ 2,

then |Xℓ−1| ≥ 2, and by symmetry, if |Yr| ≥ 2, then |Xr+1| ≥ 2. This proves (8).

(9) We may assume that every sector of length at least 2 in H is contained in a super-

sector of H.

Proof of (9): Let S = (Xa, . . . , Xb) be a sector of length at least 2 in H, and say with-

out loss of generality that a = 1. Suppose that H contains two 0-sectors (Xi, Xi+1)

and (Xj , Xj+1) such that i, i + 1, j, j + 1 are all distinct. Assume i and j are cho-

sen so that i is minimum (possibly i = b) and j is maximum (possibly j = k). By

the definition of a sector we have that {i, i + 1, j, j + 1} ∩ {2, . . . , b − 1} = ∅, and

by our choice of i and j, there is no 0-sector in (Xj+1, . . . , X1, . . . , Xb, . . . , Xi). Now

(Xj , Xj+1, . . . , X1, . . . , Xb, . . . , Xi, Xi+1) is a super-sector of H that contains S, as re-

quired.

Thus, it remains to show that H has at least two 0-sectors that are formed by

four distinct bags of H. If H has a super-sector (Xℓ, . . . , Xr), then (Xℓ, Xℓ+1) and

(Xr−1, Xr) are two such 0-sectors; thus, we may assume that H has no super-sector.

If H has no triad, then H is as desired (i.e., H is an induced subgraph of R, and

is a hyperhole, and has no triad and no 2-super-sector), and we are done; so suppose
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(Xi−1, Xi, Xi+1) is a triad of H. Since R has no triad, it follows from (1) that |Yi−1| ≥ 2

or |Yi+1| ≥ 2. Suppose without loss of generality that |Yi−1| ≥ 2. Then, by (2),

|Xi−4| = |Xi−3| = 1, and hence (Xi−4, Xi−3) and (Xi−1, Xi) are two 0-sectors of H, as

required. This proves (9).

A 2-super-sector (Xℓ, . . . , Xr) of H is of type 1 if Ys+1 is complete to Ys+2 for every

2-sector (Xs, Xs+1, Xs+2, Xs+3) contained in (Xℓ, . . . , Xr), and is of type 2 otherwise.

Thus, if a 2-super-sector (Xℓ, . . . , Xr) of H is of type 2, then it contains at least one

2-sector (Xs, Xs+1, Xs+2, Xs+3) such that Ys+1 is not complete to Ys+2.

Suppose (Xℓ, . . . , Xr) is a 2-super-sector of type 1 of H. By (4), for each 2-sector

(Xs, Xs+1, Xs+2, Xs+3) contained in (Xℓ, . . . , Xr), we have that |Ys| = |Ys+3| = 1, and

by the definition of type 1, Ys+1 is complete to Ys+2. Since R has no 2-super-sector

(so in particular (Yℓ, . . . , Yr) is not a 2-super-sector of R), it follows that |Yℓ| ≥ 2 or

|Yr| ≥ 2 (or both). We say a 2-super-sector (Xℓ, . . . , Xr) of type 1 of H is left if |Yℓ| ≥ 2,

and right otherwise; so (Xℓ, . . . , Xr) is left or right, but not both, and if it is right, then

|Yℓ| = 1 and |Yr| ≥ 2.

(10) Let S = (Xℓ, . . . , Xr) be a 2-super-sector of type 2 of H. Then we may assume

that S contains only one 2-sector.

Proof of (10): Suppose (Xℓ, . . . , Xr) contains at least two 2-sectors. We show that we

may modify some of the bags among Xℓ, . . . , Xr so that H contains one fewer 2-super-

sector of type 2 that contains at least two 2-sectors but with t(H) and s(H) unchanged.

We consider two cases; first, the case where there is some 2-sector (Xs, Xs+1, Xs+2, Xs+3)

contained in S such that Ys+1 is complete to Ys+2. Let (Xa, . . . , Xb) be a maximal sub-

sequence of (Xℓ, . . . , Xr) such that:

� (Xa, Xa+1, Xa+2, Xa+3) and (Xb−3, Xb−2, Xb−1, Xb) are 2-sectors (possibly not

distinct); and

� every 2-sector (Xt, Xt+1, Xt+2, Xt+3) in (Xa, . . . , Xb) is such that Yt+1 is complete

to Yt+2.

It follows from the existence of (Xs, Xs+1, Xs+2, Xs+3) that there exists such a subse-

quence. Note that, by maximality, if (Xa−3, Xa−2, Xa−1, Xa) is a 2-sector contained

in S, then Ya−2 is not complete to Ya−1, and similarly, if (Xb, Xb+1, Xb+2, Xb+3) is

a 2-sector contained in S, then Yb+1 is not complete to Yb+2. Now, for each 2-

sector (Xt, Xt+1, Xt+2, Xt+3) in the subsequence (Xℓ, . . . , Xa−1, Xa), set Xt+2 = Y 1
t+2,
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and for each 2-sector (Xt, Xt+1, Xt+2, Xt+3) in the subsequence (Xb, Xb+1, . . . , Xr), let

Xt+1 = Y 1
t+1. Observe that (Xa−1, Xa, . . . , Xb, Xb+1) is now a 2-super-sector of type 1

of H, and that no other subsequence of (Xℓ, . . . , Xr) besides (Xa−1, Xa, . . . , Xb, Xb+1)

is a 2-super-sector of H. Thus, s(H) remains unchanged. It is clear that t(H) also

remains unchanged, and H now has one fewer 2-super-sector of type 2 that contains at

least two 2-sectors.

Now for the other case, i.e., for every 2-sector (Xs, Xs+1, Xs+2, Xs+3) contained in

S, we have that Ys+1 is not complete to Ys+2. For each 2-sector (Xs, Xs+1, Xs+2, Xs+3)

contained in (Xℓ, . . . , Xr), besides (Xℓ+1, Xℓ+2, Xℓ+3, Xℓ+4), set Xs+1 = Y 1
s+1. Observe

that (Xℓ, Xℓ+1, . . . , Xℓ+5) is now a 2-super-sector of type 2 of H, which contains only

one 2-sector (namely, (Xℓ+1, . . . , Xℓ+4)), and that no other subsequence of (Xℓ, . . . , Xr)

besides (Xℓ, Xℓ+1, . . . , Xℓ+5) is a 2-super-sector of H. Thus, s(H) remains unchanged.

It is clear that t(H) also remains unchanged, and H now has one fewer 2-super-sector

of type 2 that contains at least two 2-sectors. This proves (10).

In view of (10), from here on we assume that every 2-super-sector of type 2 of H

contains only one 2-sector.

Suppose (Xi−1, Xi, Xi+1) is a triad of H. Since R has no triad, it follows from (1)

that Yi−1 \Xi−1 ̸= ∅ or Yi+1 \Xi+1 ̸= ∅ (or possibly both). We say (Xi−1, Xi, Xi+1) is

left if Yi−1 \Xi−1 ̸= ∅, and right otherwise. Thus each triad of H is left or right, but

not both left and right.

We now construct an induced subgraph Z of R in the following way.

Step 1. Let Zi = Xi for each i ∈ {1, . . . , k}.

Step 2. For each left triad (Xi−1, Xi, Xi+1) of H, set Zi−1 = Y 2
i−1, and for each right

triad (Xi−1, Xi, Xi+1) of H, set Zi+1 = Y 2
i+1.

Step 3. For each left 2-super-sector S = (Xℓ, . . . , Xr) of type 1 of H, do the following:

� let Zℓ = Y 2
ℓ ; and

� for each 2-sector (Xs, Xs+1, Xs+2, Xs+3) in S, let Zs+1 = X1
s+1.

For each right 2-super-sector S = (Xℓ, . . . , Xr) of type 1 of H, do the following:

� let Zr = Y 2
r ; and

� for each 2-sector (Xs, Xs+1, Xs+2, Xs+3) in S, let Zs+2 = X1
s+2.

For each 2-super-sector S = (Xℓ, . . . , Xr) of type 2 of H, do the following:
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� let y ∈ Yℓ+2 and y′ ∈ Yℓ+3 be nonadjacent vertices, and let Zℓ+2 = Y 1
ℓ+2∪{y}

and Zℓ+3 = Y 1
ℓ+3 ∪ {y′}.

Step 4. For each i ∈ {1, . . . , k} such that Zi was not modified in Step 2 or 3, let

Zi = X1
i if |Xi| = 1, and otherwise let Zi = X2

i .

Let Z1, . . . , Zk be as they are when the above algorithm terminates, and let Z =

R[Z1 ∪ · · · ∪ Zk].

Observation 1: Zi ⊆ Yi for each i ∈ {1, . . . , k}.

Observation 2: |Zi| ≤ 2 for each i ∈ {1, . . . , k}.

Observation 3: If |Xi| = 1 and |Zi| = 2, then the algorithm set Zi to be of size 2 in

Step 2 or Step 3, and therefore at least one of the following holds:

� (Xi, Xi+1, Xi+2) is a left triad of H;

� (Xi−2, Xi−1, Xi) is a right triad of H;

� (Xi, Xi+1, . . . , Xr) is a left 2-super-sector of type 1 of H for some r ∈ {1, . . . , k};

� (Xℓ, . . . , Xi−1, Xi) is a right 2-super-sector of type 1 of H for some ℓ ∈ {1, . . . , k}.

Observation 4: If |Xi| ≥ 2 and |Zi| = 1, then the algorithm set Zi to be of size 1 in

Step 3 as a result of:

� (Xi−1, Xi, Xi+1, Xi+2) being a 2-sector contained in a left 2-super-sector (Xℓ, . . . , Xr)

of type 1; or

� (Xi−2, Xi−1, Xi, Xi+1) being a 2-sector contained in a right 2-super-sector of

type 1.

We use the above observations repeatedly throughout the remainder of the proof.

(11) For each left triad (Xi−1, Xi, Xi+1) of H, the following hold:

(a) |Zi−4| = |Zi−3| = 1;

(b) |Zi−2| = |Zi−1| = 2; and

(c) Zi−2 is not complete to Zi−1.
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Similarly, for each right triad (Xi−1, Xi, Xi+1) of H, the following hold:

(d) |Zi+3| = |Zi+4| = 1;

(e) |Zi+1| = |Zi+2| = 2; and

(f) Zi+1 is not complete to Zi+2.

Proof of (11): We prove the three statements about left triads, and the analogous

statements about right triads follow from a symmetric argument; so let (Xi−1, Xi, Xi+1)

be a left triad of H. By (2), |Yi−3| = 1, and therefore |Zi−3| = 1 by Observation 1.

Thus, in order to prove (a), it remains to show that |Zi−4| = 1. To the contrary,

suppose |Zi−4| ≥ 2. By (2), |Xi−4| = 1, and therefore it follows from Observation 3

that one of the following holds:

� (Xi−4, Xi−3, Xi−2) is a left triad of H;

� (Xi−6, Xi−5, Xi−4) is a right triad of H;

� S = (Xi−4, Xi−3, . . . , Xr) is a left 2-super-sector of type 1 of H for some r ∈
{1, . . . , k};

� S = (Xℓ, . . . , Xi−5, Xi−4) is a right 2-super-sector of type 1 of H for some ℓ ∈
{1, . . . , k}.

Suppose the first bullet holds. Then the five bags Xi−4, Xi−3, Xi−2, Xi−1, Xi are all

of size 1, contrary to (1). Thus, the first bullet does not hold. Suppose the second

bullet holds. Then, by (2) applied to (Xi−6, Xi−5, Xi−4), we get that |Xi−3| ≥ 2,

contrary to the already established fact that |Yi−3| = 1. So the second bullet does not

hold. Suppose the third bullet holds. Then (Xi−3, Xi−2, Xi−1, Xi) is a 2-sector, and in

particular |Xi−1| ≥ 2. But this contradicts the fact that (Xi−1, Xi, Xi+1) is a triad. So

the third bullet does not hold. Finally, if the fourth bullet holds, then |Yi−4| ≥ 2, and

hence, by (8), |Xi−3| ≥ 2, contrary to the fact that |Yi−3| = 1. Thus, we conclude that

|Zi−4| = 1, and this completes the proof of (a).

We now prove (b). By Observation 2, it suffices to show that |Zi−2| ≠ 1 and

|Zi−1| ≠ 1. Suppose |Zi−2| = 1. Since, by (2), |Xi−2| ≥ 2, it follows from Ob-

servation 4 that (Xi−3, Xi−2, Xi−1, Xi) or (Xi−4, Xi−3, Xi−2, Xi−1) is a 2-sector in a

2-super-sector of H. If (Xi−3, Xi−2, Xi−1, Xi) is a 2-sector, then |Xi−1| ≥ 2, con-

trary to (Xi−1, Xi, Xi+1) being a triad; and if (Xi−4, Xi−3, Xi−2, Xi−1) is a 2-sector,

then |Xi−3| ≥ 2, and hence |Yi−3| ≥ 2, contrary to (2). Thus |Zi−2| ≠ 1. Suppose
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|Zi−1| = 1. Since (Xi−1, Xi, Xi+1) is a left triad of H, the set Zi−1 was set to be of

size 2 in Step 2. Since on termination |Zi−1| = 1, it follows that Zi−1 was modified

in Step 3, and hence (Xi−2, Xi−1, Xi, Xi+1) or (Xi−3, Xi−2, Xi−1, Xi) is a 2-sector in a

2-super-sector of H. But then, in both cases, |Xi−1| ≥ 2, a contradiction. Therefore

|Zi−1| ≠ 1, and this completes the proof of (b).

By (b), |Zi−2| = |Zi−1| = 2. Since |Xi−1| = 1, one vertex from Zi−1, say y, belongs

to Yi−1 \ Xi−1. By (2) applied to the triad (Xi−1, Xi, Xi+1), it follows that y has

exactly one neighbour in Yi−2, and hence y is not complete to Zi−2. Therefore Zi−1 is

not complete to Zi−2, and this completes the proof of (c). This proves (11).

(12) For each left 2-super-sector (Xℓ, . . . , Xr) of type 1 of H, the following hold:

(a) |Zℓ−3| = |Zℓ−2| = |Zr−1| = |Zr| = 1;

(b) |Zℓ−1| = |Zℓ| = 2, and Zℓ−1 is not complete to Zℓ; and

(c) for each 2-sector (Xs, Xs+1, Xs+2, Xs+3) in (Xℓ, . . . , Xr), we have that |Zs| =

|Zs+1| = |Zs+3| = 1 and |Zs+2| = 2.

Similarly, for each right 2-super-sector (Xℓ, . . . , Xr) of type 1 of H, the following hold:

(d) |Zℓ| = |Zℓ+1| = |Zr+2| = |Zr+3| = 1;

(e) |Zr| = |Zr+1| = 2, and Zr is not complete to Zr+1; and

(f) for each 2-sector (Xs, Xs+1, Xs+2, Xs+3) in (Xℓ, . . . , Xr), we have that |Zs| =

|Zs+2| = |Zs+3| = 1 and |Zs+1| = 2.

Proof of (12): We prove (a), (b) and (c) for a left 2-super-sector (Xℓ, . . . , Xr) of type 1

of H, and the analogous statements (d), (e) and (f) for right 2-super-sectors of type 1

follow from a symmetric argument. We first prove (a). By Observation 2, each of

Zℓ−3, Zℓ−2, Zr−1, Zr has size at most 2. By (4), |Yr−1| = 1, and by (5), |Yℓ−2| =

1, and therefore |Zℓ−2| = |Zr−1| = 1 by Observation 1. By (5), we also get that

|Xℓ−3| = 1. Suppose |Zℓ−3| = 2. Then, by Observation 3, (Xℓ−3, Xℓ−2, Xℓ−1) is a left

triad of H, or (Xℓ−5, Xℓ−4, Xℓ−3) is a right triad of H, or there exists r′ ∈ {1, . . . , k}
such that (Xℓ−3, Xℓ−2, . . . , Xr′) is a left 2-super-sector of type 1 of H, or there exists

ℓ′ ∈ {1, . . . , k} such that (Xℓ′ , . . . , Xℓ−4, Xℓ−3) is a right 2-super-sector of type 1 of

H. In the first case, |Xℓ−1| = 1, contrary to the fact that, by (8), |Xℓ−1| ≥ 2. In the

second case, by (2) applied to the triad (Xℓ−5, Xℓ−4, Xℓ−3), we get that |Xℓ−2| ≥ 2,

contrary to the fact that |Yℓ−2| = 1. In the third case, (Xℓ−2, Xℓ−1, Xℓ, Xℓ+1) is a
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2-sector, and in particular, |Xℓ| ≥ 2, contrary to (Xℓ, . . . , Xr) being a 2-super-sector.

In the fourth case, it follows from (Xℓ′ , . . . , Xℓ−4, Xℓ−3) being a right 2-super-sector

of type 1 that |Yℓ−3| ≥ 2, and hence, by (8), |Yℓ−2| ≥ 2, contrary to the already

established fact that |Yℓ−2| = 1. In each of the four cases we obtained a contradiction,

and therefore we conclude that |Zℓ−3| = 1. Suppose |Zr| ≥ 2. Then, by Observation 3,

(Xr, Xr+1, Xr+2) is a left triad of H, or (Xr−2, Xr−1, Xr) is a right triad of H, or there

exists r′ ∈ {1, . . . , k} such that (Xr, Xr+1, . . . , Xr′) is a left 2-super-sector of type 1

of H, or there exists ℓ′ ∈ {1, . . . , k} such that (Xℓ′ , . . . , Xr−1, Xr) is a right 2-super-

sector of type 1 of H. In the first case, by (2) applied to (Xr, Xr+1, Xr+2), we get

that |Xr−1| ≥ 2, contrary to the fact that |Xr−1| = 1. In the second case, |Xr−2| = 1,

contrary to (Xℓ, . . . , Xr) being a 2-super-sector. Suppose the third case holds, i.e.,

(Xr, Xr+1, . . . , Xr′) is a left 2-super-sector of type 1 of H. Then |Yr| ≥ 2, and hence

by (8) applied to the 2-super-sector (Xℓ, . . . , Xr), we get that |Xr+1| ≥ 2, contrary to

(Xr, Xr+1, . . . , Xr′) being a 2-super-sector. In the fourth case, clearly we must have

that ℓ = ℓ′; but then (Xℓ, . . . , Xr) is both left and right, a contradiction. So |Zr| = 1,

and this completes the proof of (a).

We now prove (b). By Observation 2, it suffices to show that |Zℓ−1| ≠ 1 and |Zℓ| ≠ 1.

Suppose |Zℓ−1| = 1. Since |Yℓ| ≥ 2, it follows from (8) that |Xℓ−1| ≥ 2, and hence it

follows from Observation 4 that (Xℓ−2, Xℓ−1, Xℓ, Xℓ+1) or (Xℓ−3, Xℓ−2, Xℓ−1, Xℓ) is a

2-sector contained in a 2-super-sector of H. If (Xℓ−2, Xℓ−1, Xℓ, Xℓ+1) is a 2-sector, then

|Xℓ| ≥ 2, a contradiction; and if (Xℓ−3, Xℓ−2, Xℓ−1, Xℓ) is a 2-sector, then |Yℓ−2| ≥ 2,

contrary to (5). So |Zℓ−1| = 2. By Step 3 of the algorithm, |Zℓ| = 2. Finally, since

|Xℓ| = 1, one vertex from Zℓ, say y, belongs to Yℓ \Xℓ. By (6) applied to the 2-super-

sector (Xℓ, . . . , Xr), y has exactly one neighbour in Yℓ−1, and hence y is not complete

to Zℓ−1. Therefore Zℓ−1 is not complete to Zℓ, and this completes the proof of (b).

Finally, we prove (c); let (Xs, Xs+1, Xs+2, Xs+3) be a 2-sector contained in

(Xℓ, . . . , Xr). By (4), |Ys| = |Ys+3| = 1, and hence |Zs| = |Zs+3| = 1 by Observa-

tion 1. By Step 3 of the algorithm, |Zs+1| = 1, and |Zs+2| = 2, and this completes the

proof of (c). This proves (12).

Recall that, by (10), each 2-super-sector (Xℓ, . . . , Xr) of type 2 of H contains only

one 2-sector, and hence (Xℓ, . . . , Xr) = (Xℓ, Xℓ+1, . . . , Xℓ+5).

(13) For each 2-super-sector (Xℓ, . . . , Xℓ+5) of type 2 of H, the following hold:

(a) |Zℓ| = |Zℓ+1| = |Zℓ+4| = |Zℓ+5| = 1;

(b) |Zℓ+2| = |Zℓ+3| = 2, and Zℓ+2 is not complete to Zℓ+3.
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Proof of (13): Let (Xℓ, . . . , Xr) be a 2-super-sector of type 2 of H. We first prove (a).

By (4), |Yℓ+1| = |Yℓ+4| = 1, and therefore |Zℓ+1| = |Zℓ+4| = 1 by Observation 1; so

it remains to prove that |Zℓ| = |Zℓ+5| = 1. Suppose |Zℓ| = 2. By Observation 3,

(Xℓ, Xℓ+1, Xℓ+2) is a left triad of H, or (Xℓ−2, Xℓ−1, Xℓ) is a right triad of H, or

(Xℓ, Xℓ+1, . . . , Xr) is a left 2-super-sector of type 1 of H for some r ∈ {1, . . . , k}, or
(Xℓ′ , . . . , Xℓ−1, Xℓ) is a right 2-super-sector of type 1 of H for some ℓ′ ∈ {1, . . . , k}.
In the first case, |Xℓ+2| = 1, a contradiction. In the second case, it follows from (2)

applied to the triad (Xℓ−2, Xℓ−1, Xℓ) that |Xℓ+1| ≥ 2, a contradiction. In the third

case, clearly we must have that (Xℓ, Xℓ+1, . . . , Xr′) = (Xℓ, . . . , Xℓ+5), and hence this

2-super-sector is both of type 1 and type 2, a contradiction. In the fourth case, by (8)

applied to (Xℓ′ , . . . , Xℓ−1, Xℓ), we get that |Xℓ+1| ≥ 2, a contradiction. We therefore

conclude that |Zℓ| = 1, and by a symmetric argument we get that |Zℓ+5| = 1. This

completes the proof of (a).

We now prove (b). It follows from Observation 2 and Step 3 that |Zℓ+2| = |Zℓ+3| =
2. That Zℓ+2 is not complete to Zℓ+3 follows from the choice of vertices y and y′ in

Step 3. Therefore (b) holds, and this completes the proof of (13).

It is clear from construction that Z is a ring of length k with bags Z1, . . . , Zk. We

now show that Z is a bad ring by checking that Z = (Z1, . . . , Zk) satisfies the following

conditions from the definition of a bad ring.

� For every i ∈ {1, . . . , k}, |Zi| ≤ 2.

� For every i ∈ {1, . . . , k}, if |Zi| = |Zi+1| = 2, then Zi is not complete to Zi+1 and

|Zi−2| = |Zi−1| = |Zi+2| = |Zi+3| = 1.

� Z has no triad.

� There exists at least one integer i ∈ {1, . . . , k} such that |Zi| = |Zi+1| = 2.

By Observation 2, the first bullet holds.

We now prove that the second bullet holds; so assume |Zi| = |Zi+1| = 2 for some

i ∈ {1, . . . , k}. For our first step, suppose |Xi| ≥ 2 and |Xi+1| ≥ 2. Let s, t ∈ {1, . . . , k}
be such that Xs is the only bag of size 1 in the sequence (Xs, . . . , Xi) and Xt is the only

bag of size 1 in the sequence (Xi+1, . . . , Xt); that two such bags of size 1 exist follows

from the fact that H has a triad or a 2-super-sector together with the observation that,

since |Xi| ≥ 2 and |Xi+1| ≥ 2, s ̸= i and t ̸= i + 1. Then (Xs, . . . , Xi, Xi+1, . . . , Xt)

is a sector of H, and by (3), it is a 2-sector; thus, s = i − 1 and t = i + 2. By (7)

and (9), (Xs−1, Xs, Xs+1, Xs+2) is contained in a 2-super-sector (Xℓ, . . . , Xr) of H.
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Since |Zi| = |Zi+1| = 2, it follows from (12) that (Xℓ, . . . , Xr) is of type 2, and then

from (13) that |Zi−2| = |Zi−1| = |Zi+2| = |Zi+3| = 1 and Zi is not complete to Zi+1.

Therefore, if |Xi| ≥ 2 and |Xi+1| ≥ 2, then the second bullet holds. So we may assume

that |Xi| = 1 or |Xi+1| = 1.

Suppose |Xi| = 1. Then, since |Zi| = 2, it follows from Observation 3 that

(Xi, Xi+1, Xi+2) is a left triad of H, or (Xi−2, Xi−1, Xi) is a right triad of H, or

(Xi, Xi+1, . . . , Xr) is a left 2-super-sector of type 1 of H for some r ∈ {1, . . . , k},
or (Xℓ, . . . , Xi−1, Xi) is a right 2-super-sector of type 1 of H. In the first case, by (1),

|Yi+1| = 1, and hence |Zi+1| = 1, a contradiction. Suppose the second case holds,

i.e., suppose that (Xi−2, Xi−1, Xi) is a right triad of H. It follows from (11) that

|Zi+2| = |Zi+3| = 1 and Zi is not complete to Zi+1. By (1), |Yi−1| = 1, and hence

|Zi−1| = 1 by Observation 1. If |Zi−2| = 1, then we see from the facts just established

that the second bullet holds; so we may assume |Zi−2| = 2. Then, by Observation 3,

(Xi−2, Xi−1, Xi) is a left triad of H (in which case the triad (Xi−2, Xi−1, Xi) is both

left and right, a contradiction); or (Xi−4, Xi−3, Xi−2) is a right triad of H (in which

case Xi−4, Xi−3, Xi−2, Xi−1, Xi are five consecutive bags of size 1, contrary to (1)); or

(Xi−2, Xi−1, . . . , Xr′) is a left 2-super-sector of type 1 of H (in which case Yi is complete

to Yi+1, contrary to the already established fact that Zi is not complete to Zi+1); or

(Xℓ, . . . , Xi−3, Xi−2) is a right 2-super-sector of type 1 of H (in which case, by (8),

|Xi−1| ≥ 2, contrary to the assumption that (Xi−2, Xi−1, Xi) is a triad). So |Zi−2| = 1,

and we now conclude that in the second case (i.e., when (Xi−2, Xi−1, Xi) is a right

triad), the second bullet holds. So we may assume that the second case does not hold.

In the third case, i.e., when (Xi, Xi+1, . . . , Xr) is a left 2-super-sector of type 1 of H, we

get from (4) that |Yi+1| = 1, and hence |Zi+1| = 1, a contradiction. In the fourth case,

i.e., when (Xℓ, . . . , Xi−1, Xi) is a right 2-super-sector of type 1, it follows from (12) that

|Zi−2| = |Zi−1| = |Zi+2| = |Zi+3| = 1 and Zi is not complete to Zi+1, and hence the

second bullet holds. Thus, we conclude that |Xi| ≠ 1, and from a symmetric argument

we get that |Xi+1| ̸= 1, a contradiction. This completes the proof that the second

bullet holds.

To prove the third bullet, suppose Z has a triad (Zi−1, Zi, Zi+1). If (Xi−1, Xi, Xi+1)

is a triad of H, then by part (b) or (e) of (11), |Zi−1| = 2 or |Zi+1| = 2, a contradiction.

So at least one of Xi−1, Xi, Xi+1 has size at least 2. Suppose |Xi−1| ≥ 2. Then, by

Observation 4, exactly one of (Xi−2, Xi−1, Xi, Xi+1) and (Xi−3, Xi−2, Xi−1, Xi), call it

S, is a 2-sector contained in a 2-super-sector T = (Xℓ, . . . , Xr) ofH. It follows from (13)

that T is not of type 2, and hence T is of type 1. If S = (Xi−2, Xi−1, Xi, Xi+1), then

by (12), T is a left 2-super-sector of type 1, in which case, by (12)(c), |Zi| = 2, a
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contradiction. If S = (Xi−3, Xi−2, Xi−1, Xi), then by (12), T is a right 2-super-sector

of type 1, in which case, either: (Xi, Xi+1, Xi+2, Xi+3) is a 2-sector contained in T , and

hence by (12)(f) we have that |Zi+1| = 2, a contradiction; or (Xi, Xi+1) = (Xr−1, Xr),

and hence by (12)(e) we again have that |Zi+1| = 2, a contradiction. We conclude that

|Xi−1| = 1, and it follows from a symmetric argument that |Xi+1| = 1. So |Xi| ≥ 2.

Then, by Observation 4, either (Xi−1, Xi, Xi+1, Xi+2) is a 2-sector contained in a left

2-super-sector of type 1 of H (in which case, by (12)(c), |Zi+1| = 2, a contradiction),

or (Xi−2, Xi−1, Xi, Xi+1) is a 2-sector contained in a right 2-super-sector of type 1 of

H (in which case, by (12)(f), |Zi−1| = 2, a contradiction). This completes the proof

that Z has no triad, and therefore the third bullet holds.

Suppose the fourth bullet does not hold. Then Z is a hyperhole, since each bag of

Z is of size 1 or 2 (by the first bullet), no two of which are consecutive and of size 2 (by

assumption); therefore clearly Z has no 2-super-sector; and by the third bullet, Z has

no triad. But then Z is a hyperhole in R with no triad and no 2-super-sector, contrary

to our initial assumption that R contains no such induced subgraph. Thus, the fourth

bullet holds.

So Z is a bad ring, contrary to the fact that R contains no bad ring.

Lemma 2.58. Let R = (Y1, . . . , Yk) be a ring. Suppose R contains a hyperhole H =

(X1, . . . , Xk) that has exactly one 0-sector and all its other sectors are of length 2. If R

contains no bad ring and no base hyperhole, then R is a hyperhole that contains exactly

one 0-sector and all its other sectors are of length 2.

Proof. Say (X3, X4) is the 0-sector of H, and suppose towards a contradiction that R

contains no bad ring and no base hyperhole but R is not a hyperhole that has exactly

one 0-sector and all its other sectors are of length 2. Then at least one of the following

holds:

� (Y3, Y4) is not a 0-sector of R; or

� there is some 2-sector (Xs, Xs+1, Xs+2, Xs+3) ofH such that (Ys, Ys+1, Ys+2, Ys+3)

is not a 2-sector of R.

Note that the first bullet implies the second, for if |Y3| ≥ 2, then (Yk, Y1, Y2, Y3) is not

a 2-sector of R, and if |Y4| ≥ 2, then (Y4, Y5, Y6, Y7) is not a 2-sector of R; so it suffices

to consider only the second bullet. Let (Xs, Xs+1, Xs+2, Xs+3) be a 2-sector of H such

that (Ys, Ys+1, Ys+2, Ys+3) is not a 2-sector of R. So |Ys| ≥ 2, or |Ys+3| ≥ 2, or Ys+1 is

not complete to Ys+3.
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Suppose first that |Ys| ≥ 2. Let H ′ be the subgraph of R induced by (V (H) \
(Xs−1 ∪ Xs+1)) ∪ Y 1

s−1 ∪ Ys ∪ Y 1
s+1. Clearly H ′ is a hyperhole, and it can easily be

checked that H ′ has no triad, no 2-super-sector, and that it is not the case that H ′ has

exactly one 0-sector and all its other sectors are of length 2. Thus, by the definition of

trivial, H ′ is a nontrivial hyperhole, and therefore it follows from Lemma 2.29 that R

contains a base hyperhole, a contradiction. So |Ys| = 1, and by a symmetric argument

we get that |Ys+3| = 1.

So Ys+1 is not complete to Ys+2. Let y ∈ Ys+1 and y′ ∈ Ys+2 be nonadjacent

vertices of R, and let Y ′
s+1 = Y 1

s+1 ∪ {y} and Y ′
s+2 = Y 1

s+2 ∪ {y′}. For each 2-

sector (Xt, Xt+1, Xt+2, Xt+3) of H in the subsequence (X4, . . . , Xs), let Y ′
t = Y 1

t ,

Y ′
t+1 = Yt+1, Y ′

t+2 = Y 1
t+2, and Y ′

t+3 = Y 1
t+3. For each 2-sector of H in the sub-

sequence (Xs+3, . . . , Xk, X1, X2, X3), let Y ′
t = Y 1

t , Y ′
t+1 = Y 1

t+1, Y ′
t+2 = Yt+2, and

Y ′
t+3 = Y 1

t+3. Let Y ′
3 = Y 1

3 and Y ′
4 = Y 1

4 (this ensures that Y ′
4 is defined in the

case (Xs, Xs+1, Xs+2, Xs+3) = (X4, X5, X6, X7) and that Y ′
3 is defined in the case

(Xs, Xs+1, Xs+2, Xs+3) = (Xk, X1, X2, X3)). The graph induced by Y ′
1 ∪ · · · ∪ Y ′

k is

a bad ring, a contradiction.

Lemma 2.59. Let R = (Y1, . . . , Yk) be a big ring. If R is minimally β-imperfect, then

R is a bad ring or R contains a base hyperhole.

Proof. Suppose that R is minimally β-imperfect, is not a bad ring, and contains no base

hyperhole. By minimality and by Lemma 2.50, R contains no bad ring. By Lemma 2.56,

R has no triad and no 2-super-sector, and hence by Lemma 2.57, R contains a hyperhole

H = (X1, . . . , Xk) that has no triad and no 2-super-sector. Since R contains no base

hyperhole, it follows from Lemma 2.29 that H is trivial, and since H has no triad and

no 2-super-sector, it follows from the definition of trivial that H contains exactly one

0-sector and all its other sectors are of length 2. Thus, by Lemma 2.58, R is a hyperhole

that has exactly one 0-sector and all its other sectors are of length 2. That is, R is a

trivial hyperhole, and hence, by Lemma 2.26, R is β-perfect, a contradiction.

2.3.4 The characterisation

The following is our main result, a forbidden induced subgraph characterisation for

the class of claw-free β-perfect graphs (an example of each of the forbidden induced

subgraphs (besides an even hole) is given in Figure 2.9).

Theorem 2.60. A claw-free graph is β-perfect if and only if it contains no even hole,

bad base hyperhole, bad ring, H5, R5, H7 or R7.
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Figure 2.9: From left-to-right, top-to-bottom: the first four figures depict the graphs
R5, H5, R7 and H7 respectively, and the other two depict an example of a bad ring
and a bad base hyperhole respectively.

Proof. Let G be a claw-free graph. Suppose G is β-perfect. Then G contains no even

hole, and by Lemmas 2.44, 2.45, 2.47, 2.48, 2.28 and 2.50 respectively, G contains no

H5, R5, H7, R7, bad base hyperhole or bad ring.

We now prove the converse; suppose G contains no even hole, bad base hyperhole,

bad ring, H5, R5, H7 or R7, and suppose towards a contradiction thatG is not β-perfect.

Since every induced subgraph of G is claw-free and contains none of the forbidden

induced subgraphs mentioned in the statement of the present theorem, we may assume

G is minimally β-imperfect. Then, by Lemma 2.38, G has no clique cutset, and hence

by Lemma 2.42, G is a complete graph or an odd ring, or G contains a universal vertex.

Clearly complete graphs are β-perfect, and it is easily seen that no minimal β-imperfect

graph contains a universal vertex (adding to a β-perfect graph a universal vertex yields

another β-perfect graph). Thus, G is an odd ring. By Lemma 2.46, G is not a 5-

ring, and by Lemma 2.49, G is not a 7-ring. So G is a big ring. By Lemma 2.59, G

contains a base hyperhole, and now it follows from Lemma 2.55 that G is β-perfect,

a contradiction. Thus, if G is a claw-free graph that contains no even hole, bad base

hyperhole, bad ring, H5, R5, H7 or R7, then G is β-perfect.
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2.3.5 Recognition algorithm

In this section we present a polynomial-time algorithm that determines whether a given

claw-free graph is β-perfect. We first need an algorithm that decides whether a ring is

β-perfect.

Theorem 2.61. There is an algorithm with the following specifications:

Input: A ring R = (Y1, . . . , Yk).

Output: Yes if R is β-perfect, and No otherwise.

Running time: O(n4), where n = |V (R)|.

Proof. Consider the following algorithm.

Step 1. If k is even, then return No.

Step 2. For each i ∈ {1, . . . , k}, order Yi as Yi = {y1i , . . . , y
|Yi|
i } so that NR[y

|Yi|
i ] ⊆

· · · ⊆ NR[y
1
i ] = Yi−1 ∪ Yi ∪ Yi+1.

Step 3. If k = 5, then return No if both of the following hold:

� |Yi| ≥ 2 for each i ∈ {1, . . . , k};

� y2i is adjacent to y2i+1 for each i ∈ {1, . . . , 4};

and also return No if, for some i ∈ {1, . . . , k}, both of the following hold:

� |Yi|, |Yi+1|, |Yi+2|, |Yi+3| ≥ 2;

� there exist nonadjacent vertices yji+1 ∈ Yi+1 and yj
′

i+2 ∈ Yi+2, and y2i is

adjacent to yji+1 and y2i+3 is adjacent to yj
′

i+2.

and otherwise, return Yes.

Step 4. If k = 7, then return No if, for some i ∈ {1, . . . , k}, both of the following hold:

� |Yi|, |Yi+1|, |Yi+3|, |Yi+4|, |Yi+5| ≥ 2;

� y2i is adjacent to y2i+1, y
2
i+3 is adjacent to y2i+4, and y2i+4 is adjacent to y2i+5;

and also return No if, for some i ∈ {1, . . . , k}, both of the following hold:

� |Yi|, |Yi+3|, |Yi+4| ≥ 2;

� y
|Yi+3|
i+3 is nonadjacent to y

|Yi+4|
i+4 ;
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and otherwise, return Yes.

Step 5. (At this point, k ≥ 9.) If R contains a triad or a 2-super-sector, then return

Yes. If R is a hyperhole, then apply the algorithm of Theorem 2.34; and if

the output of that algorithm is Yes, then return Yes, and otherwise, return No.

Now check whether, up to some cyclic permutation of the indices 1, . . . , k,1 the

following three conditions hold:

� |Yi| = 1 for each even i ∈ {8, . . . , k};

� min(|Y1|, |Y4|) = min(|Y3|, |Y6|) = 1;

� Y1 ∪ Y2, Y3 ∪ Y4 and Y5 ∪ Y6 are cliques.

If so, then return Yes, and otherwise, return No.

We now prove that this algorithm correctly decides whether a ring R = (Y1, . . . , Yk)

is β-perfect. First, suppose the algorithm returns Yes but R is not β-perfect. By

Step 1, k is odd. Suppose k = 5. Then, by Lemma 2.46, R contains a ring, say

F = (X1, . . . , Xk) where Xi ⊆ Yi for each i ∈ {1, . . . , k}, that is isomorphic to H5 or

R5. If F = H5, then clearly the first two bullets in Step 3 hold for any i ∈ {1, . . . , 5},
and hence the algorithm returns No, a contradiction. If F = R5, say with X1 being its

unique bag of size 1, then the last two bullets in Step 3 hold for i = 2, and hence the

algorithm returns No, a contradiction. So k ̸= 5.

Suppose k = 7. Then, by Lemma 2.49, R contains a ring, say F = (X1, . . . , Xk)

where Xi ⊆ Yi for each i ∈ {1, . . . , k}, that is isomorphic to H7 or R7. If F = H7, say

with X1 and X4 as its only two bags of size 1, then the first two bullets in Step 4 hold

for i = 2, and hence the algorithm returns No, a contradiction. If F = R7, say with X1

not complete to X2, then the last two bullets in Step 4 hold for i = 5, and hence the

algorithm returns No, a contradiction. Therefore k ̸= 7.

So k ≥ 9. Since R is not β-perfect, it follows from Lemma 2.56 that R has no

triad and no 2-super-sector. If R is a hyperhole, then the algorithm returned Yes as

a result of the algorithm of Theorem 2.34 returning Yes, in which case R is β-perfect,

a contradiction. Therefore the algorithm does not return Yes as a result of R being a

hyperhole or having a triad or 2-super-sector. So, possibly after cyclically permuting

indices 1, . . . , k, the bags Y1, . . . , Yk satisfy the three bullets in Step 5.

By Theorem 2.60, R contains a bad base hyperhole or bad ring, say F = (F1, . . . , Fk).

Suppose F is a bad ring. By definition, there exists i ∈ {1, . . . , k} such that |Fi|, |Fi+1| =
12, . . . , k, 1, and 3, . . . , k, 1, 2, and k, 1, . . . , k − 1 are examples of cyclic permutations of 1, . . . , k.
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2, and Fi is not complete to Fi+1, and |Fi−2| = |Fi−1| = |Fi+2| = |Fi+3| = 1. Also

by definition, F has no triad, and hence it follows that |Fi−3| = 2 and |Fi+4| = 2. If

{i, i + 1} ⊆ {7, . . . , k}, then one of i, i + 1 is even and the bag of F indexed by it has

size at least 2, contrary to the first bullet in Step 5. So {i, i + 1} ⊆ {k, 1, . . . , 7}. If

(i, i + 1) ∈ {(k, 1), (4, 5)}, then |Y1| ≥ 2 and |Y4| ≥ 2, contrary to the second bullet in

Step 5; and if (i, i+1) ∈ {(2, 3), (6, 7)}, then |Y3| ≥ 2 and |Y6| ≥ 2, again contradicting

the second bullet in Step 5. Thus (i, i+ 1) ∈ {(1, 2), (3, 4), (5, 6)}. But then not all of

Y1∪Y2, Y3∪Y4 and Y5∪Y6 are cliques, contrary to the third bullet in Step 5. Therefore

F is not a bad ring.

So F is a bad base hyperhole. By definition, F contains (at least) two 0-sectors, say

(Fi, Fi+1) and (Fj , Fj+1). It follows from F having no triad that all of Yi−1, Yi+2, Yj−1

and Yj+2 have size at least 2. If (i, i+ 1) = (6, 7) or (i, i+ 1) = (k, 1), then Yk−1 or Y8

has size at least 2, contrary to the first bullet in Step 5; so (i, i+1) ̸∈ {(6, 7), (k, 1)}, and
by a symmetric argument, (j, j+1) ̸∈ {(6, 7), (k, 1)}. Suppose {i, i+1} ⊆ {8, . . . , k−1}.
(As a consequence of this assumption, and since k is odd, we have that k ≥ 11.) Then

one of i− 1, i+ 2 is even, belongs to {10, . . . , k− 1}, and the bag of F (and hence also

the bag of R) indexed by it has size at least 2, contrary to the first bullet in Step 5. So

{i, i + 1} ̸⊆ {8, . . . , k − 1}, and by a symmetric argument, {j, j + 1} ̸⊆ {8, . . . , k − 1}.
Suppose (i, i + 1) = (7, 8). Then |F6| ≥ 2, and hence by the second bullet in Step 5,

|F3| = 1, and by the definition of a base hyperhole, |F5| = 1. Since (F3, F4, F5) is not

a triad, |F4| ≥ 2, and thus by the second bullet in Step 5, |F1| = 1. Similarly, since

(F1, F2, F3) is not a triad, |F2| ≥ 2. From these facts about the sizes of bags F1, . . . , F6,

together with the fact established earlier that {(i, i+1), (j, j+1)}∩{(6, 7), (k, 1)} = ∅, we
deduce that there is no 0-sector in the subsequence (Fk, F1, . . . , F7). Since {j, j + 1} ̸⊆
{8, . . . , k − 1}, it follows that (j, j + 1) = (k − 1, k). But |F1| = 1, contrary to the fact

that |Fj+1| ≥ 2. So (i, i + 1) ̸= (7, 8), and by symmetry, (i, i + 1) ̸= (k − 1, k). By

analogous argument, (j, j + 1) ̸= (7, 8) and (j, j + 1) ̸= (k − 1, k). Putting all these

things together, we see that {i, i+ 1, j, j + 1} ⊆ {1, . . . , 6}, and hence up to symmetry

(and since F has no triad and no two consecutive bags of size at least 2), there are two

cases:

1. (i, i+ 1) = (1, 2) and (j, j + 1) = (4, 5); or

2. (i, i+ 1) = (2, 3) and (j, j + 1) = (5, 6).

In the first case, |Y3|, |Y6| ≥ 2, and in the second, |Y1|, |Y4| ≥ 2; in each case, the second

bullet in Step 5 is contradicted. This completes the proof that if the algorithm returns

Yes, then R is β-perfect.
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We now prove the converse. Towards a contradiction, suppose R is β-perfect but

the algorithm returns No. Since R is β-perfect, k is odd, and hence the algorithm does

not return No in Step 1. Suppose the algorithm returns No in Step 3. If the algorithm

returns No as a result of the first two bullets in Step 3 being satisfied, then clearly R

contains H5, and hence R is not β-perfect by Lemma 2.44. Similarly, if the algorithm

returns No as a result of the last two bullets in Step 3 being satisfied, then it is clear

that R contains R5, and hence R is not β-perfect by Lemma 2.45. So the algorithm

does not return No in Step 3. In a similar way (but using Lemmas 2.47 and 2.48 instead

of Lemmas 2.44 and 2.44 respectively), we can show that the algorithm does not return

No in Step 4. So the algorithm returns No in Step 5. By Step 5, R has no triad and

no 2-super-sector, and (by the correctness of the algorithm of Theorem 2.34, which is

called in Step 5) is not a hyperhole, and there is no cyclic permutation of 1, . . . , k for

which the three bullets in Step 5 hold. Since R is β-perfect, it follows from Lemmas 2.28

and 2.50 that R contains no bad ring and no bad base hyperhole. If R contains a base

hyperhole, then by Lemma 2.51 the three bullets in Step 5 hold, a contradiction. So R

contains no base hyperhole. Now, By Lemma 2.57, R contains a hyperhole H that has

no triad and no 2-super-sector. It follows from Lemma 2.29 that H is trivial, and since

H has no triad and no 2-super-sector, it follows from the definition of trivial that H

has exactly one 0-sector and all its other sectors are of length 2. By Lemma 2.58, R is

a hyperhole that contains exactly one 0-sector and all its other sectors are of length 2.

But this contradicts the fact that R is not a hyperhole, a contradiction. This completes

the proof that if the algorithm returns No, then R is not β-perfect.

Finally, we show that this algorithm runs in time O(n4), where n = |V (R)|. Step 1

takes O(1) time. Step 2 can be done in O(n2) time, as observed in [41]. Step 3 takes

O(n2) time, and Step 4 takes O(n) time. For Step 5: checking whether R contains a

triad can be done in O(n) time; checking whether R contains a 2-super-sector can be

done in O(n2) time; and checking whether R is a hyperhole can be done in O(n+m)

time [4]. Then we check O(n) times whether the three bullets in Step 5 are satisfied,

which can be done in O(n) time, O(1) time, and O(n3) time respectively. Therefore

Step 5 can be done in O(n4) time. It follows that the algorithm has running time

O(n4).

Our algorithm for deciding whether a claw-free graph is β-perfect involves a process

of clique-cutset decomposition, and therefore we recall the following definition.

A clique cutset decomposition tree of a graph G is a tree T satisfying the following:

� the root of T is G;
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� each non-leaf node H of T has a clique cutset C such that V (H) \ C admits a

partition (A,B) where A is anticomplete to B in H, and the children of H in T

are the graphs G[A ∪ C] and G[B ∪ C], one of which has no clique cutset and is

a leaf of T ;

� the leaves of T are induced subgraphs of G that have no clique cutset.

Observe that such a clique cutset decomposition tree has O(|V (G)|) many leaves. One

can compute in O(nm) time a clique cutset decomposition tree for an n-vertex m-edge

graph [46].

Lemma 2.62. Let G be a graph and let T be a clique cutset decomposition tree of G

with leaves H1, . . . ,Ht. Let F be an induced subgraph of G that has no clique cutset.

Then F is an induced subgraph of one of H1, . . . ,Ht.

Proof. It suffices to show for any node B of T containing F that one of the children

B1, . . . , Bb of B in T also contains F . Suppose otherwise. Then there exist two nonad-

jacent vertices x, y of F such that, without loss of generality, x ∈ V (B1) \ V (B2) and

y ∈ V (B2) \ V (B1). Now V (B1) ∩ V (B2) is a clique cutset of B that separates x and

y, and therefore V (F ) ∩ V (B1) ∩ V (B2) is a clique cutset of F that separates x and y,

contrary to the fact that F has no clique cutset.

Let W 4
5 be the graph consisting of a hole of length five together with an additional

vertex that has exactly four neighbours in this hole.

Lemma 2.63 (Boncompagni, Penev and Vušković [4]). Let G be a graph and let T be

a clique cutset decomposition tree of G with leaves H1, . . . ,Ht. Then the following are

equivalent.

� G is (3PC, proper wheel)-free.

� G is (K2,3, C6,W
4
5 )-free, and furthermore, for all Hi ∈ {H1, . . . ,Ht} and for all

anticomponents H of Hi, either H is a long ring, or H contains no long holes,

or α(H) ≤ 2.

Lemma 2.64. Let G be a claw-free graph and let T be a clique cutset decomposition

tree of G with leaves L1, . . . , Lt. Then the following are equivalent.

� G is (C4, 3PC, proper wheel)-free.

� For every Li ∈ {L1, . . . , Lt}, either Li is a chordal graph, or Li contains a long

ring R and every vertex in V (Li) \ V (R) is a universal vertex of Li.
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Proof. Suppose that G is (C4, 3PC, proper wheel)-free. By Lemma 2.63, G is

(K2,3, C6,W
4
5 )-free, and furthermore, for all Li ∈ {L1, . . . , Lt} and for all anticom-

ponents H of Li, either H is a long ring, or H contains no long holes, or α(H) ≤ 2.

Fix Li ∈ {L1, . . . , Lt}; we show that Li is as described in the second bullet. If Li is

even-hole-free, then it follows from Lemma 2.42 that Li is a complete graph, or is an

odd (and therefore a long) ring, or contains a ring R and every vertex of V (Li) \ V (R)

is a universal vertex of Li. So we may assume that Li contains an even hole, and in

particular, since G is C4-free, Li contains a hole of length at least six; let H be an

anticomponent of Li containing such a hole. It follows that α(H) ≥ 3, and therefore,

by Lemma 2.63, H is a long ring. Suppose F is an anticomponent of Li different from

H. If F contains at least two vertices, then F contains two nonadjacent vertices, which

together with any two nonadjacent vertices from H induce a C4, a contradiction. So

every anticomponent of Li different from H consists of a single vertex, and therefore

every vertex of V (Li) \ V (H) is a universal vertex of Li.

We now prove the converse. Suppose the second bullet holds. Then each of

L1, . . . , Lt is chordal or consists of a long ring possibly together with some univer-

sal vertices and therefore contains no C4, 3PC or proper wheel. If G contains a C4, a

3PC or a proper wheel, then by Lemma 2.62 so does one of L1, . . . , Lt, a contradiction.

Therefore G is (C4, 3PC, proper wheel)-free.

Our main algorithmic result is the following.

Theorem 2.65. There is an algorithm with the following specifications:

Input: A claw-free graph G.

Output: Yes if G is β-perfect, and No otherwise.

Running time: O(n5).

Proof. Consider the following algorithm.

Step 1. Compute a clique cutset decomposition tree T ofG, and call its leaves L1, . . . , Lt.

Step 2. For each Li ∈ {L1, . . . , Lt}, check whether Li is chordal or the graph obtained

from Li by removing all universal vertices is a ring of odd length; if one of these

checks fails, output No and terminate.

Step 3. For each graph Li ∈ {L1, . . . , Lt} that is not a chordal graph, let L′
i be the

graph obtained from Li by removing all universal vertices (so, by Step 2, L′
i

is a long ring); now compute a ring partition (Y1, . . . , Yk) of L′
i and apply the
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algorithm of Theorem 2.61 to L′
i = (Y1, . . . , Yk) to test whether L′

i is β-perfect.

If for some L′
i the algorithm of Theorem 2.61 returns No, then output No and

terminate; and otherwise, output Yes.

We now prove that this algorithm correctly decides whether a given claw-free graph

G is β-perfect. Suppose G is β-perfect but the algorithm returns No. Suppose the

algorithm returns No in Step 2. Then, by Lemma 2.64, G is not (C4, 3PC, proper

wheel)-free, and therefore it follows from Lemma 2.39 that G contains an even hole, in

which case G is not β-perfect, a contradiction. So the algorithm does not return No in

Step 2, and therefore the algorithm returns No in Step 3, in which case G contains some

induced subgraph that was correctly determined by the algorithm of Theorem 2.61 to

be β-imperfect, contrary to the β-perfection of G. Thus, if G is β-perfect, then the

algorithm returns Yes.

Suppose G is not β-perfect but the algorithm returns Yes. If G contains an even

hole, then by Lemma 2.62, one of L1, . . . , Lt contains an even hole; but by Step 2, each of

L1, . . . , Lt is a chordal graph or consists of a ring of odd length together with a possibly

empty set of universal vertices, and so in either case is even-hole-free. Therefore G is

even-hole-free. It now follows from Theorem 2.60 that G contains an induced subgraph

F isomorphic to H5, R5, H7 or R7 or to a bad base hyperhole or a bad ring; by

Lemmas 2.44, 2.45, 2.47, 2.48, 2.28 and 2.50 respectively, F is not β-perfect. Clearly

F has no clique cutset, and hence by Lemma 2.62, F is contained in one of L1, . . . , Lt,

say in L1 without loss of generality. Since F is not chordal, neither is L1, and therefore

(as a result of Step 2) L1 consists of a long ring together with a possibly empty set of

universal vertices. Furthermore, since no vertex of F is universal in F , no vertex of

F is universal in L1, and hence F is contained in L′
1, where L′

1 is the graph obtained

from L1 by removing all universal vertices. Since F is not β-perfect, neither is L′
1, and

therefore the algorithm of Theorem 2.61 returns No when given L′
1 as input. Thus the

algorithm presented above returns No in Step 3, a contradiction.

Finally, we show that this algorithm runs in time O(n5). Step 1 takes O(nm) time.

Checking whether a graph is chordal can be done in O(n + m) time, and checking

whether a graph is a ring of odd length can be done in O(n2) time (see Lemma 8.14

from [4]), and therefore Step 2 takes O(n2) time. In Step 3, for O(n) many graphs we

compute a ring partition and run the algorithm of Theorem 2.61; and therefore Step 4

takes O(n5) time. Therefore the algorithm has running time O(n5).



Chapter 3

Graphs with all holes the same

length

A graph is ℓ-holed, for an integer ℓ ≥ 4, if all its holes are of length ℓ. In this chapter

we study the class of ℓ-holed graphs. Let us first relate the class of ℓ-holed graphs to

other well-studied classes of graphs defined by forbidding as induced subgraphs holes

of certain lengths. A graph is Berge if it and its complement contain no odd hole. The

class of Berge graphs is arguably the most famous class of graphs defined by forbidding

certain holes, due to its relation (and more specifically, by the strong perfect graph

theorem, its equivalence) to the class of perfect graphs. The strong perfect graph

theorem states that a graph is perfect if and only if it is Berge, the proof of which relies

on the following decomposition theorem for Berge graphs (we leave terms undefined

since we state the following theorem for illustrative purposes only):

Theorem 3.1 (Chudnovsky, Robertson, Seymour and Thomas [12]). For every Berge

graph G, either G is basic, or one of G,G admits a proper 2-join, or G admits a proper

homogeneous pair, or G admits a balanced skew partition.

This theorem tells us that Berge graphs are either basic or can be decomposed (by

proper 2-joins, or proper 2-joins in the complement, or proper homogeneous pairs, or

by balanced skew partitions) into basic graphs. However, this does not tell us how a

given Berge graph can be constructed by piecing together simpler Berge graphs.

On the topic of Berge graphs, we note that for even ℓ ≥ 6, ℓ-holed graphs are in fact

C4-free Berge graphs, about which there are a number of known results. Chudnovsky,

Lo, Maffray, Trotignon and Vušković [11] gave a purely graph-theoretical algorithm

that colours C4-free Berge graphs in polynomial time (in contrast, the only known

73
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polynomial time colouring algorithm for Berge graphs in general relies on the ellipsoid

method). The maximum clique problem can also be solved (by a combinatorial algo-

rithm) in polynomial time for C4-free Berge graphs, since a C4-free Berge graph on n

vertices has O(n2) maximal cliques [26], and one can list all K maximal cliques of a

graph in O(n3K) time [48].

Even-hole-free graphs are in some ways structurally similar to Berge (and therefore

perfect) graphs, and many techniques developed in the world of even-hole-free graphs

were used in the study of Berge graphs. Like for Berge graphs, we have decomposition

theorems for even-hole-free graphs, but there is no known explicit construction that

will generate all even-hole-free graphs.

Chordal graphs, on the other hand, are understood fully from a structural point of

view, in the sense that we know how to decompose chordal graphs by clique cutsets

into simpler graphs (namely, complete graphs), and we know that every chordal graph

can be built by piecing together along clique cutsets simpler chordal graphs. The class

of graphs G whose set of hole lengths is the empty set is one way to view the class of

chordal graphs; and a natural generalisation is to consider the class of graphs G whose

set of hole lengths is {ℓ} for some integer ℓ ≥ 4. We call these graphs ℓ-holed, and in

this chapter we consider the question of whether the structure of ℓ-holed graphs can be

fully understood in the way that we understand the structure of chordal graphs.

Two groups of researchers worked on this same problem; one group consisting of

Linda Cook and Paul Seymour, and the other group consisting of the present author

together with Myriam Preissmann, Cléophée Robin, Ni Luh Dewi Sintiari, Nicolas

Trotignon and Kristina Vušković. Both groups independently obtained structure theo-

rems for the class of ℓ-holed graphs where ℓ ≥ 7, but came together to submit a joint

publication [19].

In Section 3.1 we state the structure theorem of Cook and Seymour, and in Sec-

tion 3.2 we state the structure theorem of Preissmann, Robin, Sintiari, Trotignon,

Vušković and the present author; the joint publication [19] contains the first structure

theorem. Since only one of these structure theorems is to be peer reviewed, it is of

interest to establish that the two structure theorems are equivalent; in Section 3.3, we

prove that they are indeed equivalent.

Each of these structure theorems entail a clique cutset based decomposition theorem

for ℓ-holed graphs: every ℓ-holed graph is “basic” or admits a clique cutset. Motivated

by the problem of efficiently recognising ℓ-holed graphs, we introduce a 2-join-like

cutset called a “special 2-join” in Section 3.4. A special 2-join is an edge cutset,

and the removal of the edges of this edge cutset disconnect a graph into two or more
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components. So-called “blocks of decomposition” are produced from these components

by the addition of certain vertices and edges. In Section 3.4, we show that special

2-joins preserve the property of being ℓ-holed, in the sense that for a graph G with

a special 2-join and for ℓ ≥ 7, G is ℓ-holed if and only if its blocks of decomposition

are ℓ-holed. We prove a clique cutset and special 2-join based decomposition theorem

for ℓ-holed graphs (where ℓ ≥ 7 is odd), and together with an algorithm that detects

whether a graph has a special 2-join, this leads to a polynomial time algorithm for

deciding whether a graph is ℓ-holed for odd ℓ ≥ 7 (Section 3.5.2). In Section 3.5.3,

we present a second recognition algorithm for the class of ℓ-holed graphs (where ℓ ≥ 7

is odd) that relies on a process of clique cutset decomposition and an algorithm that

decides whether a graph is “basic” (where “basic” means an ℓ-holed graph with no

clique cutset, no universal vertex, and that contains a theta, a pyramid or a prism; the

structure of such graphs is described in Sections 3.1 and 3.2).

As an application of the structure theorem presented in Section 3.2, we give in

Section 3.5.1 polynomial-time algorithms for solving the maximum weight clique and

maximum weight stable set problems for ℓ-holed graphs where ℓ is odd and ℓ ≥ 7.

3.1 A structure theorem

In this section we present the structure theorem for ℓ-holed graphs that appears in [19].

This theorem describes exactly the structure of ℓ-holed graphs (where ℓ ≥ 7) that have

no clique cutset or universal vertex; since being ℓ-holed is preserved by the addition of

a universal vertex and by the operation that reverses decomposing by a clique cutset

(this operation is sometimes called the “clique-sum”), this theorem describes how all

ℓ-holed graphs (ℓ ≥ 7) may be generated.

Let G be a graph. If X and Y are disjoint subsets of V (G), then we denote by

G[X,Y ] the bipartite subgraph of G with vertex set X ∪ Y and edge set the set of

edges of G between X and Y . A half-graph is a bipartite graph with no two edges uv

and xy such that {u, v} is anticomplete to {x, y} (in other words, a bipartite graph

with no induced two-edge matching). Therefore a graph with bipartition (X,Y ) is a

half-graph if and only if X can be ordered as X = {x1, . . . , xm} and Y can be ordered

as Y = {y1, . . . , yn} such that for all i, i′, j, j′ with 1 ≤ i ≤ i′ ≤ m and i ≤ j ≤ j′ ≤ n,

if xi′yj′ is an edge then xiyj is an edge. A half-graph together with such orderings of

X and Y is called an ordered half-graph. If X,Y, Z are disjoint cliques of a graph G

and G[X,Y ] and G[X,Z] are half-graphs, then we say that G[X,Y ] and G[X,Z] are

compatible if G[X,Y ∪Z] is a half-graph. When we say that two vertices are adjacent,
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we may specify that they are “G-adjacent” for a graph G if we mean that they are

specifically adjacent in G.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

Figure 3.1: An 18-bar 9-framework.

We begin by defining an ℓ-framework for ℓ ≥ 7, which is best described with a

figure (see Figure 3.1). Let us begin with the case where ℓ is odd. There are 19 vertices

a0, . . . , a18 and 18 vertices b1, . . . , b18 (these could be any two numbers k + 1 and k).

For 1 ≤ i ≤ k there is a vertical path Pi of length (ℓ− 3)/2 between ai and bi. (In the

case of Figure 3.1, ℓ = 9.) The numbers 0, . . . , k break into two intervals {0, . . . ,m}
and {m+ 1, . . . , k} (in Figure 3.1, m = 10).

Let us call the grey shaded areas “tents”. The tents are disjoint subsets of the plane,

and each of the (four, in Figure 3.1) upper tents contains one vertex in {a0, . . . , am}
called its “apex”, and contains a nonempty interval of {am+1, . . . , ak} called its “base”.

Each of am+1, . . . , ak belongs to the base of an upper tent. The lower tents do the

same with left and right switched. There can be any positive number of tents, but

there must be a tent with apex a0. (There is an odd number of tents in Figure 3.1, but

there could be an even number.) Possibly m = 0, and if so there are no lower tents.

The way the upper and lower tents interleave is important; for each upper tent (except

the innermost when there is an odd number of tents), the leftmost vertex of its base is

some ai, and bi is the apex of one of the lower tents; and for each lower tent (except

the innermost when there is an even number of tents), the rightmost vertex of its base

corresponds to the apex for one of the upper tents. This gives a sort of spiral running



3.1. A STRUCTURE THEOREM 77

through all the apexes, in Figure 3.1 with vertices

a0, a17, b17, b3, a3, a16, b16, b6, a6, a14, b14, b10, a10.

An arborescence is a tree T with its edges directed in such a way that no two edges

have a common head; or equivalently, such that for some vertex r(T ) (called the apex),

every edge is directed away from r(T ). A leaf is a vertex different from the apex, with

outdegree zero, and L(T ) denotes the set of leaves of T . Each tent is meant to be

an arborescence with the given apex and with set of leaves the base of the tent, and

with its other vertices not drawn. (We call such an arborescence a tent-arborescence.)

For each i ∈ {1, . . . ,m}, if ai−1 is the apex of an upper tent-arborescence Ti−1 say,

there is a directed edge from some nonleaf vertex of Ti−1 (possible from ai−1 to ai;

and if ai−1 is not the apex of a tent, there is a directed edge from ai−1 to ai. So

all these upper tent-arborescences and all the vertices a0, . . . , am are connected up

in a sequence to form one big arborescence T with apex a0, and with set of leaves

either {am+1, . . . , ak} or {am, . . . , ak}. There is a directed path of T that contains

a0, a1, . . . , am in order, possibly containing other vertices of T between them. Similarly

for each i ∈ {m + 1, . . . , k − 1}, if bi+1 is an apex of a lower tent-arborescence Si+1,

there is a directed edge from some nonleaf vertex of Si+1 to bi, and otherwise there

is a directed edge from bi+1 to bi. So similarly the lower tent-arborescences, and the

vertices bm+1, . . . , bk are joined up to make one arborescence S with apex bk and with

set of leaves either {b1, . . . , bm} or {b1, . . . , bm+1}.

Thus the figure describes a graph in which some of the edges are directed: each

directed edge belongs to one of two arborescences T, S and each undirected edge belongs

to one of the paths Pi. We call such a graph an ℓ-framework.

Next we will describe a similar object for when ℓ is even, but we need another

concept. Let T be an arborescence. For v ∈ V (T ), let Dv be the set of all vertices

w ∈ L(T ) for which there is a directed path of T from v to w. Let S be a tree with

V (S) = L(T ). We say that T lives in S if for each v ∈ V (T ), the set Dv is the vertex

set of a subtree of S. Let T, T ′ be arborescences with L(T ) = L(T ′). We say they are

coarboreal if there is a tree S with V (S) = L(T ) = L(T ′) such that T, T ′ both live in S.

For instance, the first pair of arborescences in Figure 3.2 (with leaf set the four black

vertices) are coarboreal, but the second pair are not. Finally, let T, T ′ be arborescences

and let ϕ be a bijection from L(T ) onto L(T ′). We say that T, T ′ are coarboreal under

ϕ if identifying each vertex of L(T ) with its image under ϕ gives a coarboreal pair.

The structure we need when ℓ is even is shown in Figure 3.3. We have vertices
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Figure 3.2: The first pair are coarboreal, the second pair are not.

a0, . . . , ak (k = 18 in the figure) and b1, . . . , bk, but now there is an extra vertex b0.

There are paths Pi between ai, bi of length ℓ/2 − 1 for 1 ≤ i ≤ m, and length ℓ/2 − 2

for m + 1 ≤ i ≤ k. (ℓ = 8 and m = 8 in the figure.) There are upper and lower tents

as before, but now all the tents have apex on the left. There must be an upper tent

with apex a0, and one with apex am, although m = 0 is permitted. The upper tents

are paired with the lower tents; for each upper tent with base {ai, . . . , aj} there is also

a lower tent with base {bi, . . . , bj}, and vice versa. But the apexes shift by one; if an

upper tent has apex ai, the paired lower tent has apex bi+1 (or b0 when i = m). An

important condition, not shown in the figure, is:

� for each upper tent-arborescence Ti say, with apex ai, the paired lower tent-

arborescence Si+1 with apex bi+1 must be coarboreal with Ti under the bijection

that maps aj to bj for each leaf aj of Ti.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18b0

Figure 3.3: An 18-bar 8-framework.

As before, for each i ∈ {1, . . . ,m}, if ai−1 is the apex of an upper tent-arborescence
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Ti−1 say, there is a directed edge from some nonleaf vertex of Ti−1 (possibly from ai−1)

to ai; and if ai−1 is not the apex of a tent, there is a directed edge from ai−1 to ai. So

the upper tent-arborescences are connected up to form an arborescence T with apex

a0, and with set of leaves {am+1, . . . , ak}. Also, for each i ∈ {1, . . . ,m − 1}, if bi+1

is the apex of a lower tent-arborescence Si+1 say, there is a directed edge from some

nonleaf vertex of Si+1 (possibly from bi+1) to bi; and if bi+1 is not the apex of a tent,

there is a directed edge from bi+1 to bi. Finally, there is a directed edge from some

nonleaf vertex of the tent-arborescence S0 with apex b0 (possibly from b0 itself) to bm.

So the lower tent-arborescences are connected up to form an arborescence S with apex

b0, and with set of leaves {bm+1, . . . , bk}. We call this graph an ℓ-framework.

The transitive closure
−→
T of an arborescence T is the undirected graph with vertex

set V (T ) in which vertices u, v are adjacent if and only if some directed path of T

contains both u and v. Let F be an ℓ-framework (here, ℓ may be odd or even).

Let P1, . . . , Pk, T, S and so on be as in the definition of an ℓ-framework. Let D =
−→
T ∪

−→
S ∪P1 ∪ · · · ∪Pk. Thus V (D) = V (F ), and distinct u, v ∈ V (D) are D-adjacent if

either they are adjacent in some Pi, or there is a directed path of one of S, T between

u, v. We say a graph G is a blow-up of F if:

� D is an induced subgraph of G, and for each t ∈ V (D) there is a clique Wt of G,

all pairwise disjoint and with union V (G); Wt ∩ V (D) = {t} for each t ∈ V (D),

and Wt = {t} for each t ∈ V (D)\V (P1∪· · ·∪Pk). (We will often have two graphs

F,G, and a clique Wt of G for each t ∈ V (F ), pairwise vertex-disjoint. For an

induced subgraph C of F , we denote
⋃

t∈V (C)Wt by W (C). We use this notation

in the final bullet of this definition, for instance.)

� For each t ∈ V (D), there is a linear ordering of Wt with first term t, say

(x1, . . . , xn) where x1 = t. It has the property that for every v ∈ V (G) \Wt, and

every j ∈ {1, . . . , n}, if v is G-adjacent to xj , then v is G-adjacent to x1, . . . , xj .

(It follows that for all distinct t, t′ ∈ V (D), if t, t′ are not D-adjacent, thenWt,Wt′

are anticomplete, and if t, t′ are D-adjacent, then G[Wt,Wt′ ] is an ordered half-

graph.)

� If t, t′ ∈ {a1, . . . , ak} or t, t′ ∈ {b1, . . . , bk}, and t, t′ are D-adjacent, then Wt is

complete to Wt′ .

� For each t ∈ V (T ), if 0 ≤ i ≤ m and ai, t are D-adjacent, then Wt is complete to

Wai . For each t ∈ V (S), if either ℓ is odd and i ∈ {m+1, . . . , k}, or ℓ is even and

i ∈ {0, . . . ,m}, and bi, t are D-adjacent, then Wt is complete to Wbi .
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� For each upper tent-arborescence Tj with apex aj say, let t ∈ L(Tj) and let the

path Q of T from a0 to t have vertices

a0 = y1, . . . , yp, aj , z1, . . . , zq = t

in order. Then Wt is complete to {y1, . . . , yp, aj}; Wt is anticomplete to W (T \
V (Q)); and G[Wt, {z1, . . . , zq−1}], with the given order of Wt and the order

z1, . . . , zq−1 of {z1, . . . , zq−1}, is an ordered half-graph. The same holds for lower

tent-arborescences with T, a0 replaced by S, b0.

Let G be a graph with vertex set partitioned into sets W1, . . . ,Wℓ with the following

properties:

� W1, . . . ,Wℓ are all nonempty cliques;

� for 1 ≤ i ≤ ℓ, G[Wi−1,Wi] is a half-graph (taking subscripts modulo ℓ);

� for all distinct i, j ∈ {1, . . . , ℓ}, if there is an edge between Wi and Wj then

j = i± 1 (modulo ℓ);

� for 1 ≤ i ≤ ℓ, the graphs G[Wi,Wi+1] and G[Wi,Wi−1] are compatible.

Such a graph is called a blow-up of an ℓ-cycle. It is easily seen that blow-ups of ℓ-cycles

(for ℓ ≥ 4) that have no clique cutset and rings are equivalent.

We are now ready to state the structure theorem for ℓ-holed graphs from [19].

Theorem 3.2 (Theorem 1.3 in [19]). Let G be a graph with no clique cutset and no

universal vertex, and let ℓ ≥ 7. Then G is ℓ-holed if and only if either G is a blow-up

of a cycle of length ℓ, or G is a blow-up of a framework.

3.2 Another structure theorem

In this section we present the structure theorem for ℓ-holed graphs that appears in [35].

This theorem describes exactly the structure of ℓ-holed graphs (where ℓ ≥ 7) that have

no clique cutset or universal vertex; since being ℓ-holed is preserved by the addition of

a universal vertex and by the operation that reverses decomposing by a clique cutset

(this operation is sometimes called the “clique-sum”), this theorem describes how all

ℓ-holed graphs (ℓ ≥ 7) may be generated. In Section 3.3, we show that the structure

theorem presented in this section is equivalent to the one presented in the previous

section.
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To state the structure theorem, we need the definitions of so-called even templates

and odd templates. These definitions appear in [35]. But first we must give a number

of preliminary definitions.

A graph is a threshold graph if it is (P4, C4, C4)-free. A hypergraph is a pair (V,E),

where V is a finite set of vertices and E is a finite set of hyperedges, i.e., nonempty

subsets of V . A hypergraph whose hyperedges are all of size 2 is a graph; in this way,

hypergraphs are a generalisation of graphs. A hypergraph is laminar if for every pair

X,Y of hyperedges we have that X ⊆ Y , or Y ⊆ X or X ∩ Y = ∅. For a graph

G, a module of G is a set X ⊆ V (G) such that every vertex in V (G) \ X is either

complete or anticomplete to X. Note that all subsets of V (G) of cardinality 0, 1 or

|V (G)| are modules of G. If u and v are vertices of a graph G, then we write u ≤G v

if N(u) \ {v} ⊆ N(v) \ {u} and u <G v if N(u) \ {v} ⊊ N(v) \ {u}. We define ≥G and

>G accordingly, e.g., u ≥G v if and only if v ≤G u, and we extend these relations to

sets of vertices U and V by saying that U ≤G V if u ≤G v for every u ∈ U and v ∈ V ,

and so on.

We are now ready to define odd and even templates. For an integer ℓ ≥ 2, an odd

ℓ-template is any graph G that can be built according to the following process.

� Choose a threshold graph J on vertex set {1, . . . , k} for some k ≥ 3.

� Choose a laminar hypergraph H on vertex set {1, . . . , k} such that:

– every hyperedge X of H is a module of J of cardinality at least 2, and

– at least one hyperedge W of H contains all vertices of H.

� For each i ∈ {1, . . . , k}, G contains two vertices vi and v′i that are linked by a

path of G of length ℓ− 1. The k paths built at this step are vertex disjoint and

are called the principal paths of the odd template.

� The set of vertices of G is V (G) = A ∪A′ ∪B ∪B′ ∪ I, where:

– I is the set of all internal vertices of the principal paths,

– A = {v1, . . . , vk},

– A′ = {v′1, . . . , v′k},

– B = {vX : X is a hyperedge of H such that J [X] is anticonnected},

– B′ = {v′X : X is a hyperedge of H such that J [X] is anticonnected}.

� The set of edges of G is defined as follows.
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– for every vi, vj ∈ A, vivj ∈ E(G) if and only if ij ∈ E(J),

– for every v′i, v
′
j ∈ A′, v′iv

′
j ∈ E(G) if and only if ij ̸∈ E(J),

– for every vX , vY ∈ B, vXvY ∈ E(G) if and only if X ∩ Y ̸= ∅,

– for every v′X , v′Y ∈ B′, v′Xv′Y ∈ E(G) if and only if X ∩ Y ̸= ∅,

– for every vi ∈ A, vX ∈ B, vivX ∈ E(G) if and only if i ∈ NJ [X],

– for every v′i ∈ A′, v′X ∈ B′, v′iv
′
X ∈ E(G) if and only if i ∈ NJ [X],

– for every v ∈ I, v is incident to exactly two edges (those in its principal

path).

We use the following notation: for every vertex x ∈ B such that x = vX where X

is a hyperedge of H, we set Hx = {vi : i ∈ X}. Similarly we define H ′
x for x ∈ B′.

Lemma 3.3 (Lemma 4.4 in [35]). Let G be an odd template with sets A,B,A′, B′, I as

in the definition. Then G[A∪B] contains a universal vertex w and G[A′∪B′] contains

a universal vertex w′ such that either w ∈ A and w′ ∈ B′, or w ∈ B and w′ ∈ A′.

With G an odd ℓ-template and sets A,B,A′, B′, I as in the definition of an odd

template, and with w and w′ as in Lemma 3.3, we call the 7-tuple (A,B,A′, B′, I, w,w′)

an ℓ-partition of G.

Now we define even ℓ-templates. For an integer ℓ ≥ 4, an even ℓ-template partition

of a graph G is a partition of the vertex-set of G into five sets A,B,A′, B′, I with the

following properties.

� A = AK ∪AS where AK = {v1, . . . , vk}, AS = {vk+1, . . . , vk+s} and k + s ≥ 3.

� A′ = A′
K ∪A′

S where A′
K = {v′1, . . . , v′k} and A′

S = {v′k+1, . . . , v
′
k+s}.

� For each i ∈ {1, . . . , k}, vi and v′i are linked by a path of G of length ℓ − 1 and

for each i ∈ {1, . . . , s}, vk+i and v′k+i are linked by a path of G of length ℓ − 2.

These k + s paths are vertex disjoint and they are called the principal paths of

the partition.

� I is the set of all internal vertices of the principal paths.

� Both AK and A′
K are cliques of G and both AS and A′

S are stable sets of G. For

i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, exactly one of vivk+j and v′iv
′
k+j is an edge.

Furthermore, G[A] and G[A′] are threshold graphs.

� There exists a laminar hypergraph H with vertex set {v1, . . . , vk+s} such that:
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– every hyperedge X of H is an anticonnected module of G[A] of cardinality

at least 2, and

– ifG[A] is not connected, then at least one hyperedge ofH contains all vertices

of A.

� There exists a laminar hypergraph H′ with vertex set {v′1, . . . , v′k+s} such that:

– every hyperedge X ′ of H′ is a module of G[A′] of cardinality at least 2, and

– if G[A′] is not connected, then at least one hyperedge of H′ contains all

vertices of A′.

� B = {vX : X is a hyperedge of H} and B′ = {v′X : X is a hyperedge of H′}.

� The set of edges of G incident to vertices in B ∪B′ is defined as follows.

– for every vX , vY ∈ B, vXvY ∈ E(G) if and only if X ∩ Y ̸= ∅,

– for every v′X , v′Y ∈ B′, v′Xv′Y ∈ E(G) if and only if X ∩ Y ̸= ∅,

– for every vi ∈ A, vX ∈ B, vivX ∈ E(G) if and only if vi ∈ NG[A][X],

– for every v′i ∈ A′, v′X ∈ B′, v′iv
′
X ∈ E(G) if and only if v′i ∈ NG[A′][X].

� There are no other edges of G than those mentioned above.

We use the following notation: for every vertex x ∈ B such that x = vX where X

is a hyperedge of H, we set Hx = X. Similarly we define H ′
x for x ∈ B′.

We extend H into a hypergraph HA with vertex set A by adding to its hyperedge

set the hyperedge Hv = NA[v] ∩ {u ∈ A : u ≤G[A] v} for every vertex v ∈ A. Similarly

we extend H′ into a hypergraph H′
A′ .

So far we have defined an even ℓ-template partition, but to define even templates

we need the notion of a strong even ℓ-template partition.

Given an even ℓ-template partition of G, we define a hypergraph HG whose vertex

set is {k + 1, . . . , k + s} and whose hyperedges are sets of indices of the vertices of

AS ∪AS′ in hyperedges of HA ∪HA′ . More formally, E(HG) = EA ∪ EA′ , where:

� EA = {{i : vi ∈ H ∩AS} : H is a hyperedge of HA and H ∩AS ̸= ∅}, and

� EA′ = {{i : vi ∈ H ∩A′
S} : H is a hyperedge of HA′ and H ∩A′

S ̸= ∅}, and

A circular sequence C = (j1, e1, . . . , jt, et, j1), where each ji is a distinct vertex of

HG and each ei is a distinct hyperedge of HG, is said to be a hyper cycle of length t of

HG if:
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� each ji belongs to ei−1 and ei (where et+1 = e1) and to no other hyperedge of C,
and

� any two distinct hyperedges of C that belong both to EA or both to EA′ are

disjoint.

For an integer ℓ ≥ 3 and a graph G, a strong even ℓ-template partition of G is an

even ℓ-template partition (A,A′, B,B′, I) of G, such that HG contains no hyper cycle

of length greater than 2. A graph G which has a strong even ℓ-template partition is

called an even ℓ-template.

Lemma 3.4 (Lemma 8.1 in [35]). Let G be an even template with sets A,B,A′, B′, I as

in the definition. Then G[A∪B] contains a universal vertex w and G[A′∪B′] contains

a universal vertex w′.

Now we define blowups of templates. Two vertices u, v in a graph G are twins if

NG[u] = NG[v], and G is twinless if no two distinct vertices of G are twins.

Let G be a twinless odd ℓ-template with an ℓ-partition (A,B,A′, B′, I, w,w′). An

edge of G is flat if at least one of its ends belongs to I. An edge of G is optional if one

end is a vertex x ∈ B and the other end is a vertex u ∈ Hx that is an isolated vertex

of G[Hx], or if one end is a vertex x ∈ B′ and the other end is a vertex u ∈ H ′
x that is

an isolated vertex of G[H ′
x]. An edge of G that is neither flat nor optional is solid. A

blowup of G is any graph G∗ that satisfies the following:

� For every vertex u of G there is a clique Ku in G∗ on ku ≥ 1 vertices u1, . . . , uku

such that: uku = u; for distinct vertices u, v of G, Ku ∩ Kv = ∅; and V (G∗) =⋃
u∈V (G)Ku.

� For all vertices u ∈ V (G) and all integers 1 ≤ i ≤ j ≤ ku, NG∗ [ui] ⊆ NG∗ [uj ].

� If u and v are nonadjacent vertices of G, then Ku is anticomplete to Kv.

� If uv is a solid edge of G, then Ku is complete to Kv.

� If ux is an optional edge of G with u ∈ A and x ∈ B (resp. u ∈ A′ and x ∈ B′),

then u is complete to Kx.

� If ux and uy are optional edges of G with u ∈ A, x, y ∈ B and Hy ⊊ Hx (resp.

u ∈ A′, x, y ∈ B′ and H ′
y ⊊ H ′

x), then every vertex of Ku with a neighbour in Ky

is complete to Kx.
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� w (resp. w′) is a universal vertex of G∗[
⋃

u∈A∪B Ku] (resp. G
∗[
⋃

u∈A′∪B′ Ku]).

An odd template is proper if one of G[A], G[A′] has at least two isolated vertices, and

an even template is proper if all universal vertices of G[A ∪ B] belong to B and all

universal vertices of G[A′ ∪ B′] belong to B′. The blowup G∗ of G is proper if G is

proper. We use the same definition as above to define proper blowups of twinless even

templates.

We are now ready to state the structure theorems of [35], first for ℓ-holed graphs

where ℓ is odd.

Theorem 3.5 (Theorem 7.1 in [35]). Let ℓ ≥ 7 be an odd integer. If G is an ℓ-holed

graph, then one of the following holds:

� G is a ring of length ℓ;

� G is a proper blowup of a twinless odd (ℓ− 1)/2-template;

� G has a universal vertex; or

� G has a clique cutset.

The structural result of [35] for ℓ-holed graphs where ℓ is even is as follows.

Theorem 3.6 (Theorem 10.1 in [35]). Let ℓ ≥ 7 be an even integer. If G is an ℓ-holed

graph, then one of the following holds:

� G is a ring of length ℓ;

� G is a proper blowup of a twinless even ℓ/2-template;

� G has a universal vertex; or

� G has a clique cutset.

3.3 The equivalence of two structure theorems

In Sections 3.1 and 3.2 we presented two independently obtained structure theorems

for ℓ-holed graphs (for ℓ ≥ 7) [19, 35]. In this section we prove that they are equivalent,

in the following sense.

Theorem 3.7. Let G be a graph with no clique cutset or universal vertex that contains

a theta, a pyramid or a prism. Then the following are equivalent:
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� G is ℓ-holed for some ℓ ≥ 7.

� G is a blow-up of an ℓ-framework.

� G is a proper blowup of a twinless odd (ℓ− 1)/2-template if ℓ is odd, and G is a

proper blowup of a twinless even ℓ/2-template if ℓ is even.

This result is concerned with graphs that contain a theta, a pyramid or a prism.

In the case that an ℓ-holed graph G (with no clique cutset and no universal vertex)

contains neither a theta, nor a pyramid nor a prism, the result of [19] states that G is

a “blow-up of an ℓ-cycle”, while the result of [35] states that G is a “ring of length ℓ”.

It is evident from the definitions of blow-ups of cycles and rings (the definition of the

former may be found in [19] and the definition of the latter may be found in [35] or

Section 2.2) that they are equivalent (under the assumption that they have no clique

cutset), so we do not prove that here.

3.3.1 A blow-up of a framework is a proper blowup of a twinless

template

In this section we prove the following, namely that the second bullet of Theorem 3.7

implies the third.

Lemma 3.8. Let ℓ ≥ 7 and let G be a blow-up of an ℓ-framework. Assume that G has

no clique cutset. If ℓ is odd, then G is a proper blowup of a twinless odd (ℓ − 1)/2-

template, and if ℓ is even, then G is a proper blowup of a twinless even ℓ/2-template.

We prove Lemma 3.8 in three steps:

1. First we prove that a blow-up of an ℓ-framework is a “bordered blow-up of an

ℓ-frame” (Lemma 3.11);

2. then we prove that a bordered blow-up of an ℓ-frame (satisfying certain assump-

tions) is a “proper preblowup of a template” (Lemma 3.21);

3. and finally we apply results from [35] that say that a proper preblowup of a

template is a proper blowup of a twinless template to establish Lemma 3.8.

Bordered blow-ups of frames

We now prove that a blow-up of an ℓ-framework is a so-called bordered blow-up of an

ℓ-frame. First we need relevant definitions from [19].
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We begin by defining an “ℓ-frame”. Let ℓ ≥ 5 be odd. Let k ≥ 3 be an integer,

and take distinct vertices a1, . . . , ak, b1, . . . , bk. For 1 ≤ i ≤ k let Pi be a path of

length (ℓ− 3)/2 with ends ai, bi, pairwise vertex-disjoint. Let the subgraphs A and B

induced on {a1, . . . , ak} and on {b1, . . . , bk} respectively be threshold graphs, and for

1 ≤ i < j ≤ k, let bi, bj be adjacent if and only if ai, aj are nonadjacent. Moreover,

let A either be disconnected or 2-connected (a graph is k-connected if it has more than

k vertices and remains connected after the removal of fewer than k vertices), and the

same for B. (See Figure 3.4.) For ℓ odd, a graph F constructible in this way is called

an ℓ-frame; all its holes have length ℓ. We call P1, . . . , Pk the bars of the frame, and

A,B are its sides.

We remark that, since the subgraphs induced on {a1, . . . , ak} and {b1, . . . , bk} are

complementary threshold graphs, one of them, such as a6 in Figure 3.4, has a vertex

of degree 0 (since every threshold graph has a universal vertex or an isolated vertex).

Thus all ℓ-frames when ℓ is odd have one-vertex clique cutsets.

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Figure 3.4: A 9-frame.

Now the case when ℓ is even. Let m,n ≥ 0 be integers with n ≥ 2 and m+ n ≥ 3;

and let vertices

a1, . . . , an, c1, . . . , cm

b1, . . . , bn, d1, . . . , dm

all be distinct. For 1 ≤ i ≤ n let Pi be a path with ends ai, bi of length ℓ/2 − 2,

and for 1 ≤ i ≤ m let Qi be a path between ci, di of length ℓ/2 − 1, all pairwise

vertex-disjoint. Let {c1, . . . , cm} and {d1, . . . , dm} be cliques; and let the bipartite

subgraph with bipartition ({a1, . . . , an}, {c1, . . . , cm}) be a half-graph. For 1 ≤ i ≤ n

and 1 ≤ j ≤ m, let bi, dj be adjacent if and only if ai, cj are nonadjacent. Let one

of a1, . . . , an and one of b1, . . . , bn have degree one in F . There are no other edges

(thus {a1, . . . , an} is a stable set, and so is {b1, . . . , bn}). Let us call such a graph

F an ℓ-frame. (See Figure 3.5.) Every hole in an ℓ-frame has length ℓ. Let A,B
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be the subgraphs induced on {a1, . . . , an, c1, . . . , cm} and on {b1, . . . , bn, d1, . . . , dm}
respectively. (It follows that A,B are both disconnected threshold graphs.) We call

P1, . . . , Pn, Q1, . . . , Qm the bars of the frame, and A,B its sides.

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

Figure 3.5: A 10-frame.

We now give the definition of a border. Let J be a graph, and let A be a threshold

graph contained in J with |A| ≥ 3. For each t ∈ V (A) let Wt be a nonempty ordered

clique of J , called a bag, all pairwise disjoint, such that if st is an edge of A then Ws is

complete to Wt in J and otherwise they are anticomplete. Suppose that

� J is a connected chordal graph;

� each vertex in V (J) \W (A) has two nonadjacent neighbours in V (A);

� for every induced path P of J with length at least three and with both ends in

W (A), some internal vertex of P belongs to the same bag as one of the ends of

P ;

� for each t ∈ V (A) and each v ∈ V (J) \ Wt, let Wt be ordered as {x1, . . . , xn};
then t = x1, and for 1 ≤ i < j ≤ n, if v, xj are adjacent then v, xi are adjacent

(briefly, each vertex of J \Wt is adjacent to an initial segment of Wt).

In this case we call (J,A, (Wt : t ∈ V (A))) a border.

With ℓ odd or even, let F be an ℓ-frame, in the usual notation. For each t ∈ V (F ),

let Wt be an ordered clique where t is the first term of the ordering of Wt, all pairwise

disjoint, and we will define a graph H with vertex set the union of these cliques. For

every edge uv of A ∪ B we make Wu complete to Wv in H. For every other edge uv

of F let H[Wu,Wv] be an ordered half-graph. We call such a graph H a blow-up of an

ℓ-frame.
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Now take a graph H that is a blow-up of an ℓ-frame. Choose J,K such that

(J,A, (Wt : t ∈ V (A))) is a border, with V (J) ∩ V (H) = W (A), and (K,B, (Wt : t ∈
V (B))) is a border, with V (K) ∩ V (H) = W (B), and V (K) ∩ V (J) = ∅ and V (J) is

anticomplete to V (K). We call the graph H ∪ J ∪K a bordered blow-up of an ℓ-frame,

and that G is the composition of H,J,K.

We use the following result from [19]:

Lemma 3.9 (Lemma 8.1 in [19]). Let ℓ ≥ 7, and let G be ℓ-holed, with no clique cutset

or universal vertex. Then either G is a blow-up of an ℓ-cycle or a bordered blow-up of

an ℓ-frame.

We use the above in conjunction with:

Lemma 3.10 (Lemma 2.2 in [19]). For ℓ ≥ 5, if G is a blow-up of an ℓ-cycle or G is

a blow-up of an ℓ-framework, then G is ℓ-holed.

We can now prove the following.

Lemma 3.11. Let ℓ ≥ 7 be an integer. If G is a blow-up of an ℓ-framework with no

clique cutset and no universal vertex, then G is a bordered blow-up of an ℓ-frame.

Proof. Let G be a blow-up of an ℓ-framework with no clique cutset and no universal

vertex. By Lemma 3.10, G is ℓ-holed. It then follows from Lemma 3.9 that G is a

blow-up of an ℓ-cycle or G is a bordered blow-up of an ℓ-frame. Clearly G is not a

blow-up of an ℓ-cycle, and therefore G is a bordered blow-up of an ℓ-frame.

Proper preblowups of templates

In this section we prove that a bordered blow-up of an ℓ-frame that has no clique

cutset is a proper “preblowup” of a twinless template, and so we begin by defining

proper preblowups of twinless templates (their definitions are from [35]).

A preblowup of an odd ℓ-template G with ℓ-partition (A,B,A′, B′, I, w,w′) is any

graph G∗ obtained from G as follows. Every vertex u of A∪A′∪I is replaced by a clique

Ku on ku ≥ 1 vertices such that u ∈ Ku. We denote by A∗ the set
⋃

u∈AKu and use a

similar notation for A′∗ and I∗. The set B (resp. B′) is replaced by a set B∗ (resp. B′∗)

of vertices such that B ⊆ B∗ (resp. B′ ⊆ B′∗). So V (G∗) = A∗ ∪ B∗ ∪ A′∗ ∪ B′∗ ∪ I∗.

The sets A∗, B∗, A′∗, B′∗, I∗ are disjoint. Vertices of G are adjacent in G∗ if and only if

they are adjacent in G. Finally, the following conditions must hold:

(a) For all u ∈ A, NG∗(Ku) ⊆ A∗ ∪ B∗ ∪Ku+ , where u+ is the neighbour of u in I

and:
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1. For every u∗ ∈ Ku, NA(u
∗) = NA[u].

2. Every vertex of Ku has a neighbour in Ku+ .

(b) N(B∗) ⊆ A∗, and:

1. If w ∈ B, then there exists w∗ ∈ B∗ that is complete to A∗.

2. If u∗ ∈ B∗, then there exist nonadjacent a, b ∈ A such that u∗ has neighbours

in both Ka and Kb.

(i) For all u ∈ I, NG∗(Ku) ⊆ Ka ∪Kb, where a, b are the neighbours of u in G, and:

1. Every vertex u∗ ∈ Ku has at least one neighbour in each of Ka and Kb.

Conditions (a’) and (b’) analogous to (a) and (b) hold for A′ and B′.

If the underlying ℓ-partition of the template G is proper, then the preblowup G∗ of

G is also proper. The same definition as above is used to define (proper) preblowups of

twinless even templates.

In order to prove that a graph G is a proper preblowup of a template, we must first

identify some induced subgraph of G and prove that it is a template. Checking that all

conditions from the definition of a template hold is tedious, and for that reason, in [35]

the notion of a “pretemplate” is introduced. If a graph is a pretemplate and is ℓ-holed,

then the graph is also a template (we state this more formally later on). So we now

define pretemplates.

For an integer ℓ ≥ 3, an odd ℓ-pretemplate is a graph G whose vertex-set can be

partitioned into five sets A,B,A′, B′, I with the following properties.

(a) N(B) ⊆ A and N(A ∪B) ⊆ I.

(b) N(B′) ⊆ A′ and N(A′ ∪B′) ⊆ I.

(c) |A| = |A′| = k ≥ 3, A = {v1, . . . , vk} and A′ = {v′1, . . . , v′k}.

(d) For every i ∈ {1, . . . , k}, there exists a unique path Pi from vi to v′i whose interior

is in I.

(e) Every vertex in I has degree 2 and lies on a path from vi to v′i for some i ∈
{1, . . . , k}.

(f) All paths P1, . . . , Pk have length ℓ− 1.

(g) G[A ∪B] and G[A′ ∪B′] are both connected graphs.
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(h) Every vertex of B is in the interior of a path of G[A ∪B] with both ends in A.

(i) Every vertex of B′ is in the interior of a path of G[A′ ∪B′] with both ends in A′.

Under these circumstances, we say that (A,B,A′, B′, I) is an ℓ-pretemplate partition

of G.

For every integer ℓ ≥ 4, an even ℓ-pretemplate partition of a graph G is a partition

of the vertex-set of G into five sets A = AK ∪AS , B, A′ = A′
K ∪A′

S , B
′ and I with the

following properties.

(a) N(B) ⊆ A and N(A ∪B) ⊆ I.

(b) N(B′) ⊆ A′ and N(A′ ∪B′) ⊆ I.

(c) |AK | = |A′
K | = k, AK = {v1, . . . , vk} and A′

K = {v′1, . . . , v′k}.

(d) |AS | = |A′
S | = s, AS = {vk+1, . . . , vk+s} and A′

S = {v′k+1, . . . , v
′
k+s} are stable

sets of G where k + s ≥ 3.

(e) For every i ∈ {1, . . . , k + s}, there exists a unique path Pi from vi to v′i whose

interior is in I.

(f) Every vertex in I has degree 2 and lies on a path from vi to v′i for some i ∈
{1, . . . , k}.

(g) All paths P1, . . . , Pk have length ℓ − 1 and all paths Pk+1, . . . , Pk+s have length

ℓ− 2.

(h) G[A ∪B] and G[A′ ∪B′] are both connected graphs.

(i) Every vertex of B is in the interior of a path of G[A ∪B] with both ends in A.

(j) Every vertex of B′ is in the interior of a path of G[A′ ∪B′] with both ends in A′.

We then say that (A,A′, B,B′, I) is an even ℓ-pretemplate partition of G.

The usefulness of pretemplates comes from the following two results.

Lemma 3.12 (Lemma 4.14 in [35]). Let ℓ ≥ 7 be an odd integer. If G is an ℓ-holed

odd (ℓ − 1)/2-pretemplate, then G is an odd (ℓ − 1)/2-template. Moreover, for every

odd (ℓ− 1)/2-pretemplate partition (A,B,A′, B′, I) of G, there exist w and w′ in V (G)

such that (A,B,A′, B′, I, w,w′) is an (ℓ− 1)/2-partition of G.
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Lemma 3.13 (Lemma 8.8 in [35]). Let ℓ ≥ 7 be an even integer. If G is an ℓ-holed even

ℓ/2-pretemplate, then G is an even ℓ/2-template. Moreover, every even ℓ/2-pretemplate

partition (A,B,A′, B′, I) of G is a strong even template partition of G.

Recall that our goal for the moment is to prove that bordered blow-ups of ℓ-frames

are proper blowups of twinless templates. To that end, we now prove several lemmas

about bordered blow-ups of ℓ-frames.

Lemma 3.14. Let ℓ ≥ 7 be odd and let F be an ℓ-frame with sides A,B and bars

P1, . . . , Pk. Then one of A,B has at least two isolated vertices.

Proof. Since A,B are complementary threshold graphs, one of them, say A without

loss of generality, has a universal vertex, say a1. It follows from the definition of an

ℓ-frame that A is 2-connected. If A has another universal vertex, then B contains at

least two isolated vertices and we are done. So we may assume that no other vertex

of A is universal, and therefore A \ {a1} contains no universal vertex. Thus A \ {a1}
contains an isolated vertex, and hence A \ {a1} is disconnected, contradicting the fact

that A is 2-connected.

Lemma 3.15. Let ℓ ≥ 7 and let G be an ℓ-holed graph with no clique cutset or universal

vertex. Suppose that G is a bordered blow-up of an ℓ-frame, and G is the composition

of H,J,K where:

� H is a blow-up of the ℓ-frame F , where F has sides A,B and bars P1, . . . , Pk;

� (J,A, (Wt : t ∈ V (A))) and (K,B, (Wt : t ∈ V (B))) are borders; and

� V (H ∩ J) = W (A), and V (H ∩ K) = W (B), and V (J), V (K) are disjoint and

anticomplete.

Then there is an ℓ-framework T ∪ S ∪P1 ∪ · · · ∪Pk, of which G is a blow-up, such that

G[V (A) ∪ (V (J) \W (A))] =
−→
T and G[V (B) ∪ (V (K) \W (B))] =

−→
S .

Proof. This is shown in the proof of 10.2 in [19] for odd ℓ and in the proof of 12.1 in [19]

for even ℓ.

Lemma 3.16. Let ℓ ≥ 7 and let G be an ℓ-holed graph with no clique cutset and no

universal vertex. Suppose that G = H ∪ J ∪ K is a bordered blow-up of an ℓ-frame.

Then some vertex c of J is complete to V (A) \ {c} and some vertex c′ of K is complete

to V (B) \ {c′}.
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Proof. By Lemma 3.15, G is a blow-up of an ℓ-framework S∪T ∪P1∪· · ·∪Pk with the

property that G[V (A)∪(V (J)\W (A))] =
−→
T and G[V (B)∪(V (K)\W (B))] =

−→
S . Now

the apex r(T ) of T is complete to V (A) \ {r(T )} and the apex r(S) of S is complete to

V (B) \ {r(S)}.

Lemma 3.17. Let ℓ ≥ 7 and let G = H ∪ J ∪K be a bordered blow-up of an ℓ-frame.

Assume that G has no clique cutset and no universal vertex. Then both J and K

contain a universal vertex.

Proof. By Lemma 3.16, there is a vertex c ∈ V (J) that is complete to V (A)\{c}; among

all such vertices, pick c so that |NG(c) ∩W (A)| is maximum. Suppose c ∈ W (A). By

the definition of a blow-up of an ℓ-frame, c is complete to W (A)\{c}. Since J is chordal

and every vertex of V (J) \W (A) has two nonadjacent neighbours in V (A), it follows

that c is complete to V (J) \W (A). Therefore c is a universal vertex of J . So we may

assume that no vertex of W (A) is universal, and hence c ∈ V (J)\W (A). We now need

the following.

(1) If a is an isolated vertex of A, then every vertex in Wa has a neighbour in V (J) \
W (A).

Proof of (1): Let a be an isolated vertex of A and fix a′ ∈ Wa. Suppose that a′

has no neighbour in V (J) \ W (A). Let X be the set of all vertices in Wa \ {a′} that

belong to some path of J from a′ to some vertex of W (A) \ Wa. Clearly every path

in G from a′ to some vertex in W (A) \Wa intersects X ∪ (N(a′) ∩Wa+), where a+ is

the neighbour of a in the bar of F that contains a. We have that X is a clique, as is

N(a′) ∩Wa+ , and X is complete to N(a′) ∩Wa+ since G[Wa,Wa+ ] is a half-graph. It

follows that X ∪ (N(a′)∩Wa+) is a clique cutset of G, a contradiction. This proves (1).

Since every vertex in V (J) \ W (A) has two nonadjacent neighbours in V (A), it

follows from J being chordal that c is complete to V (J) \ (W (A) ∪ {c}). So it remains

to prove that c is complete to W (A). Suppose there exists a ∈ V (A) and a′ ∈ Wa such

that c, a′ are nonadjacent. Let I be the set of isolated vertices in A, and let us consider

first the case where a ∈ I. By (1), a′ has some neighbour c′ in V (J) \ W (A), clearly

different from c. By what we proved in the first paragraph, c and c′ are adjacent.

Consequently, c′ is adjacent to every v ∈ N(c)∩Wa, for otherwise {a′, v, c, c′} induces a

4-hole, a contradiction. In particular, c′ and a are adjacent. Furthermore, c′ is adjacent

to every v ∈ (N(c) ∩ W (A)) \ Wa, for otherwise the path a′, c′, c, v violates the third

bullet in the definition of a border. But now c′ is complete to V (A) and has more
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neighbours in W (A) than c, contrary to our choice of c. So we now consider the case

where a ∈ V (A)\I. Since |A\I| ≥ 2 and G[V (A)\I] has a universal vertex (because A

is a threshold graph and A\I has no isolated vertex), there is some b ∈ V (A)\(I∪{a})
adjacent to a. But now, for any d ∈ I, the path a′, b, c, d violates the third bullet in the

definition of a border. So c is complete to W (A \ I), and hence c is complete to W (A),

as required. It follows by an analogous argument that K has a universal vertex.

Lemma 3.18. Let ℓ ≥ 7 be even and let G = H ∪ J ∪ K be a bordered blow-up of

an ℓ-frame F . Then every universal vertex of J belongs to V (J) \ W (A) and every

universal vertex of K belongs to V (K) \W (B).

Proof. By the definition of an ℓ-frame when ℓ is even, A and B each contain at least one

isolated vertex, which together with the definition of a blow-up of an ℓ-frame implies

that no universal vertex of J belongs to W (A) and no universal vertex of K belongs to

W (B).

Lemma 3.19. Let ℓ ≥ 7 and let G = H ∪J ∪K be a bordered blow-up of an ℓ-frame F .

Suppose that G has no clique cutset. Then we may assume that for every u ∈ V (A),

every vertex in Wu has a neighbour in Wv, where v is the unique neighbour of u in the

bar of F that contains it.

Proof. For each t ∈ V (A), let Xt = {v ∈ Wt : NG(v) ⊆ V (J)}. We claim that

(J,A, (Wt \Xt : t ∈ V (A))) is a border. (So now the bags of J are the sets Wt \Xt for

t ∈ V (A), and therefore W (A) =
⋃

t∈V (A)(Wt \Xt).) Let us check that the four bullets

in the definition of a border are satisfied. Since (J,A, (Wt : t ∈ V (A))) is a border, J

is chordal by definition, so the first bullet holds. By the definition of a blow-up of an

ℓ-frame, if u ∈ V (A) has a neighbour in Wv for some v ∈ V (A)\{u}, then u is complete

to Wv; it follows that the fourth bullet holds.

We now verify that the second bullet holds. Let t ∈ V (A) be such that Xt ̸= ∅,
and let v be the vertex that appears last in the ordering of Wt. We prove that v has

two nonadjacent neighbours in V (A), and from this we will deduce that every vertex

in Wt has two nonadjacent neighbours in V (A). By the half-graph condition in the

definition of a blow-up of an ℓ-frame, we get that v ∈ Xt. Since G has no clique cutset,

v has two nonadjacent neighbours u, x, and by the definition of Xt they both belong

to V (J). So we may assume up to symmetry that x ∈ V (J) \
⋃

s∈V (A)Ws and either

u ∈
⋃

s∈V (A)Ws or u ∈ V (J) \
⋃

s∈V (A)Ws. Let y, z be two nonadjacent neighbours of

x in V (A).
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Suppose first that u ∈
⋃

s∈V (A)Ws. If u ∈ Wt, then by the fourth bullet in the

definition of a border we get that u appears after v in the ordering of Wt, contrary to

our choice of v; so u ̸∈ Wt. Suppose that t ∈ {y, z}, say y = t. Since Wt is complete

to the bag that contains u, it follows that z does not belong to the same bag as u.

But now the vertices u, v, x, z form either a path that contradicts the third bullet in

the definition of a border, or a hole, which contradicts the first bullet. So t ̸∈ {y, z},
and therefore we may assume that t is complete to (N(x) ∩ V (A)) \ {t}. It follows

immediately that t (and hence v) is adjacent to y and z, and we are done.

So both u and x belong to V (J)\
⋃

s∈V (A)Ws. If t is complete to (N(x)∩V (A))\{t},
then t ̸∈ {y, z}, in which case y, z are two nonadjacent neighbours of t (and hence of

v) in V (A), as required. So we may assume that there exists w ∈ (N(x) ∩ V (A)) \ {t}
nonadjacent to t, and by a similar argument we may fix some w′ ∈ (N(u)∩V (A)) \ {t}
that is nonadjacent to t. But now {u, x, w,w′} induces a hole if w = w′, and otherwise

the vertices w, x, v, u, w′ form either a hole, or a path (whose vertices appear in that

order) that contradicts the third bullet in the definition of a border.

Thus v has two nonadjacent neighbours in V (A), and it follows from the definition

of a blow-up of an ℓ-frame that every vertex in Wt has two nonadjacent neighbours in

V (A).

Finally we check that (J,A, (Wt \ Xt : t ∈ V (A))) satisfies the third bullet in the

definition of a border. On the contrary, suppose there exists a path P , with ends

u, v say, that violates this condition. Let u0 and v0 be such that u ∈ Wu0 \ Xu0 and

v ∈ Wv0 \Xv0 , and let x and y be the neighbours of u and v, respectively, in P . Clearly

the interior of P does not intersect Wu0 ∪ Wv0 . Since (J,A, (Wt : t ∈ V (A))) is a

border, it follows that x belongs to Wu0 or y belongs to Wv0 ; suppose without loss

of generality that x ∈ Wu0 . So x ∈ Xu0 . Call z the neighbour of x in P different

from u. Since z is adjacent to x but not to u, and since x ∈ Wu0 , it follows that

z ̸∈
⋃

s∈V (A)Ws. Since u ̸∈ Xu0 , it follows that u appears before x in the ordering

of Wu0 . It then follows from the fourth bullet in the definition of a border that z is

adjacent to u, a contradiction. This concludes the proof that all four bullets hold, and

therefore (J,A, (Wt \Xt : t ∈ V (A))) is a border.

It follows by a symmetric argument that (K,B, (Wt \Xt : t ∈ V (B))) is a border,

and therefore we conclude that G is a bordered blow-up of the ℓ-frame F where the

borders of G are (J,A, (Wt \Xt : t ∈ V (A))) and (K,B, (Wt \Xt : t ∈ V (B))).

Lemma 3.20. Let ℓ ≥ 7 and let G = H ∪ J ∪K be a bordered blow-up of an ℓ-frame

F . Suppose that G has no clique cutset. Fix u ∈ V (F ) \ V (J ∪ K), and let a and b



96 CHAPTER 3. GRAPHS WITH ALL HOLES THE SAME LENGTH

be the two neighbours of u in F . Then every vertex in Wu has a neighbour in both Wa

and Wb.

Proof. Since G[Wu,Wa], G[Wu,Wb] are compatible half-graphs, there exists a vertex

v ∈ Wu such that NG(v) ⊆ NG(v
′) for every v′ ∈ Wu. With this in mind, it suffices

to show that v has a neighbour in both Wa and Wb. Suppose otherwise; say v is

anticomplete to Wb. Since G has no clique cutset, v (and therefore also t) has two

nonadjacent neighbours x, y in G. Because Wu and Wa are cliques, up to symmetry we

have that x ∈ Wa and y ∈ Wu. It follows from G[Wu,Wa], G[Wu,Wb] being compatible

half-graphs that y is also anticomplete to Wb. But now we have that NG(y) ⊊ NG(v),

contrary to our choice of v. Therefore every vertex in Wu has a neighbour in both Wa

and Wb.

We are now ready to prove the main result of this section:

Lemma 3.21. Let ℓ ≥ 7 and let G = H ∪ J ∪K be an ℓ-holed bordered blow-up of an

ℓ-frame F . Assume that G has no clique cutset and no universal vertex. If ℓ is odd,

then G is a proper preblowup of a twinless odd (ℓ−1)/2-template, and if ℓ is even, then

G is a proper preblowup of a twinless even ℓ/2-template.

Proof. Set D = F ∪ ((J ∪ K) \ (W (A) ∪ W (B))) and let D− be the graph obtained

from D by removing twins. Define the following sets:

� A1 = V (A),

� B1 = (V (J) \W (A)) ∩ V (D−),

� A′
1 = V (B),

� B′
1 = (V (K) \W (B)) ∩ V (D−), and

� I = V (D−) \ (A1 ∪ B1 ∪ A′
1 ∪ B′

1) (so I consists of all vertices of G that belong

to the interior of some bar of F ).

We point out that all twins of D belong to (V (J) \W (A))∪ (V (K) \W (B)). It follows

that (A1, B1, A
′
1, B

′
1, I) is a partition of the vertex set of D−.

(1) If ℓ is odd, then D− is an odd (ℓ− 1)/2-pretemplate.

Proof of (1): We claim that (A1, B1, A
′
1, B

′
1, I) is an odd (ℓ−1)/2-pretemplate partition

of D−. We check that this partition satisfies conditions (a) to (i) from the definition of
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an odd pretemplate. It follows easily from the relevant definitions that conditions (a)

to (f) hold (for instance, conditions (a) to (c) follow from the definition of a border, and

conditions (d) to (f) are satisfied by the bars of F ). Conditions (h) and (i) hold by the

second bullet in the definition of a border. By Lemma 3.17, D−[A1∪B1] contains a uni-

versal vertex, soD−[A1∪B1] is connected and by symmetry so isD−[A′
1∪B′

1]. Therefore

condition (g) holds, and this concludes the proof thatD− is an odd (ℓ−1)/2-pretemplate

with odd (ℓ− 1)/2-pretemplate partition (A1, B1, A
′
1, B

′
1, I). This proves (1).

Now an analogous claim but for when ℓ is even:

(2) If ℓ is even, then D− is an even ℓ/2-pretemplate.

Proof of (2): Let:

� AS be the set of isolated vertices of A,

� A′
S the set of isolated vertices of B,

� AK = V (A) \AS , and

� A′
K = V (B) \A′

S .

By the definition of an ℓ-frame when ℓ is even, V (A) partitions into a clique and a

stable set, and so does V (B). With that in mind, AS , A
′
S are (nonempty) stable sets

and AK , A′
K are cliques.

We claim that (A1, B1, A
′
1, B

′
1, I) is an even ℓ/2-pretemplate partition of D−. We

check that this partition satisfies conditions (a) to (j) from the definition of an even

pretemplate. It follows easily from the relevant definitions that conditions (a) to (g)

hold (for instance, conditions (a) to (d) follow from the definition of a bordered blow-up

of an ℓ-frame, and conditions (e) to (g) are satisfied by the bars of F ). Conditions (i)

and (j) hold by the second bullet in the definition of a border. By Lemma 3.17,

D−[A1 ∪ B1] contains a universal vertex, and therefore D−[A1 ∪ B1] is connected. So

condition (h) holds, and this concludes the proof that D− is an even ℓ/2-pretemplate

with even ℓ/2-pretemplate partition (A1, B1, A
′
1, B

′
1, I). This proves (2).

If ℓ is odd, then by (1) and Lemma 3.12, D− is an odd (ℓ − 1)/2-template, and if

ℓ is even, then by (2) and Lemma 3.13, D− is an even ℓ/2-template. Furthermore, D−

is proper by Lemmas 3.14 and 3.18.

We now prove that G is a proper preblowup of D−. We let:
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� Ku = Wu for each u ∈ A1∪A′
1∪ I (where Wu is as in the definition of a bordered

blow-up of an ℓ-frame);

� A∗ =
⋃

u∈A1
Ku;

� A′∗ =
⋃

u∈A′
1
Ku;

� B∗ = V (J) \W (A);

� B′∗ = V (K) \W (B); and

� I∗ =
⋃

u∈I Ku.

With respect to these sets, we check that conditions (a), (b) and (i) from the definition

of a preblowup hold.

It is clear from the definition of a bordered blow-up of an ℓ-frame that:

� N(Ku) ⊆ A∗ ∪B∗ ∪Ku+ for all u ∈ A1, where u+ is the neighbour of u in I;

� N(B∗) ⊆ A∗; and

� N(Ku) ⊆ Ka ∪Kb for all u ∈ I, where a and b are the neighbours of u in G.

So the initial statements of (a), (b) and (i) hold. Part 1 of (a) holds by the definition

of a blow-up of an ℓ-frame and part 2 holds by Lemma 3.19. Part 2 of (b) holds by the

second bullet in the definition of a border. Part 1 of (i) holds by Lemma 3.20. It remains

to prove part 1 of (b), i.e. that if w (the vertex from the ℓ-partition of D−) belongs to

B1, then in G there is a vertex in B∗ that is complete to A∗. So suppose w ∈ B1. After

possibly replacing w with another vertex from V (J) \W (A) that is complete to V (A)

and maximises |NG(w) ∩W (A)|, the argument in the proof of Lemma 3.17 shows that

w is complete to W (A), and therefore part 1 of (b) holds. This completes the proof

that G is a proper preblowup of D−.

Proof of Lemma 3.8

Lemma 3.22 (Lemma 5.6 in [35]). Let ℓ ≥ 3 and let G∗ be a proper preblowup of an

odd ℓ-template with k ≥ 3 principal paths. If G∗ is (2ℓ+ 1)-holed, then G∗ is a proper

blowup of a twinless odd ℓ-template G with k principal paths (in particular, G is an

induced subgraph of G∗).

Lemma 3.23 (Lemma 8.15 in [35]). Let ℓ ≥ 3 and let G∗ be a proper preblowup of

an even ℓ-template with k ≥ 3 principal paths. If G∗ is 2ℓ-holed, then G∗ is a proper
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blowup of a twinless even ℓ-template G with k principal paths (in particular, G is an

induced subgraph of G∗).

We are now ready to prove Lemma 3.8. Let ℓ ≥ 7 be an integer and let G be a blow-

up of an ℓ-framework. Assume that G has no clique cutset. By Lemma 3.21 together

with Lemmas 3.22 and 3.23, G is a proper blowup of a twinless odd (ℓ− 1)/2-template

if ℓ is odd, and G is a proper blowup of a twinless even ℓ/2-template if ℓ is even. This

completes the proof of Lemma 3.8.

3.3.2 Holes in proper blowups of twinless templates

We first state some lemmas from [35] about blowups of templates.

Lemma 3.24 (Lemma 5.5 in [35]). Let ℓ ≥ 3 and let G∗ be a blowup of a twinless odd

ℓ-template G. Then every hole of G∗ has length 2ℓ+ 1.

Lemma 3.25 (Lemma 8.14 in [35]). Let ℓ ≥ 4 and let G∗ be a blowup of a twinless

even ℓ-template G. Then every hole of G∗ has length 2ℓ.

We now obtain the main result of this section:

Lemma 3.26. Let ℓ ≥ 7 and let G be a proper blowup of a twinless odd (ℓ − 1)/2-

template if ℓ is odd, and a proper blowup of a twinless even ℓ/2-template if ℓ is even.

Then G is ℓ-holed.

Proof. Follows immediately from Lemmas 3.24 and 3.25.

3.3.3 Proof of Theorem 3.7

Theorem 3.7. Let G be a graph with no clique cutset or universal vertex that contains

a theta, a pyramid or a prism. Then the following are equivalent:

� G is ℓ-holed for some ℓ ≥ 7.

� G is a blow-up of an ℓ-framework.

� G is a proper blowup of a twinless odd (ℓ− 1)/2-template if ℓ is odd, and G is a

proper blowup of a twinless even ℓ/2-template if ℓ is even.

Proof. By Theorem 3.2, an ℓ-holed graph with no clique cutset and no universal vertex

that contains a theta, a pyramid or a prism is a blow-up of an ℓ-framework, and

therefore the first bullet implies the second. By Lemma 3.8, the second bullet implies

the third. By Lemma 3.26, the third bullet implies the first. It follows that the three

bullets are equivalent.
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3.4 Special 2-joins

In this section we introduce special 2-joins, a variant of a type of edge cutset known

as a 2-join. Let us begin by describing the motivation for special 2-joins. Standard

2-joins (defined in the next paragraph) appear in decomposition theorems for many

hereditary graph classes, such as perfect graphs [12], even-hole-free graphs [22] and claw-

free graphs [15]. The structure theorems for ℓ-holed graphs presented in Sections 3.1

and 3.2 describe how one may decompose ℓ-holed graphs by clique cutsets into “basic”

graphs (specifically, into “blow-ups of frameworks” in the language of the theorem

in Section 3.1, and into “proper blowups of twinless templates” in the language of the

theorem in Section 3.2). In order to obtain decomposition-based recognition algorithms

from these decomposition theorems, one must be able to decide whether a given graph is

“basic”. However, these basic graphs are in fact quite complicated, and it is not obvious

from their definitions how one may determine algorithmically whether a graph is basic.

But if one were able to further decompose, say by 2-joins, these basic graphs into “more-

basic” graphs, and provided that decomposition by 2-joins preserves being ℓ-holed, the

problem of recognition now reduces to deciding whether a graph is “more-basic”; and

since “more-basic” graphs have a more restricted structure than “basic” graphs (that

is, in addition to having no clique cutset they also have no 2-join), deciding whether

a graph is “more-basic” is expected to be simpler than deciding whether a graph is

“basic”.

There are two problems with this idea, however. First, not all basic graphs admit

2-joins, and second, 2-joins fail to preserve being ℓ-holed. In order to illustrate the

first problem, we need to define 2-joins (first defined by Cornuéjols and Cunningham

in [21]). A partition (X1, X2) of the vertex set of a graph G is a 2-join if there exist

disjoint nonempty sets A1, B1 ⊆ X1 and disjoint nonempty sets A2, B2 ⊆ X2 such that

the following hold:

� A1 is complete to A2, and B1 is complete to B2;

� there are no other edges between X1 and X2 besides those between A1 and A2

and between B1 and B2;

� |X1| ≥ 3 and |X2| ≥ 3;

� for each i ∈ {1, 2}, G[Xi] is not a path of length 2 with an end in Ai, an end in

Bi and its unique interior vertex in Xi \ (Ai ∪Bi).
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We now refer the reader to Figure 3.6, which depicts a blow-up of an ℓ-framework (or,

equivalently, a proper blowup of a twinless template) that has no 2-join.

Figure 3.6: A blow-up of a 7-framework (or, equivalently, a proper blowup of a twinless
template) that has no 2-join.

The second problem with the idea described above is that 2-joins do not preserve

being ℓ-holed. That is, if G is a graph that has a 2-join and G1 and G2 are the blocks

of decomposition of G with respect to this 2-join, then it is not necessarily the case

that G is ℓ-holed if and only if both G1 and G2 are ℓ-holed.

3.4.1 Definitions

Let G be a graph. A partition (X1, X2) of V (G) is a frame (of G) if for each i ∈ {1, 2}
there exist disjoint nonempty subsets Ai and Bi of Xi such that each of the following

conditions hold.

� |X1| ≥ 3 and |X2| ≥ 3.

� The only edges between X1 and X2 are those between A1 and A2 and those

between B1 and B2.

� For each i ∈ {1, 2}, G[Xi] contains a path with one end in Ai, the other end in

Bi, and interior in Xi \ (Ai ∪ Bi). Furthermore, if |Ai| = |Bi| = 1, then G[Xi] is

not a path.

Under these circumstances we call the tuple (X1, X2, A1, A2, B1, B2) a split of

the frame (X1, X2). Given a graph G and a frame (X1, X2) of G with split S =
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(X1, X2, A1, A2, B1, B2), we denote by Pi(G,S) (for i ∈ {1, 2}) the set of paths in

G[Xi] that have one end in Ai, the other end in Bi, and interior in Xi \ (Ai ∪ Bi).

When the graph G and split S are clear from context, we may write Pi instead of

Pi(G,S).

A frame (X1, X2) with split (X1, X2, A1, A2, B1, B2) is a special 2-join of type 1 if:

� A1 is complete to A2 and B1 is complete to B2,

and for some i ∈ {1, 2}:

� Xi \ (Ai ∪Bi) ̸= ∅, and

� Ai and Bi are cliques, and at least one of G[A3−i] and G[B3−i] contains a universal

vertex.

For a graph G, disjoint subsets A and B of V (G) are nested if there are no four

vertices, a1, a2 ∈ A and b1, b2 ∈ B, such that a1b1 and a2b2 are edges of G but a1b2 and

a2b1 are not. Consequently, for any a, a′ ∈ A, one of NB(a), NB(a
′) is contained in the

other, and similarly for any b, b′ ∈ B, one of NA(b), NA(b
′) is contained in the other.

A frame (X1, X2) with split (X1, X2, A1, A2, B1, B2) is a special 2-join of type 2 if:

� A1, A2, B1 and B2 are cliques;

� A1 and A2 are nested, and B1 is complete to B2;

� some vertex of A1 is complete to A2 and some vertex of A2 is complete to A1;

� some vertex of X2 \A2 is complete to A2; and

� for every i ∈ {1, 2} and every vertex v ∈ N(Ai) \ A3−i, sets Ai and A3−i ∪ {v}
are nested.

A special 2-join is a frame that is a special 2-join of type 1 or 2. Note that a frame

may be both a special 2-join of type 1 and a special 2-join of type 2.

Lemma 3.27. Let G be a graph and let (X1, X2) be a special 2-join of type 2 of G with

split (X1, X2, A1, A2, B1, B2). For each i ∈ {1, 2}, there exists a path Qi = ai, . . . , bi in

Pi with ai ∈ Ai and bi ∈ Bi such that ai is complete to A3−i and bi is complete to B3−i.
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Proof. Let P = a1, . . . , b1 be any path from P1, where a1 ∈ A1 and b1 ∈ B1. By

definition, b1 is complete to B2, so we are done if a1 is complete to A2. Therefore we

may assume that there exists a vertex a2 ∈ A2 \N(a1). Let u be the unique neighbour

of a1 in P and let a be any vertex of A1 that is complete to A2. If a and u are

nonadjacent, then the vertices a1, u, a and a2 contradict the fact that A1 and A2∪{u}
are nested. So a and u are adjacent, and now any path from a to b1 in G[V (P ) ∪ {a}]
is as required.

Let G be a graph and let (X1, X2) be a special 2-join of G with split

(X1, X2, A1, A2, B1, B2). Then blocks of decomposition (of G, with respect to (X1, X2))

are any two graphs G1 and G2 such that, for each i ∈ {1, 2}, Gi = G[Xi∪V (Q)], where

Q = a, . . . , b is a path from P3−i with a ∈ A3−i and b ∈ B3−i such that a is complete to

Ai and b is complete to Bi. The path Q is called the marker path of Gi. In the context

of special 2-joins of type 1, the existence of a marker path follows immediately from the

definition, and in the context of special 2-joins of type 2 it follows from Lemma 3.27.

Lemma 3.28. Let G be a graph and let (X1, X2) be a frame of G with split

(X1, X2, A1, A2, B1, B2). Let Q = a2, . . . , b2 be a path in P2 where a2 ∈ A2 and

b2 ∈ B2, and suppose that a2 is complete to A1 and b2 is complete to B1. If every

hole of G[X1 ∪ V (Q)] has the same length, then every path in P1 has the same length.

Proof. For if there exist two paths P, P ′ ∈ P1 of different lengths, then G[V (P ) ∪
V (Q)] and G[V (P ′) ∪ V (Q)] are holes of G[X1 ∪ V (Q)] that have different lengths, a

contradiction.

A vertex is simplicial if its neighbourhood is a clique.

Lemma 3.29. Let ℓ ≥ 4 be an integer. If v is a simplicial vertex or universal vertex

of a graph G, then G is ℓ-holed if and only if G \ v is ℓ-holed.

Proof. The holes of G and G \ v are the same.

Lemma 3.30. Let G be a graph, (X1, X2) a special 2-join of G, and G1 and G2 blocks

of decomposition of G with respect to (X1, X2). Suppose that G has no clique cutset.

Then G1 (resp. G2) has a clique cutset if and only if G1 (resp. G2) has a simplicial

vertex.

Proof. If one of the blocks G1 or G2 has a simplicial vertex, then clearly it has a clique

cutset. To prove the converse, let (X1, X2, A1, A2, B1, B2) be a split of (X1, X2), and

suppose that G1 has a clique cutset K but no simplicial vertex. Let D be a component
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of G1\K that contains a vertex of (A1∪B1∪V (P ))\K, and let C be another component

of G1 \K.

Case 1: K ⊆ X1.

Then (A1 ∪ B1) \ K ⊆ V (D), and hence K is a clique cutset of G that separates

V (D) ∪X2 from V (C), a contradiction.

Case 2: K ⊆ V (P ).

If A1 and B1 are both cliques, then since P1 ̸= ∅, A1 ∪ B1 ∪ (V (P ) \K) ⊆ V (D) and

V (C) ⊆ X1 \ (A1 ∪ B1), and hence G is disconnected, a contradiction. So A1 and B1

are not both cliques, A2 and B2 are both cliques, and without loss of generality G[B1]

contains a universal vertex. Then we may assume that B1 ⊆ V (D) and hence A2 is a

clique cutset of G that separates V (D) ∪X2 from V (C), a contradiction.

Case 3: K = A′
1 ∪ {a} for some nonempty subset A′

1 of A1.

Without loss of generality B1 ⊆ V (D). If A2 is a clique, then A2 ∪A′
1 is a clique cutset

of G that separates V (D) ∪ X2 from V (C), a contradiction. So A2 is not a clique,

and hence A1 and B1 are cliques. If V (C) ̸⊆ A1, then A1 is a clique cutset of G that

separates V (D) ∪X2 from V (C) \ A1. So V (C) ⊆ A1 \ A′
1 and hence any vertex of C

is a simplicial vertex of G1, a contradiction.

3.4.2 Special 2-join decomposition is class-preserving

Lemma 3.31. Let G be a graph, (X1, X2) a special 2-join of G, and G1 and G2 blocks

of decomposition of G with respect to (X1, X2). Then for every integer ℓ ≥ 5, G is

ℓ-holed if and only if both G1 and G2 are ℓ-holed.

Proof. The “only if” direction follows from G1 and G2 being induced subgraphs of G.

For the other direction, let us suppose for some k ≥ 5 that G1 and G2 are ℓ-holed but

G is not. Therefore G contains a hole H of length ℓ′ ̸= ℓ, and H contains vertices of

both X1 and X2. Let (X1, X2, A1, A2, B1, B2) be a split of (X1, X2).

First suppose that (X1, X2) is a special 2-join of type 2. We prove the following

claims.

(1) H contains exactly one vertex from each of A1, A2, B1 and B2.

Proof of (1): Since A1 and A2 are cliques that are nested, clearly at most one edge

of H is between A1 and A2. Similarly, at most one edge of H is between B1 and B2

since B1 ∪ B2 is a clique. Since the number of edges of H between X1 and X2 must
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be even, and since H intersects both X1 and X2, it follows that exactly one edge of

H is between A1 and A2 and exactly one edge of H is between B1 and B2. It follows

immediately that |V (H) ∩B1| = |V (H) ∩B2| = 1.

Suppose H contains two vertices a1 and a′1 from A1. Fix a2 ∈ V (H) ∩ A2. If a1 is

adjacent to a2, then the neighbour x of a′1 in H different from a1 belongs to X1 \ A1

(since A1 is a clique), in which case A1 and A2 ∪ {x} are not nested. So {a1, a′1} is

anticomplete to a2. But this contradicts the fact that there is an edge of H between

A1 and A2. Therefore |V (H) ∩ A1| = 1, and by symmetry |V (H) ∩ A2| = 1. This

proves (1).

It now follows from (1) that H = G[V (P1)∪ V (P2)] for some P1 ∈ P1 and P2 ∈ P2.

Since G2 is ℓ-holed, by Lemma 3.28 every path in P2 has the same length, and in

particular Q and P2 have the same length. But then G[(V (H) \ V (P2)) ∪ V (Q)] is a

hole of length ℓ′ in G1, a contradiction.

Suppose now that (X1, X2) is a special 2-join of type 1. Without loss of generality

we assume that A1 and B1 are cliques. We prove the following claims.

(2) H contains at least one vertex from each of A1, A2, B1 and B2.

Proof of (2): Suppose that V (H) ∩ A1 = ∅. Then there exist adjacent vertices

b1 ∈ V (H) ∩ B1 and b2 ∈ V (H) ∩ B2. Since B1 is a clique that is complete to B2,

we have that V (H) ∩ B1 = {b1}. It follows that V (H) \ {b1} ⊆ X2. Let b
′
1 be the end

of the marker path of G2 that lies in B1. But now G[(V (H) \ {b1}) ∪ {b′1}] is a hole

of length ℓ′ in G2, a contradiction. So V (H) ∩ A1 ̸= ∅, and by analogous argument

V (H) ∩B1 ̸= ∅.

Suppose that V (H) ∩ A2 = ∅. Then there exist adjacent vertices b1 ∈ V (H) ∩ B1

and b2 ∈ V (H) ∩ B2. Since B1 is a clique that is complete to B2, we have that

V (H) ∩B1 = {b1}. Fix a1 ∈ V (H) ∩A1, and let P be the subpath of H from a1 to b2

that does not contain b1. Then V (P ) ∩ (B1 \ {b1}) ̸= ∅, and hence |V (H) ∩B1| ≥ 2, a

contradiction. So V (H) ∩ A2 ̸= ∅, and by analogous argument V (H) ∩ B2 ̸= ∅. This

proves (2).

(3) |V (H) ∩A1| = |V (H) ∩B1| = 1.

Proof of (3): It follows immediately from (2) together with the fact that A1 is a clique

that is complete to A2 and B1 is a clique that is complete to B2. This proves (3).
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(4) Let a1 ∈ V (H) ∩ A1 and b1 ∈ V (H) ∩ B1. Then V (H) ∩ A2 = NH(a1) and

V (H) ∩B2 = NH(b1).

Proof of (4): Suppose otherwise. If |V (H) ∩ A2| ≥ 3, then dH(a1) ≥ 3, a contra-

diction. So |V (H) ∩ A2| ≤ 2, and |V (H) ∩ B2| ≤ 2 by symmetry. Suppose that

|V (H) ∩ A2| = |V (H) ∩ B2| = 1. Then H = G[V (P1) ∪ V (P2)] for some P1 ∈ P1 and

P2 ∈ P2. Let Q be the marker path of G1. But now, by Lemma 3.28, G[V (P1)∪V (Q)],

is a hole of length ℓ′ in G1, a contradiction. So up to symmetry NH(a1) ⊆ A2 and

NH(b1) ̸⊆ B2. Let b2 be the unique vertex of NH(b1) ∩B2 and let P be the subpath of

H from a1 to b1 that does not contain b2. Then V (P ) ⊆ X1, and henceNH(a1)∩X1 ̸= ∅,
a contradiction. This proves (4).

By (2), (3) and (4), there exist two paths R1 = u1, . . . , v1 and R2 = u2, . . . , v2 in

P2 with u1, u2 ∈ A2 and v1, v2 ∈ B2, such that H = G[V (R1) ∪ V (R2) ∪ {a1, b1}] for
some a1 ∈ A1 and b1 ∈ B1. If the marker path Q of G2 has length at least 2, then

the ends of Q together with R1 and R2 form a hole of length ℓ′ in G2, a contradiction.

So we may assume that Q has length 1, i.e. its ends u ∈ A1 and v ∈ B1 are adjacent.

Assume without loss of generality that G[A2] contains a universal vertex s. Clearly

s ̸∈ {u1, u2}. For each i ∈ {1, 2}, fix si ∈ V (Ri) ∩ N(s) such that the length of the

subpath siRivi is minimum. If s1 = u1 and s2 = u2, then (V (H) \ {a1, b1}) ∪ {s, v}
induces a hole of length ℓ′ in G2, a contradiction. So without loss of generality s1 ̸= u1.

Suppose that s2 = u2. Then the three paths ss1R1v1v, R2v and Q form a pyramid in

G2. But Q is of length 1, contradicting the fact that the three paths of a pyramid in

G2 must have the same length (as G2 is ℓ-holed). So s2 ̸= u2. Now the three paths

sQ, ss1R1v1v and ss2R2v2v form a theta in G2. Since Q is of length 1 and all three

paths of a theta in G2 must have the same length, it follows that s1 = v1. But now

{s, u, v, v1} induces a C4 in G2, a contradiction.

3.4.3 Special 2-joins arising from templates

Let G be a twinless odd ℓ-template with ℓ-partition (A,B,A′, B′, I, w,w′). If a is

a vertex of A, then a′ is the end, different from a, of the principal path of G that

contains a (and vice versa). We use this notation often in the proof of the following

lemma. Also, if G∗ is a blowup of a template G and X is a subset of V (G), then we

denote by K(X) the set
⋃

x∈X Kx. (Recall from Section 3.2 that to obtain a blowup

G∗ of G each vertex x of G is replaced by a clique Kx.)



3.4. SPECIAL 2-JOINS 107

Lemma 3.32. For every integer ℓ ≥ 3, every proper blowup of a twinless odd ℓ-template

is a pyramid or admits a special 2-join.

Proof. Fix an integer ℓ ≥ 3. Let (A,B,A′, B′, I, w,w′) be a proper ℓ-partition of a

twinless odd ℓ-template G, and let G∗ be a proper blowup of G. Assume without loss

of generality that G[A] contains at least two isolated vertices. Let S = {v1, . . . , v|S|}
be the set of all isolated vertices of G[A] and let S′ = {v′1, . . . , v′|S|}. Let IS be the set

of all vertices from I that belong to a principal path of G whose ends are in S ∪S′. We

divide the proof into two cases depending on whether S = A.

Case 1: S ̸= A.

Thus |A\S| ≥ 2. Let BS = {x ∈ B : Hx∩S ̸= ∅} and B∗
S = {x ∈ BS : Hx∩(A\S) ̸= ∅}.

SetX1 = K(S∪S′∪BS∪IS), X2 = V (G∗)\X1, A1 = K(B∗
S), A2 = K((A\S)∪(B\BS)),

B1 = K(S′) and B2 = K(B′ ∪ (A′ \ S′)). We claim that (X1, X2) is a special 2-join of

type 1 of G∗ with split (X1, X2, A1, A2, B1, B2).

For each i ∈ {1, 2}, it is clear that Ai and Bi are nonempty disjoint subsets of

Xi. It is also clear that (X1, X2) is a partition of V (G∗) with |X1| ≥ 3, |X2| ≥ 3 and

X1 \ (A1 ∪B1) ̸= ∅. We now prove the following claims.

(1) The only edges between X1 and X2 are those between A1 and A2 and those between

B1 and B2.

Proof of (1): Observe that every edge between X1 and X2 is an edge of either G∗[K(A∪
B)] or G∗[K(A′ ∪ B′)]. Since B1 ∪ B2 = K(A′ ∪ B′), clearly every edge between X1

and X2 in G∗[K(A′ ∪ B′)] is an edge between B1 and B2, so it remains to prove the

analogous statement for G∗[K(A ∪B)]. By condition (c) in the definition of a blowup,

it suffices to prove that S ∪ (BS \ B∗
S) is anticomplete to (A \ S) ∪ (B \ BS). Since S

consists of isolated vertices of G[A], S is anticomplete to A \ S. Suppose there exist

adjacent vertices s ∈ S and x ∈ B \ BS . By the definition of templates, s ∈ N [Hx].

Since Hx ∩ S = ∅, we have that s ̸∈ Hx and hence s ∈ N(Hx), contrary to s being

an isolated vertex of G[A]. So S is anticomplete to B \ BS . Suppose that there exist

adjacent vertices x ∈ BS \ B∗
S and a ∈ A \ S. Then, by the definition of templates,

a ∈ N [Hx]. Since Hx ∩ (A \ S) = ∅, a ∈ N(Hx) and hence a ∈ N(S), contradicting

the fact that S consists of isolated vertices of G[A]. So BS \ B∗
S is anticomplete to

A \ S. Finally, suppose that there exist adjacent vertices x ∈ BS \B∗
S and y ∈ B \BS .

Then, by the definition of templates, Hx ∩ Hy ̸= ∅. But Hx ⊆ S and Hy ⊆ A \ S, a

contradiction. This proves (1).
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(2) For each i ∈ {1, 2}, G∗[Xi] contains a path with one end in Ai, the other end in Bi,

and interior in Xi\(Ai∪Bi). Furthermore, if |Ai| = |Bi| = 1, then G∗[Xi] is not a path.

Proof of (2): Since |S| ≥ 2 and |A \ S| ≥ 2, neither of G∗[X1] and G∗[X2] is a path.

For every x ∈ B∗
S and s ∈ Hx ∩ S, the vertex x together with the principal path of G

that contains s forms a path from A1 to B1 with interior in X1 \ (A1 ∪B1). For every

a ∈ A\S, the principal path of G that contains a is a path from A2 to B2 with interior

in X2 \ (A2 ∪B2). This proves (2).

(3) A1 is complete to A2.

Proof of (3): Fix x ∈ B∗
S . By the definition of B∗

S , the set Hx contains a vertex u

that is isolated in G[A] and a vertex v that is not isolated in G[A]. Since Hx is a

module of G[A], the component C of G[A] that contains v is contained in G[Hx]. As

G[A \ S] is a threshold graph that has no isolated vertex, C = G[A \ S], and hence

A \ S ⊆ Hx. It now follows immediately from the definition of a template that x is

complete to (A \ S)∪ (B \BS), and hence B∗
S is complete to (A \ S)∪ (B \BS). Since

A\S ⊆ Hx, and in particular since Hx contains a universal vertex of G[A\S], it follows
that no vertex of Hx \ S is isolated in G[Hx] and hence there exists no optional edge

ux of G, where u ∈ A \ S and x ∈ B∗
S . Therefore, by the definition of a blowup of a

template, K(B∗
S) = A1 is complete to K((A \ S) ∪ (B \BS)) = A2. This proves (3).

(4) B1 is complete to B2.

Proof of (4): Since S consists of isolated vertices of G[A], S′ consists of universal

vertices of G[A′], and hence S′ is complete to A′ \ S′. Together with the fact that S′

is a clique, this implies that S′ ⊆ NA′ [H ′
x] for every x ∈ B′, and hence S′ is complete

to B′. Since S′ consists of universal vertices of G[A′], no vertex of S′ is isolated in any

induced subgraph of G[A′] on at least 2 vertices, and hence G has no optional edge

ux, where u ∈ S′ and x ∈ B′. Therefore, by the definition of a blowup of a template,

K(S′) = B1 is complete to K(B′ ∪ (A′ \ S′)) = B2. This proves (4).

(5) A1 and B1 are cliques, and G∗[A2] contains a universal vertex.

Proof of (5): In the proof of (3) it was shown that A \ S ⊆ Hx for every x ∈ B∗
S .

It thus follows from the definition of a template that B∗
S is a clique. Since S is a stable

set, S′ is a clique. It now follows from the definition of a blowup of a template that A1
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and B1 are cliques. Let u be a universal vertex of G[A \ S]. Clearly u ∈ NA[Hx] for

every x ∈ B \BS , and hence u is complete to B \BS . Since u is not an isolated vertex

of any induced subgraph of G[A \S] on at least 2 vertices, no edge ux of G is optional,

where x ∈ B \BS . It now follows from the definition of a blowup of a template that u

is a universal vertex of G∗[A2]. This proves (5).

It now follows from (1)–(5) that (X1, X2) is a special 2-join of type 1 of G∗ with

split (X1, X2, A1, A2, B1, B2).

Case 2: S = A.

So A is a stable set and A′ is a clique, and we may assume that G∗ is not a pyramid.

Note that B′ = ∅ since A′ is a clique.

Case 2.1: K(A ∪A′ ∪ I) = A ∪A′ ∪ I.

Suppose that |B| = 1. Then K(B) ̸= B or |A| ≥ 4; let A∗ be a subset of A of size 1

in the former case and of size 2 in the latter case (and making this choice arbitrarily if

both cases hold). Let P ∗ be the set of all vertices belonging to a principal path of G

that contains a vertex from A∗. Set X1 = K(B) ∪ P ∗, X2 = V (G∗) \X1, A1 = K(B),

A2 = A \ A∗, B1 = P ∗ ∩ A′ and B2 = A′ \ B1. Clearly (X1, X2) is a frame of G∗

with split (X1, X2, A1, A2, B1, B2); in particular, the condition requiring that G[X1]

and G[X2] are not paths (when |A1| = |B1| = 1 or |A2| = |B2| = 1 respectively) holds

by our choice of A∗. Since |B| = 1 and G[A] contains isolated vertices, the unique

vertex of B is complete to A and hence, by the definition of a blowup of a template, A1

is complete to A2. Since A′ is a clique, B1 is complete to B2, and any vertex of B2 is a

universal vertex of G[B2]. Finally, clearly X1 \ (A1 ∪B1) ̸= ∅. It follows that (X1, X2)

is a special 2-join of type 1 of G∗ with split (X1, X2, A1, A2, B1, B2).

So we may assume that |B| ≥ 2. Fix x ∈ B such that Hx is inclusion-wise minimal,

i.e. Hx ⊂ Hy for every y ∈ B \ {x} with Hx ∩ Hy ̸= ∅ (note that the inclusion

is strict since G is twinless). Let B∗ = {y ∈ B : Hx ∩ Hy ̸= ∅} and set X1 =⋃
{V (P ) : P is a principal path of G with V (P )∩Hx ̸= ∅}, X2 = V (G∗)\X1, A1 = Hx,

A2 = K(B∗), B1 = {a′ ∈ A′ : a ∈ Hx} and B2 = A′\B1. Clearly X1\(A1∪B1) ̸= ∅. By
our choice of B∗ and since A is a stable set, Hx is anticomplete to K(B \B∗), and hence

every edge between X1 and X2 is an edge between A1 and A2 or between B1 and B2.

It is now easily seen that (X1, X2) is a frame of G∗ with split (X1, X2, A1, A2, B1, B2).

Since A′ is a clique, B2 is a clique that is complete to B1. By the minimality of Hx, we

have that Hx ⊆ Hy for every y ∈ B∗, and hence B∗ is a clique that is complete to Hx. It

follows from the definition of a blowup of a template that A1 is complete to A2. Finally,
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since A′ is a clique, any vertex of B1 is a universal vertex of G[B1]. It now follows that

(X1, X2) is a special 2-join of type 1 of G∗ with split (X1, X2, A1, A2, B1, B2).

Case 2.2: K(A ∪A′ ∪ I) ̸= A ∪A′ ∪ I.

Fix a ∈ A such that the principal path P = a, . . . , a′ of G that contains a satisfies

K(V (P )) ̸= V (P ). Set X1 = V (G∗) \ K(V (P )), X2 = K(V (P )), A1 = K({x ∈ B : a ∈
Hx}, A2 = Ka, B1 = K(A′ \ {a′}) and B2 = Ka′ . Since every vertex of A is isolated in

G[A], it follows that if u ∈ A and x ∈ B are adjacent, then u ∈ Hx. Thus by our choice

of A1 we have that A2 is anticomplete to K(B) \ A1, and hence every edge between

X1 and X2 is between A1 and A2 or between B1 and B2. It is now easily checked that

(X1, X2) is a frame of G∗ with split (X1, X2, A1, A2, B1, B2). Since a ∈ Hx for every

x ∈ A1 ∩ V (G), it follows that A1 ∩ V (G) is a clique, and hence by the definition of a

blowup of a template A1 is a clique. Furthermore, clearly A2, B1 and B2 are cliques.

By the definition of a blowup of a template, a is complete to A1, and hence some vertex

of A2 is complete to A1. By condition (h) in the definition of a blowup of a template,

some vertex of B is a universal vertex of G∗[K(A∪B)], and hence some vertex of A1 is

complete to A2. Let z be the unique neighbour of a in P . By the definition of a blowup

of a template, z is complete to Ka, and hence some vertex of X2 \ A2 is complete to

A2.

That A2 and A1 ∪ {v} are nested for every vertex v ∈ N(A2) \ A1 follows from

condition (b) in the definition of a blowup of a template. So to prove that (X1, X2) is

a special 2-join of type 2 of G∗, it remains to prove that A1 and A2 ∪ {v} are nested

for every vertex v ∈ N(A1) \ A2. Suppose otherwise. Then there exist four vertices,

x, y ∈ A1 and u, v ∈ A2∪N(A1), such that ux and vy are edges but uy and vx are not.

Since G∗ is C4-free, u and v are nonadjacent. Observe that A2 ∪N(A1) ⊆ K(A ∪ B),

and hence {u, v} ⊆ K(A ∪B). Moreover, at most one of u and v belongs to K(B). By

symmetry, it suffices to consider the following two cases.

Case 2.2.1: u, v ∈ K(A).

Since u and v are nonadjacent and Kw is a clique for each w ∈ A, it follows that

there exist two unique vertices u0 and v0 of G such that u ∈ Ku0 and v ∈ Kv0 . Let

Pu and Pv be the principal paths of G that contain u0 and v0 respectively. But now

{u, v, x, y} ∪ (V (Pu) ∪ V (Pv)) \ {u0, v0} induces a hole of length 2ℓ + 2, contradicting

Lemma 3.24.

Case 2.2.2: u ∈ K(A) and v ∈ K(B).

Fix w ∈ NG∗(v) ∩ A. Since x and v are nonadjacent, it follows from the fact that S
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is a stable set together with the definitions of a template and a blowup of a template

that x and w are nonadjacent. By Case 1, w and y are nonadjacent. Let u0 and w0

be the unique vertices of G such that u ∈ Ku0 and w ∈ Kw0 , and let Pu and Pw be

the principal paths of G that contain u0 and w0 respectively. But now {u, v, w, x, y} ∪
(V (Pu) ∪ V (Pw)) \ {u0, w0} induces a hole of length 2ℓ + 3, contradicting Lemma 5.5

in [19].

It follows that (X1, X2) is a special 2-join of type 2 of G∗ with split

(X1, X2, A1, A2, B1, B2).

Theorem 3.33. Let ℓ ≥ 7 be an odd integer. Then every ℓ-holed graph is a ring of

length ℓ or a pyramid whose three paths are all of length (ℓ − 1)/2, or has a universal

vertex, a clique cutset or a special 2-join.

Proof. Let ℓ ≥ 7 be odd and let G be an ℓ-holed graph. By Theorem 3.5, we may

assume that G is a proper blowup of a twinless odd template. By Lemma 3.32, G is

a pyramid or admits a special 2-join. If G is a pyramid, then clearly each of its three

paths must be of length (ℓ− 1)/2.

3.4.4 Detecting special 2-joins

In this section we give algorithms for finding a special 2-join in a graph, if one exists.

We use these algorithms in Section 3.5.3 to recognise ℓ-holed graphs (for odd ℓ ≥ 7)

using a process of clique cutset and special 2-join decomposition.

Special 2-joins of type 1

A 1-configuration for a graph G is a tuple (a1, a2, b1, b2, u) of five vertices such that:

� a1a2 and b1b2 are edges of G;

� a1b2 and a2b1 are not edges of G; and

� u is nonadjacent to both a2 and b2.

A special 2-join (X1, X2) of type 1 is compatible with a 1-configuration (a1, a2, b1, b2, u)

if there exists a split (X1, X2, A1, A2, B1, B2) of (X1, X2) such that a1 ∈ A1, a2 ∈ A2,

b1 ∈ B1, b2 ∈ B2, u ∈ X1 \ (A1 ∪ B1), a2 is complete to A2 \ {a2}, and A1 and B1 are

cliques.

The following algorithm is an adaptation of the one given in [18].
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Lemma 3.34. There exists an algorithm with the following specifications:

Input: A graph G that has no clique cutset, and a 1-configuration (a1, a2, b1, b2, u).

Output: “Yes”, together with a special 2-join (X1, X2) of type 1 with split

(X1, X2, A1, A2, B1, B2) compatible with (a1, a2, b1, b2, u), if there is one, and “No”

otherwise.

Running time: O(|V (G)|4).

Proof. Consider the following algorithm.

Step 1. Initialise the following sets:

� X1 = {a1, b1, u},

� X2 = V (G) \X1,

� A1 = N(a2) ∩X1,

� B1 = N(b2) ∩X1,

� S1 = X1 \ (A1 ∪B1),

� A2 = {x ∈ X2 : N(x) ∩A1 ̸= ∅},

� B2 = {x ∈ X2 : N(x) ∩B1 ̸= ∅}, and

� S2 = X2 \ (A2 ∪B2).

Step 2. Repeatedly apply the following rules until no more rules can be applied. If

at any point a vertex x that is adjacent to both a2 and b2 is moved from X2 to

X1, then output “No” and terminate. After each application of a rule, update

sets A1, B1 and S1 by first setting A1 = N(a2) ∩X1 and B1 = N(b2) ∩X1, and

then setting S1 = X1 \ (A1 ∪ B1). Similarly, update sets A2, B2 and S2 by first

setting A2 = {x ∈ X2 : N(x) ∩ A1 ̸= ∅} and B2 = {x ∈ X2 : N(x) ∩ B1 ̸= ∅},
and then setting S2 = X2 \ (A2 ∪B2). When it is no longer possible to apply any

rule, proceed to Step 3.

Rule 1. If x ∈ X2 has a neighbour in S1, then move x from X2 to X1.

Rule 2. If x ∈ A2 and N(x) ∩ (A1 ∪B1) ̸= A1, then move x from X2 to X1.

Rule 3. If x ∈ B2 and N(x) ∩ (A1 ∪B1) ̸= B1, then move x from X2 to X1.

Rule 4. If x ∈ A2 \ {a2} and x is nonadjacent to a2, then move x from X2 to X1.
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Step 3. Perform the following checks in order (thus if, say, Check 2 is peformed, then

the algorithm did not terminate as a result of Check 1).

Check 1. If not both A1 and B1 are cliques, then output “No” and terminate.

Check 2. If |X2| = 2, then output “No” and terminate.

Check 3. If |A2| = |B2| = 1 and G[X2] is a path, then output “No” and terminate.

Check 4. If |A1| ≥ 2 or |B1| ≥ 2, or if |A1| = |B1| = 1 but G[X1] is not a path,

then output “Yes” together with (X1, X2) and (X1, X2, A1, A2, B1, B2), and

terminate.

Check 5. (Observe that, as a result of Check 4, |A1| = |B1| = 1 and G[X1] is a

path.) For each w ∈ X2 \ {a2, b2}, repeat Step 2 and Checks 1–4 of Step 3

but with:

� X1 = {a1, b1, u, w},

� X2 = V (G) \X1,

� A1 = N(a2) ∩X1,

� B1 = N(b2) ∩X1,

� S1 = X1 \ (A1 ∪B1),

� A2 = {x ∈ X2 : N(x) ∩A1 ̸= ∅},

� B2 = {x ∈ X2 : N(x) ∩B1 ̸= ∅}, and

� S2 = X2 \ (A2 ∪B2).

If the output is “No” for every w ∈ X2 \ {a2, b2}, then output “No” and

terminate.

We now prove that this algorithm is correct by way of the following two claims.

(1) If the algorithm outputs “Yes” together with (X1, X2) and (X1, X2, A1, A2, B1, B2),

then (X1, X2) is a special 2-join of type 1 of G that is compatible with (a1, a2, b1, b2, u).

Proof of (1): Suppose that the algorithm outputs “Yes” together with (X1, X2) and

(X1, X2, A1, A2, B1, B2). Clearly (X1, X2) is a partition of V (G) such that Ai∪Bi ⊆ Xi

for each i ∈ {1, 2}. By definition, a1 ∈ A1, a2 ∈ A2, b1 ∈ B1 and b2 ∈ B2. Therefore

sets A1, A2, B1 and B2 are nonempty, and they are pairwise disjoint by Rules 2, 3 and

the check performed during Step 2 regarding vertices that are adjacent to both a2 and

b2. By Rules 1–3 of Step 2, every edge of G between X1 and X2 is either between A1
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and A2 or between B1 and B2. By Rules 2 and 3, A1 is complete to A2 and B1 is

complete to B2. By Rule 4, a2 is a universal vertex of G[A2]. Since u is nonadjacent to

both a2 and b2, it follows by the definition of sets A1 and B1 that u ∈ X1\(A1∪B1), and

therefore X1\(A1∪B1) ̸= ∅. By Check 1, A1 and B1 are cliques. Since {a1, b1, u} ⊆ X1,

we have that |X1| ≥ 3, and it follows from Check 2 that |X2| ≥ 3.

It remains to prove that for each i ∈ {1, 2} there exists a path from Ai to Bi whose

interior lies in Xi \ (Ai ∪ Bi). Observe that if there is a path from Ai to Bi in G[Xi],

then any shortest path from Ai to Bi in G[Xi] has its interior in Xi \ (Ai ∪ Bi), so it

suffices to prove that there is a path from Ai to Bi in G[Xi]. If there is no path from A1

to B1 in G[X1], then up to symmetry there is no path from u to A1 in G[X1], and hence

B1 is a clique cutset of G that separates u from vertices of X2, a contradiction. So

there is a path from A1 to B1. If there is no path from A2 to B2 in G[X2], then A1 is a

clique cutset of G that separates vertices of A2 from vertices of X1\A1, a contradiction.

Therefore there is a path from A2 to B2 in G[X2]. It follows that (X1, X2) is a special

2-join of type 1 of G that is compatible with (a1, a2, b1, b2, u). This proves (1).

(2) If the algorithm outputs “No”, then there exists no special 2-join of type 1 of G that

is compatible with (a1, a2, b1, b2, u).

Proof of (2): Towards a contradiction, suppose that the algorithm outputs “No”

but there exists a special 2-join (X ′
1, X

′
2) of type 1 of G that is compatible with

(a1, a2, b1, b2, u). Let (X
′
1, X

′
2, A

′
1, A

′
2, B

′
1, B

′
2) be a split of (X ′

1, X
′
2) such that a1 ∈ A′

1,

a2 ∈ A′
2, b1 ∈ B′

1, b2 ∈ B′
2 and u ∈ X ′

1 \ (A′
1 ∪B′

1). Let sets X1, X2, A1, A2, B1 and B2

be as they were immediately before the algorithm terminated. Since all applications

of Rules 1–4 were necessary, it follows that X1 ⊆ X ′
1, and in particular A1 ⊆ A′

1 and

B1 ⊆ B′
1.

The algorithm outputted “No” and terminated either during Step 2, or as a result of

Check 1, 2, 3 or 5. Let us consider each possibility in turn. Suppose that the algorithm

terminated during Step 2. Then some vertex x ∈ X1 is adjacent to both a2 and b2. But

x ∈ X ′
1 and therefore x belongs to both A′

1 and B′
1, contradicting the fact that A′

1 and

B′
1 are disjoint. Suppose that the algorithm terminated as a result of Check 1. Then

not both A1 and B1 are cliques, and since A1 ⊆ A′
1 and B1 ⊆ B′

1, it follows that not

both A′
1 and B′

1 are cliques, a contradiction. Suppose that the algorithm terminated

as a result of Check 2. Then |X2| = 2, and since X1 ⊆ X ′
1 it follows that |X ′

2| = 2,

a contradiction. Suppose that the algorithm terminated as a result of Check 3, i.e.

|A2| = |B2| = 1 and G[X2] is a path. Since X1 ⊆ X ′
1, it follows that X ′

2 ⊆ X2. If
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X ′
2 = X2, then |A′

2| = |B′
2| = 1 and G[X ′

2] is a path, and if X ′
2 ̸= X2 then G[X ′

2]

contains no path from A′
2 to B′

2; in either case we obtain a contradiction. Finally,

suppose that the algorithm terminates as a result of Check 5. So |A1| = |B1| = 1 and

G[X1] is a path. Since it is not the case that |A′
1| = |B′

1| = 1 and G[X ′
1] is a path, there

exists some vertex w ∈ X ′
1 \ X1. As part of Check 5, the algorithm checked whether

there exists a special 2-join (X ′′
1 , X

′′
2 ) of type 1 of G compatible with (a1, a2, b1, b2, u)

such that {a1, b1, u, w} ⊆ X ′′
1 and {a2, b2} ⊆ X ′′

2 . By what we have proved so far, it

was correctly determined that no such special 2-join of type 1 exists, contradicting the

existence of (X ′
1, X

′
2). This proves (2).

Finally, we prove that the algorithm has time complexity O(|V (G)|4). To perform

Step 2, one must find a vertex for which some rule applies, and there are at most

O(|V (G)|) such vertices. Given a vertex x, testing whether any one of Rules 1 to 4

applies and executing it takes O(|V (G)|) time. It follows that executing Step 2 takes

O(|V (G)|3) time. In Step 3, Check 1 takes O(|V (G)|2) time, Check 2 takes O(1)

time and Checks 3 and 4 each take O(|V (G)| + |E(G)|) = O(|V (G)|2) time. Check 5

involves executing O(|V (G)|) times Step 2 and Checks 1 to 4 of Step 3, and thus takes

O(|V (G)|4) time. It follows that the running time of this algorithm is O(|V (G)|4).

A universal set of type 1 for a graph G is a set U of 1-configurations such that for

every special 2-join (X1, X2) of type 1 of G, some 1-configuration from U is compatible

with (X1, X2).

Lemma 3.35. There exists an algorithm with the following specifications:

Input: A graph G that has no clique cutset, and a universal set U of type 1 for G.

Output: “Yes”, together with a special 2-join (X1, X2) of type 1 with split

(X1, X2, A1, A2, B1, B2) compatible with (a1, a2, b1, b2, u), if there is one, and “No”

otherwise.

Running time: O(|V (G)|4 · |U |).

Proof. For each 1-configuration z ∈ U , apply the algorithm of Lemma 3.34 with graph

G and 1-configuration z as input.

By enumerating all 5-tuples of a graph G, one can construct a universal set of size

O(|V (G)|5).
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Lemma 3.36. Let G be a graph. Then one can compute in O(n6) time a universal set

of type 1 of size O(n5) for G.

Proof. Let U = ∅. Enumerate all 5-tuples (a1, a2, b1, b2, u) of vertices of G, and check

whether (a1, a2, b1, b2, u) is a 1-configuration, adding it to U if it is. After this process

completes, U is a universal set of type 1 of size O(n5) for G. Since checking whether

a 5-tuple is a 1-configuration consists of checking a constant number of times whether

two vertices are adjacent or nonadjacent, the set U can be computed in O(n6) time.

Lemma 3.37. There exists an algorithm with the following specifications:

Input: A graph G that has no clique cutset.

Output: “Yes”, together with a special 2-join (X1, X2) of type 1 with split

(X1, X2, A1, A2, B1, B2), if there is one, and “No” otherwise.

Running time: O(|V (G)|9).

Proof. Follows immediately from Lemmas 3.35 and 3.36.

Special 2-joins of type 2

A 2-configuration for a graph G is a tuple (a1, a2, b1, b2, u, v) of six vertices such that:

� a1a2, b1b2 and va2 are edges of G;

� a1b2, a2b1, va1, vb1 and uv are not edges of G; and

� u is adjacent to at most one of a2 and b2.

A special 2-join (X1, X2) of type 2 is compatible with a 2-configuration

(a1, a2, b1, b2, u, v) if there exists a split (X1, X2, A1, A2, B1, B2) of (X1, X2) such that:

� a1 ∈ A1, a2 ∈ A2, b1 ∈ B1, b2 ∈ B2, u ∈ X1 and v ∈ X2 \A2; and

� a1 is complete to A2, a2 is complete to A1 and v is complete to A2.

Lemma 3.38. There exists an algorithm with the following specifications:

Input: A C4-free graph G that has no clique cutset, and a 2-configuration

(a1, a2, b1, b2, u, v).
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Output: “Yes”, together with a special 2-join (X1, X2) of type 2 with split

(X1, X2, A1, A2, B1, B2) compatible with (a1, a2, b1, b2, u, v), if there is one, and “No”

otherwise.

Running time: O(|V (G)|6).

Proof. Consider the following algorithm.

Step 1. Initialise the following sets:

� X1 = {a1, b1, u},

� X2 = V (G) \X1,

� A1 = N(a2) ∩X1,

� B1 = N(b2) ∩X1,

� S1 = X1 \ (A1 ∪B1),

� A2 = {x ∈ X2 : N(x) ∩A1 ̸= ∅},

� B2 = {x ∈ X2 : N(x) ∩B1 ̸= ∅}, and

� S2 = X2 \ (A2 ∪B2).

Step 2. Repeatedly apply the following rules until no more rules can be applied. If

at any point a vertex x that is adjacent to both a2 and b2 is moved from X2 to

X1, then output “No” and terminate. After each application of a rule, update

sets A1, B1 and S1 by first setting A1 = N(a2) ∩X1 and B1 = N(b2) ∩X1, and

then setting S1 = X1 \ (A1 ∪ B1). Similarly, update sets A2, B2 and S2 by first

setting A2 = {x ∈ X2 : N(x) ∩ A1 ̸= ∅} and B2 = {x ∈ X2 : N(x) ∩ B1 ̸= ∅},
and then setting S2 = X2 \ (A2 ∪B2). When it is no longer possible to apply any

rule, proceed to Step 3.

Rule 1. If x ∈ (A2 ∩B2) \ {a2, b2}, then move x from X2 to X1.

Rule 2. If x ∈ X2 \ {v} has a neighbour in S1, then move x from X2 to X1.

Rule 3. If x ∈ B2 is not complete to B1, then move x from X2 to X1.

Rule 4. If x ∈ A2 \ {a2} is not adjacent to both a1 and a2, then move x from X2

to X1.

Rule 5. If x ∈ A2 is not adjacent to v, then move x from X2 to X1.

Rule 6. If x ∈ B2 \ {b2} is not adjacent to b2, then move x from X2 to X1.
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Rule 7. If there exist vertices z ∈ A1, x, y ∈ A2 \ {a2} and w ∈ X2 \A2 such that

zx,wy, xa2, ya2 ∈ E(G) and zy, xw ̸∈ E(G), then move x from X2 to X1.

Step 3. Perform the following checks in order (thus if, say, Check 2 is peformed, then

the algorithm did not terminate as a result of Check 1).

Check 1. If not all of A1, A2, B1 and B2 are cliques, then output “No” and

terminate.

Check 2. If there exists some w ∈ X1 \ A1 such that A1 and A2 ∪ {w} are not

nested, then output “No” and terminate.

Check 3. If |X2| = 2, then output “No” and terminate.

Check 4. If |A2| = |B2| = 1 and G[X2] is a path, then output “No” and terminate.

Check 5. If |A1| ≥ 2 or |B1| ≥ 2, or if |A1| = |B1| = 1 but G[X1] is not a path,

then output “Yes” together with (X1, X2) and (X1, X2, A1, A2, B1, B2), and

terminate.

Check 6. (Observe that, as a result of Check 5, |A1| = |B1| = 1 and G[X1] is a

path.) For each w ∈ X2 \ {a2, b2}, repeat Step 2 and Checks 1–5 of Step 3

but with:

� X1 = {a1, b1, u, w},

� X2 = V (G) \X1,

� A1 = N(a2) ∩X1,

� B1 = N(b2) ∩X1,

� S1 = X1 \ (A1 ∪B1),

� A2 = {x ∈ X2 : N(x) ∩A1 ̸= ∅},

� B2 = {x ∈ X2 : N(x) ∩B1 ̸= ∅}, and

� S2 = X2 \ (A2 ∪B2).

If the output is “No” for every w ∈ X2 \ {a2, b2}, then output “No” and

terminate.

We now prove that this algorithm is correct by way of the following two claims.

(1) If the algorithm outputs “Yes” together with (X1, X2) and (X1, X2, A1, A2, B1, B2),

then (X1, X2) is a special 2-join of type 2 of G that is compatible with (a1, a2, b1, b2, u, v).
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Proof of (1): Suppose that the algorithm outputs “Yes” together with (X1, X2) and

(X1, X2, A1, A2, B1, B2). Clearly (X1, X2) is a partition of V (G) such that Ai∪Bi ⊆ Xi

for each i ∈ {1, 2}. By definition, a1 ∈ A1, a2 ∈ A2, b1 ∈ B1 and b2 ∈ B2. Therefore

sets A1, A2, B1 and B2 are nonempty, and they are pairwise disjoint by Rule 1 and the

check performed during Step 2 regarding vertices that are adjacent to both a2 and b2.

By Rules 1 and 2 of Step 2, every edge of G between X1 and X2 is either between A1

and A2 or between B1 and B2. By Check 1, all of A1, A2, B1 and B2 are cliques. It

now follows from G being C4-free that A1 and A2 are nested, and by Rule 3 that B1 is

complete to B2. By Rule 4, some vertex of A1, namely a1, is complete to A2, and some

vertex of A2, namely a2, is complete to A1. By Rule 5, some vertex of X2 \A2, namely

v, is complete to A2. Since the only edges between A2 and X1 are those between A2

and A1, it follows that NG(A2) ⊆ A1 ∪ (X2 \A2). Similarly, NG(A1) ⊆ A2 ∪ (X1 \A1).

Thus, by Rule 7, sets A2 and A1∪{w} are nested for every w ∈ N(A2)\A1. By Check 2,

sets A1 and A2 ∪ {w} are nested for every w ∈ N(A1) \A2. Since {a1, b1, u} ⊆ X1, we

have that |X1| ≥ 3, and it follows from Check 3 that |X2| ≥ 3. By Check 4, it is not

the case that |A2| = |B2| = 1 and G[X2] is a path, and by Check 5 it is not the case

that |A1| = |B1| = 1 and G[X1] is a path.

It remains to prove that for each i ∈ {1, 2} there exists a path from Ai to Bi whose

interior lies in Xi \ (Ai ∪ Bi). Observe that if there is a path from Ai to Bi in G[Xi],

then any shortest path from Ai to Bi in G[Xi] has its interior in Xi \ (Ai ∪ Bi), so it

suffices to prove that there is a path from Ai to Bi in G[Xi]. Suppose that there is

no path from A1 to B1 in G[X1]. Then every path from a vertex in A1 to a vertex in

X2 \ A2 intersects A2, and therefore A2 is a clique cutset of G that separates A1 from

X2 \A2, a contradiction. It follows by symmetry that for each i ∈ {1, 2} there exists a

path from Ai to Bi whose interior lies in Xi \ (Ai ∪Bi). This proves (1).

(2) If the algorithm outputs “No”, then there exists no special 2-join of type 2 of G that

is compatible with (a1, a2, b1, b2, u, v).

Proof of (2): Towards a contradiction, suppose that the algorithm outputs “No”

but there exists a special 2-join (X ′
1, X

′
2) of type 2 of G that is compatible with

(a1, a2, b1, b2, u, v). Let (X
′
1, X

′
2, A

′
1, A

′
2, B

′
1, B

′
2) be a split of (X

′
1, X

′
2) such that a1 ∈ A′

1,

a2 ∈ A′
2, b1 ∈ B′

1, b2 ∈ B′
2, u ∈ X ′

1, v ∈ X ′
2\A′

2, and a1 is complete to A′
2, a2 is complete

to A′
1 and v is complete to A′

2. Let sets X1, X2, A1, A2, B1 and B2 be as they were

immediately before the algorithm terminated.

It is clear that applications of Rules 1 to 6 are necessary. Let us prove that ap-
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plications of Rule 7 are necessary. Suppose that at some point during the execution

of the algorithm there exist vertices z ∈ A1, x, y ∈ A2 and w ∈ X2 \ A2 such that

zx,wy, xa2, ya2 ∈ E(G) and zy, wx ̸∈ E(G). Since we want that A2 and A1 ∪ {w} are

nested, at least one of x, y and w must be moved from X2 to X1. Suppose that y is

moved from X2 to X1. Then y would belong to A1 since it is adjacent to a2. But then

A1 would contain two nonadjacent vertices z and y, contradicting the fact that A1 must

be a clique. So y must not be moved from X2 to X1. Suppose that w is moved from

X2 to X1. Since z and w are nonadjacent, w cannot belong to A1 and hence w must

belong to X1 \ A1. But now the edge yw contradicts the fact that an edge between

X1 and A2 should be between A1 and A2. So neither of w and y can be moved from

X2 to X1, and therefore x must be moved from X2 to X1, i.e. Rule 7 must be applied.

Now, since all applications of Rules 1 to 7 are necessary, it follows that X1 ⊆ X ′
1, and

in particular A1 ⊆ A′
1 and B1 ⊆ B′

1. Furthermore, X ′
2 ⊆ X2.

The algorithm outputted “No” and terminated either during Step 2, or as a result

of Check 1, 2, 3, 4 or 6. Suppose that the algorithm terminated during Step 2. Then

some vertex x ∈ X1 that is adjacent to both a2 and b2 is moved from X2 to X1. But

then x ∈ X ′
1, and therefore x belongs to both A′

1 and B′
1, contradicting the fact that

A′
1 and B′

1 are disjoint. Suppose that the algorithm terminated as a result of Check 1.

Then at least one of A1, A2, B1 and B2 is not a clique. If A1 or B1 is not a clique, then

A′
1 or B′

1 is not a clique, a contradiction. Suppose that A2 is not a clique. Then for any

two nonadjacent vertices x, y ∈ A2, the set {x, y, a1, v} induces a C4, a contradiction

(since v is complete to A2 by Rule 5). So A2 is a clique, and therefore B2 is not a

clique. Let b and b′ be two nonadjacent vertices from B2. By Rules 3 and 6, b2 ̸∈ {b, b′}
and {b, b′} is complete to {b1, b2}. But then {b, b′} ⊆ B′

1 ∪ B′
2, contradicting the fact

that G[B′
1 ∪B′

2] is a complete graph.

Suppose that the algorithm terminated as a result of Check 2. Then there exist

vertices w ∈ X1\A1, u, y ∈ A1 and x ∈ A2 such that ux,wy ∈ E(G) and uw, xy ̸∈ E(G).

Since x and y are nonadjacent, x ̸= a2, and therefore x and a2 are adjacent by Rule 4.

Since A′
1 and A′

2 ∪ {w} are nested, x ̸∈ A′
2, and therefore x ∈ X ′

1. Since x is adjacent

to a2, it follows that x ∈ A′
1. But now x and y are two vertices of A′

1 that are

nonadjacent, a contradiction. Suppose that the algorithm terminated as a result of

Check 3, i.e. |X2| = 2. But X ′
2 ⊆ X2 and hence |X ′

2| ≤ 2, a contradiction. Suppose

that the algorithm terminated as a result of Check 4, i.e. |A2| = |B2| = 1 and G[X2] is

a path. If X ′
2 = X2, then |A′

2| = |B′
2| = 1 and G[X ′

2] is a path, and if X ′
2 ̸= X2 then

G[X ′
2] contains no path from A′

2 to B′
2; in either case we obtain a contradiction. Finally,

suppose that the algorithm terminates as a result of Check 6. So |A1| = |B1| = 1 and
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G[X1] is a path. Since it is not the case that |A′
1| = |B′

1| = 1 and G[X ′
1] is a path, there

exists some vertex w ∈ X ′
1 \ X1. As part of Check 6, the algorithm checked whether

there exists a special 2-join (X ′′
1 , X

′′
2 ) of type 2 of G compatible with (a1, a2, b1, b2, u, v)

such that {a1, b1, u, w} ⊆ X ′′
1 and {a2, b2, v} ⊆ X ′′

2 . By what we have proved so far, it

was correctly determined that no such special 2-join of type 2 exists, contradicting the

existence of (X ′
1, X

′
2). This proves (2).

Finally, we prove that the algorithm has time complexity O(|V (G)|6). To perform

Step 2, consider each vertex x of X2 and check whether any of Rules 1 to 6 apply, and if

so, perform the move operation described by the rule. If no such rule applies to x, then

for each u ∈ A1 check whether Rule 7 applies. If so, then perform the move operation

described by the rule. Checking whether the given vertex x satisfies the conditions

of any of Rules 1 to 6 takes O(|V (G)|) time. To check whether u ∈ A1 satisfies the

conditions of Rule 7, we must check whether there exists x, y ∈ A2\{a2} and w ∈ X2\A2

such that ux,wy, xa2, ya2 ∈ E(G) and uy, xw ̸∈ E(G). Since A1 and A2 are cliques and

G is C4-free, it cannot be the case that {u, x, y, w} ⊆ A1 ∪ A2. Therefore it suffices to

test whether for each w ∈ X2 \A2 the graph G[(A2 \ {a2})∪ {u,w}] is P4-free. Testing

P4-freeness can be done in O(|V (G)|+|E(G)|) = O(|V (G)|2) time (see [20]). Therefore,

given u ∈ A2, it takes O(|V (G)|3) time to check whether Rule 7 applies. It follows that

executing Step 2 takes O(|V (G)|5) time. In Step 3, Check 1 takes O(|V (G)|2) time,

Check 2 takes O(|V (G)|3) time (this follows from a similar argument to the one given

above regarding the complexity of checking whether Rule 7 applies), Check 3 takes

O(1) time and Checks 4 and 5 each take O(|V (G)|2) time. Check 6 involves executing

O(|V (G)|) times Step 2 and Checks 1–5 of Step 3, and thus takes O(|V (G)|6) time. It

follows that the algorithm has time complexity O(|V (G)|6).

A universal set of type 2 for a graph G is a set U of 2-configurations such that for

every special 2-join (X1, X2) of type 2 of G, some 2-configuration from U is compatible

with (X1, X2).

Lemma 3.39. There exists an algorithm with the following specifications:

Input: A C4-free graph G that has no clique cutset, and a universal set U of type 2

for G.

Output: “Yes”, together with a special 2-join (X1, X2) of type 2 with split

(X1, X2, A1, A2, B1, B2), if there is one, and “No” otherwise.

Running time: O(|V (G)|6 · |U |).
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Proof. For each 2-configuration z ∈ U , apply the algorithm of Lemma 3.38 with graph

G and 2-configuration z as input.

By enumerating all 6-tuples of a graph G, one can construct a universal set of size

O(|V (G)|6).

Lemma 3.40. Let G be a graph. Then one can compute in O(n7) time a universal set

of type 2 of size O(n6) for G.

Proof. Let U = ∅. Enumerate all 6-tuples (a1, a2, b1, b2, u, v) of vertices of G, and check

whether (a1, a2, b1, b2, u, v) is a 2-configuration, adding it to U if it is. After this process

completes, U is a universal set of type 2 of size O(n6) for G. Since checking whether

a 6-tuple is a 2-configuration consists of checking a constant number of times whether

two vertices are adjacent or nonadjacent, the set U can be computed in O(n7) time.

Lemma 3.41. There exists an algorithm with the following specifications:

Input: A C4-free graph G that has no clique cutset.

Output: “Yes”, together with a special 2-join (X1, X2) of type 2 with split (X1, X2, A1, A2, B1, B2),

if there is one, and “No” otherwise.

Running time: O(|V (G)|12).

Proof. Follows immediately from Lemmas 3.39 and 3.40.

3.5 Algorithms

3.5.1 Maximum clique and maximum stable set

Let G be a graph. A weight function for G is a function w : V (G) → N that assigns a

natural number to each vertex of G. A maximum weight clique (resp. maximum weight

stable set) of G is a clique (resp. stable set) S of G such that
∑

v∈S w(v) is maximum.

In this section we present polynomial time algorithms for solving the maximum

weight clique and maximum weight stable set problems for ℓ-holed graphs where ℓ is

odd and ℓ ≥ 7. These algorithms rely on the structure theorem presented in Section 3.2.

A vertex v of a graph G is a chordal-vertex if G[N [v]] is chordal.

Lemma 3.42. For every odd integer ℓ ≥ 7, every ℓ-holed graph contains a chordal-

vertex.
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Proof. We prove the following claims.

(1) Rings and proper blowups of twinless odd ℓ-templates contain at least two nonadja-

cent chordal-vertices.

Proof of (1): Every vertex of a ring is a chordal-vertex, so clearly a ring has at least

two nonadjacent chordal-vertices. Suppose G∗ is a proper blowup of a twinless odd

ℓ-template G, and let (A,B,A′, B′, I, w,w′) be a proper ℓ-partition of G. Let P and

P ′ be any two principal paths of G. It is easily seen that any vertex from the inte-

rior of P together with any vertex from the interior of P ′ forms a pair of nonadjacent

chordal-vertices of G∗. This proves (1).

(2) Let G be a C4-free graph that is not complete, and let U be the set of all universal

vertices of G. Then every chordal-vertex of G \U is a chordal-vertex of G, and if some

vertex of U is a chordal-vertex of G, then every vertex of G is a chordal-vertex.

Proof of (2): Since G contains no C4, U is a clique that is complete to V (G) \ U .

It follows that any chordal-vertex of G \ U is a chordal-vertex of G. If some vertex of

U is a chordal-vertex of G, then G is a chordal graph, and hence every vertex of G is

a chordal-vertex. This proves (2).

Fix an odd integer ℓ ≥ 7 and an ℓ-holed graph G. By Theorem 3.5, G is a ring

or a proper blowup of a twinless odd (ℓ − 1)/2-template, or G has a universal vertex

or a clique cutset. In the first two cases, we are done by (1). Clearly we may assume

that G is not complete, and therefore by (2), G has a chordal-vertex if and only if the

graph obtained from G by removing all universal vertices has a chordal-vertex. So it

remains to consider the case where G has a clique cutset. Then by Lemma 2.16, G

has an extreme clique cutset C. Let (A,B) be a partition of V (G) \ C such that A is

anticomplete to B, and suppose without loss of generality that G[A ∪C] has no clique

cutset. By (1) and (2), some vertex in A is a chordal-vertex of G[A ∪ C], and hence it

is a chordal-vertex of G.

Lemma 3.43. There exists an algorithm with the following specifications:

Input: An ℓ-holed graph G for some odd ℓ ≥ 7, and a weight function w : V (G) → N.

Output: A maximum weight clique of G.

Running time: O(|V (G)|2 · |E(G)|).
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Proof. Consider the following algorithm.

Step 1. Find a chordal-vertex x1 of G, and set N1 = G[N [x1]] and G1 = G \ {x1}.

Step 2. For each i ∈ {2, . . . , |V (G)|}, find a chordal-vertex xi of Gi−1, and set Ni =

G[NGi−1 [xi]] and Gi = Gi−1 \ {xi}. (So Gi = G \ {x1, . . . , xi}.)

Step 3. Let K be the set that consists of all maximal cliques of each of the graphs

N1, . . . , N|V (G)|.

Step 4. Output any clique K ∈ K that maximises
∑

x∈K w(x) and terminate.

We first prove that this algorithm is correct. That the chordal-vertices x1 and xi in

Steps 1 and 2 respectively exist follows from Lemma 3.42. Clearly any maximal clique

of G is a maximal clique of exactly one of the graphs N1, . . . , N|V (G)|, and hence the

set K that is constructed in Step 3 consists of all maximal cliques of G. In particular,

K contains all maximum weight cliques of G, and hence the clique that is outputted in

Step 4 is one of maximum weight. Therefore the algorithm is correct.

Let us analyse the running time of this algorithm. Checking whether a graph

with n vertices and m edges is chordal can be done in O(n +m) time (see [45]), and

therefore finding a vertex of G whose neighbourhood induces a chordal graph can be

done in time O(
∑

v∈V (G)(dG(v)+|E(G)|)) = O(|V (G)|·|E(G)|). Therefore constructing
the graphs N1, . . . , N|V (G)| can be done in O(|V (G)|2 · |E(G)|) time. Generating all

maximal cliques of a chordal graph on n vertices and m edges (of which there are O(n)

many; see [27]) can be done in time O(n + m) (see [33]), and therefore constructing

the set K of O(|V (G)|2) many maximal cliques of G takes time O(|V (G)|2 + |V (G)| ·
|E(G)|) = O(|V (G)| · |E(G)|). So the running time of this algorithm is dominated

by building graphs N1, . . . , N|V (G)|, and hence the running time of this algorithm is

O(|V (G)|2 · |E(G)|).

A vertex v in a graph G is an antichordal-vertex if G[V (G) \ N [v]] is chordal. If

every graph in a hereditary class C contains an antichordal-vertex, then to solve the

maximum weight stable set problem for this class one can use essentially the same

method as above but by iteratively finding and deleting antichordal-vertices instead of

chordal-vertices (and by computing maximum stable sets in chordal graphs intead of

maximal cliques). However, it is not the case that all ℓ-holed graphs (for odd ℓ ≥ 7)

contain an antichordal-vertex; see Figure 3.7 for an example. Therefore, to solve the
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Figure 3.7: A 7-holed graph that has no antichordal-vertex.

maximum weight stable set problem for ℓ-holed graphs (for odd ℓ ≥ 7), we combine the

method we just described with a process of clique cutset decomposition.

We first prove that rings and blowups of templates contain an antichordal-vertex.

To do so, we need the following.

Lemma 3.44 (Lemma 4.11 in [35]). Let ℓ ≥ 3 and let G be an odd ℓ-template with

ℓ-partition (A,B,A′, B′, I, w,w′). Every hole of G is formed by two principal paths of

G and a single vertex of A ∪ B ∪ A′ ∪ B′ that does not belong to these principal paths

(it therefore has length 2ℓ+ 1).

Lemma 3.45 (Lemma 5.3 in [35]). Let ℓ ≥ 3 and let G be an odd ℓ-template with

ℓ-partition (A,B,A′, B′, I, w,w′). Let C be a cycle of G of length at least 4 with no

solid chord. If C is not a hole, then there exist three consecutive vertices x, y, u in C

such that:

� u ∈ A, x, y ∈ B, {u} ⊆ Hy ⊆ Hx and u is an isolated vertex of Hx; or

� u ∈ A′, x, y ∈ B′, {u} ⊆ H ′
y ⊆ H ′

x and u is an isolated vertex of H ′
x.

In particular, ux is an optional edge of G and a chord of C.

Lemma 3.46. Let ℓ ≥ 7 be an odd integer and let G∗ be a proper blowup of a twinless

odd (ℓ− 1)/2-template G. Let (A,B,A′, B′, I, w,w′) be a proper (ℓ− 1)/2-partition of

G. Then G∗[
⋃

u∈A∪B Ku] and G∗[
⋃

u′∈A′∪B′ Ku′ ] are chordal.

Proof. Suppose that G∗[
⋃

u∈A∪B Ku] contains a hole H, and let H0 = G[{v ∈ V (G) :

Kv ∩ V (H) ̸= ∅}]. By Lemma 3.44, H0 is not a hole of G, and hence by conditions (c)
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and (d) in the definition of a blowup of a twinless odd template, H is isomorphic to

some graph obtained from H0 by removing optional edges. Therefore H0 is a cycle of G

with no solid chord. By Lemma 3.45, there exist three consecutive vertices x, y and u

of H0 such that u ∈ A, x, y ∈ B, {u} ⊊ Hy ⊊ Hx, and u is an isolated vertex of G[Hx]

(and hence also an isolated vertex of G[Hy]). So ux and uy are optional edges of G.

Since a vertex u′ ∈ Ku∩V (H) has a neighbour in Ky, it follows by condition (g) in the

definition of a blowup of a twinless odd template that u′ is complete to Kx. But then

H has a chord, a contradiction. Therefore G∗[
⋃

u∈A∪B Ku] is chordal, and a symmetric

argument proves that G∗[
⋃

u′∈A′∪B′ Ku′ ] is chordal.

Lemma 3.47. Let ℓ ≥ 7 be an integer. If G is a ring or a proper blowup of a twinless

odd (ℓ− 1)/2-template, then G contains an antichordal-vertex.

Proof. Suppose that G is a ring of length k, and let (X1, . . . , Xk) be a ring partition of

G. Observe that any hole of G intersects each of the cliques X1, . . . , Xk. Fix x ∈ X1.

Since X1 is a clique, X1 ⊆ N [x], and hence G[V (G) \ N [x]] is chordal. It follows by

symmetry that every vertex of a ring is an antichordal-vertex.

Suppose that G is a proper blowup of a twinless odd (ℓ− 1)/2-template G0, and let

(A,B,A′, B′, I, w,w′) be a proper (ℓ−1)/2-partition of G0. By Lemma 3.46, every hole

of G intersects
⋃

u∈I Ku, and therefore it easily follows that every hole of G intersects

both
⋃

u∈A∪B Ku and
⋃

u′∈A′∪B′ Ku′ . By condition (h) in the definition of a blowup

of a template, we have that
⋃

u∈A∪B Ku ⊆ NG[w], and therefore w is an antichordal-

vertex.

Lemma 3.48. There exists an algorithm with the following specifications:

Input: A graph G that is a ring or a blowup of a twinless odd (ℓ − 1)/2-template

(for odd ℓ ≥ 7), and a weight function w : V (G) → N.

Output: A maximum weight stable set of G.

Running time: O(|V (G)|2 · |E(G)|).

Proof. Consider the following algorithm.

Step 1. Find an antichordal-vertex x1 of G, and set N1 = G[V (G) \N(x1)] and G1 =

G \ {x1}.

Step 2. For each i ∈ {2, . . . , |V (G)|}, find an antichordal-vertex xi of Gi−1, and set

Ni = G[V (Gi−1) \NGi−1(xi)] and Gi = Gi−1 \ {xi}. (So Gi = G \ {x1, . . . , xi}.)
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Step 3. For each i ∈ {1, . . . , |V (G)|}, compute a maximum weight stable set Si of Ni.

Step 4. Output any set S ∈ {S1, . . . , S|V (G)|} such that
∑

s∈S w(s) is maximum, and

terminate.

Let us prove that this algorithm is correct. That the antichordal-vertices in Steps 1

and 2 exist follows from Lemma 3.47. To prove that the set S that is outputted in

Step 4 is a maximum weight stable set of G, we show that every maximum weight

stable set of G is a maximum weight stable set of one of the graphs N1, . . . , N|V (G)|.

Let S0 be a maximum weight stable set of G, and let i ∈ {1, . . . , |V (G)|} be the

smallest integer such that xi belongs to S0. If i = 1, then S0 = |V (G)| and hence S0

is a maximum weight stable set of G1. So we may assume that i ≥ 2. Then, by our

choice of i, {x1, . . . , xi−1} ∩ S0 = ∅, and hence S0 is a maximum weight stable set of

Gi−1. Since xi ∈ S0, N(xi) ∩ S0 = ∅, and hence S0 is a maximum weight stable set of

Gi−1 \N(xi) = Ni. It follows that the set S outputted in Step 4 is a maximum weight

stable set of G, and therefore the algorithm is correct.

The analysis of the running time of this algorithm is the same as the one for

the algorithm given in the proof of Lemma 3.43, i.e. the algorithm has running time

O(|V (G)|2 · |E(G)|).

We define a class B of graphs inductively as follows:

� for every integer ℓ ≥ 7, every ring of length ℓ and every proper blowup of a

twinless odd (ℓ− 1)/2-template belongs to B;

� if G is a graph whose vertex set admits a partition (A,B) such that G[A] ∈ B,
and B is a clique that is complete to A, then G ∈ B.

By Theorem 3.5, for every odd integer ℓ ≥ 7, every ℓ-holed graph either belongs to

B or has a clique cutset.

Lemma 3.49. There exists an algorithm with the following specifications:

Input: A graph G ∈ B, and a weight function w : V (G) → N.

Output: A maximum weight stable set of G.

Running time: O(|V (G)|2 · |E(G)|).
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Proof. Consider the following algorithm. Let U be the (possibly empty) set of all

universal vertices of G and let G′ = G \ U . If U = ∅, then set αU = 0, and otherwise

set αU = maxu∈U w(u). Apply the algorithm given in the proof of Lemma 3.48 with

G′ and the weight function w restricted to V (G′) as input, and let S be its output.

If
∑

s∈S w(s) > αU , then output S and terminate, and otherwise output the set {u},
where u is any vertex of U satisfying w(u) = αU , and terminate. Clearly this algorithm

is correct and has running time O(|V (G)|2 · |E(G)|).

Lemma 3.50. There exists an algorithm with the following specifications:

Input: An ℓ-holed graph G for some odd ℓ ≥ 7, and a weight function w : V (G) → N.

Output: A maximum weight stable set of G.

Running time: O(|V (G)|3 · |E(G)|).

Proof. By Lemma 3.49, and Theorem 3.5, together with Lemma 8.6 from [4].

3.5.2 Recognition via clique cutset and special 2-join decomposition

In Section 3.4.3, we showed that for odd ℓ ≥ 7, every ℓ-holed graph is a ring or a

pyramid, or has a universal vertex, a clique cutset or a special 2-join (Theorem 3.33).

In Section 3.4.4, we gave algorithms that detect whether a graph has a special 2-join. In

this section, we put these things together to obtain a recognition algorithm for ℓ-holed

graphs (where ℓ ≥ 7 is odd) based on a process of decomposition by clique cutsets and

special 2-joins.

We make use of clique cutset decomposition trees, whose definition is given in

Section 1.2. We make use of the following fact about computing clique cutset decom-

position trees. Recall also that a clique cutset decomposition tree for a graph G has

O(|V (G)|) leaves.

Theorem 3.51 (Tarjan [46]). There exists an algorithm that computes an extreme

clique cutset decomposition tree of any graph G in O(|V (G)| · |E(G)|) time.

Lemma 3.52. There exists an algorithm with the following specifications:

Input: A graph G.

Output: A family L of induced subgraphs of G that satisfies the following properties:

– G is ℓ-holed for some odd ℓ ≥ 7 if and only if all the graphs in L are ℓ-holed.
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– The graphs in L have no clique cutset.

– The number of graphs in L is O(|V (G)|).

Running time: O(|V (G)|3).

Proof. Execute the algorithm from Theorem 3.51 to obtain in O(|V (G)| · |E(G)|) =

O(|V (G)|3) time an extreme clique cutset decomposition tree T of G, and let L consist

of all the leaves of T . Clearly no graph in L has a clique cutset, and |L| = O(|V (G)|).
If G is ℓ-holed for some odd ℓ ≥ 7, then all the graphs in L are also ℓ-holed because

they are induced subgraphs of G. To see that the converse holds, it suffices to observe

that if K is a clique cutset of G and G1 and G2 are two blocks of decomposition of G

w.r.t. K, then any hole of G is a hole of G1 or G2.

Lemma 3.53. There exists an algorithm with the following specifications:

Input: A C4-free graph G that has no clique cutset.

Output: A family L of induced subgraphs of G that satisfies the following properties:

– G is ℓ-holed for some odd ℓ ≥ 7 if and only if all the graphs in L are ℓ-holed.

– The graphs in L have no universal vertex, clique cutset or special 2-join.

– The number of graphs in L is O(|V (G)|2).

Running time: O(|V (G)|14).

Proof. Consider the following algorithm. Initialise L = ∅ and L′ = {G}. While L′ ̸= ∅,
repeatedly execute the following:

� Let H be any graph from L′, and let H∗ be the graph obtained from H by

removing all simplicial vertices and universal vertices.

� Use the algorithms of Lemmas 3.37 and 3.41 to check whether H∗ has a special

2-join.

� If H∗ has no special 2-join, remove H from L′ and add H∗ to L.

� If H∗ has a special 2-join (X1, X2), then let H1 and H2 be the two blocks of

decomposition of H∗ w.r.t. (X1, X2). Remove H from L′ and add graphs H1 and

H2 to L′.
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When L′ = ∅, output L and terminate.

Let us prove that L has the desired properties. Since the blocks of decomposition of

a graph w.r.t. a special 2-join are induced subgraphs, all graphs in L are induced sub-

graphs of G. Furthermore, it follows from this observation together with Lemmas 3.29

and 3.31 that G is ℓ-holed for some odd ℓ ≥ 7 if and only if all graphs in L are ℓ-holed.

Clearly no graph in L has a universal vertex or a special 2-join. Since G has no clique

cutset and we only add to L graphs that have no simplicial vertex, it follows from

Lemma 3.30 that no graph in L has a clique cutset.

It remains to prove that |L| = O(|V (G)|2). For any graph F , let Φ(F ) = |E(F )| −
|V (F )| − 1. Suppose that F is a graph with no clique cutset that has a special 2-join

(X1, X2) with split (X1, X2, A1, A2, B1, B2) and blocks of decomposition F1 and F2.

Then

Φ(F ) ≥ |E(F [X1])|+ |E(F [X2])|+ (|A1|+ |A2| − 1) + |B1| · |B2|

− |X1| − |X2| − 1.

Since |V (P )| = |E(P )|+ 1 for any path P , we have that for each i ∈ {1, 2},

Φ(Fi) = |E(F [Xi])|+ |Ai|+ |Bi| − |Xi| − 2.

Therefore

Φ(F1) + Φ(F2) = |E(F [X1])|+ |E(F [X2])|+ |A1|+ |A2|

+ |B1|+ |B2| − |X1| − |X2| − 4,

and since p+ q ≤ pq + 1 for all positive integers p and q it follows that

Φ(F1) + Φ(F2) < Φ(F ).

Since F has no clique cutset, F is 2-connected, and therefore so are F1 and F2. Thus

|E(Fi)| ≥ |V (Fi)| for each i ∈ {1, 2}, and hence Φ(Fi) ≥ −1. If Φ(Fi) = −1, then

Fi is a hole, contradicting the fact that if |A3−i| = |B3−i| = 1, then F [X3−i] is not a

path. Therefore Φ(Fi) ≥ 0, and Φ(F ) > 0 since Φ(F ) > Φ(F1) +Φ(F2). It follows that

the size of L is at most 2Φ(G) = O(|E(G)|) = O(|V (G)|2). The running time of this

algorithm is therefore O(|V (G)|14).

Lemma 3.54. There exists an algorithm with the following specifications:
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Input: A graph G and an integer ℓ ≥ 2.

Output: Yes if G is a pyramid whose 3 paths are all of length ℓ, and No otherwise.

Running time: O(|V (G)|2).

Proof. Consider the following algorithm.

Step 1. Let S be the set of vertices of G of degree 2. If S = ∅, then output No.

Step 2. Check if G[S] has exactly three components P1, P2 and P3, each a path of

length ℓ−2. If not, then output No. Say P1 has endpoints u1, v1, P2 has endpoints

u2, v2 and P3 has endpoints u3, v3.

Step 3. Check if G \ S has exactly two components A and B, where A consists of

a single vertex a of degree 3 in G, and B is a complete graph on 3 vertices

x, y, z. If not, then output No. Check that the three neighbours of a belong

to {u1, u2, u3, v1, v2, v3}; if not, then output No. From here on we assume that

NG(a) = {u1, u2, u3}. Check that: each of x, y, z has exactly one neighbour in

G \B; that each such neighbour belongs to {v1, v2, v3}; and that no two vertices

of B are adjacent to the same vertex from {v1, v2, v3}. If any of these checks fail,

then output No.

Step 4. Output Yes.

It is clear that this algorithm correctly decides on input a graph G and an integer

ℓ ≥ 2 whether G is a pyramid whose 3 paths are all of length ℓ.

The running time of this algorithm is O(n2): Step 1 can be done in O(n2) time and

Steps 2 and 3 can be done in O(n+m) time.

Theorem 3.55 (Boncompagni, Penev and Vušković [4]). There exists an algorithm

with the following specifications:

Input: A graph G.

Output: Either the true statement that G is a ring, together with the length and

good partition of the ring, or the true statement that G is not a ring.

Running time: O(|V (G)|2).

Theorem 3.56. There exists an algorithm with the following specifications:
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Input: A graph G and an odd integer ℓ ≥ 7.

Output: “Yes” if G is ℓ-holed, and “No” otherwise.

Running time: O(|V (G)|15).

Proof. Consider the following algorithm.

Step 1. Check whether G contains a C4, and if so, output “No” and terminate.

Step 2. Execute the algorithm of Lemma 3.52 with input G, and let L1 be its output.

Step 3. For each graph F ∈ L1, execute the algorithm of Lemma 3.53 with input F ,

and let LF be its output. Set L2 =
⋃

F∈L1
LF .

Step 4. Check that each graph in L2 is a complete graph, a ring of length k (us-

ing Lemma 3.55), or a pyramid whose three paths are of length k−1
2 (using

Lemma 3.54); if not, then output No, and otherwise, output Yes.

By Lemmas 3.52 and 3.53, G is ℓ-holed if and only if every graph in L2 is ℓ-holed.

If the algorithm outputs Yes, then every graph in L2 is a ring of length ℓ or a pyramid

whose three paths are all of length (ℓ − 1)/2, and therefore is ℓ-holed. Thus, if the

algorithm outputs Yes, then G is ℓ-holed. If the algorithm outputs No but G is ℓ-holed,

then some F ∈ L2 is not a ring of length ℓ or a pyramid whose three paths are all of

length (ℓ − 1)/2, contrary to Theorem 3.33. Thus, if the algorithm outputs No, then

G is not ℓ-holed; this completes the proof that the above algorithm is correct.

Step 1 takes O(|V (G)|4) time and Step 2 takes O(|V (G)|3) time. Step 3 executes

the algorithm of Lemma 3.53 for each of the O(|V (G)|) many graphs in |L1|, and

hence this step takes O(|V (G)|15) time. Step 4 executes the algorithms of Lemma 3.54

and Theorem 3.55 for each of the O(|V (G)|3) many graphs in L2, and hence this

step takes O(|V (G)|6) time. Therefore the overall running time of this algorithm is

O(|V (G)|15).

Theorem 3.57 (Nikolopoulos and Palios [44]). There exists an algorithm with the

following specifications:

Input: A graph G.

Output: A hole H of G, if one exists, and otherwise the true statement that G

contains no hole.
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Running time: O(|V (G)|+ |E(G)|2).

The following is the main result of this section.

Theorem 3.58. There exists an algorithm with the following specifications:

Input: A graph G.

Output: “Yes” if G is ℓ-holed for some odd ℓ ≥ 7, and “No” otherwise.

Running time: O(|V (G)|15).

Proof. Run the algorithm of Theorem 3.57 and let H be a hole of G if it finds one. If

it finds no hole, then output Yes, and if |V (H)| < 7 or if |V (H)| is even, then output

No. Now run the algorithm of Theorem 3.56 with the graph G and integer |V (H)| as
input. If we obtain the output “No”, then output “No”. Otherwise, output “Yes”.

3.5.3 Recognition via clique cutset decomposition

In this section we give an algorithm that decides in polynomial time whether a given

graph is a bordered blow-up of an ℓ-frame for some odd ℓ ≥ 7. Together with structural

results from [19] (described in Sections 3.1 and 3.3), this entails a polynomial time

recognition algorithm for ℓ-holed graphs where ℓ ≥ 7 and ℓ is odd.

We begin with the following. (We refer the reader to Section 3.3 for the definition

of a bordered blow-up of an ℓ-frame.)

Lemma 3.59. Let ℓ ≥ 7 be odd and let G = H ∪ J ∪ K be a bordered blow-up of an

ℓ-frame F . If G has no clique cutset, then some vertex of V (J) \W (A) is a universal

vertex of J , or some vertex of V (K) \W (B) is a universal vertex of K.

Proof. Suppose that G has no clique cutset. Since A and B are complementary thresh-

old graphs, we may assume without loss of generality that A contains a vertex of

degree 0; let I be the set of all such vertices of A. From the definition of a blow-up of

an ℓ-frame, it follows that for each ai ∈ I, the set W (ai) is anticomplete to W (A\{ai}).
(Recall that vertices of A are labeled a1, . . . , ak, vertices of B are labeled b1, . . . , bk, and

ai, bi are the ends of the bar Pi of F .) Assume I = {a1, . . . , as}.

(1) If I ̸= V (A), then for every ai ∈ I, each vertex of W (ai) has a neighbour in

V (J) \W (A) that is adjacent to some vertex of W (A \ I).
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Proof of (1): Fix ai ∈ I. If there is no path in J from some vertex of W (ai) to

some vertex of W (A \ I), then W ({b1, . . . , bs}) is a clique cutset of G that separates

W (ai) from W (A \ I), a contradiction. So there exists a path in J from some vertex of

W (ai) to some vertex of W (aj) for some aj ∈ V (A) \ I. We may assume aj is chosen

so that there is a path P in J with ends a ∈ W (ai) and a′ ∈ W (aj) and with all other

vertices belonging to V (J) \W (A). By the definition of a border, P has length 2. So

a has a neighbour in V (J) \W (A) that is adjacent to some vertex of W (A \ I); let X
be the set of all vertices from W (ai) that have such a neighbour.

Suppose there exists t ∈ W (ai) \X, and let u be the neighbour of ai in Pi. From

what we have already proved, it follows that there is no path in J from t to some vertex

of W (A \ I) whose only vertex in W (ai) is t. Therefore every path in G from t to some

vertex of W (A \ I) intersects X ∪ (N(t) ∩ W (u)). Clearly both X and N(t) ∩ W (u)

are cliques, and it follows from the fourth bullet in the definition of border that X

is complete to N(t) ∩ W (u). But then X ∪ (N(t) ∩ W (u)) is a clique cutset of G, a

contradiction. Therefore X = W (ai), and this proves (1).

If I ̸= V (A), then V (J) \W (A) is nonempty by (1), and if I = V (A), then V (J) \
W (A) is nonempty for otherwise G has a clique cutset (for instance the set W (b) for

any b ∈ V (B) is a clique cutset). Among all vertices in V (J) \ W (A), let c be one

that maximises |N(c) ∩ V (A)|, and subject to that, maximises |N(c) ∩ W (A)|; and

furthermore, if I ̸= V (A), then choose c from those vertices in V (J) \W (A) that have

a neighbour in both W (I) and W (A \ I) (which is possible by (1)).

(2) If c is complete to V (A), then c is a universal vertex of J .

Proof of (2): Suppose that c is complete to V (A). By definition, every vertex in

V (J) \ W (A) has two nonadjacent neighbours in V (A), and hence it follows from J

being chordal that c is complete to V (J) \ (W (A)∪ {c}). So it remains to prove that c

is complete to W (A).

Suppose there exists some a ∈ V (A) and a′ ∈ W (a) such that c, a′ are nonadjacent.

Suppose in addition that a ∈ V (A)\I. Since |A\I| ≥ 2 and G[V (A)\I] has a universal

vertex, there is some b ∈ V (A) \ (I ∪ {a}) adjacent to a. But now, for any d ∈ I, the

path a′, b, c, d violates the third bullet in the definition of a border, a contradiction. So

c is complete to W (A \ I), and hence a ∈ I.

By (1), a′ has some neighbour c′ ∈ V (J) \ W (A), and clearly it is different from

c. By what we proved in the first paragraph, c and c′ are adjacent. Consequently, c′

is adjacent to every v ∈ N(c) ∩ W (a), for otherwise {a′, v, c, c′} induces a 4-hole, a
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contradiction; in particular, c′ and a are adjacent. Furthermore, c′ is adjacent to every

v ∈ (N(c)∩W (A)) \W (a), for otherwise the path a′, c′, c, v violates the third bullet in

the definition of a border. But now c′ is complete to V (A) and has more neighbours in

W (A) than c, contrary to our choice of c. So c is complete to W (A), and this proves (2).

We first handle the case where I = V (A). By (2), we may assume that c is not

complete to V (A). Suppose there exists some c′ ∈ V (J)\W (A) that is adjacent to some

a ∈ NA(c) and a′ ∈ V (A) \N(c). By maximality, there exists some a′′ ∈ NA(c) \N(c′).

But now one of a′′, c, a, c′, a′ and a′′, c, c′, a′ is a path that violates the third bullet in

the definition of a border, a contradiction. So no vertex in V (J)\W (A) has neighbours

in both NA(c) and V (A)\NA(c). So for every v ∈ V (J)\W (A), either NA(v) ⊆ NA(c)

or V (A) \ NA(v); it follows from the third bullet in the definition of a border that if

for v, v′ ∈ V (J) \ W (A) we have that NA(v) ⊆ NA(c) and NA(v
′) ⊆ V (A) \ NA(c),

then v, v′ are nonadjacent. But now, with V (A) \ N(w) = {a1, . . . , at} say, the set

W ({b1, . . . , bt}) is a clique cutset of G, a contradiction. So I ̸= V (A), and since I

contains all isolated vertices of A we have that |A \ I| ≥ 2. Also, by our choice of c, it

has a neighbour in both I and V (A \ I), which we use in the proof of the following:

(3) c is complete to W (A \ I).

Proof of (3): Fix a ∈ N(c) ∩ W (ai) for some ai ∈ I and a′ ∈ N(c) ∩ W (aj) for

some aj ∈ V (A \ I). Since A \ I contains no vertex of degree 0, it contains a universal

vertex, and therefore by the definition of a border so does J [W (A\ I)]; let u ∈ V (A\ I)
be a universal vertex of J [W (A \ I)]. Suppose that c is not adjacent to any universal

vertex of J [W (A \ I)]. Then a′ ̸= u, and hence u ̸∈ W (aj), but now the path a, c, a′, u

violates the third bullet in the definition of a border, a contradiction. So c is adja-

cent to some universal vertex of J [W (A \ I)]; thus, we may assume a′ = u. It now

follows that c is adjacent to every v ∈ W (A\ (I ∪{u})), for otherwise the path a, c, u, v

violates the third bullet in the definition of a border. It remains to prove that c is

complete to W (u). Suppose otherwise, and fix u′ ∈ W (u) \N(c). Let v be any vertex

in V (A) \ (I ∪ {u}). But now the path a, c, v, u′ contradicts the definition of a border,

and therefore c is complete to W (u). This proves (3).

(4) c is complete to I.

Proof of (4): Suppose not and fix a ∈ I \ N(c). By (1) and (3), there is a vertex

c′ ∈ V (J) \W (A) adjacent to a and complete to W (A \ I). By our choice of c, there is
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some a′ ∈ I adjacent to c and nonadjacent to c′. But now, for any a′′ ∈ V (A \ I), one
of a, c′, a′′, c, a′ and a, c′, c, a′ is a path that violates the third bullet in the definition of

a border, a contradiction. This proves (4).

By (3) and (4), c is complete to V (A), and thus it follows from (2) that c is a

universal vertex of J .

We also need the following two lemmas:

Lemma 3.60. Let ℓ ≥ 7 be odd and let G = H ∪ J ∪ K be a bordered blow-up of an

ℓ-frame F . If w is a universal vertex of J that belongs to V (J) \W (A), then:

� dG(w, u) = 1 for all u ∈ V (J) \ {w};

� 1 < dG(w, u) < (ℓ− 3)/2 + 1 for all u ∈ V (H \ (J ∪K));

� dG(w, u) = (ℓ− 3)/2 + 1 for all u ∈ W (B); and

� dG(w, u) = (ℓ− 1)/2 + 1 for all u ∈ V (K) \W (B).

Proof. The first bullet follows from w being a universal vertex of J .

Fix u ∈ V (H \ (J ∪K)). By definition, V (J) \W (A) is anticomplete to V (H \ J),
and therefore dG(w, u) > 1. Let P = p1, . . . , pm be the bar of F and let i ∈ {1, . . . ,m}
be the integer such that u ∈ W (pi). Note that p1, pm ∈ V (J∪K), and hence i ̸∈ {1,m}.
Then w, p1, . . . , pi−1, u is a path in G from w to u, and its length is less than (ℓ−3)/2+1

since the length of P is (ℓ− 3)/2. Thus the second bullet holds.

Fix u ∈ W (B). Clearly any path from w to u contains (possibly among

other vertices) the vertex w together with exactly one vertex from each of the sets

W (p1), . . . ,W (pm) for some bar p1, . . . , pm of F . Such a path has length at least

(ℓ − 3)/2 + 1, and therefore dG(w, u) ≥ (ℓ − 3)/2 + 1. That dG(w, u) ≤ (ℓ − 3)/2 + 1

follows from the fact that there exists a bar p1, . . . , pm with u ∈ W (pm) (in which case

w, p1, . . . , pm−1, u is the desired path). Thus the third bullet holds.

Finally, the fourth bullet follows from the third bullet together with the observation

that V (K) \ V (B) is anticomplete to V (G) \W (B) and every vertex of V (K) \W (B)

has a neighbour in W (B).

Recall that for a graph G and disjoint subsets X,Y of V (G), we denote by G[X,Y ]

the bipartite subgraph of G with vertex set X ∪ Y and edge set the set of edges of G

between X and Y .
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Lemma 3.61. Let ℓ ≥ 7 be odd, let G = H ∪ J ∪ K be a bordered blow-up of an

ℓ-frame F and let Ai ⊆ W (A) and Bi ⊆ W (B) be nonempty sets. Then Ai is a bag

of J if and only if there exists a component Ci of G[W (A), V (G \ (J ∪K))] such that

V (Ci)∩W (A) = Ai. Similarly, Bi is a bag of K if and only if there exists a component

Ci of G[W (B), V (G \ (J ∪K))] such that V (Ci) ∩W (B) = Bi.

Proof. We prove the statement about bags of J , and the analogous statement about

bags of K follows by symmetry.

Let Ai be a bag of J , fix a ∈ Ai ∩ V (A), and let Ci be the component of

G[W (A), V (G \ (J ∪ K))] that contains a. Let u be the unique neighbour of a in

the bar of F that contains a. Since a, u are adjacent, u ∈ V (Ci). By the definition of a

bordered blow-up of an ℓ-frame, u is complete to W (a) = Ai, and therefore Ai ⊆ V (Ci).

If Ci contains a vertex from a bag of J different from Ai, then there is a path of

length 2 in Ci from a to some vertex belonging to a bag different from Ai and whose

internal vertex belongs to V (G \ (J ∪ K)), contradicting the fact that vertices from

different bags of J share no neighbours outside of J .

To prove the converse, let Ci be a component of G[W (A), V (G) \ (J ∪ K)] and

suppose that V (Ci) ∩ W (A) is not a bag of J . So either V (Ci) ∩ W (A) is a proper

subset of some bag of J or V (Ci) ∩W (A) intersects at least two bags of J . Since for

each bag of J there is some vertex of G \ (J ∪ K) complete to it (namely the vertex

with a neighbour in the bag and which belongs to a bar of F ), it follows that if Ci

contains some vertex of a bag, then it contains the entire bag. Thus V (Ci) ∩ W (A)

is not a proper subset of some bag of J . Therefore Ci contains a vertex from some

two bags As, At of J ; assume As, At are chosen so that the length of a path from some

vertex of As to some vertex of At in Ci is minimum. Applying the same argument as

in the preceding paragraph, we get that some vertex of G \ (J ∪K) has a neighbour in

both As and At, contradicting the fact that vertices from different bags of J share no

neighbours outside of J .

For a general graph G, a blow-up of G is any graph that can be obtained from G

by substituting a nonempty clique for each vertex. (Blow-up means something more

complicated for ℓ-frames and ℓ-frameworks.) If G is (P4, C4, C4)-free, then clearly so is

any blow-up of G. Thus:

Lemma 3.62. If G is a blow-up of a threshold graph, then G is a threshold graph.

Let T be a tree with root w. The height of T is defined to be h(T ) =

maxv∈V (T ) dT (w, v). For i ∈ {0, . . . , h(T )} we denote by T (i) the set of vertices v
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of T such that dT (w, v) = i. A breadth-first search tree (or BFS-tree for short) is any

tree obtained as output from the breadth-first search algorithm. It is well known that if

T is a BFS-tree with root w for a graph G, then dT (w, v) = dG(w, v) for all v ∈ V (G).

Theorem 3.63. There exists an algorithm with the following specifications:

Input: A graph G that has no clique cutset, and an odd integer ℓ ≥ 7.

Output: Yes if G is a bordered blow-up of an ℓ-frame, and No otherwise.

Running time: O(|V (G)|7).

Proof. Consider the following algorithm. Let Z = V (G).

Step 1. If Z = ∅, then output No; otherwise, pick a vertex w ∈ Z and remove it from

Z.

Step 2. Let T be a BFS-tree for G rooted at w. If the height h = h(T ) of T is neither

(ℓ− 1)/2 + 1 nor (ℓ− 3)/2 + 1, then go to Step 1. Otherwise, let:

� J ′ = G[T (0) ∪ T (1)],

� K ′ = G[T ((ℓ− 3)/2 + 1) ∪ T (h)],

� M = V (G) \ V (J ′ ∪K ′),

� JA = {v ∈ V (J ′) : NG(v) ∩M ̸= ∅}, and

� KB = {v ∈ V (K ′) : NG(v) ∩M ̸= ∅}.

If it is not the case that J ′ and K ′ are chordal and G[JA] and G[KB] are threshold

graphs, then go to Step 1.

Step 3. Let C1, . . . , Cr be the components of the bipartite graph G[JA,M ], and for

each i ∈ {1, . . . , r} let Ai = V (Ci) ∩ JA. So (A1, . . . , Ar) is a partition of JA;

similarly partition KB into sets B1, . . . , Br′ by considering the bipartite graph

G[KB,M ]. Go to Step 1 if any of the following hold:

� r ̸= r′ or r < 3;

� not all of A1, . . . , Ar, B1, . . . , Br are cliques;

� there exists distinct i, j ∈ {1, . . . , r} such that Ai is neither complete nor

anticomplete to Aj , or that Bi and Bj are neither complete nor anticomplete

to each other;
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� some induced 4-vertex path of G has its two internal vertices in one of

A1, . . . , Ar, B1, . . . , Br;

� there exists distinct i, j ∈ {1, . . . , r} such that some induced path from Ai

to Aj with interior in V (J ′) \ (Ai∪Aj) has length greater than two, or some

induced path from Bi to Bj with interior in V (K ′) \ (Bi ∪ Bj) has length

greater than two;

� the neighbourhood of some vertex of V (J ′ ∪K ′) \ (JA ∪KB) in JA ∪KB is

a clique.

Step 4. Go to Step 1 if the number of components of G[M ] is not exactly r; otherwise,

let M1, . . . ,Mr be these components. Check for each i ∈ {1, . . . , r} that N(Mi) =

Aj ∪Bk for some unique pair of integers j, k ∈ {1, . . . , r}, and go to Step 1 if not.

So from now on we assume that N(Mi) = Ai ∪ Bi for each i ∈ {1, . . . , r}. Now

check for all distinct i, j ∈ {1, . . . , r} that Ai is complete to Aj if and only if Bi

is anticomplete to Bj , and go to Step 1 if not.

Step 5. For each i ∈ {1, . . . , r} and j ∈ {1, . . . , (ℓ− 3)/2− 1}, let M j
i = V (Mi)∩T (j).

(That this is well-defined follows from the fact that B1, . . . , Br are subsets of

T ((ℓ−3)/2+1) and, by the check in Step 4, some vertex of Mi has a neighbour in

one of B1, . . . , Br.) Let M0
i = Ai and M

(ℓ−3)/2
i = Bi. Check for all i ∈ {1, . . . , r}

and j ∈ {1, . . . , (ℓ−3)/2−1} that G[M j
i ,M

j−1
i ] and G[M j

i ,M
j+1
i ] are compatible

half-graphs, and go to Step 1 if not.

Step 6. Output Yes.

We now prove that this algorithm is correct. Suppose that G is a bordered blow-

up of an ℓ-frame F . Thus G is the composition of H,J,K, with notation as in the

definition of bordered blow-ups of ℓ-frames. By Lemma 3.59, without loss of generality

some vertex w ∈ V (J) \W (A) is a universal vertex of J . Let us consider the execution

of Steps 2 to 6 when the vertex picked in Step 1 is this vertex w.

By Lemma 3.60, the height of T is either (ℓ− 3)/2 + 1 or (ℓ− 1)/2 + 1, and hence

J ′, K ′, M , JA and KB are defined in Step 2. It also follows from Lemma 3.60 that

J = G[T (0) ∪ T (1)] = J ′, and that K = G[T ((ℓ − 3)/2 + 1)] if V (K) \ W (B) = ∅
and K = G[T ((ℓ − 3)/2 + 1) ∪ T ((ℓ − 1)/2 + 1)] otherwise; therefore K = K ′. So, by

the definition of a border, J ′ and K ′ are chordal. The vertices of W (A) are precisely

those vertices of J that have a neighbour outside of J , and the vertices of W (B) are

precisely those vertices of K that have a neighbour outside of K; that is, W (A) = JA
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and W (B) = KB. By the definition of an ℓ-frame, A and B are threshold graphs, and

therefore by Lemma 3.62 so are G[W (A)] = G[JA] and G[W (B)] = G[KB]. The facts

established thus far show that the algorithm does not return to Step 1 as a result of

the checks in Step 2.

By Lemma 3.61, the sets A1, . . . , Ar defined in Step 3 are the bags of J and the sets

B1, . . . , Br′ are the bags of K. So W (A) = A1 ∪ · · · ∪ Ar and W (B) = B1 ∪ · · · ∪ Br′ .

It follows immediately from (J,A, (Wt : t ∈ V (A))) being a border that:

� r = r′ and r ≥ 3;

� all of A1, . . . , Ar, B1, . . . , Br are cliques any two of which are either complete or

anticomplete to each other;

� if P is a path of J with length at least three and with both ends in A1 ∪ · · · ∪Ar,

some internal vertex of P belongs to the same set among A1, . . . , Ar as one of

the ends of P ; and if P is a path of K with length at least three and with both

ends in B1 ∪ · · · ∪ Br, some internal vertex of P belongs to the same set among

B1, . . . , Br as one of the ends of P ; and

� for every vertex v ∈ V (J ′ ∪K ′) \ (JA ∪KB), the neighbourhood of v in JA ∪KB

is not a clique.

That there is no induced 4-vertex path of G with its two internal vertices in one of

A1, . . . , Ar, B1, . . . , Br follows from the fact that G[W (u),W (v)] is a half-graph for all

edges uv of G. Therefore the algorithm does not return to Step 1 as a result of the

checks in Step 3.

Clearly each component of G[M ] is equal to G[W (P )\W (A∪B)] for some bar P of

F . It follows from the relevant definitions that the number of bags of J is equal to the

number of bars of F , and F has r bars, so G[M ] has exactly r components. If P is a bar

of F , say with ends a ∈ V (A) and b ∈ V (B), then every vertex of W (a) ∪W (b) has a

neighbour in W (P )\W (A∪B), and for every u ∈ V (A∪B)\{a, b} we have that W (u)

is anticomplete to W (P ) \W (A ∪B). It follows that for each component Mi of G[M ]

there exists a unique pair of integers j, k ∈ {1, . . . , r} such that N(Mi) = Aj∪Bk. With

this in mind, and as we do in Step 4, assume that the indices of Ai, Bi,Mi are such that

N(Mi) = Ai ∪ Bi. It now follows from the construction of A and B in the definition

of an ℓ-frame, together with the second bullet in the preceding paragraph, that Ai is

complete to Aj if and only if Bi is anticomplete to Bj for all distinct i, j ∈ {1, . . . , r}.
So the algorithm does not return to Step 1 as a result of Step 4.
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Therefore the algorithm returns to Step 1 as a result of Step 5, i.e. there exists

i ∈ {1, . . . , r} and j ∈ {1, . . . , (ℓ−3)/2+1} such thatG[M j
i ,M

j−1
i ] andG[M j

i ,M
j+1
i ] are

not compatible half-graphs. By arguments in the previous paragraph, we have that: for

each bar p1, . . . , pm of F , where p1 ∈ V (A) and pm ∈ V (B), the setsM0
i , . . . ,M

(ℓ−3)/2+2
i

are the sets W (p1), . . . ,W (pm), in that order. But by definition G[W (ps),W (ps−1)]

and G[W (ps),W (ps+1)] are compatible half-graphs for every s ∈ {2, . . . ,m − 1}, a

contradiction. So the algorithm does not return to Step 1 as a result of Step 5. It

follows that the algorithm executes Step 6, and hence the algorithm outputs Yes, as

required.

We now prove the converse: that if the algorithm outputs Yes, then the input graph

G is a bordered blow-up of an ℓ-frame. To match the notation used in the definition

of bordered blow-ups of ℓ-frames, we begin by defining the following sets (where J ′,K ′

and so on are as they were on execution of Step 6):

� J = J ′ and K = K ′;

� W (A) = JA and W (B) = KB;

� A = G[{a1, . . . , ar}] and B = G[{b1, . . . , br}], where for i ∈ {1, . . . , r}, ai is a

vertex in Ai of maximum degree in G among all vertices in Ai, and bi is a vertex

in Bi of maximum degree in G among all vertices in Bi;

� H = A ∪B ∪G[M ]; and

� for each t ∈ V (A∪B), let Wt denote the unique set among A1, . . . , Ar, B1, . . . , Br

that contains t (thus (Wt : t ∈ V (A)) is a partition of W (A) and (Wt : t ∈ V (B))

is a partition of W (B).)

We claim that G is the composition of H,J,K.

First we prove that (J,A, (Wt : t ∈ V (A))) and (K,B, (Wt : t ∈ V (B))) are borders.

By Step 2, J is chordal and G[JA] is threshold, and since A is an induced subgraph of

JA it follows that A is threshold. By the first and second bullets of Step 3, |A| ≥ 3,

and Wt is a clique for each t ∈ V (A). By the third bullet of Step 3 we have that for

all distinct s, t ∈ V (A), Ws is complete to Wt if st is an edge, and Ws is anticomplete

to Wt otherwise. By the fourth bullet in Step 3, for every induced path P of J with

length at least three and with both ends in W (A), some internal vertex of P belongs

to the same set Wt as one of the ends of P . By the sixth bullet in Step 3, every vertex

in V (J) \W (A) has two nonadjacent neighbours in W (A).
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It remains to verify that the fourth bullet in the definition of a border holds. To

do so, we first must order the vertices of Wt for t ∈ V (A): order Wt as {x1, . . . , xn} so

that x1 = t and dJ(x2) ≥ · · · ≥ dJ(xn). Now suppose, contrary to the fourth bullet in

the definition of a border, that there exists t ∈ V (A) and v ∈ V (J)\Wt such that, with

Wt = {x1, . . . , xn} ordered as above, v is adjacent to xj but not to xi for some j > i.

Since dJ(xi) ≥ dJ(xj), there exists some vertex u ∈ V (J) \ (Wt ∪ {v}) adjacent to xi

but not to xj . But now {u, v, xi, xj} induces a 4-hole or a path that violates the fourth

bullet of Step 3. So v is adjacent to xi for all 1 ≤ i < j. Therefore the fourth bullet

in the definition of a borders holds, and hence (J,A, (Wt : t ∈ V (A))) is a border. An

analogous argument shows that (K,B, (Wt : t ∈ V (B))) is also a border.

Next we show that H is a blow-up of an ℓ-frame. For each i ∈ {1, . . . , r} and

each j ∈ {1, . . . , (ℓ − 3)/2 − 1}, fix pji ∈ M j
i such that pji is of maximum degree

in G among all vertices of M j
i , let p0i be the unique neighbour of p1i in V (A), and

let p
(ℓ−3)/2
i be the unique neighbour of p

(ℓ−3)/2−1
i in V (B). For i ∈ {1, . . . , r} set

Pi = G[{p0i , . . . , p
(ℓ−3)/2
i }], and let F = A ∪B ∪ P1 ∪ · · · ∪ Pr.

We claim that F is an ℓ-frame with sides A,B and bars P1, . . . , Pr. As argued

in an earlier paragraph, A and B are threshold graphs with the same number of (at

least 3) vertices. By the third bullet in Step 3, for distinct i, j ∈ {1, . . . , r}, we have

that ai, aj are adjacent if and only if bi, bj are nonadjacent. Clearly for all i ∈ {1, . . . , r}
we have that: for each j ∈ {0, . . . , (ℓ − 3)/2 − 1}, some vertex of M j

i has a neighbour

in M j+1
i , and for each j ∈ {1, . . . , (ℓ − 3)/2}, some vertex of M j

i has a neighbour in

M j−1
i . It follows then by our choice of vertices pji that for each i ∈ {1, . . . , r} the set

{p0i , . . . , p
(ℓ−3)/2
i } induces a path p0i , . . . , p

(ℓ−3)/2
i of length (ℓ− 3)/2− 1 with ends ai, bi.

Clearly these paths are all pairwise vertex disjoint, and the only edges between them

are those edges of A and B. Thus F is an ℓ-frame with sides A,B and bars P1, . . . , Pr.

Let s, t be vertices of F , let S, T be the unique sets amongA1, . . . , Ar, B1, . . . , Br,M
j
i

(where 1 ≤ i ≤ r and 1 ≤ j ≤ (ℓ − 3)/2) such that s ∈ S and t ∈ T , and suppose

that S ̸= T . So s and t are distinct. If s, t ∈ V (A) or s, t ∈ V (B), then S is

complete to T by the third bullet in Step 3, and otherwise G[S, T ] is a half-graph

by Step 5. It is easily seen that: V (J) is anticomplete to V (K); V (J)∩V (H) = W (A);

V (K) ∩ V (H) = W (B); and V (J) ∩ V (K) = ∅. Therefore G is a bordered blow-up of

the ℓ-frame F , and in particular G is the composition of H,J,K. This completes the

proof of correctness.

Finally, we analyse the running time. Let n = |V (G)| and m = |E(G)|. Step 1 takes

O(1) time. Computing a BFS-tree, checking whether a graph is chordal and checking

whether a graph is a threshold graph can all be done in O(n+m) time, and therefore
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Step 2 takes O(n + m) time. The complexity of Step 3 is dominated by the fourth

bullet, which can be done in O(n5) time, and therefore Step 3 takes O(n5) time. Step 4

similarly takes O(n5) time. The complexity of Step 5 is dominated by the complexity

of checking whether O(n2) pairs of half-graphs are compatible, which takes O(n6) time.

Steps 2 through 5 are executed O(n) times, and therefore the algorithm has running

time O(n7).

We now use the above algorithm that decides whether a graph is a bordered blow-

up of an ℓ-frame to recognise ℓ-holed graphs, where ℓ is odd and ℓ ≥ 7. We restate the

following Lemma from Section 3.5.2.

Lemma 3.52. There exists an algorithm with the following specifications:

Input: A graph G.

Output: A family L of induced subgraphs of G that satisfies the following properties:

– G is ℓ-holed for some odd ℓ ≥ 7 if and only if all the graphs in L are ℓ-holed.

– The graphs in L have no clique cutset.

– The number of graphs in L is O(|V (G)|).

Running time: O(|V (G)|3).

Theorem 3.64. There exists an algorithm with the following specifications:

Input: A graph G and an odd integer ℓ ≥ 7.

Output: Yes if G is ℓ-holed, and No otherwise.

Running time: O(n8).

Proof. Consider the following algorithm.

Step 1. Execute the algorithm of Lemma 3.52 with input G, and let L be its output.

Step 2. For each graph G ∈ L, let G′ be the graph obtained from G by removing all

universal vertices, and then let L′ = {G′ : G ∈ L}.

Step 3. Check that each graph in L′ is a complete graph, a ring of length ℓ (using

Lemma 3.55) or a bordered blow-up of a ℓ-frame (using Lemma 3.63); if not, then

output No, and otherwise, output Yes.



144 CHAPTER 3. GRAPHS WITH ALL HOLES THE SAME LENGTH

The correctness of this algorithm follows from Lemmas 3.9 and 3.10 and from the

fact that (by Lemma 3.52) G is ℓ-holed if and only if all of the graphs in L′ are ℓ-

holed.

Theorem 3.65. There exists an algorithm with the following specifications:

Input: A graph G.

Output: Yes if G is ℓ-holed for some odd ℓ ≥ 7, and No otherwise.

Running time: O(n8).

Proof. Run the algorithm of Theorem 3.57 and let H be a hole of G if it finds one. If

it finds no hole, then output Yes, and if |V (H)| < 7 or if |V (H)| is even, then output

No. Now run the algorithm of Theorem 3.64 with the graph G and integer |V (H)| as
input. If from that algorithm we obtain the output No, then output No. Otherwise,

output Yes.

3.5.4 Recognition without decomposition

We conclude this chapter with a discussion on how to recognise ℓ-holed graphs without

making use of decomposition.

Consider the following problem: given a graph G and two vertices s, t of G, does G

contain an induced path between s and t whose length is greater than the length of a

shortest path between s and t? Let us call this problem the non-shortest induced path

problem. Suppose there exists an algorithm A that solves the non-shortest induced path

problem in O(f(n)) time. Such an algorithm may be used as a subroutine in deciding

whether a graph is ℓ-holed, in the following way: for each three-vertex induced path

a, b, c of G, let G′ be the graph obtained from G by deleting b and all of the neighbours

of b besides a and c; if there is no path in G′ between a and c, then move on to the next

three-vertex path; now check that the distance between a and c in G′ is ℓ − 2 (if not,

then G is not ℓ-holed, and we stop); and then apply algorithm A to check that there

is no induced path in G′ between a and c whose length is greater than ℓ − 2 (if such

a path exists, then G is not ℓ-holed, and we stop). If after considering all three-vertex

induced paths of G we have not determined that G is not ℓ-holed, then G is ℓ-holed.

Thus, we may recognise ℓ-holed graphs in O(n3 · f(n)) time.

Berger, Seymour and Spirkl [3] gave an algorithm that solves the non-shortest in-

duced paths problem in O(n18) time, which leads to an O(n21)-time algorithm for

recognising ℓ-holed graphs. Chiu and Lu [9] significantly improved this running time
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by giving an algorithm that solves the non-shorted induced paths problem in O(n4.75)-

time, yielding an O(n7.75)-time algorithm for recognising ℓ-holed graphs. Note that

these algorithms recognise ℓ-holed graphs for any ℓ ≥ 4, while the algorithms presented

in Sections 3.5.2 and 3.5.3 work only for odd ℓ ≥ 7.
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Chapter 4

Even-hole-free circular-arc graphs

An intersection graph of a family F = {F1, . . . , Fn} of sets is a graph with vertices

v1, . . . , vn such that, for distinct i, j ∈ {1, . . . , n}, the vertices vi and vj are adjacent if

and only if Fi ∩Fj ̸= ∅. For example, the intersection graph of {{1, 2}, {2, 3}, {1, 3}} is

the complete graph on three vertices.

An intersection graph of a family of intervals of the real line is called an interval

graph (the family of intervals being an interval model for this graph; note that an

interval model for a particular interval graph is not necessarily unique). Many real-

world problems may be modelled as a problem to be solved on interval graphs. For

instance, consider the following toy problem. Suppose there are n people, each of

whom has booked a taxi; one person would like to be picked up at time s1 and dropped

off at time t1, the next person picked up at time s2 and dropped off at time t2, and

so on. The taxi service would like to minimise the number of taxi drivers needed

to carry out these rides. Consider the intersection graph of the family of intervals

{[s1, t1], [s2, t2], . . . , [sn, tn]}, and assign colours to each of its vertices in such a way

that no two adjacent vertices receive the same colour. By taking colours to be taxi

drivers, one obtains an assignment of taxi drivers to rides with the property that no

driver is assigned to two rides that overlap in time; thus, the chromatic number of this

interval graph is the minimum number of drivers needed.

Interval graphs are chordal graphs, and therefore as is the case for chordal graphs,

many problems that are NP-complete for the class of all graphs, such as colouring and

finding the size of a maximum clique or a maximum stable set, are polynomial-time

solvable when restricted to the class of interval graphs. Deciding whether a given graph

G is an interval graph can be done in time O(|V (G)|+ |E(G)|) [5].
The structure of interval graphs is well understood, and there exist several charac-

147
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terisations of interval graphs. An asteroidal triple (or AT for short) is a set of three

pairwise nonadjacent vertices such that there is a path between each pair of these ver-

tices that contains no neighbour of the third vertex. A graph is AT-free if no three of

its vertices form an asteroidal triple.

Theorem 4.1 (Lekkerkerker and Boland [40]). A graph is an interval graph if and

only if it is chordal and AT-free.

In the same paper, Lekkerkerker and Boland also provide a forbidden induced sub-

graph characterisation for interval graphs. A net (or 2-net) is the graph on six vertices

a, b, c, x, y, z with edge set {ab, bc, ac, ax, by, cz}. See Figure 4.3 for depictions of the

bipartite claw, umbrella, k-nets (k ≥ 3) and k-tents (k ≥ 3).

Theorem 4.2 (Lekkerkerker and Boland [40]). A graph G is an interval graph if and

only if G contains no bipartite claw, umbrella, k-net (for k ≥ 2), k-tent (for k ≥ 3) or

hole as an induced subgraph.

We now turn to circular-arc graphs, a generalisation of interval graphs that form

the focus of this chapter.

A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of

C. A circular-arc graph G is the intersection graph of the arcs of a circular-arc model.

Clearly every interval graph is a circular-arc graph. Circular-arc graphs and a number

of subclasses have received much attention, both from a structural and algorithmic

point of view. One such subclass is the class of proper circular-arc graphs. A circular-

arc graph is proper if it is the intersection graph of a circular-arc model in which no arc

properly contains another. Tucker gave a characterisation of proper circular-arc graphs

in terms of forbidden induced subgraphs. See Figure 4.1 for depictions of the graphs

armchair and stirrer.

Figure 4.1: An armchair (left) and a stirrer (right).

Theorem 4.3 (Tucker [50]). A graph G is a proper circular-arc graph if and only if it

contains none of the following as induced subgraphs:
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� Cn ∪K1, n ≥ 4;

� C2j, j ≥ 3;

� C2j+1 ∪K1, j ≥ 1 (this is a claw if j = 1);

� a net, or the complement of a net together with an isolated vertex;

� the complement of a stirrer, 3-tent, armchair, or bipartite claw.

Tucker also gave the following characterisation of general circular-arc graphs in

terms of circular orderings of vertices, but it remains open to characterise circular-

arc graphs in terms of forbidden induced subgraphs. It also remains open to provide a

forbidden induced subgraph characterisation for the class of chordal circular-arc graphs.

Theorem 4.4 (Tucker [49]). A graph G is a circular-arc graph if and only if there is

a circular ordering v1, . . . , vn of its vertices such that, for i < j, if vivj is an edge of G

then either vi+1, . . . , vj ∈ N(vi) or vj+1, . . . , vi ∈ N(vj).

For a number of subclasses of circular-arc graphs, forbidden induced subgraph char-

acterisations are known. A circular-arc graphG is normal Helly if there exists a circular-

arc model for G no three arcs of which cover the circle. Cao, Grippo and Safe gave a

forbidden induced subgraph characterisation for the class of normal Helly circular-arc

graphs. See Figure 4.2 for depictions of G1, G2, G3, G4 and the domino. A k-wheel

(for k ≥ 4) is a hole of length k together with a vertex that is complete to the hole. By

C∗
k we denote the graph consisting of a hole of length k together with a vertex that has

no neighbour in the hole.

Figure 4.2: From left to right: the graphs G1, G2, G3, G4 and the domino.

Theorem 4.5 (Cao, Grippo and Safe [8]). A graph G is a normal Helly circular-arc

graph if and only if G contains no induced bipartite claw, umbrella, k-net for any k ≥ 2,

k-tent for any k ≥ 3, k-wheel for any k ≥ 4 and no G1, G2, G3, G4, domino, C6 or

C∗
k for any k ≥ 4.

A number of problems that are NP-complete in general become polynomial-time

solvable when restricted to circular-arc graphs. Gavril [29, 30] gave polynomial-time

algorithms for the maximum stable set, maximum clique, and minimum clique cover
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problems on circular-arc graphs. However, the colouring problem remains NP-complete

for circular-arc graphs [28], and even for Helly circular-arc graphs [31].

Circular-arc graphs appear in the study of a number of complex hereditary graph

classes. For instance, proper circular-arc graphs constitute an important subclass in

Chudnovsky and Seymour’s structural study of claw-free graphs [14]. In [6], even-hole-

free graphs that are also pan-free (a pan is a hole together with a vertex that has exactly

one neighbour in the hole) are decomposed by clique cutsets into unit circular-arc

graphs, which gives way to a linear-time recognition algorithm and a polynomial-time

colouring algorithm for this class. Motivated by this result, in this chapter we work

towards a characterisation of even-hole-free circular-arc graphs. As mentioned earlier, it

remains open to characterise chordal circular-arc graphs in terms of forbidden induced

subgraphs, and therefore our focus will be on even-hole-free circular-arc graphs that

are not chordal.

The main result of this chapter is a partial characterisation of even-hole-free circular-

arc graphs that are not chordal.

4.1 A partial characterisation of even-hole-free circular-

arc graphs

Let (H,x) be a wheel, and let x1, . . . , xr be the neighbours of x in H. A subpath of H

with ends xi and xj is a sector if the interior of this path contains no neighbour of x. A

short sector is a sector of length 1, and a long sector is a sector of length greater than 1.

A circular-arc wheel (CA-wheel for short) is a wheel that has at most one long sector.

In other words, a wheel (H,x) is a CA-wheel if NH(x) induces H or a subpath of H.

A non-circular-arc wheel (NCA-wheel for short) is a wheel that is not a CA-wheel. A

0-wheel is any graph that consists of a hole together with an additional vertex that has

no neighbour in this hole.

Let C be the class of graphs that are (3PC, NCA-wheel, 0-wheel)-free and further-

more do not contain any of the graphs in Figure 4.3 as induced subgraphs. So that

there is no ambiguity regarding k-nets and k-tents, we define them explicitly. For an

integer k ≥ 3, a k-net is any graph G consisting of a path x1, x2, . . . , xk on k vertices

with four additional vertices a, b, c, d such that N(a) = {x1}, N(b) = {c, x1, x2, . . . , xk},
N(c) = {b} and N(d) = {xk}. For an integer k ≥ 3, a k-tent is any graph G consisting

of a path x1, x2, . . . , xk on k vertices with three additional vertices a, b, c such that

N(a) = {b, c, x1, x2, . . . , xk−1}, N(b) = {a, c, x2, x3, . . . , xk} and N(c) = {a, b}.
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In this section we work towards resolving the following conjecture of Kathie Cameron,

Kristina Vušković and the present author.

Conjecture. Let G be an even-hole-free graph that is not chordal. Then G is a

circular-arc graph if and only if G belongs to C.

bipartite claw long 2-net net ∪K1

umbrella ∪K1

1 2
· · ·

k

k-net (k ≥ 3)

1 2 k − 1 k

k-tent ∪K1 (k ≥ 3)

Figure 4.3: Some forbidden induced subgraphs for graphs in C.

4.1.1 Circular-arc graphs belong to C

In this section we show that every circular-arc graph is (3PC, NCA-wheel, 0-wheel)-

free and also contains none of the graphs in Figure 4.3. It is easily seen that if H is a

hole in a graph G, then the arcs of a circular-arc model for G that correspond to the

vertices of H cover the circle, and therefore every vertex not in H has a neighbour in

H; thus, 0-wheels are not circular-arc. In [47], it is shown that the graphs bipartite

claw, net ∪K1, k-net (for k ≥ 3), umbrella ∪K1 and k-tent ∪K1 (for k ≥ 3) are not

circular-arc. It is easily checked that the long 2-net is not circular-arc (in attempting to

build a circular-arc model for the long 2-net, one sees that the three arcs corresponding

to the triangle of the long 2-net must cover the circle; but the long 2-net contains one

vertex that has no neighbour in the triangle). Thus, it remains to show that 3PC’s and

NCA-wheels are not circular-arc.

In order to show that 3PC’s and NCA-wheels are not circular-arc, we show that they

are not “1-perfectly orientable”. Before we can define 1-perfectly orientable graphs, we
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F1 F2

Figure 4.4: Some non-1-p.o. graphs.

need some terminology.

An orientation D of a graph G assigns to each edge uv ∈ E(G) an ordered pair; in

particular, either (u, v) or (v, u). If D(uv) = (u, v) then we write u → v. A tournament

is an orientation of a complete graph. We say that an orientation of a graph G is

1-perfect if the out-neighbourhood of every vertex induces a tournament, and we say

that G is 1-perfectly orientable (or 1-p.o.) if there exists a 1-perfect orientation of

G. A graph is non-1-p.o. if it is not 1-p.o. A cycle C in an oriented graph G is

cyclically oriented if every vertex of C has exactly one out-neighbour in C. A graph G

is hole-cyclically orientable if there exists an orientation of G in which every hole of G

is cyclically oriented. The following two results show the relations between circular-arc

graphs, 1-perfectly orientable graphs, and hole-cyclically orientable graphs.

Theorem 4.6 (Urrutia and Gavril [51]). Circular-arc graphs are 1-perfectly orientable.

Theorem 4.7 (Hartinger and Milanič [34]). In every 1-perfect orientation of a 1-

perfectly orientable graph G, every chordless cycle of length at least 4 is oriented cycli-

cally. In particular, 1-perfectly orientable graphs are hole-cyclically orientable.

Let G be a graph and let xy be an edge of G. To contract the edge xy means to

remove the vertices x and y from G and to add a new vertex whose neighbourhood is

(N(x) ∪ N(y)) \ {x, y}. A graph G is contractible to a graph F if F can be obtained

from G by a sequence of edge contractions. A graph F is an induced minor of a graph G

if F can be obtained from G by deleting vertices and contracting edges. The following

result shows that the class of 1-p.o. graphs is closed under taking induced minors.

Theorem 4.8 (Hartinger and Milanič [34]). The class of 1-perfectly orientable graphs

is closed under vertex deletion and edge contraction.

In [34], a number of non-1-p.o. graphs are given. Among them are the graphs C6

(i.e. the prism with the smallest number of vertices) and K2 + C3 (i.e. the theta with
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the smallest number of vertices). They also show that graphs F1 and F2, depicted in

Figure 4.4, are not 1-p.o.

Lemma 4.9. If G is a circular-arc graph, then G is 3PC-free.

Proof. Since C6 (resp. K2 + C3) can be obtained from a larger prism (resp. theta) by

a series of edge contractions, it follows from Theorem 4.8 that all prisms and thetas

are not 1-p.o. Then by Theorem 4.6, prisms and thetas are not circular-arc. Consider

a pyramid Σ induced by paths P1 = x1, . . . , y, P2 = x2, . . . , y and P3 = x3, . . . , y.

We show that Σ is not hole-cyclically orientable, and therefore not circular-arc (by

Theorems 4.6 and 4.7). Suppose that Σ is hole-cyclically orientable with orientation

D. Without loss of generality, say that P1 is oriented as x1 → · · · → y. Since P1∪P2 is

a hole, P2 must be oriented as y → · · · → x2. Similarly since P2 ∪P3 is a hole, P3 must

be oriented as x3 → · · · → y. But then P1 ∪ P3 is a hole that is not oriented cyclically,

a contradiction.

Lemma 4.10. If G is a circular-arc graph, then G is NCA-wheel-free.

Proof. Let G be a graph that contains a NCA-wheel (H,x) with rimH = x1, . . . , xn, x1.

Suppose that G is circular-arc. Let S1 = xi, . . . , xj and S2 = xk, . . . , xl be distinct long

sectors of (H,x) and w.l.o.g. assume that i < j ≤ k < l. Let P1 (resp. P2) be the

subpath of H with endpoints xj and xk (resp. xl and xi) and interior in H \ (S1 ∪ S2).

By contracting every edge of P1 and P2 we obtain a theta, which is contractible to

the non-1.p.o. graph K2 + C3. It now follows from Theorem 4.8 that G is not 1-p.o.,

contradicting Theorem 4.6.

Putting together everything so far, we have the following.

Theorem 4.11. If G is a circular-arc graph, then G is (3PC, NCA-wheel, 0-wheel)-free

and contains none of the graphs in Figure 4.3.

4.1.2 Graphs from C with no crossing vertices are circular-arc

In this section we show that even-hole-free graphs from C that have no so-called crossing

vertices are circular-arc.

Throughout this section we use the following notation. Let H = x1, . . . , xn, x1 be

a hole in a graph G. A vertex x ∈ V (G) \ V (H) is of Type i with respect to H if

|NH(x)| = i. We say that x is of Type 3.i w.r.t. H if x is of Type 3 w.r.t. H and

NH(x) = {xi−1, xi, xi+1}, i.e. x is a twin of xi in G[V (H) ∪ {x}]. For i ∈ 1, . . . , n, let
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XH
i be the set that consists of xi together with all vertices of Type 3.i w.r.t. H. Let

XH = ∪n
i=1X

H
i , UH the set of all vertices of Type n w.r.t. H, and YH the set of all

vertices of Type j w.r.t. H, for 3 < j < n. When the underlying hole H is clear from

context, we may write X1, . . . , Xn, X, Y and U instead of XH
1 , . . . , XH

n , XH , YH and

UH respectively.

We now study how vertices outside of a hole attach to a hole in graphs from the

class C that are also even-hole-free. We will make use of the following fact about even-

hole-free graphs. A wheel (H,x) is even if x has an even number of neighbours in

H.

Lemma 4.12. If G an even-hole-free graph, then G contains no even wheel.

Proof. By Theorem 1.2 together with the observation that even-hole-free graphs are

odd-signable.

Lemma 4.13. Let G be an (even hole, 3PC, NCA-wheel)-free graph and let H be a

hole of G. If x ∈ V (G) \ V (H), then for some i ∈ {0, 1, 2} or odd i ∈ {3, . . . , n}, x is

of Type i w.r.t. H. Furthermore, if i ̸∈ {0, n} then the subgraph of H induced by the

vertex set NH(x) is a path.

Proof. Let i = |NH(x)|. By definition, x is of Type i w.r.t. H. If i ≥ 3, then i is odd,

for otherwise (H,x) is an even wheel, contrary to Lemma 4.12. If i ̸∈ {0, n} and NH(x)

does not induce a path in H, then V (H) ∪ {x} induces a theta or a NCA-wheel.

From now on, when G is an (even hole, 3PC, NCA-wheel)-free graph, H is a hole

of G, x ∈ V (G) \ V (H) is of Type i w.r.t. H and i ̸∈ {0, n}, then we denote by Hx the

subgraph of H induced by NH(x). So by Lemma 4.13, Hx is a path. Furthermore, if

i ≥ 3 then we denote by H∗
x the subpath of Hx induced by the interior vertices of Hx.

Going forward, we may use the fact that Hx is a path without justification.

Lemma 4.14. Let G be an (even hole, 3PC, NCA-wheel)-free graph and let H be a

hole of G. Let u and v be vertices of G \H such that u is of Type i w.r.t. H and v is

of Type j w.r.t. H. Then the following hold:

(i) if |Hu ∩Hv| ≥ 3, then uv is an edge;

(ii) if i ≥ 3, j ≥ 5 and |Hu ∩Hv| ≥ 2, then uv is an edge.

Proof. To prove (i), suppose that |Hu ∩Hv| ≥ 3 but uv is not an edge, and let a and b

be nonadjacent vertices in Hu ∩Hv. Then the vertex set {a, b, u, v} induces a C4 in G,

a contradiction. This proves (i).
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To prove (ii), assume i ≥ 3, j ≥ 5 and |Hu ∩Hv| ≥ 2. By (i) we may in fact assume

that |Hu ∩ Hv| = 2. Suppose that uv is not an edge. Let a and b be the vertices

in Hu ∩ Hv. If a, b are nonadjacent, then the vertex set {a, b, u, v} induces a C4, a

contradiction. So a and b are adjacent. But then (H \ H∗
u) ∪ {u, v} induces an even

wheel with center v, contrary to Lemma 4.12. Therefore (ii) holds.

Lemma 4.15. Let G be an (even hole, 3PC, NCA-wheel)-free graph and let H be a

hole of G. Let u and v be adjacent vertices of G \H. Let u be of Type i w.r.t. H and

v be of Type j w.r.t. H. Then the following hold:

(i) if i = 1 and j ≥ 1 then Hu ⊆ Hv;

(ii) if i = j = 2 then Hu = Hv;

(iii) if i = 2 and j ≥ 3 then Hu ∩Hv ̸= ∅;
(iv) if i, j ≥ 3 then |Hu∩Hv| ≥ 2, and furthermore, exactly one of the following holds:

� |Hu ∩Hv| is odd; or

� Hu \Hv ̸= ∅, Hv \Hu ̸= ∅, Hu ∩Hv induces a path, and |Hu ∩Hv| is even.

Proof. We may assume that i, j ̸∈ {0, n}. Let Hu = u1, . . . , ui and Hv = v1, . . . , vj .

Suppose that i = 1, j ≥ 1, but that Hu ̸⊆ Hv. Since |Hu| = 1, it follows that

Hu ∩ Hv = ∅. Observe that {v1, vj} ∩ NH(u1) = ∅, for otherwise one of the vertex

sets {u, u1, v, v1} or {u, u1, v, vj} would induce a C4 in G, a contradiction. But then

if j = 1 then H ∪ {u, v} induces a 3PC(u1, v1), if j = 2 then H ∪ {u, v} induces a

3PC(vv1v2, u1), and if j ≥ 3 then G contains a 3PC(u1, v). This proves (i).

Suppose (ii) does not hold. If Hu∩Hv = ∅, then the vertex set V (H)∪{u, v} induces

a 3PC(uu1u2, vv1v2), so Hu ∩ Hv contains only one vertex. But then the vertex set

H ∪ {u, v} induces an even wheel of G, contrary to Lemma 4.12. Thus (ii) holds. Part

(iii) holds, for otherwise G contains a 3PC(uu1u2, v).

Finally, to prove (iv), assume i, j ≥ 3. If |Hu ∩ Hv| ≤ 1 then (H \ H∗
v ) ∪ {u, v}

induces an even wheel with center u, a contradiction. Therefore |Hu ∩Hv| ≥ 2.

It remains to prove that exactly one of the two bullets of part (iv) hold. If |Hu∩Hv|
is odd then we are done, so suppose that |Hu ∩ Hv| is even. Further, suppose that

Hu \ Hv = ∅, i.e. Hu ⊆ Hv. Thus |Hu ∩ Hv| = |Hu|, and therefore |Hu| is even.

But then the vertex u contradicts Lemma 4.13. So Hu \ Hv ̸= ∅, and by symmetry

Hv \Hu ̸= ∅. Suppose that Hu ∩Hv is not a path. Since both Hu and Hv are paths by

Lemma 4.13, it follows that Hu ∪Hv = H. Therefore |Hv| = |H| − |Hu| + |Hu ∩Hv|.
Since |H| and |Hu| are both odd and |Hu∩Hv| is even, it follows that |Hv| is even. But
then (H, v) is an even wheel, a contradiction. So Hu∩Hv is a path, and this completes

the proof of (iv).
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We are now ready to prove the main result of this section. Let G be an even-hole-

free graph that belongs to C and that is not chordal. Let H = x1, x2, . . . , xn, x1 be

a hole of G of maximum length that furthermore maximises |X|. We say that two

vertices u, v ∈ Y are crossing (or that u and v cross) if the graph induced by Hu ∩Hv

is disconnected. Our result is that if G has no crossing vertices, then G is circular-arc.

So assume that G has no crossing vertices.

For each i ∈ {1, . . . , n}, we define the following sets:

� W−
i is the set of all vertices complete to {xi, xi−1} and adjacent to a vertex of

V (G) \ {xi−1} that is adjacent to xi but not to xi−1.

� W+
i is the set of all vertices complete to {xi, xi+1} and adjacent to a vertex of

V (G) \ {xi+1} that is adjacent to xi but not to xi+1.

� O1
i is the set of all Type 1 vertices w.r.t. H that are adjacent to xi.

� O2
i is the set of all Type 2 vertices w.r.t. H that are adjacent to xi and xi+1 and

that do not belong to W+
i ∪W−

i+1.

Lemma 4.16. W−
i and W+

i are cliques.

Proof. By symmetry it suffices to prove that W−
i is a clique. Suppose otherwise and

let w1 and w2 be two nonadjacent vertices of W−
i . By definition, for j ∈ {1, 2}, there

exists a neighbour zj of wj such that zj is adjacent to xi but nonadjacent to xi−1. If

w2 is adjacent to z1, then {z1, w1, xi−1, w2} induces a 4-hole, a contradiction. So w2 is

nonadjacent to z1 and by symmetry w1 is nonadjacent to z2. In particular, z1 ̸= z2,

and since {z1, z2} ∩H ⊆ {xi+1}, at most one of z1, z2 belongs to H. We establish the

following facts.

(1) {w1, w2, z1, z2} is anticomplete to xi−2.

Proof of (1): Suppose not. First suppose that z1 is adjacent to xi−2. Since z1 is

adjacent to xi−2 and xi but not to xi−1, it follows that {xi−2, xi−1, xi, z1} induces a

4-hole, a contradiction. So z1 is nonadjacent to xi−2 and by symmetry it follows that

{z1, z2} is anticomplete to xi−2. So without loss of generality w1 is adjacent to xi−2.

By Lemma 4.14, w2 is not adjacent to xi−2.

Suppose first that w1 is adjacent to xi+1. Then without loss of generality z1 = xi+1,

and hence w2xi+1 is not an edge. In particular, by Lemma 4.14, NH(w2) = {xi−1, xi}.
But then the hole in H ∪ {w1} that contains w1, together with w2 induces a 0-wheel,
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a contradiction. Therefore w1 is not adjacent to xi+1, and in particular z1 ̸∈ H. Since

U = ∅, by Lemma 4.13 |H \Hw1 | ≥ 2 and H \Hw1 is a path. Let P = Hw1 \ xi. Let

t, t′ ∈ H \Hw1 be such that t is adjacent to the end of P different from xi−1, and t′ is

adjacent to t. Since |H| ≥ 5 and |H \Hw1 | ≥ 2, P ∪ {t, t′} induces a path. We claim

that either P ∪ {w1, w2, z1, t} induces a k-net for some k ≥ 3, or P ∪ {w1, w2, z1, t, t
′}

induces a long 2-net.

Suppose that |Hw1 | = 3, i.e. NH(w1) = {xi, xi−1, xi−2}. If {z1, w2} is anticomplete

to {t, t′}, then P∪{w1, w2, z1, t, t
′} induces a long 2-net, a contradiction. If z1 is adjacent

to t, then {z1, w1, xi−2, t} induces a 4-hole, a contradiction. So z1 is nonadjacent to t.

If w2 is adjacent to t, then {w2, xi−1, xi−2, t} induces a 4-hole, a contradiction. So w2 is

not adjacent to t. If both w2 and z1 are adjacent to t′, then {w1, xi−1, xi−2, t, t
′, z1, w2}

induces a 3PC(w1xi−1xi−2, t
′), a contradiction. So not both w2 and z1 are adjacent

to t′. Suppose that w2 is adjacent to t′. But then the hole in H ∪ {w2} that con-

tains w2, together with the vertex z1, induces a 0-wheel, a contradiction. It follows

that z1t
′ is an edge, and this is the only edge between {z1, w2} and {t, t′}. But now

{xi−2, w1, z1, t
′, t, w2} induces a 0-wheel, a contradiction.

So |Hw1 | ≥ 5, and since U = ∅, this implies that |H| ≥ 7. In particular, |P | ≥ 4. If

w2 is adjacent to t or t′, then w2 ∈ X ∪Y . But then w1 and w2 contradict Lemma 4.14.

So w2 is anticomplete to {t, t′}. Suppose that z1 is adjacent to t. If z1 has no neighbour

in P , then vertices t, z1, w1 together with the end of P different from xi−1 induces a

4-hole, a contradiction. So z1 has a neighbour in P , and hence |Hz1 | ≥ 4, so z1 ∈ Y .

But now z1 and w1 are two vertices of Y that cross, a contradiction. So z1 is not

adjacent to t. But now P ∪ {w1, w2, z1, t} induces a k-net where k = |Hw1 | − 1 ≥ 3, a

contradiction. This completes the proof of (1).

(2) {w1, w2, z1, z2} is anticomplete to xi−3.

Proof of (2): Suppose not. Note first that since |H| ≥ 5, xi−3 ̸= xi+1. If w1 is

adjacent to xi−3, then since w1 is nonadjacent to xi−2 by (1), {xi−3, xi−2, xi−1, w1}
induces a 4-hole, a contradiction. So w1 is nonadjacent to xi−3 and it follows by sym-

metry that {w1, w2} is anticomplete to xi−3. So without loss of generality z1 is adjacent

to xi−3. Observe that, by (1), {xi−3, xi−2, xi−1, w1, z1} induces a 5-hole. Since z2 is

anticomplete to {xi−2, xi−1, w1} and since G contains no 0-wheel, z2 is adjacent to at

least one of z1, xi−3. Suppose that z2 is adjacent to both z1 and xi−3. Then the set

{xi−1, xi−2, xi−3, w1, z1, w2, z2} induces a pyramid, a contradiction. So z2 is not adja-

cent to both z1 and xi−3. If z2 is adjacent to xi−3, then {xi−3, z1, xi, z2} induces a
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4-hole, a contradiction. So z2 is adjacent to z1 and nonadjacent to xi−3. But now the

set {xi−1, xi−2, xi−3, w1, z1, w2, z2} induces a theta, a contradiction. This completes the

proof of (2).

It now follows from (1) and (2) that {w1, z1, z2, w2, xi−1, xi−3} induces a C∗
5 if z1z2

is an edge, and {xi−3, xi−2, xi−1, w1, w2, z1, z2} induces a bipartite claw otherwise. In

either case we obtain a contradiction, and this completes the proof.

A set S ⊆ V (G) is dominating (in G) if every vertex of G outside of S has a

neighbour in S. We extend this notion to induced subgraphs F of G by saying that F

is dominating in G if V (F ) is dominating in G.

Lemma 4.17. Let F be an induced subgraph of G[W−
i ∪O1

i ∪W
+
i ], and set V − = W−

i ∩F
and V + = W+

i ∩F . If P = v, . . . , v′ is an induced path in F where v ∈ V − and v′ ∈ V +,

then P is dominating in F . If no vertex of F is universal in F , then the following hold:

(i) V − ∩ V + = ∅.

(ii) If v ∈ V − and v′ ∈ V +, then Hv ∩Hv′ = {xi}.

(iii) If F is dominating in G, then both V − and V + are nonempty.

Proof. Fix v ∈ V −, v′ ∈ V +, and let P be an induced path from v to v′ in F . Suppose

that P is not dominating in F , i.e. there exists a vertex u ∈ F such that N [u]∩P = ∅.
Let w be the vertex of P closest to v′ that belongs to V −, and let w′ be the vertex

of P [w, v′] closest to w that belongs to V +. Then there is a hole H ′ in H ∪ P [w,w′]

that contains P [w,w′] but does not contain xi. Since G contains no 0-wheel, u has a

neighbour inH ′. By our choice of u it follows thatNH′(u) ⊆ H\{xi}. So u ∈ W−
i ∪W+

i ,

but then u is adjacent to at least one of w,w′ by Lemma 4.16, and hence N [u]∩P ̸= ∅,
a contradiction. So for every induced path P = v, . . . , v′ of F where v ∈ V − and

v′ ∈ V +, P is dominating in F .

For the remainder of the proof we suppose that no vertex of F is universal in F .

Contrary to (i), suppose there exists a vertex v ∈ V −∩V +. But then the induced path

P = v is dominating in F and hence v is universal in F , a contradiction. This proves

(i).

Contrary to (ii), suppose there exists v ∈ V − and v′ ∈ V + such thatHv∩Hv′ ̸= {xi}.
Clearly xi ∈ Hv ∩Hv′ , so there exists a vertex x ∈ H \ {xi} such that x ∈ Hv ∩Hv′ .

Since (by (i)) xi−1 ∈ Hv \ Hv′ and xi+1 ∈ Hv′ \ Hv, it follows that if v, v′ ∈ Y , then

v and v′ cross, a contradiction. So without loss of generality v ̸∈ Y , and hence v is of
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Type 2 or 3 w.r.t. H. By (i), v is not of Type 2 w.r.t. H. So v is of Type 3 w.r.t. H.

But then Hv′ = H \ {xi−1}, contradicting Lemma 4.13. This proves (ii).

To prove (iii), suppose also that F is dominating in G. By (i), any neighbour of

xi−1 in F must belong to V − and any neighbour of xi+1 in F must belong to V +.

Therefore V − and V + are nonempty. This proves (iii).

We define the following notation. If v is a vertex outside of H such that Hv is a

path of nonzero length, and x is an end of Hv, then for i ∈ {0, 1, 2} we denote by H i
v,x

the subpath of H of length i such that H i
v,x ∩ Hv = {x′}, where x′ is the end of Hv

different from x (for example, if Hv = x1, x2, . . . , x5, then H0
v,x1

= x5, H
1
v,x1

= x5, x6

and H2
v,x1

= x5, x6, x7). Such a subpath always exists by Lemma 4.13.

Lemma 4.18. G[W−
i ∪O1

i ∪W+
i ] is chordal.

Proof. Suppose not and let H ′ be a hole of G[W−
i ∪ O1

i ∪W+
i ]. First observe that xi

is complete to H ′, and since G contains no 0-wheel, every vertex of H has a neighbour

in H ′. It follows that every vertex of H \ xi has a neighbour in H ′ ∩ (W−
i ∪W+

i ). So

necessarilyH ′∩(W−
i ∪W+

i ) ̸= ∅, and by Lemma 4.16, |W−
i ∩H ′| ≤ 2 and |W+

i ∩H ′| ≤ 2.

Furthermore, if H ′ ∩ (W−
i ∪W+

i ) contains only one vertex, say w, then w is complete

to H and hence U ̸= ∅, a contradiction. So |H ′ ∩ (W−
i ∪W+

i )| ≥ 2.

Set K− = H ′ ∩ W−
i and K+ = H ′ ∩ W+

i . By parts (i) and (iii) of Lemma 4.17,

K− ∩K+ = ∅, and both K− and K+ are nonempty. Fix w1 ∈ K− such that |Hw1 | is
maximum. Let u be the unique vertex of H0

w1,xi
and v the unique vertex of H1

w1,xi
\

H0
w1,xi

. Note that since H is an odd hole, xi ̸= v. By the maximality of |Hw1 | it follows
that any neighbour of v in H ′ belongs to K+. Let Ku be the set of vertices from K−

that are adjacent to u and let Kv be the set of vertices from K+ that are adjacent

to v. By (2), Ku is anticomplete to v and Kv is anticomplete to u. If ku ∈ Ku and

kv ∈ Kv are adjacent, then {ku, kv, u, v} induces a 4-hole, a contradiction. So Ku is

anticomplete to Kv. But now H ′ ∪{u, v} induces a theta if |Ku|+ |Kv| = 2, a pyramid

if |Ku|+ |Kv| = 3 and a prism if |Ku|+ |Kv| = 4. In any case we obtain a contradiction.

Therefore G[W−
i ∪O1

i ∪W+
i ] is chordal.

Lemma 4.19. G[W−
i ∪O1

i ∪W+
i ] is an interval graph.

Proof. In view of Lemma 4.18 and Theorem 4.2, it suffices to show that G[W−
i ∪O1

i ∪
W+

i ] contains no umbrella, net, or k-tent (for every k ≥ 3). Suppose otherwise and

let F be an umbrella, net or k-tent (for some k ≥ 3) in G[W−
i ∪ O1

i ∪ W+
i ]. Since G

is (umbrella ∪ K1, net ∪ K1, k-tent ∪ K1)-free for every k ≥ 3, F is dominating in G,
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and it is easily checked that F contains no universal vertex. Therefore parts (i)–(iv) of

Lemma 4.17 hold.

Set V − = W−
i ∩ F and V + = W+

i ∩ F . By Lemma 4.17, V − and V + are both

nonempty. Fix w ∈ V − and w′ ∈ V + such that |Hw| and |Hw′ | are maximum (since

G is NCA-wheel-free and U = ∅, both Hw and Hw′ are paths). By Lemma 4.17 (i),

xi is an end of both Hw and Hw′ . Set v = H0
w,xi

and v′ = H0
w′,xi

. By our choice of w

and w′ together with Lemma 4.17 (ii), v ̸= v′, v is adjacent to v′, and NH(V −) ⊆ Hw

and NH(V +) ⊆ Hw′ . Since F is dominating in G, every vertex of H has a neighbour

in F , so every vertex of H \ {xi} has a neighbour in V − ∪ V +, and hence vv′ must be

an edge. It follows that w and w′ are not adjacent, for otherwise {w,w′, v, v′} would

induce a C4. Note that since F is connnected, there is an induced path from w to w′

in F .

Suppose first that F is a net. For all distinct u, u′ ∈ F and for any induced

path P from u to u′ in F , there is a vertex of F that neither belongs to P nor has a

neighbour in P , so any induced path from w to w′ in F contradicts Lemma 4.17. Hence

G[W−
i ∪O1

i ∪W+
i ] does not contain a net.

Now suppose that F is an umbrella, i.e. F consists of an induced path v1, . . . , v5 on

five vertices, and two additional nonadjacent vertices x and y such that x is complete to

{v1, . . . , v5}, and y is adjacent to v3 but anticomplete to {v1, v2, v4, v5}. By Lemma 4.17,

up to symmetry we may assume that w = x and w′ = y (since for any other choice of

w,w′, there exists an induced ww′-path in F that contradicts Lemma 4.17. Since y is

anticomplete to {v1, v2, v4, v5}, by Lemma 4.16 we have that {v1, v2, v4, v5} ∩W+
i = ∅.

So in particular no vertex of {v1, v2, v4, v5} is adjacent to v′. Furthermore we see that

v3v
′ is not an edge, for otherwise v3 ∈ W+

i , so v3v is not an edge and hence {x, v3, v, v′}
induces a C4. But now {v1, v2, v3, v4, v5, y, v′} induces a bipartite claw, a contradiction.

So G[W−
i ∪O1

i ∪W+
i ] contains no umbrella.

We deduce that F is a k-tent for some k ≥ 3. That is, F consists of an induced path

v1, . . . , vk and three additional vertices x, y, z such that NF (x) = {v1, . . . , vk−1, y, z},
NF (y) = {v2, . . . , vk, x, z}, and NF (z) = {x, y}. By Lemma 4.17, up to symmetry we

may assume that w = x and w′ = vk (for any other choice of w,w′, either ww′ is an edge

or we can find an induced path from w to w′ in F that contradicts Lemma 4.17). In par-

ticular, F ∩ (W−
i ∪W+

i ) = {w,w′}. But now if k = 3, then {v1, . . . , vk, y, z, xi−1, xi+1}
induces a net ∪K1, and if k ≥ 4, then {v1, . . . , vk, y, z, xi+1} induces a (k − 1)-net. In

either case we obtain a contradiction, and it follows that G[W−
i ∪ O1

i ∪W+
i ] contains

no k-tent for every k ≥ 3.
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F0 F1

1 2 . . . s

Fs (s ≥ 2)

Figure 4.5: Obstructions for the filled vertex being an end vertex.

Let I be an interval graph and let A,B ⊆ V (I). The pair (A,B) is a left-right

pair for I if I admits an interval model in which all intervals corresponding to vertices

of A have the same left endpoint and no other endpoints are further to the left, and

all intervals corresponding to vertices of B have the same right endpoint and no other

endpoints are further to the right. A vertex v of I is an end vertex if ({v}, ∅) is a

left-right pair for I.

Theorem 4.20 (Gimbel [32]). Let I be an interval graph and let v be a vertex of I.

Then v is an end vertex if and only if I contains none of the graphs in Figure 4.5 where

the filled vertex represents v.

Theorem 4.21 (de Figueiredo et al. [23]). Let I be an interval graph and let A,B ⊆
V (I). Then (A,B) is a left-right pair for I if and only if the following conditions hold:

� A and B are cliques.

� Each vertex of A ∪B is an end vertex.

� For all distinct vertices u, v, both in A or both in B, there is no induced 4-vertex

path P in I such that P ∗ = {u, v}.

� For each a ∈ A and b ∈ B, every induced path from a to b in I is dominating in

I.

Lemma 4.22. (W−
i ,W+

i ) is a left-right pair for G[W−
i ∪O1

i ∪W+
i ].

Proof. We prove the following two claims.

(1) For all distinct vertices w,w′, both in W−
i or both in W+

i , there is no induced 4-

vertex path P in G[W−
i ∪O1

i ∪W+
i ] such that P ∗ = {w,w′}.

Proof of (1): Suppose otherwise and let P = x,w,w′, y be an induced 4-vertex path in
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G[W−
i ∪O1

i ∪W+
i ] such that, without loss of generality, w,w′ ∈ W−

i . By Lemma 4.17

applied to subpaths wx and w′y of P , and since W−
i is a clique by Lemma 4.16 both x

and y belong to O1
i . By Lemma 4.17 (i), w and w′ are nonadjacent to xi+1, so xi is an

end of Hw and Hw′ . If Hw = Hw′ , then P ∪H2
w,xi

induces a long 2-net, a contradiction.

So without loss of generality Hw′ ⊊ Hw. But now P ∪ H1
w,xi

∪ Hw \ (Hw′ \ H0
w′,xi

)

induces a k-net, where k = |Hw| − |Hw′ | + 2 ≥ 3, a contradiction. This completes the

proof of (1).

(2) Each vertex of W−
i ∪W+

i is an end vertex in G[W−
i ∪O1

i ∪W+
i ].

Proof of (2): By symmetry it suffices to prove that each vertex of W−
i is an end

vertex of G[W−
i ∪ O1

i ∪W+
i ]. Suppose otherwise. Then by Theorem 4.20 there exists

some smallest integer s ≥ 0 such that G[W−
i ∪O1

i ∪W+
i ] contains Fs (see Figure 4.5),

where the filled vertex belongs to W−
i .

Suppose first that s = 0, i.e. there exists an induced 5-vertex path P = v1, . . . , v5 in

G[W−
i ∪O1

i ∪W
+
i ] such that v3 ∈ W−

i . By (1) and Lemma 4.16, {v1, v2, v4, v5}∩W−
i = ∅.

Furthermore, by Lemma 4.17 applied to P , no vertex of P belongs to W+
i , therefore

{v1, v2, v4, v5} ⊆ O1
i . But now P ∪H1

w,xi
induces a bipartite claw, a contradiction, and

hence s ̸= 0.

Suppose now that s = 1, i.e. there exists an induced 5-vertex path P = v1, . . . , v5

together with an additional vertex x in G[W−
i ∪O1

i ∪W+
i ] such that NP (x) = {v3} and

x ∈ W−
i . Then by Lemma 4.16 and since s ̸= 0, v3 ̸∈ W−

i and hence (P ∪{x})∩W−
i =

{x}. By Lemma 4.17, no vertex of P belongs to W+
i , so P ⊆ O1

i . But now P ∪{x, xi−1}
induces a bipartite claw, a contradiction.

So s ≥ 2, i.e. G[W−
i ∪ O1

i ∪ W+
i ] contains an induced path P = v1, . . . , vs such

that v1 ∈ W−
i , together with additional vertices x, y, w such that x is complete to

P ∪ {y} and nonadjacent to w, y is anticomplete to P ∪ {w}, and w is adjacent to vs

and anticomplete to P \ {vs}. By Lemma 4.16, (P ∪ {x, y, w}) ∩W−
i ⊆ {v1, v2, x}. If

{v2, x}∩W−
i = ∅, then by Lemma 4.17 (P \{v1})∪{x, y, w} ⊆ O1

i . But then the graph

induced by P ∪ {x, y, w, xi−1, xi+1} is a net ∪ K1 (if s = 2), or contains an s-net (if

s ≥ 3); in either case a contradiction. Therefore {v2, x} ∩W−
i ̸= ∅.

If v2 ∈ W+
i , then by minimality s = 2 and by (1) x ̸∈ W−

i , in which case we

may relabel v2 and x so that {v2, x} ∩ W−
i = {x}. So it suffices to consider the case

{v2, x}∩W−
i = {x}. By Lemma 4.17 (i), {v1, x} is anticomplete to xi+1, so xi is an end

of Hv1 and Hx. If Hv1 ⊆ Hx, then P ∪H1
x,xi

∪Hx \ (Hv1 \H0
v1,xi

)∪{x, y, w} induces an

(s+1)-net for some s ≥ 2, a contradiction. So there exists z ∈ Hv1\Hx. By Lemma 4.13
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and since U = ∅, z and xi+1 are nonadjacent. But now P ∪ {x, y, z, w, xi+1} induces a

net ∪K1, a contradiction. This completes the proof of (2).

It now follows from claims (1) and (2), Lemmas 4.16 and 4.17, and Theorems 4.20

and 4.21 that (W−
i ,W+

i ) is a left-right pair for G[W−
i ∪O1

i ∪W+
i ].

Lemma 4.23. Let w ∈ W+
i , v ∈ O2

i ∪W−
i+1, and let A be the set of neighbours of w

that are adjacent to xi but not to xi+1. If w and v are nonadjacent, then wxi+2 is not

an edge, and A is anticomplete to v.

Proof. Suppose that w and v are nonadjacent. If a ∈ A is adjacent to v, then

{w, a, v, xi+1} induces a C4, a contradiction. So A is anticomplete to v.

Suppose that wxi+2 is an edge, and fix a ∈ A (such a vertex exists by definition

of W+
i ). It follows that w ∈ W−

i+1, and hence v ∈ O2
i by Lemma 4.16. In particular,

vxi+2 is not an edge. Furthermore, axi+2 is not an edge, for otherwise {a, xi, xi+1, xi+2}
induces a C4, a contradiction.

Suppose that H is of length 5. By Lemma 4.13 and since U = ∅, w is nonadjacent

to xi−1. So w ∈ X. If axi−1 is an edge, then by Lemma 4.14, a is of Type 2 w.r.t. H.

But then {a, xi−1, xi−2, xi+2, w, v} induces a 0-wheel, a contradiction. So axi−1 is not

an edge. But now {a,w, v, xi+1, xi+2, xi+3, xi−1} induces a long 2-net, a contradiction.

So H is of length at least 7. If wxi−1 is an edge, then there exists a hole H ′ in

H ∪ {w} that contains w but not xi or xi+1. But then H ′ ∪ {v} induces a 0-wheel, a

contradiction. So wxi−1 is not an edge, and by Lemma 4.13 and since U = ∅, wxi−2 is

not an edge. But now {a,w, xi+2, xi, xi+1, v, xi−2} induces a tent∪K1, a contradiction.

Therefore wxi+2 is not an edge.

Lemma 4.24. Let F be an induced subgraph of G[W+
i ∪O2

i ∪W
−
i+1], and set Vi = W+

i ∩F
and Vi+1 = W−

i+1 ∩ F . If P = v, . . . , v′ is an induced path in F where v ∈ Vi and

v′ ∈ Vi+1, then P is dominating in F . If no vertex of F is universal in F , then the

following hold:

(i) Vi ∩ Vi+1 = ∅.

(ii) If v ∈ Vi and v′ ∈ Vi+1, then Hv ∩Hv′ = {xi, xi+1}.

(iii) If F is dominating in G, then both Vi and Vi+1 are nonempty.

Proof. We first prove that any induced path P = v, . . . , v′ in F , where v ∈ Vi and v′ ∈
Vi+1, is dominating in F . Suppose otherwise. Let P = v, . . . , v′ be a counterexample

of minimum length and fix u ∈ V (F ) such that N [u]∩P = ∅. By the minimality of P ,
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we have that P ∩ Vi = {v}, P ∩ Vi+1 = {v′} and P ∗ ⊆ O2
i . By Lemma 4.16, u ∈ O2

i .

By the definition of sets W+
i and W−

i+1 there exist vertices z ∈ N(v) \ {xi+1} and z′ ∈
N(v′) \ {xi} such that z is adjacent to xi but not to xi+1 and z′ is adjacent to xi+1 but

not to xi. If possible, let us choose z and z′ so that they belong to H. By Lemma 4.23

applied to vertices v, u and to v′, u, we have that none of zu, z′u, vxi+2, v
′xi−1 are edges.

Furthermore, z and z′ are nonadjacent, for otherwise {z, xi, xi+1, z
′} induces a C4. Let

R be an induced path from z to z′ in P ∪ {z, z′}.
If NH(z)\{xi} and NH(z′)\{xi+1} are both nonempty, then there exists an induced

path from z to z′ in (H\{xi, xi+1})∪{z, z′} which together withR and u forms a 0-wheel,

a contradiction. So without loss of generality NH(z) = {xi}, and therefore z ̸∈ H and

hence v is of Type 2 w.r.t. H. Observe that v′ and xi−2 are nonadjacent by Lemma 4.13

and since H is of length at least 5. Suppose that v ̸= v′. But now R∪{xi−2, xi, xi+1, u}
induces an |R|-tent∪K1 if z′xi−2 is not an edge, and otherwise R∪{xi+1, x, u} induces

an (|R| − 1)-net, where x = H0
z′,xi+1

if z′ ̸∈ H and x = xi+3 otherwise (since z′ = xi+2

in this case). Since |R| ≥ 3, in any case we obtain a contradiction. So v = v′. If

z′ ∈ H, then the graph induced by (Hv \ {xi}) ∪ H2
v,xi

∪ {u, v, z} is a long 2-net if

|Hv| = 3 or contains a k-net for some k ≥ 3 if |Hv| ≥ 5. In either case we obtain a

contradiction, so z′ ̸∈ H and hence v is of Type 2 w.r.t. H. If z′ is of Type 1 w.r.t. H,

then {z, v, z′, xi, xi+1, u} together with any vertex of H \ {xi−1, xi, xi+1, xi+2} induces

a tent∪K1, a contradiction. So |Hz′ | > 1, and hence by Lemma 4.15 applied to z′ and

v = v′, we have that z′ ∈ X ∪ Y . But now H1
z′,xi+1

∪ {z, v, z′, xi+1, u} induces a long

2-net, a contradiction. Therefore any induced path in F with one end in Vi and the

other in Vi+1 is dominating in F .

For the remainder of the proof we assume that no vertex of F is universal in F .

Contrary to (i), suppose there exists a vertex v ∈ Vi ∩ Vi+1. Since no vertex of F is

universal in F , the induced path P = v is not dominating in F , a contradiction. So (i)

holds.

Contrary to (ii), suppose that (Hv ∩ Hv′) \ {xi, xi+1} ̸= ∅ for some v ∈ Vi and

v′ ∈ Vi+1. Therefore v, v
′ ∈ X∪Y . By (i), v is nonadjacent to xi+2 and v′ is nonadjacent

to xi−1, and therefore both v and v′ must belong to Y . But then v and v′ are two vertices

of Y that cross, a contradiction. So (ii) holds.

Finally, if F is dominating in G, then by (i) any neighbour of xi−1 in F must belong

to Vi and any neighbour of xi+2 in F must belong to Vi+1, so (iii) holds.

Lemma 4.25. If F is an induced subgraph of G[W+
i ∪O2

i ∪W−
i+1], then:

� F is not dominating in G, or



4.1. A PARTIAL CHARACTERISATION 165

� some vertex of F is universal in F .

Proof. On the contrary, suppose that there exists an induced subgraph F of G[W+
i ∪

O2
i ∪W−

i+1] that is dominating in G but contains no universal vertex. Set V − = W+
i ∩F

and V + = W−
i+1∩F . By Lemma 4.24 (iii), V − and V + are nonempty. Fix w ∈ V − and

w′ ∈ V + so that |Hw| and |Hw′ | are maximum. By Lemma 4.24 (i), xi−1 ̸∈ N(w′) and

xi+2 ̸∈ N(w), so xi is an end of Hw′ and xi+1 is an end of Hw. Since F is dominating

in G, it follows that xi−1 ∈ N(w) and xi+2 ∈ N(w′). Therefore w and w′ belong to

X ∪ Y and hence |Hw| and |Hw′ | are odd by Lemma 4.13. Since every vertex of H

has a neighbour in F , it follows by our choice of w and w′ that every vertex of H is

adjacent to at least one of w and w′, and hence Hw ∪Hw′ = V (H). Let v and v′ be the

(unique) vertices of H0
w,xi+1

and H0
w′,xi

respectively. By Lemma 4.24 (ii), vertices v and

v′ are distinct, and therefore they are adjacent (for otherwise some vertex of H would

be nonadjacent to both w and w′). It follows that |H| = |Hw|+ |Hw′ |−2, contradicting

the fact that H is of odd length.

Lemma 4.26. G[W+
i ∪O2

i ∪W−
i+1] is chordal.

Proof. For suppose that G[W+
i ∪ O2

i ∪ W−
i+1] contains a hole H ′. Since G contains

no 0-wheel, H ′ is dominating in G. But clearly no vertex of H ′ is universal in H ′,

contradicting Lemma 4.25. Therefore G[W+
i ∪O2

i ∪W−
i+1] is chordal.

Lemma 4.27. G[W+
i ∪O2

i ∪W−
i+1] is an interval graph.

Proof. By Theorem 4.2 and Lemma 4.26, it suffices to show that G[W+
i ∪ O2

i ∪W−
i+1]

contains no umbrella, net, or k-tent for every k ≥ 3. Suppose otherwise and let F

be an umbrella, net, or k-tent (for some k ≥ 3) in G[W+
i ∪ O2

i ∪ W−
i+1]. Since G is

(umbrella ∪K1, net ∪K1, k-tent ∪K1)-free for every k ≥ 3, F is dominating in G, and

in any case no vertex of F is universal in F . This contradicts Lemma 4.25.

Lemma 4.28. (W+
i ,W−

i+1) is a left-right pair for G[W+
i ∪O2

i ∪W−
i+1].

Proof. We prove the following two claims.

(1) For all distinct vertices w,w′, both in W+
i or both in W−

i+1, there is no induced

4-vertex path P in G[W+
i ∪O2

i ∪W−
i+1] such that P ∗ = {w,w′}.

Proof of (1): Suppose otherwise and let P = x,w,w′, y be an induced 4-vertex path in

G[W+
i ∪O2

i ∪W−
i+1] such that, without loss of generality, w,w′ ∈ W+

i . By Lemma 4.16,
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without loss of generality x ∈ O2
i and y ∈ O2

i ∪W
−
i+1. Since the path w′y is not dominat-

ing in P , by Lemma 4.24 y ̸∈ W−
i+1 and hence y ∈ O2

i . Let z (resp. z′) be a neighbour

of w (resp. w′) in V (G) \ {xi+1} that is adjacent to xi but not to xi+1. Pick z and

z′ so that they belong to H, if possible. By Lemma 4.24 (i), {w,w′} is anticomplete

to {xi+2} and hence is also anticomplete to {xi+3} by Lemma 4.13. It follows that

H2
w,xi+1

\H0
w,xi+1

is anticomplete to {w, x, y} and H2
w′,xi+1

\H0
w′,xi+1

is anticomplete to

{w′, x, y}.
Suppose that {w,w′} ∩ (X ∪ Y ) ̸= ∅; without loss of generality w ∈ X ∪ Y . If

Hw = Hw′ , then H2
w,xi+1

∪ {w,w′, x, y} induces a long 2-net, a contradiction. So

Hw ̸= Hw′ and hence without loss of generality Hw′ ⊂ Hw. But now the set (Hw\(Hw′ \
H0

w′,xi+1
))∪H0

w,xi+1
∪{w,w′, x, y} induces a k-net where k = |Hw|− (|Hw′ |−1)+1 ≥ 3,

a contradiction.

So both w and w′ are of Type 2 w.r.t. H, and therefore {z, z′} ∩H = ∅. We first

consider the case where one of z, z′ is complete to {w,w′}. Suppose without loss of

generality that z is complete to {w,w′}. By Lemma 4.23, z is anticomplete to {x, y}. If
z is adjacent to xi+3, then H0

z,xi
= xi+3, and hence H1

z,xi
∪{z, w,w′, x, y} induces a long

2-net, a contradiction. So z is nonadjacent to xi+3. But then {w,w′, xi+1, x, y, z, xi+3}
induces a tent ∪K1, a contradiction.

So neither z nor z′ is complete to {w,w′}, and hence z ̸= z′. Furthermore, z and

z′ are nonadjacent, for otherwise {z, z′, w, w′} induces a C4. If {z, z′} is anticomplete

to xi+3, then {z, z′, w, w′, xi+1, xi+2, xi+3} induces a long 2-net, a contradiction. So

without loss of generality z is adjacent to xi+3, and z′ is nonadjacent to xi+3 for

otherwise {z, z′, xi, xi+3} induces a C4. But then {z, w, xi+1, xi+2, xi+3} induces a hole

which together with z′ forms a 0-wheel, a contradiction. This completes the proof of

(1).

(2) Each vertex of W+
i ∪W−

i+1 is an end vertex in G[W+
i ∪O2

i ∪W−
i+1].

Proof of (2): By symmetry it suffices to prove that each vertex of W+
i is an end

vertex of G[W+
i ∪O2

i ∪W−
i+1]. Suppose otherwise. Then by Theorem 4.20 there exists

some smallest integer s ≥ 0 such that G[W+
i ∪O2

i ∪W−
i+1] contains Fs (see Figure 4.5).

Suppose first that s = 0, i.e. there exists an induced 5-vertex path P = v1, . . . , v5 in

G[W+
i ∪O2

i ∪W−
i+1], where v3 ∈ W+

i . By (1) and Lemma 4.16, {v1, v2, v4, v5} ∩W+
i =

∅. By Lemma 4.24 applied to P , no vertex of P belongs to W−
i+1, and therefore

{v1, v2, v4, v5} ⊆ O2
i . By Lemma 4.23 applied to vertices v1 and v3, vertex v3 is nonad-

jacent to xi+2 and therefore xi+1 is an end of Hv3 . If v3 ∈ X ∪ Y , then P ∪ H1
v3,xi+1
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induces a bipartite claw, a contradiction. Therefore v3 is of Type 2 w.r.t. H. By def-

inition of W+
i there exists a neighbour z of v3 in V (G) \ {xi+1} that is adjacent to xi

but not to xi+1. Since {v1, v2, v4, v5} ∩ W+
i = ∅, z is anticomplete to {v1, v2, v4, v5}.

But then P ∪ {z, xi+1, xi+3} induces an umbrella ∪ K1 if zxi+3 is not an edge, and

P ∪{z, xi+3} a bipartite claw if zxi+3 is an edge. In any case we obtain a contradiction,

and therefore s ̸= 0.

Suppose now that s = 1, i.e. there exists an induced 5-vertex path P = v1, . . . , v5

together with an additional vertex x in G[W+
i ∪O2

i ∪W−
i+1] such that NP (x) = {v3} and

x ∈ W+
i . Then by Lemma 4.16 and since s ̸= 0, v3 ̸∈ W+

i and hence (P ∪{x})∩W+
i =

{x}. By Lemma 4.24, no vertex of P belongs to W−
i+1, so P ⊆ O2

i \ (W
+
i ∪W−

i+1). By

definition of W+
i , there exists a neighbour z of x in V (G) \ {xi+1} that is adjacent to

xi but not to xi+1. Since P ∩ W+
i = ∅, z is anticomplete to P . But then P ∪ {x, z}

induces a bipartite claw, a contradiction. So s ̸= 1.

Therefore s ≥ 2. That is, G[W+
i ∪ O2

i ∪ W−
i+1] contains an induced path P =

v1, . . . , vs such that v1 ∈ W+
i , together with additional vertices x, y, w such that x

is complete to P ∪ {y} and nonadjacent to w, y is adjacent to x and anticomplete to

P∪{w}, and w is adjacent to vs and anticomplete to (P \{vs})∪{x, y}. By Lemma 4.16,

W+
i ∩ (P ∪ {x, y, w}) ⊆ {v1, v2, x}. Fix z ∈ N(v1) \ {xi+1} such that z is adjacent to

xi but not to xi+1. By Lemma 4.23, no vertex of P ∪ {x, y, z, w} is adjacent to xi+2.

If {v2, x} ∩ W+
i = ∅, then z is anticomplete to P ∪ {x, y, w} and hence P ∪

{x, y, z, w, xi+2} induces an s-net ∪ K1 for some s ≥ 2, a contradiction. So {v2, x} ∩
W+

i ̸= ∅. If v2 ∈ W+
i , then by minimality s = 2 and by (1) x ̸∈ W+

i , in which case we

may relabel v2 and x so that {v2, x} ∩ W+
i = {x}. So it suffices to consider the case

{v2, x} ∩W+
i = {x}. Fix z′ ∈ N(x) \ {xi+1} such that z′ is adjacent to xi but not to

xi+1. If possible, choose z′ so that z = z′. If z = z′, then P ∪ {x, y, z, w, xi+1} induces

an (s+ 2)-tent (for some s ≥ 2), which together with xi+3 forms an (s+ 2)-tent ∪K1

if zxi+3 is not an edge. So zxi+3 is an edge, but then P ∪ {x, y, z, w, xi+3} induces

an (s + 1)-net, a contradiction. So z ̸= z′, and hence z and x are nonadjacent. But

now G[P ∪ {x, y, z, w, xi+2}] contains an s-net (for s ≥ 3), a net ∪ K1 (if s = 2 and

zxi+2 ̸∈ E(G)), or a long 2-net (if s = 2 and zxi+2 ∈ E(G)). In any case we obtain a

contradiction. This completes the proof of (2).

It now follows from claims (1) and (2), Lemmas 4.16 and 4.24, and Theorems 4.20

and 4.21 that (W+
i ,W−

i+1) is a left-right pair for G[W+
i ∪O2

i ∪W−
i+1].

Lemma 4.29. For each i ∈ {1, . . . , n}, the following hold.
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� If v ∈ O1
i , then NG(v) ⊆ {xi} ∪W−

i ∪O1
i ∪W+

i .

� If v ∈ O2
i , then NG(v) ⊆ {xi, xi+1} ∪W+

i ∪O2
i ∪W−

i+1.

Proof. Fix i ∈ {1, . . . , n}, v ∈ O1
i ∪O2

i and w ∈ NG(v). Since G contains no 0-wheel and

U = ∅, by Lemma 4.13 there exists j ∈ {1, . . . , n−2} such that w is of Type j w.r.t. H.

We prove that w ∈ {xi}∪W−
i ∪O1

i ∪W+
i if v ∈ O1

i and w ∈ {xi, xi+1}∪W+
i ∪O2

i ∪W−
i+1

if v ∈ O2
i .

Suppose that v ∈ O1
i . By definition of O1

i , NH(v) = {xi}, so we may assume that

w ̸∈ V (H). By Lemma 4.15, w ∈ O1
i if j = 1, and w ∈ W−

i ∪W+
i if j = 2. So we may

assume that j ≥ 3, and hence up to symmetry xi+1 ∈ Hw by Lemmas 4.13 and 4.15.

It follows that w ∈ W+
i , and this completes the proof of the first bullet.

Suppose now that v ∈ O2
i . By definition of O2

i , NH(v) = {xi, xi+1}, so we may as-

sume that w ̸∈ V (H). If {xi, xi+1} ̸⊆ N(w), then by Lemma 4.15 |N(w)∩{xi, xi+1}| =
1. But then v belongs to W+

i ∪W−
i+1, a contradiction. So {xi, xi+1} ⊆ N(w) and hence

w ∈ W+
i ∪O2

i ∪W−
i+1. This completes the proof of the second bullet.

Lemma 4.30. For each i ∈ {1, . . . , n}, we have that

NG(xi) \H = W+
i−1 ∪O2

i−1 ∪W−
i ∪O1

i ∪W+
i ∪O2

i ∪W−
i+1.

Proof. Fix i ∈ {1, . . . , n}. By definition of the sets in question we see that W+
i−1 ∪

O2
i−1 ∪W−

i ∪O1
i ∪W+

i ∪O2
i ∪W−

i+1 ⊆ NG(xi) \H. For the reverse inclusion, let us fix

v ∈ NG(xi) \H. Since G contains no 0-wheel and U = ∅, v is of Type j w.r.t. H for

some integer j satisfying 1 ≤ j < n. If j = 1, then v ∈ O1
i , and if j = 2, then NH(v) =

{xi−1, xi} or NH(v) = {xi, xi+1} and hence v ∈ W+
i−1∪O2

i−1∪W
−
i ∪O2

i ∪W
+
i ∪W−

i+1. So

we may assume that j ≥ 3, and therefore up to symmetry Hv contains {xi−1, xi, xi+1}
or {xi, xi+1, xi+2} by Lemma 4.13. In the former case v ∈ W−

i and in the latter case

v ∈ W−
i+1. We conclude that NG(xi)\H = W+

i−1∪O2
i−1∪W

−
i ∪O1

i ∪W
+
i ∪O2

i ∪W
−
i+1.

We define the following notation and terminology. Let M = (C,A) be a circular-arc

model, F its intersection graph, and fix a direction “clockwise” for C. For A ∈ A we

denote by ℓM (A) and rM (A) respectively the left and right endpoints of A when travers-

ing C clockwise, and for v ∈ V (F ) we denote by AM (v) the arc of M corresponding to

v. For simplicity of notation we set ℓM (v) = ℓM (AM (v)) and rM (v) = rM (AM (v)) for

each v ∈ V (F ). Say M is open (resp. closed) if all arcs in A are open (resp. closed).

An arc A of M with endpoints a, b is clockwise if ℓM (A) = a and rM (A) = b, and

anticlockwise if ℓM (A) = b and rM (A) = a.
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· · · rn−1

ℓn rn
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Figure 4.6: A depiction of a section of the circular-arc model M ′ = (C,A′) that is
constructed in the proof of Theorem 4.31. The thick line represents a segment of C
and the five thinner lines are the arcs corresponding to vertices xn−1, xn, x1, x2, x3 of
H. A dashed rectangle represents a collection of open intervals while a solid rectangle
represents a collection of closed intervals.

Theorem 4.31. G is a circular-arc graph.

Proof. Let M = (C,A) be a closed circular-arc model for the hole H such that no

two arcs share an endpoint. For brevity, let us set ℓi = ℓM (xi) and ri = rM (xi) for

each i ∈ {1, . . . , n}. Using Lemma 4.22, construct for each i ∈ {1, . . . , n} an open

circular-arc model M1
i for G[W−

i ∪O1
i ∪W+

i ] such that:

� all arcs of M1
i are contained in the open clockwise arc (ri−1, ℓi+1),

� ℓM1
i
(v) = ri−1 for all v ∈ W−

i , and

� rM1
i
(v) = ℓi+1 for all v ∈ W+

i .

Similarly, using Lemma 4.28, construct for each i ∈ {1, . . . , n} a closed circular-arc

model M2
i for G[W+

i ∪O2
i ∪W−

i+1] such that:

� all arcs of M2
i are contained in the closed clockwise arc [ℓi+1, ri],

� ℓM2
i
(v) = ℓi+1 for all v ∈ W+

i , and

� rM2
i
(v) = ri for all v ∈ W−

i+1.

Now, for each v ∈ G \ H, let Av be the union of all arcs corresponding to v among

the models M1
1 ,M

2
1 , . . . ,M

1
n,M

2
n; for each v ∈ H, let Av = AM (v); and let A′ =⋃

v∈V (G)Av. See Figure 4.6 for a depiction of this construction. With the following two

claims we verify that M ′ = (C,A′) is a circular-arc model whose intersection graph is

isomorphic to G.
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(1) For each v ∈ V (G), Av is an arc on C.

Proof of (1): Fix v ∈ V (G). If v ∈ H, then Av = AM (v) is an arc on C by def-

inition, so we may assume v ∈ G \ H. Furthermore, if exactly one model among

M1
1 ,M

2
1 , . . . ,M

1
n,M

2
n has an arc corresponding to v, then Av is an arc on C by defini-

tion. So we may assume that at least two models among M1
1 ,M

2
1 , . . . ,M

1
n,M

2
n have an

arc corresponding to v. Since O1
1, O

2
1, . . . , O

1
n, O

2
n are all pairwise disjoint, and each is

also disjoint from
⋃n

i=1(W
−
i ∪W+

i ), we may therefore assume that v ∈
⋃n

i=1(W
−
i ∪W+

i ).

Up to symmetry we assume that Hv = x1, x2, . . . , xk for some integer k satisfying

1 < k ≤ n − 2 (the latter inequality holds by Lemma 4.13). Define Lv,Mv, Rv as

follows:

� Lv is the arc AM1
1
(v) if v has a neighbour different from x2 that is adjacent to x1

but not to x2, and is the empty set otherwise.

� Rv is the arc AM1
k
(v) if v has a neighbour different from xk−1 that is adjacent to

xk but not to xk−1, and is the empty set otherwise.

� Mv = AM2
1
(v)∪ (r1, ℓk)∪AM2

k−1
(v), where the arc (r1, ℓk) is taken to be clockwise

if k ≥ 3 and anticlockwise otherwise. (Arcs AM2
1
(v) and AM2

k−1(v)
exist since

v ∈ W−
2 ∩W+

k−1 if k ≥ 3 and v ∈ W+
1 ∪W−

2 if k = 2.)

We claim that Av = Lv∪Mv∪Rv, and that Lv∪Mv∪Rv is an arc on C. By definition,

Lv ∪Rv ⊆ Av. If k ≥ 3, then v ∈
⋂k−1

i=2 (W
−
i ∪W+

i ), so the models

M1
2 ,M

2
2 , . . . ,M

1
k−2,M

2
k−2,M

1
k−1

respectively contain clockwise arcs

(r1, ℓ3), [ℓ3, r2], . . . , (rk−3, ℓk−1), [ℓk−1, rk−2], (rk−2, ℓk)

that correspond to v. The union of these arcs is the clockwise arc (r1, ℓk), so Mv ⊆ Av

if k ≥ 3. Suppose that k = 2. Then Av ⊆ (rn, ℓ3). Since at least two models among

M1
1 ,M

2
1 , . . . ,M

1
n,M

2
n contain arcs corresponding to v, it follows that v ∈ W+

1 ∩ W−
2 .

Let z be a neighbour of v different from x2 that is adjacent to x1 but not to x2, and let

z′ be a neighbour of v different from x1 that is adjacent to x2 but not to x1. Since k = 2,

{z, z′}∩H = ∅, and since z is nonadjacent to x2 and z′ is nonadjacent to x1 we see that

the right endpoint (call it rz) of Az is contained in Ax1 \ [ℓ2, r1] and the left endpoint
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(call it ℓz′) of Az′ is contained in Ax2 \ [ℓ2, r1]. Since the anticlockwise arc (r1, ℓ2) is

contained in [rz, ℓz′ ], it follows from z and z′ being neighbours of v that [rz, ℓz′ ] ⊆ Av.

This concludes the proof that Lv∪Mv∪Rv ⊆ Av. That Av ⊆ Lv∪Mv∪Rv follows from

the fact that, by definition of sets W−
i and W+

i , v ̸∈ W−
k+1 ∪W−

k+2 ∪ · · · ∪W−
n ∪W−

1

and v ̸∈ W+
k ∪W+

k+1 ∪ · · · ∪W+
n . Finally, if Lv is nonempty then its right endpoint is

ℓ2, and if Rv is nonempty then its left endpoint is rk−1, and hence Lv ∪Mv ∪Rv is an

arc on C. This completes the proof of (1).

In view of (1), let G′ be the graph with vertex set V (G) such that distinct vertices

u, v ∈ V (G′) are adjacent inG′ if and only if arcsAu andAv have nonempty intersection.

We prove that:

(2) G′ = G.

Proof of (2): Fix v ∈ V (G′). It suffices to prove that NG′(v) = NG(v). By con-

struction, if v = xi for some i ∈ {1, . . . , n}, then Av intersects Axi−1 , Axi+1 , and Aw for

each w ∈ W+
i−1∪O2

i−1∪W−
i ∪O1

i ∪W+
i ∪O2

i ∪W−
i+1, and is disjoint from all other arcs,

so NG′(v) = NG(v) by Lemma 4.30. So we may assume that v ̸∈ V (H). Suppose that

v ∈ Oj
i for some i ∈ {1, . . . , n} and j ∈ {1, 2}. Since O1

1, O
2
1, . . . , O

1
n, O

2
n are all pairwise

disjoint, we have that Av = A
Mj

i
(v) and hence NG′(v) = NG(v) by Lemma 4.29. So we

may assume that v ∈
⋃n

i=1(W
−
i ∪W+

i ). Fix u ∈
⋃n

i=1(W
−
i ∪W+

i ) \ {v}. It remains to

prove that uv is an edge of G′ if and only if it is an edge of G.

Suppose that uv is an edge of G. Then by Lemma 4.15 Hu ∩Hv induces a path P .

If P has length at least 1, then {xi, xi+1} ⊆ P for some i ∈ {1, . . . , n}, and hence both

u and v belong to W+
i ∪O2

i ∪W−
i+1. It follows that uv is an edge of G[W+

i ∪O2
i ∪W−

i+1]

and therefore AM2
i
(u)∩AM2

i
(v) ̸= ∅. So Au ∩Av ̸= ∅ and therefore uv is an edge of G′.

So we may assume that P = xi for some i ∈ {1, . . . , n}, and therefore without loss of

generality Hu ∩ {xi−1, xi, xi+1} = {xi−1, xi} and Hv ∩ {xi−1, xi, xi+1} = {xi, xi+1}. It

follows that u ∈ W−
i and v ∈ W+

i , so uv is an edge of G[W−
i ∪ O1

i ∪W+
i ]. Therefore

AM1
i
(u) ∩AM1

i
(v) ̸= ∅ and hence Au ∩Av ̸= ∅, so uv is an edge of G′.

Finally, it follows from our choice of models M1
1 ,M

2
1 , . . . ,M

1
n,M

2
n that if Au and Av

have nonempty intersection (i.e. if u and v are adjacent in G′), then there exist two arcs,

one corresponding to u and the other to v, in one of the models M1
1 ,M

2
1 , . . . ,M

1
n,M

2
n,

that have nonempty intersection and hence u and v are adjacent in G. This completes

the proof of (2).

Putting together Theorems 4.11 and 4.31, we get the main result of this chapter.
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Theorem 4.32. Let G be an even-hole-free graph that is not chordal. Let H be a hole

of G of maximum length that furthermore maximises |X|. Assume no two vertices of

YH are crossing. Then G is circular-arc if and only if G ∈ C.
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[34] T.R. Hartinger and M. Milanič, Partial Characterizations of 1-Perfectly Orientable

Graphs, Journal of Graph Theory 85 (2) (2017) 378-394.

[35] J. Horsfield, M. Preissmann, C. Robin, N. L. D. Sintiari, N. Trotignon and K.
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