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A B S T R A C T   

Energy dissipation occurs through Coulomb friction and is considered a conventional type of mechanical 
damping mechanism in structures subjected to external loads. Structures that are subjected to severe dynamic 
excitations such as ground motion or wind are required to employ a supplementary dampening system in 
addition to the Coulomb damping to mitigate the adverse impact of vibration in structures. 

Therefore, this study aims to develop a new Hybrid Damping Mechanism (HDM) for a single-degree-of- 
freedom (SDOF) system which is subjected to harmonic loads through a Viscous Damper System (VDS) to 
enhance the energy dissipation efficiency besides the Coulomb friction. Therefore, an analytical dynamic model 
for the non-sticking steady-state response was formulated where the effects of the viscous damper were imple-
mented in the governor equation of the motion to estimate the structural response under harmonic loads. 
Subsequently, the Maximum Displacement (MD) and the Maximum Velocity (MV) were estimated by assuming 
deviation from the equilibrium point. Finally, a genuine borderline equation and a boundary limit were derived 
for the force amplitude ratio, where the maximum external load was divided by kinetic friction. It is an 
appropriate guideline for structural designers to avoid the sticking phase in the dynamical analysis of the 
structural systems equipped with frictional dampers. 

Based on the application of the final solution to a numerical example, the proposed HDM in the SDOF system 
considerably diminished the MD with velocity deviation ranging between 5% and 98% and 3% to 94%, 
respectively. Meanwhile, the analysis also revealed that the VDS damping ratio and the force amplitude ratio 
were the most effective parameters in reducing the MD and velocity deviation with a frequency ratio (β) between 
0.85 and 1.15. 

The developed hybridized SDOF system can also be applied as a Tuned Mass Damper (TMD) in the structures 
to ameliorate their dynamic response.   

1. Introduction 

Friction could occur in various conditions to resist the movement of 
one object over another in sliding or rolling motions [1]. For instance, 
friction is the main cause of the dissipation of energy in industrial ma-
chinery or structures where the components have relative motions [2]. 
Energy dissipation in structures occurs through material friction, friction 
between structural components, and damage or yielding in structural 
members. However, supplementary structural vibration dampening 
systems such as frictional dampers were implemented in a structure 
subjected to catastrophic excitation to enhance the efficiency of energy 
dissipation in the past decades [3]. The base isolators are deemed as 

alternative solutions to decouple the superstructure from its substruc-
ture to isolate it and dissipate the effects of applied ground motion [4]. 
The different types of isolation systems developed include rubber 
bearings, friction bearings, and spring bearings. Friction forces can play 
a pivotal role in stabilizing the responses of dynamic systems based on 
the type of damping or isolating systems used. Therefore, its effects on 
dynamic systems must be investigated in detail. 

Harmonic motion includes the intermittent transformation of energy 
between potential and kinetic forms. During this energy conversion, the 
energy loss occurs in each cycle based on whether the dynamic system is 
equipped with dampers [5]. Even though the conventional dampening 
devices are mostly passive systems, the semi-active approaches are 
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employed in some special cases a change in the performance of the 
control system is required according to the applied loads [6]. For 
instance, when the effectiveness of the TMD downgrades due to detun-
ing, an external force is applied to TMD or directly to the main structure 
to maintain the efficiency of the damping device in energy dissipation. 
Therefore, this system is considered a Semi-Active Tuned Mass Damper 
(SATMD). However, the structural response under applied dynamic 
loads needs to be determined to calculate the total amount of energy 
dissipation for any type of dampening system (passive or semi-active). 

In structures subjected to an external load, the Coulomb friction 
causes energy dissipation in the structure. As the main focus in back- 
and-forth motions in presence of the friction force is preventing the 
sticking phase, Den Hartog [7] proposed a non-sticking steady-state 
solution for the single-degree-of-freedom (SDOF) systems with friction 
subjected to harmonic loads in 1931. Hartog’s derivations [7] were 
intended for the non-sticking phase and possessed some basic postula-
tions such as the maximum velocity (MV) at a static equilibrium point. 
However, an alternative solution for the sticking and sliding phases ef-
fects was suggested by Hong et al. in 2000 [8]. Meanwhile, Hundal 
(1979) determined the response of the SDOF system with Coulomb 
friction and viscous damping, subjected to base excitation [9]. Whereas, 
Beucke et al. [10] worked on a dynamic model which was the combi-
nation of VDS, constant Coulomb friction, and linear Coulomb friction. 
Although the authors proposed a steady-state solution to predict the 
structural responses, the results did not include maximum displacement 
(MD) and MV which are considered important parameters in structural 
design. 

More research was carried out to determine the steady-state response 
of the structures furnished with conventional damping systems using 
various mathematical-based techniques. The time-domain numerical 
integration method was used for the analysis of the steady-state motion 
of an SDOF Coulomb oscillator equipped with a viscous damper system 
with multiple stops per cycle [11]. In another study, the frequency 
domain analysis of frictional damped systems with the aid of the in-
cremental harmonic balance method was performed to derive the 
steady-state response of the considered system [12]. The phase plane 
methods were also applied to SDOF systems with hysteresis dampers 
[13] to evaluate the dynamic behavior of the system and explore the 
structural responses. Furthermore, Nayfeh et al. [14] employed the 
Equivalent Linearization Method (ELM) to determine the response of the 
dynamic system. In 2021, Cacciola et al. developed the Preisach 
formalism method to model the mechanical behavior of soil and esti-
mated the steady-state response of the nonlinear soil-structure interac-
tion problems [15]. In a different study, a numerical method of 
Hysteresis Identification via Reversal Points (HIRP) was proposed to 
calculate the steady-state response of frictional nonlinear systems under 
harmonic loads [16]. While a recent study [17] evaluated the response 
of an SDOF system with Coulomb damping subjected to harmonic base 
excitation based on Hartog’s equation [7]. 

Furthermore, the steady-state response of the multi-degree-of- 
freedom (MDOF) system with the Coulomb friction contact under har-
monic loading was investigated by Marino et al. [18]. Yadav et al. [19] 
also applied Den Hartog’s [7] equation for a mechanical problem and 
extended it numerically to determine the stick–slips and jerks in the 
SDOF system with dry friction and clearance. A steady-state solution for 
lightly damped MDOF systems in contact with Coulomb friction was 
derived and formulated by Marino et al. [20]. This method is applicable 
and limited only to light-damped structures as it is not capable of 
formulating MV, deviation points, and time lag. Therefore, there is a lack 
of valid results for moderate and heavy damped structures (structures 
with a hybrid damping system) with Coulomb friction. Comparatively, 
amongst the numerous proposed steady-state solutions, Hartog’s 
method was simple and is an easy process equation frequently used by 
numerous researchers. However, the main drawbacks of this solution 
revealed by Hong et al. [3] included the inability to estimate the MV, its 
deviation from the static equilibrium point, and its corresponding time 

lag. 
Based on the aforementioned discussion, prior studies mainly 

focused on SDOF systems with the Coulomb friction subjected to an 
external load. Since the investigated systems were ineffective under 
severe excitations, this study employed the VDS as a supplementary 
damping mechanism besides the Coulomb friction to enhance the energy 
dissipation efficiency. For this purpose, new equations for the non- 
sticking steady-state response of the proposed Hybrid Damping System 
(HDS) were formulated. Also, an equation for the force amplitude ratio 
is proposed which is applicable as a design guideline for the structural 
engineers to skip the sticking phase in their calculations. 

2. Development of HDS 

Generally, energy dissipation in a structure occurs through material 
friction, elements friction or structural damage. Since the inherent 
friction is not adequate to dissipate the energy in the structures sub-
jected to severe excitations, it is necessary to enhance the energy dissi-
pation efficiency to protect structures against applied vibration. 

To address this issue, HDS is proposed in this study through the 
application of VDS together with the Coulomb friction mechanism. 
Thus, the effects of VDS implemented in the governor equation of mo-
tion of an SDOF system and the structural responses under harmonic 
load were used to evaluate the effectiveness of the proposed system. The 
proposed hybridized damping mechanism for the SDOF system is also 
applicable in structures such as Tuned Mass Damper. 

The schematic model of the proposed HDS for SDOF is depicted in 
Fig. 1. Where m denotes the mass of the system, c is the viscous damping 
coefficient, k refers to the stiffness of mass-less spring, x is the 
displacement, ẋ and ẍ are the velocity and acceleration, respectively (the 
first and second derivatives of displacement to time), P0 and ωf desig-
nate the amplitude and frequency of external loading, respectively, and t 
the elapsed time. Also, to consider the effect of friction in the mass- 
spring-damper system, it is assumed that the mass is moving over a 
rough horizontal surface. Whereby, fd is the frictional force, N is the 
gravity force due to the weight of the lumped mass which is applied in a 
perpendicular direction of movement, and μk is kinetic friction 
coefficient. 

The governing equation of motion for the considered SDOF structure 
with an HDS can be formulated through the equilibrium equation: 

mẍ+ cẋ+ kx = P0sinωf t − ra (1)  

Where ra is the friction force due to the Coulomb friction generated in 
the opposite direction of friction. 

The constitutive force can then be formulated through the summa-
tion of the spring and friction forces: 

r = rb + ra (2) 

In where; 

rb = kx, |ra| ≤ fd (3) 

As mentioned before, μk is referred to as the kinetic friction coeffi-
cient which is dependent on the type of contacting material as expressed 
in Table 1 for the main construction materials including concrete, steel 
and wood. These details were obtained empirically. 

To formulate the response of the considered SDOF with an HDS 
under harmonic loads, a steady-state non-sticking cycle of motion was 
considered, where the phase curve of the motion in the phase plane (x, 
ẋ) is assumed to be symmetrical (Fig. 2). 

In Fig. 2, Δ0 and V0 designate the MD and velocity, respectively. 
Also, it is assumed that the points of the maximum and minimum ve-
locities are not located on the ẋ axis, so, the two points were let to 
deviate from the ẋ axis with an unknown deviation Δ1. 

In the SDOF system subjected to external loads, the MV occurs at a 
static equilibrium point. However, when an external load is removed 
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(unloaded), the damping mechanism dissipates the energy and conse-
quently, the mass rests at the static equilibrium point (kxe = mg). 
Therefore, the MV and rest points will be the same. 

When Coulomb friction is applied to the oscillatory system, the mass 
stops at a distance from the static equilibrium point due to friction force 
that resists the returning mass to its static equilibrium point. The point at 
which the mass stops is called the pseudo-static equilibrium point 
(kxse + fd = mg). Therefore, similar to a static equilibrium point, it can 
be postulated that the MV in presence of the Coulomb friction force 
occurs at the pseudo-static equilibrium point (Δ1 = xe − xse). 

Therefore, the x and ẋ for different times are expressed as the 
following coordinates: 

(x(t1), ẋ(t1) )= ( + Δ1, +V0),(x(t2), ẋ(t2) )= ( + Δ0, 0)(x( t3), ẋ( t3) )

= ( − Δ1, − V0), (x( t4), ẋ( t4) ) = ( − Δ0, 0) (4)  

Where the time intervals are interlaced by the following equations: 

t3 = t1 + π
/

ωf t4 = t2 + π
/

ωf (5) 

Since the phase curve has a closed form, formulations would be done 
only for one-half of the curve either the right or left branch [15]. If the 
upper or lower branches are considered, the analytic method would be 
similar to that of Hartog’s [1]. This state of affairs deals with both upper 
and right branches solves the differential governing equation of the 
motion in two different phases, and finally proposes the possible solu-
tion for the steady-state response of hybridized SDOF system. Although 
the solution for the governor equation of motion was expected to be 
similar to that of Hong et al. [15], nuanced discrepancies were observed 
between Hong et al.’s solution and the proposed solution attributable to 
the implementation of VDS in the SDOF system. 

2.1. Formulation of the steady-state response for the right branch 

In this case, the formulation of the steady-state response is done by 
considering the right branch of Fig. 2. For the time interval of t1 ≤ t ≤ t2 
(part 1 in Fig. 2), the steady-state solution for clockwise direction would 
be in the form of: 

x1(t) = Asinωf t − B+ e− ξωn(t− t1)(a1sinωd(t − t1)+ b1cosωd(t − t1) ) (6)  

Here, 

A =
P0

k
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − β2)2

+ (2ξβ)2
√ ,B =

A
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√

α ,α =
P0

+fd
(7)  

β =
ωf

ωn
,ωn =

̅̅̅̅
k
m

√

,ωd = ωn

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

, ξ = 2mωn (8) 

In which, α is the force amplitude ratio, B the static displacement due 
to the friction force where the mass sustains sufficient spring force to 
overcome the friction, β is the frequency ratio, ωf is the frequency of the 
external loading, ωn is the natural frequency of the structure, ωd is the 
frequency of the damped system, ξ indicates the hybrid damping ratio 
which is the summation of inherent damping and supplementary viscous 
damping system, t is time, t1 is the time at which the maximum positive 
velocity occurs, and a1 and b1 are constants. The idea was to designate 
various parameters similar to that of Hong et al. [15] for comparison 
purposes. As for the time interval of t2 ≤ t ≤ t3 (part 2 in Fig. 2), the 
steady-state solution in an anti-clockwise direction was expanded as: 

x2(t) = Asinωf t+B+ e+ξωn(t3 − t)(a2sinωd(t3 − t) + b2cosωd(t3 − t) ) (9) 

In which a2 and b2 are constants. The power of exponential is positive 
as the anti-clockwise direction is considered. If time (t) is changed with 
the time needed to reach the maximum negative velocity (t3) in Eqn. (9) 
and the time required to reach the maximum negative velocity (t3) is 
replaced by the time at which the maximum positive velocity happens 
(t1), the Eqn. (6) must be gained. These mathematical tricks provide the 
opportunity to cast the steady-state response of the motion for clockwise 

Fig. 1. Schematic model of the proposed hybrid system.  

Table 1 
Friction coefficient for different construction materials.  

System Static friction μs Kinematic friction μk 

Rubber on dry concrete 1  0.7 
Rubber on wet concrete 0.7  0.5 
Steel on steel (dry) 0.6  0.3 
Steel on steel (oiled) 0.05  0.03 
Metal on wood 0.5  0.3  

Fig. 2. The assumed in phase plane curve for non-sticking movement.  
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and anti-clockwise directions in a symmetrical way. To tackle the 
problem, it is necessary to obtain the first and second derivatives of 
displacement concerning time. Therefore, the velocity and acceleration 
can be expressed as: 

ẋ1(t) = Aωf cosωf t+ e− ξωn(t− t1)(a1ωdcosωd(t − t1) − b1ωdsinωd(t − t1) )

− ξωne− ξωn(t− t1)(a1sinωd(t − t1)+ b1cosωd(t − t1) ) (10)  

)t1 ≤ t ≤ t2  

ẍ1(t) = − Aωf
2sinωf t+e− ξωn(t− t1)

(
− a1ωd

2sinωd(t − t1) − b1ωd
2cosωn(t − t1)

)

− ξωne− ξωn(t− t1)(a1ωdcosωd(t − t1) − b1ωdsinωd(t − t1) )

− ξωne− ξωn(t− t1)(a1ωdcosωd(t − t1) − b1ωdsinωd(t − t1) )

+ (ξωn)
2e− ξωn(t− t1)(a1sinωd(t − t1)+ b1cosωd(t − t1) ) (11)  

)t1 ≤ t ≤ t2  

ẋ2(t) = Aωf cosωf t+ e+ξωn(t3 − t)(− a2ωdcosωd(t3 − t)+ b2ωdsinωd(t3 − t) )

− ξωne− ξωn(t3 − t)(a2sinωd(t3 − t)+ b2cosωd(t3 − t) ) (12)  

)t2 ≤ t ≤ t3  

ẍ2(t) = − Aωf
2sinωf t+e+ξωn(t3 − t)( − a2ωd

2sinωd(t3 − t) − b2ωd
2cosωn(t3 − t)

)

− ξωne+ξωn(t3 − t)( − a2ωdcosωd(t3 − t)+ b2ωdsinωd(t3 − t) )

− ξωne+ξωn(t3 − t)( − a2ωdcosωd(t3 − t)+ b2ωdsinωd(t3 − t) )

+ (ξωn)
2e+ξωn(t3 − t)(a2sinωd(t3 − t) + b2cosωd(t3 − t) ) (13)  

)t2 ≤ t ≤ t3 

By considering the underlaid conditions (Eqs. (14) to (16)), the 
initial conditions at time t2 must satisfy both of the proposed steady- 
state solutions (Eqs. (6) and (9) simultaneously), and hypothesizing 
new assumptions (Eqn. (17)), 10 equations with nine unknowns would 
be obtained. To achieve acceptable results, one of the equations must be 
satisfied with the results of the other nine equations. 

Thus, solving the nine selective equations simultaneously results in 
the motion parameters. The procedure can be explained as: 

x1(t1) = +Δ1, x1(t2) = +Δ0, x2(t2) = +Δ0, x2(t3) = − Δ0 (14)  

ẋ1(t1) = +V0, ẋ1(t2) = 0, ẋ2(t2) = 0, ẋ2(t3) = − V0 (15)  

ẍ1(t1) = 0, ẍ2(t3) = 0, (16) 

As ξ≪1, then ξ2 ≅ 0. So, it can be revealed that: 

ωn = ωd, β = βd→
ωf

ωn
=

ωf

ωd
, e+ξωn(t3 − t2) ≅ e− ξωn(t2 − t1) (17) 

By applying the initial conditions to the Eqs. (6), (9), and (10) 
through (13) and substituting the following statement, t3 = t1 +π/ωf , in 
the Eqs. (14), (15), and (16), the final 10 equations emerge as what 
follows: 

)1→x1(t1) = Asinωf t1 − B+ b1 = +Δ1 (18)  

)2→x1(t2) = Asinωf t2 − B+ e− ξωn(t2 − t1)(a1sinωn(t2 − t1)+ b1cosωn(t2 − t1) )

= +Δ0

(19)  

)3→x2(t2) = Asinωf t2 +B+ e− ξωn(t2 − t1)
(

− a2sinωn

(

t2 − t1

−
π
ωf

)

+ b2cosωn

(

t2 − t1 +
π
ωf

))

= +Δ0 (20)  

)4→x2(t3) = − Asinωf t1 +B+ b2 = − Δ1 (21)  

)5→ẋ1(t1) = Aωf cosωf t1 + a1ωn − ξωnb1 = +V0 (22)  

)6→ẋ1(t2) = Aωf cosωf t2  

+ e− ξωn(t2 − t1)(a1ωncosωn(t2 − t1) − b1ωnsinωn(t2 − t1) )

− ξωne− ξωn(t2 − t1)(a1sinωn(t2 − t1)+ b1cosωn(t2 − t1) ) = 0 (23)  

)7→ẋ2(t2) = Aωf cosωf t2  

+ e− ξωn(t2 − t1)
(

− a2ωncosωn

(

t2 − t1 +
π
ωf

)

− b2ωnsinωn

(

t2 − t1 +
π
ωf

))

− ξωne− ξωn(t2 − t1)
(

− a2sinωn

(

t2 − t1 +
π
ωf

)

+ b2cosωn

(

t2 − t1 +
π
ωf

))

= 0

(24)  

)8→ẋ2(t3) = − Aωf cosωf t1 − a2ωn − ξωnb2 = − V0 (25)  

)9→ẍ1(t1) = − Aωf
2sinωf t1 − b1ωn

2 − ξωn
2a1 − ξωn

2a1 = 0 (26)  

)10→ẍ2(t3) = +Aωf
2sinωf t1 − b2ωn

2 + ξωn
2a2 + ξωn

2a2 = 0 (27)  

2.2. Formulation of the steady-state response for the upper branch 

Finding the steady-state response for the upper branch requires some 
mathematical measures. In this case, the reference point to reshape the 
steady-state solution of the motion is the time at point 1 (t1). Hence, the 
clockwise direction x1 was used. It is assumed that the oscillatory mo-
tion begins from point 4 where t4 + π/ωf = t2. Thus, for the time in-
terval of t4 ≤ t ≤ t2 (parts 4 and 1 in Fig. 2), the equation of motion takes 
the form of: 

x1(t) = Asinωf t − B+ e− ξωn(t− t1)(a1sinωd(t − t1)+ b1cosωd(t − t1) ) (28)  

)t4 ≤ t ≤ t2 

The parameters were determined through the Eqs. (7) to (8), where 
a1 and b1 are constants. It is also necessary to re-obtain the velocity and 
acceleration equations as the first and second derivatives of the 
displacement regarding time to further the formulation. So, by consid-
ering the first and second derivatives of Eqn. (28) for the time it is 
observed that velocity and acceleration take the following forms: 

ẋ1(t) = Aωf cosωf t+ e− ξωn(t− t1)(a1ωdcosωd(t − t1) − b1ωdsinωd(t − t1) )

− ξωne− ξωn(t− t1)(a1sinωd(t − t1)+ b1cosωd(t − t1) ) (29)  

)t4 ≤ t ≤ t2  

ẍ1(t) = − Aωf
2sinωf t+e− ξωn(t− t1)

(
− a1ωd

2sinωd(t − t1) − b1ωd
2cosωn(t − t1)

)

− ξωne− ξωn(t− t1)(a1ωdcosωd(t − t1) − b1ωdsinωd(t − t1) )

− ξωne− ξωn(t− t1)(a1ωdcosωd(t − t1) − b1ωdsinωd(t − t1) )

+ (ξωn)
2e− ξωn(t− t1)(a1sinωd(t − t1)+ b1cosωd(t − t1) ) (30)  

)t4 ≤ t ≤ t2 

Then by considering the new conditions as: 

x1(t1) = Δ1, x1(t2) = +Δ0, x1(t4) = − Δ0 (31)  

ẋ1(t1) = V0, ẋ1(t2) = 0, ẋ1(t4) = 0 (32)  

ẍ1(t1) = 0 (33) 
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The response of the hybridized system to the initial conditions can be 
expressed as: 

)1→x1(t2) = Asinωf t2 − B+ e− ξωn(t2 − t1)(a1sinωn(t2 − t1)+ b1cosωn(t2 − t1) )

= +Δ0

(34)  

)2→ẋ1(t2) = Aωf cosωf t2  

+ e− ξωn(t2 − t1)(a1ωncosωn(t2 − t1) − b1ωnsinωn(t2 − t1) )

− ξωne− ξωn(t2 − t1)(a1sinωn(t2 − t1)+ b1cosωn(t2 − t1) ) = 0 (35)  

)3→x1(t4) = − Asinωf t2 − B  

+ e
− ξ

(

ωn(t2 − t1)− π
β

)
(

a1sin
(

ωn(t2 − t1) −
π
β

)

+ b1cos
(

ωn(t2 − t1) −
π
β

))

= − Δ0

(36)  

)4→ẋ1(t4) = − Aωf cosωf t2  

+ e
− ξ

(

ωn(t2 − t1)− π
β

)
(

a1ωncos
(

ωn(t2 − t1) −
π
β

)

− b1ωnsin
(

ωn(t2 − t1)

−
π
β

))

− ξωne− ξωn(t2 − t1)
(

a1sin
(

ωn(t2 − t1) −
π
β

)

+ b1cos
(

ωn(t2 − t1) −
π
β

))

= 0

(37)  

)5→x1(t1) = Asinωf t1 − B+ b1 = Δ1 (38)  

)6→ẋ1(t1) = Aωf cosωf t1 + a1ωn − ξωnb1 = V0 (39)  

)7→ẍ1(t1) = − Aωf
2sinωf t1 − 2ξωn

2a1 − b1ωn
2 = 0 (40) 

In short, the seven equations that were derived with seven unknown 
parameters are more efficient than the right branch formulations with 
ten equations. 

3. Formulating the maximum displacement of the structure 
equipped with the developed hybrid damping mechanism 

In this section, an MD was formulated for the system with SDOF 
HDM. Similar to the previous section, the equations were established for 
both the upper and right branches where the final results were 
compared. 

3.1. Formulating the maximum displacement using the right branch 
equations 

To determine MD, the prementioned equations (Eqs (17) to (18)) 
must be solved. Therefore, a simplified form of those equations was 
required as demonstrated step by step here. 

Superposition of Eqn. (18) to Eqn. (21) and Eqn. (22) to Eqn. (25) 
entails the below equation: 

b1 = − b2, a1 = +a2 (41) 

Taking π1 = π/β, the superposition of Eqs. (19) with (20) through 
trigonometric functions, and employing the Eqn. (41), resulted in a new 
statement: 

e− ξωn(t2 − t1)
(

a1sin
(π1

2

)
cos
(

ωn(t2 − t1) −
π1

2

)
− b1sin

(π1

2

)
sin
(

ωn(t2 − t1)

−
π1

2

))

= +Δ0 − Asinωf t2

(42) 

Thereafter, Eqn. (19) was subtracted from the Eqn. (20) using the 
same assumption (i.e., π1 = π/β): 

e− ξωn(t2 − t1)
(

a1sin
(

ωn(t2 − t1) −
π1

2

)
+ b1cos

(
ωn(t2 − t1) −

π1

2

))
cos
(π1

2

)

= B
(43) 

By combining the Eqs. (23) and (24), the following fundamental 
statement was obtained: 

1
ξ

(
− a1sin

(
ωn(t2 − t1) −

π1

2

)
− b1cos

(
ωn(t2 − t1)

−
π1

2

))
−
(

a1cos
(

ωn(t2 − t1) −
π1

2

)
− b1sin

(
ωn(t2 − t1) −

π1

2

))

=
− Aβsinωf t2

ξe− ξωn(t2 − t1)sin
( π1

2

) (44) 

Eqs. (43) and (44) are in the simplified form to simplify the other 
equations in this study. Next, the mathematical simplifications of 
deducting Eqn. (23) from the Eqn. (24) led to: 
(
a1cos

(
ωn(t2 − t1) −

π1
2

)
− b1sin

(
ωn(t2 − t1) −

π1
2

) )

(
a1sin

(
ωn(t2 − t1) −

π1
2

)
+ b1cos

(
ωn(t2 − t1) −

π1
2

) ) = ξ (45) 

Combining Eqs. (42) to (45) and solving them simultaneously, yields 
the following formulas: 

)cosωf t2 =

(
1 + ξ2)Bsinπ1

Aβ(1 + cosπ1)
(46)  

)sinωf t2 =
Δ0

A
−

ξBsinπ1

A(1 + cosπ1)
(47)  

)t2 =
π

2ωf
+

1
ωf

(

arccos
(

Δ0

A
−

ξBsinπ1

A(1 + cosπ1)

))

(48)  

)Δ0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 −

[(
1 + ξ2)Bsinπ1

β(1 + cosπ1)

]2
√
√
√
√ + ξ

[
Bsinπ1

1 + cosπ1

]

(49) 

The Eqs. (46) to (49) represent the cosine and sine of the time lag for 
MD time to reach MD and the amount of MD, respectively. These pa-
rameters are the most important components of the developed hybrid-
ized SDOF system and can be compared with the result of the non- 
hybridized system reported by previous researchers. 

3.2. Formulating the maximum displacement using the upper branch 
equations 

In this section, Eqs. (34) to (40) were referred again to formulate MD 
using the upper branch equations. The same procedures demonstrated in 
the previous section for the right branch were employed by combining 
the equations from section 2.2 and simplifying the results to derive the 
following equations: 

(34)+ (36)→
cos
( π1

2

)(
a1sin

(
ωn(t2 − t1) −

π1
2

)
+ b1cos

(
ωn(t2 − t1) −

π1
2

) )

B
= eξωn(t2 − t1)

(50)  
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Fig. 3. Displacement amplification factor (Δ0/B) for SDOF with hybrid damping mechanism under harmonic load for various amounts of force amplitude ratio (α), 
frequency ratio (β) and hybrid damping ratio (ξ). 
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(34) − (36)→e− ξωn(t2 − t1)
(
− a1sin

(π1

2

)
cos
(

ωn(t2 − t1)

−
π1

2

)
+ b1sin

(π1

2

)
sin
(

ωn(t2 − t1) −
π1

2

))
+Asinωf t2

= Δ0 (51)  

(35)+ (37)→tan
(

ωn(t2 − t1) −
π1

2

)
=

a1 − ξb1

ξa1 + b1
(52)  

(35) − (37)→e− ξωn(t2 − t1)sin
(π1

2

)(
(ξa1 + b1)cos

(
ωn(t2 − t1) −

π1

2

)
+(a1

− ξb1)sin
(

ωn(t2 − t1) −
π1

2

))

= Aβcosωf t2

(53) 

Replacing Eqn. (50) into Eqn. (51) and introducing Eqn. (52) into it, 
brings about: 

Asinωf t2 + ξBtan
(π1

2

)
= +Δ0 (54) 

and by re-arranging the considered equation, it can be obtained that: 

)sinωf t2 =
Δ0

A
−

ξBsinπ1

A(1 + cosπ1)
(55) 

Solving Eqn. (54) for t2 reveals that: 

)t2 =
π

2ωf
+

1
ωf

(

arccos
(

Δ0

A
−

ξBsinπ1

A(1 + cosπ1)

))

(56) 

Eqn. (56) is an important formula as it reveals that the time lag value 
is required to determine the MD. Replacing Eqn. (50) into Eqn. (34) plus 
the negative of Eqn. (37) and using the Eqn. (52) engenders another 
crucial equation regarding the hybrid system: 

)cosωf t2 =

(
1 + ξ2)Bsinπ1

Aβ(1 + cosπ1)
(57) 

Also, by combining Eqs. (54) and (57) it can be observed that: 

)Δ0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 −

[(
1 + ξ2)Bsinπ1

β(1 + cosπ1)

]2
√
√
√
√ + ξ

[
Bsinπ1

1 + cosπ1

]

(58) 

or the Eqn. (58) in a dimensionless form, can be rearranged as: 

)
Δ0

B
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2

(
1 − β2)2

+ (2ξβ)2
−

[(
1 + ξ2)sinπ1

β(1 + cosπ1)

]2
√
√
√
√ + ξ

[
sinπ1

1 + cosπ1

]

(59) 

Eqn. (59) is regarded as Displacement Amplification Factor (DAF) for 
the SDOF with HDM under harmonic load. It is only dependent on three 
dimensionless parameters of force amplitude ratio (α), frequency ratio 
(β), and hybrid damping ratio (ξ). Based on the observation, the final 
equations obtained for the upper branch were similar to those derived 
for the right branch. Hence, the derivation throughout either branch 
relationship led to the same results. 

3.3. Displacement amplification factor for SDOF with HDM 

The MD described in Eqn. (58) was converted to a dimensionless 
form as DAF for SDOF system with HDM under harmonic load explained 
in Eqn. (59). Based on this equation, it is concluded that the ratio of MD 
of the SDOF with HDM subjected to harmonic load to the static 
displacement due to the friction force depends on a few dimensionless 
parameters including force amplitude ratio (α), frequency ratio (β), and 
hybrid damping ratio (ξ). 

So, the variation of the DAF (Δ0/B) regarding the force amplitude 
ratio (α), the frequency ratio (β), and damping ratio (ξ) were assessed by 
assuming a particular condition. By taking mass (m) = 50,000kg, fric-

tion force (fd) = 15,000N (considering the kinematic friction coefficient 
(μk) is almost close to oiled steel on steel friction as mentioned in 
Table 1), and the external force frequency (ωf ) = 2π(rad/s), the corre-
sponding graphs to DAF for the SDOF equipped with HDM under har-
monic load for various amounts of force amplitude ratio (α), frequency 
ratio (β), and hybrid damping ratio (ξ) are depicted in Fig. 3. Based on 
these graphs, the variation of DAF for SDOF with HDM can be demon-
strated in three ranges of frequency ratio (β) as described as follows: 

i) Frequency ratio (β)〈0.6. 
According to Fig. 3, the force amplitude ratio (α) is more effective in 

the variation of DAF compared to the hybrid damping ratio (ξ) with no 
effects in the lower range of β but the effects rose after β = 0.6. The DAF 
value was estimated at 2 in this range for the force amplitude ratio (α) of 
2. However, by increasing α to 5 and 10, the DAF increased to 5 and 10, 
respectively. The results indicated that the DAF is equivalent to the force 
amplitude in the frequency ratio (β) of 0 to 0.6. DAF also increases when 
the force amplitude (α)is increased. Therefore, the fraction of external 
load amplitude divided by the Coulomb friction plays an important role 
in minimizing the DAF. 

ii) 0.6 < Frequency ratio (β)〈1.15. 
Referring to Fig. 3, both the force amplitude ratio (α) and the hybrid 

damping ratio (ξ) yielded significant effects on the DAF for frequency 
ratios of 0.6 to 1.15. Similar to the first range of frequency ratio, 
increasing the force amplitude ratio (α) increases the DAF. However, the 
hybrid damping ratio dissipates the displacement response due to the 
applied external harmonic load and increased hybrid damping ratio, 
thus reducing the DAF. In the close range of frequency ratio (β) equal to 
1, the frequency of the external excitation is equal to the frequency of 
the structure. In this scenario, the resonance that occurs in the system 
and a minimum amount of damping prevents the extreme magnification 
of displacement response. 

The minimum required damping ratio (ξ) depends on the force 
amplitude ratio (α), hence, DAF increases due to larger force amplitude 
ratios. For instance, the 2 % damping ratio leads to almost 18 DAFs for 
the force amplitude ratio of 2, however, to have the same DAF for fre-
quency ratios of 5 and 10, the damping ratio of about 10 % and 25 % is 
required respectively. Although, DAF for 18 is noticeable high in the 
design of the structure, however by considering of low inherent damping 
for the structure which is 2 % for steel structures and 5 % for concrete 
structures, implementing a supplementary damping system to increase 
the overall damping of the system for higher force amplitude ratio is 
vital to avoid of catastrophic displacement response of structure during 
resonance range of β. To obtain an economic design (DAF equal or less 
than DAF in the range of β 0 to 0.6) in low force amplitude ratios (α equal 
or less than 2), a HDS is utilized to boost the overall damping of the 
system to up to 10 %. 

Therefore, if the structure is not equipped with an HDM system with 
a frequency ratio (β) of 0.85 to 1.15, the structure will experience severe 
drifts. The back-and-forth displacements would lead to fatigue in the 
structural components, finally causing catastrophic structural damage 
and collapse. The results indicated that implementing the HDM in the 
above-mentioned SDOF system can considerably diminish DAF in the 
range of 5 % to 98 % for various frequency and force amplitude ratios. 

iii) Frequency ratio (β)〉1.15. 
This range of frequency ratio (β) is the most appropriate zone to 

design the structures since the dynamic effects such as DAF are mini-
mized by increasing the frequency ratio. This condition is obtained 
through a design process to make the natural frequency of the structure 
in a way that the frequency ratio (β) becomes greater than 1.15. How-
ever, in this zone increasing the hybrid damping ratio (ξ) may lead to the 
lower displacement amplitude, but the amount of deduction is not 
considerable in comparison to effect of increasing frequency ratio. 

As it can be seen in all graphs, in the frequency ratio of 1.4 for any 
force amplitude ratio (α), DAF has the same amount as its constant 
values for the low-frequency ratio (β = 0 to 0.4). Also, by increasing the 
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frequency ratio beyond 1.4, DAF reduces. Therefore, the design of 
structure which lead to a higher frequency ratio (β > 1.4), results in 
lesser displacement amplitude. This method is considered as the eco-
nomic design strategy since the dynamic load does not affect the 
response of the structure and the design for static forces is enough for 
resisting against imposed loads. 

4. Deviation and time lag of maximum velocity for hybridized 
SDOF systems 

This section focuses on the formulation of the MV of the proposed 
SDOF system with the HDM to derive the corresponding equation to 
determine the time required to reach the MV (t1), the velocity deviation 
(Δ1) and the MV (V0). 

Since the derivations from the upper or the right branch result in the 
same, only one derivation process is presented in this section. 

4.1. Formulating maximum deviation of MV 

To obtain MV, Eqn. (45) was recast by simplifying the enumerator 
and nominator as: 

tan
(

ωn(t2 − t1) −
π1

2

)
=

a1 − ξb1

ξa1 + b1
(60) 

By utilizing Eqn. (26) or Eqn. (40), the below statements can be 
originated from Eqn. (60): 

a1 − ξb1

ξa1 + b1
=

a1 + 2ξ2a1 + ξAβ2sinωf t1

− Aβ2sinωf t1 − ξa1
= f (a1) (61)  

a1 − ξb1

ξa1 + b1
=

− b1 − 2ξ2b1 − Aβ2sinωf t1

ξb1− ξAβ2sinωf t1
= f (b1) (62) 

Next, by multiplying the sides of Eqn. (61) to each other and 
simplifying it, the below equation arises: 

− a1Aβ2sinωf t1 − ξ2a1b1 = ξ2a1Aβ2sinωf t1 + 2ξ3a1
2 + a1b1 (63) 

At this stage confronting the coefficients of ˝sinωf t1˝ in Eqn. (63) 
equal to each other, the following formula was generated: 

ξ2a1 + a1 = 0 (64) 

When the value from Eqn. (64) was replaced in Eqn. (62), a1 and b1 

values were derived: 

)a1 = 0 (65)  

)b1 = − Aβ2sinωf t1 (66) 

The insertion of b1 into Eqs. (18) or (38) yields: 

sinωf t1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − β2)2

+ (2ξβ)2
√

(
1 − β2) ×

1
α+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − β2)2

+ (2ξβ)2
√

(
1 − β2) ×

k
P0

× Δ1

(67) 

The following equation for MV with the understudied SDOF system 
and HDM can be derived using either Eqn. (22) or Eqn. (39) and intro-
ducing Eqs. (65) and (66): 

V0

Bωf
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2

(
1 − β2)2

+(2ξβ)2
−

((
1

1 − β2

)(
1+

Δ1

B

))2
√
√
√
√ +ξ

(
β

1 − β2

)(
1+

Δ1

B

)

(68) 

Eqs. (67) and (68) are almost similar to the formulation reported by 
Hong et al. [15]. However, unlike the MD (Δ0) and the time required for 
the MD to occur (t2), the equations presented by Hong et al. [15] for the 
required time to reach the MV (t1), the velocity deviation (Δ1), and the 
MV (V0) were not applicable for zero damping ratio (ξ). Due to the 

presence of the damping ratio as a coefficient in the velocity and ac-
celeration equations of damped systems, the equations for the required 
time to reach the MV (t1), the velocity deviation (Δ1), and the MV (V0),

varied from the equations documented by Hong et al. [15]. 
However, regarding the displacement, this issue has not been 

affected and results of the undamped SDOF system are obtained from the 
equations corresponding to the damped systems by taking the damping 
ratio (ξ) equal to zero. It was highlighted that the time at point 1 (t1)
must be determined (as described in section 4.2) before estimating ve-
locity deviation (Δ1) and the MV (V0) using Eqs. (67) and (68), 
respectively. 

Based on the trigonometric relations, it is known that the value of the 
sine function lies within the range of (-1) to (+1). Thus, Eqn. (69) was 
derived by applying these boundary conditions to Eqn. (68): 

− 1 ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√

(
1 − β2) ×

1
α+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√

(
1 − β2) ×

k
P0

× (Δ1)

≤ + 1 (69) 

Pre-multiplying Eqn. (69) to (1+β2)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1− β2)
2
+(2ξβ)2

√ × P0
k leads to: 

−
P0

kα −

(
1 − β2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − β2)2

+ (2ξβ)2
√ ×

P0

k
≤ Δ1 ≤

(
1 − β2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − β2)2

+ (2ξβ)2
√ ×

P0

k
−

P0

kα

(70) 

or 

−
P0

kα −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(2ξβ)2

(
1 − β2)2

+ (2ξβ)2

√
√
√
√ ×

P0

k
≤ Δ1

≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(2ξβ)2

(
1 − β2)2

+ (2ξβ)2

√
√
√
√ ×

P0

k
−

P0

kα (71) 

So, the upper and lower limits of velocity deviation (Δ1) were 
determined using Eqn. (71). Velocity deviation does not occur before 
reaching the vertical axis when the direction of motion is clockwise. So, 
the positive part of the sine function between zero to (+1) is considered 
as the possible zone for velocity deviation and by assuming the deviation 
greater than zero, the Eqn. (71) is re-written as: 

)0 ≤ Δ1 ≤

(
1 − β2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√ ×

P0

k
−

P0

kα (72) 

However, practically the velocity deviation (Δ1) may occur before 
the vertical reference axis (Δ1 ≤ 0). Fig. 4, illustrates the variation of 
velocity deviation (Δ1) versus the frequency ratio. 

(β) and the different force amplitude ratios (α) for a particular 
example when P0 = 200,000N and k = 100,000N/m. 

The following findings were derived from Fig. 4: 

1) The implementation of HDM led to a reduction in the velocity de-
viation and consequently, the MV of the excited system. The HDM 
installation reduced the velocity deviation between 3 % and 94 %. 

2) A higher value of damping ratio (ξ) resulted in less velocity devia-
tion. The effects of the damping ratio in reducing velocity deviation 
were more tangible for frequency ratios between 0.85 and 1.15.  

3) In high frictions, the force amplitude ratio is reduced because friction 
controls the SDOF system response.  

4) Based on the figures, the total range for velocity deviation was 4 for 
all force amplitude ratios (α):  

• Force amplitude ratio (α) = 10 → Velocity Deviation Range: − 2.2 ~ 
1.8  

• Force amplitude ratio (α) = 5 → Velocity Deviation Range: − 2.4 ~ 
1.6 
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Fig. 4. Velocity deviation for various amounts of the force amplitude ratio (α), frequency ratio (β) and hybrid damping ratio (ξ).  
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• Force amplitude ratio (α) = 2 → Velocity Deviation Range: − 3.0 ~ 
1.0 

Therefore, the total range of velocity deviation is the same for any 
force amplitude ratio. However, decreasing the force amplitude ratio (α)
due to an increase in the friction, which will lead to a shift in the curves 
for velocity deviation (Δ1) to the lower ranges.  

5) All curves for different force amplitude and damping ratios pass 
through the same point at the frequency ratio (β), 1. Thus, it can be 
concluded that in the resonance, when the natural frequency of the 
structures is equal to the frequency of the external load, velocity 
deviation (Δ1) is independent of the hybrid damping ratio (ξ).
Although the movement of structure reduces via hybrid damping, 
MV is not affected by hybrid damping at the resonance point.  

6) The intersection points for velocity deviation curves for the high 
force amplitude ratio (α) at the resonance point (β = 1) was 0. 
However, when the force ratio decreases to 10 and below, the 
intersection point moved lower (to the negative side) from − 0.2 at 
α = 10 to − 1 at the force amplitude ratio (α) of 1. Therefore, when 
the Coulomb friction is increased, the MV corresponding to the ve-
locity deviation shifts far from the steady-state condition (position 
before movement). In low Coulomb frictions, the MV occurs in the 
steady-state point of the SDOF system (where displacement was 
0 before excitation). 

When the Coulomb friction is high, the point of MV occurrence shifts 
far from the steady-state point close to the point corresponding to the 
MD.  

7) Similarly, by increasing the frequency ratio (β) beyond 1, the 
Coulomb friction force influences the velocity deviation (Δ1) to 
become greater causing the MV to occur far from the steady point 
(position before movement). 

4.2. Determining time lag of MV 

The second main objective of this study is to determine the time at 
which the MV happens (t1). To fulfil this purpose, Eqn. (60) is modified 
using trigonometric rules as illustrated below: 

tan(α+ β) =
tanα + tanβ

1 − tanα*tanβ
(73)  

tan
(

ωn(t2 − t1) −
π1

2

)
=

tan(ωn(t2 − t1) ) − tan
( π1

2

)

1 + tan(ωn(t2 − t1) )*tan
( π1

2

) =
a1 − ξb1

ξa1 + b1
(74) 

Eqn. (74) was simplified to generate an equation for time lag: 

tan(ωn(t2 − t1) ) =

a1 − ξb1
ξa1+b1

(1 + cosπ1) + sinπ1

(1 + cosπ1) −
a1 − ξb1
ξa1+b1

sinπ1
(75) 

Substituting a1 and b1 from Eqs. (65) and (66) into Eqn. (75), yields: 

)tan(ωn(t2 − t1) ) =
− ξ(1 + cosπ1) + sinπ1

(1 + cosπ1) + ξsinπ1
(76) 

The only unknown parameter in the Eqn. (76) was t1,which can be 
estimated using any math software like MATLAB. By determining the 
time of MV (t1), the MV deviation (Δ1) from Eqn. (67) and subsequently 
the MV (V0) from Eqn. (68) can be calculated. Since all the required 
parameters have been obtained, the behavior of HDM can be assessed 
under the external loads, whereby the responses of the system can be 
computed using the derived formulations. 

5. Defining a borderline for force amplitude ratio to escape the 
sticking phase in HDM 

The fundamental assumption in this study denotes that the oscilla-
tory motion occurs in the non-sticking phase where all the aforemen-
tioned equations were derived for this condition. Thus, a criterion is 
required to ensure that the system’s motion is taking place in the zero- 
duration sticking phase during the operation. To skip the sticking 
phase, it is rational to satisfy the following equation: 
⃒
⃒P0sinωf t − kx(t)

⃒
⃒ ≥ fd (77) 

Based on the nature of oscillation, the critical times to trap into the 
sticking phase can be t2 or t4, where the velocity becomes zero at these 
times and friction is applied to the SDOF system simultaneously to in-
crease the possibility of non-zero-duration sticking. At the other points, 
as there are relatively high velocities and the kinetic energy exists in the 
system, the probability of occurring the sticking phase is zero. Hence, by 
rearranging Eqn. (77) for time t2 could determine the boundary limits 
for the force amplitude ratio (α). The procedure is represented by the 
following equation: 
⃒
⃒P0sinωf t2 − kx(t2)

⃒
⃒ ≥ fd (78) 

By taking the boundary conditions with knowing that the structure 
displacement at point 2 is equal to the MD (x(t2) = + Δ0), introducing 
the sine function of time lag at point 2 (sinωf t2) and the MD (Δ0) from 
Eqs. (55) and (58) respectively, Eqn. (78) can be reshaped as: 

k
fd
(Δ0) −

P0

fdA

(

Δ0 −
ξBsinπ1

1 + cosπ1

)

= − 1 (79) 

The simplified Eqn. (7) created the following equation: 
(

α2β2

(
1 − β2)2

+ (2ξβ)2
−

(
sinπ1

1 + cosπ1

)2
)(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√ )2

=

(

β +
ξβsinπ1

1 + cosπ1

)2

(80) 

When the damping ratio (ξ) is equal to zero, Eqn. (80) is converted to 
Hong et al.’s equation for force amplitude ratio (α) and acts as a proof of 
the validity of the proposed formulas in this study. Finally, α appears in 
the form of:   

α ≥

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[(

1 − β2)2
+ (2ξβ)2

]
[
(

β + ξβsinπ1
1+cosπ1

)2
+

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√ )2(

sinπ1
1+cosπ1

)2
]

[

β2
(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√ )2

]

√
√
√
√
√
√
√
√
√

(81)   
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or  

Eqn. (81) revealed that the force amplitude ratio (α) depends on the 
damping and frequency ratios. Therefore, its relevant graphs can be 

depicted and the appropriate amounts for the force amplitude ratio (α)

to avoid the sticking phase in the dynamic motion of the hybridized 
systems can be selected according to them. Fig. 5 illustrates the bor-
derlines for the force amplitude ratio (α) and its inverse (1/α) versus 

Fig. 5. Borderlines for force amplitude ratio (α) and the inverse of force amplitude ratio (1/α) versus frequency ratio (β).

1
α ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

β2
(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√ )2

]

[(
1 − β2)2

+ (2ξβ)2
]
[
(

β + ξβsinπ1
1+cosπ1

)2
+

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+ (2ξβ)2
√ )2(

sinπ1
1+cosπ1

)2
]

√
√
√
√
√
√
√
√
√
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different frequency ratios (β). 
The areas above the curves in Fig. 5-(a) and under the graphs in 

Fig. 5-(b) are the desired design domains for the force amplitude ratio 
(α) and the inverse of the force amplitude ratio (1/α), respectively. 

These criteria can be used as a guideline for structural designers to 
avoid the sticking phase in finding the steady-state response of motion 
for the oscillatory systems with Coulomb friction. 

Fig. 5 revealed that the force amplitude ratio (α) was almost greater 
than 1.13, when the resonance occurred at a frequency ratio (β) close to 
1 and the SDOF system experienced MD under applied excitation. 

Contrarily, when the force amplitude ratio (α) was low (lower than 
1.13 in this example), the sticking phase occurred and the structure did 
not oscillate. Therefore, it can be concluded that the sticking phase could 
occur under resonance conditions if the amplitude of the external 
loading is not adequate to overcome Coulomb friction. 

Based on the results, the implementation of HDM with high damping 
ability can result in the sticking condition representative of an over 
damping status in the system. Therefore, employing HDM in the system 
with Coulomb friction is necessary to be processed carefully to avoid the 
sticking phase in a (β) range close to 1 and ineffective proposed damping 
solution with the hybridized damping mechanism. 

6. Privileges of developed method to determine the Steady-State 
response of structure with HDS 

The privileges of the developed method to determine the steady-state 
response of the structure compared to similar prior art available in the 
literature are summarized as follows:  

• In the proposed method, the supplementary viscous damping in 
addition to the inherent damping was considered an HDS in the 
focused schematic model.  

• Generally, the governor equation of motion for MDOF systems is 
uncoupled by assuming the inherent damping ratio to be propor-
tional to the mass and stiffness (similar to Rayleigh). However, the 
developed method in this study revealed that steady-state solution of 
extended MDOF systems can be derived without having any specific 
assumption or constraint for damping. 

• This study employed a direct formulation to derive structural re-
sponses for the proposed hybrid system to effectively reduce 
computation time and effort.  

• The proposed method is a pioneer in investigating the simple 
formulation derived for MD and its corresponding time for the SDOF 
equipped with the viscous damper in presence of Coulomb friction.  

• The proposed hybrid system in the present study is applicable as a 
hybrid TMD in the structures. However, there is no possibility of such 
applications being considered in the MDOF systems. 

7. Conclusion 

In the present study, the HDM which is the combination of the 
Coulomb friction and viscous damper was introduced to the SDOF sys-
tem subjected to harmonic vibration to dissipate the effects of applied 
vibrations. Accordingly, the steady-state response of the proposed sys-
tem was formulated by embedding the effects of hybrid damping in the 
equation of motions and the corresponding equations for MD, MV de-
viation, and time lag were derived. 

The results proved that the implementation of HDM in the SDOF 
system can significantly contribute to diminishing DAF in the range of 5 
% to 98 % for various frequencies and force amplitude ratios. As for the 
frequency ratio (β) in the range of 0 to 0.6, the force amplitude ratio (α)
was more effective for the variations of DAF compared to the harmonic 
hybrid damping ratio (ξ) which had no effects. 

This study also demonstrated that DAF was equal to force amplitude 
in this range of frequency ratio (β). 

While the effects of HDM are more tangible for frequency ratios (β)

within 0.6 to 1.15, the hybrid damping ratio (ξ) reduced DAF noticeably 
in the range of 5 % to 98 %, especially for the frequencies close to 
resonance (β = 1). 

Whereas, the frequency ratio (β) of more than 1.15 is known as the 
desirable design zone since DAF is minimized. So, an increase in the 
hybrid damping ratio (ξ) in this frequency range could lead to reduced 
displacement amplitude, while an increase in frequency ratio could 
minimize DAF. 

On the other hand, the implementation of HDM resulted in the 
reduction of the velocity deviation and the MV of the exciting SDOF 
system in the range of 3 % to 94 % for various force amplitude ratio (α), 
frequency ratio (β) and hybrid damping ratio (ξ). 

An increase in force amplitude ratio causes a higher velocity devia-
tion, however, employing HDM compensates for the situation and 
returns the velocity deviation (Δ1) back to its original state. 

Thereafter, a borderline was formulated for the force amplitude ratio 
to avoid the sticking phase in the Coulomb friction since sticking com-
plicates the analytical approach. 

It is evident from the drawn borderline graphs that when the 
damping ratio rises, the force amplitude ratio must increase to avoid the 
system from entering the sticking phase. Therefore, it can be concluded 
that the addition of HDM to the SDOF acts as an additional friction force 
that leads the structure into the sticking phase. Therefore, the force 
amplitude ratio must be varied proportionally with the hybrid damping 
ratio to provide zero duration sticking points when the SDOF system 
oscillates. 

The proposed hybridized SDOF system is also applicable as a Tuned 
Mass Damper (TMD) in the structures to increase their dynamic 
performance. 
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