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Abstract: For networks with limited resources, such as IoT-enabled smart homes, smart industrial
equipment, and urban infrastructures, the Routing Protocol for Low-power and Lossy Networks
(RPL) was developed. Additionally, a number of optimizations have been suggested for its application
in other contexts, such as smart hospitals, etc. Although these networks offer efficient routing, the
lack of active security features in RPL makes them vulnerable to attacks. The types of attacks include
protocol-specific ones and those inherited by wireless sensor networks. They have been addressed by
a number of different proposals, many of which have achieved substantial prominence. However,
concurrent handling of both types of attacks is not considered while developing a machine-learning-
based attack detection model. Therefore, the ProSenAD model is proposed for addressing the
identified gap. Multiclass classification has been used to optimize the light gradient boosting machine
model for the detection of protocol-specific rank attacks and sensor network-inherited wormhole
attacks. The proposed model is evaluated in two different scenarios considering the number of
attacks and the benchmarks for comparison in each scenario. The evaluation results demonstrate
that the proposed model outperforms with respect to the metrics including accuracy, precision, recall,
Cohen’s Kappa, cross entropy, and the Matthews correlation coefficient.

Keywords: RPL protocol; secure IoT; protocol-specific attacks; sensor network-inherited attacks;
attack detection; machine learning

1. Introduction

The Internet of Things (IoT) technology has become an important paradigm for build-
ing smart infrastructures such as smart healthcare systems, smart homes, smart cities, and
IoT-enabled smart industrial systems [1]. It is an effort to progress toward ever-connected
architectures. The devices in these infrastructures, including sensors, actuators, and sys-
tems of interconnected things, can perform machine-to-machine communication [2] and
participate in decision-making processes. Therefore, IoT can be described as an intercon-
nection of a multitude of information-sensing and actuating equipment embedded within
everyday objects. IoT-enabled wearables, security alarms, smartphones, etc., are some
examples of these devices that may communicate and share information across various
application domains. They connect through the internet using advanced Internet Protocols
(IP) such as Internet Protocol version 6 (IPv6) and communicate with each other via IPv6
over Low-power Wireless Personal Area Networks (6LoWPAN). Features such as location,
light, heat, and heart rate are sensed, and relevant data is forwarded to border devices and
cloud systems for further processing [3,4]. According to the global statistical studies per-
formed by Statista Research and Analysis department, approximately twenty-nine billion
IoT-enabled devices will be interconnected throughout the globe by 2030 [5].
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At the base of IoT architectures, Wireless Sensor Networks (WSNs) are situated
in which the nodes are resource constrained. Conventionally, they depend on power-
scavenging technologies to communicate and function [6]. Therefore, these domains are
under continuous research for enhancements concerning the development of compatible
components for deployment in resource-constrained environments [7]. It is typical for
such systems to have inadequate storage capacity as well as low processing power. These
characteristics require befitting communication protocols and network standards for data
transmission. Figure 1 illustrates a use case of an IoT-enabled smart healthcare system.
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IoT systems use RPL for routing and run on 6LoWPAN [9]. However, the low-
power and lossy characteristics, heterogeneity, and resource-constrained nature make them
highly vulnerable to security attacks. These attacks are classified into two main categories:
(1) protocol-specific and (2) Sensor Network (SN)-inherited attacks [10]. It is necessary to
investigate these attacks and propose adequate solutions for a secure transition toward IoT
technology on a large scale.

In the literature, various approaches for addressing the routing and network security
in IoT are proposed, including machine-learning-based (ML-based), intrusion-detection-
based, and protocol-optimization-based strategies [11]. Because of the various advantages
such as automation, feature extraction, and pattern recognition in the network traffic data,
the ML-based approach has the potential to fulfill the routing security needs. Furthermore,
because IoT produces big data, it highly benefits the ML-based model building procedures
because of their dependence on the datasets. Several ML-based solutions have been
proposed by researchers to address the security attacks in IoT. However, in the RPL-
based IoT domain, the concurrent detection of protocol-specific and SN-inherited attacks
is insufficiently addressed, particularly for protocol-specific rank (PS-R) attacks and SN-
inherited wormhole (SN-W) attacks. These attacks are among the most detrimental and
damaging attacks for the routing mechanisms and network resources.

This research work focuses on the security of IoT networks that implement RPL for
routing. An ML-based model is proposed to improve the security against PS-R attacks as
well as SN-W attacks. The approaches to build the model are carefully selected depending
on the nature of the dataset, and the objectives to be achieved. The model parameters
are carefully selected through critical analysis, while considering their value and impact
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on optimization. The proposed model, named Protocol-specific and SN-inherited Attack
Detection (ProSenAD), is evaluated considering the type of learning paradigm used for
building the model, which is classification, and the type of classification considered, which
is multiclass classification.

The performance of the ProSenAD model is evaluated using the testing set of the
self-generated LIoTN-RPL dataset. The results demonstrate that the proposed model
outperforms when compared with the benchmarks in terms of: (1) number of attacks
detected when compared with ML-LGBM [12] and GRU-DL [13], (2) accuracy, precision,
recall in comparison with GAN-C [14], (3) Cross Entropy (CE), Cohen’s Kappa (CK), and
the Matthews Correlation Coefficient (MCC), when compared with gradient boosting (GB),
extreme GB (XGBoost), and light gradient boosting machine (LGBM). Following is the
summary of contributions of this research work:

• The ML-based approaches are analyzed for attack detection in IoT and RPL-based
networks to secure the routing mechanisms as well as the network resources.

• We intend to improve the ML models for concurrent detection of protocol-specific and
SN-inherited attacks.

• The proposed model is evaluated using ML-based metrics, such as accuracy, Positive
Predictive Values (PPV), sensitivity, CE, inter-rater reliability and agreement through
CK, and MCC to determine its performance in comparison with the existing models.

• The lack of updated dataset is addressed by generating novel LIoTN-RPL dataset
using different network simulation scenarios that is then employed for developing
attack detection model using ML approaches.

The aim of this research is to contribute to the enhancement of IoT routing and network
security for its widespread secure adoption in different domains. The remaining paper is
structured as follows: Section 2 describes the protocol-specific and SN-inherited attacks
focusing on PS-R and SN-W attacks, followed by the review of existing methods for attack
detection. Section 3 presents the proposed ProSenAD model in complete detail along with
the process model adopted for different model building phases. The novel LIoTN-RPL
dataset generated for this study is also explained in addition to the parameters selected
for model development and optimization. Section 4 discusses the results and comparative
performance analysis. Section 5 provides the conclusion and future research direction.

2. Related Work

In this section, the protocol-specific and SN-inherited attacks in RPL-based IoT net-
works are discussed with a focus on PS-R and SN-W attacks. Their workings and impact
on the IoT environments are presented in the next subsections.

2.1. Protocol-Specific Attacks in RPL-Based IoT

Protocol-specific attacks are named based on an RPL feature or mechanism that an
attacker aims to target. For example, in a PS-R attack, the attacker manipulates the rank
value, rank type, and its routing operation in an IoT network. Since this attack is capable of
modifying or altering RPL features, impacting the network performance, forming routing
loops, and disrupting the topology [15], it is considered one of the highly damaging attacks.
A malicious node manipulates the rank value and objective function through control
messages, severely affecting the routing topology [16]. To increase the attack impact, it
broadcasts a fake, lower rank value (decreased rank attack) and shortest distance toward
the root node in the network. Consequently, the child IoT nodes add the attacker node to
its preferred parent list and, in other cases, directly select it as a parent. This causes the RPL
to rebuild the directed acyclic graph (DAG). Moreover, the resources of victim nodes are
wasted in the attack process. The rank attack causes loop formation, which results in node
isolation at the individual or cluster level where a group of victim nodes are isolated and
obstructed from communicating in the network. If the rank rule in RPL is compromised, it
can cause control overhead, delay, and packet collisions [17]. When this type of attack is
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conceptualized in a critical IoT-enabled scenario, such as healthcare, the impact is severely
detrimental and may cause irreversible damage to the system and associated bodies.

There are three popular variants of rank attacks: (1) decreased rank attack, (2) in-
creased rank attack, and (3) worst parent attack [10]. In the decreased rank attack, the
malicious nodes illegitimately broadcast lower rank to other nodes and attract network
traffic. As a result, most of the normal nodes choose the illegitimate node as their preferred
parent [10]. This attack is similar to the SN-based sinkhole attack in some regards. In
contrast, adversaries in an increased rank attack advertise a higher rank value illegitimately
to deteriorate the nearest parent selection process. Consequently, the routing topology
is disrupted, node communications are delayed, and latency is introduced in the overall
RPL network by forcing the nodes to select other nodes as parents that might be farther
away from the root node [18]. In the worst parent selection, the victims simply select a
parent with poor communication or routing capabilities because of rank manipulation
by the attacker. Overall, the important consequences of rank attacks are communication
delay resulting from disruption in packet transmission, end-to-end delay, latency, weak or
worsened routing path, loop formation, and decreased packet delivery ratio.

2.2. SN-Inherited Attacks in RPL-Based IoT

SN-inherited attacks are named so because they inherit the attacking mechanisms
from the WSNs and optimize them to target the IoT networks. Another factor is the
presence of foundational base of sensor networks in an IoT infrastructure which contributes
towards the instigation of SN-inherited attacks in IoT. In an SN-W attack, two malicious
nodes cooperate to create a tunnel [19] between each other and entirely or selectively
transmit the network traffic maliciously through a poor routing path, rather than sending it
through the original route. The attacking nodes establish a fake link between two nodes,
which is apparently fast with low latency [20], to target attack the network. The goal is
to disrupt the routing mechanism by misguiding the victim nodes and exhausting the
network resources. An SN-W attack is capable of instigating other attacks in the network,
such as selective forwarding, packet dropping, black hole, grey hole, denial of service [21],
and Sybil attacks [22]. The attacker(s) sniffs, eavesdrops, and replays the data packets,
which consequently impacts the overall network performance. Therefore, in this paper, this
attack from the SN-inherited category is selected for detection along with the PS-R attack
from the protocol-specific category of RPL attacks.

There are three methods of wormhole creation, which include (1) packet relay,
(2) packet encapsulation, and (3) out-of-bound link. In the packet encapsulation method,
malicious nodes use a path, which is originally meant for sending regular data, and create
a logical tunnel by encapsulating the data packets [10]. This is done to hide the hop counts
from other nodes present on the tunnel’s route. In the packet relay method, one or more
illegitimate nodes send packets or control messages between two legitimate nodes, which
are located far from each other, to mislead them into being close neighbors [23]. Usually,
this is done by transmitting packets without updating the hop count [10,24]. In the out-
of-bound strategy, a wormhole is created by utilizing a wired or wireless link that is out
of the network boundary to create a tunnel between the external attacker and an internal
malicious node.

2.3. Machine Learning for Securing IoT—An Overview

In this section, the use of ML approaches in IoT is explored with an emphasis on
security. Different Learning Paradigms (LP) are identified that are exploited for designing
and developing security solutions in IoT infrastructures by the research community.

Supervised Learning (SL) approaches have been extensively used for the development
of solutions to address the security issues in IoT-enabled systems. For example, Ref. [25]
have proposed supervised classifiers for the detection of security attacks including DoS,
DDoS, cross-site scripting (XSS), injection and scanning attacks, backdoor malware, and
password cracking attacks in Vehicular Ad hoc Networks (VANETs). ToN-IoT dataset,
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which contains the aforementioned attacks, has been used to train eight SL models in two
contexts: (1) binary classification, and (2) chi-square and synthetic minority oversampling
technique-included classification. The models are then evaluated against performance
evaluators such as accuracy, precision, recall, F1-score, and confusion matrix. XGBoost
has performed well overall with the highest accuracy and confusion matrix parameters
such as False Positive Rate (FPR), while in the second context, k-NN has performed
well among other models.

In [26], the authors have proposed a DL-based attack detection framework leveraging
fog technology to train supervised DL models for attack detection in IoT networks. Six mod-
els are trained on five datasets and Long Short-Term Memory (LSTM) has outperformed
other SL models. The architecture of the LSTM model is based on artificial recurrent neural
networks, and they are well-suited for classification as well as prediction-related tasks. The
authors of [27] have used the distributed LSTM as part of their proposal for energy efficient
calculations in mobile edge computing systems. The authors of [28] have proposed a DL-
based anomaly detection technique using binary and multiclass classification techniques in
six datasets. They have trained convolutional neural networks (CNN) for classifying the
normal and attack data as well as further classification of attacks using the transfer learning
approach. The authors of [29] have proposed a novel feature selection approach to improve
the accuracy of ML models for anomaly detection. Furthermore, four models are trained
for attack detection in bot-related traffic. It is observed that the researchers have proposed
IDSs, classification-based models, and improved feature selection methods for increasing
the classification accuracy of the security models for IoT systems.

Unsupervised Learning (UL) approaches have been used to develop models for
anomaly detection, attack detection, node clustering, and pattern recognition. For ex-
ample, the authors of [30] have proposed a DL-based unsupervised learning method to
detect botnets in IoT. Balanced and unbalanced datasets are used to evaluate the model
efficiency by detecting the threats. The false-positive rate has been used to evaluate the
detection capability and performance of the model. The authors of [31] have employed un-
supervised and supervised learning methods to detect intrusions in IoT using a multistage
approach and employing a feed-forward neural network with a single hidden layer. SVM
is used with a synthetic minority oversampling approach for clustering and data reduction.
This approach has achieved good results in comparison with other classifiers used as bench-
marks. The authors of [32] have incorporated unsupervised-learning-based dimensionality
reduction using one-class SVM, autoencoder, and isolation forest-based techniques. In [33],
the authors have used autoencoders as UL models for detecting network intrusions in IoT.

In [34], the authors have proposed semi-supervised learning (SSL)-based IDS for
handling intrusions in IoT networks. Deep learning is used to develop the system and
train it on two datasets. The IDS is evaluated for seven security attacks namely: DDoS,
bots, infiltration, PortScan, web attacks, and brute force attacks. The IDS is deployed
using Python, Keras, and TensorFlow, and evaluated using accuracy precision, recall, and
F1-score. Similarly, Ref. [35] have leveraged supervised DL and unsupervised clustering
techniques to develop an SSL approach to address the attacks present in the NSL-KDD
dataset. The proposed method is tested on the IoT-fog testbed and 99.78% accuracy is
achieved. The authors of [36] have also leveraged a DL-based SSL approach to address
security attacks in IoT. Transfer learning methodology is used to develop the solution by
training it on nine IoT datasets. The technique is evaluated using comparative effectiveness
of information transfer, analysis of processing time, and performance comparison of the
models on labeled and unlabeled datasets using AUC scores. The authors of [37] have
implemented semi-supervised and federated learning approaches in an industrial IoT use
case. Federated learning is used to locally train the model, and an active learning-based
SSL technique is used to globally adjust the model. A 7.1% accuracy increment is observed
through the proposed method in ten active learning queries.

Numerous reviews, investigative studies, and surveys have been conducted by the
researchers in the domain of IoT networks, security challenges, and routing standards used
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by LLNs such as IoT and WSNs. For instance, in [38], the authors have studied ML and DL
methods for securing IoT ecosystems. They have explored the potential role of ML and DL
in improving security aspects of these systems and developed a thematic taxonomy in terms
of IoT security threats, learning methods to counter them, layer-wise security approaches
using ML and DL, and other dimensions of IoT security. Both ML and DL approaches for
IoT security are categorized into (1) supervised, (2) unsupervised, (3) semi-supervised, and
(4) reinforcement learning. An elaboration of respective techniques and possibilities of
their application in IoT systems is also presented. They are discussed in terms of working
principles, advantages, disadvantages, and potential for successful application in an IoT
environment. Similarly, Ref. [39] have surveyed ML and DL algorithms categorically for
IoT application security. Moreover, security problems and threat models are systemati-
cally surveyed, and complexity analysis of ML algorithms is performed along with the
discussion on the limitations of their application in IoT networks. The authors of [40] have
performed a detailed survey on DL and big data technologies for security in IoT. DL-based
architectures and frameworks are explained along with performance evaluation metrics.
Additionally, layer-wise security attacks and datasets used for experimental analysis are
discussed in detail.

In [41], a comprehensive review is conducted on ML-based security solutions for
power systems. Various aspects of these systems are covered, including Power Quality
Disturbances (PQD), Voltage Stability Assessment (VSA), Transient Stability Assessment
(TSA), and Supervisory Control and Data Acquisition (SCADA). ML classifiers, IDSs, and
other ML-based security approaches are explored, compared, and evaluated in terms of
accuracy for the four power system facets mentioned earlier. The authors of [42] have
presented a brief review of ML techniques for improvement in the security of smart grids,
detection of power quality events, estimation of transformer life loss, making energy
dispatch decisions, and operations of the electricity market.

ML has been used in IoT and WSNs for security enhancements in recent years. This
solution development domain has gained the acclaim of researchers due to its prospective
potential for developing robust security models. For instance, in [43], the authors have
used ML as part of their proposal of a robust architecture for adversarial attack detection
to improve the identification and classification of High Spatial Resolution Remote Sens-
ing (HSRRS) images. They have used adversarial detection models based on SVM with
single or fused two-level features to improve detection accuracy. The proposed model
has achieved an overall accuracy of 94.5%, detection probability of 0.933, and false alarm
probability of 0.040. The performance evaluation has indicated that the proposed model
obtains better results as compared to other methods used in previous relevant studies.
In another study, [44], have used ML as part of analytical data algorithm proposed for
the identification of two False Data Injection (FDI) attacks in Industrial Control Systems
(ICSs), i.e., measurement injection attack and control variable tampering attack. In [45],
the authors have used a random-forest-based ML model to classify four different types
of botnet attacks in an IoT-enabled smart factory environment. An average accuracy of
96.67%, 0.241 FPR, and model reliability of 94.6% is achieved which is calculated using
kappa coefficient. In [46], the authors have proposed an ameliorated ANN-based model
that employs dimensionality reduction technique to improve the DDoS attack detection
process in IoT. The authors of [47] have proposed a deep reinforcement-learning-based
strategy for securing the mobile edge computing systems against interference and jamming
attacks. Similarly, Ref. [48] have used reinforcement learning for the development of a
secure data collection strategy in the domain of IoT. The reviewed literature demonstrates
the potential of ML approaches for developing security solutions. Table 1 presents the
summary of recent literature related to the IoT security and attack detection.
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Table 1. Summary of recent literature.

Ref. Attack Countermeasure Dataset for Model
Development Limitations/Gaps

[12] Protocol-specific attack
LGBM is leveraged to address

protocol-specific attacks in
RPL-based IoT

Self-generated SN-inherited attacks are
not considered

[14] Protocol-specific and
SN-inherited attacks

GAN-C is used to address rank,
version, and hello flood attacks IRAD High processing and

computational power required

[13] SN-inherited attack GRU-DL is used to counter hello
flood attacks in RPL-based IoT Self-generated

Protocol-specific attacks are not
considered, DL methods require

high processing and
computation power

[49] SN attacks

Generative DL using adversarial
autoencoder and bidirectional

generative adversarial
network models

IoT-23 dataset

Protocol-specific attacks are not
considered, SN-inherited attacks

in RPL-based IoT setting are
not considered

[50] SN attacks

IoT device classification (binary
and multiclass) using the logistic

decision tree model which is
based on logistic regression and

decision tree methods

IoT device dataset
primarily generated by

authors and
secondary dataset
obtained from [51]

SN-inherited attacks in
RPL-based IoT are not

considered, protocol-specific
attacks are not considered

[52] SN attacks

Long short-term memory and
gated recurrent unit-based DL

framework for
intrusion detection

CICIDS2017
dataset [53]

Protocol-specific attacks are not
considered, SN-inherited attacks

in RPL-based IoT setting are
not considered

[54] SN attacks

IDS for attack detection based on
binary and multiclass DL-based

classification using long
short-term memory model

UNSW-NB15 and
Bot-IoT datasets

SN-inherited attacks in
RPL-based IoT are not

considered, protocol-specific
attacks are not considered

[55] SN attacks

Graph-based botnet detection
system for classification of
attacks using Naïve Bayes,

decision and extra trees, random
forest, AdaBoost, and k-Nearest

Neighbors (k-NNs)

CTU-13 and
IoT-23 datasets

Protocol-specific attacks are not
considered, SN-inherited attacks

in RPL-based IoT setting are
not considered

[56] SN attacks

DL
recurrent-neural-network-based

IDS and SL classifiers for
attack classification

NSL-KDD dataset

SN-inherited attacks in
RPL-based IoT are not

considered, protocol-specific
attacks are not considered,

relatively old dataset is used

From the review of the literature, it is identified that the PS-R and SN-W attacks
are active and internal routing attacks, while an SN-W attack can also be launched using
resources external to the network. Each of them belongs to one of the two attack classes
that the RPL-based IoT is vulnerable to. Both attacks cause severe security issues and are
capable of instigating other attacks. They may collaborate with each other to increase the
attack impact and occur concurrently in an RPL-based IoT network causing twofold or
multifold deterioration of the IoT network, RPL mechanism, and routing resources which
are naturally constrained. Table 2 presents the routing attacks considered in this paper
along with their impact on Confidentiality, Integrity, Availability (CIA) security triad and
effects on the IoT network.
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Table 2. PS-R and SN-W attacks, their impact on CIA triad and network performance.

Attack Description CIA Triad Impact Impact on Network Performance

PS-R attack

The attacker node broadcasts fake
credentials for attracting traffic, such as
fake rank value, and shortest path to the

sink node

Confidentiality, integrity Resource consumption, network
destabilization, end-to-end delay,

SN-W attack

Malicious nodes form a connection and
attract network traffic toward themselves

by illegitimately displaying increased child
and neighbor nodes using their path to

communicate with the sink node. They do
this by replaying the same messages at
short intervals. Secondly, the malicious

nodes selectively or completely drop the
incoming victim packets

Confidentiality, availability
Increase in the illegitimate routing

of packets, network, partial or
complete packet loss

Since PS-R attack is capable of altering the RPL components, while also affecting the
network performance, forming routing loops, and disrupting the topology, it is considered
as one of the gravest attacks. Therefore, PS-R attack is addressed in this research. Similarly,
SN-W is also a highly damaging and detrimental attack which has a high potential to
instigate other security attacks as well on an IoT network. Therefore, both of these attacks
are addressed using ML approaches. The proposed ProSenAD model to handle these
attacks is discussed in the next section, followed by results, comparison with benchmarks,
and conclusions in the subsequent sections.

3. Methodology

The Sample, Explore, Modify, Model, Assess (SEMMA) process model is used to
explain the ProSenAD model development phases. These phases are discussed in detail in
the forthcoming subsections.

3.1. SEMMA Process Model for ProSenAD Model Development

SEMMA process model is adopted to define and explain the design and development
stages of the ProSenAD model. Figure 2 illustrates the process model. The Sample stage in
SEMMA includes data collection methods, functions, tools, and techniques used for gather-
ing the required data from specific sources. The Explore stage of SEMMA is responsible
for exploring the collected data and performing preliminary analysis to discover trends
and patterns. In a labeled dataset, this stage helps in identifying the data points, instances,
features, variables or attributes, and target classes. Descriptive statistical methods are used
to find the percentage of data instances from different angles depending on the require-
ments analysis. In the Modify stage of SEMMA, the raw dataset is prepared, features are
engineered, and selected. The data is cleaned by addressing missing values and duplicate
features. Data points with incomprehensible values are replaced with suitable ones. For
example, in this case, categorical features are converted to numerical using one hot encod-
ing method. Next, the Model stage of SEMMA involves the baseline model development,
parameter and hyperparameter tuning, ProSenAD optimization, and model training. This
step is followed by the Assessment phase of SEMMA where the model performance is
assessed using performance evaluation metrics. The model is then compared with the
selected benchmarks.
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Figure 2. SEMMA process model adopted for ProSenAD development.

3.2. Sampling Phase in SEMMA

In the Sample stage of the SEMMA process model, the data collection procedure is
performed. Various network models are designed and implemented in the Contiki Cooja
simulator, which is designed for simulating the resource-constrained IoT networks with
RPL enabled for data communication and routing. The next subsections explain the data
generating models developed in this study which are broadly classified into the Normal
Traffic Network Model, PS-R Attack Model, and SN-W Attack Model.

Due to the scarcity of publicly available protocol-specific and SN-inherited data,
researchers generate the datasets using simulations and capture the packets using the
6LoWPAN analyzer. It is a frequent practice observed in literature. For example, Ref. [12]
have created network models depending on the requirement of the attack dataset and
simulated the network scenarios for data collection. Therefore, similar practice is followed
for data collection in this paper using the Cooja simulator. The network models of interest
are designed and implemented in Cooja, which include, normal traffic network model,
PS-R attack network model, and SN-W attack network model. The network size, distance
coverage, and node positioning parameters considered in this paper are supported through
relevant literature, a summary of which is given in Table 3.

The first attack model is designed to simulate the PS-R attack, where the attacker
nodes relay false rank values in addition to ideal conditions as a prospective parent using
DODAG Information Object (DIO) messages to attract the child nodes. The attacker
nodes are deliberately implemented in close proximity to the sink to speed up the parent
selection process and for recording the attack effects. The malicious node initiates with
a delay of 60 s after the network is stabilized. The victim nodes consider the attacker
as a parent and eventually joins it. In the second attack model, i.e., SN-W attack, two
nodes create a tunneling effect logically by exploiting the control messages. They probe
the neighbor nodes using the DODAG Information Solicitation (DIS) control message to
join a node and initialize the traffic transmission process. Other control messages including
DODAG Information Object (DIO), DODAG Advertisement Object (DAO), and DAO
acknowledgment are used to illegitimately present the shortest path towards the root node
to attract the victim nodes. A similar strategy to the previous attack is used in this attack as
well, in terms of attacker node placement, where they are placed near the sink and victim
nodes for speeding up the attack process. The closeness of malicious nodes to the sink
appears favorable to the victim nodes and, as a result, they join the attacker parent(s). The
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effects of the two attacks on the network resources and routing mechanism are presented
in the previous section.

Table 3. Network model simulation parameters.

Ref. Simulator No. of Nodes Range Node Positioning Sink Node
Placement

Simulation
Time (s)

Our
work

Contiki
Cooja

1st case: 1 sink node,
19 sender nodes

2nd case: 1 sink node,
49 sender nodes

Transmission range:
50 m

Interference: 100 m
Random and grid central 3600 s

[57] Cooja 1 sink node,
10 sender nodes

Transmission range:
50 m

Interference: 100 m
Random Central 3600 s

[58] Cooja 1 sink node,
20–100 sender nodes

Transmission range:
100 m Random and grid Central 900 s

[59] Cooja 1 root node, 50 sender
nodes

Transmission range:
50 m

Interference: 60 m
Random Central 1500 s

[12] Cooja

1st case: one sink node,
11 sender nodes

2nd case: one sink node,
12 sender nodes

3rd case: 1 root node,
23 sender nodes

Transmission range:
50 m Random Central 600 s

[60] Cooja 1 root node,
60 sender nodes

Transmission range:
50 m

Bidimensional grid
positioning with a
uniform distance

of 30 m

- 3600 s

3.3. Exploration Phase in SEMMA

Data generation, feature segmentation, feature extraction, and data collection steps
are performed in this phase. The data is generated using Cooja, which is sent to the
Wireshark through 6LoWPAN analyzer. The network traffic is analyzed in the Wireshark
and feature segmentation is also performed. The data is collected for one benign and two
attack scenarios. Figure 3 shows the raw data sample collected through Wireshark. The
benign and attack datasets are consolidated in the LIoTN-RPL data pool and analyzed to
understand the features and their relationships with the target columns.

The feature extracting unit manages the extraction of broadly related features from the
packets and IoT nodes after fragmentation in the Wireshark. To assure the coverage of all
the associated attributes from the network models in RPL-based IoT, the data from each use
case is collected, which has contributed towards a novel and diverse LIoTN-RPL dataset.
The features are extracted based on the main protocols operating in the network, which are
ICMPv6, UDP, and IEEE 802.15.4. The associated features are presented in Figures 4–6.

The pivot table analysis shows that 3259 data points belong to the benign network
scenario, 6213 to the PS-R attack scenario, and 4408 to the SN-W attack scenario. The de-
scriptive statistics of the protocol-based feature set, data points belonging to each protocol,
and their percentages are shown in Figures 7 and 8.

The figures show that “ICMPv6” filter retrieves five primary feature classes with
thirty-nine features in total, “UDP” filter retrieves six feature classes with a total of twenty-
three features inclusive of the features from other protocols, while “IEEE 802.15.4” has two
feature classes with a total of nineteen features. Figure 8 indicates that the percentage of
total data points is 41.2, 36.7, and 22.1, respectively.
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Figure 9 presents the instance percentage of each feature class in the protocol-based
traffic collected and extracted through Wireshark in the Contiki Cooja 3.0 simulator. It
shows that there are five classes in ICMPv6 protocol. The fifth feature, that is, ICPMv6,
encompass a little over half the percentage of all the classes while the remaining classes
have similar features spreading across, except for 6LoWPAN, which is comparatively less
at about five percent of the total features. For the UDP classes, the feature distribution is
higher in three classes, while the Data class has the lowest percentage among all others. In
the IEEE 802.15.4 class, the ratio is sixty-seventy to thirty-three.
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The analysis reflects that ICMPv6-related features are important as they reveal infor-
mation about the control messages in RPL-based routing happening in the IoT network. In
the next section, the data is prepared for feature selection to build the ProSenAD model for
addressing the routing attacks in RPL-based IoT networks.

3.4. Modification Phase in SEMMA

After the data collection process is completed, the raw data needs to be shaped into a
useful dataset that can be employed for model development in the Model stage of SEMMA.
For this purpose, it is necessary to perform certain requisite steps. In the ML paradigm,
they are known as data preparation, also referred to as data preprocessing, and feature
engineering. Several tools and techniques are available that can be used for preparing the
dataset. It primarily depends on the requirements, the nature of the data, the objective to be
achieved, and the expected outcome. In this paper, the research objective is to classify three
classes, and detect two types of routing attacks, which are reflected in the network traffic.
Therefore, it is necessary to include benign network traffic as a baseline for observation of
normal traffic transmission and its characteristics. This factor indicates that there are at least
three target classes in the data, which are benign network traffic class, PS-R attack class, and
SN-W attack class. To prepare and engineer the dataset, it is important to address issues
such as structural formatting, missing or incomplete records, and feature repetition. These
issues can be addressed using certain standard practices observed in the literature, which
include data cleaning, feature selection, feature engineering, and dimensionality reduction.
Since the data preparation step is dependent and highly specific to the dataset and the
project, it makes the process straightforward. The tasks performed in the previous section
are foundational and pivotal for performing the data preparation and feature engineering
in the next steps.

The previous section stipulates that the data collected in LIoTN-RPL data pool requires
cleaning in terms of missing record values, repetitive features, and other aforementioned
issues. To address these issues, Python on Anaconda [61] has been used. It is a package
management framework that accommodates various libraries, software notebooks, pro-
gramming environments, and data science-related tools. The data is loaded to the Jupyter
notebook [62], provided by the Anaconda framework. It is visualized through this note-
book, and a Python data analysis library called ‘pandas’ [63] is used for preprocessing. For
instance, the missing values are replaced with ‘NaaN’, the repetitive features are removed,
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and categorical features are converted using one-hot encoding. The selected features and
their descriptive statistics are presented in Table 4.

Table 4. Descriptive statistics of features in the LIoTN-RPL dataset.

Instance
Number/Value

Normal PS-R SN-W

Source ID 3259 instances 6213 4408

Destination ID 3259 instances 6213 4408

Protocol

IEEE 802.15.4 2991 241 3324

UDP 1980 1314 2152

ICMPv6 1279 4899 2256

Rank Number of rank
values observed 114 172 distinct values observed

in the dataset

Number of rank
values observed

176

Message

DODAG Information
Object (DIO) 816 1424 1218

DODAG Information
Solicitation (DIS) - Not considered 23

DODAG Advertisement
Object (DAO) 463 3475 1015

Acknowledgment (Ack) 2991 241 3324

UDP 1980 Not considered 2152

MaxRankInc

The threshold set for a
maximum rank increase

for stable network
performance and
controlled DIO

Normal value: 896, 816
values in the normal

traffic dataset

Value in attack scenario
is set to 0

Normal traffic dataset showed
it to be set to 896 in the

simulated network model
Total values observed in the

rank attack
traffic dataset: 1424

The threshold set for a
maximum rank increase

for stable network
performance and
controlled DIO

Normal value: 896, 1225
values in the normal

traffic dataset

MinHopRankInc

Minimum hop rank
increase for stable

network performance
and for avoiding loops

Normal value: 128, 816
values observed in the
normal traffic dataset

Value in attack scenario
is set to 0

Normal traffic dataset showed
it to be set to 128 in the

simulated network model
Total values observed in the

rank attack
traffic dataset: 1442

Minimum hop rank
increase for stable

network performance
and for avoiding loops

Normal value: 128, 1225
values observed in the
normal traffic dataset

RErr

Rank error, RPL’s
inherent method to

detect any errors in the
rank values

True: 3
False: 1976
Total: 1979

True: 0
False: 1315 Not considered

DIOIntervalMin The interval threshold
set for sending DIOs

The normal threshold
value is observed to be

12 in the simulated
network, and a total of
816 values are observed

in the normal
traffic dataset

Threshold value observed to
be decreased during

the attack: 7
Occurrences: 1424

Not considered
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Table 4. Cont.

Instance
Number/Value

Normal PS-R SN-W

DIORedConst

The DIO redundancy
constant set for
controlling the

redundant DIOs and
maintaining a
stable network

The threshold value is
set to 10 in the

simulated benign
network, and a total of
816 values are found in

the normal
traffic dataset

Threshold value observed to
be increased during the

attack: 15
Occurrences: 1424

Not considered

Lost Lost packets during the
attack simulation

Minimum calculated in
normal traffic Not considered

610 instances are
observed in the SN-W

attack traffic dataset, and
they are denoted by 1

Hop count
Smallest hop count

broadcasted by
malicious nodes

Average calculated in
normal traffic Not considered

1244 instances are
observed in the SN-W

attack traffic dataset, and
they are denoted by 1

Class label
Normal 0 Not applicable Not applicable

PS-R Not applicable 1 Not applicable

SN-W Not applicable Not applicable 2

3.5. Modeling Phase in SEMMA

This section introduces the development of the proposed ML-based model, ProSenAD,
for protocol-specific and SN-inherited attack detection in RPL-based IoT networks. From
the learning paradigms, the type and characteristics of the collected data identified through
statistical analysis, research objectives, and consideration for the nature of the RPL-based
IoT network, multiclass classification is adopted for attack detection through the ProSenAD
model. ML-LGBM [12] is leveraged and optimized for multiclass classification tasks in the
proposed ProSenAD model. The optimization elements are discussed later in this section.
The benchmark research and the ML model variants are used for comparative analysis
of the performance using carefully selected evaluation metrics. To make sure that both
categories of attacks are covered, ML-LGBM [12], GAN-C [14], GRU-DL [13] are used for
benchmarking. Model variants including gradient boosting (GB), extreme gradient boosting
(XGBoost), and baseline light gradient boosting machine (LGBM) are also considered for
comparison. The authors of [12] have only focused on protocol-specific version attack,
whereas [13] have focused on SN-inherited hello flood attacks. The authors of [14] have
addressed two protocol-specific and one SN-inherited attacks. However, wormhole is not
considered in [14]. Therefore, these research studies have been used as benchmarks along
with the models mentioned earlier in this section.

The most important constituents of an ML-based model are its parameters and
hyperparameters. In the next subsections, different types of parameter categories and
metrics are discussed for ProSenAD development. They include core parameters, learn-
ing control parameters, input and output workflow parameters, objective parameters,
and metric parameters.

3.5.1. Fundamental Parameters for ProSenAD

The core parameters for developing the LGBM-based ProSenAD model include the
following: (1) task, (2) objective, (3) boosting, (4) number of iterations, (5) learning rate, and
(6) number of leaves. These parameters are fundamental for achieving the objective of attack
detection in RPL-based IoT networks through the ProSenAD model. The aforementioned
parameters have several metrics that can be used for building the model. They are explained
further in this section.
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The LGBM is typically used for binary classification as in [12]. However, our task is to
optimize it for multiclass classification. Therefore, the most suitable and fundamental core
metrics from the first parameter are selected for ProSenAD. They include, train, predict/test.
From the second parameter, multiclass and softmax objective function is selected following
the research objective of this paper. Other metrics from the second parameter employed by
the ProSenAD include the determination of multiclass classification application metrics,
and the number of classes. The multiclass application metrics include direct multiclass
classification and binary one-vs-all-based multiclass classification. Furthermore, the third
parameter allows for the implementation of the following methods: (1) gradient-based
one-side sampling, (2) dropouts meet multiple additive regression trees, (3) random for-
est, and (4) conventional gradient boosting decision tree. By default, LGBM employs
gradient boosting decision tree for some iterations before activating gradient-based one-
side sampling depending on the learning rate. However, it should be tuned with other
metrics for enhanced performance. For instance, if the learning rate is set to 0.1, then
LGBM will run gradient boosting decision tree for the first ten iterations internally, fol-
lowed by gradient-based one side sampling starting from the eleventh iteration. Therefore,
we have experimented with the aforementioned metrics and tuned them accordingly to
get optimal results.

The number of iterations parameter consists of metrics for the number of trees, number
of rounds, number of estimators, and number of iterations. The default number of trees
created by the model in multiclass classification is equal to the multiple of the number
of classes and number of iterations. However, it can be exploited and tuned to meet the
requirements and achieve the target accordingly. The fifth and sixth parameters, that
is, learning rate and number of leaves, can also be tuned based on the model performance.
ProSenAD incorporates these parameters and hyperparameters for building the attack
detection model for RPL-based IoT networks. The next section covers the learning control
parameters considered for ProSenAD.

3.5.2. Learning Control Parameters for ProSenAD

The learning control parameters are required for optimizing the model based on the
objective and the characteristics of the dataset. The values in these parameters are responsi-
ble for and control the learning process of the model. The important control parameters
for ProSenAD can be classified into boosting-specific, tree-specific, and heterogenous pa-
rameters. They include those that are optimized for solving the accuracy, regularization,
overfitting, and training speed-related issues. The important learning control parameters
include depth of the tree (Tdepth), minimum data in a leaf (dmin in Li), feature fraction
(Ffraction) and bagging fraction (Fbagging), bagging frequency (fbagging).

3.5.3. Input and Output Workflow Parameters for ProSenAD

The input and output workflow parameters for developing the ProSenAD model
include the following: (1) dataset-related, and (2) prediction-related parameters. The
dataset parameters consist of methods for selecting maximum bins, minimal data, or
information in one bin, feature bundling, and specification of categorical features. These
methods are used to train, tune, and optimize the model. However, because there are few
categorical features in LIoTN-RPL dataset, this step is performed during preprocessing in
the Modify phase of SEMMA. Other aforementioned parameters have been experimented
upon to build the multiclass model in ProSenAD. The prediction-related parameters can
only be used while making predictions on the dataset. They include specification of
iteration from where a prediction should be initialized. The value can be set to zero or less,
where zero means the prediction should be started from the first iteration. ProSenAD uses
this parameter for reference and comparison purposes. Other parameters include number
of iterations considered for prediction and early stopping which is specific for classification
tasks in LGBM. It is set to false in prediction task to avoid possible negative impact on the
accuracy. The next section discusses parameter tuning and optimization.
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3.5.4. Baseline Model, Parameter Tuning, and ProSenAD Optimization

The baseline model is used for contextualization of the model results and to perform
optimization with reference to the objective to be achieved. For ProSenAD model develop-
ment, first the LGBM baseline model is built and trained using basic parameters and default
values. The model variant-related benchmarks are also trained with multiclass objective
for comparison with the proposed model. Both direct multiclass and binary class-based
multiclass models are considered to be used for reference. For instance, Ref. [12] have
used GOSS boosting method for binary classification of protocol-specific attack. Therefore,
the same method has been used in this paper in addition to dart booster for performance
comparison. Furthermore, GB, XGBoost, and LGBM with GBDT boosting methods are built.
The results of the ProSenAD are presented in the next section along with the comparative
performance analysis for both types of benchmarks that are considered in this research.
Based on the results obtained from the baseline model, the fine-tuning step is performed for
ProSenAD. The important parameters, hyperparameters, and metrics used in ProSenAD
for attack detection are presented in Table 5. (3) in Table 5 means that the parameter/metric
has been implemented while (7) means that it has not been implemented.

Table 5. Parameters, hyperparameters, and metrics considerations.

Parameter
Class Parameters/Metrics Baseline ProSenAD Constraints

Core

Task Training,
prediction/testing

Training,
prediction/testing N/A

Objective Multiclassova (one-vs-all) Multiclass N/A

Number of classes 3 3 N/A

Boosting Gbdt Goss, dart N/A

Iterations
Smallest multiple of

number of classes and
number of iterations

3

(default = 100) Greater than or equal to 0

Learning rate 0.1 Greater than 0

Number of leaves 7
3

(default = 31)
Greater than 0 and less
than or equal to 131,072

Learning
Control

Tree depth (maximum) 7
3

(default = −1) N/A

Minimal information in
one leaf 7

3

(default = 20) Greater than or equal to 0

Feature fraction 3
3

(default = 1)
Greater than 0 and less

than or equal to 1

Bagging fraction 7
3

(default = 1)

Greater than 0 and less
than or equal to 1

Bagging frequency must
be set to a non-zero value

to use this parameter

Bagging frequency 7
3

(default = 0)

Bagging fraction should
less than 1 to use

this parameter

Early stopping 7

3

(when the best
performance is observed)

N/A
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Table 5. Cont.

Parameter
Class Parameters/Metrics Baseline ProSenAD Constraints

Input and
out workflow

Number of bins
(maximum) 7

3

(default = 255) Should be greater than 1

Feature bundling 3 3 N/A

Prediction initialization 7
3

(default = 0) N/A

Number of iterations for
prediction 7

3

(default = -1) N/A

Objective
Number of classes 3 3

(default = 1) Should be greater than 0

Sigmoid 3

(default = 1) 7 Should be greater than 0

Metric
Softmax/multi_logloss 7 3 N/A

Cross entropy 3 3 N/A

Parameter tuning is performed to optimally improve accuracy, handle overfitting, reg-
ularization, and reduce the training time, because parameters and hyperparameters deter-
mine the overall performance of the model. Therefore, they are classified as:
(1) parameters that contribute to improved accuracy, (2) parameters that determine and
impact the structural and learning process of the tree, and (3) parameters that handle over-
fitting issues. These are important to consider for optimization. Therefore, in ProSenAD,
each of these categories are addressed in the parameter tuning process. The first category
includes learning rate (lr), number of iterations (I), and number of bins (Bn). They are
tuned in inverse relation to each other to improve accuracy and avoid overfitting by ex-
perimenting with a range of values. The second category consists of structural parameters
such as number of leaves (Ln), maximum tree depth (Tdepth), and minimal information in
one leaf (dmin in Li). The last parameter of this category is important as it also contributes
to resolving regularization and overfitting issues. A range between hundreds and thou-
sands is optimal if the dataset is above ten thousand records. Therefore, this range is
experimented upon to find the optimal value. The third category comprises parameters for
solving regularization and overfitting problems. Some of the most important parameters
that contribute to resolving these issues include feature fraction and bagging fraction. In
ProSenAD, feature fraction (Ffraction), bagging fraction (Fbagging), and bagging frequency
(fbagging) are considered, where Fbagging cannot be used without fbagging. Therefore, these
requirements are fulfilled to develop and optimize the ProSenAD. The results are presented
in the next section with detailed comparative analysis through different use cases.

3.6. Assessment Phase in SEMMA

In this phase, several factors are considered for the selection of evaluation metrics to
test the performance of the proposed model. One of them is the type of learning paradigm
considered for developing the model. Confusion matrix parameters are used for deriving
and formulating the metrics. Furthermore, the type of classification being employed
is also taken into consideration. In multiclass classification, advanced parameters are
required for model evaluation in addition to classic ML metrics to counter any accuracy-
related bias. Therefore, Cross Entropy (CE) is used from the metrics parameters of LGBM,
Cohen’s Kappa (CK) for inter-rater agreement and reliability, and the Matthews Correlation
Coefficient (MCC) for extensive evaluation and validation. These metrics and evaluation
methods are discussed in the next section where the results are presented using different
use cases to assess the model’s performance.
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4. Results and Discussion

In this section, the metric parameters and evaluation methods used for the evaluation
of the proposed model are explained. Comparative performance analysis is also performed
using different benchmarks and scenarios, which is followed by a detailed discussion of
results and findings.

4.1. Performance Parameters, Evaluation and Comparison

The performance of the proposed ML-based ProSenAD is compared with existing
relevant research works [12–14] and gradient boosting variants including GB, XGBoost,
and LGBM based on the Classification Accuracy (CA), precision/Positive Predictive Values
(PPV), recall/sensitivity, CE, CK, and MCC calculation. Multiple network model simu-
lations are performed under two cases and scenarios to obtain the dataset which is split
into training and testing set. The testing set environment is used for the performance
evaluation. The cases include benign model simulation, PS-R attack simulation, and SN-W
attack simulation. The data from the first case is used as a baseline to determine the other
two attack cases and the attack-focused results are presented in the next subsections. PS-R
attack is identified as Case A and SN-W attack is identified as Case B.

4.1.1. Classification Accuracy

The first metric used for evaluation of the ProSenAD model is classification accuracy
(CA). Although accuracy is prone to biased results in some cases, specifically in multiclass
classification and unbalanced dataset, it is important to use in evaluation as it forms a
frame of reference for comparison of results with benchmarks and other evaluation metrics.
Equation (1) presents the equation for accuracy calculation, where TP = True Positive,
TN = True Negative, FP = False Positive, and FN = False Negative.

TP + TN
TP + TN + FP + FN

(1)

The accuracy shows the value of correctly predicted data instances among all the
available instances of benign, and attack classes. Figure 10 shows the average classification
accuracy of ProSenAD, GAN-C, ML-LGBM, GB, XGBoost, and LGBM, comprising data
from the RPL-based IoT environment. ProSenAD outperforms GAN-C by 8.7% in protocol-
specific attack detection, GB by 10.6% in protocol-specific attack detection and 12.2%
in SN-inherited attack detection. It exceeds in classifying the target classes by 7% in
comparison with the XGBoost where the former’s classification accuracy is 0.997 and
latter’s is 0.927. As for the SN-inherited attack detection scenario, ProSenAD outperforms
XGBoost by 7.7% indicating better overall performance in both attack use cases. Baseline
LGBM shows an accuracy of 0.952, which is 4.5% less than ProSenAD for protocol-specific
attack scenario. As for the SN-inherited use case, the proposed model exceeds the LGBM
performance with accuracy improved by 5%. Although ML-LGBM and ProSenAD show
similar performance in protocol-specific use cases, the former is not designed for SN-
inherited attack detection. Therefore, ProSenAD outperforms in terms of number and
simultaneity of attacks for detection. GAN-C is also designed for only one attack scenario;
the comparative performance for this method is presented earlier. Similarly, GRU-DL
shows negligible difference in performance, but it also works only in the SN-inherited
attack detection scenario. It does not address protocol-specific attacks; thus, ProSenAD
outperforms the benchmarks, overall.
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4.1.2. Precision

The second metric used for ProSenAD performance evaluation is precision, also known
as PPV. It is a more scrutinized evaluation metric as compared to the CA. It calculates the
correctly predicted positive instances over all positive instances predicted by the model,
which can also be explained as the quantification of accurate classification of positive
class using the TP and FP parameters. Equation (2) is typically used to calculate the
precision of a model.

TP
TP + FP

(2)

Figure 11 shows the average precision/PPV results of ProSenAD, GAN-C, ML-LGBM,
GB, XGBoost, and baseline LGBM. GAN-C shows the highest difference in performance
in the protocol-specific attack scenario, with a precision of 0.84. The proposed model
outperforms it by 15%. Next, GB performs the poorest among all benchmarks (except
for the GAN-C in protocol-specific attack detection) with an average precision of 0.883
in protocol-specific attack scenario and 0.853 in SN-inherited attack scenario. ProSenAD
shows improvement in both scenarios with an improved performance of 10.7% and 12%,
respectively, for this benchmark. Next, the XGBoost shows an average precision of 0.905 in
the first attack scenario, and 0.893 in the second attack scenario. ProSenAD outperforms it
by 8.5% and 8%, respectively. The proposed model also shows better PPV in comparison
with the LGBM for both attack scenarios, with an increase of 5.3% for protocol-specific
attack detection and 5.1% for SN-inherited attack detection. The difference between the
performance of the proposed model and ML-LGBM is almost similar, but the latter is
designed only for the detection of one type of attack, i.e., the protocol-specific attack. It
does not address SN-inherited attacks. Therefore, ProSenAD outperforms it in terms of
number and simultaneity of attack detection. Overall, the proposed model shows improved
performance as shown through the comparative analysis.
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4.1.3. Sensitivity

The third evaluation metric used for ProSenAD performance measurement is recall. It
is also known as sensitivity, which is the ratio between the number of attacks detected by
the model and the total attacks present in the dataset. Equation (3) is used to calculate the
sensitivity/recall.

TP
TP + FN

(3)

Figure 12 shows the average recall/sensitivity results of ProSenAD, GAN-C, ML-
LGBM, GB, XGBoost, and baseline LGBM. The comparative analysis shows that proposed
model outperforms the approaches used as benchmarks. For instance, it shows an increased
average recall for protocol-specific attack scenario in comparison with GAN-C where the
difference between their results is 16.1%. SN-inherited attack scenario also shows that the
ProSenAD performs well with a 4.2% increase in recall when compared with the same
approach. Next, the comparison with GB in the first scenario shows the proposed model’s
high performance with a 13% improved recall, followed by 16.8% improvement of the
proposed model when compared with GB in the second attack detection scenario. XGBoost
performs with a 0.837 recall in the first scenario and 0.844 recall in the second scenario,
as compared to ProSenAD which performs better with a recall of 0.981 in the first attack
case and 0.962 in the second attack case, indicating a 14.4% and 11.8% increase in the
comparative performance, respectively. Next, the LGBM shows an average recall of 0.927
in protocol-specific attack detection, and 0.909 recall in SN-inherited attacks detection.
ProSenAD outperforms these by an increase of 5.4% and 5.3% in the sensitivity, respectively.
The performance comparison of ML-LGBM and the proposed model shows a 0.9% increase
in recall of the latter. Although the difference is small, ProSenAD performs better in terms
of the number of attacks that it detects as compared to ML-LGBM.
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4.1.4. Cross Entropy

CE is used to measure cross entropy loss in ML-based models. The values between
the range of 0 and 1 are used to measure the performance. The lower the value, the better
a model performs. It is useful to employ this metric for model evaluation in multiclass
classification cases or when the dataset is unbalanced to avoid accuracy bias. Figure 13
presents the cross entropy of the proposed model. The comparison of ProSenAD shows
that it outperforms other approaches. GB shows the poorest results with a value of 0.591,
which means that the cross-entropy loss is greater in GB as compared to ProSenAD. This is
also the case with XGBoost and LGBM where cross entropy is 0.409 and 0.276, respectively.
The results indicate that the ProSenAD performs better as compared to the benchmarks.
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4.1.5. Cohen’s Kappa

CK is a statistical evaluation metric which is used to measure the inter-rater agreement
and reliability. It considers TP, TN as agreement values, and FP, FN as agreement by chance
or disagreement values for evaluating a model within the range of -1 and 1. The closer the
value is to 1, it indicates that the better the model has performed. CK is represented by κ. The
equation to calculate CK is presented below (Equation (6)) where p0 and pe can be calculated
using the confusion matrix parameters through Equations (4) and (5), respectively.

p0 =
TP + TN

N
(4)

where N is equal to the sum of all the observations.

pe =
z1 × y1

N2 +
z2 × y2

N2 +
z3 × y3

N2 (5)

where z1, y1, z2, y2, z3, and y3 are derived from the confusion matrix presented in Figure 14.
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A value less than 0 indicates that there is no agreement between the actual classes and
the predicted classes, while a range of 0–20 shows imperceptible agreement. The ranges
between 21–40, 41–60, 61–80, 81–99 indicate fair, moderate, substantial, and excellent
agreement, while a value of 1 is designated for perfect performance of the model.

κ =
p0 − pe

1 − pe
(6)

Figure 15 shows the performance of ProSenAD in terms of kappa coefficient. The
comparison indicates that the proposed model performs better than the benchmarks. GB
shows a value of 0.827 in the graphical representation of results which indicates it gaining
the poorest results among all methods used for comparison, while LGBM performs better
than XGBoost. However, ProSenAD outperforms LGBM with a value of 0.95.

4.1.6. The Matthews Correlation Coefficient

MCC in another metric used to further evaluate the model in addition to simple accu-
racy. It utilizes the parameters in confusion matrix to evaluate the model, and specifically
considers true negatives, unlike other metrics. This metric is useful to apply when the
classification is multiclass type, or the data is unbalanced. Therefore, it is employed to
further evaluate the ProSenAD. Equation (7) is used to calculate the MCC.

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)
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Figure 16 shows the MCC results of ProSenAD, LGBM, GB, and XGBoost, in RPL-based
IoT environment for protocol-specific and SN-inherited attack detection. The comparative
analysis shows that the proposed model outperforms the approaches used as benchmarks.
For instance, the comparison with GB shows the proposed model’s high performance
with an 18% improved MCC. XGBoost performs with 0.825 MCC value, as compared to
ProSenAD. The latter performs better with 0.942 MCC, indicating an 11.7% increase in the
comparative performance. Lastly, the LGBM shows an MCC value of 0.893. ProSenAD
exceeds in performance by 4.9% based on this metric when compared to LGBM. Overall,
the proposed model outperforms the benchmarks with an average improvement of 11.5%
based on MCC evaluation metric.
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4.2. Discussion

The growing implementation of IoT-enabled applications, devices, and smart systems
emphasizes the need for enhancing the security of these networks. In this research paper,
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the focus is on RPL-based IoT networks, particularly, the detection of PS-R and SN-W
attacks. The ML-based approach is selected because of the various advantages that it
provides such as automation, pattern recognition, and feature extraction as well as selection
of useful features. Based on the critically chosen parameters from different parameter
categories, including the core, learning control, input and output workflow, objective, and
metric parameters, an ML-based model is designed and developed. The performance
evaluation is carried out using the testing set of the proposed LIoTN-RPL dataset which
plays the role of model testing environment. The proposed ProSenAD model outperforms
the benchmarks and provides security against PS-R and SN-W attacks in terms of number
of attacks detected, attack classification accuracy, PPV, recall, CE, reliability (CK), and MCC.

The novelty and usefulness of the proposed ML-based model is summarized, as follows:

• It considers both the categories of attacks prevalent in RPL-based IoT networks and
provides simultaneity of attack detection using a multiclass approach.

• The LIoTN-RPL dataset used in the development of the model is prepared such that it
allows the detection of multiple attacks from both attack categories.

• It is comparatively lightweight as compared to the other models due to the usage
of lightweight boosting methods and feature bundling techniques that it employs to
build the model.

• It addresses the CIA triad-related security compromises that occur due to the attacks
including confidentiality, integrity due to PS-R attacks and confidentiality, availability
due to SN-W attacks.

• It overcomes the accuracy bias and regularization-related issues by employing appro-
priate metric parameters and learning control parameters, respectively.

Overall, the performance of ProSenAD is significantly better when compared with
the model-related benchmarks including GB, XGBoost, and LGBM, as well as research-
related benchmarks including GAN-C [14] in terms of accuracy, precision, and recall,
and ML-LGBM [12] and GRU-DL [12,13] in terms of the number and simultaneity of
the attacks addressed.

5. Conclusions

The IoT is emerging in several application-specific smart devices that are used in
different domains, such as healthcare, homes, cities, urban and industrial infrastructures,
transport, etc. The number of IoT implementations is exponentially escalating and is
expected to reach billions in the next few years. Both IoT networks and RPL are resource-
constrained; therefore, the security risks are higher in RPL-based IoT networks. Several
solutions have been proposed to address the security attacks using different approaches.
Machine learning is one such solution domain that has gained recognition for attack de-
tection model development due to the big data generated by IoT devices. In the existing
literature, the concurrent detection of PS-R and SN-W attacks is insufficiently addressed.
Therefore, to address this gap, ProSenAD model is developed based on multiclass classifica-
tion approaches. This research critically analyzes the parameters important for developing
such a system. Evaluation metrics are also explored for performance analysis because
standard classification-related metrics such as accuracy, precision, and recall are inadequate
for ProSenAD evaluation. The proposed ML-based model has outperformed the ML-LGBM
and GRU-DL benchmarks in terms of the number of attacks detected, and GB, XGBoost,
and LGBM, in terms of accuracy, PPV, sensitivity, CE, CK, and MCC. ProSenAD shows
improved performance in both use cases, i.e., PS-R and SN-W, respectively.

For future work, the LIoTN-RPL dataset will be further diversified by simulating other
prevalent attacks from the protocol-specific and SN-inherited categories. Currently, the
dataset is limited to benign network traffic data and attack data from two categories of
the attacks identified in the paper. We plan to evaluate the results considering additional
parameters and benchmarks for the two attack categories mentioned earlier.
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