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Does Systematic Tail Risk Matter?

Evarist Stoja, Arnold Polanski, Linh H. Nguyen, Aleksandr Pereverzin

Abstract

Systematic tail risk is considered an important determinant of expected returns
n risky assets. We examine its impact from two perspectives in a unified framework
hich originates from a simple asset pricing model. From the first perspective,
ystematic tail risk is proxied by a generalized tail dependence coefficient and is
ompensated with an economically sizeable and statistically significant premium.
rom the second perspective, systematic tail risk is proxied by the product of the
ame coefficient with a normalised tail risk measure and does not appear to earn a
remium. We examine these contradictory findings and attempt to reconcile them.
vidence suggests that the components of our second systematic tail risk measure
ay be subject to common features. This finding may help explain the contradictory
vidence in the literature.
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. Introduction

The turbulence of financial markets over the last few decades has highlighted the

mportance of tail risk for asset pricing. This importance could be due to preferences

hat treat losses differently from gains, asymmetric return distributions or a mixture

f both. Of particular interest in this context is the systematic component of tail risk.

his component is determined by market-wide factors which cannot be diversified

way even in large portfolios.

There is a number of measures that aim to capture the systematic tail risk (STR)

f an asset and the literature has not settled on a clear concept. Some studies rely

n moments (see, for example, Arditti, 1971; Levy and Arditti, 1975; Ang et al.,

006; Boero, Silvapulle, and Tursunalieva, 2011; Chang, Christoffersen, and Jacobs,

013; Conrad, Dittmar, and Ghysels, 2013) or co-moments (see, for example, Kraus

nd Litzenberger, 1976; Harvey and Siddique, 2000; Dittmar, 2002 and Chiao, Hung,

nd Srivastava, 2003).

In contrast with the studies that use moment- and co-moment-based risk measures

hich offer only indirect evidence, direct evidence on the importance of systematic

ail risk in asset pricing is limited and contradictory. Some studies examine the

nfluence of tail risk on cross-sectional returns using Value-at-Risk (see Bali and

akici, 2004) but do not separately consider its systematic component. Other studies

xamine the relationship between tail risk and returns at the market but not at the

sset level. Bali, Demirtas, and Levy (2009) find a positive relationship between

he expected monthly market Value-at-Risk (VaR) and the corresponding market

eturns. Bollerslev and Todorov (2011) estimate an ‘Investor Fear Index’ for the

arket and show that it is associated with a significant premium. Kelly and Jiang

2014) estimate a market tail risk measure based on the common component of

he tail risk of individual stocks and show that it has significant predictive power

or market returns. In a study similar to ours, Bali, Cakici, and Whitelaw (2014)
2



Journal Pre-proof

p

r

s

o

m

s

r

t

p

d

s

a

(

t

C

p

a

a

m

i

o

C

t

m

p

Jo
ur

na
l P

re
-p

ro
of

ropose three measures of tail risk, a systematic, an idiosyncratic and a hybrid tail

isk measure that encapsulate both systematic and idiosyncratic elements. They

how a robust and significantly positive risk premium of the hybrid measure but

btain insignificant or negative results for the idiosyncratic or systematic tail risk

easures. In a wider context, Atilgan et al. (2019) examine the relationship between

ystematic tail risk and stock returns globally but do not find that systematic tail

isk has a positive impact on expected returns. However, this finding would appear

o contradict the study of Hollstein et al. (2019) who find that global tail risk strongly

redict stock returns.

More closely related, Chabi-Yo, Ruenzi, and Weigert (2018) use the classic tail

ependence coefficient of Sibuya (1960) as a proxy for the systematic tail risk and

how that it earns a substantial risk premium. van Oordt and Zhou (2016) rely on

clear and intuitive asset pricing model derived from the theory of Arzac and Bawa

1977) and propose a new systematic tail risk measure, the tail beta. They show that

his measure is associated with future stock returns. However, unlike the measure of

habi-Yo, Ruenzi, and Weigert (2018), tail beta is not associated with a significantly

ositive tail risk premium.

Given the conflicting evidence regarding the premium pertaining to the system-

tic tail risk, this paper makes the following contributions to the asset pricing liter-

ture on tail risk. Using a simple asset pricing model we obtain two complementary

easures of systematic tail risk and employ them, individually, to examine their

mpact on expected returns. As is standard in the literature, we use time-series data

n returns of a large cross section of individual stocks as well as the Fama-French-

arhart systematic factors. We follow the Fama and MacBeth (1973) methodology

o estimate the significance and magnitude of the premia earned by the proposed

easures. Our empirical results confirm the existence of a significantly positive risk

remium associated with the systematic tail risk if the latter is proxied by our first
3
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easure, the Systematic Tail Coefficient, but the risk premium is insignificant if the

ystematic tail risk is proxied by our second measure, the Systematic Tail Compo-

ent. These findings are robust to different cut-off thresholds for the tail of the

eturn distribution. Importantly, these results mirror those of Chabi-Yo, Ruenzi,

nd Weigert (2018) and van Oordt and Zhou (2016) and to some extent, those of

ali, Cakici, and Whitelaw (2014). Scrutinising the impact of the building blocks

f the Systematic Tail Component and drawing on other similarly puzzling results

n the financial econometrics literature, we conclude that the joint dynamics of the

uilding blocks offset each-other leading to insignificant results.

The paper proceeds as follows. Section 2 presents the theoretical framework and

iscusses the properties of the proposed measures of systematic tail risk. In Section

, we present and discuss the empirical results while Section 4 summarizes the paper

nd offers some concluding remarks. The Appendix contains further discussion and

esults of the theoretical framework.

. Theoretical Framework

.1. The Evolution of Asset Returns

In this section, to develop an intuition we present informally a simple model that

an be extended to examine the impact of systematic tail risk on expected returns

rom two different perspectives.1 Suppose that a Single Index Model (SIM) holds

nd, hence, the excess returns of stock i are approximately equal to βi times the

arket’s excess returns (for clarity and consistency with the literature, e.g. van

ordt and Zhou, 2016, assume βi ≥ 0)

Ri = βiRm + εi (1)

1See Figure 1 along with the notes for a discussion of the formal model.
4
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Imposing slightly more structure than usual on the error term εi leads to a richer

nd more nuanced model as follows. Market excess returns can be below or above

given threshold which happens with time-independent probabilities f and 1 −

, respectively. Moreover, the independent idiosyncratic shock to stock i’s excess

eturns is either “small” with probability pi, or “large” with probability 1− pi. The

trength of the dependence of the excess returns of asset i on the market excess

eturn is time-varying, i.e., the influence of the market on asset i is more prominent

n some periods than others. Specifically, when the idiosyncratic term is small, stock

’s excess returns do not deviate noticeably from the prediction of the model but

hen the idiosyncratic term is large this deviation can be significant and, at times,

an overturn the impact of the market. A large idiosyncratic term can be either

egative, which happens with probability qi, or moderate as well as large positive,

hich occurs with probability 1 − qi. Therefore, stock i exceeds its own threshold

hen the idiosyncratic shock is small and the market has exceeded its threshold or

ndependently of the market due to a large negative idiosyncratic shock.

Putting all this together, the event tree in Figure 1 shows the paths to possible

utcomes.

[Figure 1]

The final nodes in the event tree in Figure 1 correspond to the four possible

utcomes: no threshold exceedance has occurred, depicted in tail T∅; the market has

xceeded its threshold but not the asset, depicted in tail T{m}; the asset has exceeded

ts threshold but not the market, depicted in tail T{i}; and finally, both have exceeded

heir thresholds, depicted in tail T{i,m}. These outcomes are illustrated in Figure 2.

[Figure 2]
5
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The four areas in Figure 2 arise from three independent and binary events: from

he realization of the market return (below or above a given threshold), whether

ail dependence or independence prevails and, in the latter case, whether the asset

xceeds or not its threshold. As we show below, the unique values of the parameters

, pi and qi can be estimated from observed data on market and asset returns.

.2. The Systematic Tail Coefficient

Our analysis focuses on situations where the exceedance of a threshold is a rare

or extreme) event. Especially since the Global Financial Crisis, a literature study-

ng asset pricing implications of the joint market-asset VaR exceedance has been

stablished (see, for example, van Oordt and Zhou, 2016 and Chabi-Yo, Ruenzi, and

eigert, 2018 and the references therein). This joint exceedance is a proxy of the

ystematic tail risk which the theory suggests should have important asset pricing

mplications. Intuitively, sensitivity to systematic tail risk may be defined as stock i’s

endency to exceed its VaR whenever the market does so. In Figure 2, this happens

n area T{i,m} where returns are both extremely negative. It can be shown theoret-

cally that investors would be compensated with an appropriate risk premium for

xposure to systematic tail risk (see Proposition 2 below; see also van Oordt and

hou, 2016 and Chabi-Yo, Ruenzi, and Weigert, 2018).

We can now formally derive from our asset pricing model the first measure that

roxies systematic tail risk. If we assign the respective probabilities x0, xm, xi and

im to outcomes T∅, T{m}, T{i} and T{i,m}, then the event tree in Figure 1 implies the
6
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ollowing system of linear equations:





Pr(T{i,m}) = xim = f · pi + f · (1− pi) · qi

Pr(T{m}) = xm = f · (1− pi) · (1− qi)

Pr(T{i}) = xi = (1− f) · (1− pi) · qi

Pr(T∅) = x0 = (1− f) · pi + (1− f) · (1− pi) · (1− qi)

For example, Pr(T{i,m}) is the sum of the probability of the market exceeding its

hreshold and the asset “following the market into a tail” f · pi and the probability

f the market and the asset exceeding their respective thresholds independently f ·

1− pi) · qi. In what follows, we set the thresholds for the market and asset i equal

o V aRαm
m and V aRαi

i at the respective significance levels αm and αi. In this case,

m = αm − xim and xi = αi − xim. Using the fact that the probabilities of the four

utcomes add up to one, we obtain the following unique solution for f , qi and pi:

f = αm, (2)

qi =
αm(αi − xim)

αm (1− αm + αi)− xim

, (3)

pi =
xim − αmαi

αm − α2
m

. (4)

The probability pi is well-defined only if αmαi ≤ xim ≤ αm(1 − αm + αi) and

an be interpreted as a normalized measure of tail dependence taking on values

etween 0 and 1.2 In particular, when pi = 1, stock i exceeds its VaR whenever

he market does, while pi = 0 implies that VaR exceedances by asset i and the

2On the other hand, the probability qi is well-defined if xim ≤ αi and xim ≤ αm. Note that
hese conditions always hold.
7
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arket are independent. For reasons outlined in the next subsection, we refer to pi

s the Systematic Tail Coefficient (STC) and write at times pi(αi, αm) to stress its

ependence on αi and αm.

In light of our simple model, the STC pi is the probability that market returns and

sset i’s returns are tail dependent, i.e., that asset i exceeds its threshold whenever

he market does. Then, 1 − pi is the probability that market returns and asset

returns are tail independent. Clearly, pi and 1 − pi sum up to one and we can

nterpret them as (percentage) shares of the total tail risk of asset i measured, e.g,

y the VaR of this asset. In Subsection 2.3, we discuss the properties of STC pi

s a tail risk measure. In Subsection 2.4, we present an alternative measure where

ystematic tail risk is proxied by the (systematic) share pi of tail risk, where the

atter is measured by the normalized VaR. In Section 3, we examine the impact of

hese two tail risk measures on stock returns with the Fama and MacBeth (1973)

egressions.

.3. Properties of the Systematic Tail Coefficient

It is important to highlight that the setup presented in Subsection 2.2 leads to a

lassic and widely-used tail dependence coefficient that we generalize to any level of

everity of extreme events. Specifically, our STC can be applied to any market factor

odel. For example, the model of Arzac and Bawa (1977) with a negligible risk free

ate implies αm = αi = α, i.e. the tail risks of both the market and the asset are

easured at the same significance level. Then, our first measure of systematic tail

isk boils down to:

STCi ≡ pi(α, α) =
xim−α2

α− α2
. (5)

In the limit as α vanishes, pi converges to the classic lower tail dependence coef-

cient λL
i of Sibuya (1960) as stated in the next proposition:
8
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roposition 1.

lim
α→0

pi(α, α) = λL
i = lim

α→0
Pr

{
Xi ≤ F−1

i (α)|Xm ≤ F−1
m (α)

}
. (6)

roof. See Appendix.

This coefficient, usually denoted λL
i , is paramount in the Extreme Value Theory

iterature (see also Joe, 1997). The same coefficient is employed by Chabi-Yo, Ruenzi,

nd Weigert (2018). Our measure of systematic tail risk generalizes, therefore, the

ail dependence coefficient of Sibuya (1960) to any level of severity of extreme events

nd to asymmetric values of αi and αm. These generalizations are important in

mpirical studies that rely on joint tails with a limited number of observations or

symmetric tail probabilities.

It is important to emphasise here that a naive generalization of the λL
i coefficient

y computing the conditional probability

λL
i (α) = Pr

{
Xi ≤ F−1

i (α)|Xm ≤ F−1
m (α)

}
, (7)

may give rise to misleading conclusions. For example, when asset i returns are

ndependent of market returns, λL
i (α) = α indicates that dependence increases in the

ail probability α, while our systematic tail coefficient obtains pi = 0 for any value

f α.

In our next theoretical result, we show that in the limit as α vanishes, pi has a

ositive impact on the expected stock returns.

roposition 2. The expected excess return E[Ri]−Rf of risky asset i increases in

i(α, α) as α → 0.

roof. See Appendix.
9



Journal Pre-proof

2

w

i

i

C

d

t

s

t

w

p

b

1

s

t

a

r

e

r

l

r

Jo
ur

na
l P

re
-p

ro
of

.4. The Systematic Tail Component

Seen in the context of van Oordt and Zhou (2016), an issue with our STC (as

ell as with the measure in Chabi-Yo, Ruenzi, and Weigert, 2018) is that while

t is an important determinant of asset returns, using it in its raw form appears

ncomplete. To illustrate, take the analogue of the systematic tail coefficient in

APM. The correlation of an asset with the market is clearly an essential input in

etermining expected returns but the measure of systematic risk, the stock’s beta, is

he correlation adjusted by the ratio of the respective standard deviations. Regressing

tock returns on their correlation with the market (with the innocuous assumption

hat the market variance is lower than that of the stock due to diversification effects)

ill overstate the systematic risk premium.

This seemingly significant issue is addressed by van Oordt and Zhou (2016). They

ropose a systematic tail risk measure that relies on the asset pricing theory derived

y Arzac and Bawa (1977) in a safety-first framework (see Telser, 1955 and Roy,

952). Arzac and Bawa (1977) study investors who maximise their expected returns

ubject to a VaR constraint and show, without assuming any particular distribution,

hat the equilibrium price for any asset i is given by Ri = βAB
i Rm + εi, where,

ssuming the risk-free rate is negligible, the beta of asset i is the slope given by the

atio of the respective VaRs both at level α:

βAB
i =

V aRα
i

V aRα
m

(8)

van Oordt and Zhou (2016) extend the Arzac and Bawa (1977) model under

xtremely adverse market conditions and in this context show that systematic tail

isk is measured as the slope coefficient βV Z
i in Ri = βV Z

i Rm+εi for Rm < u for some

arge loss level −u. van Oordt and Zhou (2016) obtain the following systematic tail

isk measure,
10
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βV Z
i = τ k · V aRα

i

V aRα
m

(9)

where τ is a tail dependence coefficient scaled by a tail index parameter k. They

stimate βV Z
i relying on Extreme Value Theory and show that their risk measure is

ssociated with future stock returns. However, unlike Chabi-Yo, Ruenzi, and Weigert

2018), they find no evidence of a risk premium for systematic tail risk in the cross-

ection when measuring it as the sensitivity of an asset’s return to large shocks in the

arket conditional on a large shock occurring. Bali, Cakici, and Whitelaw (2014)

ocument a similar finding based on lower partial moments.

Following the setup of van Oordt and Zhou (2016), we interpret the RHS of (8) as

(normalized) tail risk measure and decompose it into systematic and idiosyncratic

omponents,

V aRα
i

V aRα
m

= S̃TCi + ĨTCi, (10)

with the systematic tail component S̃TCi and the idiosyncratic tail component

T̃Ci defined as:

S̃TCi = pi
V aRα

i

V aRα
m

=
xim − α2

α− α2

V aRα
i

V aRα
m

,

ĨTCi = (1− pi)
V aRα

i

V aRα
m

=
α− xim

α− α2

V aRα
i

V aRα
m

.

Note the similarity between our second measure of systematic tail risk S̃TCi and

he tail beta of van Oordt and Zhou (2016) as well as the CAPM β. The first term

s similar to τ , the tail dependence coefficient in van Oordt and Zhou (2016) or the

orrelation coefficient in CAPM and the second term is the ratio of risks, the same
11
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s that of van Oordt and Zhou (2016) and the analogue of the ratio of standard

eviations in CAPM.

In particular, if pi = 1, asset i is totally tail dependent on the market and

TCi =
V aRα

i

V aRα
m
. This is intuitive because when the market return decreases by V aRα

m

hen asset i’s return decreases by V aRα
i in direct response. However, if pi = 0 asset

is tail independent of the market and S̃TCi = 0. This is also intuitive as under

ndependence, asset i’s returns are not sensitive to moves in the market. Although

e omit the idiosyncratic component ĨTCi of tail risk from the analysis in this paper,

t is an interesting subject for future research.

Finally, for the purpose of the Fama and MacBeth (1973) cross-sectional regres-

ion, the denominator V aRα
m in S̃TCi is irrelevant because it is the same across

tocks and serves simply to normalise the systematic tail risk measure.

. Empirical Analysis

.1. Summary Statistics

For our empirical studies, we use daily as well as monthly data for all common

tocks in the New York Stock Exchange (NYSE), American Stock Exchange (AMEX)

nd National Association of Securities Dealers Automated Quotations (NASDAQ)

arkets over the fifty year period from January 1968 to December 2017 obtained

rom the Center for Research in Security Prices (CRSP). We follow the standard

ractice in the literature by including only stocks with share code 10 or 11 and with

t least two years of data available. Firm accounting data used to calculate the

ook-to-Market ratios are obtained from the CRSP-Compustat Merge database. In

otal, there are 3,092,980 firm-month observations in our sample, averaging 5,155

rms every month. The number of firms in each month varies from 2,149 to 7,932

uring the investigated period. Finally, we obtain the data on the risk-free rate and

he market excess returns for the same period from the Kenneth French’s online data
12



Journal Pre-proof

l

d

a

s

T

t

a

t

e

T

p

t

a

3

w

y

s

t

m

t

r

h

o

Jo
ur

na
l P

re
-p

ro
of

ibrary.

Tables 1 - 2 report the summary statistics of the cross-sectional distribution of

ifferent risk and return measures of the U.S. stocks where each measure for a stock is

veraged over the period in which it appears in the sample. Table 1 shows the mean,

tandard deviation, skewness and different quantile levels of these measures, while

able 2 reports their correlation matrix. These results are obtained at 5 percent

ail thresholds and are consistent with the literature (see, for example, van Oordt

nd Zhou, 2016 and Chabi-Yo, Ruenzi, and Weigert, 2018). The results for other

ail thresholds are qualitatively similar. The cross-sectional skewness of monthly

xcess returns as well as the coskewness with the market are both highly negative.

his suggests that there is a considerable number of stocks with extremely poor

erformance in the sample. Table 2 reports the correlation matrix and highlights

he tendency of stocks with high beta to have high systematic tail risk. These stocks

re also typically large and liquid.

[Tables 1 - 2]

.2. Persistence Analysis

Following Chabi-Yo, Ruenzi, and Weigert (2018) and van Oordt and Zhou (2016),

e examine the relative frequency with which a stock belonging to quintile j in one

ear moves to quintile i in the next year. The idea is that if the classification of

tocks in a particular tail risk quintile is informative about its future classification,

hen persistence of such classification is a prerequisite. Otherwise, historical tail risk

easures would serve only as summary statistics that convey no information about

he future tail risk of such stocks. Specifically, if the transition frequencies of a tail

isk measure are around 20 percent, then a stock classified today as, say having the

ighest exposure to systematic tail risk, has an equal chance of jumping into any

f the lower-exposure classifications as remaining highly exposed to systematic tail
13
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isk in the subsequent year. As a result, such classification cannot inform about its

uture systematic tail risk. On the other hand, if the classification of a stock into a

articular tail risk quintile is informative about its future exposure to tail risk, then

hese measures are persistent and elements in the main diagonal of the transition

atrix would be considerably larger than the off-diagonal elements.

Figure 3 shows the persistence transition matrix of the proposed tail risk measures

ver time. These figures illustrate clearly the tendency of a stock belonging to a

articular quintile in a year to remain in that quintile in the following year. Indeed,

he frequencies of remaining in the same quintile can be as high as 80 percent for

he lowest exposure and highest exposure quintiles and are generally no less than 50

ercent.

[Figures 3]

To account for the fact that there is overlapping in the estimation samples of the

easures in two consecutive years (since we use five years of historical data for the

stimation of the measures to be consistent with our empirical investigation of tail

isk premium in the later sections), in Figure 4 we report the transition frequencies

or a horizon of five years. These figures show the relative frequency with which a

tock belonging to quintile j in year t moves to quintile i in year t+5. Although the

requencies of a stock staying in the same quintile have reduced somewhat relative

o the frequencies of the two consecutive years, they still are significantly larger than

0 percent in all cases, confirming the findings of van Oordt and Zhou (2016) and

habi-Yo, Ruenzi, and Weigert (2018). Moreover, the frequencies of quintiles 1 and

are reassuringly above 40 percent. Therefore, we conclude that historical tail risk

easures contain useful information about future tail risk.

[Figures 4]
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.3. Sorted-Portfolio Returns

First, we examine the impact of the tail risk measures on expected returns re-

ardless of other canonical determinants of expected returns via portfolio sorting. At

he beginning of every month from 1968 to 2017, we estimate the tail risk measures

TCi and S̃TCi for all stocks in the NYSE, AMEX and NASDAQ markets using

aily data over the previous five years. We follow the standard practice in the liter-

ture by including only stocks with share code 10 or 11 and with at least two years

f data available.

We observe that stocks with high tail risk exposure are generally large. For

xample, if we sort stocks into five quintiles based on their STCi, the average size

f stocks in quintile 5 of STC is 33 times larger than that of quintile 1 stocks. The

ifference is seven times for S̃TCi measure. Therefore, to account for the size effect we

ollow Bali, Cakici, and Whitelaw (2014) and resort to bivariate sorting. We sort the

tocks in our sample into 25 portfolios, first on size and then on one of the systematic

ail risk measures. Following Fama and French (1993), at the beginning of every

onth, we first sort stocks into size quintiles based on their market capitalization

t the end of the previous month using the quintile breakpoints of all NYSE stocks.

hen, within each size quintile, stocks are sorted further into five quintiles based on

ne of their systematic tail risk measures that obtained at that time. For each sorted

ortfolio, we calculate value-weighted excess returns over the next one month. In

able 3, we report the average excess returns and the corresponding Newey and West

1987) t-statistics of the sorted portfolios over the 1968-2017 period. The return of

long-short strategy which buys the portfolio of stocks with the highest systematic

ail risk exposure (the fifth quintile) and sells the portfolio of stocks with the lowest

ystematic tail risk exposure (the first quintile) along with its alpha from the Carhart

1997) four-factor model, are reported in the last two columns. We present the results

or measures calculated using the five percent tail threshold. The results for other
15
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ail thresholds are similar and available upon request.

[Table 3]

In Table 3, the size effect can be clearly seen as the average excess returns re-

uce almost monotonically going from small to large size quintiles. Interestingly, we

bserve mixed results for the relationship between tail risk and expected returns.

lthough portfolios with high systematic tail risk exposure generally earn higher re-

urns in small-size quintiles, they earn lower returns in large-size quintiles. However,

he return differences or the Carhart (1997) four-factor model alphas are generally

ot statistically significant. We observe similar results for alternative settings of the

orting, including using the next two to six month returns after portfolio creation,

nd using equally weighted returns instead of value-weighted returns. Therefore,

TC helps predict losses in future states of market distress, i.e. it captures future

ystematic tail risk. However, there is no evidence from the bivariate sorting that

nvesting in high STC stocks earns a significant premium. These results are simi-

ar to those obtained by van Oordt and Zhou (2016) but contradict the findings of

habi-Yo, Ruenzi, and Weigert (2018).

.4. Fama-MacBeth Regressions

A possible explanation for the results presented in the previous subsection is that

xpected stock returns are influenced by several other factors which the portfolio

orting exercise does not account for. This issue can be addressed with the Fama

nd MacBeth (1973) method which is a two-step cross sectional regression to examine

he relation between expected return and factor betas. Betas are estimated using

ime series regression in the first step and the relation between returns and betas

re estimated in a second step with a cross sectional regression. Table 4 reports

he results of the Fama and MacBeth (1973) cross-sectional regression of monthly

xcess returns of all listed US stocks on tail risk measures as well as other canonical
16
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isk measures. At the beginning of every month, the excess return of each stock

elative to the T-bill rate over the following month is regressed on a number of

isk measures obtained using historical data over the previous five years. For each

odel, we report the time series average of the estimated coefficient for each variable

hich captures the premium per unit of the corresponding risk and underneath, the

espective Newey and West (1987) t-statistics in parentheses. The sample period is

0 years from January 1968 to December 2017. This results in 600 monthly cross-

ectional regressions.

[Table 4]

Models I to III contain different sets of canonical risk measures including CAPM

eta, Size, Book-to-Market, Momentum, Illiquidity, Volatility, Coskewness and Cokur

osis (see, for example, Chabi-Yo, Ruenzi, and Weigert, 2018; van Oordt and Zhou,

016 and the references therein). Size is measured by the natural logarithm of mar-

et capitalization at the end of the previous month. Book-to-Market is calculated as

he ratio of the book value from the previous fiscal year adjusted for deferred taxes,

nvestment tax credits and preferred shares divided by the market capitalization at

he end of the previous calendar year (see, for example, Fama and French, 1993).

lliquidity is measured as the average daily illiquidity in the last year, where daily

lliquidity is proxied by the ratio of the absolute daily return over daily dollar vol-

me (see Amihud, 2002). Momentum is calculated as the average of previous year

eturns excluding the last month (see, for example, Huang et al., 2012 and the refer-

nces therein). Volatility is the standard deviation of daily returns. Coskewness and

okurtosis are calculated as in Ang et al. (2006).

The results of Models I to III are consistent with previous findings in the lit-

rature. At individual stock level, the CAPM beta earns insignificant or negative

isk premium when it is calculated using past daily returns (see Bali, Engle, and
17
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urray, 2016 for an extensive investigation of this result). Size is significantly asso-

iated with lower expected return. Book-to-Market affects returns positively and is

ighly significant given the inclusion of only CAPM beta and Size in the regression.

owever, when additional risk factors are included (Model III), Book-to-Market be-

omes marginally significant. Momentum, Illiquidity and Cokurtosis are statistically

ignificant and the signs of the premiums are consistent with theoretical predictions.

olatility has a significant and negative impact on returns, reflecting the leverage and

olatility feedback effects (see, for example, Black, 1976; Campbell and Hentschel,

992 among others). However, Coskewness is not significant, which might be due to

he high level of noise associated with measuring this effect (see, for example, Bali,

ngle, and Murray, 2016).

In Models IV and V, we include the proposed measures of systematic tail risk

alculated at five percent tail threshold. The table shows that both measures of

ystematic tail risk exhibit the correct positive sign, suggesting investors are rewarded

or bearing this type of risk. This confirms the theoretical predictions of the impact

f systematic tail risk on expected returns. Moreover, the inclusion of systematic tail

isk in the regression does not materially alter the significance or the magnitude of

he impact of other canonical risk measures. This suggests that systematic tail risk

aptures a distinctive tail risk that is priced by investors but is not captured by the

ther canonical factors.

However, only the premium of the STCi is statistically significant. The coeffi-

ient associated with the S̃TCi is not distinguishable from zero. To examine the

obustness of this finding, Table 5 reports the results of the Fama and MacBeth

1973) cross-sectional regression of monthly excess returns of individual stocks on

he systematic tail risk measures at different thresholds and other canonical risk

easures. Specifically, we present the tail risk premium at tail thresholds α of one

nd ten percent. The results for tail thresholds α = 2.5% and α = 7.5% are similar
18
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nd available upon request.

For low α, most stocks have no or very few observations in the joint tail T{i,m}.

herefore, for α of one percent we rely on the scaling properties of joint tails and

stimate the probability xim with regression (12) - see Section 7.3 in the Appendix.

igure 5 illustrates the close correspondence of the fitted and “actual” values of xim

or a number of randomly-selected stocks from the sample of stocks listed in the

YSE, AMEX and NASDAQ markets.

We observe that across all tail thresholds, exposure to systematic tail risk earns a

ositive and highly significant risk premium when measured by STCi. It also earns

marginally significant risk premium at ten percent tail threshold when systematic

ail risk is proxied by S̃TCi. However, at one percent threshold, S̃TCi exhibits a

egative coefficient, although it is not statistically significant.

[Figure 5]

[Table 5]

Given the robust performance of STCi, the erratic empirical performance of S̃TCi

s intriguing. From a theoretical point of view, these two conflicting findings are

uzzling. No premium is found for S̃TCi which has the desirable property of being

n additive risk measure, while a premium is found for STCi which is not an additive

isk measure. The following simple example highlights the importance of additivity

see also van Oordt and Zhou, 2016). Asset pricing theory would typically predict

hat a double-leveraged position in stock i is expected to earn a risk premium that is

wice that of an unleveraged position in the stock. Correspondingly, the property of

dditivity ensures that the slope coefficient of the double-leveraged position equals

S̃TCi, i.e., twice that of an unleveraged position in the stock. In contrast, the tail

ependence measure is not additive and the tail dependence of the double-leveraged

osition will be the same as that of the unleveraged position, i.e., simply STCi. Note
19



Journal Pre-proof

t

w

a

f

a

t

A

n

T

d

e

a

e

c

w

S

b

3

t

i

n

b

i

a

a

Jo
ur

na
l P

re
-p

ro
of

he analogy with the CAPM β which is an additive risk measure and the correlation

ith the market which is not additive. These two findings would be the analogue of

situation where one finds a premium for the correlation with the market but not

or the CAPM β. Similarly, additivity of an asset’s tail risk measure helps investors

ssess the tail risk of their portfolios. Specifically for the case at hand, a portfolio

ail beta equals the weighted average of the tail betas of the individual assets.

In fact, S̃TCi is the product of the STCi with the ratio of V aRα
i over V aRα

m.

s already noted in Subsection 2.4, since V aRα
m is the same across stocks, it can-

ot be the reason behind these results (see also Bali, Cakici, and Whitelaw, 2014).

herefore, it is possible that this result is driven by V aRα
i . However, the literature

ocuments the unambiguous and positive impact of V aRα
i on stock returns (see, for

xample, Bali and Cakici, 2004). Moreover, we too find that V aRα
i has a positive

nd signifficant impact on stock returns in line with theoretical expectations and

mpirical findings of Bali and Cakici (2004). We report this finding in model VI

olumns of Tables 4 and 5 which show the result of the cross-sectional regression in

hich the absolute value of VaR of individual stocks is used as a tail risk measure.

imilar to Bali and Cakici (2004), we find that the total tail risk of a stock proxied

y its VaR earns a significantly positive premium.

.5. Could Common Features be Driving this Result?

An explanation for the seemingly puzzling results above may lie in common fea-

ures (see Kozicki and Engle, 1990). Succinctly, two variables have common features

f individually they have a certain property but some function of both of them does

ot have this same property. An obvious example is cointegration: two variables can

e integrated of order one but if they are cointegrated, a (linear) function of theirs

s integrated of order zero. Two other examples are the CAPM beta (see, for ex-

mple, Andersen et al., 2006) and minimum-variance hedge ratio (see Harris, Shen,

nd Stoja, 2010). In both these cases, the numerator and denominator of these mea-
20
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ures, i.e. the covariances and the variances are forecastable, as an entire branch of

nancial econometrics originating in the ARCH model of Engle (1982) demonstrates,

ut their functions, i.e. the betas and the hedge ratios, are not. We conjecture that

TCi presents a similar case: individually, STCi = pi(α, α) as well as V aRα
i can

redict stock returns but their product, i.e. S̃TCi cannot.

These observations may provide a way to reconcile the conflicting findings in this

aper as well as those of van Oordt and Zhou (2016) and Chabi-Yo, Ruenzi, and

eigert (2018). The van Oordt and Zhou (2016) measure - the analogue of S̃TCi

n this paper - is based on the product of τ , the tail dependence coefficient with the

atio of VaRs and they find it is not associated with a positive risk premium. On the

ther hand, the Chabi-Yo, Ruenzi, and Weigert (2018) systematic tail risk measure

the analogue of STCi in this paper - is the Sibuya (1960) coefficient which, they

nd, earns a positive risk premium. A hint of these results can also be gleaned from

ali, Cakici, and Whitelaw (2014). Their measure of the systematic tail risk, which

esembles the tail beta, has little or no explanatory power for future returns whereas

heir hybrid tail covariance risk, which in our context measures the dependence of

he asset i and the market in both systematic and idiosyncratic states, is strongly

ignificant.

Therefore, when contrasting our results for STCi and S̃TCi, we note that the

TCi = pi(α, α) converges to the λL
i coefficient of Sibuya (1960) which has a positive

mpact on expected stock returns. The same positive impact on expected returns

olds for V aRα
i , while V aRα

m plays no role because it does not vary across stocks.

hus, we conclude that the only explanation of the insignificant cross-sectional results

n the case of S̃TCi is that the joint dynamics of the STCi and V aRα
i offset each-

ther. This is the essence of the phenomenon known in the financial econometrics

iterature as common features.
21
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. Conclusion

Tail risk impacts asset prices and is particularly important when asset returns

re asymmetrically distributed and investors are averse to disasters. Several studies

xamine the relationship between systematic tail risk and expected stock return.

We consider two complementary measures of systematic tail risk. Our first mea-

ure - Systematic Tail Coefficient - is, in the limit, identical with the classic tail

ependence coefficient of Sibuya (1960) and generalizes the latter to any level of

everity of extreme events. Our second measure - Systematic Tail Component -

ears a close resemblance to the tail beta of van Oordt and Zhou (2016) and can be

een as an extension of the CAPM beta in the tails of asset returns.

We find that both measures are highly persistent. Of the stocks that display

he highest and lowest systematic tail risk exposure, around 80 percent display the

ame features in the subsequent year. After five years, this proportion is around 40

ercent, significantly larger than the 20 percent if current behavior in the tails is

ninformative about future behavior. Then, we investigate the impact of both these

omplementary systematic tail risk measures on asset returns and find that our tail

ependence coefficient-based measure of systematic tail risk STCi has a considerable

mpact on stock returns, confirming the findings of Chabi-Yo, Ruenzi, and Weigert

2018). However, the measure that would correspond to the systematic tail risk beta

f van Oordt and Zhou (2016), S̃TCi earns no significant premium, supporting in

urn their findings. This is puzzling because there is extensive evidence that the

uilding blocks of such measures, i.e. the tail dependence of the asset on the market

nd its VaR, are important drivers of stock returns. We examine this deeper and

onclude that most likely this finding is driven by the joint dynamics of a stock’s

aR and its tail dependence with the market – another case of the common features

henomenon observed previously in financial economics. Investigating the existence

f such features in other settings and, if present, understanding their origin is an
22
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nteresting question for future research.
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. Figures

Figure 1: The Evolution of Stock Returns

his figure shows the evolution of returns. Market excess returns are below, or above a given
hreshold with time-independent probabilities f and 1−f , respectively. Moreover, the excess return
f asset i either follows the market return into a tail or it evolves independently. In the former
ase, which happens with probability pi, the excess return of asset i is drawn from a distribution
ounded from above (below) by a threshold whenever the excess return of the market is below
above) its threshold. In the latter case, which occurs with 1 − pi, the excess return of asset i is
rawn from a distribution over the entire return range independently of the market, and it exceeds
ts threshold with probability qi or it does not with complementary probability 1 − qi. The term
elow each branch is the probability of that branch in the evolution of the asset returns and the
erms in the final nodes are the tails of the joint distribution (see also Figure 2).
27
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Figure 2: The Partition of Outcome Space of Market and Stock Returns

artition of the two-dimensional outcome space into joint tails where the dash lines depict the
hresholds, in this case quantiles Qα

m = F−1
m (α) and Qα

i = F−1
i (α). The four joint tails are the final

odes in the event tree in Figure 1: in T∅ no quantile exceedance has occurred (the white area),
n T{m} the market has exceeded its quantile but not the asset (the light grey area), in T{i} the
sset has exceeded its quantile but not the market (the green area) and finally in T{i,m} both have
xceeded their quantiles (the dark grey area).
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Figure 3: Persistency analysis: two consecutive years

(a) STCi (b) S̃TCi

hese figures show the relative frequency with which a stock belonging to quintile j moves into
uintile i in the next year for each tail risk measure, averaged over the whole sample period from
968 to 2017.

Figure 4: Persistency analysis: five years apart

(a) STCi (b) S̃TCi

hese figures show the relative frequency with which a stock belonging to quintile j moves into
uintile i in the next 5 years for each tail risk measure, averaged over the whole sample period from
968 to 2017.
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Figure 5: Scaling properties of the estimated risk measures for small nominal probabilities
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hese figures show examples of the scaling properties of the estimated tail risk measures for small
ominal probabilities for some randomly selected stocks from the sample of stocks listed in the
YSE, AMEX and NASDAQ markets and the time period is 2012 to 2017. The blue dots are plots
f estimates from the data and the parameters of the black line are estimated with equation (13) –
ee Section 7.1 in the Appendix.
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. Tables

Table 1: Descriptive statistics

Measure Mean
10%
quan-
tile

25%
quan-
tile

Median
75%
quan-
tile

90%
quan-
tile

Std
Dev

Skew

Monthly excess return (%) 0.488 -3.340 -0.169 0.956 1.936 3.651 4.881 -1.210
Beta 0.788 0.217 0.438 0.750 1.073 1.403 0.454 0.572
Size 18.387 16.031 16.999 18.231 19.659 20.958 1.889 0.327
Book-to-Market 0.877 0.228 0.409 0.712 1.092 1.636 0.753 2.923
Momentum (%) 8.576 -30.691 -3.675 11.597 21.602 37.088 32.013 0.432
Illiquidity 8.303 0.006 0.054 0.581 4.056 17.266 28.902 6.907
Realized daily volatility (%) 4.180 1.986 2.622 3.702 5.163 7.037 2.132 1.355
Coskewness -0.147 -0.347 -0.203 -0.104 -0.036 0.022 0.195 -2.456
Cokurtosis 2.773 0.365 0.827 1.668 3.428 6.578 3.239 2.699

S̃TC 0.424 0.099 0.226 0.400 0.583 0.775 0.262 0.641
STC 0.133 0.024 0.060 0.116 0.191 0.264 0.094 0.838

his table presents summary statistics of the cross-sectional distribution of the main variables used in this study

averaged over the whole sample period). For each variable, we show the mean, the 10% quantile, the 25% quantile,

he 50% quantile (median), the 75% quantile, the 90% quantile, the standard deviation and the skewness. A detailed

escription of the computation of these variables is given in the main text. The sample period is from January 1968

o December 2017.
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able 3: Average excess returns of quintile portfolios sorting on size and systematic tail risk mea-
ures

STC Quantile 1 2 3 4 5 5-1
Carhart
alpha

Size Quantile 1 0.8470 0.8576 0.8799 0.9455 1.0167 0.1697 0.2139
(3.2317) (3.1297) (3.0992) (3.0260) (2.8353) (0.9297) (1.0872)

2 0.8210 0.9301 0.9716 0.8425 0.9604 0.1394 0.2212
(3.7513) (3.9232) (3.6504) (2.9447) (2.9514) (0.7857) (1.3880)

3 0.7084 0.8492 0.8547 0.9283 0.8660 0.1576 0.2475
(3.3809) (3.7549) (3.5241) (3.4681) (2.9620) (0.9621) (1.6864)

4 0.7208 0.8563 0.7972 0.7004 0.7416 0.0208 0.0879
(3.6108) (4.0997) (3.4400) (2.8509) (2.7829) (0.1406) (0.6332)

5 0.6523 0.6375 0.6338 0.5977 0.3415 -0.3107 -0.2164
(3.9079) (3.5000) (3.4135) (3.1249) (1.5498) (-2.434) (-1.544)

S̃TC Quantile 1 2 3 4 5 5-1
Carhart
alpha

Size Quantile 1 0.8432 0.8769 0.9866 1.0145 0.8960 0.0528 0.0681
(3.6975) (3.5232) (3.4098) (3.0072) (2.2207) (0.2078) (0.3012)

2 0.8263 0.9343 0.9447 0.9375 0.8561 0.0299 0.0267
(4.1929) (4.2278) (3.7082) (3.2439) (2.2306) (0.1109) (0.1359)

3 0.7494 0.8698 0.8847 0.8976 0.7932 0.0438 0.1023
(4.1423) (4.2438) (3.6974) (3.3220) (2.1978) (0.1601) (0.5421)

4 0.6953 0.7982 0.8878 0.8029 0.6181 -0.0772 -0.0624
(3.9921) (4.1213) (4.1806) (3.1645) (1.8693) (-0.323) (-0.354)

5 0.5557 0.6541 0.6404 0.4771 0.3806 -0.1750 -0.1769
(3.7751) (3.9435) (3.5918) (2.2876) (1.3394) (-0.769) (-0.992)

his table shows the average excess returns of 25 portfolios sorted on size and a systematic tail risk measures. Size

f a stock is the natural logarithm of its market capitalization at the end of the previous month. Systematic tail risk

easures are calculated using the last 5 year data. The second row in each size quintile gives the value of the Newey

nd West (1987) t-statistics (in brackets) for the returns on the corresponding first row. The last two columns are

he average excess return of the long-short strategy which buys quintile 5 and sells quintile 1 of the tail risk within

ach size quintile, and its alphas in Carhart (1997) four factor models. The sample period is from January 1968 to

ecember 2017.
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Table 4: Cross-sectional analysis: Systematic tail risk measures at 5 percent tail threshold

Model I II III IV V VI

Intercept 0.0109 0.0336 0.0526 0.0564 0.0537 0.0531
(5.0756) (3.0578) (7.5037) (8.0563) (7.7234) (7.7155)

β -0.0028 0.0003 -0.0002 -0.0011 -0.0005 -0.0005
(-1.6153) (0.1261) (-0.0918) (-0.551) (-0.2890) (-0.2442)

Size -0.0014 -0.0025 -0.0027 -0.0025 -0.0025
(-2.6005) (-6.9187) (-7.553) (-7.1730) (-7.2823)

B/M 0.0015 0.0007 0.0007 0.0007 0.0006
(3.4958) (1.5901) (1.5701) (1.5667) (1.5524)

Momentum 0.0064 0.0064 0.0064 0.0066
(4.2703) (4.3553) (4.3435) (4.5439)

Illiquidity 0.0005 0.0004 0.0004 0.0004
(4.4111) (4.3608) (4.3697) (4.3132)

Real Vol -0.1799 -0.1666 -0.1735 -0.4585
(-3.7462) (-3.482) (-3.6470) (-5.7506)

Coskewness 0.0003 0.0021 0.0000 -0.0002
(0.0943) (0.7157) (0.0038) (-0.0699)

Cokurtosis 0.0031 0.0027 0.0032 0.0032
(5.0151) (4.4730) (5.4008) (5.3732)

STC 0.0132
(4.3307)

S̃TC 0.0004
(0.2747)

VaR 0.2148
(3.4807)

his table shows the Fama and MacBeth (1973) average risk premiums of canonical risk measures and of the

ystematic tail risk measures calculated at 5 percent tail threshold, along with their corresponding Newey and West

1987) t-statistics (in brackets). In each cross-sectional regression, monthly excess return of a stock is regressed against

ts risk measures of CAPM beta, Size, Book-to-Market, Momentum, Illiquidity, Volatility, Coskewness, Cokurtosis

nd the tail risk measures proposed in this paper. The sample period is from January 1968 to December 2017.
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Table 5: Cross-sectional analysis: systematic tail risk measures at 1% and 10% tail thresholds

1% tail quantile 10% tail quantile

Model IV V VI IV V VI

Intercept 0.0535 0.0531 0.0522 0.0599 0.0542 0.0541
(7.7862) (7.7165) (7.6769) (8.3875) (7.7477) (7.8525)

Beta -0.0004 -0.0003 -0.0005 -0.0022 -0.0021 -0.0005
(-0.186) (-0.148) (-0.2306) (-1.106) (-1.164) (-0.2298)

Size -0.0025 -0.0025 -0.0025 -0.0029 -0.0026 -0.0026
(-7.227) (-7.147) (-7.2085) (-7.929) (-7.354) (-7.3931)

B/M 0.0007 0.0007 0.0007 0.0006 0.0007 0.0006
(1.6114) (1.6100) (1.5648) (1.4704) (1.5543) (1.5131)

Momentum 0.0064 0.0064 0.0066 0.0066 0.0065 0.0066
(4.2654) (4.2903) (4.6740) (4.5233) (4.4243) (4.4349)

Illiquidity 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
(4.4207) (4.4256) (4.3633) (4.3115) (4.3369) (4.3293)

Real Vol -0.1737 -0.1741 -0.3509 -0.1558 -0.1748 -0.4414
(-3.621) (-3.656) (-4.2325) (-3.272) (-3.674) (-6.1987)

Coskewness 0.0010 0.0002 0.0000 0.0029 0.0012 -0.0008
(0.3384) (0.0709) (0.0020) (1.0130) (0.4125) (-0.2602)

Cokurtosis 0.0029 0.0031 0.0032 0.0022 0.0032 0.0032
(4.9736) (5.2985) (5.3638) (3.6302) (5.3770) (5.3685)

STC 0.0017 0.0252
(2.0131) (7.1804)

S̃TC -0.0001 0.0031
(-0.365) (1.9908)

VaR 0.1083 0.259
(2.0441) (3.7080)

his table shows the Fama and MacBeth (1973) average risk premiums of canonical risk measures and of the

ystematic tail risk measures calculated at 1 percent and 10 percent tail thresholds, along with their corresponding

ewey and West (1987) t-statistics (in brackets). In each cross-sectional regression, monthly excess return of a

tock is regressed against its risk measures of CAPM beta, Size, Book-to-Market, Momentum, Illiquidity, Volatility,

oskewness, Cokurtosis and the tail risk measures proposed in this paper. The sample period is from January 1968

o December 2017.
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. Appendix

.1. Proofs

Proof of Proposition 1:

y the definition (4) of STCi = pi(α, α) and

xim = Pr(T{i,m}) = Pr
{
Xi ≤ F−1

i (α), Xm ≤ F−1
m (α)

}
,

e obtain:

lim
α→0

pi(α, α) = lim
α→0

xim/α− α

1− α
=

limα→0(xim/α− α)

limα→0(1− α)
= lim

α→0

xim

α
= λL

i ,

here,

λL
i = lim

α→0
Pr

{
Xi ≤ F−1

i (α)|Xm ≤ F−1
m (α)

}
.

Proof of Proposition 2:

As we have shown in Proposition 1,

lim
α→0

pi(α, α) = λL
i = lim

α→0
Pr

{
Xi ≤ F−1

i (α)|Xm ≤ F−1
m (α)

}
.

On the other hand, Chabi-Yo, Ruenzi, and Weigert (2018) show that (under weak

ssumptions) stocks with high λL
i earn higher average returns than stocks with low

L
i . This completes the proof.

.2. Scaling

Our tail risk measure (4) depends on the quantile of market returns and the quan-

ile of asset returns. Precise estimation of quantiles for small nominal probabilities

s inherently difficult due to the fact that, by the definition of extreme events, only

few observations fall into the extreme tails. This problem is exacerbated as the
36
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omputation of the probability xim of the joint tail T{i,m} relies on the correct esti-

ation of both quantiles. Fortunately, it can be elegantly circumvented by relying

n previous work on power law characteristics of joint tails (e.g., Ledford and Tawn,

996, Coles, Heffernan, and Tawn, 1999, Polanski and Stoja, 2014 and Polanski and

toja, 2017). These authors prove theoretically and show empirically that power law

pplies not only to the univariate tails of returns distribution but also to the joint

ails. We observe the same regularity in our data, which implies that we can reliably

stimate the probability xim of the joint tail T{i,m} for relatively high values of αm

nd αi and then, scale the estimates down to obtain this probability for lower values

f those alphas. Specifically, in our context, the power law takes the form (see also

abaix, 2009),

xim = Pr
(
T{i,m}

)
∼ (

√
(Qαm

m )2 + (Qαi
i )2)k (11)

here k is the scaling exponent and
√

(Qαm
m )2 + (Qαi

i )2 is the length of the line joining

he origin of the axes with the upper right corner of the joint tail T{i,m} (see Figure

).

For small values of αm and αi the probability xim of the joint tail T{i,m} can be

hen obtained from the regression,

lnxim = const+ (k/2) ln
(
(Qαm

m )2 + (Qαi
i )2

)
(12)

fter estimating Qαm
m and Qαi

i . In Figure 5, we illustrate the close correspondence of

he fitted and “actual” values of xim for a number of randomly-selected stocks from

he sample of stocks listed in the NYSE, AMEX and NASDAQ markets.
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