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Abstract 

This study examines the predictive power of oil shocks for the green bond markets. In line with 

this aim, we investigated the extent to which oil shocks could be used to accurately make in- 

and out-of-sample forecasts for green bond returns. Three striking findings emanated from our 

results: First, the three types of oil shock are reliable predictors for green bond indices. Second, 

the performances of the predictive models were consistent across the different forecasting 

horizons (i.e. H=1 to H=24). Third, our findings were sensitive to classifying the dataset into 

pre-COVID and COVID eras. For instance, the results confirmed that the predictive power of 

oil shocks declined during the crisis period. We also discuss some policy implications of this 

study’s findings. 

 

Keywords: Oil shocks; green bonds; predictive model. 
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1. Introduction 

Growing concerns over climate change have shifted the attention of policymakers and 

investors towards environmentally friendly investments. Consequently, the global issuance of 

green investment bonds reached the substantial milestone of a trillion US dollars in 2020, and 

it is further anticipated to reach $5 trillion annually by 2025. This means accelerating capital 

allocation for sustainable agriculture, clean energy, green transport, resilient infrastructure, and 

so on across 62 developed and emerging economies. However, investment in green bonds in 

particular has gained significant prominence since its introduction in 2007 by the European 

Investment Bank (EIB) as part of the transition to become more climate-resilient. Since 2015, 

green bond issuance has grown considerably from $46.1 billion to $354.2 billion in 2021, 

which was around 37% higher than in 2020. For instance, according to Sustainable Bond 

Insight (2021), the European financial market is the leading player with a 48.72% stake in the 

global issuance of green bonds, followed by the United States with 35.3%, Japan with 3.41%, 

the United Kingdom with 3.03%, Sweden with 2.02%, Switzerland with 0.45%, Norway with 

0.36%, and New Zealand with 0.34%. These countries collectively issue around 93% of the 

world’s green bonds. This tremendous growth in green bond issuance is accompanied by an 

increasing popularity among investors. For example, according to a survey by the Climate 

Bond Initiative (2021), market sentiment for green bonds is strengthening, and the green 

investment trend is set to accelerate, with it likely reaching the $1 trillion milestone by end of 

2022.2 Similarly, a survey by Morgan Stanley (2016) found that 55% of investors were 

interested in sustainable investments, with 31% of investors viewing it as a virtuous investment 

approach for the future. 

                                                           
2 These statistics are sourced from https://www.climatebonds.net/ 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

https://www.climatebonds.net/


Kilian (2009) identified oil demand and supply shocks using structural VAR on the data 

of oil shipping prices and production representing oil demand and supply, respectively. Later, 

Kilian and Park (2009) extended this work by examining the effect of different shocks on US 

equity market. Their results highlight low variation in equity returns (not greater than 2%) 

driven by the residuals in oil prices which are neither related to supply nor associated with the 

aggregate demand of oil. However, this framework inherent a weakness that the data used in 

SVAR is required to have correlation with the contemporaneous or future oil price changes in 

order to identify shocks. For example, according to Kilian (2009), the identified demand and 

supply shocks explain only 4% contemporaneous variations in oil prices from 1986 to 2011. 

Remaining variations in oil prices are explained as 19% by the SVAR whereas 77% by the 

residuals as classified by the precautionary demand shocks. However, there is no way to 

determine if changes in the precautionary demand shocks are due to expectations of changes 

in demand or by the concerns over supply. For instance, escalating oil prices due to an 

increasing probability of supply constraint which never happens will not be recognized by the 

VAR. Similarly, increasing oil prices due to increase in demand which is not mirrored in high 

shipping prices will not be reflected. Both these changes are recognized as precautionary 

demand shocks although they would have different implications for economic output and 

aggregate equity returns. 

This limitation therefore, required an identification technique relying upon the forward 

looking prices of traded assets to avoid such issues. Ready (2018) define demand shocks as 

portion of the contemporaneous returns of a global index of oil producing companies which 

are orthogonal to the unexpected changes in log values of VIX which is considered as a proxy 

of aggregate changes in discount rates of market, driven by the changing attitude towards risk. 

Supply shocks are estimated as the portion of contemporaneous changes in oil prices which are 

orthogonal to demand shocks along with innovations in VIX. The innovations to VIX (proxy 
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to risk shocks), supply shocks and demand shocks tend to be orthogonal and account for all 

variations in oil prices. This extension by Ready (2018) resulted in almost entire variations in 

the oil prices are captured by supply shocks (78%) and demand shocks (21%) due to very low 

correlation of VIX with the oil prices. 

Since there is limited literature about the connection between oil shocks and green 

bonds, it is not clear if oil shocks trigger changes in the GBM and therefore carry useful 

information for predicting future returns in the GBM. Thus, examining the consequences of oil 

shocks (i.e. demand, supply, and risk shocks) to predict green bond returns is important for 

helping investors to assess the risk and return behaviour of the green bonds market. The goal 

of this paper is therefore to investigate the predictability of green bond returns using oil shocks, 

which were extracted using the methodology proposed by Ready (2018). Hence, we aimed to 

answer the following questions: First, can oil shocks, based on international oil prices, predict 

green bond returns? Second, how does this predictability vary across different sample markets, 

given that international oil shocks may have different impacts on the green bonds of different 

countries? Finally, does the predictability vary between the normal and COVID-19 crisis 

periods? These testable questions, if answered, should help investors in understanding the 

behaviour of the GBM in the presence of oil shocks, since the effect that the international oil 

market has on the world economy is undeniable. With such knowledge, investors will be able 

to better balance their portfolios of green bonds from different countries. Our results highlight 

the significant predictability of green bond returns based on oil market shocks. Both Japanese 

and US green bond returns are more accurately forecasted, irrespective of investment horizon 

(i.e. H1 to H24). On the contrary, a supply shock is not effective for forecasting both in- and 

out-of-sample returns for New Zealand’s GBM, whereas it can be used to accurately predict 

returns for green bonds in Denmark, Europe, Japan, Norway, Sweden, Switzerland, the UK, 

and the US. However, during the COVID-19 crisis period, supply shock weakly forecasts only 
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the in-sample, extremely long-term (i.e. 24 months) returns of Swedish green bonds, and it fails 

to forecast the short- and medium-term returns (i.e. less than a month to less than 12 months). 

In contrast, supply shocks only forecast the in-sample returns for Switzerland’s green bond 

during the COVID-19 pandemic. The CW statistics highlight that oil shocks do not accurately 

forecast both the in- and out-of-sample returns that are specific to Danish and European GBMs 

during the COVID-19 period.  

The remainder of this paper is presented as follows: Section 2 explains the estimation 

techniques, while Section 3 discusses the data source and preliminary results. Section 4 

then explains our findings before Section 5 finally concludes our work. 

2. Literature review 

Investment in the green bond markets (GBMs) has grown in both scope and size over 

recent years, with it showing signs of co-movement with other general asset classes (Pham & 

Huynh, 2020) and the energy market (Reboredo, 2018) in particular. For instance, Lee, Lee, 

and Li (2020) employed causality in quantiles and reported significant bidirectional causality 

from the oil market to the MSCI green bond index at lower quantiles, indicating that the oil 

and green bond markets jointly influence each other. In contrast, Dutta, Jana, and Das (2020) 

argued that negative (positive) variations in the oil market cause a decrease (increase) in the 

incentives for green investment. In other work, Pham and Nguyen (2021) reported that the 

connection between oil market uncertainty and green bonds is both state-dependent and time-

varying. More specifically, throughout periods of low (high) uncertainty, the oil and green 

bond markets are weakly (strongly) linked, indicating that green bonds can be used to hedge 

against uncertainty in the oil market. A weak connection between the green bond and oil 

markets was also documented by Braga, Semmler, and Grass (2021), who stated that S&P 

Green Bonds are less affected by variations in oil prices, which means there are hedging and 
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diversification opportunities for investors. Similarly, Ferror, Shahzad, and Soriano (2021), 

meanwhile, found that the behaviour of the GBM is virtually unaffected by developments in 

oil prices.  Dutta, Douri, and Noor (2021) also reported similar results in that they found climate 

bonds to weakly correlate with crude oil prices, with the hedge ratio switching between positive 

and negative states for the climate bond and oil pairing, particularly during the COVID-19 

pandemic, indicating reduced risk reduction during the pandemic. More recently, Kanamura 

(2021) examined the relationships that S&P green bond indices, MSCI, and Solactive have 

with the oil market and reported that S&P green bonds and MSCI were positively associated 

with oil prices, whereas Solactive green bond prices showed a negative correlation with oil 

prices, similar to the traditional S&P bond index. 

The oil market has always received major attention as an economic indicator, thus 

highlighting the strong linkage of oil prices with other traded assets (i.e. commodities) (Chen 

& Rehman, 2021; Mensi et al., 2021), foreign currencies (Liu et al., 2020), Logistic industry 

(Maitra et al., 2021) and bonds (Kang, Ratti & Yoon, 2014). However, oil prices have 

experienced significant fluctuations over the past decades. For example, oil prices reached an 

all-time high in June 2008 of $140.5 per barrel, but that was followed by a decline of around 

70% in January 2009 to $40.1 per barrel. A second major decline in oil prices was observed in 

June 2014, when they fell from $105.2 per barrel to $33.6 per barrel by January 2016. The 

most recent decrease in oil prices started in December 2019 and lasted until April 2020, 

resulting in another 67% decline in oil prices (i.e. from $60.1 to $20.1 per barrel). However, 

each decline in oil prices is followed by a boom, indicating a significant increase in the demand 

for oil in the market. Excessive oil demand or supply can result in changes in oil prices, and 

these can be classified as demand shocks (i.e. demand driven) or supply shocks (i.e. supply 

driven). We follow the example of Ready (2018) in examining whether oil shocks are instigated 

by excessive demand or insufficient supply and whether these two different shocks have a 
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similar impact on green bond returns because an increase in the oil spot prices due to lower oil 

supply or higher oil demand may result in different shocks to the oil market (Kilian, 2008; 

Güntner, 2014). 

According to Henriques and Sadorsky (2008), oil price shocks do not have any 

significant effect on the returns of alternative energy stocks. However, on the contrary Kumar 

et al. (2012) report the presence of positive relationship between oil and alternative energy 

prices. According to Sadorsky (2012), stocks of clean energy firms are less correlated with the 

oil market. In terms of relationship between oil and clean energy stocks, Managi and Okimoto 

(2013) examine and report positive impact on clean energy stocks following structural breaks 

in 2007. In one of the comprehensive work on oil prices and South American countries, Apergis 

and Payne (2015) report that real oil prices have a positive effect on the consumption of 

renewable energy for eleven south American countries. Later, Reboredo et al. (2017) find weak 

relationship between the returns of renewable energy stock and oil in the short-run which 

however strengthens in the long-run. During the long-run period, increasing oil prices provides 

incentives to the renewable energy projects whereas decrease in oil prices negatively affects 

renewable energy companies. In one of the work examining relationship between oil and US 

market, Reboredo and Ugolini (2018) find that changes in the prices of new energy stocks in 

US are mostly attributable to oil prices changes. These findings are supported by Shah et al. 

(2018) that oil price shocks have a positive effect on investments in renewable energy in the 

US and Norway whereas little and negative effect in the UK.  

According to Kocaarslan and Soytas (2019), fluctuations in dollar affects the 

correlation between oil and clean energy prices. Likewise, Pham (2019) record heterogeneous 

responses of oil prices on clean energy stocks however, such effects depends on the energy 

sectors. Another work by Kyritsis and Serletis (2019) highlight that the renewable energy 

stocks exhibit resistance to uncertainty in oil prices. On the contrary, Dutta et al. (2020) find 
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that oil market volatility has a significant effect on green assets more than the fluctuations in 

prices of oil. In terms of diversification between oil and green bonds, Kanamura (2020) 

examines dynamic correlation between the prices of green bonds and oil and reports the 

presence of positive correlation between these two assets. However, disaggregating oil prices 

into supply and demand driven shocks, Zhao (2020) reports positive effect of oil supply shocks 

whereas negative effect of oil demand shocks on clean energy stock returns.  

Another recent work which examines the connectedness of green bonds market with oil 

shocks include Azhgaliyeva et al. (2022). The authors in this work use flow crude oil supply, 

flow crude oil demand and speculative demand shocks to examine their impact on the issuance 

of corporate green bonds. They report that though the issuance of corporate green bonds is 

positively affected by the oil flow supply and demand shocks, the impact by these shocks on 

the issuance of corporate green bonds is not significant. 

3. Methodology 

3.1 The Model 

As mentioned earlier, the aim of this study is to investigate the predictive potential of oil 

shocks for green bond returns. As such, we specify our predictive model in the form: 

𝑟𝑡 = 𝛼 + 𝛽 𝑠𝑡−1 + 𝜀𝑡 ,      (1) 

where r represents the return on green bonds, calculated as log (kt/kt-1), and K is the green 

bonds index, both at the aggregate and disaggregated level, while s is the measure of oil shocks. 

Thus, Equation 1 expresses a typical predictive model. Studies have shown that high frequency 

data can be susceptible to statistical problems, such as conditional heteroscedasticity, 

persistence, and endogeneity effects (Salisu et al., 2019; Isah and Raheem, 2019), and these 

can hinder the use of OLS models. However, Westerlund and Narayan (2015), hereinafter 
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referred to as WN, proposed that accounting for these features requires re-specifying Equation 

1 as follows: 

𝑟𝑡 = 𝛼 + 𝛽1𝑠𝑡−1 + 𝛽2(𝑠𝑡 − 𝛾𝑠𝑡−1) + 𝜀𝑡 ,    (2) 

where the first term (𝛽1𝑠𝑡−1) represents first order autocorrelation, while the second term, 

𝛽2(𝑠𝑡 − 𝛾𝑠𝑡−1), captures the persistence effect and the resulting endogeneity incorporated in 

the parameter. In order to test for persistence, Equation 3 is estimated using OLS: 

𝑠𝑡 = 𝛼 + 𝛽 𝑠𝑡−1 + 𝜇𝑡, where  𝜇𝑡~ 𝑁(0, 𝜎𝑣
2)    (3) 

Similarly, the conditional heteroscedasticity effect can be tested using the ARCH-LM test. WN 

argued that rather than using OLS, the feasible quasi-generalized least squares (FQGLS) 

technique is better because it has the ability to extract any information embedded in the 

conditional heteroscedasticity effect. FQGLS is based on the assumption that the error term in 

Equation 1 pursues an autoregressive conditional heteroskedastic (ARCH) structure of �̂�𝜀,𝑡
2 =

 𝜑 + ∑ 𝜑𝑖𝜀�̂�−1
2 ,𝑞

𝑖=1  such that the resulting �̂�𝜀,𝑡
2  can be used to weigh the predictive model. (See 

the work of Salisu et al. [2019] for detailed computational descriptions.) 

In this study, we go beyond using a bivariate predictive model to account for some important 

control variables, so we expanded Equation 2 to measure oil shocks. The resulting equation 

takes the form: 

𝑟𝑡 = 𝛼 + 𝛽1𝑠𝑡−1 + 𝛽2(𝑠𝑡 − 𝛾𝑠𝑡−1) + 𝛽3𝑈𝑡 + 𝜀𝑡 ,   (4) 

where U is the measure for oil shocks.  

2.2. Forecast Implementation and Evaluation 

The model is based on both in- and out-of-sample predictions. The out-of-sample 

prediction is structured for short- and long-run horizons. Although there is no conventional rule 
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for dichotomizing the data over two periods (i.e. in and out of the sample), we follow the 

existing literature in using 50% and 75%. The out-of-sample forecasting horizons are H = 1 (1 

month), 3 (3 months), 6 (6 months), 12 (12 months), and 24 (24 months). 

Model 1 is called a restricted model, and this is also the benchmark model. For completeness, 

two forms of the benchmark model are specified, namely autoregressive and historical average. 

Model 2 is an unrestricted model. The forecasting evaluation is based on three different 

measures, the test of Campbell and Thompson (2008), hereinafter referred to as the CT test; 

Theil’s U statistic; and the test of Clark and West (2007), hereinafter referred to as the CW test. 

The literature (Narayan and Gupta, 2015) reveals that Theil’s U statistic is calculated as the 

ratio of forecasting error of the unrestricted model to that of the restricted model. A Theil’s U 

with a value lower than unity implies that the unrestricted model has greater predictive power 

than the restricted model. 

 

The out-of-sample R2 (OOS_ R) statistic is considered in the CT test. It is computed as OOS_R 

= 1 - Theil’s U statistic {(𝑅𝑀𝑆�̂�2 𝑅𝑀𝑆�̂�1⁄ )}. The  𝑅𝑀𝑆�̂�2 𝑎𝑛𝑑 𝑅𝑀𝑆�̂�1 represent the root mean 

square error for models 2 and 1, respectively. A positive CT value indicates that model 2 

outperforms model 1 and vice-versa for a negative value. However, a shortcoming of the CT 

test is its inability to demonstrate the significance level.3 However, the CW test (Clark and 

West, 2007) allows checking the significance level of the CT value:4  

In order to estimate the CW value, we used the following equation: 

𝑓𝑡+𝑘 =  (𝑆𝑡+𝑘 − �̂�1𝑡,𝑡+𝑘)
2

− [(𝑆𝑡+𝑘 − �̂�2𝑡,𝑡+𝑘)
2

− (�̂�1𝑡,𝑡+𝑘 − �̂�2𝑡,𝑡+𝑘)
2

] ,   (5) 

                                                           
3 Because of the connection between Clark and West’s (2007) and Campbell and Thompson’s (2008) tests, as well as for better 

understanding, we do not present Campbell and Thompson’s (2008) test results. For instance, when the U statistic has a value 

less than 1, we mathematically expect that the Campbell and Thompson (2008) test would present a positive value and vice-

versa. 
4 Diebold and Mariano’s (1995) test used to be the most commonly employed test until recently, despite it being suitable for 

nested models only, whereas the CW test provides better results for nested models. 
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where the forecast period is denoted by k, and the squared error for the restricted model (i.e. 

model 1) is denoted by (𝑆𝑡+𝑘 − �̂�1𝑡,𝑡+𝑘)
2
, while (𝑆𝑡+𝑘 − �̂�2𝑡,𝑡+𝑘)

2
 is the squared error for the 

unrestricted model (i.e. model 2). Next, (�̂�1𝑡,𝑡+𝑘 − �̂�2𝑡,𝑡+𝑘)
2
 is the adjusted squared error due 

to the introduction of CW to correct for the noise associated with the larger model’s forecast. 

Hence, the average of the sample  𝑓𝑡+𝑘 is stated as  𝑅𝑀𝑆𝐸1 −  (𝑅𝑀𝑆𝐸2 − 𝑎𝑑𝑗. ), where each 

term is calculated as follows:  

 𝑅𝑀𝑆𝐸1 =  𝑃−1(𝑆𝑡+𝑘 − �̂�1𝑡+𝑘)
2
; 

𝑅𝑀𝑆𝐸2 =  𝑃−1 ∑(𝑆𝑡+𝑘 − �̂�2𝑡+𝑘)
2
; and 

Adj. = 𝑃−1 ∑(�̂�1𝑡+𝑘 − �̂�2𝑡+𝑘)
2
    (6) 

where the number of predictions used to calculate the averages is denoted by P.  

The term f̂t+k is regressed on a constant, and the resulting t-statistic for a zero coefficient is 

used to draw inferences, so we can investigate the relative forecasting performances of models 

1 and 2.  We tested the null hypothesis (H0) against the alternative hypothesis based on whether 

the t-statistic for a one-sided 0.10 test or a one-sided 0.05 test is greater than +1.286 or +1.645, 

respectively. 

2.3. Constructing Supply and Demand Shocks 

 We follow the example of Ready (2018) in building the oil demand and supply shocks. 

The orthogonal demand shocks 𝑑𝑡, supply shocks 𝑠𝑡, and risk shocks 𝑣𝑡 are defined for primary 

analysis as: 

𝑋𝑡 ≡ [

∆𝑝𝑡

𝑅𝑡
𝑃𝑟𝑜𝑑

𝜉𝑉𝐼𝑋,𝑡

] , 𝑍𝑡 ≡ [

𝑠𝑡

𝑑𝑡

𝑣𝑡

] , 𝐴 ≡ [
1 1 1
0 𝑎22 𝑎23

0 0 𝑎23

]   (7) 

The detected shocks from the observable factors are mapped by the matrix 𝐴, such that: 
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𝑋𝑡 = 𝐴𝑍𝑡      (8) 

To ensure orthogonality, 𝑎22, 𝑎23, 𝑎23 and 𝜎𝑠, 𝜎𝑑, 𝜎𝑣 satisfy: 

𝐴−1Σ𝑋(𝐴−1)𝑇 = [

𝜎𝑠
2 0 0

0 𝜎𝑑
2 0

0 0 𝜎𝑣
2

],    (9) 

where 𝜎𝑠, 𝜎𝑑 and 𝜎𝑣 are the identified shocks’ volatilities, while Σ𝑋 is the covariance 

matrix of the observable 𝑋𝑡. This is simply a renormalization of the standard orthogonalization 

used to define the structural shocks in an SVAR setting. It should be noted that despite the 

volatility shocks being normalised to one, the shocks are constrained to sum up to the total 

change in the price of oil.  

4. Data and Preliminary Analysis 

Our work employed daily data for nine green bond indices in New Zealand, the United 

Kingdom, the United States, Switzerland, Norway, Europe, Denmark, Japan, and Sweden. The 

returns for all these indices were calculated by taking the natural log of the two adjacent pricing 

levels. To construct oil shocks, we followed the example of Ready (2018), who introduced an 

innovative technique for classifying changes in oil prices as being supply-driven (i.e. supply 

shocks) or demand-driven (i.e. demand shocks).  We defined supply shocks as changes in the 

oil price that are orthogonal to the contemporaneous returns of oil-producing firms, with the 

forecasted values being categorized as “oil demand shocks”. To construct the series for oil 

supply and demand shocks, we used three variables, namely an index of oil-producing 

companies, a measure of oil price changes, and a proxy for changes in expected returns. For 

the oil-producing companies, we used the World Integrated Oil and Gas Producer Index, which 

comprises large, publically traded oil-producing companies that represent the majority of the 

global oil industry. Next, the one-month returns on the second-nearest maturity NYMEX Light 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Sweet Crude Oil contract were used to identify unexpected changes to oil prices. Innovations 

to the VIX index were used to proxy changes in the discount rate. We calculated the VIX index 

from the options date, so it provides a measure of the risk-neutral expectation of volatility. The 

variance risk premium estimated from the VIX index definitely predicts stock returns, 

indicating that it may be a reasonable proxy for changes in risk, as suggested by Bollerslev, 

Tauchen, and Zhou (2009). In order to segregate unexpected changes in the VIX, we estimated 

the ARMA(1,1), while the residuals from this process were used as innovations 𝜉𝑉𝐼𝑋.  

Data for all the green bond indices, oil prices, the World Integrated Oil and Gas 

Producer Index (WIOGPI), and West Texas Intermediate (WTI) index for the period from 

December 2, 2008 to July 11, 2021 were obtained from the Thomson Reuters Datastream. 

Table 1 presents the descriptive statistics for the nine green bond indices and the 

extracted oil shocks. Panel A of Table 1, meanwhile, highlights that all green bond indices, 

other than Switzerland, provided positive average daily returns. The highest average daily 

returns of 0.009 percent were earned by the European green bonds, followed by the Japanese 

and Norwegian green bonds (0.008 percent each), whereas the lowest average daily returns of 

0.003 percent were observed for the Swedish green bonds. The maximum variance among the 

green bond indices was seen for Japanese green bonds (0.69 percent), followed by the New 

Zealand (0.58 percent) and UK (0.56 percent) bonds, while both the Danish and European 

green bond indices both showed the lowest variance (i.e. standard deviation) of 0.35 percent. 

Panel B of Table 1 shows that only the supply shocks exhibit positive values, while risk shocks 

have a maximum variance of 7.51 percent. Table 1 also presents the stochastic features of our 

sampled series. We applied the Augmented Dickey-Fuller (ADF) unit root test to reject the null 

hypothesis of a unit root being present for all series. Panel C of Table 1 provides evidence of 

endogeneity in the oil supply, oil demand, and risk series. We also witnessed the existence of 

serial dependence and conditional heteroscedasticity, regardless of the selected lag order, so 
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the results validate the decision to use the generalized adjusted OLS for predicting green bond 

returns. 

Table 1: Preliminary Analysis 

 Mean Std. Dev Unit Root 

Stock Returns Level 1st Diff 

Panel A: Descriptive Statistics   

Denmark GBs 0.00004 0.0035 -52.228*** - 

Euro GBs 0.00009 0.0035 -52.195*** - 

Japan GBs 0.00008 0.0069 -58.189*** - 

New Zealand GBs 0.00005 0.0058 -61.064*** - 

Norway GBs 0.00008 0.0054 -57.678*** - 

Sweden GBs 0.00003 0.0041 -59.084*** - 

Switzerland GBs -0.00005 0.0055 -40.389*** - 

UK GBs 0.00005 0.0056 -54.696*** - 

US GBs 0.00004 0.0052 -57.398*** - 

Panel B: Oil Shock 

Supply shocks 0.0006 0.0272 -56.334*** - 

Demand shocks -0.0007 0.0149 -19.822*** - 

Risk shocks -0.0004 0.0751 -56.524*** - 

Panel C: Autocorrelation and Heteroscedasticity 

 Q-Stat Q2-Stat ARCH-LM 

 K=10 K=20 K=10 K=20 K=10 K=20 

Supply shocks 31.65*** 51.029*** 2022.0*** 3043.6*** 120.3*** 76.96*** 

Demand shocks 81.15*** 111.7*** 1617.1*** 2158.1*** 114.1*** 72.05*** 

Risk shocks 20.98*** 32.64** 183.3*** 186.5*** 13.04*** 6.606*** 

5. Analysis and Discussion 

 

We started our estimations by using a bias-adjusted measure of oil shocks for a single 

factor model, as shown in Table 2. Overall, we found evidence of predictability, irrespective 

of the nature of oil shocks (i.e. whether they were due to demand, supply, or risk) for all green 

bonds other than the UK’s green bonds. Demand shocks predict all green bond returns, whereas 
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supply shocks only explain variation in the returns of green bonds in Europe, Switzerland, 

Norway, Denmark, Sweden, New Zealand, Japan, and the US. The results are similar for the 

case of risk shocks, although the signs (directions) of the coefficients reveal a different story. 

The relationship between oil supply and demand (risk) shocks and the green bond returns for 

Denmark, Europe, Japan, Switzerland, and the US is positive (negative). Yet again, UK green 

bonds behave differently in that they are negatively associated only with demand shocks but 

positively associated with both supply and risk shocks. It is worth noting that when demand 

and supply shocks are negatively associated with green bond returns, the oil risk maintains a 

positive relationship with the same green bonds, and vice versa. In other words, the type of the 

oil shock (i.e. demand, supply, or risk) seems to be an important consideration when predicting 

green bonds returns. Overall, our results reveal an asymmetric relationship between oil shocks 

and green bond returns.  

Table 2: Predictive Model 

Indices Demand shocks Supply shocks Risk shocks 

Denmark GBs 
0.0134*** 

(0.004) 

0.0081*** 

(0.0023) 

-0.0028*** 

(0.0008) 

Euro GBs 
0.0136*** 

(0.0041) 

0.0079*** 

(0.0023) 

-0.0027*** 

(0.0008) 

Japan GBs 
0.1730*** 

(0.0074) 

0.0574*** 

(0.0043) 

-0.0246*** 

(0.0015) 

New Zealand GBs 
-0.0695*** 

(0.0067) 

-0.0194*** 

(0.0037) 

0.0093*** 

(0.0013) 

Norway GBs 
-0.1295*** 

(0.0059) 

-0.0477*** 

(0.0034) 

0.0132*** 

(0.0012) 

Sweden GBs 
-0.0695*** 

(0.0046) 

-0.0196*** 

(0.0026) 

0.0077*** 

(0.0009) 

Switzerland GBs 
0.0654*** 

(0.0063) 

0.0219*** 

(0.0036) 

-0.0107*** 

(0.0012) 
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UK GBs 
-0.0123** 

(0.0065) 

0.0016 

(0.0035) 

0.0020 

(0.0013) 

US GBs 
0.1082*** 

(0.0057) 

0.0346*** 

(0.0032) 

-0.0087*** 

(0.0012) 

Note: ***, ** and * significance at 1, 5, and 10% respectively. Standard error values are in parenthesis. 

 

The results for in- and out-of-sample forecasting are presented in Tables 3–6. 

In particular, Tables 3 and 4 present forecasts with individual oil shocks for the full 

sample period (December 2, 2008 to July 11, 2021), whereas the latter tables (5–6) 

show the forecast for just the COVID-19 pandemic period (December 2, 2020 to July 

11, 2021). We start by presenting the Theil’s U statistics in Table 3, with these 

highlighting that the in-sample forecasts are very close for periods less than a month, 

and for few cases, horizons of less than three months. This holds regardless of the type 

of oil shock being considered. A Theil’s U statistic value less than 1 indicates that oil 

shocks can accurately predict green bond returns. Table 3 presents further evidence for 

the significance of Theil’s U for forecasting all green bonds based on oil shocks. More 

specifically, the Theil’s U statistics are less than 1 for each case, regardless of the type 

of oil shock or investment horizon. Notably, we find that both the Japanese and US 

green bonds are more accurately predicted by all three shocks. The predictability of 

these bond markets is greatest under all horizons, right up to 24 months. We further 

note that the predictability is greater under short-term horizons, with the Theil’s U 

increasing slightly as the horizon increases. Finally, when comparing between oil 

shocks, we find evidence to indicate that demand shocks are more effective for 

forecasting GBM returns for both in and out of the sample. 
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Table 3: Single Predictor: Theil’s U-statistics 

 Supply Demand 

  Out- Sample  Out- Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.99

33 

0.99

34 

0.99

73 

0.99

46 

0.99

55 

0.99

60 

0.99

19 

0.99

19 

0.99

26 

0.99

32 

0.99

36 

0.99

44 

Euro 

GBs 

0.99

32 

0.99

32 

0.99

36 

0.99

45 

0.99

54 

0.99

59 

0.99

20 

0.99

20 

0.99

28 

0.99

33 

0.99

37 

0.99

45 

Japan 

GBs 

0.94

87 

0.94

89 

0.94

90 

0.95

05 

0.95

09 

0.95

27 

0.86

94 

0.86

93 

0.86

92 

0.87

01 

0.87

13 

0.87

22 

New 

Zealand 

GBs 

0.99

87 

0.99

86 

0.99

86 

0.99

88 

0.99

90 

0.99

89 

0.98

42 

0.98

43 

0.98

45 

0.98

44 

0.98

44 

0.98

49 

Norway 

GBs 

0.97

46 

0.97

46 

0.97

40 

0.97

53 

0.97

39 

0.97

41 

0.97

53 

0.97

42 

0.97

47 

0.97

33 

0.97

43 

0.97

46 

Sweden 

GBs 

0.98

75 

0.98

56 

0.98

55 

0.98

67 

0.98

62 

0.98

81 

0.96

19 

0.96

21 

0.96

17 

0.96

55 

0.96

61 

0.96

76 

Switzerl

and GBs 

0.98

51 

0.98

51 

0.98

54 

0.98

62 

0.98

72 

0.98

78 

0.97

01 

0.97

01 

0.97

07 

0.97

12 

0.97

17 

0.97

24 

UK GBs 0.98

99 

0.99

00 

0.99

03 

0.99

00 

0.99

08 

0.99

15 

0.98

54 

0.98

54 

0.98

55 

0.98

52 

0.98

58 

0.98

65 

US GBs 0.94

25 

0.94

28 

0.94

27 

0.94

32 

0.94

32 

0.94

47 

0.85

13 

0.85

13 

0.85

06 

0.85

16 

0.85

19 

0.85

35 

 

 Risk 

  Out- Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.99

02 

0.99

02 

0.99

08 

0.99

08 

0.99

07 

0.99

10 

Euro 

GBs 

0.99

03 

0.99

03 

0.99

09 

0.99

09 

0.99

08 

0.99

10 

Japan 

GBs 

0.93

76 

0.93

76 

0.93

75 

0.93

78 

0.93

9 

0.94

08 

New 

Zealand 

GBs 

0.99

07 

0.99

08 

0.99

07 

0.99

04 

0.99

03 

0.99

10 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Norway 

GBs 

0.99

13 

0.99

12 

0.99

07 

0.99

15 

0.99

18 

0.99

20 

Sweden 

GBs 

0.99

05 

0.99

06 

0.99

04 

0.99

15 

0.99

22 

0.99

27 

Switzerl

and GBs 

0.97

93 

0.97

93 

0.97

98 

0.98

01 

0.97

98 

0.98

03 

UK GBs 0.99

65 

0.99

65 

0.99

65 

0.99

64 

0.99

67 

0.99

65 

US GBs 0.96

37 

0.96

36 

0.96

32 

0.96

36 

0.96

43 

0.96

61 

Note: U-statistics less than 1 demonstrate that measures of oil shocks are reliable predictors of GBM returns.
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Next, we report the results for the pairwise measure of prediction performance 

evaluation in Table 4. The motivation for this analysis was the potential for extending the 

prediction model by again incorporating oil shocks into the estimation model. The CW test 

measures the level of statistical significance, with a value above 2.5 indicating statistical 

significance at the 5 percent level. Interestingly, the CW statistics are above 2.5 in most cases. 

In particular, both demand and risk shocks seem to be more accurate for forecasting the green 

bond returns of all sample indices, but the results differ for supply shocks. Supply shocks are 

the only factor that fails to predict both in- and out-of-sample returns for New Zealand’s green 

bonds, while its predictive power is limited for the green bonds of Denmark, Europe, and the 

United Kingdom. In contrast, an evaluation based on supply shocks shows superior results 

when forecasting the returns of Japanese, Swedish, and American green bonds. In other words, 

the CW statistics are higher, indicating that supply shocks more accurately predict the returns 

of green bonds in Japan, Sweden, and the US, irrespective of the horizon. These findings 

resemble the results with demand and risk shocks, with these showing superior prediction for 

Japanese, Swedish, and American green bonds compared to those of Norway and the UK at 

both short- and long-term investment horizons. More specifically, the estimates for all green 

bonds are greater than the threshold of 2.5, and this persists for both demand shocks and risk 

shocks. This predictability is also more apparent in the case of Japanese and American green 

bonds. Overall, the CW statistics are higher for the Japanese GBM, irrespective of the kind of 

oil shock and investment horizon, indicating that oil shocks are more efficient for forecasting 

Japanese green bond returns at both short- and long-term investment horizons. Notably, this 

observation is not just specific to the CW model—it happens for the Theil’s U model as well 

(see Table 3).  

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Table 4: Single Predictor: CW statistics 

 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

2.37

6 

2.04

9 

2.32

8 

2.19

3 

2.37

6 

1.99

6 

5.39

7 

5.39

7 

5.38

1 

5.27

0 

5.35

8 

5.24

9 

Euro 

GBs 

2.38

8 

2.38

8 

2.34

2 

2.20

7 

2.06

3 

2.00

8 

5.34

0 

5.34

1 

5.20

2 

5.22

6 

5.31

9 

5.33

9 

Japan 

GBs 

7.10

1 

7.09

2 

7.11

2 

7.10

4 

7.13

5 

7.09

0 

10.2

68 

10.2

74 

10.3

03 

10.3

24 

10.2

94 

10.2

84 

New 

Zealand 

GBs 

1.13

5 

1.07

5 

1.17

2 

1.16

3 

1.14

1 

1.09

4 

5.41

5 

5.44

8 

5.49

9 

5.64

7 

5.70

2 

5.50

5 

Norway 

GBs 

4.94

0 

4.93

5 

5.05

0 

5.06

0 

5.29

3 

5.44

6 

4.65

7 

4.66

6 

4.83

5 

4.72

5 

4.68

8 

4.70

1 

Sweden 

GBs 

6.43

9 

6.47

0 

6.51

0 

6.24

8 

6.45

1 

6.06

9 

4.95

5 

4.92

0 

4.99

1 

4.72

5 

4.61

4 

4.54

6 

Switzerl

and GBs 

4.73

7 

4.52

4 

4.70

1 

4.64

2 

4.74

1 

4.47

0 

7.70

2 

7.69

9 

7.63

7 

7.60

6 

7.71

6 

7.70

3 

UK GBs 2.20

8 

2.20

6 

2.18

3 

2.24

0 

2.19

2 

2.14

6 

3.21

5 

3.22

0 

3.24

8 

3.31

6 

3.19

4 

3.04

7 

US GBs 5.74

7 

5.90

2 

5.77

6 

5.83

8 

5.74

6 

5.89

7 

8.83

0 

8.83

1 

8.90

6 

8.91

1 

8.92

1 

8.80

2 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

3.39

8 

3.39

8 

3.24

1 

3.15

2 

3.09

5 

2.94

6 

Euro 

GBs 

3.36

9 

3.36

9 

3.21

0 

3.12

7 

3.06

7 

2.91

9 

Japan 

GBs 

11.5

12 

11.5

18 

11.5

61 

11.5

83 

11.5

86 

11.6

11 

New 

Zealand 

GBs 

5.35

7 

5.34

2 

5.37

8 

5.43

9 

5.50

7 

5.49

2 
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Norway 

GBs 

6.19

0 

6.19

2 

6.34

3 

6.20

1 

6.38

3 

6.54

1 

Sweden 

GBs 

9.50

9 

9.49

0 

9.57

3 

9.05

5 

9.15

1 

9.10

0 

Switzerl

and GBs 

6.98

7 

6.98

3 

6.93

0 

6.90

5 

6.89

0 

6.84

9 

UK GBs 4.83

7 

4.83

9 

4.83

1 

4.91

0 

4.85

3 

4.76

7 

US GBs 11.7

0 

11.7

01 

11.7

75 

11.8

19 

11.8

89 

11.9

09 

Notes: CW measures the level of statistical significance. Values above 2.5 imply stat. significance at 5%. 
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Next, we continued with our forecasting estimation for the sub-period covering the 

COVID-19 pandemic. Tables 5–6 present the predictive abilities of the Theil’s U and CW 

forecasting models during distressed market conditions. The results from the Theil’s U model 

highlight how oil market shocks can efficiently predict green bond returns both in and out of 

sample and for all investment horizons. A U statistic less than 1 indicates that oil shocks can 

predict GBM returns, so supply shocks predict all GBMs irrespective of investment horizon, 

with the exception of the UK GBM during the COVID-19 pandemic. However, the predictive 

power of supply shocks differs across investment horizons. In the short run, the U statistics are 

above the threshold of 1, indicating that supply shocks are inefficient for forecasting the UK’s 

GBM under a short-term investment horizon (i.e. H=1 and H=3). In contrast, supply shocks 

present superior results when forecasting the returns of Japanese and Norwegian green bonds, 

suggesting that supply shocks can be used to forecast green bond returns during distressed 

market conditions. Likewise, using demand shocks to forecast green bond returns yields 

findings that resemble those when using supply shocks to forecast green bond returns. We can 

also see how demand shocks accurately predicted green bond returns during the COVID-19 

period. This prediction is more obvious for the Japanese and Norwegian green bonds at both 

in- and out-of-sample horizons, as well as for the US GBM at out-of-sample horizons. The out-

of-sample findings are specific to short- and intermediate-term periods of up to 12 months, 

indicating that variations in oil shocks can forecast green bond returns during inefficient market 

conditions. Likewise, the risk-based model is also important for forecasting GBMs. Values of 

less than 1 show that risk shocks are a good predictor of green bond returns during the COVID-

19 pandemic. When comparing between green bonds, we found that risk shocks are more 

crucial in providing accurate forecasts, because the Theil U’s statistics are relatively lower in 

cases of the Japanese, New Zealand, and Norwegian green bond markets at both in- and out-

of-sample investment horizons. Overall, we found that all three forecasting models are 
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relatively efficient at forecasting the returns of Japanese and Norwegian GBMs during the 

COVID-19 period. 
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Table 5: Single Predictor: Theil’s U statistics (COVID-19) 

 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.98

90 

0.97

93 

0.980

6 

0.98

26 

0.98

40 

0.98

51 

0.99

54 

0.98

77 

0.98

81 

0.99

09 

0.99

28 

0.99

42 

Euro 

GBs 

0.99

12 

0.99

31 

0.991

3 

0.99

15 

0.99

12 

0.99

11 

0.99

67 

0.99

18 

0.99

22 

0.99

23 

0.99

1 

0.99

22 

Japan 

GBs 

0.95

87 

0.95

70 

0.956

2 

0.95

10 

0.95

10 

0.95

39 

0.90

98 

0.90

42 

0.90

94 

0.89

32 

0.89

59 

0.90

30 

New 

Zealand 

GBs 

0.99

31 

0.99

80 

0.998

2 

0.99

71 

0.99

62 

0.99

47 

0.95

00 

0.95

18 

0.95

41 

0.95

16 

0.95

45 

0.95

25 

Norway 

GBs 

0.94

65 

0.94

14 

0.942

4 

0.94

28 

0.94

21 

0.94

36 

0.83

78 

0.80

86 

0.81

32 

0.81

74 

0.82

91 

0.83

15 

Sweden 

GBs 

0.99

28 

0.99

63 

0.997

1 

0.99

43 

0.99

32 

0.99

31 

0.94

27 

0.92

63 

0.92

89 

0.92

76 

0.93

53 

0.93

77 

Switzerl

and GBs 

0.99

53 

0.99

97 

0.999

1 

0.99

93 

0.99

94 

0.99

71 

0.97

33 

0.97

66 

0.97

56 

0.97

63 

0.97

70 

0.97

49 

UK GBs 0.99

73 

1.00

07 

1.000

08 

0.99

98 

0.99

94 

0.99

88 

0.97

66 

0.97

90 

0.97

83 

0.97

94 

0.97

83 

0.97

97 

US GBs 0.99

88 

0.99

81 

0.998

1 

0.99

80 

0.99

82 

0.99

82 

0.91

95 

0.87

47 

0.87

50 

0.88

17 

0.89

26 

0.90

08 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.99

30 

0.99

13 

0.991

0 

0.99

30 

0.99

40 

0.99

80 

Euro 

GBs 

0.99

33 

0.99

30 

0.993

4 

0.99

32 

0.99

24 

0.99

34 

Japan 

GBs 

0.95

68 

0.93

88 

0.939

6 

0.94

26 

0.94

44 

0.95

07 

New 

Zealand 

GBs 

0.94

70 

0.94

61 

0.946

6 

0.94

68 

0.94

47 

0.94

31 
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Norway 

GBs 

0.93

89 

0.94

16 

0.941

2 

0.93

98 

0.93

99 

0.93

72 

Sweden 

GBs 

0.96

35 

0.96

86 

0.968

7 

0.96

32 

0.96

67 

0.96

52 

Switzerl

and GBs 

0.98

67 

0.98

56 

0.985

2 

0.98

57 

0.98

67 

0.98

65 

UK GBs 0.98

54 

0.97

74 

0.977

4 

0.98

00 

0.98

01 

0.98

16 

US GBs 0.97

28 

0.97

31 

0.972

5 

0.97

05 

0.97

12 

0.97

35 

Note: U-statistics less than 1 show that measures of oil shocks are reliable predictor of the GBM.
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Table 6 presents some interesting results for the CW evaluation of forecasting 

performance during the COVID-19 pandemic. The CW-based estimation models also 

incorporate similar oil shocks as regressors. The CW test measures the level of statistical 

significance, such that a value above 2.5 indicates statistical significance at the 5 percent level. 

We highlight how the CW statistics clearly deviate from the findings based on Theil’s U 

presented earlier in Table 5. More specifically, we can observe how supply shocks fail to 

forecast both in- and out-of-sample returns across all investment horizons. These results are 

specific to the GBMs of Denmark, Europe, New Zealand, the UK, and the US. In other words, 

supply shocks will not help investors in these countries to maximise returns while investing in 

green bonds during the COVID-19 pandemic. We can also see how supply shocks only weakly 

forecast the in-sample, extreme-long-term (i.e. H=24) returns for the Swedish bond market and 

fail to predict the short- and medium-term returns (i.e. H=1 to H=12). The case of Switzerland 

is similar but slightly different, such that supply shocks only forecast the in-sample returns and 

fail to predict the out-of-sample returns. However, supply shocks can be used to accurately 

forecast the in- and out-of-sample returns for Japanese and Norwegian green bond markets 

during distressed market conditions. 

Similar to supply shocks, demand shocks also appear inefficient for accurately predicting green 

bond returns for both Denmark and Europe during the COVID-19 period. We also see how 

demand shocks can help forecast in-sample returns more accurately than the out-of-sample 

ones for GBMs in Switzerland and the US. However, the returns are accurately forecasted for 

the GBMs of Japan, New Zealand, Norway, Sweden, and the UK during the COVID-19 

pandemic. In contrast, risk shocks cannot be used to forecast either the in-sample or out-of-

sample green bond returns in Denmark and the US during the COVID-19 crisis period. 

However, the results for the Japanese and Swiss markets are quite interesting, because risk 
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shocks can be used to accurately forecast in-sample returns, but they only weakly predict the 

short-term (i.e. H=1 and H=6) returns for Japanese green bonds and the short- and medium-

term (i.e. H=1 to H=12) returns for the Swiss GBM. In contrast, risk shocks can be used to 

correctly forecast the in- and out-of-sample returns of the green bond markets of New Zealand, 

Norway, Sweden, and the US. In other words, investors in these countries can use risk shocks 

as a tool for predicting green bond returns under distressed market conditions over both the 

short and long term.
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Table 6: Single Predictor: CW statistics (COVID-19) 
 Supply Demand 

  Out-Sample  Out-Sample 

 
In-S H=1 H=3 H=6 

H=1

2 

H=2

4 
In-S H=1 H=3 H=6 

H=1

2 

H=2

4 

Denmar

k GBs 

1.38

89 

1.483

1 

1.54

85 

1.51

16 

1.59

28 

1.47

05 

1.33

12 

1.13

40 

1.16

65 

1.06

45 

1.01

50 

0.74

37 

Euro 

GBs 

1.25

19 

1.229

0 

1.23

31 

1.21

15 

1.23

51 

1.23

32 

0.78

98 

0.78

99 

0.78

81 

0.78

98 

0.78

97 

0.78

94 

Japan 

GBs 

2.34

89 

2.365

2 

2.10

05 

2.31

43 

2.05

51 

2.33

55 

3.32

03 

2.93

87 

2.95

03 

3.07

61 

3.10

72 

3.09

73 

New 

Zealand 

GBs 

1.60

61 

1.080

4 

0.83

18 

0.95

74 

0.83

07 

1.26

80 

4.81

5 

3.63

12 

3.65

68 

3.88

86 

4.11

22 

4.51

58 

Norway 

GBs 

2.66

82 

2.487

8 

2.26

54 

2.40

64 

2.25

26 

2.52

49 

4.78

89 

3.36

23 

3.42

05 

3.74

76 

3.86

62 

4.25

11 

Sweden 

GBs 

1.94

14 

1.630

1 

1.10

41 

1.42

61 

1.16

36 

1.70

88 

4.21

84 

2.93

39 

2.97

47 

3.40

20 

3.43

33 

3.76

25 

Switzerl

and GBs 

1.94

93 

0.988

48 

0.97

49 

0.96

39 

0.85

98 

1.44

74 

3.19

64 

2.28

37 

2.36

32 

2.45

62 

2.55

73 

2.79

35 

UK GBs 1.56

84 

0.899

2 

0.57

89 

0.79

62 

0.60

68 

1.04

87 

3.14

3 

2.68

76 

2.70

9 

2.63

70 

2.82

1 

2.85

81 

US GBs 0.41

72 

0.460

9 

0.42

10 

0.45

90 

0.41

64 

0.45

53 

2.80

06 

2.06

02 

2.10

72 

2.31

36 

2.34

82 

2.42

23 

 

 Risk 

  Out-Sample 

 
In-S H=1 H=3 H=6 

H=1

2 

H=2

4 

Denmar

k GBs 

0.80

33 

1.108

0 

1.09

43 

0.96

43 

0.88

04 

0.81

48 

Euro 

GBs 

0.88

38 

0.883

7 

0.88

34 

0.88

30 

0.88

34 

0.88

13 

Japan 

GBs 

2.91

24 

2.456

1 

2.47

73 

2.73

13 

2.83

46 

2.81

73 

New 

Zealand 

GBs 

3.88

59 

2.859

0 

2.83

11 

3.05

21 

3.19

98 

3.38

97 
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Norway 

GBs 

4.69

66 

3.890

6 

3.89

65 

4.12

41 

4.25

19 

4.39

20 

Sweden 

GBs 

3.76

83 

3.185

4 

3.18

06 

3.35

62 

3.43

18 

3.53

21 

Switzerl

and GBs 

2.60

4 

1.764

9 

1.83

15 

1.93

52 

2.09

45 

2.29

77 

UK GBs 2.60

4 

1.798

5 

1.79

15 

1.86

34 

2.01

97 

2.23

46 

US GBs 3.15

9 

3.129

3 

3.15

92 

3.20

30 

3.25

56 

3.23

62 

Note: CW measures the level of statistical significance. Values above 2.5 imply stat. significance at the 5% 

level. 
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Robustness checks 

We conducted four of robustness checks. First, since the scope of the study captures different 

international markets, it is important to examine the time difference in the predictive model.  

As such, we used rolling average of two-day returns; the Theil-U statistics and CW test of this 

exercise are presented in Tables 7 and 8. We also checked whether the predictability analysis 

on volatility is the same as that of return analysis. These results are presented in Tables 9 and 

10. Third, we accounted for some controls variables (inflation, interest rates, exchange rate, 

and industrial production index were used as controls). A section of the literature has shown 

that augmenting the predictive model with some macroeconomic fundamentals improves the 

performance of the forecasting model (Salisu et al., 2019; Ur Rehman et al., 2022). These 

results are presented in Tables 11 and 12. Finally, we examine the performance of the predictive 

model during the Russian-Ukrainian war, whose results are presented in Tables 13 and 14. 

Summarising the results of these checks, we show that our hitherto results are robust to the first 

two checks. We show that the performance of the model is weak for the Russia-Ukraine war 

era. 

Tables 7-8 present results of the forecasting models using Theil-U statistics and CW test, 

respectively by employing rolling average of 2-days. We witness similar results like previously 

presented in Tables 3-4. Table 3 present coefficients of Theil-U test and the results suggest 

significant results for all markets across different horizons. Japanese green bonds market 

appears as the only exception, results of which remain insignificant for risk shocks. However, 

for both demand and supply driven shocks, the results of forecasting model appear significant. 

These results support our earlier findings that all oil related shocks i.e. demand, supply and risk 

driven shocks accurately predict the green bonds market. Table 8 present results of CW test 

using rolling average of 2-days. Interestingly, the forecasting ability of all the three shocks 

improved significantly using 2-days average returns. The coefficient for all the green bond 
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markets are greater than the threshold of 2.5 suggesting significant results. Unlike our previous 

results presented in Table 4, supply shocks effectively predict returns of all green bonds market. 

Likewise, the forecasting ability of supply shocks has also increased significantly for the green 

bonds issued in Denmark, Europe and the UK. However, the forecasting ability of demand and 

risk shocks decreased significant for the green bonds market using rolling average of 2-days. 

The results still appear as significant however, strength of the forecasting ability for both 

supply and risk shocks decreases. 

Predictability analysis on the basis of volatility of green bonds is presented in Figures 9-10. 

Figure 9 present Theil’s U statistics to forecast volatility in green bonds using three structural 

oil shocks. The results are similar to the forecasting ability of these disaggregate oil shocks for 

green bond returns as presented earlier. The forecasting ability of all the three oil shocks remain 

significant across all periods. Such results show that shift in the moment from returns to 

volatility does not affect the forecasting ability of oil shocks. Figure 10 presents predictability 

analysis using CW statistics for green bonds volatility. We witness decreasing forecasting 

ability for supply shocks for the green bonds market of New Zealand and the UK. The 

predictability of Euro GBs also declines as we move from short- towards long-run period. 

However, for other remaining markets, supply shocks predict the volatility of green bonds. 

Likewise, demand- and risk-driven shocks successfully forecast volatility in green bonds 

market. 

Tables 11-12 present estimates of the forecasting models using Theil’s U and CW statistics in 

the presence of exchange rate, VIX and CPI as control variables. Results in Table 11 highlights 

good forecasting ability of supply, demand and risk shocks for green bonds of all the sampled 

countries. Therefore, introducing control variables along with disaggregated oil shocks predicts 

green bond yields. Afterwards, Table 12 predicts green bond yields using CW statistics for 

which results appear quite interesting. We see that the forecasting ability of supply- and 
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demand-driven shocks deteriorates significantly using control variables for almost all 

countries. The only exception is the green bonds market in Euro for which the forecasting 

models works well in case of demand- as well as supply-driven shocks. On the contrary, we 

see good predictability analysis for risk shocks where all the coefficients remain significant. 

Tables 13-14 present the forecasting ability of disintegrated oil shocks during the Russian-

Ukrainian war period. Results in Table 11 appear quite different from the full sample results 

as we witness much evidence of insignificant results during this turbulent period. Supply 

shocks highlight no predictive ability for the green bonds market in New Zealand, Norway and 

Sweden in the long-run period. Besides these markets, the predictive ability of supply shocks 

remains significant for the green bonds market of other countries. On the other hand, demand 

driven shocks highlight better predictive analysis for the green bonds markets except 

Switzerland (throughout the period) and New Zealand (in the long-run). Table 12 presents CW 

statistics which highlight poor ability of disaggregated shocks to forecast green bonds market. 

Neither type of oil shock highlights any signs of forecasting ability for any green bonds market. 

Such results are indicative of the fact that the forecasting ability of oil shocks during the 

Russian-Ukrainian war period appears insignificant.
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Table 7: 2-day average Theil U-statistics 

 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.91

32 
0.9090 

0.90

52 

0.90

94 

0.91

49 

0.91

38 

0.91

28 

0.91

40 

0.86

31 

0.98

19 

0.92

45 

0.86

54 

Euro 

GBs 

0.91

31 
0.9132 

0.90

55 

0.90

91 

0.91

46 

0.91

48 

0.91

24 

0.91

35 

0.86

42 

0.86

67 

0.92

29 

0.98

01 

Japan 

GBs 

0.89

55 

8955.1

693 

0.89

33 

0.91

67 

0.83

40 

0.83

71 

0.88

74 

0.92

31 

0.91

04 

0.91

06 

0.89

74 

0.90

05 

New 

Zealand 

GBs 

0.91

13 
0.9114 

0.92

15 

0.92

60 

0.91

53 

0.91

53 

0.91

49 

0.91

49 

0.89

79 

0.90

09 

0.87

96 

0.88

26 

Norway 

GBs 

0.91

01 
0.9101 

0.92

04 

0.91

73 

0.91

40 

0.91

40 

0.91

47 

0.91

45 

0.89

97 

0.90

09 

0.86

57 

0.90

27 

Sweden 

GBs 

0.90

05 
0.9005 

0.93

41 

0.93

06 

0.89

41 

0.89

40 

0.90

97 

0.90

67 

0.88

53 

0.88

61 

0.87

58 

0.90

04 

Switzerl

and 

GBs 

0.89

10 
0.8913 

0.90

59 

0.95

47 

0.91

88 

0.91

91 

0.91

45 

0.92

50 

0.90

91 

0.90

96 

0.90

93 

0.92

30 

UK 

GBs 

0.89

62 
0.8963 

0.87

52 

0.88

13 

0.89

17 

0.89

22 

0.89

64 

0.89

73 

0.91

23 

0.91

16 

0.90

70 

0.90

70 

US GBs 0.90

37 
0.9038 

0.91

45 

0.90

77 

0.89

14 

0.89

23 

0.88

84 

0.88

55 

0.88

66 

0.89

03 

0.87

42 

0.91

25 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.90

74 
0.9032 

0.89

95 

0.90

36 

0.90

91 

0.90

80 

Euro 

GBs 

0.90

73 
0.9074 

0.89

97 

0.90

34 

0.90

88 

0.90

90 

Japan 

GBs 

0.88

98 

8898.1

818 

0.88

76 

0.91

08 

0.82

87 

0.83

17 
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New 

Zealand 

GBs 

0.90

55 
0.9056 

0.91

56 

0.92

01 

0.90

95 

0.90

95 

Norway 

GBs 

0.90

43 
0.9043 

0.91

45 

0.91

15 

0.90

82 

0.90

82 

Sweden 

GBs 

0.89

48 
0.8948 

0.92

82 

0.92

46 

0.88

84 

0.88

83 

Switzerl

and 

GBs 

0.88

54 
0.8856 

0.90

02 

0.94

86 

0.91

30 

0.91

33 

UK 

GBs 

0.89

05 
0.8906 

0.86

96 

0.87

57 

0.88

60 

0.88

65 

US GBs 0.89

79 
0.8981 

0.90

86 

0.90

19 

0.88

57 

0.88

66 

Note: U-statistics less than 1 demonstrate that measures of oil shocks are reliable predictors of GBM returns. 
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Table 8: 2-day average: CW statistics 

 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

2.99

43 
2.9805 

2.96

82 

2.98

20 

3.00

00 

2.99

64 

2.99

31 

2.99

70 

2.83

02 

3.21

96 

3.03

15 

2.83

77 

Euro 

GBs 

2.99

40 
2.9943 

2.96

91 

2.98

11 

2.99

91 

2.99

97 

2.99

19 

2.99

55 

2.83

38 

2.84

19 

3.02

61 

3.21

36 

Japan 

GBs 

2.93

64 

29364.0

000 

2.92

92 

3.00

57 

2.73

48 

2.74

47 

2.90

97 

3.02

67 

2.98

53 

2.98

59 

2.94

27 

2.95

26 

New 

Zealand 

GBs 

2.98

83 
2.9886 

3.02

16 

3.03

63 

3.00

12 

3.00

12 

3.00

00 

3.00

00 

2.94

42 

2.95

41 

2.88

42 

2.89

41 

Norway 

GBs 

2.98

41 
2.9841 

3.01

80 

3.00

78 

2.99

70 

2.99

70 

2.99

94 

2.99

85 

2.95

01 

2.95

41 

2.83

86 

2.96

01 

Sweden 

GBs 

2.95

29 
2.9529 

3.06

30 

3.05

13 

2.93

16 

2.93

13 

2.98

29 

2.97

30 

2.90

28 

2.90

55 

2.87

19 

2.95

23 

Switzerl

and 

GBs 

2.92

17 
2.9226 

2.97

06 

3.13

05 

3.01

29 

3.01

38 

2.99

85 

3.03

30 

2.98

11 

2.98

26 

2.98

17 

3.02

64 

UK 

GBs 

2.93

85 
2.9391 

2.86

98 

2.88

99 

2.92

38 

2.92

56 

2.93

94 

2.94

24 

2.99

13 

2.98

92 

2.97

39 

2.97

39 

US GBs 2.96

31 
2.9637 

2.99

85 

2.97

63 

2.92

29 

2.92

59 

2.91

30 

2.90

34 

2.90

70 

2.91

93 

2.86

65 

2.99

22 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

2.79

47 
2.7818 

2.77

03 

2.78

32 

2.80

00 

2.79

66 

Euro 

GBs 

2.79

44 
2.7947 

2.77

12 

2.78

24 

2.79

92 

2.79

97 

Japan 

GBs 

2.74

06 

27406.4

000 

2.73

39 

2.80

53 

2.55

25 

2.56

17 
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New 

Zealand 

GBs 

2.78

91 
2.7894 

2.82

02 

2.83

39 

2.80

11 

2.80

11 

Norway 

GBs 

2.78

52 
2.7852 

2.81

68 

2.80

73 

2.79

72 

2.79

72 

Sweden 

GBs 

2.75

60 
2.7560 

2.85

88 

2.84

79 

2.73

62 

2.73

59 

Switzerl

and 

GBs 

2.72

69 
2.7278 

2.77

26 

2.92

18 

2.81

20 

2.81

29 

UK 

GBs 

2.74

26 
2.7432 

2.67

85 

2.69

72 

2.72

89 

2.73

06 

US GBs 2.76

56 
2.7661 

2.79

86 

2.77

79 

2.72

80 

2.73

08 

Notes: CW measures the level of statistical significance. Values above 2.5 imply stat. significance at 5%. 

 

Table 9: Volatility: Theil’s U-statistics 

 Supply Demand 

  Out- Sample  Out- Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.73

58 

0.73

59 

0.73

87 

0.73

67 

0.73

74 

0.73

78 

0.73

47 

0.73

47 

0.73

53 

0.73

57 

0.73

60 

0.73

66 

Euro 

GBs 

0.73

57 

0.73

57 

0.73

60 

0.73

67 

0.73

73 

0.73

77 

0.73

48 

0.73

48 

0.73

54 

0.73

58 

0.73

61 

0.73

67 

Japan 

GBs 

0.70

27 

0.70

29 

0.70

30 

0.70

41 

0.70

44 

0.70

57 

0.64

40 

0.64

39 

0.64

39 

0.64

45 

0.64

54 

0.64

61 

New 

Zealand 

GBs 

0.73

98 

0.73

97 

0.73

97 

0.73

99 

0.74

00 

0.73

99 

0.72

90 

0.72

91 

0.72

93 

0.72

92 

0.72

92 

0.72

96 

Norway 

GBs 

0.72

19 

0.72

19 

0.72

15 

0.72

24 

0.72

14 

0.72

16 

0.72

24 

0.72

16 

0.72

20 

0.72

10 

0.72

17 

0.72

19 

Sweden 

GBs 

0.73

15 

0.73

01 

0.73

00 

0.73

09 

0.73

05 

0.73

19 

0.71

25 

0.71

27 

0.71

24 

0.71

52 

0.71

56 

0.71

67 

Switzerl

and GBs 

0.72

97 

0.72

97 

0.72

99 

0.73

05 

0.73

13 

0.73

17 

0.71

86 

0.71

86 

0.71

90 

0.71

94 

0.71

98 

0.72

03 

UK GBs 0.73

33 

0.73

33 

0.73

36 

0.73

33 

0.73

39 

0.73

44 

0.72

99 

0.72

99 

0.73

00 

0.72

98 

0.73

02 

0.73

07 
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US GBs 0.69

81 

0.69

84 

0.69

83 

0.69

87 

0.69

87 

0.69

98 

0.63

06 

0.63

06 

0.63

01 

0.63

08 

0.63

10 

0.63

22 

 

 Risk 

  Out- Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.73

35 

0.73

35 

0.73

39 

0.73

39 

0.73

39 

0.73

41 

Euro 

GBs 

0.73

36 

0.73

36 

0.73

40 

0.73

40 

0.73

39 

0.73

41 

Japan 

GBs 

0.69

45 

0.69

45 

0.69

44 

0.69

47 

0.69

56 

0.69

69 

New 

Zealand 

GBs 

0.73

39 

0.73

39 

0.73

39 

0.73

36 

0.73

36 

0.73

41 

Norway 

GBs 

0.73

43 

0.73

42 

0.73

39 

0.73

44 

0.73

47 

0.73

48 

Sweden 

GBs 

0.73

37 

0.73

38 

0.73

36 

0.73

44 

0.73

50 

0.73

53 

Switzerl

and GBs 

0.72

54 

0.72

54 

0.72

58 

0.72

60 

0.72

58 

0.72

61 

UK GBs 0.73

81 

0.73

81 

0.73

81 

0.73

81 

0.73

83 

0.73

81 

US GBs 0.71

39 

0.71

38 

0.71

35 

0.71

38 

0.71

43 

0.71

56 

Note: U-statistics less than 1 demonstrate that measures of oil shocks are reliable predictors of GBM returns. Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Table 10: Volatility: CW statistics 

 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denma

rk GBs 

2.63

74 

2.27

44 

2.58

41 

2.43

42 

2.63

74 

2.21

56 

5.99

07 

5.99

07 

5.97

29 

5.84

97 

5.94

74 

5.82

64 

Euro 

GBs 

2.65

07 

2.65

07 

2.59

96 

2.44

98 

2.28

99 

2.22

89 

5.92

74 

5.92

85 

5.77

42 

5.80

09 

5.90

41 

5.92

63 

Japan 

GBs 

7.88

21 

7.87

21 

7.89

43 

7.88

54 

7.91

99 

7.86

99 

11.3

975 

11.4

041 

11.4

363 

11.4

596 

11.4

263 

11.4

152 

New 

Zealan

d GBs 

1.25

99 

1.19

33 

1.30

09 

1.29

09 

1.26

65 

1.21

43 

6.01

07 

6.04

73 

6.10

39 

6.26

82 

6.32

92 

6.11

06 

Norwa

y GBs 

5.48

34 

5.47

79 

5.60

55 

5.61

66 

5.87

52 

6.04

51 

5.16

93 

5.17

93 

5.36

69 

5.24

48 

5.20

37 

5.21

81 

Swede

n GBs 

7.14

73 

7.18

17 

7.22

61 

6.93

53 

7.16

06 

6.73

66 

5.50

01 

5.46

12 

5.54

00 

5.24

48 

5.12

15 

5.04

61 

Switzer

land 

GBs 

5.25

81 

5.02

16 

5.21

81 

5.15

26 

5.26

25 

4.96

17 

8.54

92 

8.54

59 

8.47

71 

8.44

27 

8.56

48 

8.55

03 

UK 

GBs 

2.45

09 

2.44

87 

2.42

31 

2.48

64 

2.43

31 

2.38

21 

3.56

87 

3.57

42 

3.60

53 

3.68

08 

3.54

53 

3.38

22 

US 

GBs 

6.37

92 

6.55

12 

6.41

14 

6.48

02 

6.37

81 

6.54

57 

9.80

13 

9.80

24 

9.88

57 

9.89

12 

9.90

23 

9.77

02 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denma

rk GBs 

3.77

18 

3.77

18 

3.59

75 

3.49

87 

3.43

55 

3.27

01 

Euro 

GBs 

3.73

96 

3.73

96 

3.56

31 

3.47

10 

3.40

44 

3.24

01 

Japan 

GBs 

12.7

783 

12.7

850 

12.8

327 

12.8

571 

12.8

605 

12.8

882 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



New 

Zealan

d GBs 

5.94

63 

5.92

96 

5.96

96 

6.03

73 

6.11

28 

6.09

61 

Norwa

y GBs 

6.87

09 

6.87

31 

7.04

07 

6.88

31 

7.08

51 

7.26

05 

Swede

n GBs 

4.07

76 

4.07

76 

3.88

92 

3.78

24 

3.71

40 

3.53

52 

Switzer

land 

GBs 

7.75

56 

7.75

11 

7.69

23 

7.66

46 

7.64

79 

7.60

24 

UK 

GBs 

5.36

91 

5.37

13 

5.36

24 

5.45

01 

5.38

68 

5.29

14 

US 

GBs 

3.65

63 

3.65

66 

3.67

97 

3.69

34 

3.71

53 

3.72

16 

Notes: CW measures the level of statistical significance. Values above 2.5 imply stat. significance at 5%. 

 

 

 

 

Table 11: Control Variables: Theil’s U statistics (COVID-19) 

 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.82

42 

0.81

61 

0.81

72 

0.81

88 

0.82

00 

0.82

09 

0.82

95 

0.82

31 

0.82

34 

0.82

58 

0.82

73 

0.82

85 

Euro 

GBs 

0.90

11 

0.90

28 

0.90

12 

0.90

14 

0.90

11 

0.90

10 

0.90

61 

0.90

16 

0.90

20 

0.90

21 

0.90

09 

0.90

20 

Japan 

GBs 

0.81

25 

0.81

10 

0.81

03 

0.80

59 

0.80

59 

0.80

84 

0.77

10 

0.76

63 

0.77

07 

0.75

69 

0.75

92 

0.76

53 

New 

Zealand 

GBs 

0.79

45 

0.79

84 

0.79

86 

0.79

77 

0.79

70 

0.79

58 

0.76

00 

0.76

14 

0.76

33 

0.76

13 

0.76

36 

0.76

20 

Norway 

GBs 

0.84

51 

0.84

05 

0.84

14 

0.84

18 

0.84

12 

0.84

25 

0.74

80 

0.72

20 

0.72

61 

0.72

98 

0.74

03 

0.74

24 

Sweden 

GBs 

0.82

73 

0.83

03 

0.83

09 

0.82

86 

0.82

77 

0.82

76 

0.78

56 

0.77

19 

0.77

41 

0.77

30 

0.77

94 

0.78

14 

Switzerl

and GBs 

0.82

94 

0.83

31 

0.83

26 

0.83

28 

0.83

28 

0.83

09 

0.81

11 

0.81

38 

0.81

30 

0.81

36 

0.81

42 

0.81

24 

UK GBs 0.83

11 

0.83

39 

0.83

34 

0.83

32 

0.83

28 

0.83

23 

0.81

38 

0.81

58 

0.81

53 

0.81

62 

0.81

53 

0.81

64 
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US GBs 0.83

23 

0.83

18 

0.83

18 

0.83

17 

0.83

18 

0.83

18 

0.76

63 

0.72

89 

0.72

92 

0.73

48 

0.74

38 

0.75

07 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

0.79

76 

0.78

98 

0.79

08 

0.79

24 

0.79

35 

0.79

44 

Euro 

GBs 

0.83

29 

0.84

16 

0.84

01 

0.84

03 

0.84

00 

0.83

99 

Japan 

GBs 

0.84

84 

0.84

69 

0.84

62 

0.84

16 

0.84

16 

0.84

42 

New 

Zealand 

GBs 

0.87

88 

0.88

32 

0.88

34 

0.88

24 

0.88

16 

0.88

03 

Norway 

GBs 

0.83

76 

0.83

31 

0.83

40 

0.83

43 

0.83

37 

0.83

50 

Sweden 

GBs 

0.87

86 

0.88

17 

0.88

24 

0.87

99 

0.87

89 

0.87

88 

Switzerl

and GBs 

0.88

08 

0.88

47 

0.88

42 

0.88

43 

0.88

44 

0.88

24 

UK GBs 0.88

26 

0.88

56 

0.88

50 

0.88

48 

0.88

44 

0.88

39 

US GBs 0.88

39 

0.88

33 

0.88

33 

0.88

32 

0.88

34 

0.88

34 

Note: U-statistics less than 1 show that measures of oil shocks are reliable predictor of the GBM 
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Table 12: Control Variable: CW statistics (COVID-19) 
 Supply Demand 

  Out-Sample  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

2.47

26 

2.44

83 

2.45

16 

2.45

64 2.46 

2.46

27 

2.48

85 

2.46

93 

2.47

02 

2.47

74 

2.48

19 

2.48

55 

Euro 

GBs 

2.70

33 

2.70

84 

2.70

36 

2.70

42 

2.70

33 

2.70

3 

2.71

83 

2.70

48 

2.70

6 

2.70

63 

2.70

27 

2.70

6 

Japan 

GBs 

2.43

75 

2.43

3 

2.43

09 

2.41

77 

2.41

77 

2.42

52 

2.31

3 

2.29

89 

2.31

21 

2.27

07 

2.27

76 

2.29

59 

New 

Zealand 

GBs 

2.38

35 

2.39

52 

2.39

58 

2.39

31 

2.39

1 

2.38

74 2.28 

2.28

42 

2.28

99 

2.28

39 

2.29

08 

2.28

6 

Norway 

GBs 

2.53

53 

2.52

15 

2.52

42 

2.52

54 

2.52

36 

2.52

75 

2.24

4 

2.16

6 

2.17

83 

2.18

94 

2.22

09 

2.22

72 

Sweden 

GBs 

2.48

19 

2.49

09 

2.49

27 

2.48

58 

2.48

31 

2.48

28 

2.35

68 

2.31

57 

2.32

23 

2.31

9 

2.33

82 

2.34

42 

Switzerl

and GBs 

2.48

82 

2.49

93 

2.49

78 

2.49

84 

2.49

84 

2.49

27 

2.43

33 

2.44

14 

2.43

9 

2.44

08 

2.44

26 

2.43

72 

UK GBs 2.49

33 

2.50

17 

2.50

02 

2.49

96 

2.49

84 

2.49

69 

2.44

14 

2.44

74 

2.44

59 

2.44

86 

2.44

59 

2.44

92 

US GBs 2.49

69 

2.49

54 

2.49

54 

2.49

51 

2.49

54 

2.49

54 

2.29

89 

2.18

67 

2.18

76 

2.20

44 

2.23

14 

2.25

21 

 

 Risk 

  Out-Sample 

 In-S H=1 H=3 H=6 H=1

2 

H=2

4 

Denmar

k GBs 

2.63

74 

2.61

15 

2.61

50 

2.62

02 

2.62

40 

2.62

69 

Euro 

GBs 

2.88

35 

2.88

90 

2.88

38 

2.88

45 

2.88

35 

2.88

32 

Japan 

GBs 

2.60

00 

2.59

52 

2.59

30 

2.57

89 

2.57

89 

2.58

69 

New 

Zealand 

GBs 

2.54

24 

2.55

49 

2.55

55 

2.55

26 

2.55

04 

2.54

66 
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Norway 

GBs 

2.70

43 

2.68

96 

2.69

25 

2.69

38 

2.69

18 

2.69

60 

Sweden 

GBs 

2.64

74 

2.65

70 

2.65

89 

2.65

15 

2.64

86 

2.64

83 

Switzerl

and GBs 

2.65

41 

2.66

59 

2.66

43 

2.66

50 

2.66

50 

2.65

89 

UK GBs 2.65

95 

2.66

85 

2.66

69 

2.66

62 

2.66

50 

2.66

34 

US GBs 2.66

34 

2.66

18 

2.66

18 

2.66

14 

2.66

18 

2.66

18 

Note: CW measures the level of statistical significance. Values above 2.5 imply stat. significance at the 5% 

level. 
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Table 13: Russia-Ukraine war: Theil U statistics 

 Supply Demand Risk 

  Out-of-Sample  Out-of-Sample  Out-of-Sample 

 
In-S 

H=1

0 

H=2

0 

H=3

0 
In-S 

H=1

0 

H=2

0 

H=3

0 
In-S 

H=1

0 

H=2

0 

H=3

0 

Denmar

k GBs 

0.99

81 

0.99

35 

0.98

94 

0.99

40 

1.00

0 

0.99

88 

0.99

77 

0.99

9 

0.943

4 

1.07

32 

1.01

05 

0.94

59 

Euro 

GBs 

0.99

80 

0.99

81 

0.98

97 

0.99

37 

0.99

97 

0.99

99 

0.99

73 

0.99

85 

0.944

6 

0.94

73 

1.00

87 

1.07

12 

Japan 

GBs 

0.97

88 

0978

8 

0.97

64 

1.00

19 

0.91

16 

0.91

49 

0.96

99 

1.00

89 

0.995

1 

0.99

53 

0.98

09 

0.98

42 

New 

Zealand 

GBs 

0.99

61 

0.99

62 

1.00

72 

1.01

21 

1.00

04 

1.00

04 

1.00

00 

1.00

00 

0.981

4 

0.98

47 

0.96

14 

0.96

47 

Norway 

GBs 

0.99

47 

0.99

47 

1.00

60 

1.00

26 

0.99

90 

0.99

90 

0.99

98 

0.99

95 

0.983

36 

0.98

47 

0.94

62 

0.98

67 

Sweden 

GBs 

0.98

43 

0.98

43 

1.02

10 

1.01

71 

0.97

72 

0.97

71 

0.99

43 

0.99

10 

0.967

6 

0.96

85 

0.95

73 

0.98

41 

Switzerl

and GBs 

0.97

39 

0.97

42 

0.99

02 

1.04

35 

1.00

43 

1.00

46 

0.99

95 

1.01

10 

0.993

7 

0.99

42 

0.99

39 

1.00

88 

UK GBs 0.97

95 

0.97

97 

0.95

66 

0.96

33 

0.97

46 

0.97

52 

0.97

98 

0.98

08 

0.997

1 

0.99

64 

0.99

13 

0.99

13 

US GBs 0.98

77 

0.98

79 

0.99

95 

0.99

21 

0.97

43 

0.97

53 

0.97

10 

0.96

78 

0.969

0 

0.97

31 

0.95

55 

0.99

74 

 

Table 14: Russia-Ukraine: CW statistics 

 Supply Demand Risk 

  Out-of-Sample  Out-of-Sample  Out-of-Sample 

 
In-S 

H=1

0 

H=2

0 

H=3

0 
In-S 

H=1

0 

H=2

0 

H=3

0 
In-S 

H=1

0 

H=2

0 

H=3

0 

Denmar

k GBs 

0.37

81 

0.37

69 

1.28

55 

0.94

46 

1.60

06 

0.20

84 

1.06

51 

1.57

27 

0.19

81 

0.18

00 

0.56

39 

0.40

35 

Euro 

GBs 

0.38

46 

0.38

29 

1.26

11 

0.92

16 

1.61

32 

1.58

21 

1.09

44 

0.22

05 

0.27

06 

0.25

16 

0.61

08 

0.45

12 

Japan 

GBs 

1.31

03 

1.30

99 

1.49

84 

0.57

11 

0.76

29 

0.76

05 

1.47

55 

1.70

60 

2.75

85 

2.74

70 

2.15

64 

0.98

27 
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New 

Zealand 

GBs 

0.53

69 

0.53

68 

0.38

70 

0.63

98 

1.48

19 

1.35

79 

2.25

96 

2.29

18 

0.10

25 

0.09

88 

0.04

98 

0.02

04 

Norway 

GBs 

0.78

99 

0.79

31 

0.62

92 

0.17

26 

1.22

63 

1.20

05 

1.82

47 

1.26

16 

0.69

41 

0.70

70 

0.17

74 

0.52

50 

Sweden 

GBs 

1.02

79 

1.02

82 

0.05

97 

0.24

32 

1.71

58 

1.69

76 

1.83

96 

1.65

92 

1.32

54 

1.32

76 

1.01

17 

1.20

5 

Switzerl

and GBs 

1.41

90 

1.41

42 

1.37

43 

0.37

33 

0.78

80 

0.74

89 

0.94

81 

0.39

48 

0.37

29 

0.36

19 

0.60

74 

0.06

47 

UK GBs 1.33

2 

1.33

43 

2.03

83 

2.03

00 

0.44

03 

0.50

75 

0.93

33 

1.16

20 

1.67

79 

1.66

85 

1.68

70 

1.69

37 

US GBs 1.08

83 

1.08

69 

0.77

52 

1.08

68 

1.38

89 

1.30

71 

1.82

48 

1.14

22 

1.36

63 

1.35

30 

1.63

38 

1.89

69 
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6. Conclusion 

The development of GBMs has garnered significant attention from investors, 

policymakers, and scholars in recent years, mainly due to the growing global awareness and 

concern about climate change. Among the vast selection of existing literature, when examining 

the role of green investment in portfolio strategies, Zerbib (2019) and Bachelet, Becchetti, and 

Manfredonia (2019) have posited that investors pay a premium for green bonds. Such a finding 

is supported by the increasing level of investment in green bonds by investors in both developed 

and developing countries (Banga, 2019; Tu, Rasoulinezhad, & Sarker, 2020). However, 

whether green bonds outperform other asset classes is a question that has yet to be answered, 

but some underlying factors can certainly play an important role in determining returns for 

green investments, with these mainly including varying economic conditions and the 

performance of traditional bond and equity markets in comparison to their energy counterparts. 

Given the importance of oil to the world economy, its significance cannot be ignored for any 

kind of investment, both conventional and more recently financialised asset classes. 

Consequently, to build upon the existing literature, we examined the role of different oil 

shocks, (i.e. demand, supply, and risk), following the example of Ready (2018), in predicting 

green bond returns for a wide array of GBMs including those in Denmark, Europe, Switzerland, 

New Zealand, Sweden, Japan, Norway, the UK, and the US for a period spanning from 

December 2, 2008 to July 11, 2021. As a diagnostic test, we employed the adjusted OLS 

estimator that was introduced by Westerlund et al. (2012, 2015) to avoid serious problems 

related to persistence, endogeneity, and heteroscedasticity.  

We found some interesting results, which are summarized as follows: First, we found 

support for predictability irrespective of the particular oil-related shock for all green bond 

indices except the UK GBM. More specifically, demand shocks only fail to predict green bond 

returns in the case of the UK, yet they can be used to accurately forecast all the other considered 
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green bond markets. Second, Theil’s U statistic is relatively more significant for forecasting 

green bond returns across all investment horizons (i.e. H=1 to H=24) when considering supply, 

demand, and risk shocks. Third, green bond returns in Japan and the US are more accurately 

predicted by all three shocks. Fourth, the CW statistics highlight that supply shock is the only 

predictor that fails to forecast the in- and out-of-sample returns for the New Zealand GBM. 

However, the results for the COVID-19 crisis period appear to be heterogeneous. The measure 

based on Theil’s U shows that only oil supply shocks fail to help forecast both the in- and out-

of-sample returns for UK green bonds during the COVID-19 pandemic. Furthermore, the CW 

statistics indicate that all three oil shocks fail to predict both in- and out-of-sample returns for 

the specific green bond indices of Denmark and Europe during COVID-19, suggesting that 

these oil shocks are not helpful for forecasting future green bond returns during distressed 

market conditions. 

Our findings carry several implications for practitioners and investors. Green bond 

returns seem to be significantly predictable when considering oil market shocks, and this 

should surely be useful for investors in helping them to rebalance their portfolios and gain 

maximal returns from their investments in the GBM. In addition, this predictability is relatively 

strong across multiple investment horizons in the cases of the Japanese and American GBMs, 

so this revelation may be appealing to both short-term (i.e. less than six months) and long-term 

(i.e. up to 24 months) investors in these markets. To put it bluntly, monitoring the variation in 

the oil market can help investors to beat the markets and gain additional returns from trading 

in GBMs. Finally, our findings about the variation in predictability during the COVID-19 crisis 

period also have implications for investors looking to reshape their investment strategies. In 

this way, investors can overweight or underweight their investments in GBMs according to 

forecasts based on oil market shocks. Any change in market conditions could then prompt 

investors to shift their investments and rebalance their portfolios. We also provide future 
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direction to our work by sampling international green bonds to consider the effect of 

heterogeneity across different markets. 

Acknowledgement  

This research is partly funded by the University of Economics Ho Chi Minh City, Vietnam.  

  
Jo

ur
na

l P
re

-p
ro

of

Journal Pre-proof



References 

Apergis, N., & Payne, J. E. (2015). Renewable energy, output, carbon dioxide emissions, and 

oil prices: evidence from South America. Energy Sources, Part B: Economics, Planning, 

and Policy, 10(3), 281-287. 

Azhgaliyeva, D., Kapsalyamova, Z., & Mishra, R. (2022). Oil price shocks and green bonds: 

An empirical evidence. Energy Economics, 106108. 

Bachelet, M. J., Becchetti, L., & Manfredonia, S. (2019). The green bonds premium puzzle: 

The role of issuer characteristics and third-party verification. Sustainability, 11(4), 1098. 

Banga, J. (2019). The green bond market: a potential source of climate finance for developing 

countries. Journal of Sustainable Finance & Investment, 9(1), 17-32. 

Bollerslev, T., Tauchen, G., & Zhou, H. (2009). Expected stock returns and variance risk 

premia. The Review of Financial Studies, 22(11), 4463-4492. 

Braga, J. P., Semmler, W., & Grass, D. (2021). De-risking of green investments through a 

green bond market–Empirics and a dynamic model. Journal of Economic Dynamics and 

Control, 131, 104201. 

Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can 

anything beat the historical average? The Review of Financial Studies, 21(4), 1509-1531. 

Chen, J. M., & Rehman, M. U. (2021). A Pattern New in Every Moment: The Temporal 

Clustering of Markets for Crude Oil, Refined Fuels, and Other 

Commodities. Energies, 14(19), 6099. 

Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy 

in nested models. Journal of econometrics, 138(1), 291-311. 

Diebold, F. X., & Mariano, R. S. (1995). Com paring predictive accuracy. Journal of Business 

and Economic Statistics, 13(3), 253-263. 

Dutta, A., Bouri, E., & Noor, M. H. (2021). Climate bond, stock, gold, and oil markets: 

Dynamic correlations and hedging analyses during the COVID-19 outbreak. Resources 

Policy, 74, 102265. 

Dutta, A., Jana, R. K., & Das, D. (2020). Do green investments react to oil price shocks? 

Implications for sustainable development. Journal of Cleaner Production, 266, 121956. 

Environmental Finance. 2021. “Sustainable Bonds Insights.” https://www.environmental-

finance.com/assets/files/research/sustainable-bonds-insight-2021.pdf 

Ferrer, R., Shahzad, S. J. H., & Soriano, P. (2021). Are green bonds a different asset class? 

Evidence from time-frequency connectedness analysis. Journal of Cleaner 

Production, 292, 125988. 

Güntner, J. H. (2014). How do oil producers respond to oil demand shocks?. Energy 

Economics, 44, 1-13. 

Henriques, I., & Sadorsky, P. (2008). Oil prices and the stock prices of alternative energy 

companies. Energy Economics, 30(3), 998-1010. 

Isah, K. O., & Raheem, I. D. (2019). The hidden predictive power of cryptocurrencies and QE: 

Evidence from US stock market. Physica A: Statistical Mechanics and its 

Applications, 536, 121032. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Kanamura, T. (2020). Are green bonds environmentally friendly and good performing 

assets? Energy Economics, 88, 104767. 

Kang, W., Ratti, R. A., & Yoon, K. H. (2014). The impact of oil price shocks on US bond 

market returns. Energy Economics, 44, 248-258. 

Kilian, L. (2008). The economic effects of energy price shocks. Journal of economic 

literature, 46(4), 871-909. 

Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply 

Shocks in the Crude Oil Market. American Economic Review, 99(3), 1053-1069.  

Kilian, L., & Park, C. (2009). The impact of oil price shocks on the US stock 

market. International Economic Review, 50(4), 1267-1287. 

Kocaarslan, B., & Soytas, U. (2019). Dynamic correlations between oil prices and the stock 

prices of clean energy and technology firms: The role of reserve currency (US 

dollar). Energy Economics, 84, 104502. 

Kumar, S., Managi, S., & Matsuda, A. (2012). Stock prices of clean energy firms, oil and 

carbon markets: A vector autoregressive analysis. Energy Economics, 34(1), 215-226. 

Kyritsis, E., & Serletis, A. (2019). Oil prices and the renewable energy sector. The Energy 

Journal, 40(The New Era of Energy Transition). 

Lee, C. C., Lee, C. C., & Li, Y. Y. (2021). Oil price shocks, geopolitical risks, and green bond 

market dynamics. The North American Journal of Economics and Finance, 55, 101309. 

Liu, C., Naeem, M. A., Rehman, M. U., Farid, S., & Shahzad, S. J. H. (2020). Oil as hedge, 

safe-haven, and diversifier for conventional currencies. Energies, 13(17), 4354. 

Maitra, D., Rehman, M. U., Dash, S. R., & Kang, S. H. (2021). Oil price volatility and the 

logistics industry: dynamic connectedness with portfolio implications. Energy 

Economics, 102, 105499. 

Managi, S., & Okimoto, T. (2013). Does the price of oil interact with clean energy prices in 

the stock market? Japan and the world economy, 27, 1-9. 

Mensi, W., Rehman, M. U., & Vo, X. V. (2021). Risk spillovers and diversification between 

oil and non-ferrous metals during bear and bull market states. Resources Policy, 72, 

102132. 

Morgan Stanley. 2016. “Investing in the Future: Sustainable, Responsible and Impact 

Investing Trends.” Accessed 1 July 2016. 

http://www.morganstanley.com/ideas/sustainable-investingtrends 

Narayan, P. K., & Gupta, R. (2015). Has oil price predicted stock returns for over a 

century? Energy Economics, 48, 18-23.  

Pham, L. (2019). Do all clean energy stocks respond homogeneously to oil price? Energy 

Economics, 81, 355-379. 

Pham, L., & Huynh, T. L. D. (2020). How does investor attention influence the green bond 

market? Finance Research Letters, 35, 101533. 

Pham, L., & Nguyen, C. P. (2021). How do stock, oil, and economic policy uncertainty 

influence the green bond market? Finance Research Letters, 102128. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Ready, R. C. (2018). Oil prices and the stock market. Review of Finance, 22(1), 155-176. 

Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and 

price spillover effects. Energy Economics, 74, 38-50. 

Reboredo, J. C., & Ugolini, A. (2018). The impact of energy prices on clean energy stock 

prices. A multivariate quantile dependence approach. Energy Economics, 76, 136-152. 

Reboredo, J. C., Rivera-Castro, M. A., & Ugolini, A. (2017). Wavelet-based test of co-

movement and causality between oil and renewable energy stock prices. Energy 

Economics, 61, 241-252. 

Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock 

prices of clean energy and technology companies. Energy economics, 34(1), 248-255. 

Salisu, A. A., Swaray, R., & Oloko, T. F. (2019). Improving the predictability of the oil–US 

stock nexus: The role of macroeconomic variables. Economic Modelling, 76, 153-171. 

Shah, I. H., Hiles, C., & Morley, B. (2018). How do oil prices, macroeconomic factors and 

policies affect the market for renewable energy? Applied energy, 215, 87-97. 

Tu, C. A., Rasoulinezhad, E., & Sarker, T. (2020). Investigating solutions for the development 

of a green bond market: Evidence from analytic hierarchy process. Finance Research 

Letters, 34, 101457. 

Ur Rehman, M., Raheem, I. D., Al Rababa’a, A. R., Ahmad, N., & Vo, X. V. (2022). 

Reassessing the Predictability of the Investor Sentiments on US Stocks: The Role of 

Uncertainty and Risks. Journal of Behavioral Finance, 1-16. 

Westerlund, J., & Narayan, P. (2015). Testing for predictability in conditionally 

heteroskedastic stock returns. Journal of Financial Econometrics, 13(2), 342-375. 

Westerlund, J., & Narayan, P. K. (2012). Does the choice of estimator matter when forecasting 

returns? Journal of Banking & Finance, 36(9), 2632-2640. 

Zerbib, O. D. (2019). The effect of pro-environmental preferences on bond prices: Evidence 

from green bonds. Journal of Banking & Finance, 98, 39-60. 

Zhao, X. (2020). Do the stock returns of clean energy corporations respond to oil price 

shocks and policy uncertainty? Journal of Economic Structures, 9(1), 1-16. 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

Mobeen Ur Rehman: Conceptualization, Data Curation, Software, Validation. Ibraheem 

Raheem: Methodology, Software, Formal analysis. Rami Zeitun: Investigation, Writing - 

Review & Editing. Xuan Vinh Vo: Project administration, Supervision, Resources. Nasir 

Ahmad: Writing - original draft. 

 

 

 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Highlights 

 

o We examine the the predictive power of oil shocks for the green bond markets. 

o We investigated the extent to which oil shocks could be used to accurately make in- and out-

of-sample forecasts for green bond returns.  

o The three types of oil shock are reliable predictors for green bond indices.  

o The performances of the predictive models were consistent across the different forecasting 

horizons. 

o  Our findings were sensitive to classifying the dataset into pre-COVID and COVID eras.  

o The results confirmed that the predictive power of oil shocks declined during the crisis period 
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