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Recent reports suggest that cell-surface and intracellularimmune receptors
function synergistically to activate robust defence against pathogens, but

whether they co-evolve is unclear. Here we determined the numbers of
cell-surface and intracellularimmune receptors in 350 species. Surprisingly,
the number of receptor genes that are predicted to encode cell-surface and
intracellularimmune receptorsis strongly correlated. We suggest thisis
consistent with mutual potentiation of immunity initiated by cell-surface
and intracellular receptors being reflected in the concerted co-evolution of
the size of their repertoires across plant species.

Plants have evolved a two-tierimmune system that recognizes and acti-
vates defence against pathogens'. Cell-surface pattern-recognition
receptors (PRRs) recognize apoplastic and usually conserved
pathogen-associated molecular patterns (PAMPs) and activate
pattern-triggered immunity (PTI). Virulent pathogens secrete effector
moleculesinto plant cells that suppress PTland promote infection. Intra-
cellularnucleotide-bindingleucine-rich repeat (NLR) receptors recognize
effectors and activate effector-triggered immunity (ETI). Although PTI
and ETIwere envisaged as two independentimmune systems', emerging
evidencesuggeststheyareinter-dependent and share multiple signalling
components® . Thus, PTl and ETI function synergistically to provide
robustimmunity against pathogens. As PRRs and NLRs are functionally
inter-dependent, in this Brief Communication, we investigated whether
the sizes of these two receptor gene families are correlated.

Plant PRR proteins are structurally diverse but are usually
receptor-like kinases (RLKs) or receptor-like proteins (RLPs). RLKs
carry extracellular ectodomains and cytosolic kinase domains, while
RLPslack cytosolic kinase domains. RLKs carry multiple types of extra-
cellular domains, such asleucine-rich repeats (LRRs), lectins and lysM
motifs (LysMs)’. LRR-domain-containing RLKs (LRR-RLKs) and RLPs
(LRR-RLPs) are the largest RLK- and RLP-gene families in plants®’.
LRR-RLKs can be further classified into 20 subgroups, with each sub-
group involved in different biological processes' (Extended Data
Fig.1). For example, BAK1 (BRI1-ASSOCIATED RECEPTOR KINASE)

family proteins function as PRR co-receptors and belong to
LRR-RLK-II (ref. ™). Members of LRR-RLK-XI are involved in rec-
ognition of self-peptides'>". Members of LRR-RLK-XII, such as
FLAGELLIN-SENSITIVE 2 (FLS2), EF-TU RECEPTOR (EFR) and Xa21
(refs. >7), are involved in detecting pathogen-derived molecules
(Extended Data Fig. 1). NLRs are intracellular receptors that carry
NB-ARC domains with C-terminal LRR domains and N-terminal domains,
usually comprising either coiled-coil (CC), Toll/interleukin-1 recep-
tor/resistance protein (TIR) or RPW8-like coiled-coil (RPW8) domains
(hence, CC-NLRs (or CNLs), TIR-NLRs (TNLs) and RPWS8-NLRs (RNLs))"*.

Identification ofimmune receptors from plant
genomes

Toinvestigate expansion or contraction of genes thatencode PRRand
NLR proteins, weidentified these gene familiesin annotated proteomes
from 350 publicly available genomes. These genomesinclude 26 algal
species, Sbryophyte species, 10 gymnosperms and 300 angiosperms
(13 basal angiosperms, 79 monocots and 208 eudicots) (Extended Data
Fig. 2 and Supplementary Table 1). Assembled genome sizes of these
organisms range from13 Mb to 27.6 Gb, with annotated protein counts
ranging from ~5,000 to ~300,000 (Extended Data Fig. 2). To ensure
consistency, we used the same pipeline to obtain primary transcripts
and identify LRR-RLKs, LRR-RLPs, LysM-RLK, LysM-RLP and NB-ARCs
from each of these genomes (Extended Data Fig. 3 and Methods).
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Fig.1|Immune receptor gene families in 350 genomes. Phylogenetic tree of
350 plant species, including 300 angiosperms, 79 monocot species and 208
eudicot species. Heat maps represent the percentages (%) of LRR-RLKs, LRR-RLK_
Xlis (red), LRR-RLPs (purple), LRR-RLK-XIIs + LRR-RLPs (magenta) and NB-ARCs
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(blue) in their corresponding annotated proteomes. Grey boxes in heat maps
indicate null values where no receptors were identified. Brown branches indicate
monocots, and teal branches represent eudicots.

In total, we identified 88,020 LRR-RLKs, 28,018 LRR-RLPs, 3,500
LysM-RLKs, 1,238 LysM-RLPs and 95,127 NB-ARCs from 350 species
(Supplementary Fig. 1and Supplementary Table 2). To validate our
results, we compared the number of NB-ARCs, LRR-RLKs and LRR-RLPs
identified in our study with previous publications, finding they are
highly similar (Extended Data Fig. 4)'* %, As expected, the number of
receptors varies enormously across 300 angiosperms, with LRR-RLKs
ranging from 16 to 1,129, LRR-RLPs ranging from 2 to 585, LysM-RLKs
ranging from O to 42, LysM-RLPs ranging from O to 19 and NB-ARCs
ranging from O to 3,128. To account for the effect of genome duplica-
tion and variable proteome sizes, we normalized these data using
percentages (%) of LRR-RLKs, LRR-RLPs, LysM-RLK, LysM-RLP and
NB-ARCs from each genome (number of identified genes/number
of searched genes x 100) (Supplementary Fig. 1and Supplementary
Table 3). After adjustment, LRR-RLKs range from 0.114% to 2.464%,
LRR-RLPs range from 0.00652% to 1.010%, LysM-RLKs range from 0%
to 0.120%, LysM-RLPs range from 0% to 0.0559% and NB-ARCs range

from 0% to 3.266% in 300 angiosperms (Fig. 1, Supplementary Fig. 1
and Supplementary Table 3).

Correlation between the sizes ofimmune
receptor families

Next, we determined the correlation between the percentages of PRRs
(%LRR-RLKs, %LRR-RLPs, %LysM-RLK and %LysM-RLP) and NB-ARCs in
angiosperms. Surprisingly, %NB-ARC and %LRR-RLPs show a strong
positive linear correlation (Pearson’s r = 0.759), suggesting that NB-ARC
and LRR-RLP gene families expand together (Fig. 2, Extended Data Figs.
5and 6, Supplementary Fig. 7 and Supplementary Table 4). Similarly,
%NB-ARC and %LRR-RLKs show a positive but weaker linear correlation
(Pearson’sr=0.657). Onthe other hand, %LysM-RLKs and %LysM-RLPs
show weak or no correlation with %NB-ARC (Pearson’s r=0.216 and
-0.0430, respectively). We propose that PRRs involved in pathogen
recognition are more likely to co-expand with NB-ARC gene families.
This is consistent with the observation that characterized LRR-RLPs are
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usually involved in pathogen recognition, while LRR-RLKs and LysM
receptors can be involved not only in immunity but also in develop-
ment, reproduction or establishing symbiosis'.

To test if the NB-ARC gene family co-expands with PRRs specifi-
callyinvolved in pathogen recognition, we further classified LRR-RLKs
into subgroups according to their kinase domains. As mentioned,
LRR-RLKs can thus be classified into 20 subgroups, with each sub-
group involved invarious biological processes'® (Extended Data Fig. 1).
Across 350 species, LRR-RLK-XII forms the largest LRR-RLK subgroup,
followed by LRR-RLK-IIl and LRR-RLK-XI (Supplementary Figs. 2 and
3). We determined the correlation between %LRR-RLK from different
subgroups and $NB-ARC in angiosperms (Extended DataFigs.5and 6,
and Supplementary Table 4). Strikingly, only 4 out of 20 LRR-RLK sub-
groups show ssignificantand positive linear correlation with %NB-ARCs
(LRR-RLK-VIIL1, LRR-RLK-VIII_2, LRR-RLK-Xa and LRR-RLK-XII). Fur-
thermore, LRR-RLK-XII forms much stronger positive correlation
with %NB-ARCs (Pearson’s r= 0.813) compared with LRR-RLK-VIIL_1,
LRR-RLK-VIII_2 and LRR-RLK-Xa (Pearson’s r= 0.343, 0.440 and 0.279,
respectively) (Fig.2a, Supplementary Fig. 7 and Supplementary Table
4).While LRR-RLKsinvolvedin pathogenrecognition are predominantly
insubgroup XII, some members from LRR-RLK-VIIland LRR-RLK-Xa are
alsoinvolved inimmunity and pathogen recognition, suchas CANNOT
RESPOND TODMBQ1(CARD1/HPCA1), CELLOOLIGOMER-RECEPTOR
KINASE 1(CORK1) and BAKI-INTERACTING RECEPTOR-LIKE KINASE 1
(BIR1) (refs.”?) (Extended DataFig.1). As LRR-RLK-XII forms the larg-
est LRR-RLK subgroup, we tested if the positive correlation between
%LRR-RLK (total) and %¥NB-ARC is predominantly caused by subgroup
XII. Indeed, for all subgroups excluding XII, $LRR-RLK does not show
any significant correlation with %NB-ARC (Pearson’s r = 0.103). On
the other hand, %LRR-RLP combined with %LRR-RLK-XII show strong
positive correlation with %¥NB-ARC (Pearson’s r = 0.859) (Fig. 2a,b).

We further tested the hypothesis taking into account the phy-
logeny of the plant species. First, we converted receptor percentages
from 350 genomes into distance matrices and tested for correlation
between receptor pairs with Mantel tests. %LRR-RLK-XIl and %$LRR-RLP
show strong positive correlation with %NB-ARC (Extended DataFig. 7a).
Second, we obtained a phylogenetic tree froma previous publication®
for 238 species and tested whether percentage receptor distances
correlate with each other while taking into account the phylogenetic
distances witha partial Mantel test. Again, %LRR-RLK-XIl and %LRR-RLP
show strong positive correlation with %NB-ARC (Extended Data Fig.
7b). Third, we tested for correlation between receptor percentages
and phylogenetic distances directly. Whereas almost all %LRR-RLKs sig-
nificantly correlate with the phylogeny, %LRR-RLK-XII, %LRR-RLPs and
%NB-ARC do not (Extended DataFig. 7c). Taken together, we conclude
that PRR gene families specifically involved in pathogen recognition
co-expand or co-contract with NB-ARC gene families.

Expansion and contraction ofimmune receptor
families

We observed a strong linear correlation between %NB-ARC and
%LRR-RLK-XII and %LRR-RLP in angiosperms, monocots, eudicots
and multiple plant clades (Extended Data Fig. 8). Next, we checked
if NB-ARC gene family contraction coincides with PRR gene family
contractioninorganisms adapted to specific lifestyles, such as parasit-
ism and carnivorism. The Alismatales and Lentibulariaceae lineages

show areductionin the size of NB-ARC gene repertoires’, and species
from theselineages also have low %PRRs (%LRR-RLP, %LRR-RLK-XIland
%LysM-RLK). These include Genislea aurea, Utricularia gibba, Utricu-
laria reniformis, Zostera marina, Zostera muelleri, Lemna minor, Wolf-
fia australiana and Spirodela polyrhiza (Fig. 2c, Extended Data Fig. 9,
Supplementary Table 3 and Supplementary Fig. 6). We infer that the
%NB-ARC and %LRR-RLK correlation is not due just to co-expansion, but
also co-contraction. Carnivorous, aquatic and parasitic plant genomes
carry few NLRs'***. We tested if the number of cell-surface immune
receptorsisalsoreducedinthese plants. Compared with species that
arenot adapted to these lifestyles, carnivorous, aquatic and parasitic
plant genomes have lower %NB-ARC, %LRR-RLK-XII and %LRR-RLP
(Extended Data Fig. 9 and Supplementary Fig. 6). These include Sap-
ria himalayana, Cephalotus follicularis, Drosera spatulata, Dionaea
muscipula and Aldrovanda vesiculosa. Notably, %LRR-RLK (total) in
these groups is similar to other plant species, as are most other LRR-RLK
subgroups (Supplementary Fig. 6).

Some other species and genera also show lower %$NB-ARC,
%LRR-RLK and %LRR-RLP. For example, the Cucurbitaceae show far
fewerimmune receptors than the phylogenetically close Malpighiales
or Fagales clades (Fig. 1, Supplementary Fig. 4 and Supplementary
Table 3). Remarkably, in the monocot species Oropetium thoma-
ceum, we observed only 0.0558% NB-ARC containing proteins and
no LRR-RLK-XII. This contrasts with the other members of the Poales,
where high %PRRs and %¥NB-ARCs are more frequent (Fig. 1 and Sup-
plementary Table 3). O. thomaeum s an atypical member in the Poales.
Thisdrought-tolerant resurrection grass has the smallest known grass
genome (245 Mb) and cansurvive losing 95% of cellular water®. Despite
itssmallgenome, O. thomaeum has a similar number of predicted pro-
teins as other Poales species such as Ananas comosus, Oryzalongistami-
nata and Triticum urartu, suggesting that the contraction of immune
receptor families could be independent of the reduced genome size.

Onthe other hand, some plant groups show much largerimmune
receptor families. Many species of the order Poales show high %LRR-RLK,
%LRR-RLP and %$NB-ARC, most notably inthe Oryza and Triticum genera
(Fig. 1and Supplementary Fig. 4). In addition, many tree species also
showahigh proportion of PRR and NB-ARC proteinsin their proteomes.
These include Eucalyptus grandis, Castanea dentata, Corymbia citrio-
dora, Quercusrubra, Quercuslobata, Coffea canephora, Prunus avium,
Malusdomestica, Theobroma cacao and Citrus species (Fig.2c, Extended
Data Fig. 9 and Supplementary Table 3). Thus, some plant lifestyles
mightalso correlate with expansion ofimmune receptor gene families.

Previously, analysis of the Solanum lycopersicum genome has
suggested that NLRs, RLPs and RLKs might form genomic clusters®.
Genomic clustering could mean that expansion/contraction of agene
family could result in genes in close proximity indirectly expand-
ing in tandem. To determine if concerted expansion/contraction of
immune receptor families is due to genomic clustering, we investi-
gated the Solanum tuberosum, Zea mays and Oryza sativa genomes.
Inallthree genomes, many LRR-RLK-XIland LRR-RLPloci overlap with
NB-ARC-encoding loci (Supplementary Fig. 7). To quantify this, we
calculated the average distance of LRR-RLKs and LRR-RLPs to the clos-
est NB-ARC encoding genes and compared with a distribution of ran-
domly selected genes (for details, see Methods). Both LRR-RLK-XlIs and
LRR-RLPs arelocated closer to NB-ARC genes than randomly selected
genes. However, LRR-RLK-1Il and LRR-RLK-XI genes are also located

Fig.2| Concerted expansion and contraction of cell-surface and intracellular
immune receptor genesin plant genomes. a,b, Correlation between %NB-

ARC and %LRR-RLKs and %PRRs in 300 angiosperms. Bar chart represents the
Pearson correlation coefficient, with significant values indicated with asterisks.
Two-sided test of significance was performed, and Bonferroni correction was
performed to adjust the Pvalue for the multiple independent tests performed
(Extended Data Fig. 6). Summary of statistical analyses and individual P values
are provided in Supplementary Table 4. ¢, Scatter plot of %LRR-RLP + LRR-RLK-XII

against %NB-ARC. Black line represents the linear trend, with dark-grey shade
representing the 95% confidence interval and light-grey shade representing the
95% prediction interval. Several parasitic species, carnivorous species, aquatic
species and trees areindicated as yellow inverted triangles, orange stars, blue
circlesand brown pentagons, respectively. Model organisms are also indicated
as spheres of different colours. d, Schematicillustration of the co-expansion and
co-contraction ofimmune receptors in plant genomes.
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nearby to NB-ARC genes (Extended Data Fig. 10). As %LRR-RLK-III
and %LRR-RLK-XI do not show positive correlation with %$NB-ARC,
we conclude that, while NB-ARC-encoding genes can form genomic

than genomic clustering.
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clusters adjacent to LRR-RLK-XIIs, the co-expansion/contraction of
these immune receptors is likely to be caused by mechanisms other
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Discussion

Previously it was shown that cell-surface and intracellular immune
systems exhibit mutual potentiation and inter-dependency® . Here
we show that, inaddition to their functional relationship, thereis also
an evolutionary correlation between the numbers of cell-surface and
intracellular immune receptors. Expansion and/or contraction of
intracellular NLRs coincides with expansion and/or contraction of
cell-surface PRRs involved in pathogen recognition (Fig. 2d). These
observations are consistent with previous reports'®***5,

We propose that pathogen pressure shapes the immune recep-
tor diversity and repertoire, which, as a result, is determined by plant
lifestyles and their ecological niches. We observed high %PRR and
%NB-ARC inmany Oryza and Triticum species. Grasses typically growin
high densities and are frequently challenged by rust and blast species
that produce numerous, wind-dispersed spores with high genetic diver-
sity. Genetic exchange by sexual reproduction and somatic hybridiza-
tion drives the emergence of new virulent strains®, such as the Ug99
strain of the wheat stem rust pathogen Pucciniagraminisf. sp. tritici*°.
An expanded repertoire of immune receptors and increased hetero-
geneity in populations could be a result of high pressure from these
pathogens. Conversely, it has been proposed that the reduced root sys-
temin parasitic and carnivorous plants results in fewer interactions or
entry routes for pathogens?. Similarly, partial or complete submersion
ofaquaticspeciesresultsinreduced exposure to airborne pathogenic
spores, removinganinterface for interaction with pathogens. Lifespan
may also drive changes in the immune receptor repertoire. We found
thattrees generally show higher %PRR and %NB-ARC than other species.
While annual plants are subject to shorter periods of pathogen pressure
before reproduction, biennial or perennial plants, especially trees,
must survive for much longer. Conceivably, this long-term pathogen
pressure could drive the expansion ofimmune receptor gene families.

As parasite pressure drives the retention of sexual reproduction that
reshuffles immune receptor alleles each generation®, inbreeding spe-
cies may require an increased number of immune receptors compared
with their outbreeding ancestors, an outcome that can also result from
polyploidy. As the concerted expansion and contraction of immune
receptorsinplantgenomesisnot duetogenomic clustering, further study
isneeded to understand the mechanism(s) underpinning these observa-
tions. As functionally inter-dependent genes often co-expand/contract
together, itis likely that the functional relationship between cell-surface
and intracellularimmune receptorsis conserved across plant species.

Methods

LRR-RLK identification

Protein sequences from all 350 plant proteomes were first filtered
for the primary gene model. Sequences shorter than 250 amino
acids (AA) were removed as they are unlikely LRR-RLKs. The remain-
ing proteins were searched for the presence of a protein kinase
domain (PFAM PF00069.26) and an LRR domain (PFAM PF18805.2,
PF18831.2, PF18837.2, PF00560.34, PF07723.14, PF07725.13, PF12799.8,
PF13306.7, PF13516.7, PF13855.7, PF14580.7, PF01463.25, PF08263.13
and PF01462.19) with hmmer (version 3.1b2, options -E 1e-10 for the
kinase domain and -E 10e-3 for the LRR domains®?). The Arabidopsis
sequences that were previously classified into 20 LRR-RLK subgroups™
were filtered likewise for the presence of LRR and kinase domains.
Eleven sequences were removed because they did not pass the thresh-
old filter for the kinase (two sequences) and LRR (nine sequences)
domainsearches. To classify all candidate sequences according to the
Arabidopsis subgroups, the highest-scoring kinase domain region of
each candidate was extracted and aligned to the Arabidopsis reference
sequences using diamond* (version 0.9.26, options -e 1e-10 -k 300).

Phylogeny
The phylogeny of each subgroup was inferred using the kinase domains.
Sequences were aligned with FAMSA*. Alignments were not trimmed™

and phylogenetic trees were inferred with FastTree* (version 2.1.11SSE3,
option-Ig). Trees were rooted with gotree® (v0.4.2) using the sequences
belongingtothe mostbasal species as outgroup (accordingto the taxo-
nomic tree from National Center for Biotechnology Information (NCBI)).

LRR-RLPidentification

LRR-RLPs were identified similarly but filtering for proteins of a mini-
mallength of 150 AAfirst. Proteins were then searched for the presence
of LRR domains and the absence of a kinase domain (hmmer options
as above), as well as the presence of a C3F domain (hmmer option -E
1le-10 and a minimal alignment length of 140). The hmmer profile for
the C3F domain was obtained from a multiple alignment of Arabidop-
sis LRR-RLPs’®, The domain was trimmed manually, starting from the
conserved Y inthe C2 domain (Fig. 6bin ref.*?). Candidates were finally
filtered for the presence of atransmembrane domain using tmhmm*°
with default settings (version 2.0).

NB-ARCidentification

NB-ARCs wereidentified using the set of proteins withaminimallength
of 150 AA. Proteins were then searched for the presence of NB-ARC
(PF00931.23) domains (hmmer option -E 1e-10 for NB-ARC).

LysMidentification

LysM-RLKs and LysM-RLPs were identified using the set of proteins with
aminimal length of 150 AA. Proteins were filtered for the presence of
aLysM domain (PF01476.21, hmmer option -max-E1000-incE1000-
incdomE 1000) and atransmembrane domain*® (tmhmm, version 2.0).
Candidates were splitinto LysM-RLKs and LysM-RLPs by searching for
presence/absence of akinase domain (PF00069.26, as above).

Test for co-occurrence of NB-ARC, LRR-RLKs and LRR-RLPs

Totest whether two gene groups are closer to each other than expected
by chance, we used a test based on random sampling, for example,
group A (LRR-RLK-XII) with n and group B (NB-ARCs) with m genes.
The observed distance was calculated as the average closest distance
between genes in group A and genes in group B. A distribution for the
expected distance was obtained by randomly sampling m genes and cal-
culating the average closest distance of genesin group Atothegenesin
therandomset (1,000 times). Genes were sampled from the list of genes
that was used to search for the genesingroup B (Supplementary Fig.1).

Taxonomic tree

The taxonomic tree was obtained from NCBI (https:/www.ncbi.nlm.
nih.gov/Taxonomy/CommonTree/wwwcmt.cgi). Phylogenetic tree
ofthe 350 speciesis generated by phyloT (https://phylot.biobyte.de/)
based on NCBI taxonomy database. Phylogenetics trees were visual-
ized and figures were generated by iTOL*. The tree used for testing
the relationship between the fraction of candidates found and the
phylogenetic distances were obtained from ref. . The latter contained
238 out of the 350 genomes analysed.

Test for similarities in fraction of proteins and phylogenetic
relationship

Totest whether the fraction of certain proteins (for example, NB-ARCs)
found per species correlated with the phylogenetic relationships, we
converted the fractions and the phylogenetic tree to distance matrices
andtested for correlation with mantel tests (R package vegan, version
2.5-7with 10,000 permutations). Analogously, we also tested for cor-
relation between distance matrices obtained for two different sets of
proteins (for example, LRR-RLK-XII and NB-ARCs). P values were cor-
rected for multiple testing to reflect false discovery rates*.

Statistical analyses
Statistical analyses were performed with OriginPro (version 2022;
https://www.originlab.com/) and R (version 3.4.4).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data generated or analysed during this study are included in the
article or supplementary information files. Proteomes of 350 species
used in this study are downloaded from either NCBI, Phyozome13,
ensemblplants,JGI, Fernbase, Penium Genome Database or the publi-
cations directly. Acomplete list of the proteomes and associated data
used in this study are provided in Supplementary Table 1. Sequences
of the identified receptors and phylogenetic analyses are available
onZenodo®.

Code availability

Allthe analyses were done as described in Methods with publicly avail-
able tools (hmmer, tmhmm, diamond, FastTree, FAMSA, gotree and
R).Scriptsare available on github.com/MWSchmid/Ngou-et-al.-2022.
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Extended Data Fig. 1| LRR-RLK subgroups in plants. Table representing

the characterized subgroup members in Arabidopsis thaliana; the biological
processes of which the characterized members are involved in, and expression

of subgroup members during effector-triggered immunity (ETI). Red shade
represents increased expression and blue shade represents decreased expression
during ETI. X-axis values represents log,(fold change during ETI relative to
untreated samples). Box-plot elements: centre line, median; bounds of box, 25th

6 -4 -2

0 2 4

and 75th percentiles; whiskers, 1.5 x IQR from 25th and 75th percentiles. RNA-seq
dataanalysed here were reported previously®. ETlis activated by estradiol-
induced expression of AvrRps4 in Arabidopsis thaliana for 4 hours. Number of
genes (n) from each LRR-RLK subgroup:1,n=15;1,n=15; 11, n=33;1V,n=4;V,
n=6;VI-1,n=4;V1-2,n=5;VIl,n=7;VIII-1,n=4; VIII-2,n=12;1X,n=3;Xa,n=3;
Xb,n=9;XI,n=28;XIl,n=8;Xllla,n=3; Xlllb,n=3;XIV,n=2;XV,n=2; XVl,n=1.
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Extended Data Fig. 3| Identification of receptor gene families in 350 plant RLK genes were further classified into 20 subgroups according to their alignment
genomes. Protein sequences from all 350 proteomes were first filtered for the to the Arabidopsis thaliana subgroups. Details of the pipeline are described in the
primary gene models. Primary-transcript proteomes were then filtered and NB- methods section.
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Extended Data Fig. 7 | Test for similarities in fraction of receptor proteins and
phylogenetic relationships. To test whether the receptor percentage (%) found
per species correlate with phylogenetic relationship, %receptor and the species
phylogenetic tree were converted to distance matrices and tested for correlation
with the Mantel tests. a, Mantel test for the correlation between distance
matrices obtained for % receptor family proteins in 350 species. Histogram shows
the correlation coefficient between % PRRs and % NB-ARCs. b, Partial Mantel

test for the correlation between distance matrices obtained for % receptorin

238 species, taking phylogenetic distances into account. Histogram shows the
correlation coefficient between % PRRs and % NB-ARCs. ¢, Mantel test for the
correlation between distance matrices obtained for %receptors and phylogenic
distancesin 238 species. Histogram shows the correlation coefficient between
%receptor and phylogeny. One-sided test of significance was performed. P-values
were corrected for multiple testing to reflect false discovery rates (FDRs, for
details please refer to methods). Summary of statistical analyses are provided in
Supplementary Table 4.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Correlation between %PRRs and %NLRs in plant clades.
a, Phylogenetic tree of the species used in the analysis. Pearson correlation
between %LRR-RLK_XII+LRR-RLP and %NB-ARC inb, Monocots, ¢, Eudicots,

d, Poales, e, Fabids, f, Malvids and h, Asterids. g, Phylogenetic tree of the
Asterids clade used in the analysis. Carnivorous plants are marked with orange

stars; parasitic plants are marked with yellow triangles and aquatic plants

are marked with blue circles. i, Pearson correlation between %LRR-RLK_XII+LRR-
RLP and %NB-ARC in the Asterids clade, excluding carnivorous, parasitic, and
aquatic plants.
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Extended Data Fig. 9 | Expansion and contraction of PRR- and NLR-gene
families in plants adapted to particular lifestyles and ecological niches. a,
List of parasitic species, carnivorous species, aquatic species and trees from this
study. b, (left) Scatter plot of % LRR-RLP+LRR-RLK-XII against % NB-ARC in 300
angiosperms. Parasitic, carnivorous, aquatic and trees species are highlighted
asyellow inverted triangles, orange stars, blue circles and brown pentagons,
respectively. (right) Box-plot of % NB-ARC, LRR-RLP, LRR-RLK-XIl and LRR-RLK-
Ilin parasitic (yellow), carnivorous (orange), aquatic (blue) and trees species

(brown) compared to other plant species (gray). Box-plot elements: centre line,
median; bounds of box, 25th and 75th percentiles; whiskers, 1.5 x IQR from 25th
and 75th percentiles. A two-sided Welch'’s t-test was used to analyze significant
differences between the groups (*P < 0.05; ns, not significant). Exact P-values
are provided in Supplementary Table 4. Number of species (n) in each category:
non-parasitic species, n = 295; parasitic species, n = 5; non-carnivorous species,
n=293; carnivorous species, n = 7; non-aquatic species, n = 287; aquatic species,
n=13;tree species, n =225; non-tree species, n=75.
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Extended Data Fig.10 | Genomic clustering of LRR-RLKs, LRR-RLPs and
NB-ARCsin Solanum tuberosum, Zeamays and Oryzasativa. a, c, e. Table
summarizing the statistical analysis of genomic clustering between PRRs
(LRR-RLKs and LRR-RLPs) and NB-ARCs in Solanum tuberosum (a), Zea mays

(c) and Oryzassativa (e). The 90-percentile distance (bp) between PRR gene
family members and the next closest NB-ARC genes were calculated. Thisis

then compared to a distribution (n =1000) of 90-percentile distances between
randomly-sampled genes and the next closest NB-ARC genes. One-sided test was

Distance Distance

performed to test the differences between tested distance (PRRs) and sampled
distance (randomly-sampled). P-values are calculated based on the comparison
t01000 cases of randomly-sampled genes. Significant values are indicated in
bold (p-value <0.05 is considered as significant). b, d, f. Distribution (n =1000)
of 90-percentile distances (bp) between randomly-sampled genes and the next
closest NB-ARC genes in Solanum tuberosum (b), Zea mays (d) and Oryza sativa
(f). Red lines indicate the 90-percentile distance between the corresponding PRR
gene family members and the next closest NB-ARC genes.
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downloaded from either NCBI, Phyozome13, ensemblplants, JGI, Fernbase, Penium Genome Database or directly from the publications. A complete list of the
proteomes and associated data used in this study are provided in Supplementary Table 1 Sequences of the identified receptors and phylogenetic analyses are
available on Zenodo (https://doi.org/10.1101/2022.01.01.474684).
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Sample size The sample size was determined by the number of publicly available plant genome assemblies. 350 species with a representative genome
assembly were included.

Data exclusions No data were excluded from the analyses.
Replication Does not apply as this study does not comprise a planned experiment with experimental groups. We selected all species for which a high-
quality proteome was publicly available at the time of the study. Only bioinformatic approach was used in this study, thus we believe that

replicability does not apply in this context.

Randomization Does not apply as this study does not comprise a planned experiment with experimental groups. We selected all species for which a high-
quality proteome was publicly available at the time of the study.

Blinding We analyzed data from previously published studies and we did not include any blinding measures. We were not involved in the sample
handling or sequencing of these genomes. Thus, blinding was not relevant to this study.
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