
Citation: Khampuengson, T.; Wang,

W. Deep Reinforcement Learning

Ensemble for Detecting Anomaly in

Telemetry Water Level Data. Water

2022, 14, 2492. https://doi.org/

10.3390/w14162492

Academic Editors: Fi-John Chang,

Li-Chiu Chang and Jui-Fa Chen

Received: 1 July 2022

Accepted: 8 August 2022

Published: 13 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Deep Reinforcement Learning Ensemble for Detecting
Anomaly in Telemetry Water Level Data
Thakolpat Khampuengson 1,2,* and Wenjia Wang 1

1 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
2 Hydro-Informatics Institutes, Bangkok 10900, Thailand
* Correspondence: t.khampuengson@uea.ac.uk

Abstract: Water levels in rivers are measured by various devices installed mostly in remote locations
along the rivers, and the collected data are then transmitted via telemetry systems to a data centre
for further analysis and utilisation, including producing early warnings for risk situations. So, the
data quality is essential. However, the devices in the telemetry station may malfunction and cause
errors in the data, which can result in false alarms or missed true alarms. Finding these errors
requires experienced humans with specialised knowledge, which is very time-consuming and also
inconsistent. Thus, there is a need to develop an automated approach. In this paper, we firstly
investigated the applicability of Deep Reinforcement Learning (DRL). The testing results show that
whilst they are more accurate than some other machine learning models, particularly in identifying
unknown anomalies, they lacked consistency. Therefore, we proposed an ensemble approach that
combines DRL models to improve consistency and also accuracy. Compared with other models,
including Multilayer Perceptrons (MLP) and Long Short-Term Memory (LSTM), our ensemble models
are not only more accurate in most cases, but more importantly, more reliable.

Keywords: anomaly detection; deep reinforcement learning; telemetry water level; time series;
ensemble

1. Introduction

As climate change becomes more apparent, strong storms that bring heavy rainfalls
occur with unusual patterns in many parts of the world. They can cause severe floods
that result in devastating damages to infrastructure and loss of human life. In Thailand,
flooding occurs more frequently and can cause enormous damages and huge economic
losses of up to $46.5 billions a year [1]. On the other hand, drought happened in several
parts of Thailand in 2015, notably in the Chao Phraya River Basin, the largest river basin
in Thailand. This is consistent with a report from the UNDRR (2020) [2] that the ongoing
drought crisis from 2015 to 2016 was the most severe drought in Thailand in 20 years.
Therefore, it is essential to monitor water levels around the country because they form an
important basis for making decisions on early warning.

In order to monitor the water levels in rivers, the Hydro Informatics Institute (HII) has
been studying, building, and deploying water level telemetry stations around Thailand
since 2013. Every ten minutes, each station transmits the measured data to the HII data
centre through cellular or satellite networks. However, the water level data collected from
telemetry station sensors might be incorrect due to some factors, such as human or animal
activity, malfunctioning equipment, or interference of items surrounding the sensors. Any
irregularity in the data might result in an inaccurate decision, such as false alarms or missed
true alarms. Although water level data may be manually reviewed before being distributed
for further analysis, the procedure necessitates the use of skilled specialists who examine
the data from each station and make judgments about any probable abnormalities that may
exist. This process is slow, very time-consuming and also unreliable. This motivates us to

Water 2022, 14, 2492. https://doi.org/10.3390/w14162492 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14162492
https://doi.org/10.3390/w14162492
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-8754-4147
https://orcid.org/0000-0001-9372-0418
https://doi.org/10.3390/w14162492
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14162492?type=check_update&version=2

Water 2022, 14, 2492 2 of 28

develop an automated approach that can identify irregularities in a more accurate, efficient,
and reliable manner.

In our previous work [3], we studied seven statistics-based models for detecting the
anomalies. We found that although an individual model can be used to identify anomalies,
it produces too many false alarms for some situations, such as when the water level will
dramatically rise before a flood occurs, which is a scenario notably different from the others,
and hence led to that the majority of statistical models identify such points as anomalous.
We also created two ensembles as the ensemble methods [4], if constructed properly,
have been demonstrated to be able to improve accuracy and reliability over individual
models. The first ensemble was built with a simple strategy as it just combines some
selected models with majority voting as its decision-making function. However, the test
results showed that the simple ensemble models did not work well enough, even though
they were usually better than most of the basic individual models. We then developed
a complex ensemble method. It basically builds an ensemble of some simple ensembles
selected from the candidates with some criteria, and these simple ensembles’ outputs are
combined with a weighted function. The findings indicate that a complex ensemble can
improve the accuracy and consistency in recognising both abnormal and normal data.

In recent decades, deep machine learning methods have been demonstrated to be
more powerful than conventional machine learning techniques in tackling complex prob-
lems such as speech recognition, handwriting recognition, image recognition, and natural
language processing. One of these methods is the Long Short-Term Memory (LSTM) [5],
outperformed the Multilayer Perceptron (MLP), although trained with only normal data,
for detecting anomaly patterns from ECG signals. Moreover, the C-LSTM methods, which
integrated a convolutional neural network (CNN), well performed to detect anomaly sig-
nals that are difficult to classify in web traffic data as shown in [6]. Another deep neural
network based on anomaly detection technique was recently proposed, called DeepAnt,
which consists of a time series predictor that uses CNN to predict the values of the next
time step and classify the predicted values as normal or abnormal by passing them to the
anomaly detector [7].

Reinforcement Learning (RL) is an algorithm that imitates the human learning process.
It is based on the self-learning process in which an agent learns by interacting with the
environment without any assumptions or rules. With the advantage of being able to
learn on their own, it can identify unknown anomalies [8], which gives it an edge over
other models. RL has been applied to a variety of applications such as games [9,10],
robotics [11,12], natural language processing [13,14], computer vision [15], etc. It has also
been used in some studies to detect anomalies in data, such as an experiment [16] that
shows the use of the deep Q-function network (DQN) algorithm to detect anomalies in
time series. Network intrusion detection systems (NIDS) are developed by [17], based on
deep reinforcement learning. They utilised it to identify anomalous traffic on the campus
network with a combination of flexible switching, learning, and detection modes. When the
detection model performs below the threshold, the model is retrained. In the comparison
against three traditional machine learning approaches, their model outperformed on two
benchmark datasets, NSL-KDD and UNSW-NB15. A binary imbalanced classification
model based on deep reinforcement learning (DRL) was introduced in [18]. They developed
the reward function by setting the rewards for the minority class to be greater than the
rewards for the majority class, which made DRL paying more attention to the minority class.
They compared it to seven imbalanced learning methods and found that it outperformed
other models in text datasets and extremely imbalanced data sets.

Although deep learning and RL methods have achieved excellent results in time series,
one common issue is that their performance varies and it is hard to predict when they
do better and when they perform relatively poor. In order to improve their consistency
and accuracy, ensemble methods can be used. One example of such a method is the
technique called particle swarm optimization (PSO), which was developed [19] to predict
the changing trend of the Mexican Stock Exchange by combining several neural networks.

Water 2022, 14, 2492 3 of 28

An ensemble of MLP, Backpropagation network (BPN), and LSTM, as shown in [20],
was used to make models for detecting anomalous traffic in a network. The ensemble
approach that utilises DRL schemes to maximise investment in stock trading was developed
in [21]. They trained a DRL agent and obtained an ensemble trading strategy using three
different actor-critics-based algorithms that outperformed the individual algorithm and
two baselines in terms of the risk-adjusted return. Another ensemble RL that employed
three types of deep neural networks in Q-learning and used ensemble techniques to make
the final decision to increase prediction accuracy for wind speed short-term forecasting
was suggested [22].

We discovered that none of the DRL methods have been applied to identify anomalies
in telemetry water level data. We wonder whether DRL is applicable for identifying
abnormalities in telemetry water level data. Even if the final DRL models perform well
on training data, there is no guarantee that they will also perform well on testing data.
Previous research has shown that combining many models that were trained in different
ways may be more accurate than any of the individual models. So, in this paper, we aim to
answer the following two research questions.

(Q1) Is DRL applicable and effective for identifying abnormalities in water level data?

(Q2) Can we build some ensembles of DRL to improve accuracy and consistency?

To answer them, in this paper, we conducted intensive investigation by evaluated the
accuracy of DRL models with real-world data. Then we proposed a strategy to build some
ensembles by selecting some suitable DRL models. The testing results show that DRL is
applicable for identifying abnormalities in telemetry water level data with the advantage
of identifying an unknown anomaly. However, the process of training takes a long time.
The constructed ensembles not only improve accuracy and consistency, but also reduce the
rate of false alarms.

Thus, the main contributions of this paper are:

(C1) DRL models have been demonstrated to be able to detect anomalies in telemetry
water level data.

(C2) The ensembles we have constructed in this research with some suitable DRL mod-
els and use a weighted decision-making strategy can improve both accuracy and
consistency. The proposed approach has a potential to be further developed and
implemented for real-world application.

The rest of the paper is organised as follows: Section 2 overviews related work for
anomaly detection. Section 3 describes the methodology. Section 4 presents the experiment
design-from data preparation, parameters configurations, to evaluation metrics. Results
and discussions are provided in Sections 5 and 6; the conclusion and suggestions for further
work are summarised in Section 7.

2. Related Work

There are many methods for detecting anomalies in time series data. One basic
approach is to use statistics-based methods, as reviewed in [23,24]. For example, simple
and exponential smoothing techniques were used to identify anomalies in a continuous
data stream of temperature in an industrial steam turbine [25]. But in general whilst
they provided a baseline, they have a disadvantage in handling trends and periotics,
e.g., the water level will dramatically rise before the flood, which differs considerably
from the other data points and may lead to an increased false alarm rate. In addition,
they can be affected by the types of anomaly and some work well for a certain type
of problem. For example, for missing and outlier values, when the data is normally
distributed, the K-means clustering method [26] is usually used, as it is simple and relatively
effective. However, there is unfortunately no general guideline for choosing a method for a
given problem.

Water 2022, 14, 2492 4 of 28

Change Point Detection (CPD) is an important method for time series analysis. It
indicates an unexpected and significant change in the analysed time series stream data
and has been studied in many fields, as surveyed in [27,28]. However, the CPD has no
ability to detect anomalies since not all detected change points are abnormalities. Many
studies are being conducted to solve this problem by integrating CPD with other models
to increase anomaly detection effectiveness. For example, researchers from [29] presented
new techniques, called rule-based decision systems, that combine the results of anomaly
detection algorithms with CPD algorithms to produce a confidence score for determining
whether or not a data item is indeed anomalous. They tested their suggested method
using multivariate water consumption data collected from smart metres, and the findings
demonstrated that anomaly detection can be improved. Moreover, it has been proposed to
detect anomalies in file transfer by using the CPD to detect the current bandwidth status
from the server, then using this to calculate the expected file transfer time. The server
administrator has been notified when observed file transfers take longer than expected,
which may mean it may have something wrong [30]. The author of [31] investigated the
CUSUM algorithm for change point detection to detect SYN flood attacks. The results
demonstrated that the proposed algorithm provided robust performance with both high
and low intensity attacks. Although change point detection performed well in many
domains, the majority of them focused on changes in the behaviour of time series data
(sequence anomaly) rather than point anomaly, which is my primary research emphasis.
Furthermore, water level data at certain stations is strongly periodic with tidal effects,
resulting in numerous data points changing from high tides to low tides each day, which is
typical behaviour.

In recent decades, machine learning methods, including deep neural networks (DNNs),
have been satisfactorily implemented in various hydrological issues such as outlier de-
tection [32,33], water level prediction [34,35], data imputation [36], flood forecasting [37],
streamflow estimation [38], etc. For example, in [39], the authors proposed the R-ANFIS
(GL) method for modelling multistep-ahead flood forecasts of the Three Gorges Reservoir
(TGR) in China, which was developed by combining the recurrent adaptive-network-based
fuzzy inference system (R-ANFIS) with the genetic algorithm and the least square estimator
(GL). The authors of [40] presented a flood prediction by comparing the expected typhoon
tracking and the historical trajectory of typhoons in Taiwan in order to predict hydrographs
from rainfall projections impacted by typhoons. The PCA-SOM-NARX approach was devel-
oped by [41] to forecast urban floods, combining the advantages of three models. Principal
component analysis was used to derive the geographical distributions of urban floods
(PCA). To construct a topological feature map, high-dimensional inundation recordings
were grouped using a self-organizing map (SOM). To build 10-minute-ahead, multistep
flood prediction models, nonlinear autoregressive with exogenous inputs (NARX) was
utilised. The results showed that not only did the PCA-SOM-NARX approach produce
more stable and accurate multistep-ahead flood inundation depth forecasts, but it was also
more indicative of the geographical distribution of inundation caused by heavy rain events.
Even though we can use forecasting methods to find anomalies by using prediction error
as a threshold to classify data points as normal or not, it may take time to find the suitable
threshold for each station.

An autoencoder is an unsupervised learning neural network. It is comprised of two
parts: an encoder and a decoder. The encoder uses the concepts of dimension reduction
algorithms to convert the original data into the different representations with the under-
lying structure of the data remaining and ignoring the noise. Meanwhile, the decoder
reconstructs the data from the output of the encoder with as close of a resemblance as
possible to the original data. An autoencoder is effectively used to solve many applied
problems, from face recognition [42,43] and anomaly detection [44–47] to noise reduc-
tion [48–50]. In the time series domain, the authors of [51] proposed two autoencoder
ensemble frameworks for unsupervised outlier identification in time series data based on
sparsely connected recurrent neural networks, which addressed the issues from [52] given

Water 2022, 14, 2492 5 of 28

the poor results when using an autoencoder with time series data. In one of the frameworks
called the Independent Framework, multiple autoencoders are trained independently of
one another, whereas in the other framework, the Shared Framework, multiple autoen-
coders are trained jointly in a manner that is multitask learning. They experimented by
using univariate and multivariate real-world datasets. Experimental results revealed that
the suggested autoencoder ensembles with a shared framework outperform baselines and
state-of-the-art approaches. However, a disadvantage of this method is its high memory
consumption when training many autoencoders together. In the hydrological domain, the
authors of [53] presented the SAE-RNN model, which combined the stacked autoencoder
(SAE) with a recurrent neural network (RNN) for multistep-ahead flood inundation fore-
casting. They started with SAE to encode the high dimensionality of input datasets (flood
inundation depths), then utilised an LSTM-based RNN model to predict multistep-ahead
flood characteristics based on regional rainfall patterns, and then decoded the output by
SAE into regional flood inundation depths. They conducted experiments on datasets of
flood inundation depths gathered in Yilan County, Taiwan, and the findings demonstrated
that SAE-RNN can reliably estimate regional inundation depths in practical applications.

Time series based on ensemble methods have recently attracted attention. In a study
by [54], they introduced the method EN-RTON2, which is an ensemble model with real-
time updating using online learning and a submodel for real-time water level forecasts.
However, they experimented with fewer datasets, a smaller number of records, and lower
data frequency than our datasets. Furthermore, the authors offered no indication of the time
necessary for training models and forecasting, which may be inadequate in our case given
the number of stations and frequency of data transmission. The ensemble models were
proposed by [55], which applied the sliding window based ensemble method to find the
anomaly pattern in sensor data for preventing machine failure. They used a combination
of classical clustering algorithms and the principle of biclustering to construct clusters
representing different types of structure. Then they used these structures in a one-class
classifier to detect outliers. The accuracy of these methods was tested on a time series of
real-world datasets from the production of industry. The results have verified the accuracy
and the validity of the proposed methods.

Despite the fact that numerous studies have used different anomaly detection tech-
niques to tackle problems in many domains, only a few have focused on finding anomalies
in water level data. Furthermore, the various employed sensors, installation area, fre-
quency of data transmission, and measurement purposes lead to a variety of types of
anomalies. As a result, techniques that perform well with one set of data may not work
well with another.

3. Materials and Methods

This section describes firstly how deep reinforcement learning is constructed for
detecting anomalies in water level telemetry data; and then how an ensemble can be built
effectively by selecting suitable individual models to improve the accuracy of anomaly
detection. The frameworks of these investigations were implemented with Python and their
code can be accessed via GitHub (https://github.com/khaitao/RL-Anomaly-Detection-
Water-Level, The last check on 5 August 2022).

3.1. Reinforcement Learning (RL)

Reinforcement learning (RL) is a branch of machine learning and it is one of the most
active areas of research in artificial intelligence (AI), which is growing rapidly with a wide
variety of algorithms. It is goal-oriented learning. The learner, or agent, learns from the
result, or rewards, of its actions without being taught what actions to take. The way in
which the agent decides which action to perform depends on the policy, which can be in
the form of a lookup table or a complex search process. So, a policy function defines the
agent’s behaviour in an environment.

https://github.com/khaitao/RL-Anomaly-Detection-Water-Level
https://github.com/khaitao/RL-Anomaly-Detection-Water-Level

Water 2022, 14, 2492 6 of 28

Most techniques that are used to find the optimal policy for resolving the RL problem
are based on the Markov decision process (MDP), whereby the probability of next state
s′ depends only on the current state s and action a. It is represented by five important
variables [56]:

• A finite set of states (S), which may be discrete or continuous.
• A finite set of actions (A). The agent takes an action a from the action set A, a ∈ A.
• A transition probability (T(s, a, s′)), which is the probability to get from state s to

another state s′ with action a.
• A reward probability (R(s, a, s′) ∈ R), which is the reward after going from state s to

another state s′ with action a.
• A discount factor (γ), which focuses on controls the important immediate and future

rewards and lies within 0 to 1, γ ∈ [0, 1].

The goal of learning is to maximise the expected cumulative reward in each episode.
The agent should try to maximise the reward from any state s. The total reward R at state s
as the sum of current rewards and the total discounted reward at the next state s′, which
can be represented as follow:

R(s) = R(s, a, s′) + γR(s′)

The algorithm that has been widely used in RL is Q-learning. It tries to maximize the
values from Q-function, as shown in Equation (1), which can be approximated using the
Bellman equation, which represents how good it is for an agent to perform a particular
action in a state s.

NewQ(s, a) = Q(s, a) + α(r + γ max Q′(s′, a′)−Q(s, a)) (1)

where α is the learning rate, and max Q′(s′, a′) is the highest Q value between possible
actions from the new state s′.

3.1.1. Deep Q-Learning Network

Q-learning has a limitation: it does not perform well with many states and actions.
Furthermore, going through all the actions in each state would be time-consuming. There-
fore, the deep Q-learning network [57] (DQN) has been developed to solve those issues
by using a neural network (NN). The Q-value is approximated by an NN with weights w,
instead of finding the optimal Q-value through all possible state-action pairs, and errors are
minimized through gradient descent. The overall process of DRL is depicted in Figure 1.

An agent usually does not know what action is best at the beginning of training. It may
select the greatest action that is the best based on history (exploitation) or may explore new
possibilities that may be better or worse (exploration). However, when should an agent
“exploit” rather than “explore”? This remains a challenge since if the chosen action results
in a faulty selection, an agent may get stuck in incorrect learning for a time. The epsilon-
greedy algorithm is a simple way to balance exploration and exploitation. It does this by
randomly choosing between exploration and exploitation and using the hyperparameter
ε to switch between random action and Q-values, as shown in Equation (2). The normal
procedure is to begin with ε = 1.0 and gradually lower it to a small value, such as 0.01.

a =

select a random action a with probability ε

argmaxaQ(s, a) otherwise

(2)

Moreover, we make a transition from one state s to the next state s′ by performing
some action a and receive a reward r as T(s, a, s′). So, neural networks may overfit with
correlated experience from those transitions. So, we saved the transition information in
a buffer called replay memory and trained the DQN with a random transition in replay

Water 2022, 14, 2492 7 of 28

memory instead of training with last transitions. It will reduce the correlated experience of
learning each time, and then it will reduce the overfitting of the model.

Figure 1. Overall process of DRL (Deep Reinforcement Learning).

3.1.2. Deep Reinforcement Learning Model (DRL)

The action of the DRL agent is to determine whether or not a data point is an ab-
normality. We assigned a value of 1 to the anomaly class and a value of 0 to the normal
class. DQN was chosen as our reinforcement learning strategy. When state s is received, an
MLP is used as the RL agent’s brain to generate Q-value, which is then followed by the Q
function. The epsilon decay approach is used for exploration and exploitation. In order to
explore the entire environment space, we use the greedy factor ε to determine whether our
DRL agent should follow the Q function or randomly select an action.

For each iteration, DQN receives the set of states S and predicts the label for training
the DRL model. The transition is stored in replay memory. In each epoch, a mini batch of
replay memory is sampled and used to train the model for loss minimization. Moreover,
whether the model will learn well or not depends on the rewards function. The good
reward function has an effect on the model’s performance. If we offer a high reward for
correctly identifying normal data in datasets, DRL may identify all data as normal in order
to get the highest score. If, on the other hand, we give a high reward for finding outliers,
DRL might label all data as outliers to get the best score.

Since our datasets are imbalanced, we will give the reward of the minority class higher
than the majority class and give the penalty when our model misclassifies [18]. This will
impact on the results in Q-values, then the model will select the best action to maximize
the rewards. The reward function is defined below

rewards =

A predicted anomaly correct
B predicted wrong
C predicted normal correct

(3)

A general issue in training neural networks is to determine how long they should
be trained. Too few epochs may result in the model learning insufficiently, whereas too
many epochs may result in the model overfitting. So, the performance of the model must
be monitored during training by evaluating it on a validation data set at the end of each
epoch and updating the model if the performance of the model on a validation is better
than at the previous epoch. In our experiments, we selected 5 criteria as the conditions for
generating the models: four performance metrics and the maximum number of epochs. The
four measures are F1-score, the reward of each epoch, accuracy, and validation loss values.
In the end, we will have five models: the finished training model (DRL), the models with

Water 2022, 14, 2492 8 of 28

the highest F1-score (DRLF1), the models with the highest rewards (DRLRwd), the model
with the highest accuracy (DRLAcc), and the model with the lowest validation loss values
(DRLValid).

3.1.3. Ensemble Methods

In general, the capacity of an individual model is limited and may have only learned
some parts of the problem, and hence may make mistakes in the areas where it has not
learned sufficiently. Therefore, it can be useful to combine some individual models to form
an ensemble to allow them to work collectively to compensate for each other’s weaknesses.
Many studies [4,58–60] have shown that if an ensemble is built with diverse models and
appropriate decision-making functions, it can improve the accuracy of classification and
also reliability. In our research, we created multiple ensembles by selecting suitable DRL
models that had been generated from the previous experiments. We investigated two
combining methods to aggregate the outputs from the member models of an ensemble:
simple majority voting and weighted voting algorithms.

• Majority Voting: The predictions of each model in an ensemble have to be aggregated,
and the final prediction is the class that gets the most votes. Each of our ensembles will
be built with an odd number of classifiers in order to avoid a tie situation in voting.

• Weighted Voting: As the performance of individual models is usually different, treat-
ing them all the same way in decision marking appears unlogical, so we devised a
weighted voting mechanism to take this difference into consideration when making
a final decision in an ensemble. With the weighted voting method, the contribution
from a model is weighed by its performance. For a model mi, after it has been trained
with the training data, its weight score wi is derived by using its F1 score that is
calculated on the given validation dataset; we then have a set of F1-scores of each
model, F1m = {F1m1, F1m2, ..., F1mM}. Then, these F1-scores are ranked to find the
maximum and minimum scores. Finally, we calculate the normalised weighting score
wi for module mi using the equation below:

wi =
F1mi −min(F1m)

max(F1m)−min(F1m)
, ∀ i = 1, ..., M (4)

The output of an ensemble, Φ(x), is calculated by multiplying the weight with the
output of an individual module and taking the argument of maxima as follows:

Φ(x) = argmax
M

∑
i=1

wimi(x) (5)

where M is the number of models in an ensemble, and mi(x) is the predicted class of
model i.

3.2. Data Labelling

Water level data from telemetry stations were unlabelled for anomalies. It is then
necessary to assign ground truth labels to all anomalies and normal data points in each
time series of water level data in order to train the models with supervised algorithms.
This was manually done by a group of the domain experts at the HII in a manner similar to
the ensemble approach. Each specialist looked at the data and identified all the anomalies
based on their experience. Then their judgements were aggregated by taking a consensus
to decide if a data point is an anomaly or not.

3.3. Datasets

Since the DRL algorithm takes a lot of time for training on the computing facilities
that we had, we were limited to consider some relatively small datasets. After data
preprocessing, the 8 stations from the HII telemetry water level station were chosen for

Water 2022, 14, 2492 9 of 28

use in this experiment, including CPY011, CPY012, CPY013, CPY014, CPY015, CPY016,
CPY017, and YOM009. We chose the datasets from May and June for CPY011, CPY012,
CPY013, CPY015, CPY016, and CPY017 in 2016 and similar months in 2015 for CPY014 and
YOM009 because they have a low percentage of missing data. Figure 2 shows the water
levels of these eight stations. It is visually clear that station YOM009 has very different
behaviour from the others because it is located in a different region.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 2. Water level data from eight stations: CPY011, CPY012, CPY013, CPY014, CPY015, CPY016,
CPY017, and YOM009 (a–h). The different colours show the partitions of the data for training (blue),
validation (orange) and testing (green). The anomalies are indicated by red crosses, x.

All the data are normalised and divided into 3 subsets, with the first 60% of a time
series for training, the next 20% for validating, and the last 20% for testing, respectively.
Table 1 shows the demographics of one partition of the data from each station. As can be
seen, in general, the rates of anomalies are quite low for most stations, but the variances are
considerably large. For example, they varied from 0.14% to 7.22% in the training data.

Water 2022, 14, 2492 10 of 28

Table 1. Demographic summary of the water level data of 8 stations used in this research.

Code Training Validating Testing Total
Rec. Anomaly Rec. Anomaly(%) Rec. Anomaly(%) Rec. Anomaly(%)

CPY011 5142 16(0.31%) 1713 7(0.41%) 1714 7(0.41%) 8569 30(0.37%)
CPY012 5142 101(1.96%) 1713 41(2.39%) 1714 34(1.98%) 8569 176(2.05%)
CPY013 5142 97(1.89%) 1713 33(1.93%) 1714 28(1.63%) 8569 158(1.84%)
CPY014 5142 49(0.95%) 1713 7(0.41%) 1714 4(0.23%) 8569 60(0.70%)
CPY015 5142 7(0.14%) 1713 15(0.88%) 1714 34(1.98%) 8569 56(0.65%)
CPY016 5142 367(7.14%) 1713 220(12.84%) 1714 107(6.24%) 8569 694(8.10%)
CPY017 5142 42(0.82%) 1713 2(0.12%) 1714 3(0.18%) 8569 47(0.55%)
YOM009 5142 417(7.22%) 1713 173(10.97%) 1714 81(3.79%) 8569 624(7.28%)

Avg. 5142 137(2.66%) 1713 62(3.63%) 1714 37(2.17%) 8569 231(2.69%)

3.4. Evaluation Metrics and Comparison Methods

As our task is basically a classification problem. We therefore chose some commonly
used measures: Recall, Precision, and F1, to evaluate the accuracy of models. They are
defined by the following equations, based on the confusion matrix shown in Table 2.

Table 2. Confusion matrix of classification results.

Actual/Predicted Anomaly Normal

Anomaly TP FN
Normal FP TN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2
Precision ∗ Recall
Precision + Recall

where TP, FP, FN, and TN denote the number of true positive—correct predictions for
anomaly data, false positive—the number of incorrect predictions for anomaly data, false
negative—the number of incorrect predictions for normal data, and true negative—the
number of correct predictions for normal data, respectively.

To make statistical comparisons, we implemented a statistically rigorous test for
multiple classifiers across many datasets. This approach was initially described in [61]
and is intended to examine the statistical significance of classifiers. This technique takes
the strategy of testing the null hypothesis against the alternative hypothesis. The null
hypothesis states that no difference exists between the average rankings of k algorithms on
N datasets. The alternative hypothesis is that at least one algorithm’s average rank differs.

In the first place, the k methods are ranked according to their performance over the
N datasets; then, the average ranking of each algorithm is calculated. To test the null
hypothesis, the Friedman test is calculated using Equation (6).

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(6)

where Rj is the rank of the jth of k algorithms on N datasets and the statistic is estimate
using a chi-squared distribution with k− 1 degrees of freedom.

If the null hypothesis is rejected at the selected significance level α, the post-hoc
Nemenyi test is used to compare all classifiers to each other. The Nemenyi test is similar

Water 2022, 14, 2492 11 of 28

to the Tukey test for ANOVA and uses a critical difference (CD), which is presented in
Equation (7)

CD = qα

√
k(k = 1)

6N
(7)

where qα is calculated by the difference in the range of standard deviations between the
smallest valued sample and the largest valued sample. The results of these tests are often
visualised using a critical difference (CD) diagram. Classifiers are shown on a number
line based on their average rank across all datasets, and bold CD lines are used to connect
classifiers that are not significantly different.

In comparison, the performance of our approach, MLP, and LSTM have been used
with the same number of hidden layers and the number of neurons in each hidden layer.

4. Experiment Design and Setting
4.1. Four Sets of Experiments

We designed four sets of experiments to test DRL models and ensemble models. (1) to
train various DRL models and test them with the different data sampled from the same
water level monitoring stations; (2) to train various DRL models with the data from a
station and then test them with the data from other stations; (3) to build several ensembles
by selecting different numbers of the DRL models and test them with the testing data from
the same stations; and (4) to test the ensembles with the data from different stations. The
purpose of doing these cross-station testing is to check and evaluate the generalisation
ability of the DLR models and the ensembles.

4.2. Parameter Setting

For the DRL model, a multilayer perceptron network was used in the Q-network with
the following parameters: the number of input nodes in the input layer was 36, one hidden
layer with 18 nodes, and 2 nodes in the output layer. Moreover, epsilon-greedy policy (ε)
was used for exploration from 0.1 to 0.0001. The size of replay memory is 50,000, discount
factor of intermediate rewards γ was 0.99. The Adam algorithm was used to optimise the
parameters of Q-Network and the learning rate was 0.001. The batch size was 256, training
with 100, 500, 1000, 5000, and 10,000 episodes. The episode was over when the number of
incorrectly identified anomalies was greater than the number of certain anomalies in the
training set or had been trained on all the samples in the training set. We set the reward
function parameters for A, B, and C to be 0.9, −0.1, and 0.1, respectively. Furthermore,
the window size of 6 was chosen to save time during the training process.

For comparison, MLP and LSTM were used with the identical structures as we used
in DRL. They were trained using 100 epochs with early stopping to avoid overfitting. For
each setting, the experiments were repeated 10 times with variations, and then the means
and standard deviations of the results are reported in the next section.

4.3. Computing Facilities

All the experiments were coded with Python Programming Language (V3.6) (Python
Software Foundation, https://www.python.org/, accessed on 30 June 2022) and Tensor-
Flow 2.8, and run on a personal computer with an Intel Core i5-7500 CPU @ 3.4 GHz,
32 GB RAM, 64-Bit Operating System.

5. Results
5.1. Accuracies of DRL Models

For each station, various DRL models were generated over a range of epochs from 100
to 10,000, with the intention of investigating how well our proposed DRL method learns at
the different points of training. The results are shown in Table 3.

Using the CPY011 dataset, we observed that DRL and DRLRwd with 1000 training
iterations not only earned the highest F1-score of 0.8333, 0.7143 recall, and 1.0000 precision
but also provided the highest average F1-score of 0.7433. However, after 1000 epochs of

https://www.python.org/

Water 2022, 14, 2492 12 of 28

training, the performance of all models, with the exception of DRLValid decreased and then
rose when 10,000 epochs were used.

Table 3. The performance of DRL when increasing the learning epochs (the best F1-score of each row
shown in bold).

Station Epochs
DRL DRLF1 DRLRwd DRLAcc DRLValid

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 0.5455 0.6667 0.8571 0.7500 0.8000 0.8571 0.5455 0.6667 0.8571 0.7500 0.8000 0.7143 0.6250 0.6667
500 0.8571 0.7500 0.8000 0.8572 0.5455 0.6667 0.8571 0.7500 0.8000 0.8571 0.5455 0.6667 0.8571 0.6667 0.7500

1000 0.7143 1.0000 0.8333 0.8571 0.6667 0.7500 0.7143 1.0000 0.8333 0.8571 0.6667 0.7500 0.4286 0.2727 0.3333
5000 0.7143 0.6250 0.6667 0.8571 0.5000 0.6316 0.7143 0.6250 0.6667 0.8571 0.5000 0.6316 0.7143 0.7143 0.7143

10,000 0.8571 0.6667 0.7500 1.0000 0.5833 0.7368 0.8571 0.6667 0.7500 1.0000 0.5833 0.7368 0.8571 0.4000 0.5455

Avg 0.8000 0.7174 0.7433 0.8857 0.6091 0.7170 0.8000 0.7174 0.7433 0.8857 0.6091 0.7170 0.7143 0.5357 0.6020
Std 0.0782 0.1743 0.0760 0.0639 0.0997 0.0674 0.0782 0.1743 0.0760 0.0639 0.0997 0.0674 0.1749 0.1901 0.1689

CPY012 100 0.7059 0.4000 0.5106 0.7647 0.7027 0.7324 0.6764 0.3898 0.4946 0.7059 0.6857 0.6957 0.7647 0.7027 0.7324
500 0.7647 0.6341 0.6933 0.7941 0.7297 0.7606 0.7353 0.6250 0.6757 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606

1000 0.6765 0.6571 0.6667 0.7647 0.6667 0.7123 0.6176 0.6000 0.6087 0.7647 0.6667 0.7123 0.7647 0.4062 0.5306
5000 0.7059 0.7059 0.7059 0.6176 0.6176 0.6176 0.7059 0.7273 0.7164 0.6765 0.6970 0.6866 0.7059 0.7273 0.7164

10,000 0.6471 0.7586 0.6984 0.7059 0.8000 0.7500 0.7059 0.7742 0.7385 0.7059 0.8276 0.7619 0.7941 0.7714 0.7826

Avg 0.7000 0.6311 0.6550 0.7294 0.7033 0.7146 0.6882 0.6233 0.6468 0.7294 0.7213 0.7234 0.7647 0.6675 0.7045
Std 0.0436 0.1378 0.0821 0.0702 0.0684 0.0572 0.0446 0.1489 0.0984 0.0483 0.0637 0.0357 0.0360 0.1481 0.1005

CPY013 100 0.8710 0.3506 0.5000 0.8710 0.6136 0.7200 0.9032 0.3836 0.5385 0.8710 0.6136 0.7200 0.6774 0.1214 0.2059
500 0.6774 0.3684 0.4773 0.8065 0.5000 0.6173 0.7419 0.3966 0.5169 0.8065 0.5000 0.6173 0.8387 0.4906 0.6190

1000 0.8065 0.5952 0.6849 0.8065 0.5682 0.6667 0.7097 0.6111 0.6567 0.8065 0.5682 0.6667 0.9677 0.5556 0.7059
5000 0.7742 0.5714 0.6575 0.6774 0.6774 0.6774 0.8065 0.5682 0.6667 0.6774 0.6364 0.6562 0.6774 0.5250 0.5915

10,000 0.7097 0.6667 0.6875 0.8387 0.7647 0.8000 0.7742 0.6857 0.7273 0.8387 0.7647 0.8000 0.7419 0.6571 0.6970

Avg 0.7678 0.5105 0.6014 0.8000 0.6248 0.6963 0.7871 0.5290 0.6212 0.8000 0.6166 0.6920 0.7806 0.4699 0.5639
Std 0.0770 0.1423 0.1039 0.0736 0.1015 0.0685 0.0743 0.1337 0.0899 0.0736 0.0978 0.0706 0.1237 0.2045 0.2061

CPY014 100 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
500 0.7500 0.3750 0.5000 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571

1000 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000
5000 0.7500 0.3333 0.4615 0.7500 0.5000 0.6000 0.7500 0.3333 0.4615 0.7500 0.5000 0.6000 0.7500 0.4286 0.5455

10,000 0.2500 0.1667 0.2000 0.7500 0.6000 0.6667 0.2500 0.1667 0.2000 0.7500 0.6000 0.6667 0.7500 0.4286 0.5455

Avg 0.6500 0.4000 0.4823 0.7500 0.6200 0.6733 0.6500 0.5250 0.5537 0.7500 0.6200 0.6733 0.7500 0.6214 0.6596
Std 0.2236 0.2137 0.1952 0.0000 0.1255 0.0751 0.2236 0.3405 0.2584 0.0000 0.1255 0.0751 0.0000 0.2495 0.1385

CPY015 100 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.1765 0.3529 0.2353
500 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.1471 0.3846 0.2128

1000 0.3824 0.4483 0.4127 0.3824 0.5000 0.4333 0.3824 0.4483 0.4127 0.3824 0.5000 0.4333 0.4118 0.4516 0.4308
5000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137

10,000 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127

Avg 0.2883 0.4609 0.3477 0.3471 0.5135 0.4134 0.2883 0.4609 0.3477 0.3471 0.5135 0.4134 0.2706 0.4216 0.3211
Std 0.0868 0.0116 0.0604 0.0323 0.0124 0.0219 0.0868 0.0116 0.0604 0.0323 0.0124 0.0219 0.1202 0.0503 0.0995

CPY016 100 0.6636 0.3100 0.4226 0.5981 0.5203 0.5565 0.6916 0.2960 0.4146 0.5981 0.5203 0.5565 0.6168 0.4889 0.5455
500 0.6636 0.2763 0.3901 0.6355 0.4048 0.4945 0.6449 0.2727 0.3833 0.5981 0.5161 0.5541 0.5047 0.5094 0.5070

1000 0.6355 0.2547 0.3636 0.5981 0.5333 0.5639 0.6449 0.2644 0.3750 0.6168 0.5641 0.5893 0.6168 0.4342 0.5097
5000 0.5888 0.2727 0.3728 0.5888 0.6238 0.6058 0.3084 0.2089 0.2491 0.5421 0.6105 0.5743 0.5234 0.2902 0.3733

10,000 0.5794 0.2366 0.3360 0.6168 0.4177 0.4981 0.6355 0.2208 0.3277 0.6262 0.5447 0.5826 0.6168 0.4177 0.4981

Avg 0.6262 0.2701 0.3770 0.6075 0.5000 0.5438 0.5851 0.2526 0.3499 0.5963 0.5511 0.5714 0.5757 0.4281 0.4867
Std 0.0402 0.0274 0.0321 0.0187 0.0904 0.0472 0.1562 0.0366 0.0644 0.0326 0.0384 0.0156 0.0567 0.0858 0.0659

CPY017 100 1.0000 0.7500 0.8571 1.0000 0.5000 0.6667 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
500 1.0000 0.7500 0.8571 1.0000 0.5000 0.6667 1.0000 0.7500 0.8571 1.0000 0.3750 0.5455 0.6667 0.5000 0.5714

1000 1.0000 0.2143 0.3529 1.0000 0.7500 0.8571 1.0000 0.2000 0.3333 1.0000 0.7500 0.8571 0.0000 0.0000 -
5000 1.0000 0.5000 0.6667 1.0000 0.4286 0.6000 1.0000 0.5000 0.6667 1.0000 0.4286 0.6000 1.0000 0.3333 0.5000

10,000 0.6667 0.6667 0.6667 0.6667 0.2857 0.4000 0.6667 0.6667 0.6667 1.0000 0.6000 0.7500 0.6667 0.6667 0.6667

Avg 0.9333 0.5762 0.6801 0.9333 0.4929 0.6381 0.9333 0.5733 0.6762 1.0000 0.5807 0.7219 0.6667 0.4500 0.6488
Std 0.1491 0.2266 0.2062 0.1491 0.1683 0.1641 0.1491 0.2323 0.2140 0.0000 0.1755 0.1443 0.4082 0.2982 0.1547

YOM009 100 0.6308 0.3178 0.4227 0.5692 0.3033 0.3957 0.6462 0.3182 0.4264 0.5692 0.3033 0.3957 0.5692 0.3394 0.4253
500 0.5846 0.2734 0.3725 0.6769 0.3121 0.4272 0.6923 0.3020 0.4206 0.4769 0.4769 0.4769 0.4769 0.4769 0.4769

1000 0.5385 0.2966 0.3825 0.6769 0.2973 0.4131 0.5538 0.3103 0.3978 0.4615 0.3947 0.4255 0.5846 0.3016 0.3979
5000 0.5538 0.1818 0.2738 0.6615 0.3644 0.4699 0.6154 0.2581 0.3636 0.4923 0.4103 0.4476 0.5077 0.4177 0.4583

10,000 0.4769 0.2627 0.3388 0.5692 0.2741 0.3700 0.4769 0.2605 0.3370 0.5385 0.2917 0.3784 0.4308 0.4308 0.4308

Avg 0.5569 0.2665 0.3581 0.6307 0.3102 0.4152 0.5969 0.2898 0.3891 0.5077 0.3754 0.4248 0.5138 0.3933 0.4378
Std 0.0570 0.0519 0.0558 0.0565 0.0334 0.0373 0.0839 0.0285 0.0382 0.0449 0.0776 0.0395 s0.0640 0.0712 0.0306

The top models to identify anomalies on the CPY012 dataset are DRLValid, with a
maximum F1-score of 0.7826 after 10,000 training epochs. However, DRLAcc obtained the
greatest average F1-score with 0.7234. Meanwhile, 10,000 training epochs with DRLF1 and
DRLAcc delivered the highest F1-score for identifying anomalies in CPY013 data, at 0.8000
F1-score. Furthermore, DRLF1 provided the highest average F1-score of 0.6963.

With just 500 epochs of training on CPY014 data, DRLRwd and DRLValid delivered the
best F1-score of 0.8571. However, the maximum average F1-score achieved by DRLF1 and
DRLAcc was just 0.6733. When looking at the results on CPY015 data, the best models are
DRLF1 and DRLAcc. This is shown by the fact that their F1-scores were the highest in many
training epochs.

DRLAcc was the best model for detecting anomalies in CPY016 data since it not only
had the greatest F1-score in almost every training epoch but also had the highest average
F1-score of 0.5714. Meanwhile, every model scored the best F1-score of 0.8571, 100 percent
recall, and 0.7500 accuracy when trained with 100 epochs on CPY017, with the exception of
the DRLF1 model, which achieved just 0.6667 F1-score. While the best models for detecting

Water 2022, 14, 2492 13 of 28

anomalies on YOM009 are DRLAcc and DRLValid, which both have the same F1-score of
0.4769, the worst models are DRL while training with 5000 iterations at a 0.2728 F1-score,
0.5538 recall, and 0.1818 precision.

Figure 3 shows the comparison of the critical differences between the different DRL
models. The number associated with each algorithm is the average rank of the DRL models
on each type of dataset, and solid bars represent groups of classifiers with no significant
difference. There is no statistically significant difference across the models, with DRLAcc
ranking first, followed by DRLF1, DRL, DRLRwd, and DRLValid ranking last.

Figure 3. A critical difference diagram for 5 different DRL models on different datasets of telemetry
water level data.

Figure 4 also shows a line graph of the F1-score as the number of epochs of training
from each model increases. We can observe that as the number of epochs is increased,
the performance of all deep reinforcement learning models using data from CPY012,
CPY013, and CPY015 tends to improve. When training with CPY014 data, on the other
hand, the F1-score of each model tends to stay the same or go down as the number of
epochs goes up. In the case of trained models with CPY016 data, the F1-score of each model
tends to stabilise and slightly decrease, with the exception of DRLValid, which tends to
grow after 5000 epochs of training. When we looked at the models that were trained with
the CPY017 dataset, the F1-score of DRLF1 went up after training with 1000 epochs and
then went down. Other models, however, went up when training with more epochs, even
though the performance of some models went down after 1000 epochs, while the F1-score
of models that have been trained with CPY011 and YOM009 remained stable when training
with more epochs.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

Figure 4. Cont.

Water 2022, 14, 2492 14 of 28

(g) CPY017 (h) YOM009

Figure 4. F1-score when increasing the learning epochs at each station.

Figure 5 shows the findings of the best DRL model for each station. We can observe
that the DRL model performs well, capturing the majority of abnormalities in testing
datasets. However, it still did not work well when there were anomalies in data that
changed frequently, like when there were anomalies in YOM009 data between 29 June and
1 July 2015, and in CPY015 data on 19 June 2016.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 5. Anomaly detection from the best DRL model of each station. (a) CPY011 with DRL;
(b) CPY012 with DRLValid; (c) CPY013 with DRLF1; (d) CPY014 with DRLRwd; (e) CPY015 with
DRLF1; (f) CPY016 with DRLF1; (g) CPY017 with DRL; (h) YOM009 with DRLAcc.

5.2. Performance on the Same Station

We evaluated the performance of our techniques with MLP and LSTM models on
eight telemetry water level datasets. The data in each station is first divided into training,
validating, and testing parts in a 6:2:2 ratio. The results were averaged after being run ten

Water 2022, 14, 2492 15 of 28

times and then were compared to the averaged DRL models of each station as shown in
Table 4. It demonstrated that DRLF1 and DRLAcc had the highest average F1-scores for
detecting anomalies on CPY015, with F1-scores of 0.4133. MLP had the greatest average
F1-score when it came to detecting anomalies on CPY011, CPY012, and CPY014 with
scores of 0.8505, 0.7822, and 0.8571, respectively. On the other stations, LSTM was the top
performing model. According to the CD diagram in Figure 6, the best LSTM model had the
greatest ranking of performance, followed by DRLAcc and MLP.

Figure 6. A critical difference diagram of each model.

Table 4. The mean F1-scores and standard deviation of all DRL, MLP, and LSTM models when testing
with the dataset from different stations (the best F1-score of each row is shown in bold).

Station DRL DRLF1 DRLRwd DRLAcc DRLValid MLP LSTM

CPY011 0.7433 (±0.08) 0.7170 (±0.07) 0.7433 (±0.08) 0.7170 (±0.07) 0.6020 (±0.17) 0.8505 (±0.06) 0.8167 (±0.04)
CPY012 0.6550 (±0.08) 0.7146 (±0.06) 0.6468 (±0.10) 0.7234 (±0.04) 0.7045 (±0.10) 0.7822 (±0.03) 0.7753 (±0.02)
CPY013 0.6014 (±0.10) 0.6963 (±0.07) 0.6212 (±0.09) 0.6920 (±0.07) 0.5639 (±0.21) 0.6998 (±0.03) 0.7265 (±0.02)
CPY014 0.4823 (±0.20) 0.6733 (±0.08) 0.5537 (±0.26) 0.6733 (±0.08) 0.6596 (±0.14) 0.8571 (±0.00) 0.8571 (±0.00)
CPY015 0.3477 (±0.06) 0.4134 (±0.02) 0.3477 (±0.06) 0.4134 (±0.02) 0.3211 (±0.10) 0.2220 (±0.10) 0.3276 (±0.09)
CPY016 0.3770 (±0.03) 0.5438 (±0.05) 0.3499 (±0.06) 0.5714 (±0.02) 0.4867 (±0.07) 0.5651 (±0.14) 0.6252 (±0.06)
CPY017 0.6801 (±0.21) 0.6381 (±0.16) 0.6762 (±0.21) 0.7219 (±0.14) 0.6488 (±0.15) 0.9778 (±0.07) 0.9857 (±0.05)
YOM009 0.3581 (±0.06) 0.4152 (±0.04) 0.3891 (±0.04) 0.4248 (±0.04) 0.4378 (±0.03) 0.2358 (±0.05) 0.2596 (±0.06)

We discovered that DRLF1 and DRLAcc had the highest average F1-scores for detecting
anomalies on CPY015, with F1-scores of 0.4133. MLP had the greatest average F1-score
when it came to detecting anomalies on CPY011, CPY012, and CPY014 with scores of 0.8505,
0.7822, and 0.8571, respectively. On the other stations, LSTM was the top performing model.
The LSTM model has the highest ranking of performance, according to the CD diagram in
Figure 6, followed by DRLAcc and MLP.

Since RL models need time to learn until they have enough knowledge to do their task,
time costing is the one important thing that we need to be interested in. We calculate the
time spent by the best deep learning models (BDRL) and comparative models, as shown
in Table 5. The MLP model requires the least training time per epoch, with an average of
0.30 s, followed by the LSTM model at 0.64 s, and the DRL model at 17.56 s. For MLP and
LSTM training with early stopping, they needed an average of 12 and 15 training epochs,
respectively, while our method requires around 4638 epochs to get optimal results. It means
that the MLP model took an average of 2.97 s to train, while LSTM took 9.20 s and DRL
took an average of 78,756 s, which is about 22 h.

Water 2022, 14, 2492 16 of 28

Table 5. The number of training epochs and the time spent on each epoch for each model.

Station Training Epochs Time (s./epochs) Total Time (s.)
MLP LSTM BDRL MLP LSTM BDRL MLP LSTM BDRL

CPY011 12 17 1000 0.17 0.64 18.66 2.04 10.88 18,666
CPY012 15 19 10,000 0.16 0.62 18.20 2.40 11.78 182,000
CPY013 11 17 10,000 0.18 0.64 17.88 1.98 10.88 178,000
CPY014 11 6 500 0.55 0.83 18.32 6.05 4.98 2490
CPY015 7 11 10,000 0.24 0.62 16.03 1.68 6.82 160,300
CPY016 17 21 5000 0.17 0.51 16.58 2.89 10.71 82,900
CPY017 13 17 100 0.20 0.56 16.74 2.6 9.52 1674
YOM009 6 11 500 0.69 0.73 18.82 4.14 8.03 4015

avg 12 15 4638 0.30 0.64 17.65 2.97 9.20 78,756

5.3. Performance on the Different Station

After generating various models on some stations’ data and testing them with the
same stations, we tested these models with the data collected from different stations with
the intention of examining their generalisation ability. The F1-scores of each model are
provided in Table 6.

Table 6. The F1-scores of the best DRL models when testing with the dataset from same station (show
in the bracket) and different stations, while the average F1-scores and standard deviations of each
station were calculated without their own scores.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.8333) 0.1667 0.1967 0.0255 0.4138 0.0596 0.2000 0.1556
CPY012 0.6000 (0.7826) 0.7164 0.1136 0.0533 0.5088 0.6667 0.6667
CPY013 0.6531 0.6667 (0.8000) 0.1875 0.1034 0.5421 0.5970 0.5952
CPY014 0.4000 0.8571 0.8571 (0.8571) 0.0000 0.2727 0.5871 0.6000
CPY015 0.0000 0.1538 0.1474 0.0672 (0.4407) 0.0900 0.2078 0.0839
CPY016 0.5369 0.6129 0.6550 0.1276 0.4103 (0.6058) 0.1203 0.6703
CPY017 0.5000 0.3529 0.5455 0.2308 0.0000 0.1765 (0.8571) 0.4000
YOM009 0.0000 0.3297 0.1905 0.0771 0.0000 0.4189 0.3158 (0.4769)

avg 0.3843 0.4485 0.4727 0.1185 0.1401 0.2955 0.3850 0.4531

std 0.2742 0.2680 0.2908 0.0713 0.1896 0.1975 0.2257 0.2457

Using DRLRwd-the best model for detecting anomalies by training with CPY011 data
and then identifying anomalies from other stations, we can see that, though it works rather
well, with F1-scores ranging from 0.4 on CPY014 to 0.65 on CPY013 data, it is unable to
detect anomalies on CPY015 and YOM009. Using the BDRL model of the CPY012 training
dataset, DRLValid, although it provided good performance when identifying anomalies
in the CPY013, CPY014, and CPY016 datasets with F1-scores greater than 0.61, especially
CPY014 with a 0.8571 f1-score, which more than detected anomalies on its own dataset, it
provided poor performance, with an F1-score lower than 0.4000, when detecting anomalies
in other stations. Similar to DRLF1, which was trained using CPY013 data, it not only
performs well when recognising anomalies on its own dataset but also when detecting
anomalies on the CPY014 dataset, with an F1-score of 0.8571. The BDRL model, DRLRwd,
that was trained with CPY014 did the worst when it was used to find anomalies in other
stations’ data, with an F1-score of less than 0.23 for every dataset and the lowest F1-score
of only 0.0255 for CPY011. Similar to the best model on CPY015 datasets, which performed
poorly, with the highest F1-score on CPY011 data being 0.4138 and being unable to identify
anomalies on CPY014, CPY017, and YOM009. Meanwhile, the best model for detecting
anomalies on CPY016 data performed the best for detecting anomalies on CPY013 with a
0.5421 F1-score. The model that was trained on CPY017 did the best of finding anomalies
in data from CPY012, CPY013, and CPY014 with an F1-score greater than 0.58. While the

Water 2022, 14, 2492 17 of 28

best model from the YOM009 training dataset achieved a low F1-score on CPY011, CPY015,
and CPY017, 0.0839 is the lowest F1-score. However, when it was used to find outliers on
COY012, CPY013, CPY014, and CPY016 with F1-scores higher than 0.59, it did better than
its own training data.

It is worth noting that models trained using CPY014 and CPY015 data perform poorly
when used to identify anomalies from other stations. This may be due to the fact that the
actual number of anomalies in those stations are relatively low and most of them are kind
of extreme outliers, as shown in Figure 2, so the models were trained with only those kinds
of anomalies, which may not be enough for the model to learn. In contrast to YOM009,
which has a many number and types of anomalies for model to learn, as a result, it can
identify abnormalities on CPY012, CPY013, CPY014, and CPY016 better than other models
that were trained with another station.

Then, we tested MLP and LSTM using data from different stations to compare our
method to the candidate models. Table 7 represents the results of the MLP models when
tested with the datasets from the same and different stations. Using the CPY011 dataset,
the MLP models achieved the highest F1-score of 0.5430 on CPY016, despite their being
unable to identify anomalies on CPY014 and YOM009. Similar to finding anomalies on
CPY012, it offered good results with F1-scores of more than 0.63, with the exception of
CPY011, CPY015, and YOOM009, which produced F1-scores of less than 0.4. The best
MLP of the CPY013 training dataset provided the highest F1-score on the CPY014 dataset
(0.8571 F1-score) and the lowest on CPY015 (0.2093 F1-score). Anomalies on the YOM009
dataset were the most difficult for the MLP models trained on CPY014 to detect, with an
F1-score of just 0.1818. However, it performed excellent results in identifying anomalies
on CPY017 with a 1.0000 F1-score. Meanwhile, the MLP model on the CPY015 dataset
performed poorly when detecting abnormalities from other stations. On the other hand,
the MLP models that were trained on CPY016 and CPY017 generated good results when
used to identify anomalies from other stations, despite still performing poorly in some
stations. In contrast, the MLP model trained on YOM009 worked well when used to detect
abnormalities on other stations but performed badly when detecting anomalies on its own
data. Furthermore, it performed well on CPY017 data, with a 1.000 F1-score.

Table 7. The F1-scores of the MLP models when testing with the dataset from the same station (shown
in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.9231) 0.4000 0.2917 0.7778 0.0000 0.1373 0.7059 0.6087
CPY012 0.4889 (0.8387) 0.8060 0.7500 0.0541 0.6923 0.7273 0.7857
CPY013 0.4390 0.6786 (0.7500) 0.7000 0.0000 0.7123 0.6909 0.7719
CPY014 0.0000 0.8571 0.8571 (0.8571) 0.0000 0.6000 0.8571 0.8571
CPY015 0.1951 0.1509 0.2093 0.2593 (0.3529) 0.1420 0.3077 0.2414
CPY016 0.5430 0.6380 0.6587 0.6322 0.0915 (0.6629) 0.5665 0.6550
CPY017 0.5000 0.6667 0.6000 1.0000 0.0000 0.2857 (1.0000) 1.0000
YOM009 0.0000 0.2308 0.2955 0.1818 0.0000 0.4404 0.1772 (0.2857)

avg 0.3094 0.5174 0.5312 0.6144 0.0208 0.4300 0.5761 0.7028

std 0.2396 0.2609 0.2643 0.2929 0.0371 0.2473 0.2460 0.2408

In the case of the LSTM model, as depicted in Table 8. They performed well, with an
average F1-score of more than 0.42 for each station except CPY015, which had an average
F1-score of 0.1099. However, they generated poor performances in some stations, such
as the LSTM of CPY016 that achieved an F1-score of only 0.1754 when used to detect
anomalies on the CPY011 dataset, and it was unable to detect anomalies on CPY014,
CPY017, and YOM009 datasets with the LSTM that had been trained on the CPY015 dataset.
However, it provided excellent performance when detecting anomalies on CPY017 with
the LSTM that has been trained on the CPY014 dataset. When the LSTM was trained

Water 2022, 14, 2492 18 of 28

on YOM009, it did well at finding anomalies from other stations, especially CPY014 and
CPY017, with an F1-score of 0.8571.

Table 8. The F1-scores of the LSTM models when testing with the dataset from the same station
(shown in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.8571) 0.4828 0.2333 0.5000 0.3077 0.1754 0.7059 0.5185
CPY012 0.6400 (0.8387) 0.8308 0.7368 0.0444 0.7536 0.7500 0.7458
CPY013 0.5652 0.7333 (0.7463) 0.7213 0.1081 0.6857 0.7333 0.7188
CPY014 0.4000 0.8571 0.8571 (0.8571) 0.0000 0.8571 0.8571 0.8571
CPY015 0.3043 0.3636 0.2340 0.3939 (0.4364) 0.2045 0.3704 0.2564
CPY016 0.5679 0.6897 0.6824 0.5634 0.3089 (0.6630) 0.6296 0.6359
CPY017 0.5000 1.0000 0.5455 1.0000 0.0000 0.3333 (1.0000) 0.8571
YOM009 0.0000 0.2619 0.3146 0.2727 0.0000 0.4190 0.2857 (0.3542)

avg 0.4253 0.6269 0.5282 0.5983 0.1099 0.4898 0.6189 0.6557

std 0.2190 0.2679 0.2717 0.2430 0.1410 0.2747 0.2111 0.2129

Furthermore, we generated a bar chart to compare the average F1-score from each
model when tested with the data collected from different stations, as shown in Figure 7.
When evaluated with data from other stations, the models trained with CPY012 and
CPY013 produced an average F1-score greater than 0.4. The models trained on CPY015
earned poor performance when used to identify anomalies from other stations, with an
average F1-score lower than 0.2. DRL models that were trained with CPY015 outperform
other models in detecting anomalies in data from other stations. LSTM models trained on
CPY011, CPY012, CPY016, and CPY017, on the other hand, outperform other models in
detecting abnormalities on other datasets. When trained with data from CPY013, CPY014,
and YOM009, MLP had the best F1-score for finding outliers in other datasets.

Figure 7. Bar charts of average F1-scores of the DRL, MLP, and LSTM when tested with the data
collected from different stations.

5.4. Ensemble Results

Since we have multiple RL models after each epoch of training, and since each model
performs the best in each of the criteria, we then built an ensemble that combined the deci-
sions of all RL models, with the aim of generating a better final decision. In model selection,
we select all five models and select the three models with the highest ranking in F1-score to
build our ensemble model. For decision making, we used majority voting and weighted
voting strategies to make a final decision. So, we have 4 ensemble models for each epoch
of training, including a majority voting ensemble model with 3 (EDRL3) and 5 (EDRL5)
models, and a weighted ensemble model with 3 (WEDRL3) and 5 (WEDRL5) models.

Water 2022, 14, 2492 19 of 28

5.4.1. Performance on the Same Station

The results of our ensemble models are shown in Table 9 demonstrated that ensemble
with majority voting and weighted voting that were generated from the top three DRL
models of CPY011 provided the best with 0.8333 F1-score, while WDRL3 that was gen-
erated from the DRL model after trained with 10,000 epochs is the best model to detect
anomalies in CPY012 datasets with an F1-score of 0.7941. The ensemble model of CPY013
that performs the best is EDRL3 and WEDRL3 at 0.8000. The best ensemble model for
identifying anomalies in CPY014 datasets is the ensemble model that provided the F1-score
of 0.8571. With CPY015 data, the models with the highest F1-score are EDRL3, WEDRL3,
and WEDRL5. These models were built based on the individual DRL model, which was
trained for 10,000 iterations. Meanwhile, WEDRL3 got the highest F1-score of 0.5922 for
CPY016 by combining the best three DRL models that were trained over 5000 iterations.
With CPY017, EDRL5 outperforms other ensemble models with a 100 percent in every
metric. The ensemble results of YOM009, WEDRL5, offered the highest performance with
an F1-score of 0.5032 that was generated from the DRL model after 500 epochs of training.

Table 9. The performance of ensemble models (the best F1-score of each row is shown in bold).

Station Epochs
EDRL3 EDRL5 WEDRL3 WEDRL5

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 0.7500 0.8000 0.7143 0.6250 0.6667 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000
500 0.8571 0.7500 0.8000 0.8571 0.6667 0.7500 0.8571 0.7500 0.8000 0.8571 0.6667 0.7500

1000 0.7143 1.0000 0.8333 0.7143 0.8333 0.7692 0.7143 1.0000 0.8333 0.8571 0.7500 0.8000
5000 0.7143 0.6250 0.6667 0.7143 0.6250 0.6667 0.7143 0.7143 0.7143 0.7143 0.7143 0.7143

10,000 0.8571 0.6667 0.7500 1.0000 0.7778 0.8750 0.8571 0.6667 0.7500 0.8571 0.6000 0.7059

Avg 0.8000 0.7583 0.7700 0.8000 0.7056 0.7455 0.8000 0.7762 0.7795 0.8285 0.6962 0.7540
std 0.0782 0.1455 0.0650 0.1278 0.0949 0.0863 0.0782 0.1297 0.0471 0.0639 0.0637 0.0451

CPY012 100 0.7647 0.7027 0.7324 0.7353 0.7353 0.7353 0.7647 0.7027 0.7324 0.7647 0.6842 0.7222
500 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606 0.7941 0.7105 0.7500

1000 0.7647 0.6667 0.7123 0.7353 0.8621 0.7937 0.7647 0.6667 0.7123 0.7353 0.6410 0.6849
5000 0.7059 0.7273 0.7164 0.7059 0.7500 0.7273 0.7059 0.7273 0.7164 0.7353 0.7353 0.7353

10,000 0.7059 0.8276 0.7619 0.7059 0.8276 0.7619 0.7941 0.7941 0.7941 0.7353 0.8333 0.7812

Avg 0.7471 0.7308 0.7367 0.7353 0.7809 0.7558 0.7647 0.7241 0.7432 0.7529 0.7209 0.7347
std 0.0394 0.0598 0.0236 0.0360 0.0601 0.0261 0.0360 0.0466 0.0342 0.0263 0.0719 0.0355

CPY013 100 0.8710 0.6136 0.7200 0.8387 0.6190 0.7123 0.8710 0.6136 0.7200 0.9032 0.5957 0.7179
500 0.8065 0.5000 0.6173 0.7742 0.5714 0.6575 0.8387 0.4906 0.6190 0.8065 0.5556 0.6579

1000 0.8065 0.6098 0.6944 0.8065 0.6098 0.6944 0.9355 0.6042 0.7342 0.9032 0.6087 0.7273
5000 0.8065 0.5952 0.6849 0.7097 0.5789 0.6377 0.7097 0.6471 0.6769 0.7742 0.6486 0.7059

10,000 0.8387 0.7647 0.8000 0.7419 0.6765 0.7077 0.8387 0.7647 0.8000 0.8387 0.7429 0.7879

Avg 0.8258 0.6167 0.7033 0.7742 0.6111 0.6819 0.8387 0.6240 0.7100 0.8452 0.6303 0.7194
std 0.0288 0.0949 0.0660 0.0510 0.0417 0.0328 0.0822 0.0983 0.0674 0.0577 0.0712 0.0467

CPY014 100 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.7500 0.7500
500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

1000 0.7500 0.5000 0.6000 0.7500 0.6000 0.6667 0.7500 0.3750 0.5000 0.7500 0.3750 0.5000
5000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000 0.7500 0.3750 0.5000

10,000 0.7500 0.6000 0.6667 0.7500 0.6000 0.6667 0.7500 0.6000 0.6667 0.7500 0.7500 0.7500

Avg 0.7500 0.6700 0.6948 0.7500 0.7400 0.7295 0.7500 0.6950 0.6962 0.7500 0.6500 0.6714
std 0.0000 0.2110 0.1097 0.0000 0.2408 0.1196 0.0000 0.2896 0.1584 0.0000 0.2710 0.1625

CPY015 100 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2647 0.4737 0.3396
500 0.3235 0.5000 0.3929 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.2941 0.5263 0.3774

1000 0.3824 0.5000 0.4333 0.4118 0.4828 0.4444 0.3824 0.5000 0.4333 0.3824 0.4643 0.4194
5000 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.3235 0.5238 0.4000

10,000 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.5200 0.4407

Avg 0.3471 0.5135 0.4134 0.3000 0.4737 0.3605 0.3471 0.5135 0.4134 0.3294 0.5016 0.3954
std 0.0323 0.0124 0.0219 0.0916 0.0192 0.0666 0.0323 0.0124 0.0219 0.0526 0.0300 0.0390

CPY016 100 0.5981 0.5203 0.5565 0.6075 0.4962 0.5462 0.5981 0.5203 0.5565 0.6168 0.5366 0.5739
500 0.5981 0.5203 0.5565 0.6168 0.3952 0.4818 0.6075 0.5603 0.5830 0.5981 0.5333 0.5639

1000 0.6168 0.5323 0.5714 0.6542 0.4636 0.5426 0.6168 0.5546 0.5841 0.6168 0.5455 0.5789
5000 0.5701 0.6100 0.5894 0.5514 0.4275 0.4816 0.5701 0.6162 0.5922 0.5888 0.3987 0.4755

10,000 0.6168 0.4177 0.4981 0.6262 0.4295 0.5095 0.6262 0.5447 0.5826 0.6449 0.5111 0.5702

Avg 0.6000 0.5201 0.5544 0.6112 0.4424 0.5123 0.6037 0.5592 0.5797 0.6131 0.5050 0.5525
std 0.0191 0.0684 0.0343 0.0377 0.0386 0.0314 0.0215 0.0353 0.0135 0.0215 0.0608 0.0434

CPY017 100 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
500 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

1000 1.0000 0.7500 0.8571 1.0000 0.2308 0.3750 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
5000 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

10,000 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000 0.6000 0.7500 0.6667 0.6667 0.6667

Avg 0.9333 0.6833 0.7809 0.9333 0.6295 0.7131 1.0000 0.6700 0.7976 0.9333 0.6833 0.7809
std 0.1491 0.1087 0.1043 0.1491 0.2868 0.2354 0.0000 0.1151 0.0866 0.1491 0.1087 0.1043

Water 2022, 14, 2492 20 of 28

Table 9. Cont.

Station Epochs
EDRL3 EDRL5 WEDRL3 WEDRL5

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

YOM009 100 0.6308 0.3254 0.4293 0.5846 0.3115 0.4064 0.6154 0.3226 0.4233 0.6462 0.3281 0.4352
500 0.4769 0.4769 0.4769 0.6154 0.3960 0.4819 0.4769 0.4769 0.4769 0.6000 0.4333 0.5032

1000 0.5538 0.3600 0.4364 0.5538 0.3186 0.4045 0.5231 0.3778 0.4387 0.4923 0.3299 0.3951
5000 0.5538 0.4091 0.4706 0.5846 0.4086 0.4810 0.6308 0.3981 0.4881 0.5538 0.3830 0.4528

10,000 0.5385 0.2991 0.3846 0.4923 0.3048 0.3765 0.4154 0.3971 0.4060 0.4615 0.3158 0.3750

Avg 0.5508 0.3741 0.4396 0.5661 0.3479 0.4301 0.5323 0.3945 0.4466 0.5508 0.3580 0.4323
std 0.0548 0.0707 0.0371 0.0467 0.0501 0.0484 0.0914 0.0554 0.0350 0.0757 0.0494 0.0503

Figure 8 depicts line charts that indicate the F1-score of each ensemble model that
was trained using data from each station. It was clear from the results that the ensemble
models not only delivered good performances and had a tendency to either improve or
keep their F1-scores steady but also reduced the false alarms by increasing the precision
scores. When we compared the results of each training epoch of the individual DRL model
and the ensemble model, as shown in Tables 3 and 9, we discovered that ensemble models
performed better than every single DRL model in many training epochs. In particular,
EDRL5 on the CPY017 with 500 training epochs generated an excellent score of 1.0000
in every metrics index, resulting from a 25% increase in accuracy and a 15% increase in
F1-score. Meanwhile, EDRL5 on the CPY011 with 10,000 training epochs improved the
performance of the best individual model with an F1-score from 0.75 to 0.8750, reached 1.00
in terms of recall, and increased precision by 20%. By combining the DRL models trained
on only 500 epochs, the ensemble model on YOM009 got the highest F1-score of 0.5032.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

Figure 8. Cont.

Water 2022, 14, 2492 21 of 28

(g) CPY017 (h) YOM009

Figure 8. F1-score of ensemble model when increasing the learning epochs at CPY011, CPY012,
CPY013, CPY014, CPY015, CPY016, CPY017, and YOM009 (a–h).

As shown in Table 10, we evaluated the average F1-score of each individual DRL
model and ensemble of DRL models against the other neural network models. We can
see that the LSTM model was the best model when detecting anomalies on CPY013,
CPY014, CPY016, and CPY017, while WEDRL3 provided the highest average F1-score
on CPY015 and YOM009. The highest F1-score was 0.4134 on CPY015, which was provided
by DRLF1, DRLAcc, EDRL3, and WEDRL3. Although MLP and LSTM beat other models in
many datasets, WEDRL3 has the greatest average ranking, as shown in Figure 9. In other
words, the ensemble model not only has the potential to improve the performance of a
single model, but it also has a higher reliability to deliver excellent performance than a
single model.

Table 10. The mean F1-scores and standard deviations of all of the DRL, MLP, LSTM, and ensemble
of DRL-based models when testing with the dataset from different stations (the best F1-score of each
station is shown in bold).

Models CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

DRL 0.7433 (±0.08) 0.6550 (±0.08) 0.6014 (±0.10) 0.4823 (±0.20) 0.3477 (±0.06) 0.3770 (±0.03) 0.6801 (±0.21) 0.3581 (±0.06)
DRLF1 0.7170 (±0.07) 0.7146 (±0.06) 0.6963 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5438 (±0.05) 0.6381 (±0.16) 0.4152 (±0.04)
DRLRwd 0.7433 (±0.08) 0.6468 (±0.10) 0.6212 (±0.09) 0.5537 (±0.26) 0.3477 (±0.06) 0.3499 (±0.06) 0.6762 (±0.21) 0.3891 (±0.04)
DRLAcc 0.7170 (±0.07) 0.7234 (±0.04) 0.6920 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5714 (±0.02) 0.7219 (±0.14) 0.4248 (±0.04)
DRLValid 0.6020 (±0.17) 0.7045 (±0.10) 0.5639 (±0.21) 0.6596 (±0.14) 0.3211 (±0.10) 0.4867 (±0.07) 0.6488 (±0.15) 0.4378 (±0.03)
EDRL3 0.7700 (±0.06) 0.7367 (±0.02) 0.7033 (±0.07) 0.6948 (±0.11) 0.4134 (±0.02) 0.5544 (±0.03) 0.7809 (±0.10) 0.4396 (±0.04)
EDRL5 0.7455 (±0.09) 0.7558 (±0.03) 0.6819 (±0.03) 0.7295 (±0.12) 0.3605 (±0.07) 0.5123 (±0.03) 0.7131 (±0.24) 0.4301 (±0.05)
WEDRL3 0.7795 (±0.05) 0.7432 (±0.03) 0.7100 (±0.07) 0.6962 (±0.16) 0.4134 (±0.02) 0.5797 (±0.01) 0.7976 (±0.09) 0.4466 (±0.03)
WEDRL5 0.7540 (±0.05) 0.7347 (±0.04) 0.7194 (±0.05) 0.6714 (±0.16) 0.3954 (±0.04) 0.5525 (±0.04) 0.7619 (±0.10) 0.4323 (±0.05)
MLP 0.8505 (±0.06) 0.7822 (±0.03) 0.6998 (±0.03) 0.8571 (±0.00) 0.2220 (±0.10) 0.5651 (±0.14) 0.9778 (±0.07) 0.2358 (±0.05)
LSTM 0.8167 (±0.04) 0.7753 (±0.02) 0.7265 (±0.02) 0.8571 (±0.00) 0.3276 (±0.09) 0.6252 (±0.06) 0.9857 (±0.05) 0.2596 (±0.06)

Figure 9. Critical difference diagram.

5.4.2. Performance on the Different Station

We then tested the generalisation ability of the best ensemble (WEDRL3) with the data
collected from different stations. The F1-score of each model is depicted in Table 11. We
can observe that the ensemble model that was created from the model trained on CPY011
data performed well not only on their own dataset but also on CPY017, with an F1-score
of 0.8200, similarly to WEDRL3 on CPY012 and CPY013, which recognised anomalies on
CPY014 better than their own dataset with F1-scores of 0.8421 and 0.8143, respectively.
Inversely, the ensemble model on CPY014, CPY015, and CPY016 trained datasets provided
poor performance when used to detect anomalies on other stations. Even though the
ensemble model trained on the CPY017 dataset got an F1-score of more than 0.5 on CPY012,
CPY013, and CPY014, it did not do well on many stations, with an F1-score of less than

Water 2022, 14, 2492 22 of 28

0.3. WEDRL3 scored badly not just on their own dataset but also on others, with F1-scores
ranging from 0.0739 on CPY015 to 0.5748 on CPY016.

Table 11. The mean F1-scores of the WEDRL3 models when testing with the dataset from the same
station (shown in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.7795) 0.2772 0.2278 0.1718 0.4345 0.0788 0.2830 0.0900
CPY012 0.7183 (0.7432) 0.6817 0.4624 0.2182 0.5355 0.6419 0.5096
CPY013 0.6920 0.7281 (0.7101) 0.5512 0.2713 0.5625 0.5959 0.4816
CPY014 0.7276 0.8421 0.8143 (0.6962) 0.5714 0.5471 0.7948 0.3450
CPY015 0.3748 0.2683 0.1664 0.1482 (0.4134) 0.1290 0.1994 0.0739
CPY016 0.5813 0.6283 0.6450 0.3327 0.3647 (0.5797) 0.4711 0.5748
CPY017 0.8200 0.4423 0.4514 0.3803 0.3545 0.2075 (0.7976) 0.2931
YOM009 0.1084 0.3261 0.3109 0.2619 0.0568 0.4613 0.3375 (0.4466)

avg 0.6002 0.5320 0.5010 0.3756 0.3356 0.3877 0.5152 0.3518

std 0.2426 0.2310 0.2451 0.1887 0.1551 0.2121 0.2292 0.1889

5.4.3. Ensemble with All Seven Models

Then, to learn more about how well the ensemble worked, we combined our developed
DRL models with MLP and LSTM models. In model selection, we selected all seven models
and selected the five and three models with the highest ranking in F1-score to build
our ensemble model. We used the same strategy to make a final decision. So, we have
6 ensemble model for each epochs of training include majority voting ensemble model with
3 (E3), 5 (E5), and 7 (E7) model, and weighted ensemble model with 3 (WE3), 5 (WE5), and
7 (WE7) models, and the results are displayed in Table 12.

We can see that, on the CPY011 dataset, the ensemble of the top three models (E3)
earned the greatest F1-score of 0.9231 with every epoch of training. On CPY012, the greatest
F1-score of 0.8438 was obtained by E5 and WE7 with models trained with 10,000 epochs,
and E7 with models trained with 500 epochs, while E3 and WE3 models trained with
10,000 epochs performed the best in identifying anomalies on the CPY013 dataset. With the
CPY014 dataset, all ensemble models gave an F1-score of 0.8571, with the exception of
the ensemble with majority voting of all seven models trained with 10,000 epochs, which
performed badly with an F1-score of 0.6667. WE7 surpassed other ensemble models on the
CPY015 and CPY016 datasets, with the greatest F1-score of 0.4615 and 0.6704, respectively.
Every ensemble model on CPY017 produced outstanding results with a 1.0000 F1-score,
particularly E3, WE3, WE5, and WE7, which produced excellent results with all training
epochs. The weighted ensemble with 5 models (WE5) trained with 500 epochs performed
the best on the YOM009 dataset, with a 0.5032 F1-score.

As indicated in Table 13, we averaged the F1-score of each individual model and
ensemble model to compare their performance. We can observe that E3 not only performed
the best model with the greatest average F1-score on all datasets but also excellently
performed with a 1.0000 F1-score on CPY017 and YOM009. Among the models tested
on the CPY014 dataset, the best F1-score of 0.8571 was achieved by MLP, LSTM, E3,
E5, WE3, WE5, and WE7. In contrast, on the CPY015 dataset, the model with DRL-
based (DRLF1, DRlAcc, EDRL3, and WEDRL3) generated the highest F1-score of 0.4134.
Furthermore, as shown in Figure 10, the CD diagram was chosen to make a statistical
comparison of our results, which revealed that E3 had the highest ranking, and the ensemble
model that combined all seven individual models outperformed both the individual model
and the ensemble model created using DRL models. It also demonstrated the ability
of ensemble methods to improve the performance of individual DRL models because it
represented a significant difference from individual models (DRL, DRLRwd, and DRLValid).

Water 2022, 14, 2492 23 of 28

Table 12. The performance of the ensemble models built by combining DRL and candidate models
(the best F1-score of each row is shown in bold).

Station Epochs
E3 E5 E7 WE3 WE5 WE7

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 1.0000 0.9231 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
500 0.8571 1.0000 0.9231 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

1000 0.8571 1.0000 0.9231 0.8571 1.0000 0.9231 0.8571 1.0000 0.9231 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
5000 0.8571 1.0000 0.9231 0.7143 0.7143 0.7143 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

10,000 0.8571 1.0000 0.9231 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

avg 0.8571 1.0000 0.9231 0.8285 0.8143 0.8189 0.8571 0.8214 0.8360 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
std 0.0000 0.0000 0.0000 0.0639 0.1168 0.0774 0.0000 0.1101 0.0546 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CPY012 100 0.7647 0.9286 0.8387 0.7647 0.8387 0.8000 0.7941 0.7714 0.7826 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254
500 0.7647 0.9286 0.8387 0.7941 0.7297 0.7606 0.7941 0.9000 0.8438 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254

1000 0.7647 0.9286 0.8387 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254
5000 0.7647 0.9286 0.8387 0.7059 0.7500 0.7273 0.7353 0.8333 0.7812 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254

10,000 0.7647 0.9286 0.8387 0.7941 0.9000 0.8438 0.7059 0.8276 0.7619 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7941 0.9000 0.8438

avg 0.7647 0.9286 0.8387 0.7647 0.8230 0.7914 0.7588 0.8458 0.7990 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7706 0.8973 0.8291
std 0.0000 0.0000 0.0000 0.0360 0.0800 0.0475 0.0383 0.0537 0.0342 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0131 0.0015 0.0082

CPY013 100 0.7742 0.7273 0.7500 0.8387 0.6842 0.7536 0.8065 0.6757 0.7353 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273 0.7742 0.6857 0.7273
500 0.7742 0.7273 0.7500 0.8387 0.6341 0.7222 0.7419 0.6970 0.7188 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077

1000 0.7742 0.7273 0.7500 0.8710 0.6750 0.7606 0.8065 0.6410 0.7143 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273 0.7742 0.6857 0.7273
5000 0.7742 0.7273 0.7500 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273

10,000 0.8387 0.7647 0.8000 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.8387 0.7647 0.8000 0.7742 0.7273 0.7500 0.7419 0.6765 0.7077

avg 0.7871 0.7348 0.7600 0.8129 0.6888 0.7437 0.7742 0.6929 0.7301 0.7613 0.6941 0.7262 0.7613 0.6903 0.7240 0.7613 0.6820 0.7195
std 0.0288 0.0167 0.0224 0.0530 0.0516 0.0277 0.0323 0.0497 0.0267 0.0433 0.0394 0.0413 0.0177 0.0212 0.0175 0.0177 0.0050 0.0107

CPY014 100 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

1000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
5000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

10,000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.6000 0.6667 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

avg 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.9200 0.8190 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1789 0.0851 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CPY015 100 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2647 0.4737 0.3396 0.2353 0.4444 0.3077
500 0.3235 0.5000 0.3929 0.2353 0.5000 0.3200 0.2353 0.5000 0.3200 0.3235 0.5000 0.3929 0.2941 0.5263 0.3774 0.2647 0.5000 0.3462

1000 0.3824 0.5000 0.4333 0.4118 0.4828 0.4444 0.2647 0.4286 0.3273 0.3824 0.5000 0.4333 0.3824 0.4643 0.4194 0.3824 0.4333 0.4062
5000 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2941 0.5000 0.3704 0.2941 0.5000 0.3704

10,000 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3529 0.4800 0.4068 0.3824 0.5200 0.4407 0.3824 0.5200 0.4407 0.4412 0.4839 0.4615

avg 0.3471 0.5135 0.4134 0.3118 0.4862 0.3739 0.2765 0.4817 0.3493 0.3471 0.5135 0.4134 0.3235 0.4969 0.3895 0.3235 0.4723 0.3784
std 0.0323 0.0124 0.0219 0.0795 0.0225 0.0522 0.0446 0.0309 0.0342 0.0323 0.0124 0.0219 0.0551 0.0274 0.0404 0.0858 0.0315 0.0587

CPY016 100 0.5421 0.8529 0.6629 0.5981 0.5470 0.5714 0.6075 0.5462 0.5752 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8286 0.6554
500 0.5421 0.8529 0.6629 0.5981 0.6154 0.6066 0.5888 0.6632 0.6238 0.5421 0.8406 0.6591 0.5421 0.8406 0.6591 0.5421 0.8406 0.6591

1000 0.5421 0.8529 0.6629 0.5794 0.5794 0.5794 0.6075 0.5372 0.5702 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8286 0.6554
5000 0.5421 0.8529 0.6629 0.5607 0.7059 0.6250 0.5607 0.6122 0.5854 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5607 0.8333 0.6704

10,000 0.5421 0.8529 0.6629 0.6075 0.5752 0.5909 0.5981 0.4638 0.5224 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8529 0.6629

avg 0.5421 0.8529 0.6629 0.5888 0.6046 0.5947 0.5925 0.5645 0.5754 0.5421 0.8406 0.6591 0.5421 0.8310 0.6561 0.5458 0.8368 0.6606
std 0.0000 0.0000 0.0000 0.0187 0.0616 0.0215 0.0194 0.0762 0.0363 0.0000 0.0000 0.0000 0.0000 0.0054 0.0017 0.0083 0.0103 0.0063

CPY017 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10,000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 1.0000 0.8000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

avg 1.0000 1.0000 1.0000 1.0000 0.9000 0.9428 0.9333 0.8500 0.8743 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
std 0.0000 0.0000 0.0000 0.0000 0.1369 0.0783 0.1491 0.1369 0.0745 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

YOM009 100 0.6308 0.3254 0.4293 0.5846 0.3115 0.4064 0.5538 0.3303 0.4138 0.6154 0.3226 0.4233 0.6462 0.3281 0.4352 0.5846 0.3065 0.4021
500 0.4769 0.4769 0.4769 0.6154 0.3960 0.4819 0.3538 0.4694 0.4035 0.4769 0.4769 0.4769 0.6000 0.4333 0.5032 0.6154 0.4082 0.4908

1000 0.5538 0.3600 0.4364 0.5538 0.3186 0.4045 0.4769 0.3875 0.4276 0.5231 0.3778 0.4387 0.4923 0.3299 0.3951 0.5538 0.3396 0.4211
5000 0.5538 0.4091 0.4706 0.4923 0.4384 0.4638 0.4462 0.4531 0.4496 0.6308 0.3981 0.4881 0.5538 0.3789 0.4500 0.5385 0.4430 0.4861

10,000 0.5385 0.2991 0.3846 0.4923 0.3048 0.3765 0.4154 0.3293 0.3673 0.4154 0.3971 0.4060 0.4615 0.3158 0.3750 0.5538 0.3186 0.4045

avg 0.5508 0.3741 0.4396 0.5477 0.3539 0.4266 0.4492 0.3939 0.4124 0.5323 0.3945 0.4466 0.5508 0.3572 0.4317 0.5692 0.3632 0.4409
std 0.0548 0.0707 0.0371 0.0550 0.0599 0.0443 0.0741 0.0661 0.0305 0.0914 0.0554 0.0350 0.0757 0.0489 0.0500 0.0308 0.0595 0.0440

Table 13. The mean F1-scores and standard deviation of all models when testing with the dataset
from different stations (the best F1-score of each station is shown in bold).

Models CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

DRL 0.7433 (±0.08) 0.6550 (±0.08) 0.6014 (±0.10) 0.4823 (±0.20) 0.3477 (±0.06) 0.3770 (±0.03) 0.6801 (±0.21) 0.3581 (±0.06)
DRLF1 0.7170 (±0.07) 0.7146 (±0.06) 0.6963 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5438 (±0.05) 0.6381 (±0.16) 0.4152 (±0.04)
DRLRwd 0.7433 (±0.08) 0.6468 (±0.10) 0.6212 (±0.09) 0.5537 (±0.26) 0.3477 (±0.06) 0.3499 (±0.06) 0.6762 (±0.21) 0.3891 (±0.04)
DRLAcc 0.7170 (±0.07) 0.7234 (±0.04) 0.6920 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5714 (±0.02) 0.7219 (±0.14) 0.4248 (±0.04)
DRLValid 0.6020 (±0.17) 0.7045 (±0.10) 0.5639 (±0.21) 0.6596 (±0.14) 0.3211 (±0.10) 0.4867 (±0.07) 0.6488 (±0.15) 0.4378 (±0.03)
MLP 0.8505 (±0.06) 0.7822 (±0.03) 0.6998 (±0.03) 0.8571 (±0.00) 0.2220 (±0.10) 0.5651 (±0.14) 0.9778 (±0.07) 0.2358 (±0.05)
LSTM 0.8167 (±0.04) 0.7753 (±0.02) 0.7265 (±0.02) 0.8571 (±0.00) 0.3276 (±0.09) 0.6252 (±0.06) 0.9857 (±0.05) 0.2596 (±0.06)
EDRL3 0.7700 (±0.06) 0.7367 (±0.02) 0.7033 (±0.07) 0.6948 (±0.11) 0.4134 (±0.02) 0.5544 (±0.03) 0.7809 (±0.10) 0.4396 (±0.04)
EDRL5 0.7455 (±0.09) 0.7558 (±0.03) 0.6819 (±0.03) 0.7295 (±0.12) 0.3605 (±0.07) 0.5123 (±0.03) 0.7131 (±0.24) 0.4301 (±0.05)
E3 0.9231 (±0.00) 0.8387 (±0.00) 0.7600 (±0.02) 0.8571 (±0.00) 0.4134 (±0.02) 0.6629 (±0.00) 1.0000 (±0.00) 1.0000 (±0.04)
E5 0.8189 (±0.08) 0.7914 (±0.05) 0.7437 (±0.03) 0.8571 (±0.00) 0.3739 (±0.05) 0.5947 (±0.02) 0.9428 (±0.08) 0.9428 (±0.04)
E7 0.8360 (±0.05) 0.7990 (±0.03) 0.7301 (±0.03) 0.8190 (±0.09) 0.3493 (±0.03) 0.5754 (±0.04) 0.8743 (±0.07) 0.8743 (±0.03)
WEDRL3 0.7795 (±0.05) 0.7432 (±0.03) 0.7100 (±0.07) 0.6962 (±0.16) 0.4134 (±0.02) 0.5797 (±0.01) 0.7976 (±0.09) 0.4466 (±0.03)
WEDRL5 0.7540 (±0.05) 0.7347 (±0.04) 0.7194 (±0.05) 0.6714 (±0.16) 0.3954 (±0.04) 0.5525 (±0.04) 0.7619 (±0.10) 0.4323 (±0.05)
WE3 0.8571 (±0.00) 0.8254 (±0.00) 0.7262 (±0.04) 0.8571 (±0.00) 0.4134 (±0.02) 0.6591 (±0.00) 1.0000 (±0.00) 1.0000 (±0.03)
WE5 0.8571 (±0.00) 0.8254 (±0.00) 0.7240 (±0.02) 0.8571 (±0.00) 0.3895 (±0.04) 0.6561 (±0.00) 1.0000 (±0.00) 1.0000 (±0.05)
WE7 0.8571 (±0.00) 0.8291 (±0.01) 0.7195 (±0.01) 0.8571 (±0.00) 0.3784 (±0.06) 0.6606 (±0.01) 1.0000 (±0.00) 1.0000 (±0.04)

Water 2022, 14, 2492 24 of 28

Figure 10. A critical difference diagram.

We then tested the generalisation ability of ensemble models with the data collected
from different stations. The F1-score of each station is depicted in Table 14. Using ensemble
E3 with CPY011 data, to identify anomalies from other stations, we can see that it works
well with F1-scores of more than 0.5800, but it performed poorly at detecting anomalies
on CPY015 and YOM009 with F1-scores of 0.3444 and 0.1017, respectively. E3 on CPY012
performed well when detecting anomalies on CPY014 with a 0.8635 F1-score. Similarly, E3
on CPY013 provided a higher F1-score on their own dataset when detecting anomalies on
CPY012 and CPY014 with an F1-score of 0.8060 and 0.8571, respectively. The best ensemble
on CPY014 generated excellent performance when identifying anomalies on CPY017 data.
In contrast, E3 on CPY015 performed poorly on YOM009 with an F1-score of only 0.0437.
While considered E3 on CPY016, although it provided good performance with an F1-score
higher than 0.6 on CPY012, CPY013, and CPY014, it performed poorly on CPY011, CPY015,
CPY017, and YOM009 with an F1-score lower than 0.45. E3 on CPY017 provided good
results with an F1-score of more than 0.69, except on CPY015, CPY016, and YOM009 with
an F1-score lower than 0.56. Meanwhile, E3 on YOM009 generated an F1-score on its own
of only 0.43, but it performed excellently when detecting anomalies on CPY017 and other
datasets with an F1-score higher than 0.65, except on CPY015 with an F1-score of 0.2414.

Table 14. The F1-scores of the E3 models when testing with the dataset from the same station (shown
in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.9231) 0.4000 0.3222 0.7778 0.4028 0.1373 0.7059 0.6087
CPY012 0.7183 (0.8387) 0.8060 0.7500 0.1508 0.6923 0.7273 0.7857
CPY013 0.6920 0.7350 (0.7600) 0.7000 0.2117 0.7123 0.6909 0.7719
CPY014 0.6895 0.8635 0.8571 (0.8571) 0.5714 0.6000 0.8571 0.8571
CPY015 0.3444 0.2192 0.2093 0.2593 (0.4132) 0.1420 0.3077 0.2414
CPY016 0.5840 0.6398 0.6603 0.6322 0.3495 (0.6629) 0.5665 0.6580
CPY017 0.7600 0.6667 0.6000 1.0000 0.3651 0.2857 (1.0000) 1.0000
YOM009 0.1017 0.2948 0.3221 0.2908 0.0437 0.4500 0.3230 (0.4396)

avg 0.6016 0.5822 0.5671 0.6584 0.3135 0.4603 0.6473 0.6703

std 0.2603 0.2468 0.2496 0.2607 0.1682 0.2432 0.2412 0.2415

6. Discussion

We can observe that when the number of training epochs increases, the performance
of each model grows or decreases in each epoch, then drops and bounces back. This might
indicate that our model is still learning or is learning too much—that is, it is difficult to
decide when it is time to stop training.

Water 2022, 14, 2492 25 of 28

Even though DRL can do better than other models, it is time-consuming—at least
50 times slower than MLP models on average—because we have to train it until it performs
well enough and we cannot predict how long that will take. The size of the windows must
also be taken into account. A larger window size takes more time than a smaller window
size. The window size has an effect on the comparison of data in windows to identify the
anomaly. Additionally, we may add additional neural networks to improve the accuracy of
our technique, but training will take longer.

DRL does better than other models when it is trained on datasets with a low number
of outliers. This proves the ability to detect unknown anomalies. However, its performance
is insufficient, which may be due to an imbalance in our dataset. As a result, models may
lack sufficient information to explore and leverage knowledge for adaptive detection of
unknown abnormalities.

Moreover, the neural structure that works well with one station may not function
well with another. Hence, the problems of this topic include determining the suitable
neural structure for each station. Furthermore, the primary parameter that requires fur-
ther attention is the reward function, since a suitable reward will impact the model’s
learning process.

In the case of ensemble models, when all of the individual models in an ensemble
perform similarly, majority voting is the best method for determining the final decision.
However, when the accuracies of individual models are different, the weighted voting is
the best way to utilise the strengths of the good models in making a decision. Furthermore,
the ensemble model can also reduce the false alarm rate, as seen by an increased precision
score. It should be noted that, although single models performed well on certain stations,
they did poorly on others, such as the LSTM model. As a result, we cannot rely on a single
model since we do not know if it is the best or not. The ensemble models, on the other hand,
are more reliable, even though they may not produce the best accuracy for every station.
On the whole, nevertheless, most ensembles, such as WEDRL3 performed consistently very
well and their accuracies are always ranked highly at every station, whilst the individual
models: DRL, MLP and LSTM, are not consistent through out all the stations.

7. Conclusions

In this research, we firstly investigated how deep reinforcement learning (DRL) can be
applied to detect anomalies in water level data and then devised two strategies to construct
more effective and reliable ensembles. For DRL, we defined a reward function as it plays a
key role in determining the success of an RL. We developed ensemble models with five deep
reinforcement learning models, generated by the same DRL algorithm but with different
criteria of performance measurement. We tested our ensemble approach on telemetry water
level data from eight different stations. We compared our approach to two different neural
network models. Moreover, we demonstrate the ability to detect unknown anomalies by
using the trained model to detect anomalies from other stations’ data.

The results indicate that DRLAcc models are the best individual DRL models, but they
performed slightly poor than LSTM. When tested on different stations, LSTM still does
better than others, but its accuracy is not satisfactory. When compared to an ensemble
approach, LSTM was more accurate in some stations than other ensembles with DRL
models, but less accurate in some others. On the whole, the statistical results from the
CD diagram showed that our ensemble approach with only 3 members of DRL models,
WEDRL3, was superior. Furthermore, all ensemble models that were combined by selecting
models from 5 DRL models, MLP, and LSTM outperformed both the best individual model,
LSTM, and the best ensemble using DRL models, WEDRL3. This is supported by the
highest F1-score and rankings with the CD diagram. It is clear that ensemble methods
not only increased the accuracy of a single model but also provided a higher reliability
of performance.

In conclusion, DRL is applicable for detecting anomalies in telemetry water level data
with added benefit of detecting unknown anomalies. Our ensemble construction methods

Water 2022, 14, 2492 26 of 28

can be used to build ensemble models from selected single DRL models in order to increase
the accuracy and reliability. In general, the ensembles are consistent in producing more
accurate classification, although they may not always achieve the best results. Moreover,
they are superior in reducing the number of false alarms in identifying abnormalities in
water level data, which is very important in real application. The next stage in our study
will be to develop more effective and efficient techniques for correcting the identified
anomalies in the data.

Author Contributions: Conceptualization, T.K. and W.W.; methodology, T.K. and W.W.; formal
analysis, T.K. and W.W.; investigation, T.K. and W.W.; resources, T.K.; writing and revision: T.K. and
final revision: W.W.; project administration, T.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restriction, e.g., privacy. The data
presented in this study are available on request from the Hydro-Informatics Institute (HII).

Acknowledgments: The authors would like to thank the Hydro-Informatics Institute of Ministry of
Higher Education, Science, Research and Innovation, Thailand, for providing the scholarship for
Thakolpat Khampuengson to do his Ph.D. at the university of East Anglia.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
BDRL Best Deep Reinforcement Learning model
DQN Deep Q-Learning Network
DRL Deep Reinforcement Learning
HII Hydro Informatics Institute
LSTM Long-Short Term Memory
MLP Multilayer Perceptron
NN Neural Network
RL Reinforcement Learning

References
1. World Bank. Thai Flood 2011: Rapid Assessment for Resilient Recovery and Reconstruction Planning; World Bank: Washington, DC,

USA, 2012.
2. UNDRR. Disaster Risk Reduction in Thailand: Status Report 2020; United Nations Office for Disaster Risk Reduction (UNDRR):

Geneva, Switzerland, 2020.
3. Khampuengson, T.; Bagnall, A.; Wang, W. Developing Ensemble Methods for Detecting Anomalies in Water Level Data. In

Proceedings of the International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK,
15–17 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 145–151.

4. Wang, W. Some Fundamental Issues in Ensemble Methods. In Proceedings of the IEEE World Congress on Computational
Intelligence, Hong Kong, China, 1–8 June 2008; pp. 2243–2250. [CrossRef]

5. Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of the
2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Porto, Portugal, 6–9 October 2021; IEEE:
Piscataway, NJ, USA, 2015; pp. 1–7.

6. Kim, T.Y.; Cho, S.B. Web traffic anomaly detection using C-LSTM neural networks. Expert Syst. Appl. 2018, 106, 66–76. [CrossRef]
7. Munir, M.; Siddiqui, S.A.; Dengel, A.; Ahmed, S. DeepAnT: A deep learning approach for unsupervised anomaly detection in

time series. IEEE Access 2018, 7, 1991–2005. [CrossRef]
8. Pang, G.; van den Hengel, A.; Shen, C.; Cao, L. Deep reinforcement learning for unknown anomaly detection. arXiv 2020,

arXiv:2009.06847.
9. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602.

http://doi.org/10.1109/IJCNN.2008.4634108
http://dx.doi.org/10.1016/j.eswa.2018.04.004
http://dx.doi.org/10.1109/ACCESS.2018.2886457

Water 2022, 14, 2492 27 of 28

10. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

11. Kormushev, P.; Calinon, S.; Caldwell, D.G. Reinforcement learning in robotics: Applications and real-world challenges. Robotics
2013, 2, 122–148. [CrossRef]

12. Polydoros, A.S.; Nalpantidis, L. Survey of model-based reinforcement learning: Applications on robotics. J. Intell. Robot. Syst.
2017, 86, 153–173. [CrossRef]

13. Sharma, A.R.; Kaushik, P. Literature survey of statistical, deep and reinforcement learning in natural language processing. In
Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida,
India, 5–6 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 350–354.

14. Luketina, J.; Nardelli, N.; Farquhar, G.; Foerster, J.; Andreas, J.; Grefenstette, E.; Whiteson, S.; Rocktäschel, T. A survey of
reinforcement learning informed by natural language. arXiv 2019, arXiv:1906.03926.

15. Le, N.; Rathour, V.S.; Yamazaki, K.; Luu, K.; Savvides, M. Deep reinforcement learning in computer vision: A comprehensive
survey. Artif. Intell. Rev. 2021, 55, 2733–2819. [CrossRef]

16. Huang, C.; Wu, Y.; Zuo, Y.; Pei, K.; Min, G. Towards experienced anomaly detector through reinforcement learning. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018 .

17. Hsu, Y.F.; Matsuoka, M. A deep reinforcement learning approach for anomaly network intrusion detection system. In Proceedings
of the 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), Piscataway, NJ, USA, 9–11 November 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

18. Lin, E.; Chen, Q.; Qi, X. Deep reinforcement learning for imbalanced classification. Appl. Intell. 2020, 50, 2488–2502. [CrossRef]
19. Pulido, M.; Melin, P.; Castillo, O. Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time

series prediction of the Mexican Stock Exchange. Inf. Sci. 2014, 280, 188–204. [CrossRef]
20. Ikram, S.T.; Cherukuri, A.K.; Poorva, B.; Ushasree, P.S.; Zhang, Y.; Liu, X.; Li, G. Anomaly detection using XGBoost ensemble of

deep neural network models. Cybern. Inf. Technol. 2021, 21, 175–188. [CrossRef]
21. Yang, H.; Liu, X.Y.; Zhong, S.; Walid, A. Deep reinforcement learning for automated stock trading: An ensemble strategy. In

Proceedings of the First ACM International Conference on AI in Finance, New York, NY, USA, 15–16 October 2020; pp. 1–8.
22. Liu, H.; Yu, C.; Wu, H.; Duan, Z.; Yan, G. A new hybrid ensemble deep reinforcement learning model for wind speed short term

forecasting. Energy 2020, 202, 117794. [CrossRef]
23. Rousseeuw, P.J.; Hubert, M. Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 73–79.

[CrossRef]
24. Zimek, A.; Filzmoser, P. There and back again: Outlier detection between statistical reasoning and data mining algorithms. Wiley

Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1280. [CrossRef]
25. Kumar, A.; Srivastava, A.; Bansal, N.; Goel, A. Real time data anomaly detection in operating engines by statistical smoothing

technique. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Montreal,
QC, Canada, 29 April–2 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5.

26. Lin, J.; Sheng, G.; Yan, Y.; Zhang, Q.; Jiang, X. Online Monitoring Data Cleaning of Transformer Considering Time Series
Correlation. In Proceedings of the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO,
USA, 16–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9.

27. Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367.
[CrossRef]

28. Truong, C.; Oudre, L.; Vayatis, N. Selective review of offline change point detection methods. Signal Process. 2020, 167, 107299.
[CrossRef]

29. Apostol, E.S.; Truică, C.O.; Pop, F.; Esposito, C. Change point enhanced anomaly detection for IoT time series data. Water 2021,
13, 1633. [CrossRef]

30. Dao, C.; Liu, X.; Sim, A.; Tull, C.; Wu, K. Modeling data transfers: Change point and anomaly detection. In Proceedings of
the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1589–1594.

31. Siris, V.A.; Papagalou, F. Application of anomaly detection algorithms for detecting SYN flooding attacks. In Proceedings of the
IEEE Global Telecommunications Conference, 2004. GLOBECOM’04, Dallas, TX, USA, 29 November–3 December 2004; IEEE:
Piscataway, NJ, USA, 2004; Volume 4, pp. 2050–2054.

32. Yu, Y.; Zhu, Y.; Li, S.; Wan, D. Time series outlier detection based on sliding window prediction. Math. Probl. Eng. 2014, 2014,
879736. [CrossRef]

33. van de Wiel, L.; van Es, D.M.; Feelders, A.J. Real-Time Outlier Detection in Time Series Data of Water Sensors. In Advanced
Analytics and Learning on Temporal Data; Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 155–170.

34. Yang, J.H.; Cheng, C.H.; Chan, C.P. A time-series water level forecasting model based on imputation and variable selection
method. Comput. Intell. Neurosci. 2017, 2017, 8734214. [CrossRef]

35. Park, K.; Jung, Y.; Seong, Y.; Lee, S. Development of Deep Learning Models to Improve the Accuracy of Water Levels Time Series
Prediction through Multivariate Hydrological Data. Water 2022, 14, 469. [CrossRef]

http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.3390/robotics2030122
http://dx.doi.org/10.1007/s10846-017-0468-y
http://dx.doi.org/10.1007/s10462-021-10061-9
http://dx.doi.org/10.1007/s10489-020-01637-z
http://dx.doi.org/10.1016/j.ins.2014.05.006
http://dx.doi.org/10.2478/cait-2021-0037
http://dx.doi.org/10.1016/j.energy.2020.117794
http://dx.doi.org/10.1002/widm.2
http://dx.doi.org/10.1002/widm.1280
http://dx.doi.org/10.1007/s10115-016-0987-z
http://dx.doi.org/10.1016/j.sigpro.2019.107299
http://dx.doi.org/10.3390/w13121633
http://dx.doi.org/10.1155/2014/879736
http://dx.doi.org/10.1155/2017/8734214
http://dx.doi.org/10.3390/w14030469

Water 2022, 14, 2492 28 of 28

36. Vu, M.; Jardani, A.; Massei, N.; Fournier, M. Reconstruction of missing groundwater level data by using Long Short-Term
Memory (LSTM) deep neural network. J. Hydrol. 2021, 597, 125776. [CrossRef]

37. Chang, L.C.; Chang, F.J.; Yang, S.N.; Kao, I.F.; Ku, Y.Y.; Kuo, C.L.; Amin, I.M.Z.b.M. Building an intelligent hydroinformatics
integration platform for regional flood inundation warning systems. Water 2019, 11, 9. [CrossRef]

38. Liu, Y.; Hou, G.; Huang, F.; Qin, H.; Wang, B.; Yi, L. Directed graph deep neural network for multi-step daily streamflow
forecasting. J. Hydrol. 2022, 607, 127515. [CrossRef]

39. Zhou, Y.; Guo, S.; Chang, F.J. Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. J. Hydrol.
2019, 570, 343–355. [CrossRef]

40. Chang, L.C.; Chang, F.J.; Yang, S.N.; Tsai, F.H.; Chang, T.H.; Herricks, E.E. Self-organizing maps of typhoon tracks allow for flood
forecasts up to two days in advance. Nat. Commun. 2020, 11, 1–13. [CrossRef]

41. Chang, L.C.; Liou, J.Y.; Chang, F.J. Spatial-temporal flood inundation nowcasts by fusing machine learning methods and principal
component analysis. J. Hydrol. 2022, 612, 128086. [CrossRef]

42. Gao, S.; Zhang, Y.; Jia, K.; Lu, J.; Zhang, Y. Single sample face recognition via learning deep supervised autoencoders. IEEE Trans.
Inf. Forensics Secur. 2015, 10, 2108–2118. [CrossRef]

43. Xu, C.; Liu, Q.; Ye, M. Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing 2017,
222, 62–71. [CrossRef]

44. Pereira, J.; Silveira, M. Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders
with attention. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA),
Orlando, FL, USA, 17–20 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1275–1282.

45. Zhou, C.; Paffenroth, R.C. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 665–674.

46. Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for
unsupervised anomaly detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April–3 May 3, 2018.

47. Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.v.d. Memorizing normality to detect anomaly:
Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE International Conference
on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1705–1714.

48. Jiang, G.; Xie, P.; He, H.; Yan, J. Wind turbine fault detection using a denoising autoencoder with temporal information. IEEE/Asme
Trans. Mechatronics 2017, 23, 89–100. [CrossRef]

49. Maas, A.; Le, Q.V.; O’neil, T.M.; Vinyals, O.; Nguyen, P.; Ng, A.Y. Recurrent Neural Networks for Noise Reduction in Robust ASR.
2012. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj249fInrf5
AhUvEqYKHRHxBiQQFnoECAkQAQ&url=http%3A%2F%2Fai.stanford.edu%2F~amaas%2Fpapers%2Fdrnn_intrspch2012_
final.pdf&usg=AOvVaw2_oWylziqsFnVhhUBT_o8v (accessed on 30 June 2022).

50. Chiang, H.T.; Hsieh, Y.Y.; Fu, S.W.; Hung, K.H.; Tsao, Y.; Chien, S.Y. Noise reduction in ECG signals using fully convolutional
denoising autoencoders. IEEE Access 2019, 7, 60806–60813. [CrossRef]

51. Kieu, T.; Yang, B.; Guo, C.; Jensen, C.S. Outlier Detection for Time Series with Recurrent Autoencoder Ensembles. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 2725–2732.

52. Chen, J.; Sathe, S.; Aggarwal, C.; Turaga, D. Outlier detection with autoencoder ensembles. In Proceedings of the 2017 SIAM
International Conference on Data Mining, Houston, TX, USA, 27–29 April 2017; SIAM: Philadelphia, PA, USA, 2017; pp. 90–98.

53. Kao, I.F.; Liou, J.Y.; Lee, M.H.; Chang, F.J. Fusing stacked autoencoder and long short-term memory for regional multistep-ahead
flood inundation forecasts. J. Hydrol. 2021, 598, 126371. [CrossRef]

54. Yu, L.; Tan, S.K.; Chua, L.H. Online ensemble modeling for real time water level forecasts. Water Resour. Manag. 2017,
31, 1105–1119. [CrossRef]

55. Iftikhar, N.; Baattrup-Andersen, T.; Nordbjerg, F.E.; Jeppesen, K. Outlier detection in sensor data using ensemble learning.
Procedia Comput. Sci. 2020, 176, 1160–1169. [CrossRef]

56. Atienza, R. Advanced Deep Learning with Keras: Apply Deep Learning Techniques, Autoencoders, GANs, Variational Autoencoders, Deep
Reinforcement Learning, Policy Gradients, and More; Packt Publishing Ltd.: Birmingham, UK, 2018; p. 272.

57. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

58. Wan, Y.; Chen, J.; Xu, C.Y.; Xie, P.; Qi, W.; Li, D.; Zhang, S. Performance dependence of multi-model combination methods on
hydrological model calibration strategy and ensemble size. J. Hydrol. 2021, 603, 127065. [CrossRef]

59. Casciaro, G.; Ferrari, F.; Mazzino, A. Comparing novel strategies of Ensemble Model Output Statistics (EMOS) for calibrating
wind speed/power forecasts. arXiv 2021, arXiv:2108.12174.

60. Marathe, A.; Walambe, R.; Kotecha, K. Evaluating the performance of ensemble methods and voting strategies for dense 2D
pedestrian detection in the wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC,
Canada, 11–17 October 2021; pp. 3575–3584.

61. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.

http://dx.doi.org/10.1016/j.jhydrol.2020.125776
http://dx.doi.org/10.3390/w11010009
http://dx.doi.org/10.1016/j.jhydrol.2022.127515
http://dx.doi.org/10.1016/j.jhydrol.2018.12.040
http://dx.doi.org/10.1038/s41467-020-15734-7
http://dx.doi.org/10.1016/j.jhydrol.2022.128086
http://dx.doi.org/10.1109/TIFS.2015.2446438
http://dx.doi.org/10.1016/j.neucom.2016.10.010
http://dx.doi.org/10.1109/TMECH.2017.2759301
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj249fInrf5AhUvEqYKHRHxBiQQFnoECAkQAQ&url=http%3A%2F%2Fai.stanford.edu%2F~amaas%2Fpapers%2Fdrnn_intrspch2012_final.pdf&usg=AOvVaw2_oWylziqsFnVhhUBT_o8v
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj249fInrf5AhUvEqYKHRHxBiQQFnoECAkQAQ&url=http%3A%2F%2Fai.stanford.edu%2F~amaas%2Fpapers%2Fdrnn_intrspch2012_final.pdf&usg=AOvVaw2_oWylziqsFnVhhUBT_o8v
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj249fInrf5AhUvEqYKHRHxBiQQFnoECAkQAQ&url=http%3A%2F%2Fai.stanford.edu%2F~amaas%2Fpapers%2Fdrnn_intrspch2012_final.pdf&usg=AOvVaw2_oWylziqsFnVhhUBT_o8v
http://dx.doi.org/10.1109/ACCESS.2019.2912036
http://dx.doi.org/10.1016/j.jhydrol.2021.126371
http://dx.doi.org/10.1007/s11269-016-1539-8
http://dx.doi.org/10.1016/j.procs.2020.09.112
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/j.jhydrol.2021.127065

	Introduction
	Related Work
	Materials and Methods
	Reinforcement Learning (RL)
	Deep Q-Learning Network
	Deep Reinforcement Learning Model (DRL)
	Ensemble Methods

	Data Labelling
	Datasets
	Evaluation Metrics and Comparison Methods

	Experiment Design and Setting
	Four Sets of Experiments
	Parameter Setting
	Computing Facilities

	Results
	Accuracies of DRL Models
	Performance on the Same Station
	Performance on the Different Station
	Ensemble Results
	Performance on the Same Station
	Performance on the Different Station
	Ensemble with All Seven Models

	Discussion
	Conclusions
	References

