
algorithms

Article

Metaheuristics for the Minimum Time Cut Path Problem with
Different Cutting and Sliding Speeds

Bonfim Amaro Junior 1, Marcio Costa Santos 1, Guilherme Nepomuceno de Carvalho 1,
Luiz Jonatã Pires de Araújo 2 and Placido Rogerio Pinheiro 3,*

����������
�������

Citation: Amaro Junior, B.; Santos,

M.C.; de Carvalho, G.N.; de Araújo,

L.J.P.; Pinheiro, P.R. Metaheuristics

for the Minimum Time Cut Path

Problem with Different Cutting and

Sliding Speeds. Algorithms 2021, 14,

305. https://doi.org/10.3390/

a14110305

Academic Editors: Hsiang-Ling Chen,

Yun-Chia Liang, Mehmet Fatih

Tasgetiren and Quan-Ke Pan

Received: 8 October 2021

Accepted: 20 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Núcleo de Estudo em Machine Learning e Otimização (NEMO), Federal University of Ceará,
Russas 62900-000, Brazil; bonfimamaro@ufc.br (B.A.J.); marciocs@ufc.br (M.C.S.);
guilhermenepomuceno46@gmail.com (G.N.d.C.)

2 Machine Learning & Knowledge Representation (MlKr) Lab, Innopolis University, 420500 Innopolis, Russia;
l.araujo@innopolis.university

3 Graduate Program in Applied Informatics, University of Fortaleza (UNIFOR), Fortaleza 60811-905, Brazil
* Correspondence: placido@unifor.br

Abstract: The problem of efficiently cutting smaller two-dimensional pieces from a larger surface
is recurrent in several manufacturing settings. This problem belongs to the domain of cutting and
packing (C&P) problems. This study approached a category of C&P problems called the minimum
time cut path (MTCP) problem, which aims to identify a sequence of cutting and sliding movements
for the head device to minimize manufacturing time. Both cutting and slide speeds (just moving
the head) vary according to equipment, despite their relevance in real-world scenarios. This study
applied the MTCP problem on the practical scope and presents two metaheuristics for tackling more
significant instances that resemble real-world requirements. The experiments presented in this study
utilized parameter values from typical laser cutting machines to assess the feasibility of the proposed
methods compared to existing commercial software. The results show that metaheuristic-based
solutions are competitive when addressing practical problems, achieving increased performance
regarding the processing time for 94% of the instances.

Keywords: cut & packing problems; evolutionary computation; cut determination problem

1. Introduction

Cutting and packing (C&P) are optimization problems that concern the efficient
arrangement of items within a larger space with the same dimensionality. This type
of problem appears in several real-world industrial settings, including manufacturing,
logistics, and 3D printing [1–3]. Therefore, optimization methods for C&P can represent
a valuable commercial advantage [4]. This study focused on the minimum time cut path
(MTCP) problem, which aims to identify a sequence of instructions (cutting or moving the
head device) that minimizes the total cutting time for a packing arrangement or layout.

Prior to the solution of MTCP, a packing procedure is executed to achieve maximal
surface area utilization [5,6]. In other words, all the items must be arranged within a surface
of fixed width and minimal length, as illustrated in Figure 1. According to Araújo et al.’s
taxonomy [4], this is a 2|Si|Oo problem, that is, two-dimensional, with a single input
minimization and an open-dimensional volume. Wäscher et al. used the term strip packing
problem to refer to such [7]. In addition, the literature contains several constraints that
resemble more realistic settings, including the requirement for guillotined cuts [8] or
irregular objects [9].

MTCP problems have a primary objective: the minimal time required for cutting
the pieces represented by an input layout [5,6]. This data concerns the packing of all the
items within a surface that represent the raw material, as illustrated in Figure 1. The po-
sition of pieces in the layout stage can be performed by computer-aided design (CAD)

Algorithms 2021, 14, 305. https://doi.org/10.3390/a14110305 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1718-1712
https://doi.org/10.3390/a14110305
https://doi.org/10.3390/a14110305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14110305
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14110305?type=check_update&version=2

Algorithms 2021, 14, 305 2 of 27

systems [10,11] or generated by algorithmic methods [8,12–14]. Wäscher et al. used the
term strip packing problem to refer to them [7]. In addition, the literature contains several
constraints that resemble more realistic settings, including the requirement for guillotined
cuts [8] or irregular objects [9].

Demand

Nesting

Process

Length Required

W
id

th

Layout

Figure 1. Example of a two-dimensional C&P problem with irregular items and a single open-
dimensional surface of fixed width and variable length. This is a 2|Si|Oo problem according to
Araújo et al.’s taxonomy [4].

The central aspect of MTCP, proposed in this study, is the minimal cutting time,
which depends on two parameters of manufacturing laser cut machines: the cutting and
the moving (or sliding) speed of the head device. The first parameter depends on the
machine hardware, the shapes of pieces in the input layout, and the surface material.
The second parameter refers to the speed to change the position of the cutting head without
cutting. Thus, we tackled a generalization type of the cut determination problem (CPD) [15]
adopting the above-mentioned restrictions differently from the studies developed by
Lee et al. [16] and Derwil et al. [17], respectively.

From an optimization perspective, a solution obtained to an MTCP problem is a path
through the layout area considering the equipment cutting and sliding moves and the
resultant manufacturing cut time. This study tackled the minimum time cut path (MTCP)
problem with different cutting and sliding speeds. For simplicity of notation, the remainder
of this article will refer to this particular problem simply as MTCP.

This study presented two evolutionary metaheuristic-based approaches to tackle larger
instances that resemble real-world scenarios. The metaheuristics used in the conducted
experiments are a standard genetic algorithm (GA) and a biased random-key genetic
algorithm (BRKGA). The experiments used an extensive set of instances from the literature
and allowed one to gain valuable insights into the algorithms and their performance
compared to specialized commercial software.

The remainder of this article is organized as follows. Section 2 presents the most com-
mon algorithmic approaches to MTCP problems and shows the definition and terminology
for MTCP. Next, Section 3 introduces two evolutionary algorithms for the MTCP problem.
Section 4 presents the results of the computational experiments using an extensive set of
instances. Section 5 concludes by discussing the performance of the used algorithms and
future works to tackle MTCP.

2. Literature Review

As mentioned previously, MTCP problems consider the minimization of the total
cutting time to extract the pieces from the input layout, and it is often called cutting path
determination (CPD) [18]. CPD aims to determine the sequence of moves for the cutting
head necessary to separate all the smaller pieces from the surface (also referred to as the
stage in an industrial setting). This section focuses on approaches for CPD problems.
For comprehensive surveys on C&P problems, we refer to [13,19].

Hoeft and Palekar [20] categorized CPD problems according to the flexibility to
choose an initial contour entry and whether a piece is only partially cut before the head

Algorithms 2021, 14, 305 3 of 27

device moves to another object. The first category, according to [20], contains problems
with continuous cutting, i.e., the cut is allowed to start at any point of the perimeter of
pieces [21,22]. In such problems, the entry point should be the same for both entry and
departure. The second category is called endpoint cutting, which contains problems in
which the cut starts and ends at predefined vertices of the polygons [5,6]. The last category
is intermittent cutting, in which there are no restrictions on the points that can be used for
entry or exit of the cutting [23,24].

The literature contains several examples of algorithmic approaches for CPD.
Dewil et al. [25] proposed grouping these methods according to the technique for travers-
ing the vertices of the polygons. Three categories (here presented with examples of studies
that employ such an approach) were identified by the authors: the touring polygons prob-
lem [26,27]), the traveling salesman problem (TSP) [28,29], the generalized TSP [30,31],
and the TSP with neighborhoods [21]. Figure 2 presents a classification for CPD and the
degree of generalization for this problem. The generalization level grows considering the
flexibility of starting a path at any point of an item’s layout. Besides, it is possible to cut
only segments of a part, not necessarily starting and ending the cutting contour in the
same item.

any start node

predefined start node

one start node

TPP

CPP/TSP-N
ICP

GTSP

TSP

ECP

cutting completely cutting in sections

Generalization +-

Figure 2. Classification for cutting path problems according to [18,20,25]. TPP: touring polygons
problem; CCP: continuous cutting problem; TSP: traveling salesman problem; TSP-N: TSP with neigh-
borhoods; ICP: intermittent cutting problem; GTSP: generalized TSP; ECP: endpoint cutting problem.

Laser cutting, as the designation suggests, applies a laser origin to cut the material.
A benefit of laser cutting is that both the expanse of the cut and the heat-affected areas
are tiny. Additionally, it is similar to both flame cutting and plasma cutting [32], and it is
essential to highlight that the enclosed area detaches from the raw material after the cut of
a complete piece contour. Depending on the supporting grid and air of the laser nozzle, it
can shift its position, or if there is no supporting grid, it simply falls through. In both cases,
it will be impracticable to continue cutting in this area.

The CPD problem aims to plan a path that minimizes the time required to cut all
pieces regarding precedence constraints and is described in Dewil et al. [17].

Additional objectives include minimizing the cut across contours’ path lengths and
the effect of heat on the cutting path sequence [33]. A possible additional constraint
is the requirement for a predefined cutting sequence for the items, which are to be cut
without sliding movements [16]. Manber and Israni [6] tackled the problem of sequencing
a torch (flame cutter machine) for cutting regular and irregular parts arranged on a surface.
The main objective was to minimize the number of piercings, i.e., small holes made near
each piece to improve the cutting process.

One of the approaches for CPD problems is the use of linear integer models to deter-
mine the sequence of moves that minimizes the overall time required to cut the demand of
pieces [34].

Dewil et al. [17] extended [34] by assuming an additional set of constraints that
resemble real-world requirements, for example, including inner–outer contours relations,

Algorithms 2021, 14, 305 4 of 27

resulting from holes in parts, parts allocated in holes, or elements nested in enclosed waste
areas. The consideration of the inner–outer contour means that an inner contour needs to
be completely cut before the outer shape is cut. In summary, all pieces of an inner contour
necessitate to be cut before the end element of its outer contour is cut. Additionally, it is
possible to suggest a set of constraints about basic cuts. In some layouts, each typical cut is
enveloped by a contour formed of both its two contours. Hence, no typical cut is permitted
to connect both of its contours.

Another kit of priority constraints appears from the evidence that when one cut the
contour of two contours in common cut with one another, the separated contour can slide,
making the rest of the cut process unfeasible. To correctly cut the items of the residual
contour, the laser has to move into the cut kerf. It is forbidden if a high part quality is
required, and a pre-cut should have been placed earlier. When cutting a part, a tiny pre-cut
can be made in a nearby element if the laser head has to begin cutting from this place later
on. Several non-trivial practical extensions (additional practicalities) like collisions, bridges,
and thermal effects also are present in Dewil et al. [25].

A similar approach consists of reducing CPD to graph-based problems such as the
capacitated node routing problem (NRP), also known as the vehicle routing or dispatch
problem [35], and then optimized through mathematical models [15,36]. These techniques
address CPD by utilizing a mathematical formulation based on the NRP problem and a
derived model for the traveling salesman problem (TSP). This approach has been demon-
strated to be suitable for achieving optimal solutions, for instance, containing approxi-
mately 2000 edges in a reasonable time. The formulation in [15] achieved optimal results
for larger instances with up to 712 edges and a maximum of 560 nodes.

It is noteworthy that the studies that use mathematical models have been impractical
for more realistic instances with tens of thousands of edges and nodes. A strategy to
mitigate possible limitations is using heuristics and metaheuristics for solving graph-based
problems, which are equivalent to the original CPD problem. For example, Moreira et al. [5]
employed this approach, also considering that the surface is at an elevation (height) and
that items fall as they are cut. Despite the wide variety of CPD problems in the literature,
problems with different cutting and sliding speeds have not been formally described to the
best of the authors’ knowledge.

3. Evolutionary Metaheuristics for MTCP

This section introduces the steps for building two evolutionary-based approaches for
tackling MTCP, considering different moving and cutting speeds: a genetic algorithm (GA)
and a biased random-key genetic algorithm (BRKGA).

3.1. A GA-Based Approach

As mentioned previously, the MTCP with different moving and cutting speeds can be
seen as a generalization of the CPD problem [5,15]. The input data for the MTCP problem
is a packing layout, i.e., a set of non-overlapping polygons, which are defined as a set
of two-dimensional points and edges, as illustrated in Figure 3. It also includes, in our
approach, the moving (µ) and cutting speeds (π), which are numerical parameters that
vary according to the machinery and the raw material. Let d(A, B) be the distance between
the points A and B using a metric that respects the triangle inequality. This study adopted
the Chebyshev metric (see Figure 4) since it abstracts aspects that are ignored: deceleration,
acceleration, and effects from the cutting process, such as surface bending. The solution for
the MTCP problem is a sequence of actions (being either moving or cutting) for the cutting
head device.

Algorithms 2021, 14, 305 5 of 27

Packing

Demand Layout

Build

G=(V,E)

A B I

G
F

E

D C

K J

H

polygon 3polygon 1

polygon 2

Figure 3. Example of the layout conversion to a set of points in the plane.

(a) (b) (c)

Figure 4. Distance metrics: Euclidean (a), Manhattan (b), and Chebyshev (c). The continuous lines
represents the layout, and the points in red and blue represent the two points considered in our
example of the three distances used. The dashed lines represent the value of the distance between
these two points. The Euclidean distance is the usual shortest line that connect both points; the
Manhattan distance is the horizontal euclidean distance plus the vertical Euclidean distance between
them; and, finally, the Chebyshev distance is the maximum value between horizontal and vertical
Euclidean distances.

The first step is to build an equivalent undirected graph G = (V, E) containing the
union of all the polygons’ vertices and edges in the layout (see Figure 3). We applied
the same strategy suggested by Silva et al. [15]. Figure 5 illustrates two possible paths
in which cutting moves are represented as black edges, and simple moves are shown in
red. The nodes and edges of the resultant graph portray the polygon points in surface
space and the lines resulting from the meeting of two faces, respectively. In the final step,
the solution is associated with a sequence of (cut or move) instructions processed by the
cutting machine until the separation of the entire layout of pieces is finished.

1

2

3

4

5

6

7

8

9
14

13

12

10

11Start Point

Final Point

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Start Point

Final Point

(a) (b)
cutting edge at time(u,v) i

i

displacement from point to at time iu v

i

u v

Figure 5. Examples of cut path for the layout in Figure 3. (a) A example of possible paths with 11 simple moves. (b) A
example of possible paths with 14 simple moves.

Algorithms 2021, 14, 305 6 of 27

In addition, this section presents a packing approach that uses a traditional genetic
algorithm (GA) to tackle practical instances that exact models cannot address in a reason-
able time. GAs are computational algorithms based on the principle of natural selection
and survival through the fittest individuals in a similar way to the evolutionary processes
in nature [37]. GA-based methods are among the prevalent approaches to cutting and
packing problems [38,39] and cutting path problems [16,40].

The GA starts by generating a random group of individuals, which are represented by
chromosomes or typically binary arrays. These structures are evaluated using a fitness func-
tion that measures the candidate solution’s quality. A small percentage of the individuals
with the highest fitness is copied into the next generation (elitism). The selection operator
then chooses two individuals of the current generation to be combined with probability
txCross (crossover rate). Similarly, the mutation operator is applied to the offspring with
probability txMut (mutation rate) [41]. After the new population is generated, the stop
condition (e.g., number of generations or genetic convergence) of the algorithm is tested.
If it is not satisfied, the process is repeated.

In the proposed GA implementation, each individual is encoded by a chromosome
represented by a vector chrom(i) = (i = 1, 2, . . . , n, n + 1, . . . , 2n), where n corresponds
to the number of edges that must be cut from the input layout. The n’s first positions
represent the cutting order of each edge, and the remaining elements have binary values
(0 or 1) expressing the direction of the process. Figure 6a illustrates an input layout. We
emphasize that the entire cutting process tends to start from the original system of each
device (Source) and return with the movement head at the end (Regress). In this work,
we considered the point (0,0), because the machine where we applied the tests follows the
same idea. Note that in Figure 6b, the coding process for each individual describes that the
input layout has four edges and, therefore, the individuals’ representation vector contains
eight positions.

1

layout(l)

2

3

4

(0,0)

1

Individual()i

1 | 2 | 4 | 3 | 0 | 0 | 1 | 1{ {

Sequence Direction
2

1

2

3

44

3

5

6

x y

0 1

x y

=

(Source and Regress) Required Cut head movement (no cut)

Direction Representation

(a) (b)

x

y

y

x

Source

(0,0)
Source

Figure 6. Example of an individual representation for input layout. (a) illustrates an input layout. (b) the coding process for
each individual describes that the input layout has four edges and, therefore, the individuals’ representation vector contains
eight positions.

Moreover, the order (i = 1, 2, 3, 4) and direction (i = 5, 6, 7, 8) determine the plan of
the complete cut. Therefore, when treating each element of the representation vector, we
applied an offset assuming the shortest distance (Chebyshev) possible for cases in which
the target node of one edge i does not match the origin node of the next i + 1. We assumed
that 0 represents “left-to-right” or “bottom-to-up,” in other words, for edge (u, v), we
considered the initial point to visit u and the final point v, and 1 depicts the directions back.

Algorithms 2021, 14, 305 7 of 27

The initial population was generated by shuffling a list of each cutting edge, while the
rest of the positions with values 0s or 1s were drawn randomly under equal probabilities.
The fitness of each individual was calculated by adding the time needed to cut, i.e., the
time to cut the required edges (Tcut) and the motion of the head from the origin to the
initial node of the layout and back from the head to the end of the complete cut (to f f sets).
It was necessary to consider the speed π (cutting) and the other times µ (without cutting)
to calculate the value of Tcut. Figure 7 illustrates the (i , i + 1)-step of the fitness function.
Note that (i) typifies each position of chrom, and the two squares represent the required cut
edges (n), in other words, the input layout.

(a)

t() =i Dchebyshev(x,y)

x y

i

π

(b)

t(+1) =i Dchebyshev(y,z)

y

i

µ

i+1

Required cut edge

Cut edgetedChebyshev distance

z

Chebyshev distance

w

Dchebyshev(z,w)
+

(1) (2)

π

Figure 7. Fitness representation to t(i) and t(i+1). (a) illustrates the i-step to compute the fitness value
for each individual. (b) supposed that the chrom(i + 1) was the edge (z,w) and that its direction
position (chrom(2n + (i + 1))) had value 1.

Figure 7a illustrates the i-step to compute the fitness value for each individual. The
chrom(i) is (x,y) edge and its position in the second part of the chromosome (chrom(2n + i))
contained value 0. The movement occured from node x to y (direction represented by 0),
and, in this case, the edge (x,y) belonged to the set of required cutting edges. Thereby, to
compute the time, t(i) was divided by the Chebyshev distance for (x,y) to π (cut speed).
The next stage, (i + 1-step), supposed that the chrom(i + 1) was the edge (z,w) and that
its direction position (chrom(2n + (i + 1))) had value 1—see Figure 7b. In this condition,
to account for the time t(i + 1), we needed to add the displacement time of the cutting
device head from node y to z; for this, we applied the displacement speed (1) with the
cutting time of the edge (z,w), and we used the cutting speed (2). Therefore, Equation (1)
formalizes the fitness function.

f itness(chrom) =
n

∑
i=1

t(chrom(i)) + to f f sets (1)

The method for individual selection applied was q-Tournament [42]. In this procedure,
a group of q individuals was randomly selected with population replacement. This group
became part of a dispute in which the winner was determined according to the best fitness.
The crossover operator, in general, recombines aspects of chromosomes and benefits the
search for the solution space, directing the evolution process. The method applied to the
proposed GA was partially matched crossover (PMX) [43]. The goal is to generate two
children by combining pairs of values in a given range of the two parents and exchanging
these indexes’ values. This strategy was applied only to the n’s first elements of the vector.

On the other hand, the remaining positions of the representation were recombined
through the two-point crossover. This adaptation facilitates the manipulation of each
part of the applied model’s scopes, sequencing edges, and direction choices, respectively.

Algorithms 2021, 14, 305 8 of 27

The mutation operator was verified to ensure an expansive scan of the state space and
to contain the premature convergence (optimal locations) of the GA. Similar to the idea
conceived for the crossover, we applied the Shuffle Indexes method to the first part of the
chromosome and the flip bit mutation strategy for the directions portion.

Finally, we detailed all values for GA parameters like population size, crossover and
mutation rate, stop criteria, and others in the results Section 4.

3.2. A BRKGA-Based Approach

Genetic algorithms with random keys (RKGA) were introduced by [44] to deal with
combinatorial optimization problems involving representation adapted to sequencing.
In an RKGA, each chromosome is represented as a vector of real numbers in the range
[0, 1[n, where n is the problem’s dimension. A decoder receives a chromosome and maps it
into a feasible problem solution. Resende [45] proposed the Biased Random-Key Genetic
Algorithm (BRKGA), in which the individuals are selected in the recombination process,
and it also contains the highlighted function of the probability of inheriting information
from the parents (pa).

This study used the BRKGA due to its tolerance to several optimization problems,
assuming that two elements of its framework must be represented [46]: a compatible
decoder, featured in this section, and a representative fitness function, trying to minimize
Equation (1), for this problem. Figure 8 illustrates the BRKGA heuristic and its parameters:
the size of the population (P), the proportion of the population in the elite (Pe), and the
number of new random individuals that will be included in the new population (Pm).

(Population)
Decoder

ELITE

NON
ELITE

p
e}

p
e

p-FI
TN

ES
S

+

-

POPULAÇÃO

K

ELITE

RESIDUAL

p
e}

p-

K+1

(p
e

+p
m

(

}p
mMUTATED

X

Transfer

POPULAÇÃO

Figure 8. A flowchart of BRKGA and parameters.

An important characteristic of BRKGA is the parameterized uniform crossover [47].
In this crossover type, one of the parents is extracted from the elite group, while the second
parent is extracted from the non-elite set. This enables the BRKGA heuristic to mitigate
a premature genetic convergence. On the other hand, it requires the calibration of the pa
parameter that can affect the overall performance. This peculiar parameter of the BRKGA
ensures that the child individual inherits more characteristics of an elite parent. One parent
is always selected (with replacement) from the elite solutions group, and the probability
that the child inherits the key of the elite parent >0.5. According to Resende [45], this is a
differentiating factor in favor of faster convergence when compared to RKGA [44].

Each gene in the chromosome representation for individuals in the BRKGA contains a
real value in the range [0.1). For example, Figure 9 illustrates how random keys represent
alleles for each chromosome. In our proposed strategy, the value of each gene chrom(i)
was used by the decoder to determine the order and the cuts and movements’ directions.

Algorithms 2021, 14, 305 9 of 27

Therefore, the decoder operated as follows: first, the initial n genes for each chromosome
are sorted upwards, corresponding to the cut order. Then, for each of the remaining genes
(n + 1, . . . , 2n), the following function is used to determine the cuts’ direction.

f (chrom(i)) =
{

0, if chrom(i) < 0.5
1, otherwise

Figure 9 presents the encoding process from random keys to process an individual.
Note that this process depends on problem specifications. For this reason, we illustrated
this process separately from Figure 8. The input module saves the SVG file (layout)
information like the edges for a cut. The dimension of the array depends on such a value.
It is noteworthy that the part of the vector representing the directions does not participate
in the keys’ ordering, being decoded only by the function f(chrom). In this way, sorting
random keys (ascending order of keys) results in the sequencing of edges visits. After that,
the decoder presents a solution containing a sequence of movements for the input layout
and the fitness function defined by Equation (1), which can calculate the time required for
each individual.

1 | 2 | 4 | 3 | 0 | 0 | 1 | 1

{Sequence

Key: 0.05 0.68 0.93 0.42 0.85 028 0.16 0.72

1 | 3 | 2 | 4 | 0 | 0 | 1 | 1Alelle:

Key: 0.05 0.68 0.930.42 0.85 028 0.16 0.72

Chromosome

Input

Decoder
Chromosome

Alelle:

{Direction

{Sequence {Direction

ascending order (key)

Figure 9. Decoder process to BRKGA proposed.

In this context, we use Section 4 to present our GA and BRKGA approaches’ param-
eters and the cutting(π) and moving speeds(µ), inherent in MTCP, for all computational
tests applied.

4. Results and Discussion

The computational experiments were conducted in an Intel Xeon 3.80 GHz machine
with eight cores, 8GB RAM, and an Ubuntu 18.08 operational system. The GA and the
BRKGA algorithm were implemented in Python 3.7. As input data, all dataset instances
were layouts extracted through the algorithm applied by Amaro et al. [12]. The result
was a file in SVG format. The following sub-sections present the characteristics of the
benchmark instances (Section 4.1), a comparison between GA and BRKGA (Section 4.2),
and a comparison between BRKGA (best approach considered) and a commercial laser cut
software in practical situations (Section 4.3).The reader can access the complete information
of the data used and constructed in this section through the link presented in the Data
Availability Statement.

4.1. Instances

A set of 50 problem instances was used to evaluate the presented approaches. These
instances can be categorized according to the possible presence of empty space between
the pieces in the input layout, being either connected (C) (Figures A1 and A2 in the
Appendix A.1) or separated (S) (Figures A3–A5 in the Appendix A.2). The presence of
space between items in the latter group aimed to enable the use of support, which is quite
common in some material cutting applications. The dataset was generated by the nesting
approach presented in [12].

Algorithms 2021, 14, 305 10 of 27

Several hyper-parameter settings (27) were tested for the GA and the BRKGA heuris-
tics, which was executed ten times for each instance. Table 1 presents the instances,
the number of vertices, both the number of edges (original and adapted layouts with the
joint of the edges), and the number of polygons.

Table 1. Characteristics of instances used in the computational experiments.

Instance Vertices
Edges

Items
Original Adapted

(C) (S) (C) (S) (C) (S) (C) (S)

albano 156 164 164 164 173 164 24 24
blaz1 39 44 44 44 46 44 7 7
blaz2 70 80 88 80 89 80 14 13
blaz3 97 132 132 132 130 132 21 21

dighe1 20 54 46 54 38 54 15 15
dighe2 20 46 38 46 30 46 10 10

fu 37 43 43 43 51 43 12 12
inst_01_10pol 20 40 39 40 29 40 10 10
inst_01_16pol 27 128 64 128 42 128 16 32
inst_01_2pol 7 8 8 8 8 8 2 2
inst_01_3pol 8 12 12 12 10 12 3 3
inst_01_4pol 10 16 16 16 13 16 4 4
inst_01_5pol 12 20 19 20 16 20 5 5
inst_01_6pol 13 24 23 24 18 24 6 6
inst_01_7pol 15 28 27 28 21 28 7 7
inst_01_8pol 16 32 31 32 23 32 8 8
inst_01_9pol 18 36 35 36 26 36 9 9
inst_01_26pol 210 264 264 264 237 264 66 66

rco1 33 36 36 36 40 36 7 7
rco2 62 72 72 72 81 72 14 14
rco3 82 108 108 108 116 108 21 21

shapes2 68 70 70 70 78 70 8 8
shapes4 127 140 140 140 147 140 16 16

spfc_instance 55 55 55 55 63 55 11 11
trousers 350 388 388 388 424 388 64 64

Some instances present a different number of vertices and edges due to the applica-
tion of the join procedure and split edges in the original input layout. It is necessary to
highlight that joining segments are treated as particular cases of splitting edges. Figure 10
illustrates the input data format (SVG file) and the output obtained by this methodology.
The algorithm of preprocessing data, extracted by [15], was used to convert the input file
into a graph before addressing the MTCP through the proposed adapted metaheuristic
approaches. Then, the sequence of cuts and moves wasvalidated (output).

4.2. GA and BRKGA Hyper-Parameter Configuration

GA and BRKGA hyper-parameter configurations used in the experiments were se-
lected after preliminary tests: population of 10,000, 5000, and 1000 individuals; crossover
of 70%, 75%, and 80%; and mutation of 10%, 15%, and 20%. For the elite group in BRKGA,
values of 30%, 20%, and 10%; mutated population of 10%, 15%, and 20%; pa of 70%.
The stopping criteria wre met when there was no improvement in the best solution found
for 100 generations or when the execution time exceeded 300 s.

Algorithms 2021, 14, 305 11 of 27

input

Required Time : 39.24

outputapproaches

sequence of cut sequence of displacement

Figure 10. Input and output representation.

Tables A1 (see Appendix B.1) and A2 (see Appendix B.2) summarize the computational
results. For every connect and separate instance, the results include the objective function
value (FO), the elapsed time for the best execution, the average objective values, and the
elapsed computational time. It is possible to observe that the BRKGA is more suitable than
the standard GA for addressing the tested instances. Every hyper-parameter setting was
tested for both GA and BRKGA, and each type of layout, connected (C) and separated (S).

Figure 11 presents the number of times that a BRKGA hyper-parameter setting
achieved the best solution found. For connected layouts (C), the best GA configura-
tion addressing relation-1 (instances/executions) was obtained using the following hyper-
parameters after 49 times: P = 10,000, txCross = 0.8, and txMut = 0.1. In the separated
instances group (S), the best solution was obtained after 20 executions, and the configura-
tion was the following: P = 5000, txCross = 0.75, and txMut = 0.2.

* * *best best bestConfigurations

(C) (S)

Configurations

n
u
m

b
e
r

o
f
ti
m

e
s
 b

e
s
t

s
o
lu

ti
o
n
 w

a
s
 f
o
u
n
d

Figure 11. Analysis of the proposed configurations for BRKGA (relation-1).

Figure 12 presents the minimum time required to reach the best value in each execution.
It is possible to observe that, for each instance, the objective function value was above the
average best. A consideration of the results exposes that it is not suitable to define the
best configuration for relation-1. While it achieves the best result in all executions for some
instances, it led to the below-average value for the remaining.

Algorithms 2021, 14, 305 12 of 27

(a) albano (b) blaz2 (c) inst_01_26pol_hole

Average(best)

Time value

Best value Found

116.923

110.94

generations

ti
m

e
 r

e
q
u
ir
e
d
(s

e
g
)

275.81

280.234

ti
m

e
 r

e
q
u
ir
e
d
(s

e
g
)

generations generations

168.325

155.83

ti
m

e
 r

e
q
u
ir
e
d
(s

e
g
)

(d) shapes4

ti
m

e
 r

e
q
u
ir
e
d
(s

e
g
)

generations

439.87

476.815

(e) trousers

generations

ti
m

e
 r

e
q
u
ir
e
d
(s

e
g
)

297.85

307.26

Figure 12. Progression of the objective values through generations when addressing connected instances. BRKGA hyper-
parameter: P = 10,000, Pe = 0.30, and Pm = 0.1.

Next, we defined relation-2 considering the number of instances each configuration
achieved the best FO value for at least one execution. Figure 13 presents the best hyper-
parameter configuration according to the highest average value for connected and separate
layouts. Therefore, the best parameters to connected instances were P = 5000, Pe = 0.30,
Pm = 0.1; P = 10,000, Pe = 0.10, Pm = 0.1; P = 10,000, Pe = 0.10, and Pm = 0.2. For separate
instances, the best hyper-parameters were P = 10,000, Pe = 0.20, and Pm = 0.2. Figure 14
presents the progression of the BRKGA optimal value at each generation.

Figure 13. Analysis of the proposed configurations for BRKGA (relation-2).

Algorithms 2021, 14, 305 13 of 27

(b) blaz2 (c) inst_01_26pol_hole

Average (best)

Time value

Best value Found

(a) albano

116.623

110.94

generations

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

275.81

275.957

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)
generations generations

167.533

155.83

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

(d) shapes4

generations

439.87

454.412

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

(e) trousers

generations

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

297.85

308.345

Figure 14. Evolution process defined for time limit reached instances in C-group. Configuration of BRKGA: [P = 10,000,
Pe = 0.20, and Pm = 0.2].

Lastly, we defined relation-3 setting the configuration using each parameter option
that occurred more frequently in the best solutions (modal value): P = 10,000, Pe = 0.3, and
Pm = 0.10. A comparison between vertex numbers (V) and population size (P) exposed
that the configuration that hyper-parameter settings with population equal to 10,000 failed
to achieve the best results for instances with V ≥ 70. For example, for the instances
inst_01_26pol (V = 210) and trousers (V = 350), the value of P in the configuration that
presented the best solution was 1000 for both cases. Therefore, the following hyper-
parameter was selected for further experiments: P = 5000, Pe = 0.30, and Pm = 0.1.
The progression of the BRKGA is shown in Figure 15 and Table A3 (see Appendix C.1) and
Table A4 (see Appendix C.2). Since the configuration failed to reach the average result for
both connected and separate instances, it is possible to affirm that increasing the timeout
would enable better solutions.

4.3. Comparing BRKGA and a Commercial Laser Cut Machine Software

This section presents a practical case from industry comparing BRKGA using the
best hyper-parameter setting (see Section 4.2) and commercial software for laser cutting
machines. The characteristics of the device are shown as follows. PRISMA machine
(https://www.automatisa.com.br/en/ (accessed on 8 October 2021)) produced Automatisa
Laser Solutions, was 60 W, and had a maximum working area of 900 × 600 mm. The speeds
π (cut) and µ (displacement) were 16.67 mm/s and 400 mm/s, respectively. Then, BRKGA
was executed for all the instances, and the generated outputs (sequence of edges for cutting)
were exported as SVG files. After, a similar process was repeated using the commercial
software. Finally, we used the proposed instances and assigned them as input for execution
to compute the machine’s software (LaserCut).

https://www.automatisa.com.br/en/

Algorithms 2021, 14, 305 14 of 27

(b) blaz2 (c) inst_01_26pol_hole

Average (best)

Time value

Best value Found

(a) albano

generations

108.413

110.94

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

(d) shapes4

generations

429.517

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

439.87

(e) trousers

generations

307.560

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

297.85

275.81

269.804

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

generations generations

155.83

ti
m

e
 r

e
q

u
ir
e

d
(s

e
g

)

157.028

Figure 15. Evolution process defined for time limit reached instances in C-group. Configuration of BRKGA: [P = 5000,
Pe = 0.30, and Pm = 0.1].

Table A5 (see Appendix D.1) presents a comparison between the introduced BRKGA
approach with parameters P = 5000, Pe = 0.30, and Pm = 0.1, and LaserCut. For 50
instances analyzed, BRKGA achieved a gained time in 47 s, i.e., an improvement of 94%.
It is noteworthy that for instances with separated items, the improvement was inferior to
those for instances with connected items.

It is possible to notice that the BRKGA approach achieved a time of 256.56 s for the
connected group and 258.76 s for the separated group—see Tables A1 and A2. The respec-
tive settings applied to these results were: P = 1000, Pe = 0.30, and Pm = 0.1 and P = 1000,
Pe = 0.30, and Pm = 0.15. It is noteworthy that, for several instances, BRKGA performed
better than LaserCut. Interestingly, the results indicate an apparent relationship between
the population size and the number of vertices (Table 1) in the input layout.

5. Conclusions

This study introduced a case of the MTCP problem, which more closely resembles
real-world scenarios by distinguishing cutting and moving speeds. The cutting and the
sliding rates for the equipment are essential parameters and, despite their relevance in real-
world machinery, such features are often ignored in the literature. This study presented the
minimum time cut path problem, including two presented evolutionary approaches, i.e., the
genetic algorithm (GA) and biased random-key genetic algorithm (BRKGA) methods,
which are suitable for addressing larger instances.

Computational tests presented extensive hyper-parameter tuning using a large set
of instances extracted from the literature, which can be leveraged in future research.
For all instances analyzed, the proposed methodology achieved a gain in time of 47 s
and an improvement in 94% of the tests performed.

However, we noticed a decrease in performance when the input layouts had a rela-
tively large number of vertices. This fact indicates a correlation between this parameter and
the population size. Moreover, a suitable approach would consist of splitting the layout
into parts, considering cutoff distances, so that the individual’s representation can also
be segmented. Hence, we would build N subgroups of edges, and the evaluation would
be limited in finding the best sequence for each N. Lastly, we would add the endpoint

Algorithms 2021, 14, 305 15 of 27

times to the beginning of all predefined N by finding a feasible solution and enabling
parallel processing.

Future work will investigate how clustering methods such as K-Means can be inte-
grated into the current approach to find feasible and quality solutions when addressing
instances with a more significant number of parts positioned in a layout. This strategy
will be integrated into the mathematical model. Another research direction is the investi-
gation of an alternative representation for candidate solutions in the BRKGA algorithm.
In the recent literature, there have been examples of methodology that allow the use of a
purely discrete representation and the possibility of combining the discrete solutions using
vector-like operations, similar to what is usually done for continuous solutions as in the
random-key encoding [48–50].

Author Contributions: Conceptualization, B.A.J.; data curation, M.C.S. and G.N.d.C.; methodology,
L.J.P.d.A., B.A.J. and M.C.S.; software, G.N.d.C.; validation, B.A.J.; writing—original draft, L.J.P.d.A.,
B.A.J. and P.R.P.; writing—review & editing, L.J.P.d.A. and B.A.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/GUIKAR741/metaheuristics-minimun-path (accessed on 8
October 2021). The folder “algorithms” includes the codes of the two approaches developed for
this study. The folder “instances” holds all input SVG layouts. The folder “results” presents the
numerical experimental data. The folder “result-evolution process” contains the evolution graph of
the best solution (Y) with the number of generations (X), and the folder “results-final draw” shows
the ten images of the path sequence found (each instance × execution), just for the BRKGA approach
with hyper-parameters [P = 5000, Pe = 0.30, and Pm = 0.1].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BRKGA Biased random-key genetic algorithm
CCP Continuous cutting problem
C&P Cutting and packing
CPD Cut path determination
ECP Endpoint cutting problem
GA Genetic algorithm
GTSP Generalized traveling salesman problem
ICP Intermittent cutting problem
MTCP Minimum time cut path
NRP Node routing problem
SVG Scalable vector graphics
TPP Touring polygons problem
TSP Traveling salesman problem
TSP-N Traveling salesman problem with neighborhoods

https://github.com/GUIKAR741/metaheuristics-minimun-path

Algorithms 2021, 14, 305 16 of 27

Appendix A

Appendix A.1

albano blaz1 blaz2

blaz3

dighe1

dighe2fu inst_01_2pol

inst_01_3pol

inst_01_4pol

inst_01_5pol

inst_01_6pol
shapes2

shapes4
spfc_instance

trousers

Figure A1. First batch of instances with connected items.

Algorithms 2021, 14, 305 17 of 27

inst_01_7pol

inst_01_8pol

inst_01_9pol

inst_01_10pol

inst_01_16pol

inst_01_26pol

rco1 rco2

rco3

Figure A2. Second batch of instances with connected items.

Algorithms 2021, 14, 305 18 of 27

Appendix A.2

albano

blaz1

blaz2

blaz3

dighe1

dighe2

fu

inst_01_2pol

inst_01_3pol

inst_01_4pol

inst_01_5pol

Figure A3. First batch of instances with separated items.

Algorithms 2021, 14, 305 19 of 27

inst_01_6pol

inst_01_7pol

inst_01_8pol

inst_01_9pol inst_01_10pol

inst_01_16pol

inst_01_26pol

shapes2

Figure A4. Second batch of instances with separated items.

Algorithms 2021, 14, 305 20 of 27

rco2

rco3

shapes4

spfc_instance

rco1

trousers

Figure A5. Third batch of instances with separated items.

Algorithms 2021, 14, 305 21 of 27

Appendix B

Appendix B.1

Table A1. GA and BRKGA configurations for the connected instances (C).

Instances GA BRKGA
FO TIME FO TIME

albano Best 106.38 300 s 104.62 300 s
Average 114.5 300 s 110.94 300 s

blaz1 Best 154.88 300 s 154.22 294 s
Average 158.98 300 s 155.2 300 s

blaz2 Best 275.27 189 s 269.72 300 s
Average 290.93 300 s 275.81 300 s

blaz3 Best 428.38 300 s 419.32 300 s
Average 454.98 300 s 435.34 72 s

dighe1 Best 70.47 300 s 70.53 124 s
Average 71.09 25 s 70.87 19 s

dighe2 Best 53.87 205 s 53.87 100 s
Average 54.42 34 s 54.03 15 s

fu Best 23.86 300 s 23.82 164 s
Average 24.23 61 s 23.98 26 s

inst_01_10pol Best 126.97 131 s 126.97 158 s
Average 127.47 188 s 127.34 14 s

inst_01_16pol Best 76.73 211 s 76.58 300 s
Average 78.08 26 s 77.48 20 s

inst_01_2pol Best 33.11 4 s 33.11 4 s
Average 33.11 20 s 33.11 23 s

inst_01_3pol Best 39.24 5 s 39.24 4 s
Average 39.24 25 s 39.24 27 s

inst_01_4pol Best 57.36 5 s 57.36 6 s
Average 57.36 32 s 57.36 34 s

inst_01_5pol Best 69.61 8 s 69.61 41 s
Average 69.73 7 s 69.61 86 s

inst_01_6pol Best 81.73 139 s 81.73 103 s
Average 81.85 62 s 81.85 48 s

inst_01_7pol Best 96.85 11 s 96.85 9 s
Average 96.98 69 s 97.23 8 s

inst_01_8pol Best 105.72 229 s 105.72 127 s
Average 106.10 289 s 106.10 10 s

inst_01_9pol Best 123.97 210 s 123.97 136 s
Average 124.47 85 s 124.47 10 s

inst_01_26pol_hole Best 142.79 300 s 137.50 300 s
Average 162.66 300 s 155.83 300 s

rco1 Best 140.52 300 s 140.17 248 s
Average 143.11 32 s 141.01 233 s

rco2 Best 274.43 264 s 270.16 300 s
Average 288.92 300 s 275.06 231 s

rco3 Best 403.65 300 s 393.92 300 s
Average 429.06 300 s 407.85 64 s

shapes2 Best 218.02 210 s 214.73 300 s
Average 228.10 300 s 218.98 52 s

shapes4 Best 425.87 300 s 419.83 300 s
Average 461.70 300 s 439.87 300 s

spfc_instance Best 144.94 300 s 143.53 201 s
Average 150.18 300 s 145.56 183 s

trousers Best 271.78 300 s 256.56 300 s
Average 301.36 300 s 297.85 300 s

Algorithms 2021, 14, 305 22 of 27

Appendix B.2

Table A2. GA and BRKGA configurations for the separated instances (S).

Instances GA BRKGA
FO TIME FO TIME

albano Best 109.83 300 s 107.23 300 s
Average 119.43 300 s 113.52 300 s

blaz1 Best 162.57 279 s 161.86 300 s
Average 166.06 300 s 163.13 300 s

blaz2 Best 296.30 300 s 291.57 300 s
Average 309.95 300 s 295.52 243 s

blaz3 Best 499.18 300 s 489.88 300 s
Average 531.40 300 s 506.38 77 s

dighe1 Best 96.53 300 s 96.03 300 s
Average 98.65 37s 97.47 35s

dighe2 Best 78.91 90 s 78.47 300 s
Average 80.18 56 s 79.65 23 s

fu Best 28.04 297 s 27.95 295 s
Average 28.69 300 s 28.09 23 s

inst_01_10pol Best 193.18 300 s 192.61 149 s
Average 196.74 300 s 194.47 27 s

inst_01_16pol Best 173.04 300 s 171.16 300 s
Average 180.86 83 s 176.69 68 s

inst_01_2pol Best 36.04 4 s 36.04 4 s
Average 36.04 21 s 36.04 25 s

inst_01_3pol Best 48.09 6 s 48.09 33 s
Average 48.09 29 s 48.09 33 s

inst_01_4pol Best 72.13 44 s 72.13 90 s
Average 72.33 7 s 72.38 7 s

inst_01_5pol Best 90.13 60 s 90.13 56 s
Average 90.38 13 s 90.73 9 s

inst_01_6pol Best 114.2 193 s 114.2 151 s
Average 114.65 78 s 114.62 72 s

inst_01_7pol Best 138.31 250 s 138.31 180 s
Average 139.23 25 s 139.59 12 s

inst_01_8pol Best 156.49 264 s 156.44 200 s
Average 157.74 272 s 157.81 21 s

inst_01_9pol Best 186.61 300 s 186.41 273 s
Average 189.36 27 s 187.83 16 s

inst_01_26pol_hole Best 198.97 300 s 192.89 295 s
Average 216.82 300 s 205.02 300 s

rco1 Best 162.74 300 s 162.59 219 s
Average 164.99 25 s 163.12 191 s

rco2 Best 322.09 300 s 319.31 300 s
Average 334.81 300 s 321.63 300 s

rco3 Best 489.66 175 s 480.36 300 s
Average 515.63 300 s 492.81 59 s

shapes2 Best 229.47 222 s 227.79 300 s
Average 238.31 52 s 230.85 42 s

shapes4 Best 455.2 300 s 447.99 300 s
Average 481.66 152 s 461.88 300 s

spfc_instance Best 148.79 300 s 147.33 300 s
Average 153.36 300 s 149.28 157 s

trousers Best 303.51 300 s 285.76 300 s
Average 338.13 300 s 330.06 300 s

Algorithms 2021, 14, 305 23 of 27

Appendix C

Appendix C.1

Table A3. Connected instances (C) for considered configurations. Relation 1: P = 10,000; Pe = 30%;
Pm = 10%. Relation 2: P = 10,000; Pe = 20%; Pm = 20%. Relation 3: P = 5000; Pe = 30%; Pm = 10%.

Instances Relation 1 Relation 2 Relation 3
FO TIME FO TIME FO TIME

albano Best 116.92 300 s 116.62 300 s 108,41 300 s
Average 117.12 300 s 116.92 300 111.41 300 s

blaz1 Best 154.29 300 s 154.29 300 s 154.64 300 s
Average 154.71 300 s 154.74 277 s 154.71 141 s

blaz2 Best 280.23 300 s 275.95 300 s 269.8 300 s
Average 281.7 300 s 277.85 300 s 270.91 300 s

blaz3 Best 457.75 300 s 450.12 300 s 426.21 300 s
Average 460.13 300 s 453.97 300 s 428.21 300 s

dighe1 Best 70.54 281 s 70.53 269 s 70.53 124 s
Average 70.73 277 s 70.69 300 s 70.69 128 s

dighe2 Best 53.88 222 s 53.90 202 s 53.90 92 s
Average 53.96 191 s 54 186 s 54 93 s

fu Best 23.84 300 s 23.83 300 s 23.82 164 s
Average 23.88 300 s 23.90 300 s 23.91 168 s

instance_01_10pol Best 126.97 202 s 126.97 204 s 126.97 85 s
Average 127.22 175 s 127.09 183 s 127.22 90 s

instance_01_16pol Best 76.66 300 s 76.66 279 s 76.73 135 s
Average 76.81 300 s 76.73 294 s 76.88 130 s

instance_01_2pol Best 33.11 48 s 33.11 50 s 33.11 23 s
Average 33.11 48 s 33.11 50 s 33.11 23 s

instance_01_3pol Best 39.24 55 s 39.24 57 s 39.24 25 s
Average 39.24 57 s 39.24 58 s 39.24 26 s

instance_01_4pol Best 57.36 69 s 57.36 69 s 57.36 32 s
Average 57.36 72 s 57.36 72 s 57.36 34 s

instance_01_5pol Best 69.61 86 s 69.61 84 s 69.61 40 s
Average 69.61 91 s 69.61 90 s 69.61 40 s

instance_01_6pol Best 81.73 105 s 81.73 102 s 81.73 45 s
Average 81.73 107 s 81.73 108 s 81.73 52 s

instance_01_7pol Best 96.85 156 s 96.85 165 s 96.85 84 s
Average 96.98 152 s 96.98 148 s 96.98 152 s

instance_01_8pol Best 105.72 138 s 105.72 140 s 105.72 60 s
Average 105.85 148 s 105.72 142 s 105.85 68 s

instance_01_9pol Best 123.97 165 s 123.97 249 s 123.97 70 s
Average 124.10 173 s 124.10 175 s 124.10 74 s

instance_artificial_01_26pol_hole Best 168.32 300 s 167.53 300 s 157.02 300 s
Average 169.03 300 s 168.31 300 s 165.78 300 s

rco1 Best 140.17 248 s 140.66 251 s 140.52 126 s
Average 140.59 264 s 140.94 263 s 140.73 113 s

rco2 Best 276.67 300 s 274.08 300 s 270.86 300 s
Average 278.63 300 s 274.85 300 s 271.63 300 s

rco3 Best 421.50 300 s 417.93 300 s 395.32 300 s
Average 427.17 300 s 420.59 300 s 398.33 300 s

shapes2 Best 216.77 300 s 215.17 300 s 215.27 274 s
Average 218.61 300 s 216.53 300 s 216.40 281 s

shapes4 Best 467.54 300 s 454.41 300 s 429.51 300 s
Average 469.71 300 s 464.67 300 s 432.10 300 s

spfc_instance Best 143.90 300 s 143.63 300 s 143.69 244 s
Average 144.32 300 s 144.17 300 s 144.16 271 s

trousers Best 307.26 300 s 308.34 300 s 307,56 300 s
Average 309.44 300 s 309.46 300 s 308.75 300 s

Algorithms 2021, 14, 305 24 of 27

Appendix C.2

Table A4. Separated instances (S) for considered configurations. Relation 1: P = 10,000; Pe = 30%;
Pm = 10%. Relation 2: P = 10,000; Pe = 20%; Pm = 20%. Relation 3: P = 5000; Pe = 30%; Pm = 10%.

Instances Relation 1 Relation 2 Relation 3
FO TIME FO TIME FO TIME

albano Best 121.43 300 s 121.23 300 s 111.91 300 s
Average 122.29 300 s 122.13 300 s 115.86 300 s

blaz1 Best 162.19 300 s 161.86 300 s 162.31 171 s
Average 162.64 300 s 162.66 300 s 162.80 173 s

blaz2 Best 297.44 300 s 293.96 300 s 291.57 300 s
Average 299.09 300 s 295.32 300 s 292.68 300 s

blaz3 Best 528.67 300 s 522.09 300 s 492.80 300 s
Average 532.83 300 s 525.17 300 s 496.80 300 s

dighe1 Best 96.03 300 s 96.25 300 s 96.21 194 s
Average 96.22 300 s 96.45 300 s 96.30 202 s

dighe2 Best 78.47 300 s 78.78 300 s 78.64 152 s
Average 78.92 300 s 78.91 300 s 79.07 159 s

fu Best 27.96 300 s 27.97 248 s 28.03 151 s
Average 28.03 291 s 28.04 263 s 28.03 151 s

instance_01_10pol Best 192.64 298 s 192.83 260 s 192.79 129 s
Average 193.07 300 s 193.48 269 s 193.16 138 s

instance_01_16pol Best 182.66 300 s 181.72 300 s 173.45 300 s
Average 183.25 300 s 182.56 300 s 174.99 300 s

instance_01_2pol Best 36.04 49 s 36.04 52 s 36.04 23 s
Average 36.04 50 s 36.04 50 s 36.04 23 s

instance_01_3pol Best 48.09 68 s 48.09 71 s 48.09 32 s
Average 48.09 69 s 48.09 71 s 48.09 33 s

instance_01_4pol Best 72.13 104 s 72.13 96 s 72.13 46 s
Average 72.13 105 s 72.13 96 s 72.13 47 s

instance_01_5pol Best 90.13 135 s 90.13 122 s 90.13 53 s
Average 90.15 119 s 90.18 118 s 90.18 56 s

instance_01_6pol Best 114.37 158 s 114.20 156 s 114.37 72 s
Average 114.47 146 s 114.37 140 s 114.47 69 s

instance_01_7pol Best 138.39 184 s 138.39 186 s 138.39 82 s
Average 138,55 172 s 138.55 179 s 138.60 95 s

instance_01_8pol Best 156.49 218 s 156.54 224 s 156.49 121 s
Average 156.69 223 s 156.66 244 s 156.66 137 s

instance_01_9pol Best 186.41 273 s 186.66 248 s 186.78 118 s
Average 186.88 250 s 187.16 236 s 187.18 103 s

instance_artificial_01_26pol_hole Best 218.87 300 s 219 300 s 218.27 300 s
Average 219.71 300 s 219.55 300 s 219.12 300 s

rco1 Best 162.96 276 s 162.63 221 s 162.71 111 s
Average 163.33 232 s 163.12 249 s 163.21 113 s

rco2 Best 321.37 300 s 317.31 300 s 317.60 273 s
Average 322.51 300 s 318.73 300 s 318.79 265 s

rco3 Best 507.25 300 s 492.88 300 s 480.36 300 s
Average 509.64 300 s 500.92 300 s 482.03 300 s

shapes2 Best 228.83 300 s 227.79 300 s 227.93 243 s
Average 229.98 300 s 228.18 300 s 228.57 267 s

shapes4 Best 478.50 300 s 475.20 300 s 454.27 300 s
Average 479.27 300 s 477.46 300 s 455.44 300 s

spfc_instance Best 147.33 300 s 147.38 300 s 148.06 180 s
Average 148.10 300 s 148.09 300 s 148.36 202 s

trousers Best 347.41 300 s 346.45 300 s 345.94 300 s
Average 348.69 300 s 347.65 300 s 346.61 300 s

Algorithms 2021, 14, 305 25 of 27

Appendix D

Appendix D.1

Table A5. BRKGA X LaserCut Software.

Instances BRKGA LASERCUT GAIN
(C) (S) (C) (S) (C) (S)

albano 111.41 115.86 118.66 118.71 +ftg7.25 +2.85
blaz1 154.71 162.80 177.51 178.05 +22.8 +15.25
blaz2 270.91 292.68 357.40 323.54 +86.49 +30.86
blaz3 428.21 496.80 537.55 538.97 +109.34 +42.17
dighe1 70.69 96.30 113.83 114.51 +43.14 +18.21
dighe2 54 79.07 88.22 88.58 +34.22 +9.51
fu 23.91 28.03 35.05 35.81 +11.14 +7.78
inst_01_10pol 127.22 193.16 200.13 200.59 +72.91 +7.43
inst_01_16pol 76.88 174.99 124.91 185.11 +48.03 +10.12
inst_01_2pol 33.11 36.04 37 37.15 +3.89 +1.11
inst_01_3pol 39.24 48.09 49 50.04 +9.76 +1.95
inst_01_4pol 57.36 72.13 74.57 74.64 +24.37 +2.51
inst_01_5pol 69.61 90.18 93.98 94.61 +24.37 +4.43
inst_01_6pol 81.73 114.47 118.35 119.51 +36.62 +5.04
inst_01_7pol 96.98 138.60 143.74 144.06 +46.76 +5.46
inst_01_8pol 105.85 156.66 162.04 162.48 +56.19 +5.82
inst_01_9pol 124.10 187.18 193.30 193.85 +69.20 +6.67
inst_01_26pol_hole 165.78 219.12 213.88 213.03 +48.10 −6.09
rco1 140.73 163.21 174.21 174.61 +33.48 +11.40
rco2 271.63 318.79 349.94 352.05 +78.31 +33.26
rco3 398.33 482.03 526.18 526.90 +127.85 +44.87
shapes2 216.40 228.57 245.12 246.72 +28.70 +18.15
shapes4 432.10 455.44 485.45 486.69 +53.35 +31.25
spfc_instance 144.16 148.36 175.76 165.90 +31.60 +17.54
trousers 308.75 346.61 302.59 303.54 −6.16 −43.07

References
1. Júnior, B.A.; Pinheiro, P.R. Approaches to tackle the nesting problems. In Artificial Intelligence Perspectives in Intelligent Systems;

Springer: Berlin/Heidelberg, Germany, 2016; pp. 285–295.
2. Pisinger, D. Heuristics for the container loading problem. Eur. J. Oper. Res. 2002, 141, 382–392. [CrossRef]
3. Araújo, L.J.; Panesar, A.; Özcan, E.; Atkin, J.; Baumers, M.; Ashcroft, I. An experimental analysis of deepest bottom-left-fill

packing methods for additive manufacturing. Int. J. Prod. Res. 2020, 58, 6917–6933. [CrossRef]
4. Araújo, L.J.; Özcan, E.; Atkin, J.A.; Baumers, M. Analysis of irregular three-dimensional packing problems in additive manufac-

turing: A new taxonomy and dataset. Int. J. Prod. Res. 2019, 57, 5920–5934. [CrossRef]
5. Moreira, L.M.; Oliveira, J.F.; Gomes, A.M.; Ferreira, J.S. Heuristics for a dynamic rural postman problem. Comput. Oper. Res. 2007,

34, 3281–3294. [CrossRef]
6. Manber, U.; Israni, S. Pierce point minimization and optimal torch path determination in flame cutting. J. Manuf. Syst. 1984,

3, 81–89. [CrossRef]
7. Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007,

183, 1109–1130. [CrossRef]
8. Araújo, L.J.; Pinheiro, P.R. Applying backtracking heuristics for constrained two-dimensional guillotine cutting problems. In

Proceedings of the International Conference on Information Computing and Applications, Ho Chi Minh City, Vietnam, 5–7
December 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 113–120.

9. Hopper, E.; Turton, B.C. A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artif. Intell. Rev.
2001, 16, 257–300. [CrossRef]

10. Raggenbass, A.; Reissner, J. Automatic Generation of NC Production Plans in Stamping and Laser Cutting. CIRP Ann. 1991,
40, 247–250. [CrossRef]

11. Raggenbass, A.; Reissner, J. Stamping—Laser Combination in Sheet Processing. CIRP Ann. 1989, 38, 291–294. [CrossRef]

http://doi.org/10.1016/S0377-2217(02)00132-7
http://dx.doi.org/10.1080/00207543.2019.1686187
http://dx.doi.org/10.1080/00207543.2018.1534016
http://dx.doi.org/10.1016/j.cor.2005.12.008
http://dx.doi.org/10.1016/0278-6125(84)90024-4
http://dx.doi.org/10.1016/j.ejor.2005.12.047
http://dx.doi.org/10.1023/A:1012590107280
http://dx.doi.org/10.1016/S0007-8506(07)61979-9
http://dx.doi.org/10.1016/S0007-8506(07)62706-1

Algorithms 2021, 14, 305 26 of 27

12. Amaro Júnior, B.; Pinheiro, P.R.; Coelho, P.V. A Parallel Biased Random-Key Genetic Algorithm with Multiple Populations
Applied to Irregular Strip Packing Problems. Available online: https://www.hindawi.com/journals/mpe/2017/1670709/
(accessed on 8 October 2021).

13. Leao, A.A.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdés, R. Irregular packing problems: A review of mathematical
models. Eur. J. Oper. Res. 2020, 282, 803–822. [CrossRef]

14. Labrada-Nueva, Y.; Cruz-Rosales, M.H.; Rendón-Mancha, J.M.; Rivera-López, R.; Eraña-Díaz, M.L.; Cruz-Chávez, M.A. Overlap
Detection in 2D Amorphous Shapes for Paper Optimization in Digital Printing Presses. Mathematics 2021, 9, 1033. [CrossRef]

15. Silva, E.F.; Oliveira, L.T.; Oliveira, J.F.; Toledo, F.M.B. Exact approaches for the cutting path determination problem. Comput. Oper.
Res. 2019, 112, 104772. [CrossRef]

16. Lee, M.K.; Kwon, K.B. Cutting path optimization in CNC cutting processes using a two-step genetic algorithm. Int. J. Prod. Res.
2006, 44, 5307–5326. [CrossRef]

17. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Construction heuristics for generating tool paths for laser cutters. Int. J. Prod. Res.
2014, 52, 5965–5984. [CrossRef]

18. Dewil, R.; Vansteenwegen, P.; Cattrysse, D.; Laguna, M.; Vossen, T. An improvement heuristic framework for the laser cutting
tool path problem. Int. J. Prod. Res. 2015, 53, 1761–1776. [CrossRef]

19. Zhao, X.; Bennell, J.A.; Bektaş, T.; Dowsland, K. A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res.
2016, 23, 287–320. [CrossRef]

20. Hoeft, J.; Palekar, U.S. Heuristics for the plate-cutting traveling salesman problem. IIE Trans. 1997, 29, 719–731. [CrossRef]
21. Arkin, E.M.; Hassin, R. Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 1994,

55, 197–218. [CrossRef]
22. Veeramani, D.; Kumar, S. Optimization of the nibbling operation on an NC turret punch press. Int. J. Prod. Res. 1998, 36, 1901–1916.

[CrossRef]
23. Garfinkel, R.S.; Webb, I.R. On crossings, the Crossing Postman Problem, and the Rural Postman Problem. Networks 1999,

34, 173–180.:3<173::AID-NET1>3.0.CO;2-W. [CrossRef]
24. Rodrigues, A.; Soeiro Ferreira, J. Cutting path as a Rural Postman Problem: Solutions by Memetic Algorithms. IJCOPI 2012,

3, 31–46.
25. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. A review of cutting path algorithms for laser cutters. Int. J. Adv. Manuf. Technol. 2016,

87, 1865–1884. [CrossRef]
26. Chvátal, V.; Cook, W.; Dantzig, G.B.; Fulkerson, D.R.; Johnson, S.M. Solution of a large-scale traveling-salesman problem. In 50

Years of Integer Programming 1958–2008; Springer: Berlin/Heidelberg, Germany, 2010; pp. 7–28.
27. Ahadi, A.; Mozafari, A.; Zarei, A. Touring a sequence of disjoint polygons: Complexity and extension. Theor. Comput. Sci. 2014,

556, 45–54. [CrossRef]
28. Khan, W.; Hayhurst, D. Two and Three-Dimensional Path Optimization for Production Machinery. J. Manuf. Sci. Eng. Trans.

Asme J. Manuf. Sci. Eng. 2000, 122. [CrossRef]
29. Erdos, G.; Kemény, Z.; Kovacs, A.; Váncza, J. Planning of Remote Laser Welding Processes. Procedia CIRP 2013, 7, 222–227.

[CrossRef]
30. Xie, S.; Tu, Y.; Liu, J.; Zhou, Z. Integrated and concurrent approach for compound sheet metal cutting and punching. Int. J. Prod.

Res. 2010, 39, 1095–1112. [CrossRef]
31. Yu, W.; Lu, L. A route planning strategy for the automatic garment cutter based on genetic algorithm. In Proceedings of the 2014

IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014; pp. 379–386. [CrossRef]
32. Bobade, S.; Badgujar, T.Y.B. A State Of Art In A Sheet Metal Stamping Forming Technology-An Overview. Int. J. Adv. Res. Innov.

Ideas Educ. 2017, 3760–3770.
33. Han, G.; Na, S. A study on torch path planning in laser cutting processes part 2: Cutting path optimization using simulated

annealing. J. Manuf. Syst. 1999, 18, 62–70. [CrossRef]
34. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Cutting path optimization using tabu search. In Key Engineering Materials; Trans Tech

Publ: Zurich, Switzerland 2011; Volume 473, pp. 739–748.
35. Golden, B.L.; Wong, R.T. Capacitated arc routing problems. Networks 1981, 11, 305–315. [CrossRef]
36. Usberti, F.L.; França, P.M.; França, A.L.M. The open capacitated arc routing problem. Comput. Oper. Res. 2011, 38, 1543–1555.

[CrossRef]
37. Holland, J. Adaptation In Natural And Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
38. Hopper, E.; Turton, B. A genetic algorithm for a 2D industrial packing problem. Comput. Ind. Eng. 1999, 37, 375–378. [CrossRef]
39. Onwubolu, G.; Mutingi, M. A genetic algorithm approach for the cutting stock problem. J. Intell. Manuf. 2003, 14, 209–

218.:1022955531018. [CrossRef]
40. Park, J.Y.; Seo, J.J. A Study on Cutting Path Optimization Using Genetic Algorithm. J. Ocean Eng. Technol. 2009, 23, 67–70.
41. Deshpande, A.S.; Kelkar, R.B. Advanced genetic operators and techniques: An analysis of dominance & diploidy, reordering

operator in genetic search. In Proceedings of the Ninth WSEAS International Conference on Evolutionary Computing, Sofia,
Bulgaria, 2–4 May 2008; pp. 27–33.

42. Blickle, T.; Thiele, L. A Mathematical Analysis of Tournament Selection. In Proceedings of the 6th International Conference on Genetic
Algorithms; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; pp. 9–16.

https://www.hindawi.com/journals/mpe/2017/1670709/
http://dx.doi.org/10.1016/j.ejor.2019.04.045
http://dx.doi.org/10.3390/math9091033
http://dx.doi.org/10.1016/j.cor.2019.104772
http://dx.doi.org/10.1080/00207540600579615
http://dx.doi.org/10.1080/00207543.2014.895064
http://dx.doi.org/10.1080/00207543.2014.959268
http://dx.doi.org/10.1111/itor.12094
http://dx.doi.org/10.1080/07408179708966382
http://dx.doi.org/10.1016/0166-218X(94)90008-6
http://dx.doi.org/10.1080/002075498193020
http://dx.doi.org/10.1002/(SICI)1097-0037(199910)34:3<173::AID-NET1>3.0.CO;2-W
http://dx.doi.org/10.1007/s00170-016-8609-1
http://dx.doi.org/10.1016/j.tcs.2014.06.019
http://dx.doi.org/10.1115/1.538901
http://dx.doi.org/10.1016/j.procir.2013.05.038
http://dx.doi.org/10.1080/00207540010022359
http://dx.doi.org/10.1109/CEC.2014.6900425
http://dx.doi.org/10.1016/S0278-6125(99)80027-2
http://dx.doi.org/10.1002/net.3230110308
http://dx.doi.org/10.1016/j.cor.2011.01.012
http://dx.doi.org/10.1016/S0360-8352(99)00097-2
http://dx.doi.org/10.1023/A:1022955531018

Algorithms 2021, 14, 305 27 of 27

43. Goldberg, D.E.; Lingle, R. AllelesLociand the Traveling Salesman Problem. In Proceedings of the 1st International Conference on
Genetic Algorithms; L. Erlbaum Associates Inc.: Mahwah, NJ, USA, 1985; pp. 154–159.

44. Bean, J.C. Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA J. Comput. 1994, 6, 154–160. [CrossRef]
45. Resende, M. Biased random-key genetic algorithms with applications in telecommunications. TOP 2010, 20, 130–153. [CrossRef]
46. Gonçalves, J.F.; Resende, M.G.; Toso, R.F. An experimental comparison of biased and unbiased random-key genetic algorithms.

Pesqui. Oper. 2014, 34, 143–164. [CrossRef]
47. Spears, V.M.; Jong, K.A.D. On the virtues of parameterized uniform crossover. In Proceedings of the Fourth International

Conference on Genetic Algorithms, San Diego, CA, USA, 13–16 July 1991; pp. 230–236.
48. Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic differential evolution: An application to the linear ordering

problem with cumulative costs. Inf. Sci. 2020, 507, 37–52. [CrossRef]
49. Santucci, V.; Baioletti, M.; Milani, A. An algebraic framework for swarm and evolutionary algorithms in combinatorial

optimization. Swarm Evol. Comput. 2020, 55, 100673. [CrossRef]
50. Baioletti, M.; Milani, A.; Santucci, V. An algebraic approach for the search space of permutations with repetition. In Proceedings

of the European Conference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar), Seville, Spain, 15–17
April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 18–34.

http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1007/s11750-011-0176-x
http://dx.doi.org/10.1590/0101-7438.2014.034.02.0143
http://dx.doi.org/10.1016/j.ins.2019.08.016
http://dx.doi.org/10.1016/j.swevo.2020.100673

	Introduction
	Literature Review
	Evolutionary Metaheuristics for MTCP
	A GA-Based Approach
	A BRKGA-Based Approach

	Results and Discussion
	Instances
	GA and BRKGA Hyper-Parameter Configuration
	Comparing BRKGA and a Commercial Laser Cut Machine Software

	Conclusions
	
	
	

	
	
	

	
	
	

	
	

	References

