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ABSTRACT Wang algebra was initiated by Ki-Tung Wang as a short-cut method for the analysis of
electrical networks. It was later popularized by Duffin and has since found numerous applications in
electrical engineering and graph theory. This is a semi-tutorial paper on Wang algebra, its history, and
modern applications. We expand Duffin’s historic notes on Wang algebra to give a full account of Ki-Tung
Wang’s life. A short proof of Wang algebra using group theory is presented. We exemplify the usefulness
of Wang algebra in the design of T-coils. Bridged T-coils give a significant advantage in bandwidth,
and were widely adopted in Tektronix oscilloscopes, but design details were guarded as a trade secret.
The derivation presented in this paper, based on Wang algebra, is more general and simpler than those
reported in literature. This novel derivation has not been shared with the public before.

INDEX TERMS Bandwidth extension, bridged-T networks, matrix determinant, peaking, T-coil, Wang
algebra, wideband amplifier.

I. INTRODUCTION

WANG algebra is a commutative algebra W with the
properties

x+ x = 0, x2 = 0 (1)

for all x ∈ W. It was proposed by Ki-Tung Wang in 1934
as a convenient rule to simplify the analysis of electrical
networks [1]. In essence, it is a clever method to compute the
determinant of a symmetric matrix in the context of solving
a system of simultaneous linear equations. A usual approach
in the pre-computer era would be to use Cramer’s rule, but
calculating the determinants by hand is not only tedious,
but also highly likely to run into mistakes, due to the many
terms involved. In Wang algebra, a large number of terms
vanish due to (1), thus greatly reducing the calculation com-
plexity [2], [3], [4], [5], [6]. Wang algebra has been a useful
method to design electronic circuits and modern integrated
circuits (ICs), in particular T-coils and interconnects [7], [8].
Yet, the impact of Wang algebra goes much beyond electri-
cal engineering. It has also found applications in networking
and graph theory [9]. Historically, Wang algebra was studied

in great detail by famous mathematicians Chow [4] and
Duffin [10], [11].1

Somewhat mysteriously, Duffin gave the following com-
ment in [12]:
“K. T. Wang managed an electrical power plant in China,

and in his spare time sought simple rules for solving the
network equations· · · Wang could not write in English so

1. The works by Chow [4] and Duffin [10] themselves deserve special
remarks. Wei-Liang Chow, who had studied algebraic geometry under the
great algebraist van der Waerden, was running a business in Shanghai,
China, to support his family. Shanghai was occupied by Japanese troops
during World War II, and as a result he had lost his academic job in the
National Central University. Chow could hardly do any research during this
war period (1937-1945), and the study of Wang algebra [4] was an excep-
tion (and in fact his only work on an engineering problem). Amazingly,
after almost a decade in business, he made a strong return to research and
became a prominent algebraic geometer in the U.S. Chow ring, a funda-
mental concept in algebraic geometry, is named after him. Richard Duffin
is well known for his contributions to electrical networks and geometric
programming. Together with Albert Schaeffer, he introduced the concept
of frames, which play an important role in signal processing. The Duffin-
Schaeffer conjecture, concerning rational approximation of real numbers,
is a famous conjecture in number theory that had stood open for nearly
80 years. It was finally proved by Dimitris Koukoulopoulos and James
Maynard in 2019. Maynard won a Fields Medal partly because of this
proof.
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FIGURE 1. Ki-Tung Wang (1875-1948), Chinese mathematician, electrical engineer
and philosopher. Photo courtesy of Dr Jin-Hai Guo, Institute for the History of Natural
Sciences, Chinese Academy of Sciences.

his paper was actually written by his son, then a college
student.”
However, the comment by Duffin seemed incomplete and

did not convey Ki-Tung Wang’s full story. The first aim of
this article is to provide an expanded biography of Ki-Tung
Wang.

A. BIOGRAPHY OF KI-TUNG WANG
Ki-Tung Wang (1875-1948), shown in Fig. 1, was a Chinese
mathematician, electrical engineer and philosopher. Believed
to be the first Chinese scholar to publish a mathemati-
cal paper in an international journal, he is well known for
his work on Wang algebra, as well as investigation on the
relationship between sciences and Buddhism [13].

Ki-Tung Wang was born into a prominent family in
Suzhou, Jiangsu Province in 1875. His ancestor Ao Wang
(1450-1524) was ranked no. 3 in the Imperial Examination
and later became a Grand Secretary of the Cabinet (equiv-
alent to Prime Minister) of the Ming Dynasty. His father
Song-Wei Wang (1849-1895) was also a Jinshi (Imperial
Scholar), the highest degree of Imperial Examination in
China.
In 1895, Ki-Tung Wang graduated from the Imperial

Tungwen College2 (modern-day Peking University), then
was hired as a mathematical lecturer there. He had already
published several Chinese articles on mathematics, and

2. It literally means “Multilingual College”.

investigated the relation between classical Chinese mathe-
matics and modern mathematics [14].
In 1909, Ki-Tung Wang served as an administrator of

Chinese students in Europe, then he did internships at
the English Electrical Company and Siemens [13]. During
this period, he published a paper on the differentiation of
quaternionic functions3 in the Proceedings of the Royal
Irish Academy [15], which is believed to be the first
paper published by Chinese mathematicians in international
journals [13], [16].
In 1912, Ki-Tung Wang was offered a job at the Ministry

of Education, then in as part of the newly founded Republic
of China [13].
In 1914, Ki-Tung Wang went to industry and became an

electrical engineer at the Zhenjiang Power Plant, Jiangsu
Province [13].
In 1928, Ki-Tung Wang was appointed Research Fellow4

at the National Research Institute of Engineering, Academia
Sinica [13]. He proposed a new method to derive the
impedance of electrical networks, which is sometimes advan-
tageous to the traditional method [1], [17]. In 1950, Duffin
and Bott recognized that his rules form an algebra and
presented this method to the American Mathematical Society,
under the title “The Wang algebra of networks” [10].5 It is
unclear how Duffin learned the story that Wang could not
write in English.6 This was unlikely to be true, since Ki-
Tung Wang had learned English at the Imperial Tungwen
College [18], worked in Britain, and published an English
paper [15] before. Nevertheless, it is possible that Ki-Tung
Wang needed some help on English writing, since it had
been more than 20 years since the publication of [15].
Ki-Tung Wang was very interested in philosophy beyond

the limits of modern sciences. He had several publications on
the relationship between sciences and Buddhism, including
a book Comparative Study of Buddhism and Sciences [19].

B. FROM OLD THEORY TO MODERN APPLICATIONS
Nearly 90 years have passed since Wang algebra was
proposed. It has found numerous applications in areas
ranging from graph theory to electrical and electronic engi-
neering. This article serves as a survey of the history, theory
and modern applications of Wang algebra.
As an example of applications, we will focus on T-coils,

which have been used for many years for wideband amplifier

3. Quaternions are extension of complex numbers, with lots of engi-
neering applications such as astronautics, robotics, computer visualization,
animation, special effects in movies, navigation, etc. It is worth mention-
ing that differentiation of quaternionic functions is highly nontrivial—even
more involved than the Cauchy-Riemann condition for complex functions.

4. Equivalent to Principal Scientist nowadays.
5. Duffin himself cited in [10] H. W. Becker’s 1948 unpublished notes

on Wang algebra.
6. One possibility is that Duffin might have met Ki-Tung Wang’s daughter

or son. Several children of Ki-Tung Wang earned Ph.D. degrees in the US;
in particular, his son Shou-Jin Wang (1904-1984) obtained his Ph.D. in
physics from Columbia University, worked at Peking University and retired
from MIT Lincoln Lab (https://www.guokr.com/article/441034/). It is likely
that Duffin had met Shou-Jin Wang.
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designs with distributed amplification, peaking7 networks,
termination networks, and transmission line equalization [7],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34]. In recent years, high-speed IC designs
have added T-coils because of three useful properties: 1) con-
stant input resistance (constant-R), 2) usually over double the
bandwidth extension, and 3) a second order transfer function.
Tektronix pioneered the use of T-coils for bandwidth

enhancement in 1960s. Bridged T-coils give a signifi-
cant advantage in bandwidth over conventional RC design
(more precisely 2

√
2 times improvement). They were widely

adopted in Tektronix oscilloscopes, but design details were
guarded as a trade secret [20], [35], [36]. It was not until
1990 that former Tektronix engineer Feucht provided the T-
coil design equations [26], but no derivation was given. Lee
published a tedious derivation for the standard symmetric
T-coil [20, Ch. 12].
In this paper, a general method is presented to design con-

stant impedance bridged-T networks in terms of symbolic
elements. General formulas for the element relationships are
derived using Wang algebra. The constant impedance con-
straint is used by adding an element to balance a bridge
circuit. This simplifies calculating the transfer function, and
it is presented in a reduced form in terms of a Thévenin
equivalent circuit. When applied to a constant input resis-
tance (constant-R) network, such as a bridged T-coil that
connects to a capacitor load, extended designs with optional
resistors in series with inductors and resistors in parallel
with capacitors exist for both symmetrical and asymmetrical
configurations. The process is to substitute known element
values in the symbolic formulas and to solve for the remain-
ing elements. All transfer functions are second order, and
it is convenient to parameterize the formula in terms of a
bridging capacitor. Compared with an RC circuit, the band-
width is usually more than doubled with selected peaking.
Previously published and new configurations can be derived
from these formulas.

C. ORGANIZATION
The rest of this paper is organized as follows. In Section II,
we give an introduction to Wang algebra, as well as a one-
page proof based on group theory. Section III is a survey
of the applications of Wang algebra to electrical engineering
and graph theory. Section IV-A is devoted to the design
of T-coils using Wang algebra. Conclusions are given in
Section V.

II. WANG ALGEBRA
In essence, Wang algebra gives a method to calculate the
determinant of a symmetric matrix, which can be more
convenient sometimes. A proof was already outlined in
the original article [1]. Duffin’s proof [10] was based

7. In this paper, peaking refers to the technique to improve bandwidth
by using passive elements (such as a small inductor or a T-coil). See [20,
Sec. 12.3] for more details.

on Grassmann algebra, which is 10-pages long. Chow’s
proof [4] based on matrix theory is also quite tricky. In
the following, we will present a short proof using group
theory, for completeness. Familiarity with group theory is
assumed, in particular symmetric group Sn of order n [37].
Readers uninterested in the proof may simply skip it.
Theorem 1 (Wang Algebra): Let A = [aij]n×n be a sym-

metric matrix, i.e., aij = aji, where 1 ≤ i, j ≤ n. Write the
diagonal elements of A as

aii = a′
ii −

∑

j �=i
aij.

Then the determinant det(A) can be computed as

det(A) =
n∏

i=1

⎛

⎝a′
ii −

∑

j �=i
aij

⎞

⎠ (2)

in Wang algebra W.
It should be pointed out that the product (2) must be

computed symbolically, for it is certainly not true that
det(A) = ∏n

i=1 aii numerically. In other words, we take
a′
ii, aij (j �= i) as symbols ∈ W in the computation of (2).
The key point here is that many terms disappear thanks to
the rule of Wang algebra (1). Once the product (2) has been
computed, numerical values aij ∈ C can be substituted in to
find the determinant. Readers are referred to Section III for
examples.
Proof: We will prove Theorem 1 in two steps. We use a

standard formula of the matrix determinant:

det(A) =
∑

σ∈Sn
sgn(σ )

n∏

i=1

aiσ(i) (3)

where σ is a permutation in the symmetric group Sn, and
sgn(σ ) = ±1 denotes the signature of σ .
Lemma 1: Let A = [aij]n×n be a symmetric matrix. Then,

except the term corresponding to the main diagonal, all terms
of Eq. (3) contain either a square or a factor 2.
Proof: Firstly, the factor 2 is due to the symmetry of the

matrix: associated with any term
∏n

i=1 aiσ(i) in Eq. (3), there
is another one

n∏

i=1

aσ(i)i =
n∏

j=1

ajσ−1(j). (4)

Since aiσ(i) = aσ(i)i, the two terms are equal. Moreover,
sgn(σ ) = sgn(σ−1). Thus we obtain the factor 2 if the two
terms are distinct.
The argument above fails if and only if the two terms are

in fact the same (e.g., the term a11a22, . . . ann corresponding
to the main diagonal). This happens if and only if

σ = σ−1, (5)

i.e., σ 2 = 1. This implies σ has order 1 or 2.
The case of order 1 corresponds to the main diagonal.
The case of order 2 consists of one or more disjoint

cycles of length 2, i.e., transpositions, which looks like
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σ = (i, j)(k, l) etc. In other words, such a product contains
square(s) aijaji = a2

ij, aklalk = a2
kl etc.

Lemma 2: Let the diagonal elements of A be given by

aii = a′
ii −

∑

j �=i
aij. (6)

Then any terms of (3) involving an off-diagonal element are
cancelled out.
Remark 1: Lemma 2 is slightly more general than Wang

algebra, since it does not assume that A is symmetric.
Proof:Without loss of generality, consider an off-diagonal

element aij where i �= j. The sum of all terms involving aij
is given by

∑

σ :σ(i)=j
sgn(σ )aij

n∏

k=1,k �=i
akσ(k). (7)

We claim that all these terms will be cancelled out by those
in the following sum

∑

σ ′:σ ′(i)=i
sgn

(
σ ′)aii

n∏

k=1,k �=i
akσ ′(k). (8)

Since σ(i) = j, indexes i, j must belong to a certain cycle
(i1, i2, . . . , il) of length l > 1. Let us extract from (7) those
containing this cycle:

∑

σ :(i1,i2,...,il)∈σ

sgn(σ )
∏

k∈{i1,i2,...,il}
akσ(k)

∏

k/∈{i1,i2,...,il}
akσ(k). (9)

There exist corresponding terms in (8) with σ ′ fixing indexes
i1, i2, . . . , il:

∑

σ ′:σ ′(i1)=i1,...,σ ′(il)=il
sgn

(
σ ′) ∏

k∈{i1,i2,...,il}
akk

∏

k/∈{i1,i2,...,il}
akσ ′(k).

(10)

Clearly, σ is a composition of σ ′ and (i1, i2, . . . , il).
Note that a negative counterpart of akσ(k) exists in akk =

a′
kk − ∑

m�=k akm, so the sign of those terms in (10) is

sgn
(
σ ′)(−1)l.

But the sign of those terms in is (9)

sgn(σ ) = sgn
(
σ ′)(−1)l−1,

they must have different signs, therefore being cancelled out
completely.
The proof of Theorem 1 is completed by combining the

two lemmas.
Remark 2: In [1], Ki-Tung Wang treated terms containing

a square and terms containing factor 2 separately, which cor-
respond to 2-cycles (i1, i2) and longer cycles (i1, i2, . . . , il)
in the above proof, respectively.
An astute reader may wonder if there is any gain

to use Wang algebra to compute the matrix determi-
nant. After all, applying the formula (3) crudely requires
n · n! multiplications, while computing (2) may require nn

multiplications in the worst case. By Stirling’s formula

FIGURE 2. Bridged-T network used to derive the constant-Z constraint by loop
equations and Wang algebra.

n! ≈ (n/e)n, the latter is asymptotically much greater.
Nevertheless, there are some advantages of Wang algebra:

• The number of terms is greatly reduced by applying
Wang’s rule (1), thus it can be more convenient for
small dimensions n;

• Even if there are faster numerical algorithms to compute
matrix determinant,8 the symbolic formulas given by
Wang algebra can lead to considerable insights.

We will demonstrate these advantages in the following
sections.

III. APPLICATIONS
A. APPLICATIONS TO ELECTRICAL
NETWORKS/CIRCUITS
For simplicity, let us assume planar networks, i.e., networks
which can be drawn on a plane such that no branches
cross each other. An example of planar electrical network is
shown in Fig. 2, with impedances a, b, c, d, e. In fact, this
is a model of the bridged T-coil which will be analyzed in
detail in the following section. The problem is to determine
the joint impedance Z. Applying Kirchhoff’s voltage law to
three loops shown, we obtain the following system of linear
equations:

⎛

⎝
a+ d − a − d
−a a+ b+ c − b
−d − b b+ d + e

⎞

⎠

⎛

⎝
I
I2
I3

⎞

⎠ =
⎛

⎝
V
0
0

⎞

⎠. (11)

Note that the above matrix is always symmetric and exhibits
the structure given in (6), by selecting the orientations of
the loops properly. Denote by M1 the 3 × 3 matrix on the
left-hand side of (11), and by M the 2 × 2 submatrix on

8. For example, the elimination method (aka Gauss elimination) can be
used to compute matrix determinant with O(n3) complexity. The elimination
method was invented by ancient Chinese mathematicians to solve systems of
linear equations in The Nine Chapters on the Mathematical Art (see [38] for
an English translation), predating the work of Gauss by about 2000 years.
The Nine Chapters on the Mathematical Art is a textbook taught in the
National University during the Han Dynasty of China (202 BCE – 220 CE).
Ki-Tung Wang was aware of the elimination method, since classical Chinese
mathematics was taught at the Imperial Tungwen College [14], [18].
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its bottom right. Cramer’s rule is a standard approach to
computing the joint impedance Z:

1

Z
= I

V
= det(M)

det(M1)
. (12)

To proceed, we firstly compute the numerator:

det (M) = det

(
a+ b+ c − b

−b b+ d + e

)

= ab+ ad + ae+ b2 + bc+ bd + be+ cd + ce

= ab+ ad + ae+ bc+ bd + be+ cd + ce (13)

where b2 = 0 in Wang algebra W. Then we multiply it with
a+ d to compute the denominator:

det (M1) = (a+ d)(ab+ ad + ae+ bc+ bd + be+ cd + ce)

= 2abd + abc+ abe+ acd + ace+ ade+ bcd + bde+ cde

= abc+ abe+ acd + ace+ ade+ bcd + bde+ cde.

where 2abd = 0 in Wang algebra W. Many product terms
are 0 and do not have to be listed. Note the saving it brings
in this case: 18 initial terms in the denominator are reduced
to 8 in the end.
For the reason to be clear in the next section, the determi-

nant det (M) is called the mesh determinant of the electrical
network.
We can see that another statement of Wang algebra for

computing network determinants is:
Corollary 1 (Wang’s Rule): The determinant of a planar

network does not contain any terms containing a square or
a factor 2. Moreover, all its terms have coefficient +1.

Ki-Tung Wang initially considered planar networks [1].
In follow-up works by Chinese researchers [2], [3], [4], the
restriction of planar networks was removed. Wang algebra
W still holds for non-planar networks, but the rule stated
above needs to be modified slightly. More precisely, a term
coefficient may be an odd number; therefore, the coefficients
are calculated modulo 2 as in Wang algebra W.
Duffin proved that the so-called just discriminants, whose

coefficients are all equal to +1 and which do not necessar-
ily come from Kirchhoffian networks, can also be evaluated
in Wang algebra [10]. For example, he showed that Wang
algebra holds for a network lying on the surface of a
torus. But Grassmann algebra needs to be used for non-
just discriminants, in a similar way to Wang algebra for just
discriminants.

B. APPLICATIONS TO GRAPH THEORY
Of course, electrical networks are examples of graphs. Since
matrix theory and graph theory are closely related, it is not
surprising that Wang algebra is also useful in graph theory.
Specifically, it gives an algebraic method to enumerate the
trees and cotrees of a graph. Readers are referred to [9] for an
introduction to graph theory and its engineering applications.
A graph consists of a set of nodes together with a set of

edges. The electrical network shown in Fig. 2 is an example

of graph. It contains 4 nodes, as well as 5 edges labelled by
a, b, c, d and e.

A (spanning) tree of a graph is a set of edges which
connect all nodes and which do not contain any loops. For
example, edges {a, b, e} form a tree in Fig. 2. The com-
plement of a tree in a graph in called a cotree; in other
words, it is a set of edges when removed leave no loops.
For example, {c, d} form a cotree, since it is the complement
of {a, b, e}. Wang algebra gives a handy method to enumerate
trees/cotrees.

1) ENUMERATING TREES/COTREES

For convenience, let the admittances be A = 1/a, B = 1/b,
C = 1/c, D = 1/d, E = 1/e in Fig. 2. By Kirchhoff’s
current law, we have another set of equations for Fig. 2:

⎛

⎝
A+ C − A − C
−A A+ B+ D − B
−C − B B+ C + E

⎞

⎠

⎛

⎝
V
V2
V3

⎞

⎠ =
⎛

⎝
I
0
0

⎞

⎠. (14)

The above matrix also exhibits the structure given in (6).
Denote by S the 3 × 3 matrix on the left-hand side of (14),
and by S1 the 2 × 2 submatrix on its bottom right. The
determinant det (S) is called the node determinant of the
electrical network.
Applying Cramer’s rule yields the joint impedance

Z = V

I
= det(S1)

det(S)
. (15)

Again, calculation is greatly simplified by using Wang
algebra. The numerator can be calculated as

det (S1) = (A+ B+ D)(B+ C + E)

= AB+ AC + AE + BC + BE + BD+ CD+ DE.

Multiplying it with A+ C yields the denominator

det (S) = (A+ C) det (S1)

= ABE + ABD+ ACD+ ADE

+ ACE + BCE + BCD+ CDE.

The saving is the same as before: 18 initial terms in the
denominator are reduced to 8 in the end.
A tree, respectively cotree, product is the product of the

edges of the tree, respectively cotree. It is known that the
terms of node determinant are tree products [9, Th. 2.28],
while the terms of mesh determinant are cotree products [9,
Th. 2.29]. In fact, the 8 terms of node determinant det (S) are
precisely the trees, while those of the mesh determinant (13)
are the cotrees of the graph shown in Fig. 2.

The following relation holds between the mesh determi-
nant and node determinant:

det(M(a, b, c, d, e)) = abcde · det(S(A,B,C,D,E)). (16)

This agrees with the one-to-one correspondence between
trees and cotrees.
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2) COUNTING TREES/COTREES

Obviously, setting a = b = c = d = e = 1, we obtain the
number of trees/cotrees of a graph:

det(M(1, 1, 1, 1, 1)) = det(S(1, 1, 1, 1, 1)). (17)

For example,

S(1, 1, 1, 1, 1) =
⎛

⎝
2 − 1 − 1

−1 3 − 1
−1 − 1 3

⎞

⎠. (18)

It is easy to check that det(S(1, 1, 1, 1, 1)) = 8, imply-
ing there are 8 trees in the graph, as expected. In fact,
det(S(1, 1, 1, 1, 1)) is a cofactor of the Laplacian matrix of
the graph, and this is a well-known method in graph theory
to calculate the number of trees. This fact can be used to
check if we have obtained the correct number of terms in
network determinants.

IV. BRIDGED T-COILS
In this section, we demonstrate how Wang algebra can be
used to greatly simplify the design of bridged T-coils. T-coils
are an old technology, but featured with modern applications.
Constant-R T-coils provide ideal load or termination. They
offer 2.73 improvement for acceptable 0.4% overshoot to
ideal step input. Now T-coils are used in high-speed buffer
design and electrostatic discharge (ESD) compensation with
bandwidth improvement. A review of historical applications
at Tektronix is given in Section IV-A.
For peaking applications, T-coils are designed to drive

capacitive loads that model input transistor structures (or in
a reciprocal manner, current source transistor drivers with
output capacitance). T-coil extensions for loads with series
or parallel resistor elements have been published [7], [25],
[26], [27], [29], [30], [31]. Also, more detailed models of
the physical structure reveal resistive losses in the branches
[32], [33], [34]. With the formulas in this section, exten-
sions for losses or resistive elements can be included in the
design process. Extended T-coil configurations are shown in
Section IV-B.
Several methods have been reported to derive the trans-

fer function to a capacitor load [20], [21], [23], [24], [25],
and this remains an algebraically tedious process, especially
for the extended configurations. Most of these methods first
derive fourth order equations. These are reduced to second
order equations after identifying common factors. The cal-
culations (not shown) are particularly tedious for the general
configurations reported later [7].
For generality, a symbolic method using Wang algebra for

simplicity is used in Section IV-C to derive the general con-
stant input impedance (constant-Z) constraint relationship. A
symbolic approach (based on an augmented Thévenin equiv-
alent circuit) is used along with the constant-Z constraint to
produce a transfer function that is already of reduced order
(or easy to reduce).
Section IV-D gives two sets of T-coil formulas for the

most general symmetrical and asymmetrical cases where the

FIGURE 3. Standard constant-R bridged T-coil driving C, terminated by R, and with
a bridging capacitor CB , (a) Coupled transformer model. (b) Equivalent model with
three inductors.

termination is R. Simpler T-coils can be derived by removing
some resistor terms. A design process is suggested based on
selecting complex-pole angles.

A. T-COIL HISTORY AT TEKTRONIX AND AFTERWARDS
The application of T-coils in products is documented in per-
sonal narratives by Battjes [28] and Addis [27]. The first
author adds T-coil derivations done while at Tektronix and
after leaving Tektronix. Around 1948, William Hewlett had
lunch in Oregon with Tektronix president Howard Vollum
and a key engineer Logan Belleville. Hewlett penciled out the
distributed amplifier circuit [22] on a paper napkin. Tektronix
adopted distributed amplifiers or distributed deflection cir-
cuits in cathode ray tubes in oscilloscopes. The input for the
Tektronix 519 oscilloscope (1 GHz) drove the distributed
vertical deflection plates directly. Other products included
the 517 (50 MHz with distributed amplifier), 545 main
frame with plugins (30 MHz), 545A (30 MHz), and 585A
(100 MHz with distributed deflection plates). T-coils for
inter-stage peaking were used in Type K and L plugins and in
the 3A6 plugin that connected directly to a cathode ray tube
deflection structure. This is just a short list of some early
implementations. More information is available by searching
the product names. Note, some schematics assume, but do
not show the bridging capacitor CB (see Fig. 3).

The portable oscilloscopes, Tektronix 454 and 454A
(150 MHz) used distributed deflection elements and an out-
put amplifier with T-coil peaking. They also used T-coils for
input delay line differential phase compensation. T-coils on
individual circuit boards were fabricated for transistor inter-
state peaking. The transistor input was still approximated
as capacitor. A leading edge (at that time) oscilloscope the
Tektronix 7904 (500 MHz) had minimum VSWR T-coil that
compensated for some additional parasitic degradations. The
follow-on 7104 (1 GHz) oscilloscope used faster transistors,
thin film conductors on substrates, and a transmission line
package design.
The so-called “Ross T-coil” is noted in [27], [28] and was

implemented by thin film deposition to peak and terminate
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FIGURE 4. Symmetrical T-coils where L1 = L2 and R1 = R2 and with calculated RB .
(a) Standard configuration (and no RB , R1 and R2). (b) With RS . (c) With RP . (d) With
RS and RP .

the inter-chip transmission lines. Other T-coils boosted the
frequency response and minimized reflections in a 50� input
for the 11A72 dual channel plugin preamplifier hybrid.
Battjes [28] (a Stanford University graduate) joined

Tektronix to design bipolar transistor amplifiers. He cre-
ated and conducted internally the amplifier frequency and
time response (AFTR) class for new engineers. The T-coil
derivations were those of [22] or variations thereof. Rather
than using a full bipolar transistor hybrid-pi load input model
used in Fig. 4(d) and Figs. 5(c,d); Battjes favored the sim-
pler RS−C load model in Fig. 4(b) and Fig. 5(a). It offered
better time-constant design intuition and the RP contribution
was considered large and negligible. Besides, the full design
equation mathematics shown in this paper were not known
at that time.
Sitting next to Battjes, the first author became interested

in working out the mathematics for the RS − C model.
He applied Wang algebra, but never revealed the deriva-
tion details outside of Tektronix. Various forms of the result
were later published as the “Ross T-coil” [27], [28].
The Wang algebra approach differed from earlier known

derivations. The coupled inductor was split into three induc-
tors, as shown in Fig. 3, to avoid any pre-defined coupling
assumptions. A constant resistance constraint was applied
initially to calculate some fixed element values (shown on
and above the Gain line in Table 1). The equations were

FIGURE 5. Asymmetrical T-coils with added R2 where needed. (a) With RS . (b) With
RP . (c) With RS and RP . (d) Generalized with RS , RP , and selectable R1 and
calculated R2 to balance the losses in the L1 and L2 branches.

helpful in making later simplifications. The parameter of
interest was selected as CB because it could be varied from
0 to nearly infinity. CB was easily related to the inductance
M, the coupling coefficient k, and a second order equation
damping variable δ. This derivation did not require taking an
absolute value of k, as was done in some other derivations.
Nor was it limited to symmetrical T-coils. (For example, the
T. T. True patent [31] for asymmetrical T-coils was known
internally, but never used.)
After leaving Tektronix, the first author investigated deriv-

ing the equations for the full bipolar transistor hybrid-pi
input model in Fig. 4(d) and Figs. 5(c,d), as discussed in
this paper. As technology evolved, digital displays replaced
distributed deflection structures. Also, hybrid integrated cir-
cuits and integrated circuits were replacing discrete transistor
circuits. But as the references show, T-coils are still being
implemented in integrated circuits and for ESD protection.

B. CONSTANT-R BRIDGED T-COILS
The standard T-coil is shown in Fig. 3(a). The structure
contains a bridging capacitor CB and is terminated by a
resistor R. Of interest is the transfer function to a load capac-
itor C. The three-terminal coupled transformer in Fig. 1(a)
can be modeled as shown in Fig. 3(b) by inductors L1, L2,
and L3 with well-documented conversions between the two
forms. This allows for a wider range of solutions including
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cases (for some extended configuration values) that make L1
negative. In the standard T-coil, L1 = L2.

Fig. 4 shows symmetrical constant-R configurations with
Fig. 4(a), the standard configuration. Figs. 4(b)–4(d) add
additional resistor combinations. These extensions add a
bridging resistor RB to allow symmetry with L1 = L2 and
R1 = R2. Symmetrical structures might be easier to fabricate.
Similar to Fig. 4, Fig. 5 shows asymmetrical constant-R

T-coils configurations. Fig. 5(d) provides a general configu-
ration with a selectable R1 over a limited range as long as
R2 ≥ 0. For example, resistors can be entered proportionally
in both inductor branches for physical losses.
The first author derived the formulas in the late 1960s for

the series configuration in Fig. 5(a) to include bipolar transis-
tor base resistance. Equivalent formulas have been published
in later works [26], [27], [28], [29], [30]. The constant-R
component values for Fig. 5(b) were revealed in [31], with-
out the associated transfer function. Later, the first author
published equations for generalized configurations includ-
ing both Fig. 4(d) and Fig. 5(d) [7]. The asymmetrical
configuration did not need a bridging resistor.

C. CONSTANT-Z BRIDGED-T NETWORKS
1) DRIVING POINT IMPEDANCE

A general bridged-T network driving point impedance in
Fig. 2 can be derived in symbolic form from loop or nodal
equations. Wang algebra simplifies the process with the
aforementioned rules. The resulting driving point admittance
is set equal to the terminating admittance 1/e:

1

Z
= 1

e
= N

D
= (a+ b+ c)(b+ d + e)

(a+ d)N

= ab+ ad + ae+ bc+ bd + be+ cd + ce

abc+ abe+ acd + ace+ ade+ bcd + bde+ cde
.

(19)

In (19) the driving point admittance numerator N is formed
by adding the impedances of a set of independent loops
except the input loop, and then by multiplying these sums
with Wang algebra rules. The denominator D is formed by
multiplying N and the input loop sums and applying Wang
algebra rules.
With regular algebra, (19) is simplified to produce sym-

bolic, constant-Z constraints for asymmetrical (20) and
symmetrical (21) networks as arranged as

(a+ b)
(
d − e2/c

)
+ ab+ (a− b)e− e2 = 0, (20)

a = b, 2a
(
d − e2/c

)
+ a2 − e2 = 0. (21)

The component relationships are formed by equating the
factors of each power of the Laplace variable s to zero
after inserting the actual impedances into (20) or (21). This
process yields a set of independent constraints. In some cases
the relationships show that the circuit is not suitable due to
a mathematical contradiction or to non-realizable (negative)
components.

FIGURE 6. Transfer function to Vd . (a) Constant-Z bridged-T network and Vd .
(b) Equivalent Vd with added f and Vf .

FIGURE 7. Thévenin equivalent circuit development to Vd . (a) Impedance
calculation. (b) Voltage calculation with scaled-mirror symmetry about VTh .
(c) Thévenin equivalent circuit.

2) TRANSFER FUNCTION

A method is presented for calculating the transfer function to
node Vd in Fig. 6(a), if the constant-Z constraint is satisfied.
The configuration in Fig. 6(b) produces an equivalent result
with impedance f and Vf = V(e+ f )/e. A Thévenin equiv-
alent circuit can be derived at node Vd as shown in Fig. 6.
Without any loss in generality, the bridge in Fig. 7(a) can be
balanced by choosing f = e/(ab) to null out the c term. The
Thévenin impedance, ZTh, becomes (b+e)‖(a+f ). As shown
in Fig. 7(b) this also produces a scaled-mirror symmetrical
divider about VTh (which can be shown by splitting c into
two impedances, ca/(a+b) and cb/(a+b), and joining them
at the VTh node. The values shown in Fig. 7(c) are:

VTh = V, ZTh = b′ + e′ = (b+ e)
a

a+ b
. (22)

This equivalent circuit applies for any constant-Z bridged-
T network. For constant-R T-coils, the transfer function of
interest is to the capacitor C (usually part of a transis-
tor model) within branch d. For symmetrical networks the
Thévenin impedance reduces to one-half of the impedances
of the b + e branches. For asymmetrical networks, the
Thévenin impedance also produces reduced order transfer
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FIGURE 8. Root locus on complex s = σ + jω plane showing increasing CB .
(a) Without RP (GP = 0). (b) With RP .

functions where applicable (sometimes after applying some
constant-Z identities). Fig. 7(a) suggests that poles associ-
ated with branch c do not appear in the transfer function.
The conductance and capacitance elements within branches
a+ b in (22) can be cancelled, as shown later.

D. GENERAL T-COIL EQUATIONS
1) ROOT LOCUS

The Thévenin equivalent circuit approach produces second
order transfer functions for all T-coils in Fig. 4 and Fig. 5
and can be parameterized in terms of the bridging capacitor
CB for the complete range of solutions. Also, GP = 1/RP.

VC
V

= 1/(GP + sC)

ZTh + RS + sL3 + 1
(GP+sC)

(23a)

VC
V

= 1

B0 + B1s+ B2s2
= 1

B0 + (D0 + D1CB)s+ D2CBs2
.

(23b)

In Fig. 8, the complex poles of interest are shown for
increasing CB and lie on a circle with

center = −B0

D0
, radius = B0

D0

√

1 − D0D1

B0D2
. (24)

Fig. 7(b) shows the case where the circle defined by (24) is
to the left of the origin because D1 > 0 when RP exists.

A design process is to solve for the poles of (23) and
then find CB for a specified pole-angle measured from the
negative real axis. Both poles are found by solving quadratic
equations. Elements and terms for symmetrical and asym-
metrical transfer functions in (23) are given next. The L3
value varies with CB (and the pole-angle) as shown in (28)
and (37) below. A final step is to calculate physical inductor
values and a coupling coefficient.

2) SYMMETRICAL T-COILS

The T-coil equations for the general case in Fig. 4(d) are
expressed using GP = 1/RP and GB = 1/RB to support
omitted resistor simplifications with zero-valued GP and/or
GB elements.

1) Constant-R elements:

R1 = R2 = R2Gp/2 (25)

GB = RS/R
2 + GP/4 (26)

L1 = L2 = R2C/2 (27)

L3 = R2CB − L1/2. (28)

2) Transfer function terms:

B0 = 1 + GP
(
R/2 + R2GP/4 + RS

)
(29)

D0 =
(

2R+ R2GP + 4RS
)
C/4 (30)

D1CB = R2GpCB (31)

D2CB = R2CCB. (32)

3) ASYMMETRICAL T-COILS

The T-coil equations for the general case in Fig. 5(d) are
presented.

1) Constant-R elements:

R2 = R2GP − R1[1 + (RS + R)GP]

1 + (RS + R1 − R)GP
(33a)

R1 = R2GP − R2[1 + (RS − R)GP]

1 + (RS + R2 + R)GP
(33b)

R1 + R2 = (R− R1)
2GP

1 + (RS + R1 − R)GP
(33c)

R1 + R2 = (R+ R2)
2GP

1 + (RS + R2 + R)GP
(33d)

LTGP = (L1 + L2)GP = (R1 + R2)C (34a)

LT = (R− R1)
2C

1 + (RS + R1 − R)GP
(34b)

LT = (R+ R2)
2C

1 + (RS + R2 + R)GP
(34c)

L1 = (R1 − R)(R1 + RS − R)C

1 + (R1 + RS − R)GP + √
1 + (R1 + RS − R)GP

(35)

L2 = (R2 + R)(R2 + RS + R)C

1 + (R2 + RS + R)GP + √
1 + (R2 + RS + R)GP

(36)

L3 = R2CB − L1L2/(L1 + L2). (37)

2) Transfer function terms:

B0 = 1 + RSGP + R1[1 + R+ RS + R2GP]R+ R2 (38)

D0 = L2R[1 + (R1 + RS − R)GP](R− R1)2 (39)

D1CB = R2GpCB (40)

D2CB = R2CCB. (41)

The resistance constraint is implemented in (33a)
after selecting R1; (33b) is an equivalent arrangement.
Summations (33c) and (33d) are derived from (33a)
and (33b) respectively. The summations (33c) and (33d) are
used in (34a) to derive (34b) and (34c) such that zero-valued
elements (besides R) are allowed. These forms are useful to
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TABLE 1. T-coil example for all configurations. R = 50 �, C = 4 pF, RS = 10 �, PP = 500 �, Pole Angle = 30◦ & 45◦ , R1 is selected for Fig. 5(d).

derive (35) and (36). Also, from (33a), R1 is limited to a
range where R2 ≥ 0. If GP = 0, R1 = R2 = 0.

From (22), (23a), and (34a), the transfer function VC/V
in (23) remains second order, as shown in (23b). The sC+GP
term in the product (sC+GP)ZTh drops out because in ZTh,
a+ b = s(L1 + L2) + (R1 + R2) = (R1 + R2)(sC+GP)/GP.
If GP = 0, then from (33c) or (33d), (R1 + R2)/GP = R2.

E. EXAMPLE
Table 1 shows a set of load values and the designs for all T-
coils. Elements at and above the Gain line remain unchanged
for each Fig. 4 or Fig. 5 configuration. Blank entries repre-
sent omitted elements for simpler structures. Element values
(negative values in parenthesis) for stated pole angles are
shown below single solid lines along with correspond-
ing parameters include bandwidth (BW) and bandwidth
extension ratio (BWER) relative to a 1 + RCs single-pole
bandwidth.

V. CONCLUSION
In this paper, we have presented a survey of Wang algebra
and its applications to T-coils. A Thévenin equivalent circuit
method simplifies transfer function extraction of constant-Z
bridged-T networks. Because of a balanced-bridge process,
the Thévenin equivalent circuit produces a final result with
common poles and zeros already cancelled. Two sets of
general constant-R bridged T-coil equations are derived, and
a design process is suggested.
Even greater bandwidth extensions have been reported by

trading off the constant-R property and controlling other
parameters [39], [40]. These extensions are outside of the
scope of this paper.
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APPENDIX A
SYMMETRICAL CONSTANT-Z DERIVATIONS
The symmetrical network equations (25)-(28) can be derived
for the Fig. 4(d) elements with the substitutions in (42)
entered in (21):

a = b = sL1 + R1,

1

c
= sCB + GB,

d = sL3 + RS + 1

(sC + GP)
,

e = R. (42)

This substitution expands to the product terms in (43):

s3
(
−2CCBL1R

2 + CL2
1 + 2CL1L3

)
+

s2
(
−2CGBL1R

2 − 2CBGPL1R
2 − 2CCBR

2R1 + GPL
2
1

+2GPL1L3 + 2CL1R1 + 2CL3R1 + 2CL1RS
)

s1
(
−2GBGPL1R

2 − 2CGBR
2R1 − 2CBGPR

2R1

− CR2 + 2GPL1R1 + 2GPL3R1 + CR2
1
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+ 2GPL1RS + 2CR1RS + 2L1

)
+

s0
(
−2GBGPR

2R1 − GPR
2 + GPR

2
1 + 2GPR1RS + 2R1

)

= 0. (43)

One set of steps is outlined. Commercial or free symbolic
mathematical tools can automate the reductions by doing
substitutions and cancellations. SageMath (a free, open-source
tool created by academia and available in the cloud or for
downloading at www.sagemath.org) is used in these steps.
The s3 multiplier terms are set to zero to produce (28).

After substituting for L3, the s2 multiplier terms are simpli-
fied to yield a preliminary expression for R1 that includes GB
and also to yield (26) and (27) directly from the simplified
s1 and s0 multiplier terms that are set to zero. Finally, (26)
is used to simplify the previous R1 result to produce (25).

To form the transfer function as a function of CB, (27) is
also used so that CB can range from zero to infinity. This
provides a complete solution space covering real and complex
poles. Values of CB (and L3) can be determined for complex
poles and selected pole angles, as shown in Table 1.

APPENDIX B
ASYMMETRICAL CONSTANT-Z DERIVATIONS
The asymmetrical network equations (33)-(37) can be
derived for the Fig. 5(d) elements with the substitutions
in (44) entered in (20):

a = sL1 + R1,

b = sL2 + R2,

1

c
= sCB,

d = sL3 + RS + 1

(sC + GP)
,

e = R. (44)

This substitution expands to the product terms in (45):

s3
(
−CCBL1R

2 − CCBL2R
2 + CL1L2 + CL1L3

)

+ CL2L3

)
+

s2
(
−CBGPL1R

2 − CBGPL2R
2 − CCBR

2R1

− CCBR
2R2 + GPL1L2 + GPL1L3 + GPL2L3

+ CL1R+ CL2R+ CL2R1 + CL3R1 + CL1R2

+ CL3R2 + CL1RS + CL2RS
)

+
s1

(
−CBGPR2R1 − CBGPR

2R2 + GPL1R

+ GPL2R+ CR2 + GPL2R1 + GPL3R1 + CRR1

+ GPL1R2 + GPL3R2 − CRR2

+ CR1R2 + GPL1RS + GPL2RS

+ CR1RS + CR2RS + L1 + L2

)
+

s0
(
− GPR

2 + GPRR1 − GPRR2 + GPR1R2

+ GPR1RS + GPR2RS + R1 + R2

)
= 0. (45)

One set of steps is briefly outlined. Some of the later steps
are done manually. The s3 multiplier terms are set to zero
to produce (37). The s0 multiplier terms are set to zero to
produce (33a) and (33b). After replacing L3 with (37), all
terms with L3 and CB elements are eliminated in a modified
expansion.
In this expansion, the s2 multiplier terms yield (46) after

they are set to zero and divided by C:

L2
2(RS + R1 − R) + 2L1L2RS + L2

1(RS + R2 + R) = 0. (46)

The s1 multipliers are simplified with two substitutions. The
terms that are multiplied by GP are identical to the terms in
the left side of (46) and are removed. The remaining terms
that are multiplied by C(L1 + L2) are replaced because they
are identical to the first six terms of the s0 multiplier in (45)
after these six terms are divided by −GP. The mathematical
process produces (L1+L2)(R1+R2)/GP, which is set equal to
a remaining (L1+L2)

2. Equation (34a) follows after dividing
both sides by (L1 + L2).
A quadratic equation formula is used to solve (46) for

either L2 in (47) or L1 in (48) in terms of the other inductor.
Each solution has the same six product terms under the
radical as the first six s0 multiplier terms divided by −GP
in (45). These terms can be simplified as described above
to form

√
(R1 + R2)/GP.

L2 = LT − L1 = L1
−RS + √

(R1 + R2)/GP
RS + R1 − R

, (47)

L1 = LT − L2 = L2
−RS + √

(R1 + R2)/GP
RS + R2 + R

. (48)

After doing some mathematical simplification, (35) fol-
lows from (47), (33c), and (34b). Equation (36) follows
from (48), (33d), and (34c).
Equations (35) and (36) are formed with positive radicals

in (47) and (48). The negative radical solutions produce
divide by zero cases if GP = 0.

As done in the symmetrical case, (37) is substituted to
express the transfer denominator (38)-(41) as a function
of CB.
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