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Abstract
When molecular photo-switches, such as azobenzene or norbornadiene, are
embedded into a sufficiently soft polymer matrix the resulting compound can
undergo a mechanical deformation induced by light of a specific wavelength.
These photo-sensitive compounds have the potential to be applied as soft actu-
ators without the need for hard wired electronics or a separate energy source.
Such characteristics are especially attractive in the design of micro-scale robots
but also other applications such as high-speed data transfer or the conversion
of photonic energy into a mechanical response holds great promise. Despite
these almost futuristic possibilities, photo-sensitive polymers have not yet expe-
rienced a sufficient attention in industrial applications. One important factor to
increase the acceptance of this group of soft smart materials is the formulation
of a rigorous constitutive modeling approach in combination with numerical
simulation methods. Thus, in this contribution we present a photo-mechanical
modeling approach, departing from the fundamentals published previously. We
briefly introduce the necessary constitutive equations which are subsequently
utilized in combination with the respective balance laws into a finite element
implementation. Finally, the capabilities of the numerical solution approach are
illustrated by a simple two-dimensional bench-mark example and subsequently
extended to a more complex three-dimensional problem.
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1 INTRODUCTION

Polymers that are able to undergo deformations and changes in certain properties in response to external, non-mechanical
stimuli form an exciting subclass of smart materials. While electro- or magneto-sensitive polymers are well investigated,1-5

the application of polymeric materials that respond to illumination with deformation (that does not correspond to ther-
mal effects) is still noticeably underdeveloped. Nonetheless, these photo-sensitive polymers have extraordinary properties
that render them promising candidates for the development of revolutionary actuator technologies. Especially intrigu-
ing is the possibility to operate them without a separate power source or hard wired connections. Furthermore, they can
be controlled precisely by selecting the suitable polarization direction, wavelength, and intensity of the incident light. In
certain cases, this even allows for the operation of such actuators through layers of material such as skin, thus enabling
revolutionary medical procedures.6 The required building blocks for illumination technologies such as optics, lasers, and
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optical fibers have been well established for decades and are easily available. In the past, a wide range of polymers have
been developed that respond to the illumination by light.7-11 Among these, different types of mechanical deformations
such as volumetric changes,12 bending deformation,13 and contraction14 have been reported. It should be noted that the
presented changes are reversible, meaning that given a sufficiently long time, the sample returns to its original configu-
ration once the illuminating light source is removed.15 In order to achieve this mechanical response to a stimulation by
light, photo-sensitive functional groups or fillers have to be incorporated into a tailored polymer matrix in combination
with a functionalization process. This approach has been well-established and results in a transfer of the effects on the
molecular level into a macroscopically visible response.16

An important factor to increase the popularity and usability of photo-sensitive materials is a proper modeling approach
in order to fully analyze and harness the possibilities that these materials offer. First modeling concepts were presented,
for example, by Tzou17-19 expanding a simple one-dimensional theory to the description of photostriction and photode-
formation of two-dimensional distributed photostrictive optical actuator systems. However, these models are targeted
primarily towards opto-piezoelectricity where large deformations are not considered. A polarization-dependent model
incorporating photocontractions of polydomain nematic elastomers was developed by Corbet and Warner20 in which the
deformation of the material was initially caused by light-induced director rotation. In their approach, the reduction of
the local order parameter resulted in a strain recovery at higher light intensity resulting in nonmonotonic photostrains.
An analytical investigation on the photomechanics of mono- and polydomain liquid crystal elastomers was presented
by Dunn21 where the effects of geometric nonlinearities where implemented into an isotropic linear elastic material
model. The results of this approach where compared both to real life data and a more complex finite-element imple-
mentation. More recently in a number of publications, Bin and Oates presented a unified material description for light
induced deformation specifically tailored to the material response of azobenzene polymers.22-24 The general framework
presented therein includes both the effects of dipole and quadrupole charge arrangements and is extended to include
time-dependent material effects for large deformations. The comparison to material data gathered both from the literature
and their own experiments showed an excellent agreement to the derived model. Very recently, Bai and Bhattacharya25

presented a continuum framework based on the free energy concept considering the effects of mechanical stresses on the
nematic alignment and the resulting influence on the photo-sensitive characteristics of azobenzene doped liquid crystals
elastomers.

The complex multi-physics problems arising from light-matter interaction may be approached using numerical
simulations in form of a finite-element implementation. However, so far in the field of photo-mechanics only few imple-
mentations into finite-element codes have been realized. Most noticeably, Rahman and Nawaz derived a finite-element
model used for the investigation of thin films,26-28 based on the concepts presented in Reference 19. In these works an exist-
ing finite element code capable of solving three-dimensional elasto-static eigenvalue problems, two-dimensional static
structural systems and specific heat transfer applications was extended for the static analysis of photostrictive materials
by four-noded quadrilateral elements that are used in combination with eight-noded brick elements for the simulation
of the bulk material. However, the purely elastic material behavior in combination with the restriction to small defor-
mations renders the derived FEM implementation rather limited and unsuited for the simulation of polymers such as
polyimide-based azobenzene.

Consequently, in the current contribution we aim to present a photo-mechanical modeling approach, based on the
theoretical framework published in Reference 29, that is capable of capturing large deformations. For this, the neces-
sary constitutive expressions are presented together with their linearization. In combination with the respective balance
equations a finite element implementation into the open source FEM library DEAL II30,31 is developed.

This contribution is structured as follows: following the introduction, the general modeling concept is established
in Section 2. After this, the necessary balance laws and constitutive equations are presented in Sections 3 and 4. These
are subsequently implemented into a finite-element code as presented in Section 5. For the purpose of illustrating the
model capabilities, in Section 6 a parameter study using a simple, two-dimensional numerical example followed by a more
complex three-dimensional application is presented . Finally, the work is closed by a summary and concluding remarks
in Section 7.

2 LIGHT-MATTER MODELING CONCEPT

Light-matter interaction in photo-sensitive polymers includes a wide range of complex effects, especially considering
that molecular switches are frequently embedded into liquid crystal polymer structures. The modeling concept and its
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1604 MEHNERT et al.

F I G U R E 1 Sketch of a body in the undeformed configuration 0 and deformed configuration t under light induced deformation. The
incident polarized light is characterized by the electric field E/e, electric displacement D/d, and electric polarization P/p in the
undeformed/deformed configuration. The boundary of the body is labeled as 𝜕0 in the undeformed configuration and as 𝜕t in the
deformed configuration.

numerical implementation presented in this work are intended to serve as the base framework that can be extended to
include various phenomena observed in photo-sensitive materials. This includes the viscous behavior of the polymeric
backbone, time dependent switching of the light sensitive molecules, light absorption or scattering and liquid crystal
domain formation. However, as a first step, we aim at implementing a simple, lean and easily modifiable approach that
covers the very basic principle of the here considered light-matter interaction.

As sketched in Figure 1, we consider a body as a composition of physical points. In the undeformed configuration0,
the position of each physical point is described by the position vector X whereas the position of a physical point in the
deformed configuration t is specified by the position vector x. The nonlinear deformation map 𝝋 defines the relation
between the position vectors such that x = 𝝋(X, t) at time t. We define the deformation gradient F as the gradient of
the deformation map 𝝋(X, t) with respect to the material coordinates F(X, t) = ∇X𝝋(X, t) and its determinant as J(X, t) =
det F(X, t) > 0. These two quantities allow us to define the cofactor of the deformation gradient as cof F = JF−T where
−T symbolizes the transposed inverse of F. Furthermore, we introduce the right and left Cauchy–Green tensors C and b
as symmetric strain measures defined as C = FT ⋅ F and b = F ⋅ FT .

In the case of photo-sensitive polymers, we assume the presence of molecular photo-switches, such as azobenzene,23

embedded in a (sufficiently soft) polymer matrix. The conformation of these photo-sensitive molecules is either character-
ized as the lower energy trans- or higher energy cis-state (cf. left side of Figure 1). The effects of these two energetic states
are modeled via the vector order parameters yt and yc, depicted in Figure 1 as homogenized quantities in form of the solid
green and dashed red arrows. These represent the (volume-) averaged photo-sensitive molecules in the trans- and cis-state
of a representative volume element. In order to satisfy the conservation of charge, the total amount of these molecule in
the RVE is fixed. However, the number of molecules associated with either yt or yc are allowed to evolve due to energy
conversion of the incident light. For the sake of concise representation, the trans- and cis-vectors are combined into the
electronic order parameter y. Analogously to the mechanical case we can define the space gradient of the electronic order
parameter as F ∶= ∇Xy(X, t). The reader should note the different fonts used for the mechanical and electronic quantities.

As laid out in Reference 22, the electro-magnetic field of a polarized oscillating light wave may be represented by
its time averaged value. Thus, the behavior of the incident light is described by a time averaged electric field E that is
defined as the negative spatial gradient of the time averaged scalar electric potential 𝜙 as E ∶= −∇X𝜙(X, t). The electric
field in the undeformed configuration can be transformed into its counterpart in the deformed configuration using the
deformation gradient through e = F−T ⋅ E. Following32 the electric field is related to the electric displacement by D =
𝜀0JC−1

E + P were we introduce the electric permittivity of vacuum 𝜀0 and the electric polarization P. These quantities
can be transformed from the undeformed to the deformed configuration by d = J−1F ⋅ D and p = J−1F ⋅ P.

3 BALANCE LAWS

In the following section we briefly recall the underlying balance laws that describe the behavior of the electric, electronic,
and mechanical fields, which were presented in greater detail in Reference 29. In the context of this work, for the sake
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MEHNERT et al. 1605

of brevity, we focus solely on the description in the undeformed configuration. We distinguish between the response in
a material body 0, the surrounding space 0, and the interface 𝜕0 between these two. In the simplest case, that is, a
non-dissipative quasistatic material response, the balance laws may be derived from the Dirichlet principle as presented
in Reference 29. The resulting balance laws are summarized in Equations (1a)–(1e).

DivD − 𝑞f
0 = 0 in 0 and [[D]] ⋅N = q̂f

0 at 𝜕0, (1a)
DivD = 0 in 0, (1b)

Div𝗣 + 𝗯0 = 𝗴0 in 0 and 𝗣 ⋅N = 𝘁0 at 𝜕0, (1c)

DivP + b0 = 0 in 0 and −[[P]] ⋅N = t0 at 𝜕0, (1d)
DivP = 0 in 0. (1e)

Equations (1a) and (1b) represent the standard electric Gauss law describing the relation between the electric dis-
placement D and the free charge density qf

0. On the surface of the body jump conditions are imposed with the free
surface charge density q̂f

0. Equation (1c) governs the response of the electronic nominal (Piola-type) stress P in relation
to the external electronic source density b0 and the nominal internal source density g0, in form of an electronic displace-
ment balance relation. It also contains the necessary boundary condition expressed in dependency on t0, an electronic
force densities per unit area. The reader should be aware of the resemblance of Equation (1c) with the classical balance
of linear momentum expressed in Equations (1d) and (1e) governing the mechanical response of the material. In these
equations the total Piola type stress P and the mechanical force densities per unit volume and unit area b0 and t0 are
introduced.

4 VARIATIONAL FORMULATION

Let us assume a conservative system that is described by the equations presented in (1a)–(1e) without the influence of
further effects such as temperature or magnetic fields. Thus, we assume the existence of a free energy functionΨ(F,E, F, y)
that depends on the current state of deformation, the electric field and the electronic order parameter and its gradient
such that the mechanical Piola stress P, the electronic Piola-stress P, the electronic source density g0, and the electric
polarization P may be expressed as

P = 𝜕FΨ and P = 𝜕FΨ and g0 = 𝜕yΨ and P = −𝜕EΨ. (2)

The free energy functionΨmay be augmented by the contribution of the energy stored in the electric field itself resulting
in the expression

Ω(F,E, F, y) = Ψ(F,E, F, y) − 1
2
𝜀0JC−1 ∶ [E⊗ E]. (3)

This gives the additional constitutive equation of the electric displacement D as

D = −𝜕EΩ. (4)

As presented in detail in the Appendix, these constitutive equations can be used to derive the variational format of the
work functional as
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1606 MEHNERT et al.

𝛿W =
∫
0

P ∶ ∇X𝛿𝝋dV +
∫
0

D ⋅ ∇X𝛿𝜙dV +
∫
0

P ∶ ∇X𝛿ydV

+
∫
0

g0 ⋅ 𝛿ydV −
∫
0

b0 ⋅ 𝛿𝝋dV −
∫
𝜕0

t0 ⋅ 𝛿𝝋dA

−
∫
0

b0 ⋅ 𝛿ydV −
∫
𝜕0

t0 ⋅ 𝛿ydA +
∫
0

qf
0𝛿𝜙dV +

∫
𝜕0

q̂f
0𝛿𝜙dA. (5)

It should be noted that the contributions b0, b0, and g0 are assumed to be known apriori and independent of the degrees
of freedom (DOFs).

5 DISCRETIZATION AND LINEARIZATION

The terms in above equation describing the photo-electro-mechanical response of the non-linear system can be solved
using numerical methods, such as the finite-element method, which, in the context of the Newton–Raphson solution
technique, requires the linearization of the respective internal contributions, from which a number of coupled terms
result. For the sake of conciseness the details on the linearization of this expression can be found in the Appendix A.2. For
the solution of the photo-mechanical problem, the domain of the body0 is discretized into finite elements, on which the
respective field variables are approximated using appropriate vector-valued shape functions N𝛼 and scalar-valued shape
functions N𝛼 , that correspond to a respective degree-of-freedom 𝛼. This concept of vector-valued shape functions with
scalar valued DOFs is a particularity of the open access finite-element library DEAL II that is used for the implementation
of the photo-mechanical problem. Details on this can be found for example in the works of Bangerth.30,31 Thus, the
displacement, its variation and their corresponding gradients can be expressed as

𝝋(X) ≈
∑

𝛼

𝜑𝛼N𝛼(X), 𝛿𝝋(X) ≈
∑

𝛼

𝛿𝜑𝛼N𝛼(X),

∇X𝝋(X) ≈
∑

𝛼

𝜑𝛼∇XN𝛼(X), ∇X𝛿𝝋(X) ≈
∑

𝛼

𝛿𝜑𝛼∇XN𝛼(X). (6)

Analogously, we can express the interpolation of the electric potential 𝜙, its variation and the corresponding gradients as

𝜙(X) ≈
∑

𝛼

𝜙𝛼N𝛼(X), 𝛿𝜙(X) ≈
∑

𝛼

𝛿𝜙𝛼N𝛼(X),

∇X𝜙(X) ≈
∑

𝛼

𝜙𝛼∇XN𝛼(X), ∇X𝛿𝜙(X) ≈
∑

𝛼

𝛿𝜙𝛼∇XN𝛼(X), (7)

while the formulation of the electronic order parameter reads

y(X) ≈
∑

𝛼

y𝛼N𝛼(X), 𝛿y(X) ≈
∑

𝛼

𝛿y𝛼N𝛼(X),

∇Xy(X) ≈
∑

𝛼

y𝛼
𝜕N𝛼(X)
𝜕X

, ∇X𝛿y(X) ≈
∑

𝛼

𝛿y𝛼
𝜕N𝛼(X)
𝜕X

. (8)

It should be noted that in the context of the current contribution the shape functions in the previous equations are all
selected to be identical. This, however, is not generally necessary and can potentially change in future implementations.
These approximations are inserted into the photo-electro-mechanical system, which leads to

𝛿W h = 𝛿𝜑𝛼
[

∫
0

P ∶ 𝜕N𝛼(X)
𝜕X

dV
]
− 𝛿𝜑𝛼

[

∫
𝜕

t
0

t0 ⋅N𝛼(X) dA +
∫
0

b0 ⋅N𝛼(X) dV

]

+ 𝛿𝜙𝛼
[

∫
0

D ⋅
𝜕N𝛼(X)
𝜕X

dV
]
+ 𝛿𝜙𝛼

[

∫
𝜕

𝜚

0

𝜚̂
f
0N𝛼(X) dA

]
+ 𝛿y𝛼

[

∫
0

P ∶ 𝜕N𝛼(X)
𝜕X

+ g0 ⋅N𝛼(X) dV
]

− 𝛿𝜑𝛼

[

∫
𝜕

t
0

t0 ⋅N𝛼(X) dA +
∫
0

b0 ⋅N𝛼(X) dV

]
. (9)

This gives the form of the photo-mechanical system which is implemented into a finite-element code.
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MEHNERT et al. 1607

6 NUMERICAL EXAMPLE

We will illustrate the capabilities of the presented finite-element implementation with two numerical examples. First,
we study the bending of a two-dimensional slender beam of photo-sensitive material under illumination. Subsequently,
the three-dimensional simulation of the deformation of a nocturnal flower is presented. In both cases, the selected light
source is assumed to be polarized and monochromatic so that we only consider the transformation from the cis- to the
trans-state. We assume that the photo-sensitive molecules in the trans-state reorient instantly to a plane perpendicular to
the polarization direction of the light due to the Weigert effect.22,33,34 For the sake of simplicity, we neglect liquid crystal
formation and thus the proposed energy function does not include terms depending on F, the spatial gradient of the
electronic order parameter. Furthermore, we assume that all the switching molecules are initially in the cis-state and
transform to the trans-state. Thus, the electronic order parameter is initially zero and increases with increasing electric
field. During the numerical investigations presented hereafter, the overall number of photo-sensitive molecules remains
constant but no further coupling between the two states is assumed. Thus, we restrict our computations to the solution of
the electronic order parameter describing the trans-state, that is, y = yt. We assume the existence of a free energy function
Ψ(F,E, F, y) that depends on the current state of deformation, the electric field and the electronic order parameter

Ψ(F,E, y) = E(F,E) + C(F,E, y) +W(F, y). (10)

The format of the terms E(F,E) and C(F,E, y) was presented in Reference 29 as

E(F,E) = −1
2
𝜀0E ⋅ F−1 ⋅ cofF ⋅ E = −1

2
𝜀0JC−1 ∶ [E⊗ E],

C(F,E, y) = w0y ⋅ cofF ⋅ [E × l], (11)

describing the energy stored in the electric field and the corresponding contribution of the electronic order parameter
resulting in a combined Maxwell type contribution. Here we introduce l as the normalized direction of the light wave
inducing the electric field. It should be noted that 𝜀0 = 8.854 ⋅ 10−12 C2N−1m−2 is the permittivity of free space. The
remaining part of the energy function W(F, y) consists of a classical elastic energy function Wel(F), the form of which can
be selected from the literature, and a coupling contribution W coupl(F, y) that leads to the desired macroscopic deforma-
tion of the material when it is illuminated by a light source. For the sake of simplicity, in the current case a Neo–Hookean
type energy function is selected,35 that is,

Wel(F) = 𝜇

2
[I1 − dim] − 𝜇 ln(J) + 𝜆

4
[J2 − 1 − 2 ln(J)], (12)

where we have introduced the shear modulus 𝜇, the first mechanical invariant I1 = I ∶ C and the first Lamé parameter
𝜆. The coupling between the electronic order parameter and the deformation is established by

W coupl(F, y) = d1I ∶ [y⊗ y] + d2b ∶ [y⊗ y]. (13)

The term closely resembles the classical coupling invariants I4 and I5 for the formulation of an isotropic function depend-
ing on a tensorial and vectorial variable.36 From this energy function, the necessary mechanical, electric, and electronic
quantities can be derived using the expressions found in (A1) which leads to

𝜕FE(F,E) = −0.5𝜖0J
[

F−T [C−1 ∶ [E⊗ E]
]
+ 𝜕C−1

𝜕F
∶ [E⊗ E]

]
,

𝜕FC(F,E, y) = w0J
[[

y ⋅ F−T ⋅ [E × l]
]

F−T − F−T ⋅ [y⊗ [E × l]]T ⋅ F−T]
,

𝜕FW(F, y) = 𝜇[F − F−T] + 𝜆 ln(J)F−T + 2d2F ⋅ [y⊗ y]. (14)

In (14.1) we need the definition of the derivative of C−1 with respect to F, which in index notation can be expressed as37

𝜕C−1
AB

𝜕FCD
= −

[
C−1

AEC−1
BD + C−1

ADC−1
BE
]

FCE. (15)
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1608 MEHNERT et al.

For the electronic and electric terms we find

g0 ∶= 𝜕yΨ(F,E, y) = w0 cofF ⋅
[
E × l

]
+ 2d1y + 2d2b ⋅ y,

−D ∶= 𝜕EΨ (F,E, y) = w0 y ⋅ cofF ⋅ [I × l] − 𝜀0C−1 ⋅ E. (16)

Using these expressions, the linearizations required in Equation (A8) can be calculated. Due to their excessive length,
these are given in the Appendix.

6.1 Parameter study

The system presented in the previous section can be used for the simulation of a simple illustrative numerical example.
It should be noted that, by purpose, in the present work we do not refer to available experimental data for the material
parameters. Rather, all parameters and their pertubations are selected arbitrarily with the sole purpose of illustrating the
material behavior of the proposed system. We assume a two-dimensional sample of photo-sensitive material under the
illumination of a polarized, monochromatic light source with variable intensity as depicted in the sketch in Figure 2. Due
to the symmetry of the geometry and the boundary conditions, this example can be reduced to a two-dimensional cross
section in which the X-direction is identical to the thickness direction of the material. The sample has the dimensions
1 mm in the X-direction by 10 mm in the Y-direction with unit thickness in the Z-direction. We discretize the geometry
using 160 rectangular elements with quadratic shape functions for all solution fields resulting in a system of 5067 DOFs. As
boundary conditions, we assume that the displacement of the sample is fixed on the bottom edge. In this work we describe
the effect of polarized light that penetrates a material, by an electric field that is oriented perpendicular to the direction
of the light wave. In the following examples we assume that the light source is oriented in thickness-direction with an
out-of-plane polarization which results in the orientation of the electronic order parameter in Y-direction. However, due
to the reduction to two dimensions the electric field (which is physically oriented in the out-of-plane direction) has to
be represented by an electric potential gradient in Y-direction. To this end, 𝜙 on the bottom and top edge of the sample
is set to a specific value. The induced electric field is linearly scaled by the distance to the vertical edge resulting in a
linearly decreasing electric field inside the material. By this, the electric field is only present to a specified depth inside
the material, which we propose as a simple method of representing the penetration depth of the light into the material.
We will impose the electric potential, increasing it linearly in 20 load steps to a maximum value of 2 V. It should be noted
that this way, the electric field representing the incident light deforms with the material which is a clear simplification
of the actual experiment and results in physically problematic configurations especially when the deformation becomes
extraordinarily large. However, in the scope of that has the aim of presenting an initial implementation of the model, this
concept is adopted. The set of reference material parameters are summarized in Table 1.

Additionally, we assume that the material is nearly incompressible with a Poisson’s ratio of 0.49 and that, initially, the
light penetrates the sample uniformly to a depth of 0.5 mm which leads to a deformation as depicted in Figure 2. The right
plot in Figure 2 shows that the electronic order parameter is nonzero where the electric field is present, that is, within
the depth of the material where an electric field is induced. Consequently, the sample deforms as the material contracts
in direction of the incident light and simultaneously expands in lateral direction. As this expansion is constrained by the
part of the material that is not effected by the light, the sample performs a bending motion.

Next, we will use this simple example for a parametric study on the role of the individual material parameters pre-
sented in Table 1 and the penetration depth of the light. We define the penetration depth as the distance from the edge of
the material sample to the level at which the electric field vanishes. Initially, the penetration depth will be changed from

T A B L E 1 Summary of the reference material parameters of the modeling approach for a photo-sensitive polymeric material.

Photomechanical material parameters

𝝁 d1 d2 w0

0.05 −1 −1 −1

Note: Elastic shear modulus 𝜇 in N/mm2, photomechanical coupling parameters d1 and d2 in N/mm4, effective charge density bound to the electronic order
parameter in C/mm3.
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MEHNERT et al. 1609

F I G U R E 2 (Left) Sketch of the material sample under illumination by a light source with variable intensity. (Right) Deformation of the
finite element model at an applied electric potential difference of 10 mV. The color mapping and the arrows refer to the magnitude and the
orientation of the homogenized electronic order parameter.
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F I G U R E 3 (Left) Displacement of the center point of the top edge of the material sample in X-direction (dotted lines), Y-direction
(dashed lines), and magnitude (solid lines) for various penetration depths. (Right) Deformed material samples. The coloring refers to the
colors selected in the left plot.

0.5 mm to different values between 0.25 and 1 mm. Additionally we investigate the case that the electric field is constant
throughout the sample which is equivalent to a fully transparent material. The deformation is characterized by the dis-
placement of the center point of the top edge of the sample presented in Figure 3. The plot shows that the incident light
can lead to different deformations depending on the penetration depth. If the material is completely transparent, that is,
the light is penetrating the entire material with a constant electric field, the material deforms only in Y-direction. Thus,
no bending takes place but only a stretch perpendicular to the direction of the non-mechanical field. In the other cases
the geometry performs a bending motion in the positive X-direction. The displacement in X-direction, Y-direction and
the displacement magnitude of this bending depends on the penetration depth of the incident light, whereby it takes its
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F I G U R E 4 (Left) Displacement of the center point of the top edge of the material sample in X-direction (dotted lines), Y-direction
(dashed lines), and magnitude (solid lines) for various shear moduli. (Right) Deformed material samples. The coloring refers to the colors
selected in the left plot.

maximum value when the light penetrates the material to a depth of 1.0 mm. It should be noted that the relative increase
in deformation is much larger between the penetration depth 0.5 and 0.75 mm compared to the increase between 0.25
and 0.5 mm. These observations suggest that by modifying the penetration depth, that is, the opacity of the material, the
deformation can be significantly influenced.

Next, we assume a penetration depth of 0.5 mm and investigate the influence of the purely mechanical mate-
rial parameter, that is, the elastic shear modulus 𝜇. The resulting deformation for the values 0.025, 0.05, 0.1, and 0.5
N/mm2 is depicted in Figure 4. The shear modulus strongly influences the response of the material as both plots in
Figure 4 clearly show. Departing from the reference value of 0.05 N/mm2 we can see that by reducing the shear mod-
ulus to 0.025 N/mm2, the bending increases significantly. On the other hand, an increase of the shear modulus by a
factor 2 or even 10 results in a drastic reduction of the deformation which is to be expected. From this we can deduce
that by reducing the stiffness of the underlying polymer a significant increase of the resulting deformation can be
achieved.

Now, the role of the electronic parameter d1 is analyzed. While the remaining parameters 𝜇, d2, and w0 are unchanged,
the parameter d1 will be set to −5, −1, −0.5 N/mm4 (which is equal to the reference value), 0 and 0.1 N/mm4. Figure 5
shows the resulting deformation. Departing from the reference value of d1 we can see that when the parameter is
increased, the deformation increases and that even at a value of d1 = 0 N/mm4 the material deforms. This shows, that the
resulting deformation does not depend solely on the expression including d1 but on a combination of the terms containing
the electronic order parameter.

Next, the influence of the coupling parameter d2 is investigated. We assume that the other parameters remain
as in the initial investigation while d2 can take the values −5, −2, −1, 0, and 0.5 N/mm4. The resulting deforma-
tion of the material sample is presented in Figure 6. The effect of the photo-mechanical coupling parameter on
the resulting deformation is investigated departing from the case that d2 is equal to zero, thus the energy contri-
bution coupling the mechanical and the electronic field in Equation (13) vanishes. In this case the deformation is
a result of the energy contribution in Equation (11), that is, the coupling between the electronic order parameter
and the electric field via the cofactor of the deformation gradient and the Maxwell type energy. When the value of
d2 is increased to a positive value, the resulting deformation decreases up to the point where the material deforms
in the opposite direction. On the other hand, if d2 takes a negative value, the deformation is decreased converg-
ing to the point where the deformation vanishes completely. Thus, this specific part of the energy function can be
selected to manipulate the deformation based on a ground state established by the remaining material parameters 𝜇,
w0, and d1.
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F I G U R E 5 (Left) Displacement of the center point of the top edge of the material sample in X-direction (dotted lines), Y-direction
(dashed lines), and magnitude (solid lines) for various values of the electronic parameter d1. (Right) Deformed material samples. The
coloring refers to the colors selected in the left plot.
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F I G U R E 6 (Left) Displacement of the center point of the top edge of the material sample in X-direction (dotted lines), Y-direction
(dashed lines), and magnitude (solid lines) for various values of the photo-mechanical coupling parameter d2. (Right) Deformed material
samples. The coloring refers to the colors selected in the left plot.

Finally, the effect of the electro-electronic coupling parameter w0 is investigated. As before, the other material param-
eter are kept at the value of the initial example, whereas w0 is set to −0.5, −1, −2, or −3 C/mm3. The deformation of the
material sample is shown in the plots in Figure 7. Compared to the deformation of the material sample with the refer-
ence parameters it can be seen that an increase of the magnitude of w0 results in a larger deformation whereas a decrease
leads to a smaller displacement, due to the respective change in the value of the electronic order parameter. Interestingly,
a simple change of the sign of only the parameter w0 does not result in a different deformation. However, if both the signs
of w0 and d1 are changed, the bending direction is reversed.
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F I G U R E 7 (Left) Displacement of the center point of the top edge of the material sample in X-direction (dotted lines), Y-direction
(dashed lines), and magnitude (solid lines) for various values of the electro-electronic coupling parameter w0. (Right) Deformed material
samples. The coloring refers to the colors selected in the left plot.

6.2 Simulation of a nocturnal flower blossom

So far, the numerical calculations have been constrained to the two-dimensional case. In order to show the capabilities
of our model in three-dimensional applications we will use the insights gathered in the preceding parameter study to
simulate the blossom of a nocturnal flower, inspired by the work of Wani et al. that presented this visually appealing
example in Reference 38. In contrast to regular flowers that open their blossom with an increase in the light intensity,
the blossom of a nocturnal flower opens when the incident light reduces. While the underlying biological principles
responsible for this movement in nature are different from the molecular switching taking place in photo-sensitive
polymers, we can still use the presented model to replicate this motion to illustrate the capabilities of the numerical
model.

In order to simulate the opening of a nocturnal flower we model one half of a flower petal depicted in Figure 8. The
thickness direction of the petal is oriented in Z-direction with the back surface of the petal at Z = 0, the cut surface at
X = 0 has a normal oriented in (negative) X-direction and the the bottom surface at Y = 0 has a normal that is equal to
the (negative) Y-direction. While the bottom and left surface of the model are straight, the surface from the tip of the petal
to the bottom is captured by a curved spline. The distance from the bottom edge to the tip is 10 mm and the maximum
distance from the left edge to the curved edge is 7.16 mm and, initially, as a reference we assume a thickness of the petal of
0.1 mm. The model is meshed using 140 hexahedral elements with quadratic shape functions for all solution fields which
results in 10,815 DOFs*. In order to simulate the effect of the incident light an electric field is induced that is constant
in a plane perpendicular to the Z-direction and that linearly decreases through the thickness of the material in order to
simulate the decrease in light intensity. Therefore, we impose an electric potential along the curved side of the petal and
either on the straight bottom surface or the cut surface. Thereby, an electric field is induced either in Y-direction or in
X-direction inside the material which corresponds to the scenario that light with different polarization directions is used
during the experiment. As shown for example in Reference 39, such a rotation of the polarization direction can lead to
significant changes in the resulting deformation of the material. The potential is linearly increased over 100 load steps. As
mechanical boundary conditions the displacement of the bottom surface and the cut surface of the petal are constrained in
normal direction. Moreover, the displacement of the cell vertex located at X = 0,Y = 0, and Z = 0 is fixed in all directions.
In order to simulate the opening motion of the flower, in the following, the induced electric field is oriented in X-direction
by imposing the electric potential on the curved surface and the cut surface. A short clip of the flower model opening
can be found in the supplemental material and Figure 9 illustrates the orientation of the electronic order parameter as
arrows during the deformation of the flower petal. These indicate that the deformation exactly follows the orientation of
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MEHNERT et al. 1613

F I G U R E 8 (Left) Model of one half of the flower petal meshed with 140 hexahedral elements. (Middle) Closed flower consisting of
eight full flower petals arranged in form of a blossom at an imposed electric potential of 2 V. (Right) Open flower blossom at an imposed
electric potential of 0.2 V. The color map refers to the displacement magnitude.

F I G U R E 9 Deformed flower petal due to an electric field in X-direction at different electric field intensities. (Left) Resulting
deformation at 0.14 V. (Middle) Deformation at 0.72 V. (Right) Deformation at 1.44 V. The color map refers to the displacement magnitude.
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F I G U R E 10 (Left) Displacement of the tip of the flower petal in Y-direction (dotted lines), Z-direction (dashed lines), and magnitude
(solid lines) for various values of the material thickness. (Right) Deformed petals. The coloring refers to the deformation.
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1614 MEHNERT et al.

F I G U R E 11 Deformed flower petal due to an electric field in X-direction at different electric field intensities. (Left) Resulting
deformation at 0.14 V. (Middle) Deformation at 0.72 V. (Right) Deformation at 1.44 V. The color map refers to the displacement magnitude.

the electronic order parameter. Now, the influence of the thickness of the flower petal is investigated. For this, the initial
thickness of 0.1 mm is increased to 0.2, 0.5, and 1 mm. We assume that in all cases the light can penetrate the material to
50% of the thickness. The resulting deformation is presented in the plots in Figure 10.

The plot shows that the resulting deformation is significantly larger for the thinnest flower petal. This deformation
can be further increased up to the point that the tip of the flower petal is on the same height as the bottom edge showing
the robustness of the implementation.

Finally, the versatility of the system is shown by changing the orientation of the induced electric field. For this, the
electric potential is now imposed on the curved surface and the bottom surface of the petal thus inducing an electric field
in Y-direction. As before, we assume that the material is penetrated to a depth of 50% and that the light intensity decreases
linearly. The resulting deformation of a single flower petal is depicted in Figure 11. The reorientation of the electric field
leads to a change in the bulging direction of the flower petal. This potentially enables us to simulate the influence of the
polarization direction of the illuminating light source.

7 CONCLUSION

Photo-sensitive polymers are promising candidates for revolutionary light-driven devices and applications in engineer-
ing. Thus it is an important and challenging task to understand the behavior of these smart materials. Even though it
is crucial to perform intensified experimental work to gain a deeper knowledge of the material properties, in this arti-
cle we employed the finite element method in order to computationally analyze the non-linear coupling behavior that
photo-sensitive polymers exhibit under stimulation by light. Numerical examples are presented that illustrate the role of
the individual material parameters. The variational formulation, the finite element implementation and the numerical
examples presented in this article are intended as initial first steps towards a more refined and thus realistic modeling of
photo-sensitive polymers.
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ENDNOTE
∗The reader should note that in the plots of the full blossom in Figure 8 the flower petals are depicted with an apparent finer mesh. This is due
to the post processing performed in Paraview as a result of the quadratic shape functions.
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APPENDIX A.

A.1 Variational formulation
Let us assume a conservative system that is described by the equations presented in (1a)–(1e) without the influence of
further effects such as temperature or magnetic fields. Thus, we assume the existence of a free energy functionΨ(F,E, F, y)
that depends on the current state of deformation, the electric field and the electronic order parameter and its gradient
such that the mechanical Piola stress P, the electronic Piola-stress P, the electronic source density g0, and the electric
polarization P may be expressed as

P = 𝜕FΨ and P = 𝜕FΨ and g0 = 𝜕yΨ and P = −𝜕EΨ. (A1)

Based on this free energy function, we will show that system (1a)–(1e) is the stationary condition of the following
functional

W ∶=
∫
0

Ω(F,E, F, y)dV −
∫
0

b0 ⋅ 𝝋dV −
∫
𝜕0

t0 ⋅ 𝝋dA

−
∫
0

b0 ⋅ ydV −
∫
𝜕0

t0 ⋅ ydA +
∫
0

qf
0𝜙dV +

∫
𝜕0

q̂f
0𝜙dA, (A2)

where the free energy function Ψ is augmented by the contribution of the energy stored in the electric field itself as

Ω(F,E, F, y) = Ψ(F,E, F, y) − 1
2
𝜀0JC−1 ∶ [E⊗ E]. (A3)

This gives the additional constitutive equation of the electric displacement D as

D = −𝜕EΩ. (A4)

Using the constitutive equations, the variation of the functional in (A2) may be expressed in the form

𝛿W =
∫
0

𝜕Ω(F,E, F, y)
𝜕F

∶ 𝛿FdV +
∫
0

𝜕Ω(F,E, F, y)
𝜕E

⋅ 𝛿EdV

+
∫
0

𝜕Ω(F,E, F, y)
𝜕F

∶ 𝛿FdV +
∫
0

𝜕Ω(F,E, F, y)
𝜕y

⋅ 𝛿ydV

−
∫
0

b0 ⋅ 𝛿𝝋dV −
∫
𝜕0

t0 ⋅ 𝛿𝝋dA −
∫
0

b0 ⋅ 𝛿ydV

−
∫
𝜕0

t0 ⋅ 𝛿ydA +
∫
0

qf
0𝛿𝜙dV +

∫
𝜕0

q̂f
0𝛿𝜙dA, (A5)

which ultimately leads to the expression

𝛿W =
∫
0

P ∶ ∇X𝛿𝝋dV +
∫
0

D ⋅ ∇X𝛿𝜙dV +
∫
0

P ∶ ∇X𝛿ydV

+
∫
0

g0 ⋅ 𝛿ydV −
∫
0

b0 ⋅ 𝛿𝝋dV −
∫
𝜕0

t0 ⋅ 𝛿𝝋dA

−
∫
0

b0 ⋅ 𝛿ydV −
∫
𝜕0

t0 ⋅ 𝛿ydA +
∫
0

qf
0𝛿𝜙dV +

∫
𝜕0

q̂f
0𝛿𝜙dA. (A6)

The first three integrals on the right-hand side are transformed with the help of Gauss’ theorem and integration by
parts, resulting in

𝛿W = −
∫
0

[DivP + b0] ⋅ 𝛿𝝋 dV −
∫
0

[DivD − qf
0] 𝛿𝜙 dV

 10970207, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7177 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MEHNERT et al. 1617

−
∫
0

[DivP + b0 − g0] ⋅ 𝛿y dV +
∫
𝜕0

[N ⋅ P − t0] ⋅ 𝛿𝝋dA

+
∫
𝜕0

[
N ⋅ D + q̂f

0

]
𝛿𝜙dA +

∫
𝜕0

[N ⋅ P − t0] ⋅ 𝛿ydA. (A7)

It should be noted that the contributions b0, b0, and g0 are assumed to be known apriori and independent of the DOFs.

A.2 Discretization and linearization
The terms in Equations (A2) describing the photo-electro-mechanical response of the non-linear system can be solved
using numerical methods, such as the finite-element method, which, in the context of the Newton–Raphson solution
technique, requires the linearization of the respective internal contributions, from which a number of coupled terms
result. Assuming given and constant b0, t0 as well as b0, t0 and qf

0, q̂f
0, the first four terms in Equation (A6) abbreviated as

𝛿FW , 𝛿EW , 𝛿FW , and 𝛿yW , contribute to the linearization as

Δ𝛿FW =
∫
0

∇X𝛿𝝋 ∶
𝜕P
𝜕F

∶ ∇XΔ𝝋 − ∇X𝛿𝝋 ∶
𝜕P
𝜕E

⋅ ∇XΔ𝜙 dV

+
∫
0

∇X𝛿𝝋 ∶
𝜕P
𝜕F

∶ ∇XΔy + ∇X𝛿𝝋 ∶
𝜕P
𝜕y

⋅ Δy dV ,

Δ𝛿EW =
∫
0

∇X𝛿𝜙 ⋅
𝜕D

𝜕F
∶ ∇XΔ𝝋 − ∇X𝛿𝜙 ⋅

𝜕D

𝜕E
⋅ ∇XΔ𝜙 dV

+
∫
0

∇X𝛿𝜙 ⋅
𝜕D

𝜕F
∶ ∇XΔy + ∇X𝛿𝜙 ⋅

𝜕D

𝜕y
⋅ Δy dV ,

Δ𝛿FW =
∫
0

∇X𝛿y ∶ 𝜕P
𝜕F

∶ ∇XΔ𝝋 − ∇X𝛿y ∶ 𝜕P
𝜕E

⋅ ∇XΔ𝜙 dV

+
∫
0

∇X𝛿y ∶ 𝜕P
𝜕F

∶ ∇XΔy + ∇X𝛿y ∶ 𝜕P
𝜕y

⋅ Δy dV ,

Δ𝛿yW =
∫
0

𝛿y ⋅
𝜕g0

𝜕F
∶ ∇XΔ𝝋 − 𝛿y ⋅

𝜕g0

𝜕E
⋅ ∇XΔ𝜙 dV

+
∫
0

𝛿y ⋅
𝜕g0

𝜕F
∶ ∇XΔy + 𝛿y ⋅

𝜕g0

𝜕y
⋅ Δy dV . (A8)

This expression is then discretized using the terms presented in Equations (6)–(8).

A.3 Second derivatives of the energy function
For the linearization of the coupled system given in Equations (14) and (16) a number of partial derivatives have to be
calculated. For the purely mechanical terms we find

𝜕P
𝜕F

= 𝜕
2Ψ

𝜕F𝜕F
= 𝜕

2E(F,E)
𝜕F𝜕F

+ 𝜕
2C(F,E, y)
𝜕F𝜕F

+ 𝜕
2W(F, y)
𝜕F𝜕F

. (A9)

In index notation the individual terms read

𝜕
2E(F,E)
𝜕Fmn𝜕Fpq

= −0.5𝜀0JEiEj

[
𝜕C−1

ij

𝜕Fpq
F−T

mn − C−1
ij F−1

np F−1
qm

]

+ 𝜀0JEiEj

[
𝜕C−1

in

𝜕Fpq
C−1

jk Fmk + C−1
in

𝜕C−1
jk

𝜕Fpq
Fmk + C−1

in C−1
jq 𝛿mp

]

− 0.5𝜀0JEiEjC−1
ij F−T

mnF−T
pq + 𝜀0JEiEjC−1

in C−1
jk FmkF−T

pq

𝜕
2C(F,E, y)
𝜕Fmn𝜕Fpq

= w0JF−1
nm ⊗

[
[yiF−1

ji [𝜀mnjEmln]]F−1
qp − F−1

ip [yj[𝜀mniEmln]]F−1
jq

]
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1618 MEHNERT et al.

+ w0J
[[
𝜕F−1

ji

𝜕Fmn
[yi[𝜀mnjEmln]]

]
F−1

pq +
[

F−1
ji [yi[𝜀mnjEmln]]

]
𝜕F−1

nm

𝜕Fpq

−
𝜕F−1

im

𝜕Fnp
[yj[𝜀mniEmln]]F−1

qj

]
− F−1

im

[
yj[𝜀mnjEmln]]

𝜕F−1
nj

𝜕Fpq

]

𝜕
2W(F, y)
𝜕Fmn𝜕Fpq

= 𝜇𝛿mp𝛿nq + [𝜇 − 𝜆 log(J)]F−1
np F−1

qm + 𝜆F−1
nmF−1

qp + 2d2𝛿mpEqEn. (A10)

In order to express the above in symbolic notation, we introduce the operation A
24
T , a transposition that switches the

position of the second and the fourth index of a fourth-order tensor A. Furthermore, we introduce the operation A
∗
T

in order to transform the term C−1
ik C−1

jk Fmn from Equation (A10) into C−1
in C−1

jk Fmk. This results in the following symbolic
presentation

𝜕
2E(F,E)
𝜕F𝜕F

= −0.5𝜀0J[E⊗ E] ∶

[
𝜕C−1

𝜕F
⊗ F−T − C−1

⊗
[
F−T

⊗ F−T]
24
T
]

+ 𝜀0J[E⊗ E] ∶

⎡
⎢
⎢
⎢
⎢⎣

⎡
⎢
⎢⎣

[
𝜕C−1

𝜕F
⊗ C−1

]24
T

∶ I ⊗ F
⎤
⎥
⎥⎦

∗
T

+
⎡
⎢
⎢⎣

[
C−1

⊗
𝜕C−1

𝜕F

]24
T

∶ I ⊗ F
⎤
⎥
⎥⎦

∗
T

+

[
[
C−1

⊗ C−1]
24
T ∶ I ⊗ 𝜕F

𝜕F

] ∗
T⎤
⎥
⎥
⎥⎦
− 0.5𝜀0J[[E⊗ E] ∶ C−1]F−T

⊗ F−T

+ 𝜀0J[E⊗ E] ∶
[
[C−1

⊗ C−1]
24
T
⊗ F

] ∗
T

⊗ F−T

𝜕
2C(F,E, y)
𝜕F𝜕F

= +w0JF−T
⊗

[
[y ⋅ F−T ⋅ [E × l]]F−T − F−T ⋅ [y⊗ [E × l]]T ⋅ F−T]

+ w0J
[[
𝜕F−T

𝜕F
∶ [y⊗ [E × l]]

]
⊗ F−T +

[
F−T ∶ [y⊗ [E × l]]

] 𝜕F−T

𝜕F

− 𝜕F−T

𝜕F
⋅ [y⊗ [E × l]]T ⋅ F−T

]
− F−T ⋅ [y⊗ [E × l]]T ⋅ 𝜕F−T

𝜕F

]

𝜕
2W(F, y)
𝜕F𝜕F

= 𝜇1 − [𝜇 − 𝜆 log(J)]𝜕F−T

𝜕F
+ 𝜆F−T

⊗ F−T + 2d2[E⊗ E]. (A11)

In the above equation we have introduced the fourth-order identity tensor 1=̂𝛿mp𝛿nq and the derivative of the inverted
and transposed deformation gradient with respect to itself as 𝜕F−T

𝜕F
=̂ − F−1

np F−1
qm.

Next, the purely electric terms can be calculated as the second derivative of the energy with respect to the electric
field, that is,

𝜕D

𝜕E
= − 𝜕

2Ψ
𝜕E𝜕E

= −𝜕
2E(F,E)
𝜕E𝜕E

− 𝜕
2C(F,E, y)
𝜕E𝜕E

− 𝜕
2W(F, y)
𝜕E𝜕E

. (A12)

This results in a second order tensor that reads

𝜕
2Ψ

𝜕Em𝜕En
= 𝜕

2E(F,E)
𝜕Em𝜕En

+ 𝜕
2C(F,E, y)
𝜕Em𝜕En

+ 𝜕
2W(F, y)
𝜕Em𝜕En

,

= −𝜀0C−1
mn,

𝜕
2Ψ

𝜕E𝜕E
= −𝜀0C−1

. (A13)
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MEHNERT et al. 1619

The purely electronic terms can be calculated as the second derivative of the energy with respect to the electronic
order parameter y as

𝜕g0

𝜕y
= 𝜕

2Ψ
𝜕y𝜕y

= 𝜕
2E(F,E)
𝜕y𝜕y

+ 𝜕
2C(F,E, y)
𝜕y𝜕y

+ 𝜕
2W(F, y)
𝜕y𝜕y

, (A14)

which results in

𝜕
2Ψ

𝜕ym𝜕yn
= 𝜕

2E(F,E)
𝜕ym𝜕yn

+ 𝜕
2C(F,E, y)
𝜕ym𝜕yn

+ 𝜕
2W(F, y)
𝜕ym𝜕yn

,

= 2d2bmn − 2w0𝛿mn,

𝜕
2Ψ

𝜕y𝜕y
= 2d2b − 2w0I. (A15)

Finally, the mixed derivatives have to be calculated. The mechano-electric terms defined as

𝜕
2Ψ

𝜕F𝜕E
= 𝜕P
𝜕E

= 𝜕D

𝜕F
= 𝜕

2E(F,E)
𝜕F𝜕E

+ 𝜕
2C(F,E, y)
𝜕F𝜕E

+ 𝜕
2W(F, y)
𝜕F𝜕E

, (A16)

result in the expressions

𝜕
2Ψ

𝜕Fmn𝜕Ep
= 𝜕

2E(F,E)
𝜕Fmn𝜕Ep

+ 𝜕
2C(F,E, y)
𝜕Fmn𝜕Ep

+ 𝜕
2W(F, y)
𝜕Fmn𝜕Ep

,

= −𝜀0
𝜕C−1

pq

𝜕Fmn
Eq + w0J

[
[yrF−1

rk 𝜀mjklj]F−1
pn − F−1

mk[yk𝜀rjnljF−1
pr ]

]
,

𝜕
2Ψ

𝜕F𝜕E
= −𝜀0

𝜕C−1

𝜕F
⋅ E + Jw0

[
[y ⋅ F−1 ⋅ [I × l]]⊗ F−T − F−T ⋅ [y⊗ [I × l]] ⋅ F−T]

. (A17)

Analogously, the mechano-electronic terms defined as

𝜕
2Ψ

𝜕F𝜕y
= 𝜕P
𝜕y

=
𝜕g0

𝜕F
= 𝜕

2E(F,E)
𝜕F𝜕y

+ 𝜕
2C(F,E, y)
𝜕F𝜕y

+ 𝜕
2W(F, y)
𝜕F𝜕y

, (A18)

result in the expressions

𝜕
2Ψ

𝜕Fmn𝜕yp
= 𝜕

2E(F,E)
𝜕Fmn𝜕yp

+ 𝜕
2C(F,E, y)
𝜕Fmn𝜕yp

+ 𝜕
2W(F, y)
𝜕Fmn𝜕yp

,

= −w0J

[
F−1

nmF−1
qp [𝜀mnqEmln] +

𝜕F−1
qp

𝜕Fmn
[𝜀mnqEmln]

]
+ 2d2Fmi

[
yi𝛿pq + 𝛿ipyq

]
,

𝜕
2Ψ

𝜕F𝜕y
= −w0J

[
F−T

⊗ F−T ⋅ [E × l] + 𝜕F−T

𝜕F
⋅ [E × l]

]

+ 2d2F ⋅ [y⊗ I + I ⊗ y] . (A19)

Finally, we can calculate the mixed electric-electronic terms as

𝜕
2Ψ

𝜕E𝜕y
= 𝜕D

𝜕y
=
𝜕g0

𝜕E
= 𝜕

2E(F,E)
𝜕E𝜕y

+ 𝜕
2C(F,E, y)
𝜕E𝜕y

+ 𝜕
2W(F, y)
𝜕E𝜕y

= w0JF−T ⋅ [I × l], (A20)

which in index notation reads

𝜕
2Ψ

𝜕Em𝜕yn
= 𝜕

2E(F,E)
𝜕Em𝜕yn

+ 𝜕
2C(F,E, y)
𝜕Em𝜕yn

+ 𝜕
2W(F, y)
𝜕Em𝜕yn

,

= w0JF−1
nk [𝜀mjklj]. (A21)
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