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ADAPTIVE DEEP LEARNING FOR HIGH-DIMENSIONAL1

HAMILTON-JACOBI-BELLMAN EQUATIONS⇤2

TENAVI NAKAMURA-ZIMMERER† , QI GONG† , AND WEI KANG‡3

Abstract. Computing optimal feedback controls for nonlinear systems generally requires solving4
Hamilton-Jacobi-Bellman (HJB) equations, which are notoriously di�cult when the state dimension5
is large. Existing strategies for high-dimensional problems often rely on specific, restrictive problem6
structures, or are valid only locally around some nominal trajectory. In this paper, we propose a data-7
driven method to approximate semi-global solutions to HJB equations for general high-dimensional8
nonlinear systems and compute candidate optimal feedback controls in real-time. To accomplish this,9
we model solutions to HJB equations with neural networks (NNs) trained on data generated without10
discretizing the state space. Training is made more e↵ective and data-e�cient by leveraging the11
known physics of the problem and using the partially-trained NN to aid in adaptive data generation.12
We demonstrate the e↵ectiveness of our method by learning solutions to HJB equations corresponding13
to the attitude control of a six-dimensional nonlinear rigid body, and nonlinear systems of dimension14
up to 30 arising from the stabilization of a Burgers’-type partial di↵erential equation. The trained15
NNs are then used for real-time feedback control of these systems.16

Key words. Hamilton-Jacobi-Bellman Equations, Optimal Feedback Control, Nonlinear Dy-17
namical Systems, Deep Learning, Neural Networks, Optimization18

AMS subject classifications. 49K15, 49L20, 49N35, 68T05, 90C30, 93C15, 93C2019

1. Introduction. For the optimal control of nonlinear dynamical systems, it is20

well-known that open-loop controls are not robust to model uncertainty or distur-21

bances. For slowly evolving processes, it is possible to use model predictive control by22

recomputing the open-loop optimal solutions for relatively short time horizons in the23

future. However, for most applications one typically desires a feedback control law,24

as feedback controls are inherently more robust to disturbances. In principle, opti-25

mal feedback controllers can synthesized by solving a (discretized) Hamilton-Jacobi-26

Bellman (HJB) equation, a partial di↵erential equation (PDE) in n spatial dimensions27

plus time. The size of the discretized problem increases exponentially with n, making28

direct solution intractable for even moderately large problems. This is the so-called29

“curse of dimensionality.”30

For this reason, there is an extensive literature on methods of finding approximate31

solutions for HJB equations. Some key examples include series expansions [3, 28, 23],32

level set methods [32], patchy dynamic programming [9, 31], semi-Lagrangian methods33

[5, 17], method of characteristics and Hopf formula-based algorithms [15, 11, 38], and34

polynomial approximation [22]. These existing methods su↵er one or more of the35

following drawbacks: the problem’s dimension is limited; the accuracy of the solution36

is hard to verify for general systems; the solution may be valid only in a small region;37

or the system model must have certain special algebraic structure.38

In [24, 25], semi-global solutions to HJB equations are computed by combining39

the method of characteristics with sparse state space discretization. In this approach,40
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2 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

a two-point boundary value problem (BVP) is solved at each point in a sparse grid.41

These BVPs can be solved independently, making the algorithm causality-free. This42

property is attractive because the computation does not depend on a grid, and hence43

they can be applied to high-dimensional problems. The Hopf formula methods [15, 11,44

38] also have this property, though it is achieved in a di↵erent way and under certain45

convexity/concavity assumptions. Causality-free methods are usually too slow for46

online computation, but they are perfectly parallelizable so can be used to generate47

large data sets o✏ine. Such data sets can then be used to construct faster solutions48

such as sparse grid interpolants [24, 25] or, as in this paper, neural networks.49

Using neural networks (NNs) as a basis for solving HJB equations is not by50

itself a new idea, and deep learning approaches have led to promising results; see51

for instance [2, 10, 35, 21, 34, 20]. To the best of our knowledge, state-of-the-art52

NN-based techniques generally rely on either minimizing the residual of the PDE and53

(artificial) boundary conditions at randomly sampled collocation points [2, 10, 35, 34];54

or, due to computational limitations, approximating the control and/or HJB solution55

and its gradient in a small neighborhood of a nominal trajectory [21, 20]. In [13, 14],56

a specialized NN architecture is proposed to solve some classes of Hamilton-Jacobi57

equations, but this method has yet to be generalized to state-dependent HJB equations58

arising in optimal control. Deep learning techniques have also been proposed for59

solving high-dimensional stochastic optimal control problems (see e.g. [18, 19, 4]).60

In this paper, we develop a computational method for solving high-dimensional61

HJB equations and synthesizing candidate optimal feedback controllers. Our approach62

is data-driven and consists of three main steps. First, we generate a small set of open-63

loop optimal control solutions using a causality-free algorithm based on Pontryagin’s64

Minimum Principle (PMP). In the second step, we use the data set to train a NN65

to approximate the solution to the HJB equation, called the value function. During66

training, we supply information about the value function gradient, which encourages67

the NN to learn the shape of the value function rather than just fitting point data.68

We also estimate the number of samples needed to obtain a good model. Additional69

samples are chosen in regions where the value function is di�cult to learn, and are70

obtained quickly with the aid of the NN. In this sense our method involves adaptive71

sampling. Lastly, the accuracy of the NN is verified on independent data generated72

using the same causality free algorithm from the first step. Unlike other NN-based73

methods for deterministic HJB equations, our approach does not require computing74

expensive PDE residuals and the solution is valid over large spatial domains.75

As an illustrative example, the method is applied to design an attitude controller76

of a rigid-body satellite equipped with momentum wheels. This is a highly nonlinear77

problem with n = 6 spatial dimensions and m = 3 control inputs. With the proposed78

method, we obtain a model of the value function with accuracy comparable to that79

obtained in [25], but require far fewer sample trajectories to do so. Scalability of80

the method is tested on problems of dimension n = 10, 20, and 30 arising from pseu-81

dospectral discretization of a Burgers’-type PDE. We show that the method is capable82

of handling these high-dimensional problems without simplifying the dynamics.83

Through these examples, we demonstrate several advantages and potential capa-84

bilities of the proposed framework. These include solving HJB equations over semi-85

global domains with empirically validated levels of accuracy, progressive generation86

of rich data sets, and computationally e�cient nonlinear feedback control for real-87

time applications. Solution of high-dimensional problems is enabled by e�cient and88

adaptive causality-free data generation, physics-informed learning, and the inherent89

capacity of NNs for dealing with high-dimensional data.90

This manuscript is for review purposes only.



DEEP LEARNING FOR HJB EQUATIONS 3

1.1. Abbreviations and notation. Here we present a brief list of some of the91

abbreviations, terminology, and notation used in this paper.92

OCP . . . optimal control problem
HJB . . . Hamilton-Jacobi-Bellman equation
PMP . . . Pontryagin’s Minimum Principle
NN . . . neural network
RMAE . . . relative mean absolute error
RML

2 . . . relative mean L
2 error

D . . . data set
µ . . . gradient regularization weight
C . . . adaptive sampling convergence parameter

93

2. A causality-free method for HJB equations. We consider fixed final94

time optimal control problems (OCP) of the form95

(2.1)

8
>><

>>:

minimize
u(·)2U

J [u(·)] = F (x(tf )) +

Z tf

0
L(t,x,u)dt,

subject to ẋ(t) = f(t,x,u),
x(0) = x0.

96

Here x(t) : [0, tf ] ! X ✓ Rn is the state, u(t,x) : [0, tf ]⇥X ! U ✓ Rm is the control,97

and f(t,x,u) : [0, tf ]⇥ X⇥ U ! Rn is a Lipschitz continuous vector field. J [u(·)] is98

the cost functional which is composed of F (x(tf )) : X ! R, the terminal cost, and99

L(t,x,u) : [0, tf ]⇥X⇥U ! R, the running cost. We assume that the cost functional100

is convex in x and u. In this paper we consider the case where the final time tf < 1101

is fixed.102

For a given initial condition x(0) = x0, many numerical methods exist to compute103

the optimal open-loop solution,104

(2.2) u = u⇤(t;x0).105

The open-loop control (2.2) which solves (2.1) is valid for all t 2 [0, tf ], but only106

for the fixed initial condition x(0) = x0. Due to various sources of disturbance and107

real-time application requirements, for practical implementation one typically desires108

an optimal control in closed-loop feedback form,109

(2.3) u = u⇤(t,x),110

which can be evaluated online given any t 2 [0, tf ] and a measurement of x 2 X.111

To compute the optimal feedback control, we follow the standard procedure in112

dynamic programming (see e.g. [27]) and define the value function V (t,x) : [0, tf ] ⇥113

X ! R as the optimal cost-to-go of (2.1) starting at (t,x). That is,114

(2.4) V (t,x) := J [u⇤(·)] =

8
>><

>>:

inf
u(·)2U

F (y(tf )) +

Z tf

t
L(⌧,y,u)d⌧,

s.t. ẏ(⌧) = f(⌧,y,u),
y(t) = x.

115

It can be shown that the value function is the unique viscosity solution [12] of the116

Hamilton-Jacobi-Bellman (HJB) PDE,117

(2.5)

(
�Vt(t,x)�min

u2U

�
L(t,x,u) + [Vx(t,x)]

Tf(t,x,u)
 
= 0,

V (tf ,x) = F (x),
118
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4 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

where we denote Vt := @V/@t and Vx := [@V/@x]T . Note that if the value function is119

C
2, then it is the unique classical solution of (2.5).120

To compute the control given the value function V (·), we start by defining the121

Hamiltonian122

(2.6) H(t,x,�,u) := L(t,x,u) + �Tf(t,x,u),123

where �(t) : [0, tf ] ! Rn is the costate. The optimal control satisfies the Hamiltonian124

minimization condition,125

(2.7) u⇤(t) = u⇤(t,x;�) = arg min
u2U

H(t,x,�,u).126

If we denote the minimized Hamiltonian by H
⇤(t,x,�) := H (t,x,�,u⇤(t,x;�)), then127

(2.5) can be expressed as128

(2.8)

(
�Vt(t,x)�H

⇤ (t,x, Vx) = 0,

V (tf ,x) = F (x).
129

If (2.8) can be solved (in the viscosity sense), then it provides both necessary and suf-130

ficient conditions for optimality. Moreover, the optimal feedback control is computed131

by substituting132

(2.9) �(t) = Vx(t,x)133

into (2.7) to get134

(2.10) u⇤(t,x) = u⇤(t,x;Vx) = arg min
u2U

H (t,x, Vx,u) .135

This means that with Vx(·) available, the feedback control is obtained as the solution136

of an (ideally straightforward) optimization problem.137

2.1. Pontryagin’s Minimum Principle. To make use of (2.10), we need an138

e�cient way to approximate the value function and its gradient. Like [24, 25], rather139

than solve the full HJB equation (2.8) on a grid, we exploit the fact that the char-140

acteristics of solutions to (2.8) evolve according to a two-point BVP, well-known in141

optimal control as Pontryagin’s Minimum Principle (PMP):142

(2.11)

8
><

>:

ẋ(t) = H� = f(t,x,u⇤(t,x;�)), x(0) = x0,

�̇(t) = �Hx(t,x,�,u
⇤(t,x;�)), �(tf ) = Fx(x(tf )),

v̇(t) = �L(t,x,u⇤(t,x;�)), v(tf ) = F (x(tf )).

143

The two-point BVP provides a necessary condition for optimality. If we further assume144

that the solution is optimal, then along the characteristic x(t;x0) we have that145

(2.12) u⇤(t,x) = u⇤(t;x0), V (t,x) = v(t;x0), Vx(t,x) = �(t;x0).146

In [24, 25], the two-point BVP (2.11) is solved for each point in a sparse grid.147

Applying (2.12), the value function and its gradient are then calculated using high-148

dimensional interpolation. This technique is called the sparse grid characteristics149

method. But even in a sparse grid the number of points grows like O
�
N(logN)n�1

�
,150

where n is the state dimension and N is the number of grid points in each dimen-151

sion. Thus one may have to solve a prohibitively large number of BVPs for higher-152

dimensional problems. Instead of sparse grid interpolation, we use data from solved153

BVPs to train a NN to approximate the value function. This approach is completely154

grid-free and hence applicable in high dimensions.155

This manuscript is for review purposes only.



DEEP LEARNING FOR HJB EQUATIONS 5

Remark 2.1. In general, the BVP admits multiple solutions which can sometimes156

be sub-optimal. The characteristics of the value function satisfy (2.11), but there157

may be other solutions to these equations which are sub-optimal and therefore not158

characteristics of the value function. In many problems it is also possible for the159

characteristics to intersect, giving rise to non-smooth value functions and di�culties160

in applying (2.9).161

Optimality of solutions to the BVP can be guaranteed under some convexity162

conditions (see e.g. [29]). For most dynamical systems it is di�cult to verify such163

conditions globally, but we can guarantee optimality locally around an equilibrium164

point [28]. Addressing the challenge of global optimality in a broader context is beyond165

the scope of the present work, so in this paper we assume that solutions to the two-166

point BVP (2.11) are optimal. Under this assumption, the relationship between PMP167

and the value function as given in (2.12) holds everywhere.168

Note the proposed method can still be applied to problems where this assumption169

cannot be verified. In such cases PMP remains the prevailing tool for computing170

candidate optimal solutions, and from these the proposed method will yield a feedback171

controller which satisfies necessary conditions for optimality.172

2.2. Causality-free data generation. While solving the BVP is easier than173

solving the full HJB equation, we know of no general algorithm that is reliable and174

fast enough for real-time applications. However, in our approach the real-time feed-175

back control computation is done by a NN which is trained o✏ine. Thus we can solve176

the BVP o✏ine to generate data for training and evaluating such a NN. For this pur-177

pose, numerically solving the BVP can be manageable although it may require some178

parameter tuning. In this paper, we use an implementation of the BVP solver intro-179

duced in [26]. This algorithm is based on a three-stage Lobatto IIIa discretization, a180

collocation formula which provides a solution that is fourth-order accurate. But the181

algorithm is highly sensitive to the initial guess for x(t) and �(t): there is no guar-182

antee of convergence with an arbitrary initial guess, and in most cases a good initial183

guess for �(t) cannot be derived from the problem physics. Furthermore, convergence184

is increasingly dependent on good initializations as we increase the length of the time185

interval.186

To overcome this di�culty, we employ the time-marching trick from [24, 25].
This is a continuation technique in which we sequentially extend the solution from an
initially short time interval to the final time tf . Specifically, we choose a sequence of
intermediate times

0 < t1 < t2 < · · · < tK = tf ,

in which t1 is small. For the short time interval [0, t1], the BVP solver converges given187

most initial guesses near the initial state x0. Then the resulting trajectory is rescaled188

over the longer time interval [0, t2]. The rescaled trajectory is used as the initial guess189

to solve the BVP over 0  t  t2. We repeat this process until tK = tf , at which we190

obtain the full solution. By appropriately tuning the time sequence {tk}
K
k=1, we can191

largely overcome the problem of sensitivity to initial guesses.192

Computing many such solutions becomes expensive, which means that generating193

the large data sets necessary to train a NN can be di�cult. With this in mind, we use194

the time-marching trick only to generate a small initial data set, and adaptively adding195

more points during training. The key to doing this e�ciently is simulating the system196

dynamics using the partially-trained NN to close the loop. The closed-loop trajectory197

and predicted costate provide good guesses for the optimal state and costate, so that198

we can immediately solve (2.11) for all of [0, tf ]. Besides being more computationally199
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6 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

e�cient than time-marching, this approach also requires no parameter tuning. Details200

are presented in section 4, and numerical comparisons between this method and time-201

marching are given in subsections 5.2 and 6.2.202

As an alternative to either of these two approaches, one could use backpropaga-203

tion as suggested in [20]. However, this method does not allow one to choose initial204

conditions independently and so cannot be considered fully causality-free.205

3. Neural network approximation of the value function. Neural networks206

have become a popular tool for modeling high-dimensional functions, since they are207

not dependent on discretizing the state space. In this paper, we apply NNs to ap-208

proximate solutions of the HJB equation and evaluate the resulting feedback control209

in real-time. Specifically, we carry out the following steps:210

1. Initial data generation: We compute the value function, V (t,x), along tra-211

jectories x(t) from initial conditions chosen by Monte Carlo sampling. Data212

is generated by solving the BVP as discussed in subsection 2.2. In this initial213

data generation step, we require relatively few data points since more data214

can be added later at little computational cost.215

2. Model training: Given this data set, we train a NN to approximate the value216

function. Learning is guided by the underlying structure of the problem,217

specifically by asking the NN to satisfy Eq. (2.9). In doing so, we regularize218

the model and make e�cient use out of small data sets.219

3. Adaptive data generation: In the initial training phase we only have a small220

data set, so the NN only roughly approximates the value function. We now221

expand the data set by generating data in regions where the value function222

is likely to be steep or complicated, and thus di�cult to learn. Generating223

additional data is made e�cient by good initial guesses obtained from NN-224

in-the-loop simulations of the system dynamics.225

4. Model refinement and validation: We continue training the model and in-226

creasing the size of the data set until we satisfy some convergence criteria.227

Then, we check the generalization accuracy of the trained NN on a new set228

of validation data computed at Monte Carlo sample points.229

5. Feedback control: We compute the feedback control online by evaluating the230

gradient of the trained NN and applying PMP. Notably, evaluation of the231

gradient is exact and it is extremely cheap even for large n, enabling real-232

time implementation in high-dimensional systems.233

The crux of the proposed method depends on modeling the value function (2.4)234

over a semi-global domain X ⇢ Rn. We present details of this process in the following235

subsections. In subsection 3.1, we review the basic structure of feedforward NNs and236

describe how we train a NN to model the value function. Then in subsection 3.2, we237

propose a simple way to incorporate information about the known solution structure238

into training. Finally in subsection 3.4, we demonstrate how to use the trained NN239

for feedback control. The adaptive data generation scheme is treated separately in240

section 4. The proposed method is illustrated in section 5 by solving a practical241

optimal attitude control problem for a rigid body satellite, and then applied to solve242

larger problems in section 6.243

3.1. Feedforward neural networks. In this paper we use multilayer feedfor-
ward NNs. While many more sophisticated architectures have been developed for
other applications, we find this basic architecture to be more than adequate for our
purposes. Let V (·) be the function we wish to approximate and V

NN(·) be its NN
representation. Feedforward NNs approximate complicated nonlinear functions by a

This manuscript is for review purposes only.



DEEP LEARNING FOR HJB EQUATIONS 7

composition of simpler functions, namely

V (t,x) ⇡ V
NN(t,x) = gL � gL�1 � · · · � g` � · · · � g1(t,x),

where each layer g`(·) is defined as

g`(y) = �`(W`y + b`).

Here W` and b` are the weight matrices and bias vectors, respectively. �`(·) repre-244

sents a nonlinear activation function applied component-wise to its argument; popular245

choices include ReLU, tanh, and other similar functions. In this paper, we use tanh246

for all the hidden layers. The final layer, gL(·), is typically linear, so �L(·) is the247

identity function.248

Let ✓ denote the collection of the parameters of the NN, i.e.

✓ := {W`, b`}
L
`=1.

The NN is trained by optimizing over the parameters ✓ to best approximate V (t,x) by
V

NN(t,x;✓). Specifically, by solving the BVP (2.11) from a set of randomly sampled
initial conditions, we get a data set

D =
n⇣

t
(i)
,x(i)

⌘
, V

(i)
oNd

i=1
,

where
�
t
(i)
,x(i)

�
are the inputs, V (i) := V

�
t
(i)
,x(i)

�
are the outputs to be modeled,249

and i = 1, 2, . . . , Nd are the indices of the data points. In the most näıve setting, the250

NN is then trained by solving the nonlinear regression problem,251

(3.1) minimize
✓

1

Nd

NdX

i=1

h
V

(i)
� V

NN
⇣
t
(i)
,x(i);✓

⌘i2
.252

3.2. Physics-informed machine learning. Motivated by the development of253

physics-informed neural networks [33], we expect that we can improve on the rudimen-254

tary loss function in (3.1) by incorporating information about the underlying physics.255

In [33], and in particular in the context of HJB equations in [2, 10, 35, 34], the known256

underlying PDE and boundary conditions are imposed by minimizing a residual loss257

over spatio-temporal collocation points. In this approach, no data is gathered: the258

PDE is solved directly in the least-squares sense. But this residual must be evaluated259

over a large number of collocation points and can be rather expensive to compute.260

Thus we propose a simpler approach of modeling the costate �(·) along with the261

value function itself, taking full advantage of the ability to gather data along the262

characteristics of the HJB PDE.263

Specifically, we know that the costate must satisfy Eq. (2.9), so we train the NN
to minimize ���(t;x)� V

NN
x (t,x;✓)

��2 ,

where V NN
x (·) is the gradient of the NN model with respect to the state. This quantity264

is calculated using automatic di↵erentiation. In machine learning, automatic di↵er-265

entiation is usually used to compute gradients with respect to the model parameters,266

but is just as easy to apply to computing gradients with respect to inputs. This267

gradient is exact, so no finite di↵erence approximations are needed. In addition, the268

computational graph is pre-compiled so evaluating the gradient is cheap.269

This manuscript is for review purposes only.



8 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

Costate data �(t) is obtained for each trajectory as a natural product of solving270

the BVP (2.11). Hence we have the augmented data set,271

(3.2) D =
n⇣

t
(i)
,x(i)

⌘
,

⇣
V

(i)
,�(i)

⌘oNd

i=1
,272

where �(i) := �
�
t
(i);x(i)

�
. We now define the physics-informed learning problem,273

(3.3) minimize
✓

loss (✓;D) := loss
V

(✓;D) + µ · loss
�

(✓;D) .274

Here µ � 0 is a scalar weight, the loss with respect to data is275

(3.4) loss
V

(✓;D) :=
1

Nd

NdX

i=1

h
V

(i)
� V

NN
⇣
t
(i)
,x(i);✓

⌘i2
,276

and the gradient regularization is defined as277

(3.5) loss
�

(✓;D) :=
1

Nd

NdX

i=1

����(i)
� V

NN
x

⇣
t
(i)
,x(i);✓

⌘���
2
.278

Following standard practice, when computing the loss functions (3.4) and (3.5), the279

output data is linearly scaled to the range [�1, 1] to improve the scaling of the opti-280

mization problem.281

A NN trained to minimize (3.3) learns not just to fit the value data, but it is282

rewarded for doing so in a way that respects the underlying structure of the problem.283

Gradient regularization takes the known solution structure into account; this makes284

it preferable to the usual L1 or L2 regularization, which are based on the (heuristic)285

principle that simpler representations of data are likely to generalize better. Further-286

more, we recall that the optimal control depends explicitly on Vx(·) – see Eqs. (2.10)287

and (3.8). Accurate approximation of Vx(·) is therefore essential for calculating opti-288

mal controls. Our method achieves this through automatic di↵erentiation to compute289

exact gradients and by minimization of the gradient loss term (3.5).290

3.3. Model validation. In common practice, one randomly partitions the given291

data set (3.2) into a training set Dtrain and validation set Dval. During training, the292

loss functions (3.4) and (3.5) are calculated with respect to the training data Dtrain.293

We then evaluate the performance of the NN against the validation data Dval, which294

it did not observe during training. Good validation performance indicates that the295

NN generalizes well, i.e. it did not overfit the training data. We make the validation296

test more stringent by generating Dtrain and Dval from independently drawn initial297

conditions, so that the two data sets do not share any part of the same trajectories.298

We consider the following error metrics for validation. First, the relative mean299

absolute error (RMAE) of value function prediction, which is defined as300

(3.6) RMAE(✓;Dval) :=

PNd

i=1

��V (i)
� V

NN
�
t
(i)
,x(i);✓

���
PNd

i=1

��V (i)
�� .301

We also measure the relative mean L
2 error (RML

2) of gradient prediction, which is302

defined as303

(3.7) RML
2(✓;Dval) :=

PNd

i=1

���(i)
� V

NN
x

�
t
(i)
,x(i);✓

���
2PNd

i=1

���(i)
��
2

.304
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We consider these error metrics instead of pointwise relative errors in order to em-305

phasize predictive accuracy in regions where a lot of control e↵ort is needed. This306

is important because we are interested in designing nonlinear controllers which are307

e↵ective and e�cient far away from the equilibrium.308

3.4. Neural network in the closed-loop system. Once the NN is trained,309

evaluating V
NN
x (t,x) at new inputs is highly e�cient. Moreover, since we minimized310

the gradient loss (3.5) during training, we also expect V NN
x (t,x) to approximate the311

true gradient well. At runtime, whenever the feedback control needs to be computed,312

we evaluate V
NN
x (t,x) and then solve (2.10) based on this approximation.313

For many problems of interest, the optimization problem (2.10) admits an ana-
lytic or semi-analytic solution. In particular, for the important class of control a�ne
systems with running cost convex in u, we can solve (2.10) analytically. Suppose that
the system dynamics can be written in the form

ẋ = f(t,x) + g(t,x)u,

where f(t,x) : [0, tf ] ⇥ X ! Rn, g(t,x) : [0, tf ] ⇥ X ! Rn⇥m, and the control is
unconstrained. Further, suppose that the running cost is of the form

L(t,x,u) = h(t,x) + uTWu,

for some convex function h(t,x) : [0, tf ] ⇥ X ! R and some positive definite weight
matrix W 2 Rm⇥m. Then the Hamiltonian is

H(t,x,�,u) = h(t,x) + uTWu+ �Tf(t,x) + �Tg(t,x)u.

Now we apply PMP, which for unconstrained control requires

0m⇥1 = Hu(t,x,�,u
⇤) = 2Wu⇤ + gT (t,x)�.

Letting � = Vx (t,x) and solving for u⇤ yields the optimal feedback control law in314

explicit form:315

(3.8) u⇤(t,x;Vx) = �
1

2
W�1gT (t,x)Vx(t,x).316

The resulting NN controller is then simply317

(3.9) uNN(t,x) = u⇤ �
t,x;V NN

x

�
= �

1

2
W�1gT (t,x)V NN

x (t,x).318

4. Adaptive sampling and model refinement. Since generating just a single319

data point requires solving a challenging BVP, it can be expensive to generate large320

data sets which adequately represent the value function. This necessitates training321

using limited data and a method to generate new data in a smart and e�cient way.322

In this paper, e↵ective training with small data sets is accomplished by incorporating323

information about the costate as discussed in subsection 3.2, but also by combining324

progressive data generation with an e�cient adaptive sampling technique.325

Optimization methods in machine learning (see e.g. [6] for a comprehensive sur-326

vey) are typically divided into second and first order methods. Second order methods327

like L-BFGS [8] rely on accurate gradient computations, and hence generally have to328

use the entire data set. For this reason they are often referred to as batch or full-batch329

methods. On the other hand, first order methods based on stochastic gradient descent330
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10 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

(SGD) use only small subsets, or mini-batches, of the full data set. That is, at each331

optimization iteration k, the loss functions in (3.1) and (3.3) are evaluated only on a332

subset Sk ⇢ Dtrain with |Sk| ⌧ |Dtrain|. Here |D| denotes the number of data points333

in a data set D. Although second order methods converge much more quickly than334

first order methods, the necessary gradient calculations are prohibitively expensive335

for large data sets. Consequently, SGD variants have become the de facto standard336

for machine learning applications.337

But in the context of deep learning, our NNs are small and data sets smaller.338

Thus we expect second order methods to be superior for our purposes. With a small339

initial data set, which we denote by D
1
train, we find that training a low-fidelity model340

is very fast using L-BFGS. After this initial round, we want to increase the size of the341

data set so that it better captures the features of the value function. We then continue342

training the model using this larger data set, D2
train. We continue this process until343

some convergence conditions are satisfied.344

Our approach is similar to and inspired by a progressive batching method pro-345

posed in [7]. The primary di↵erence is that the problem addressed in [7] is a standard346

machine learning problem, where a massive data set is available from the start. This347

allows one to increase the sample size every few iterations, and take a completely dif-348

ferent sample from the available data. In our problem, start with only a small amount349

of data and we can generate more as we go, but since data generation is expensive,350

we would like to generate only as much as is needed.351

4.1. Convergence test and sample size selection. In this section we derive352

a convergence test and sample size selection scheme for the purpose of progressive data353

generation. To start, suppose that the internal optimizer (e.g. L-BFGS) converges354

in optimization round r and let D
r
train be the available training data set. Given355

convergence of the internal optimizer, the first order necessary condition for optimality356

holds, so357

(4.1)

����
@loss

@✓
(✓;Dr

train)

���� ⌧ 1.358

Here loss(·) is the physics-informed loss defined in Eq. (3.3), and @loss
@✓ (·) is its gradient359

with respect to the NN parameters ✓. For true first order optimality, we would like360

the gradient to be small when evaluated over the entire continuous domain of interest,361

[0, tf ]⇥ X. In other words, we want362

(4.2)

����
@loss

@✓
(✓; [0, tf ]⇥ X)

���� ⌧ 1,363

where the Monte Carlo sums in Eqs. (3.4) and (3.5) become integrals in the limit as364

the size of the data set approaches infinity.365

The simplest way to see if (4.2) holds is to generate a validation data set Dval.366

Then using the fact that @loss
@✓ (✓;Dval) !

@loss
@✓ (✓; [0, tf ]⇥ X) in the limit as |Dval| !367

1, one checks if, for example,368

(4.3)

����
@loss

@✓
(✓;Dval)

���� < ✏,369

for some small parameter ✏ > 0. Convergence tests like (4.3) are standard in machine370

learning and are useful for testing generalization performance. But for many practical371

problems, it may be too expensive to generate enough validation data to make the372
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test meaningful. More importantly, such tests provides no clear guidance in selecting373

the sample size
��Dr+1

train

�� should they not be satisfied.374

In this paper, we use validation tests to quantify model accuracy after training is375

complete (see subsection 3.3). Indeed, the ability to empirically validate solutions is a376

key benefit of the causality-free approach. For the purpose of determining convergence377

between training rounds, however, we propose a di↵erent statistically motivated test378

which provides information on choosing
��Dr+1

train

��. The idea is simple: since we already379

assume (4.1) holds, then to ensure that (4.2) is also satisfied, it su�ces to check that380

the error in approximating (4.2) by (4.1) is relatively small.381

To motivate this more rigorously, consider a finite sample set D ⇢ [0, tf ]⇥X with382

fixed size |D|, and assume that the sample points
�
t
(i)
,x(i)

�
2 D are independent383

and identically distributed (i.i.d.)1. By design, if
�
t
(i)
,x(i)

�
are i.i.d. then the sample384

gradient @loss
@✓ (✓;D) is an unbiased estimator for the true gradient (evaluated over the385

entire continuous domain). That is,386

(4.4) ED


@loss

@✓
(✓;D)

�
=
@loss

@✓
(✓; [0, tf ]⇥ X) ,387

where ED[·] := ED⇢[0,tf ]⇥X[·] denotes the population mean over all possible finite388

sample sets D ⇢ [0, tf ]⇥ X with fixed size |D|. Intuitively, (4.4) implies that if (4.1)389

holds, then on average we also have (4.2), as desired. But we must control the mean390

square error (MSE) of the estimator, which is given by391

MSE


@loss

@✓
(✓;D)

�
:=ED

"����
@loss

@✓
(✓;D)�

@loss

@✓
(✓; [t0, tf ]⇥ X)

����
2
#

(4.5)392

=ED

2

4
|✓|X

j=1

✓
@loss

@✓j
(✓;D)�

@loss

@✓j
(✓; [t0, tf ]⇥ X)

◆2
3

5 .393

394

To simplify this, using linearity of the expectation we obtain

MSE


@loss

@✓
(✓;D)

�
=

|✓|X

j=1

VarD⇢[0,tf ]⇥X


@loss

@✓j
(✓;D)

�
,

and then by construction of the loss function,

MSE


@loss

@✓
(✓;D)

�
=

|✓|X

j=1

VarD⇢[0,tf ]⇥X

2

4 1

|D|

|D|X

i=1

@loss

@✓j

⇣
✓;
⇣
t
(i)
,x(i)

⌘⌘
3

5 .

1In practice, while initial conditions are i.i.d., points at future times lie along the optimal trajec-
tories coming from these initial conditions and are thus spatially correlated. Adaptive sampling (see
subsection 4.2) also introduces sample dependence. This likely reduces sample variance compared
to i.i.d. data, but we still find the numerical tests useful for providing sample size guidelines. In
addition, if we learn only the initial-time value function as in section 5, then sample independence
can be upheld if we forego adaptive sample placement.
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12 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

Using the simplifying assumption that
�
t
(i)
,x(i)

�
are i.i.d., this becomes395

MSE


@loss

@✓
(✓;D)

�
=

1

|D|
2

|✓|X

j=1

|D|X

i=1

Var(t,x)2[0,tf ]⇥X


@loss

@✓j
(✓; (t,x))

�
396

=
1

|D|

|✓|X

j=1

Var(t,x)2[0,tf ]⇥X


@loss

@✓j
(✓; (t,x))

�
.(4.6)397

398

If the estimation error is small, then the sample mean is likely to be a good approx-399

imation of the true mean. Hence we expect that
��@loss

@✓ (✓; [0, tf ]⇥ X)
�� will also be400

small as desired. To this end, we require that the root MSE not be too large compared401

to the expected gradient. Specifically, we check if402

(4.7)

s

MSE


@loss

@✓
(✓;D)

�
 C

����ED


@loss

@✓
(✓;D)

�����
1

,403

where C > 0 is a scalar parameter. On the right hand side we use the L1 norm instead404

of the L2 as it is less sensitive to outliers in the loss gradient. In practice we find that405

this makes the test less likely to suggest unreasonably large sample sizes.406

In practice, evaluating of the true population variances on the left hand side of
(4.7) is computationally intractable. But we can approximate these by the corre-
sponding sample variances2 taken over all data

�
t
(i)
,x(i)

�
2 D

r
train, which we denote

by VarDr
train

[·] := Var(t(i),x(i))2Dr
train

[·]:

MSE


@loss

@✓
(✓;D)

�
⇡

1

|D
r
train|

|✓|X

j=1

VarDr
train


@loss

@✓j

⇣
✓;
⇣
t
(i)
,x(i)

⌘⌘�
.

Similarly, we approximate the expected gradient on the right hand side of (4.7) by407

the sample gradient and arrive at the following practical convergence criterion:408

(4.8)

vuut
|✓|X

j=1

VarDr
train


@loss

@✓j

�
✓;
�
t(i),x(i)

���
 C

����
@loss

@✓
(✓;Dr

train)

����
1

q
|D

r
train|.409

If the convergence test (4.8) is satisfied, then it is likely that the expected gradient��@loss
@✓ (✓; [0, tf ]⇥ X)

�� is also small. In other words, we expect that the parameters ✓
satisfies the first order optimality conditions evaluated over the entire domain, so we
can stop optimization. Satisfaction of (4.8) does not imply that the trained model is
good – merely that seeing more data would probably not improve it significantly. On
the other hand, when the criterion is not met, then it guides us in selecting the next
sample size

��Dr+1
train

��. Concretely, suppose that the ratio of the sample variance to the
sample gradient doesn’t change significantly by increasing the size of the data set, i.e.

r
P|✓|

j=1 VarDr+1
train

h
@loss
@✓j

�
✓;
�
t(i),x(i)

��i

��@loss
@✓

�
✓;Dr+1

train

���
1

⇡

r
P|✓|

j=1 VarDr
train

h
@loss
@✓j

�
✓;
�
t(i),x(i)

��i

��@loss
@✓ (✓;Dr

train)
��
1

.

2Computing a large number of individual gradients can still be too costly, so we often evaluate
sample variances over a smaller subset of the training data.
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Then the appropriate choice of
��Dr+1

train

�� to satisfy (4.8) after the next round is such410

that411

(4.9) M |D
r
train| �

��Dr+1
train

�� �

P|✓|
j=1 VarDr

train

h
@loss
@✓j

�
✓;
�
t
(i)
,x(i)

��i

�
C
��@loss

@✓ (✓;Dr
train)

��
1

�2 ,412

where M > 1 is a scalar parameter which prevents the data set size from growing too413

quickly. Throughout this paper we use M = 2.414

The convergence test (4.8) and sample size selection scheme (4.9) derived above415

are close to that used in [7], except that we employ the L
1 norm of the sample416

gradient in the denominator instead of the L
2 norm. We prefer the L

1 norm because417

it is less sensitive to outliers in the loss gradient. Intuitively, this improves robustness418

by making the test less likely to suggest unreasonably large sample sizes. We also419

contribute a di↵erent derivation, coming from the perspective of progressive data420

generation as opposed to sampling from a large pre-existing data set. Finally, like [7]421

our results are not specific to learning solutions to the HJB equation. They can be422

applied to many data-driven optimization problems where data is scarce but can be423

generated over time. Notably, these results facilitate the use of existing algorithms424

for second order and constrained optimization in such applications.425

4.2. Adaptive data generation with NN warm start. The sample size426

selection criterion (4.9) we propose indicates how many data are necessary to satisfy427

the convergence test (4.8), assuming a uniform sampling from the domain. In practice,428

since all the data we generate will be new, we can choose to generate new data where429

it is needed most, hence the term adaptive sampling. This condition for generating430

new data can be interpreted in many ways. In this paper, we concentrate samples431

where
��V NN

x (·)
�� is large. Regions of the value function with large gradients tend to432

be steep or complicated, and thus may benefit from having more data to learn from.433

Furthermore, these regions correspond to places where the control e↵ort is large and434

hence we would like controllers to be especially accurate there.435

Specifically, for each initial condition we want to integrate, we can first randomly
sample a set of Nc candidate initial conditions from X. A quick pass through the NN
yields the predicted gradient at all candidate points:

n
V

NN
x

⇣
0,x(i)

0

⌘oNc

i=1
.

We then choose the point(s) with the largest predicted gradient norms and solve the436

BVP (2.11) for each of these. To aid in solving these BVPs, instead of using the time-437

marching trick described in subsection 2.2, we simulate the system dynamics using the438

partially-trained NN as the closed-loop controller and predicting �(t) ⇡ V
NN
x (t,x(t))439

along the trajectory. In most cases, this yields an approximate solution which is440

reasonably close to the optimal state and costate. By supplying this trajectory as441

an initial guess to the BVP solver, we then quickly and reliably obtain a solution442

to the BVP for the full time interval [0, tf ]. This process is repeated for new initial443

conditions until we obtain the desired amount of data (each trajectory may contain444

hundreds of data points). We refer to this technique as a NN warm start. A summary445

of the full training procedure is given in Algorithm 4.1.446

Algorithm 4.1 enables us to build up a rich data set and a high-fidelity model of447

V (·). Moreover, the data set is not constrained to lie within a small neighborhood448

of some nominal trajectory. It can contain points from the entire domain X, and we449
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14 T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG

Algorithm 4.1 Adaptive sampling and model refinement

1: Generate D
1
train using time-marching

2: for r = 1, 2, . . . do
3: Solve (3.3) for ✓
4: if (4.8) is satisfied then
5: return optimized parameters ✓ and NN validation accuracy
6: else
7: while (4.9) is not satisfied do

8: Sample candidate initial conditions x(i)
0 , i = 1, . . . , Nc, from X

9: In parallel, predict
���V NN

x

⇣
0,x(i)

0

⌘���, i = 1, . . . , Nc

10: Choose the initial condition(s) with largest predicted gradient norm and
use NN warm start to solve the BVP (2.11)

11: Add the resulting trajectories to D
r+1
train

12: end while
13: end if
14: end for

can concentrate more data near complicated features of the value function. As we450

progressively refine the NN model, we can adjust the gradient loss weight µ, as well451

as other hyperparameters such as the internal optimizer convergence tolerance and452

the number of terms in the L-BFGS Hessian approximation. As the NN is already453

partially-trained, fewer iterations should be needed for convergence in each round so454

we can a↵ord to make each iteration more expensive.455

5. Application to rigid body attitude control. To illustrate the capabilities456

of proposed method, we consider the six-state rigid body model of a satellite studied457

by Kang and Wilcox [24, 25]. With the sparse grid characteristics method, they458

interpolate the value function at initial time, V (t = 0,x), and use this for moving459

horizon feedback control of the nonlinear system. We use their successful results as a460

baseline for evaluating our method.461

Let {e1, e2, e3} be an inertial frame of orthonormal vectors and let {e01, e
0
2, e

0
3}

be a body frame. The state of the satellite is then written as x =
�
v !

�
. Here v is

the attitude of the satellite represented in Euler angles,

v =
�
� ✓  

�T
,

in which �, ✓, and  are the angles of rotation around e01, e
0
2, and e03, respectively,

in the order (1, 2, 3). These are also commonly called roll, pitch, and yaw. ! denotes
the angular velocity in the body frame,

! =
�
!1 !2 !3

�T
.

For details see [16]. The state dynamics are
✓

v̇
J!̇

◆
=

✓
E(v)!

S(!)R(v)h+Bu

◆
.

Here E(v),S(!),R(v) : R3
! R3⇥3 are matrix-valued functions defined as

E(v) :=

0

@
1 sin� tan ✓ cos� tan ✓
0 cos� � sin�
0 sin�/ cos ✓ cos�/ cos ✓

1

A , S(!) :=

0

@
0 !3 �!2

�!3 0 !1

!2 �!1 0

1

A ,
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and

R(v) :=

0

@
cos ✓ cos cos ✓ sin � sin ✓

sin� sin ✓ cos � cos� sin sin� sin ✓ sin + cos� cos cos ✓ sin�
cos� sin ✓ cos + sin� sin cos� sin ✓ sin � sin� cos cos ✓ cos�

1

A .

Further, J 2 R3⇥3 is a combination of the inertia matrices of the momentum wheels462

and the rigid body without wheels, h 2 R3 is the total constant angular momentum of463

the system, and B 2 R3⇥m is a constant matrix where m is the number of momentum464

wheels. To control the system, we apply a torque u(t,v,!) : [0, tf ]⇥R3
⇥R3

! Rm.465

We consider the fully-actuated case where m = 3. Let

B =

0

@
1 1/20 1/10

1/15 1 1/10
1/10 1/15 1

1

A , J =

0

@
2 0 0
0 3 0
0 0 4

1

A , h =

0

@
1
1
1

1

A .

The optimal control problem is466

(5.1)

8
>><

>>:

minimize
u(·)

J [u(·)] =

Z tf

t
L(v,!,u)d⌧ +

W4

2
kv(tf )k

2 +
W5

2
k!(tf )k

2
,

subject to v̇ = E(v)!,

J!̇ = S(!)R(v)h+Bu.

467

Here

L(v,!,u) =
W1

2
kvk2 +

W2

2
k!k

2 +
W3

2
kuk2

and

W1 = 1, W2 = 10, W3 =
1

2
, W4 = 1, W5 = 1, tf = 20.

Finally, we consider initial conditions in the domain468

(5.2) X0 =
n
v,! 2 R3

��� ⇡

3
 �, ✓, 

⇡

3
and �

⇡

4
 !1,!2,!3 

⇡

4

o
.469

In [25], to avoid discretizing time the value function is approximated only at470

initial time t = 0. In order to facilitate a fair comparison we do the same. This means471

that we model V (0,v,!) ⇡ V
NN(v,!), i.e. the NN does not take time as an input472

variable. Consequently the control is implemented with a time-independent moving473

horizon rather than as a time-dependent optimal control. In other words, at each time474

t when we evaluate the control, we assume t = 0 and return u(t) = uNN (v(t),!(t)).475

Controlling the system using moving horizon feedback is standard practice. It is476

also reasonable for the present case because the problem dynamics are time-invariant477

and the time horizon is relatively long. Because of this we observe near-optimal478

performance from the moving horizon controller.479

5.1. Learning the value function. In this section, we present numerical re-480

sults of our implementation of a NN for modeling the initial-time value function of481

the rigid body attitude control problem (5.1). To obtain data, we uniformly sample482

initial conditions
�
v(i)

,!(i)
�
from the domain X0 defined in (5.2), and for each ini-483

tial value, solve the two-point BVP (2.11) using time-marching and the SciPy [37]484

implementation of the three-stage Lobatto IIIa algorithm in [26]. Each integrated485

trajectory contains around 100 data points on average, but we use only initial time486

data, V
�
0,v(i)

,!(i)
�
. For validation, we generate a data set containing |Dval| = 1000487
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Figure 1: Validation accuracy and training time of NNs for modeling the initial time
value function V (0,v,!) of the optimal attitude control problem (5.1). All NNs have
the same parameter initialization and are run on an NVIDIA RTX 2080Ti GPU.

data points (at t = 0), and keep this fixed throughout all the tests. As a baseline,488

the sparse grid characteristics method with
��G13

sparse

�� = 44, 698 grid points achieves a489

RMAE of 8.00⇥ 10�4 on this validation data set.490

We implement a standard feedforward NN in TensorFlow 1.11 [1] and train it to491

approximate V (0,v,!). The NN has three hidden layers with 64 neurons in each, but492

many alternate configurations of depth and width also work. For optimization, we493

use the SciPy interface for the L-BFGS optimizer [37, 8]. Figure 1 displays the results494

of a series of tests in which we vary the weight µ on the value gradient loss term (3.5)495

and the size of the training data set. Results are compared to those obtained in [25].496

We highlight that with just 512 data points, we can train NNs with better accu-497

racy than the sparse grid characteristics method with
��G13

sparse

�� = 44, 698 points. Thus498

for this problem, the proposed method is about 90 times as data-e�cient. With 8192499

data points, the NN can be almost four times as accurate as the sparse grid charac-500

teristics method. This level of accuracy with small data sets is obtained only with501

physics-informed learning. In particular, NNs trained by pure regression (3.1) cannot502

match the accuracy of the sparse grid characteristics method, as shown in Figure 1503

for the case with µ = 0. Accuracy improves as we increase µ but with diminishing504

returns for µ � 10. While physics-informed learning is more costly, it permits the use505

of much smaller data sets, and the increased training time is still quite short.506

5.2. Training with adaptive data generation. Performing a thorough sys-507

tematic study of the adaptive sampling and model refinement technique proposed in508
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Figure 2: Progress of adaptive sampling and model refinement for the rigid body
problem (5.1), compared to training on fixed data sets and the sparse grid character-
istics method. Spikes in the error correspond to the start of new training rounds and
expansion of the training data set.

section 4 is rather complicated, since a successful implementation depends on various509

hyperparameter settings, which can and perhaps should change each optimization510

round. Results also depend on random chance, since data points are chosen in a511

(partially) random way and the randomly-initialized NN training problem is highly512

non-convex. For this reason, in this section we show a just few conservative results513

which we feel illustrate the potential of the method.514

Figure 2 shows the progress of the validation error during training when using515

adaptive sampling starting from a data set with
��D1

train

�� = 64 points. We set the516

gradient loss weight to µ = 10 and the convergence parameter in (4.8) to C = 0.25.517

After each round, we check the convergence criterion (4.8) and increase the number518

of training data according to (4.9). Each data set includes all previously generated519

data, and we generate additional data as needed through Algorithm 4.1. With these520

configurations, the model passes the convergence test after seven training rounds and521

observing a total of
��D7

train

�� = 2110 samples.522

The final value function accuracy is 3.3 ⇥ 10�4: over twice as accurate as the523

sparse grid method with about twenty times fewer data, and the gradient prediction524

accuracy is 1.6⇥ 10�3. As shown in Figure 2, the gradient predictions of the network525

trained using the adaptive algorithm are just as accurate as a network trained on a526

fixed data set of |Dtrain| = 4096 samples. That is to say, the adaptive sampling method527

facilitates more acurate gradient predictions using fewer data. These results highlight528

the main advantages of the adaptive sampling and model refinement method: the529

ability to overcome an initial lack of data, e�ciently generate a large data set, and530

improve gradient prediction accuracy which is needed for e↵ective control. To fully531

realize the potential of the method, hyperparameters like µ, C, and internal optimizer532

parameters need to be adjusted in each round. Development of algorithms to do this533

adaptively remains a topic for future research.534
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K % BVP convergence mean integration time

1 0.3% 0.37 s
2 38.7% 0.44 s
3 76.2% 0.40 s
4 92.9% 0.45 s
8 98.4% 0.53 s

Table 1: Convergence of BVP solutions for (5.1) when using the time-marching trick,
depending on the number of steps in the sequence {tk}

K
k=1. The case K = 1 cor-

responds to a direct solution attempt over the whole time interval with no time-
marching. BVP integration time is measured only on successful attempts – failed
solution attempts usually take much longer.

µ training time gradient RML
2 % BVP conv. mean int. time

10�8 7 s 2.5⇥ 10�1 88.0% 0.50 s
10�4 19 s 1.4⇥ 10�1 98.6% 0.48 s
1 23 s 4.5⇥ 10�2 99.7% 0.44 s

Table 2: Convergence of BVP solutions for (5.1) when using NN warm start with NNs
of varying gradient prediction accuracy. BVP integration time is measured only on
successful attempts.

Next, we investigate the convergence of the BVP solver with time-marching and535

NN warm start. Results are given in Table 1 and Table 2, respectively. For these tests,536

we use 1000 initial conditions with the largest predicted gradient norm,
��V NN

x (·)
��,537

picked from a set of 106 randomly sampled candidate points. Initial conditions with538

large gradient norm tend to be located in regions where the value function is steep or539

complicated, and may thus be more di�cult to solve. The set of initial conditions is540

fixed for all tests.541

In the first row of Table 1, we attempt to solve the BVP with no time-marching,542

i.e. over the entire time interval without constructing any initial guess. In this case,543

the proportion of convergent solutions is extremely small, obviating the need for good544

initial guesses. As shown in Table 1, we reliably obtain solutions for this problem545

when we use at least K = 4 time intervals. We note that the initial conditions546

are purposefully chosen to be di�cult – if we simply take uniform samples from the547

domain X0, the proportion of convergent solutions increases significantly.548

In Table 2, we present results using NN warm start. We train several NNs on a549

data set of only 64 points. Because the data set is so small, each NN takes only seconds550

to finish training. We also experiment with using di↵erent gradient loss weights µ for551

each NN. This directly impacts the accuracy in predicting the initial-time costate,552

�(0;v0,!0) ⇡ V
NN
x (v0,!0), which in turn is key to synthezing optimal controls.553

Even with these low-fidelity models, the rate of BVP convergence is just as high554

as when using K = 4 time intervals for time-marching. The quality of initial guesses555

improves with better costate prediction, and it is not di�cult to exceed 99% conver-556

gence. For this problem, the speed of the two methods is about the same. However,557

when we consider higher-dimensional problems in subsection 6.2, we find that NN558

warm start significantly improves both reliability and e�ciency.559
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Figure 3: Sample closed-loop trajectories of the rigid body system controlled by a NN
feedback controller implemented with a zero-order-hold and subject to measurement
noise. Solid: �, !1, and u1. Dashed: ✓, !2, and u2. Dotted:  , !3, and u3.

5.3. Closed-loop simulation. In this section we perform numerical simulations560

of the rigid body dynamics, demonstrating that the NN feedback controller is capable561

of stabilizing the system. Using (3.9) we calculate the optimal feedback control law562

(5.3) uNN(v,!) = �
1

W3

⇥
J�1B

⇤T
V

NN
! (v,!).563

Recall that because we are using a time-independent value function model, the control564

is implemented as time-independent moving horizon feedback. Since J and B are565

constant matrices, we pre-compute the product �
⇥
J�1B

⇤T
/W3. Hence evaluation566

of the control requires only a forward pass through the computational graph of V NN
! (·)567

and a matrix multiplication.568

In Figure 3, we plot a typical closed-loop trajectory starting from a randomly
sampled initial condition. To make the simulation more realistic, we implement the
controller using a zero-order-hold with a sample rate of 10 [Hz]. In addition, we
corrupt inputs to the controller with Gaussian white noise with standard deviation
� = 0.01⇡. That is, for all t 2 [tk, tk + 0.1], we apply the control

u(t) = uNN (v̂(tk), !̂(tk)) ,

where ✓
v̂(tk)
!̂(tk)

◆
:=

✓
v(tk)
!(tk)

◆
+ n(tk), n(tk) ⇠ N

�
0,�2I

�
.

In spite of this, the NN controller successfully stabilizes the system. Furthermore, the569

total cost of the closed-loop trajectory is J
⇥
uNN(·)

⇤
= 12.67, about 1% more than the570

optimal cost J [u⇤(·)] = 12.52. For comparison, a linear quadratic regulator (LQR)571

for (5.1) accumulates a total cost of J
⇥
uLQR(·)

⇤
= 15.95, which is 27% more than572
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the optimal cost. Finally, short computation time is critical for implementation in573

real systems, and this is achieved here as each evaluation of the control takes only a574

couple milliseconds on both an NVIDIA RTX 2080Ti GPU and a 2012 MacBook Pro.575

6. Application to control of Burgers’-type PDE. In this section, we test576

our method on high-dimensional nonlinear systems arising from a Chebyshev pseu-577

dospectral (PS) discretization of a one-dimensional forced Burgers’-type PDE. An578

infinite-horizon version of this problem is studied in [22], in which the value function579

is approximated using a polynomial Galerkin technique. We note that in [22], separa-580

bility of the nonlinear dynamics is required to compute the high-dimensional integrals581

necessary in the Galerkin formulation. Our method does not require this restriction,582

although it does apply to this problem.583

As in [22], let X(t, ⇠) : [0, tf ]⇥ [�1, 1] ! R satisfy the following one-dimensional584

controlled PDE with Dirichlet boundary conditions:585

(6.1)

8
<

:

Xt = XX⇠ + ⌫X⇠⇠ + ↵Xe
�X + I⌦(⇠)u, t > 0, ⇠ 2 (�1, 1),

X(t,�1) = X(t, 1) = 0, t > 0,
X(0, ⇠) = X0, ⇠ 2 (�1, 1).

586

For notational convenience we have written X = X(t, ⇠), and as before we denote
Xt = @X/@t, X⇠ = @X/@⇠, and X⇠⇠ = @

2
X/@⇠

2. The scalar-valued control u(t,X) is
actuated only on ⌦, the support of the indicator function

I⌦(⇠) :=

(
1, ⇠ 2 ⌦,

0, ⇠ 62 ⌦ .

The PDE-constrained optimal control problem is587

(6.2)

8
>><

>>:

minimize
u(·)

J [u(·)] =

Z tf

t
L(X,u)d⌧ +

W2

2
kX(tf , ⇠)k

2
L2

(�1,1)
,

subject to Xt = XX⇠ + ⌫X⇠⇠ + ↵Xe
�X + I⌦(⇠)u,

X(⌧,�1) = X(⌧, 1) = 0.

588

Here

kX(⌧, ⇠)k2L2
(�1,1)

:=

Z 1

�1
X

2(⌧, ⇠)d⇠, L(X,u) =
1

2
kX(⌧, ⇠)k2L2

(�1,1)
+

W1

2
u
2(⌧, X),

and we set

⌦ = (�0.5,�0.2), ⌫ = 0.2, ↵ = 1.5, � = �0.1, W1 = 0.1, W2 = 1, tf = 8.

In this problem, the goal of stabilizing X(t, ⇠) is made more challenging by the added589

reaction term, ↵Xe
�X , which renders the origin unstable. This can be seen clearly in590

Figure 4a.591

To solve (6.2) using our framework, we perform Chebyshev PS collocation to
transform the PDE (6.1) into a system of ordinary di↵erential equations (ODEs).
Following [36], let

⇠j = cos(j⇡/Nc), j = 0, 1, . . . Nc,

where Nc + 1 is the number of collocation points. After accounting for boundary
conditions, we collocate X(t, ⇠) at internal (non-boundary) Chebyshev points, ⇠j ,
j = 1, 2, . . . , n, where n = Nc � 1. The discretized state is defined as

x(t) :=
�
X(t, ⇠1), X(t, ⇠2), . . . , X(t, ⇠n)

�T
: [0, tf ] ! Rn

,
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and the PDE (6.1) becomes a system of ODEs in n dimensions:

ẋ = x�Dx+ ⌫D2x+ ↵x� e
�x + I⌦u,

In the above, “�” denotes element-wise multiplication (Hadamard product), I⌦ is the
discretized indicator function, andD,D2

2 Rn⇥n are the internal parts of the first and
second order Chebyshev di↵erentiation matrices, which are obtained by deleting the
first and last rows and columns of the full matrices. This discretization automatically
enforces the boundary conditions. Finally, since X(t, ⇠) is collocated at Chebyshev
nodes, the inner product appearing in the cost function is conveniently approximated
by Clenshaw-Curtis quadrature [36]:

kX(⌧, ⇠)k2L2
(�1,1)

=

Z 1

�1
X

2(⌧, ⇠)d⇠ ⇡ wTx2(⌧),

wherew 2 Rn are the internal Clenshaw-Curtis quadrature weights and x2(t) is calcu-592

lated element-wise, i.e. x2 = x�x. Now the original OCP (6.2) can be reformulated593

as an ODE-constrained problem,594

(6.3)

8
<

:
minimize

u(·)

Z tf

t

1

2

⇥
wTx2(⌧) +W1u

2(⌧,x)
⇤
d⌧ +

W2

2
wTx2(tf ),

subject to ẋ = x�Dx+ ⌫D2x+ ↵x� e
�x + I⌦u.

595

6.1. Learning high-dimensional value functions. The state dimension n of596

the OCP (6.3) can be adjusted, presenting a good opportunity to test the scalability597

of our algorithms. For this problem, we learn the value function V = V (t,x) with598

time-dependence, rather than just V (0,x) as in section 5. Consequently, the resulting599

controls can be implemented as time-dependent controls or with a moving horizon.600

We consider the following domain of initial conditions:601

(6.4) X0 = {x 2 Rn
|� 2  xj  2, j = 1, 2, . . . , n} .602

Using the proposed adaptive deep learning framework, we approximate solutions603

to (6.3) in n = 10, 20, and 30 dimensions. We focus on demonstrating what is possible604

using our approach, rather than carrying out a detailed study of its e↵ectiveness under605

di↵erent parameter tunings. In [22] an infinite-horizon version of the problem is solved606

up to twelve dimensions, but the accuracy of the solution is not readily verifiable. The607

ability to conveniently measure model accuracy for general high-dimensional problems608

with no known analytical solution is a key advantage of our framework.609

For each discretized OCP, n = 10, 20, and 30, we apply the time-marching strat-610

egy to build an initial training data set D
1
train from 30 uniformly sampled initial611

conditions, x(i)
0 2 X0, i = 1, 2, . . . , 30. For each initial condition x(i)

0 , the BVP solver612

outputs an optimal trajectory
�
x(i) (tk)

 
, evaluated at collocation points tk 2 [0, tf ]613

chosen by the solver. Typically this can be a few hundred per initial condition, de-614

pending on the state dimension n and the BVP solver tolerances. Since these data sets615

can be get quite large, we often train on randomly selected subsets of the data. This616

can significantly improve training speed without sacrificing accuracy. When neeeded,617

we solve additional BVPs to expand the data set as described in subsection 4.2. We618

use the same NN architecture as in section 5, with three hidden layers with 64 neurons619

each. We set C = 0.3, 1.3, and 1.8 for n = 10, 20, and 30, respectively, and use µ = 10620

in all cases.621
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n num. trajectories training time value RMAE gradient RML
2

10 163 25 min 1.3⇥ 10�3 5.7⇥ 10�3

20 128 48 min 5.0⇥ 10�3 1.1⇥ 10�2

30 145 62 min 1.3⇥ 10�2 2.2⇥ 10�2

Table 3: Validation accuracy of NNs for solving the collocated Burgers’-type OCP
(6.3), depending on the state dimension n. Training time includes time spent gener-
ating additional data according to Algorithm 4.1. All NNs are trained on an NVIDIA
RTX 2080Ti GPU.

In Table 3, we present validation accuracy results for the trained NNs. We in-622

clude the RMAE in predicting the value function and the RML
2 error in predicting623

the costate, �(t;x0) ⇡ V
NN
x (t,x(t;x0)). Accuracy is measured empirically on inde-624

pendently generated validation data sets comprised of trajectories from 50 randomly625

selected initial conditions. We find that the trained NNs accurately predict both the626

value function and its gradient, even in 30 dimensions.627

Table 3 also shows the total number of sample trajectories seen by the NN, in-628

cluding the initial data D
1
train. It may seem surprising that we are able to reach the629

same level of accuracy in higher dimensions with similar numbers of sample trajec-630

tories. This happens because the BVP solver usually needs more collocation points631

for larger problems, thus producing more data per trajectory. Consequently, fewer632

trajectories are needed to fulfill the data set size recommendation (4.9). Similarly, in633

section 5 we use data only for t = 0, so we need thousands of trajectories to fill in the634

state space and train the NN. This suggests that learning the time-dependent value635

function can be more e�cient than learning V (0,x) only. Note that, if preferred, the636

time-dependent controller can still be used with a moving horizon like in section 5.637

Such an implementation can be useful in the presence of noise.638

Lastly, Table 3 shows the training time for each NN, including time spent testing639

convergence and generating additional trajectories on the fly, but not time spent640

generating the initial data. Generating data becomes the most expensive computation641

as n increases, but even so we find that computational e↵ort scales reasonably with642

the problem dimension. Furthermore, it is possible to obtain a rough low-fidelity NN643

model in just minutes as shown in Table 5, which in turn allows for more e�cient644

data generation. This demonstrates the viability of the proposed method for solving645

high-dimensional optimal control problems.646

6.2. NN warm start for fast and reliable BVP solutions. In our expe-647

rience, generating the initial training data set can be the most computationally de-648

manding part of the process, especially as the problem dimension n increases. Con-649

sequently, for di�cult high-dimensional problems it may be impractical to generate a650

large-enough data set from scratch. This obstacle can be largely overcome by using651

partially-trained/low-fidelity NNs to aid in further data generation. In this section,652

we briefly compare the reliability and speed of BVP convergence between our two653

strategies: time-marching and NN warm start. These experiments demonstrate the654

importance of NN guesses for high-dimensional data generation.655

For each of n = 10, 20, and 30, we randomly sample a set of 1000 candidate points656

from the domain X0 defined in (6.4). From these we choose 100 points with the largest657

predicted value gradient. The set of initial conditions is fixed for each n. Next we658
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n K % BVP convergence mean integration time

10
4 40% 0.7 s
6 83% 0.8 s
10 90% 1.3 s

20
4 46% 3.6 s
5 86% 4.2 s
6 99% 4.7 s

30
4 47% 11.3 s
6 90% 14.6 s
8 100% 19.1 s

Table 4: Convergence of BVP solutions for (6.3) when using the time-marching trick,
depending on the problem dimension, n, and the number of steps in the sequence
{tk}

K
k=1. BVP integration time is measured only on successful attempts.

n µ training time gradient RML
2 % BVP conv. mean int. time

10
10�8 20 s 2.1⇥ 10�1 96% 0.8 s
10�4 31 s 9.8⇥ 10�2 99% 0.8 s
1 56 s 4.2⇥ 10�2 88% 0.6 s

20
10�8 29 s 3.7⇥ 10�1 74% 2.9 s
10�4 47 s 9.8⇥ 10�2 91% 2.5 s
1 76 s 6.5⇥ 10�2 98% 2.5 s

30
10�8 38 s 3.0⇥ 10�1 79% 7.1 s
10�4 125 s 7.6⇥ 10�2 94% 6.9 s
1 189 s 7.4⇥ 10�2 96% 7.1 s

Table 5: Convergence of BVP solutions for (6.3) when using NN warm start with NNs
of varying gradient prediction accuracy. BVP integration time is measured only on
successful attempts.

proceed as in subsection 5.2, solving each BVP by time-marching with various K.659

Results are summarized in Table 4. We then solve the same BVPs directly over the660

whole time interval t 2 [0, 8] with NN warm start. These NNs are trained on fixed661

data sets containing only 30 trajectories, but with di↵erent gradient loss weights µ,662

resulting in varying costate prediction accuracy. We also limit the number of L-BFGS663

iterations so that each model is trained only for a short time. Results are given in664

Table 5.665

As before, we find that even NNs with relatively large costate prediction error666

enable consistently convergent BVP solutions. Time-marching also works once the667

sequence of time steps {tk}Kk=1 is properly tuned, but the speed of this method scales668

poorly with n. Now the advantage of utilizing NNs to aid in data generation becomes669

clear: when n is large, the average time needed for convergence when using NN warm670

start is drastically lower than that of the time-marching trick. This approach also671

requires no tuning of the time-marching sequence. Because low-fidelity NNs are quick672

to train, training such a NN and then using it to aid in data generation is the most673

e�cient strategy for building larger data sets.674
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(a) Uncontrolled dynamics.

(b) NN-controlled dynamics.

0 2 4 6 8
-1

0

1

0 2 4 6 8
-1

0

1

(c) Comparison of true optimal control (open-loop BVP solution) and NN control profiles.

Figure 4: Simulations of the collocated Burgers’-type PDE (6.1) in n = 30 dimensions.
Left column: X(0, ⇠) = 2 sin(⇡⇠). Right column: X(0, ⇠) = �2 sin(⇡⇠).

6.3. Closed-loop simulations. In this section we use simulations to demon-675

strate that the feedback control output by the trained NN not only stabilizes the676

high-dimensional system, but that it is close to the true optimal control. The optimal677

feedback control law can again be calculated with (3.9), from which we obtain678

(6.5) u
NN(t,x) = �

1

W1
IT⌦ V

NN
x (t,x).679

In Figure 4, we plot the uncontrolled (Figure 4a) and closed-loop controlled dy-680

namics (Figure 4b), starting from two di↵erent initial conditions, X(0, ⇠) = 2 sin(⇡⇠)681
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and X(0, ⇠) = �2 sin(⇡⇠), where the dimension of the discretized system is n = 30.682

For both of these initial conditions (and almost all others tested), the NN controller683

successfully stabilizes the open-loop unstable origin. Further, as shown in Figure 4c,684

the NN-generated controls are very close to the true optimal controls which are calcu-685

lated by solving the associated BVPs. Finally, the speed of online control computation686

is not sensitive to the problem dimension: each evaluation still takes just milliseconds687

on both an NVIDIA RTX 2080Ti GPU and a 2012 MacBook Pro.688

7. Conclusion. In this paper, we have developed a novel machine learning689

framework for solving HJB equations and designing candidate optimal feedback con-690

trollers. Unlike many other state of the art techniques, our method does not require691

finite di↵erence approximations of the gradient nor strict restrictions on the structure692

of the dynamics. The causality-free algorithm we use for data generation enables693

application to high-dimensional systems and validation of model accuracy. We also694

emphasize that while our method is data-driven, by leveraging the costate data we695

are able to train more physically-consistent models and better controllers with sur-696

prisingly small data sets.697

The proposed method is not only a consumer of data, but through adaptive data698

generation it can also be used build rich data sets with points anywhere in a semi-699

global domain. Thus the value function and control are valid for large ranges of700

dynamic states, rather than just in the neighborhood of some nominal trajectory.701

Furthermore, data can be generated near complicated or non-smooth regions of the702

value function to aid in learning. This in turn allows us to train more accurate NN703

models or employ other data-driven methods.704

We have demonstrated the possibility for use of the framework in a practical705

setting by synthesizing candidate optimal feedback controls of a six-dimensional non-706

linear rigid body. The potential for scalability of the method is demonstrated by707

solving HJB equations in up to 30 dimensions using limited data, and empirical vali-708

dation indicates that the NN models are good approximations of the value function.709

How well the proposed techniques work for even larger problems remains an open710

question. Indeed, understanding the scalability of deep learning methods in general711

is still an active area of research. Nevertheless, we are encouraged by the simula-712

tions in section 6 which suggest that the method may scale quite well for moderately713

high-dimensional problems. In addition, the computational burden associated with714

an increase in dimensionality is incurred entirely o✏ine: due to the structure of NNs,715

increasing the dimension has a negligible impact on the speed of online control calcu-716

lation.717

These promising results leave plenty of room for future development. Of special718

interest are extensions of the framework to solve problems with free final time and719

state and control constraints, which appear ubiquitously in practical applications.720

Such problems typically give rise to non-unique solutions of PMP and non-smooth721

value functions, thus presenting substantial challenges for both data generation and722

neural network modeling. Overcoming these obstacles would open the door to solving723

many important and di�cult optimal control problems.724
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[20] D. Izzo, E. Öztürk, and M. Märtens, Interplanetary transfers via deep representations of780
the optimal policy and/or of the value function, in Genetic and Evolutionary Computation781
Conference, 2019, pp. 1971—1979, https://doi.org/10.1145/3319619.3326834.782

[21] F. Jiang, G. Chou, M. Chen, and C. J. Tomlin, Using neural networks to compute ap-783
proximate and guaranteed feasible Hamilton-Jacobi-Bellman PDE solutions, 2016, https:784
//arxiv.org/abs/1611.03158.785

[22] D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton-Jacobi-786
Bellman equations and applications to feedback control of semilinear parabolic PDEs, SIAM787
J. Sci. Comput., 40 (2018), pp. A629–A652, https://doi.org/10.1137/17M1116635.788

[23] W. Kang, P. De, and A. Isidori, Flight control in a windshear via nonlinear h1 methods, in789
Proceedings of the 31st IEEE Conference on Decision and Control, vol. 1, 1992, pp. 1135–790
1142.791

This manuscript is for review purposes only.

https://doi.org/10.1016/j.automatica.2004.11.034
https://doi.org/10.1016/0021-8928(61)90005-3
https://arxiv.org/abs/1812.05916
https://arxiv.org/abs/1812.05916
https://arxiv.org/abs/1812.05916
https://doi.org/10.1007/s10915-012-9648-x
https://doi.org/10.1137/16M1080173
https://doi.org/10.1007/s10107-012-0572-5
https://doi.org/10.1007/s10107-012-0572-5
https://doi.org/10.1007/s10107-012-0572-5
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/110841576
https://doi.org/10.1109/TNN.2007.905848
https://doi.org/10.1016/j.jcp.2019.01.051
https://doi.org/10.2307/1999343
https://doi.org/10.1007/s40687-020-00215-6
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109907
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109907
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109907
https://doi.org/10.1186/s40687-016-0068-7
https://www.astro.rug.nl/software/kapteyn-beta/_downloads/attitude.pdf
https://doi.org/10.1137/1.9781611973051
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://arxiv.org/abs/1812.04300
https://arxiv.org/abs/1812.04300
https://arxiv.org/abs/1812.04300
https://doi.org/10.1145/3319619.3326834
https://arxiv.org/abs/1611.03158
https://arxiv.org/abs/1611.03158
https://arxiv.org/abs/1611.03158
https://doi.org/10.1137/17M1116635


DEEP LEARNING FOR HJB EQUATIONS 27

[24] W. Kang and L. C. Wilcox, A causality free computational method for HJB equations with792
application to rigid body satellites, in AIAA Guidance, Navigations, and Control Confer-793
ence, 2015, pp. 1–10, https://doi.org/10.2514/6.2015-2009.794

[25] W. Kang and L. C. Wilcox, Mitigating the curse of dimensionality: Sparse grid character-795
istics method for optimal feedback control and HJB equations, Comput. Optim. Appl., 68796
(2017), pp. 289–315, https://doi.org/10.1007/s10589-017-9910-0.797

[26] J. Kierzenka and L. F. Shampine, A BVP solver based on residual control and the MATLAB798
PSE, ACM Trans. Math. Softw., 27 (2001), pp. 299–316, https://doi.org/10.1145/502800.799
502801.800

[27] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction,801
Princeton University Press, Princeton, NJ, 2011, https://doi.org/10.2307/j.ctvcm4g0s.802

[28] D. Lukes, Optimal regulation of nonlinear dynamical systems, SIAM J. Control, 7 (1969),803
pp. 75–100, https://doi.org/10.1137/0307007.804

[29] O. L. Mangasarian, Su�cient conditions for the optimal control of nonlinear systems, SIAM805
J. Control, 4 (1966), pp. 139–152, https://doi.org/10.1137/0304013.806

[30] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, A causality-free neural network method807
for high-dimensional Hamilton-Jacobi-Bellman equations, in American Control Conference808
(ACC), 2020, pp. 787–793, https://doi.org/10.23919/ACC45564.2020.9147270.809

[31] C. Navasca and A. J. Krener, Patchy Solutions of Hamilton-Jacobi-Bellman Partial Di↵er-810
ential Equations, Springer, Berlin-Heidelberg, 2007, pp. 251–270, https://doi.org/10.1007/811
978-3-540-73570-0 20.812

[32] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms813
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49, https:814
//doi.org/10.1016/0021-9991(88)90002-2.815

[33] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep816
learning framework for solving forward and inverse problems involving nonlinear partial817
di↵erential equations, J. Comput. Phys., 378 (2019), pp. 686–707, https://doi.org/10.1016/818
j.jcp.2018.10.045.819

[34] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial dif-820
ferential equations, J. Comput. Phys., 375 (2018), pp. 1339–1364, https://doi.org/10.1016/821
j.jcp.2018.08.029.822

[35] Y. Tassa and T. Erez, Least squares solutions of the HJB equation with neural network823
value-function approximators, IEEE Trans. Neural Netw., 18 (2007), pp. 1031–1041, https:824
//doi.org/10.1109/TNN.2007.899249.825

[36] L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathe-826
matics, Philadelphia, PA, 2000, https://doi.org/10.1137/1.9780898719598.827

[37] P. Virtanen, R. Gommers, T. E. Oliphant, and et. al., SciPy 1.0: Fundamental algorithms828
for scientific computing in Python, Nat. Methods, 17 (2020), pp. 261–272, https://doi.org/829
10.1038/s41592-019-0686-2.830

[38] I. Yegorov and P. M. Dower, Perspectives on characteristics based curse-of-dimensionality-831
free numerical approaches for solving Hamilton-Jacobi equations, Appl. Math. Optim.,832
(2018), https://doi.org/10.1007/s00245-018-9509-6.833

This manuscript is for review purposes only.

https://doi.org/10.2514/6.2015-2009
https://doi.org/10.1007/s10589-017-9910-0
https://doi.org/10.1145/502800.502801
https://doi.org/10.1145/502800.502801
https://doi.org/10.1145/502800.502801
https://doi.org/10.2307/j.ctvcm4g0s
https://doi.org/10.1137/0307007
https://doi.org/10.1137/0304013
https://doi.org/10.23919/ACC45564.2020.9147270
https://doi.org/10.1007/978-3-540-73570-0_20
https://doi.org/10.1007/978-3-540-73570-0_20
https://doi.org/10.1007/978-3-540-73570-0_20
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1109/TNN.2007.899249
https://doi.org/10.1109/TNN.2007.899249
https://doi.org/10.1109/TNN.2007.899249
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s00245-018-9509-6

	Introduction
	Abbreviations and notation

	A causality-free method for HJB equations
	Pontryagin's Minimum Principle
	Causality-free data generation

	Neural network approximation of the value function
	Feedforward neural networks
	Physics-informed machine learning
	Model validation
	Neural network in the closed-loop system

	Adaptive sampling and model refinement
	Convergence test and sample size selection
	Adaptive data generation with NN warm start

	Application to rigid body attitude control
	Learning the value function
	Training with adaptive data generation
	Closed-loop simulation

	Application to control of Burgers'-type PDE
	Learning high-dimensional value functions
	NN warm start for fast and reliable BVP solutions
	Closed-loop simulations

	Conclusion
	References

