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Lay Summary

Decision-making processes require robust tools in domains as essential as medicine and astron-
omy to support and deliver reliable judgments in critical situations. For instance, if an atypical
object were to appear on the CT image of a patient, it would be beneficial if a doctor also had
tools that provided a degree of assurance that the object was indeed inside the patient’s body.
This would further help the doctor make accurate diagnostic and treatment decisions.

In this context, Bayesian computation provides efficient tools to quantify the uncertainty in
these situations. These methods are usually admissible from the computational point of view
in small dimensional applications, i.e., it takes a few minutes to obtain results, for example, in
applications where one is interested in the time evolution of a few quantities, such as forecasting
stock prices or the spread rates of COVID-19. However, this is not the case for imaging
applications, where one wants to analyse images with hundreds of thousands of pixels, i.e.,
dimensions.

For performing the Bayesian analysis required in large imaging applications, it is necessary
to have methods that provide accurate results in an allowable amount of time. The development
of efficient Bayesian approaches for extremely high dimensional applications, such as imaging,
has been one of the main focuses of the Bayesian imaging community.

Despite the significant efforts of the scientific community in recent decades, the amount of
data handled by new applications is expanding quickly, and the methods developed just a few
years ago are starting to become obsolete with the sheer volume of information produced by
next-generation applications. In February 2022, for instance, as part of the calibration and
alignment procedure, the James Webb Space Telescope generated a picture mosaic of over 2
billion pixels.

In light of these current challenges, we present in this thesis three novel Bayesian methods,
which significantly outperform existing state-of-the-art approaches in speed and/or accuracy,
as demonstrated by the theory and numerical experiments developed in this work.
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Abstract

The dimensionality and ill-posedness often encountered in imaging inverse problems are a chal-
lenge for Bayesian computational methods, particularly for state-of-the-art sampling alterna-
tives based on the Euler-Maruyama discretisation of the Langevin diffusion process. In this
thesis, we address this difficulty and propose alternatives to accelerate Bayesian computation
in imaging inverse problems, focusing on its computational aspects.

We introduce, as our first contribution, a highly efficient proximal Markov chain Monte
Carlo (MCMC) methodology, based on a state-of-the-art approximation known as the proximal
stochastic orthogonal Runge-Kutta-Chebyshev (SK-ROCK) method. It has the advantage of
cleverly combining multiple gradient evaluations to significantly speed up convergence, similar
to accelerated gradient optimisation techniques. We rigorously demonstrate the acceleration
of the Markov chains in the 2-Wasserstein distance for Gaussian models as a function of the
condition number κ.

In our second contribution, we propose a more sophisticated MCMC sampler, based on
the careful integration of two advanced proximal Langevin MCMC methods, SK-ROCK and
split Gibbs sampling (SGS), each of which uses a unique approach to accelerate convergence.
More precisely, we show how to integrate the proximal SK-ROCK sampler with the model
augmentation and relaxation method used by SGS at the level of the Langevin diffusion process,
to speed up Bayesian computation at the expense of asymptotic bias. This leads to a new, faster
proximal SK-ROCK sampler that combines the accelerated quality of the original sampler with
the computational advantages of augmentation and relaxation.

Additionally, we propose the augmented and relaxed model to be considered a generalisation
of the target model rather than an approximation that situates relaxation in a bias-variance
trade-off. As a result, we can carefully calibrate the amount of relaxation to boost both model
accuracy (as determined by model evidence) and sampler convergence speed. To achieve this,
we derive an empirical Bayesian method that automatically estimates the appropriate level of
relaxation via maximum marginal likelihood estimation.

The proposed methodologies are demonstrated in several numerical experiments related to
image deblurring, hyperspectral unmixing, tomographic reconstruction and inpainting. Com-
parisons with Euler-type proximal Monte Carlo approaches confirm that the Markov chains
generated with our methods exhibit significantly faster convergence speeds, achieve larger effec-
tive sample sizes, and produce lower mean square estimation errors with the same computational
budget.
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Chapter 1

Introduction

The estimation of an unknown image from noisy and incomplete data has been widely studied
in the research community during the last century. Problems in this area cover several topics,
such as image denoising [115, 52], deblurring [83, 31], compressive sensing reconstruction [7,
17], super-resolution [90, 116], tomographic reconstruction [73, 130] and inpainting [63, 51], to
name a few. A common issue in these problems is that estimating a solution directly from the
data is difficult since many of the imaging problems are ill-posed or ill-conditioned. Currently,
there are three main strategies to address this difficulty:

• The variational framework [30], whose goal is to minimise a data misfit functional together
with an appropriate chosen regularisation term.

• The machine learning approach [6] which seeks to exploit deep learning techniques to
solve inverse problems by learning a mapping function from a training data set.

• The Bayesian statistical framework [102], which attempts to recover the full probability
distribution of the solution to calculate not only estimators but also to measure their
uncertainty.

In this thesis, we focus on the Bayesian paradigm, which is especially well suited to address
imaging problems where uncertainty is a significant factor. For instance, in medical imaging, it is
necessary or desirable to quantify the uncertainty in the delivered solutions to inform decisions
or conclusions, see, e.g., [15, 139]. The framework is also well suited to blind, semi-blind,
and unsupervised problems involving partially unknown models (e.g., unspecified regularisation
parameters or observation operators) [136]. Bayesian model selection techniques also allow the
objective comparison of several potential models to analyse the observed imaging data, even in
cases where there is no ground truth available [45, Section 4.1].

The Bayesian framework allows a priori information to be incorporated into the target
probability distribution in the form of a prior distribution that also acts as a regulariser, playing
a key role in the well-posedness of the problem. Several different distributions have been
proposed as regularisers and have been studied in the literature in recent decades [11], including:

• Markov random fields [77, Section 3.3.4], which are able to model neighbour pixel depen-
dence. Popular approaches are based on Total-variation (TV) [105, 29] and total gener-
alized variation (TGV) [21], which are designed to denoise flat regions while preserving
edges at the same time.

• Sparsity-promoting priors [27, 120], such as the Laplace distribution [93] which are suitable
for sparse images i.e., images where some (or most) of their pixels are zero. Applications
include sparsity w.r.t. a set of column vectors or atoms placed in a matrix which is
normally referred to as a dictionary [38].

• Data-driven priors [137], which have become a popular approach, have shown in most
cases to outperform the traditional functional priors, examples of these are generative
priors based on adversarial network and variational autoencoder models [61, 72] and deep
image priors [121].
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• Gaussian mixture model priors [135, 138], which enjoy the flexibility of assuming that
the image is generated by a mixture of tractable probability distributions and allows
the computation of point estimates in a closed-form expression for Gaussian observation
models. Examples include patch-based models [24, 131] which have been demonstrated
to preserve local information.

In this thesis, we are interested in log-concave priors which have an underlined convex
geometry that allows the application of efficient Bayesian methods based on optimisation and
sampling [101, 98].

The Bayesian framework offers a lot of flexibility in terms of the different quantities of
interest that can be used for image reconstruction. In particular:

• The first approach is to formulate a convex model in which the computation of the maxi-
mum a-posteriori (MAP) estimate can be performed efficiently by using convex optimiza-
tion algorithms [101, 26]. However, it cannot tackle more complex Bayesian analyses that
go beyond point estimates.

• A second approach is based on Monte Carlo methods and, in particular, Markov chain
Monte Carlo (MCMC) [103, 5], its main objective is to approximate the computation of
important integrals via the generation of an ergodic Markov chain with invariant distri-
bution.

• A third approach to performing Bayesian inference consists of an approximation of the
target distribution based on the application of deterministic techniques [113], such as
variational Bayes [54, 16]. Although this approach may be computationally faster than
the stochastic simulations performed by MCMC, variational Bayes does not provide con-
vergence guarantees to the target distribution, while MCMC enjoys such guarantees of
producing (asymptotically) exact samples from the target density.

This thesis will mainly focus on providing some advances in the computational aspects of
MCMC methods to solve Bayesian imaging inverse problems and, in particular, gradient-based
MCMC methods applied to log-concave models. Regarding this class of methods, two main
challenges can be found in designing efficient gradient-based MCMC algorithms to perform
robust Bayesian inference in imaging: the high dimensionality of the problem and the lack of
differentiability of the target density. A first attempt to address these problems is the proposal
of proximal MCMC methods [95], such as the so-called Moreau Yosida unadjusted Langevin
algorithm (MYULA) [45] that addresses the issue of non-differentiability by borrowing ideas
from the field of non-smooth convex optimization.

Although these algorithms enjoy good theoretical convergence guarantees, they can become
computationally expensive for very ill-conditioned problems, since the corresponding step-size
restriction results in very slow convergence to steady-state. In this thesis, we tackle this dif-
ficulty by first proposing an orthogonal Runge-Kutta-Chebyshev stochastic approximation of
the Langevin diffusion process called SK-ROCK [2] that is significantly more computation-
ally efficient than the conventional Euler-Maruyama approximation used by existing proximal
MCMC methods. In particular, we present a new method that applies this approximation to
the Moreau-Yosida regularised Langevin diffusion underpinning the MYULA [45], and show in
a class of Gaussian models and numerical experiments that this leads to dramatic improvements
in convergence speed and estimation accuracy.

A separate line of research for dealing with the step-size restriction proposes the use of an
augmented model in conjunction with a Gibbs sampling scheme named the Split Gibbs Sampler
(SGS) [125, 129], which also allows a larger step-size to be used by splitting the sampling
process and relaxing the dependence of a large Lipschitz constant in poor conditioning problems.
Regarding the latter, we formally identified a relationship between SGS and MYULA, which
allows us to propose two novel MCMC methods, the first being an improved version of SGS
and the second a clever fusion between SGS and SK-ROCK. Furthermore, we revisited the
augmented model of [100, 125, 129] and, by adjusting the methodology in [123], we propose an
empirical Bayesian method to estimate the hyperparameters of this augmented model, which
allows us to propose an enhanced class of models for Bayesian inference in imaging inverse
problems that can deliver more accurate estimates than the non-augmented model.
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1.1 Structure of the thesis

The structure of this thesis is as follows: Chapter 2 introduces the class of imaging problems
considered in this thesis, Chapter 3 provides a summary of some of the most important exact
and inexact MCMC methods. In Chapter 4, we introduce the proximal SK-ROCK method
and study it from both a theoretical and numerical point of view. In Chapter 5, we present
two new MCMC methods based on the SGS algorithm and present the augmented model as
an enhanced posterior distribution for Bayesian inference in imaging applications. Conclusions
and perspectives for future work are reported in Chapter 6.
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Chapter 2

Bayesian inference in imaging
inverse problems

We seek to estimate an unknown image x ∈ Rd from observed data y, related to x by a forward
model of the following form

y = Φx+ η (2.1)

where Φ is a linear operator that represents the physical properties of the image acquisition pro-
cess. In real applications, we also need to consider the sources of error in data acquisition, this
situation is represented by η, which denotes the observation noise. In this setting, Hadamard
[65] postulated three conditions in which problems of the form (2.1) are called well-posed:

• The solution exists.

• The solution is unique.

• The solution depends continuously on the data, i.e., a small variation in y results in small
errors in the solution.

Problems that do not meet one of these conditions are called ill-posed and one may find that
inverse problems generally do not satisfy at least one of the above conditions. Furthermore,
there are also inverse problems that admit a unique solution, but are highly sensitive and not
stable w.r.t. small perturbations, these problems are called ill-conditioned.

2.1 Model problems

To better illustrate the issues of ill-posedness and ill-conditioning that we described above, we
present below the particular inverse problems in imaging that we are going to deal with in this
thesis.

2.1.1 Image Deblurring

The deblurring or deconvolution problem of recovering a signal x(t) from observed data y(t)
follows the equation below

y(t) =

∫ ∞

−∞
k(t, s)x(s)ds+ η(t), (2.2)

where k(x, y) is assumed to be spatially invariant, i.e.,

k(x, y) = k(x− y),

and known as the convolution kernel. In the noiseless case, i.e.,

y⋆(t) =

∫ ∞

−∞
k(t, s)x(s)ds,
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one applies the Fourier transform, it yields

ŷ⋆(ξ) =

∫ ∞

−∞
e−itξy⋆(t)dt,

and by the convolution theorem, one has that ŷ⋆(ξ) = k̂(ξ)x̂(ξ). Therefore, by the inverse
Fourier transform

x(t) =
1

2π

∫ ∞

−∞
e−itξ ŷ⋆(ξ)

k̂(ξ)
dξ.

In the noisy case, one can show that

x̃(t) = x(t) +
1

2π

∫ ∞

−∞
e−itξ η̂(ξ)

k̂(ξ)
dξ,

however, the inverse of k̂ usually decreases exponentially, making x̃(t) very sensitive to small
changes produced by noise. In practice, a finite-dimensional representation of (2.2) is employed.
After discretisation of the continuous model, the deconvolution model can be expressed as

y = Ax+ η,

where A ∈ Rd×d is a blur operator and η ∼ N (0, σ2Id). Figure 2.1(a) presents the cameraman

test image of size d = 256 × 256 pixels, which we will denote x. Figure 2.1(b) shows the
artificially blurry and noisy observation y, generated by applying the box blur or box linear
filter A [88], which performs average smoothing on each of the image pixels x using a 5 × 5
uniform blur operator, given by the matrix 1/25J5 (where Jn is an n× n matrix of ones) and
then adding Gaussian noise with σ = 0.58, related to a signal-to-noise ratio of 40dB. Figure
2.1(c) shows the absolute value of the real part of the eigenvalues of A in the Fourier domain
and, as can be seen, there is a number of eigenvalues that are close to 10−5. Because the
eigenvalues of A decrease exponentially (as we mentioned before in the continuous case), this
yields highly noise-sensitive solutions, making the problem ill-conditioned.

2.1.2 Image Inpainting

This experiment consists of randomly selecting a percentage of the image pixels x ∈ Rd contam-
inated with Gaussian noise with an SNR level of 40dB, to form the observation vector y ∈ Rm

(note that m < d). This can be represented by the linear model

y = Ax+ η,

where A ∈ Rm×d is a binary matrix formed by a subset of rows of the d-dimensional identity
matrix and η ∈ Rm is noise. Figure 2.2 presents the noisy and incomplete observation y after
applying the rectangular operator A to the same cameraman test image from the previous
example and adding Gaussian noise. In this case, 40% of the pixels were randomly deleted. We
clearly have in this inverse problem an underdetermined system that can produce an infinity of
solutions, therefore violating one of the Hadamard conditions.

2.1.3 Magnetic Resonance Imaging (MRI)

This is a non-invasive and non-ionising medical imaging technique that, through a phenomenon
called magnetic resonance, allows the sequential measurement of the Fourier coefficients of the
image of interest. However, the process of acquiring an MRI can be long, uncomfortable and
expensive for the patient. This is why incomplete Fourier data acquisition is commonly used
as a way to speed up the imaging process.

In tomographic image reconstruction, we seek to recover an image x ∈ Rd from an observa-
tion y ∈ Cm related to x by a linear Fourier model

y = Ax+ η,

13
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Figure 2.1: Cameraman deblurring experiment: (a) Original image of dimension 256×256 pixels;
(b) real part of eigenvalues of A (in absolute value). (c) Blurred observation with SNR= 40.

Figure 2.2: Cameraman inpainting experiment: Noisy and incomplete observation y.
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where A = HF, F is the discrete Fourier transform operator on Cd, H ∈ Cm×d is a (sparse)
tomographic subsampling mask and η ∼ N(0, σ2I2m). Typically m ≪ d, i.e., a very small
number of noisy Fourier measurements are available, which makes the estimation problem
strongly ill-posed (due to the non-uniqueness of the solution), resulting in significant uncertainty
about the true value of x. Figure 2.3 presents this experiment with the Shepp-Logan phantom

test image of dimension 128× 128, depicted in Figure 2.3(a), which we use to generate a noisy
observation y by measuring 15% of the original Fourier coefficients, corrupted with additive
Gaussian noise with σ = 10−2. To improve visibility, Figure 2.3(b) shows the amplitude of
the Fourier coefficients on a logarithmic scale, where unobserved coefficients are depicted in
black. Figure 2.3(c) shows the so-called “back-projected image” which is the projection of the
observation y onto the image domain.

(a) true image x

-2

0

2

4

(b) observation y (c) back-projected image ỹ

Figure 2.3: Tomography experiment: (a) Shepp-Logan phantom image (128 × 128 pixels); (b)
tomographic observation y (amplitude of Fourier coefficients in logarithmic scale). (c) Back-
projected image ŷ.

2.1.4 Hyperspectral unmixing

The hyperspectral acquisition technique consists of capturing narrowband spectral images in
different frequency bands. This dense set of images is then stored in a three-dimensional
hyperspectral data cube for analysis. Despite the high number of spectral bands, the spacial
resolution is usually low, causing in most cases an undesired mixed spectral effect [111]. This
gives rise to the hyperspectral unmixing problem [14, 82], which aims to separate the mixed
pixels into their corresponding spectra and fractional abundances or proportions.

To obtain the latter, a linear model is assumed. In particular, given a hyperspectral image
y ∈ Rm×d with m spectral bands and d pixels, the unmixing problem assumes that the observed
scene is composed of k materials or endmembers, each with a characteristic spectral response
aj ∈ Rm for j ∈ {1, . . . , k}, and seeks to determine the proportions or abundances xj,i of each
material j ∈ {1, . . . , k} in each image pixel i ∈ {1, . . . , d}. Here we consider the widely used
linear mixing model

y = Ax+ η,

where A = {a1, . . . , ak} ∈ Rm×k is a spectral library gathering the spectral responses of the
materials, x ∈ Rk×d gathers the abundances, and η ∼ N(0, σ2Im×d) is additive Gaussian noise.

In general, this is a challenging ill-posed inverse problem due to the high correlation of
the spectral signatures of the materials in the spectral library A [74, 48]. To illustrate this
situation, Figure 2.4 shows the Simulated Data Cube 1 synthetic experiment from [75, Section
4], in which we consider a simplified version of the spectral signature library A ∈ R224×12

with 224 frequency bands, selecting 12 random materials out of 240 originally presented in the
library1. The image x has dimension 75× 75 = 5625 and out of the 12 materials, only five are
present in the synthetic image. Figure 2.4(a) shows the true fractional abundance of these five
materials and Figure 2.4(b) shows the rapid decay of the singular values of A.

1Available online from http://speclab.cr.usgs.gov/spectral.lib06.
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Figure 2.4: Hyperspectral unmixing experiment: (a) True fractional abundances of endmembers
1 to 5 (from left to right), and (b) singular values of the spectral library A.

2.2 The need for regularisation

A common way to accurately estimate x from y and achieve a unique and stable solution to
these problems is using a deterministic approach in the field of regularisation theory [11]. For
instance, a basic regularisation scheme comes from Tikhonov regularisation [119, 118], in which
one is interested in solve

min
x∈Rd

∥Ax− y∥2 + β∥x∥2, (2.3)

where a regularisation term ∥x∥2 is introduced, and β > 0 is commonly defined as the regular-
isation parameter, which balance the effect between the data fidelity term ∥Ax − y∥2 and the
regularisation term ∥x∥2. It can be shown that the solution of (2.3) exists, is unique, stable
[87] and given by

x∗β = (ATA+ βId)−1ATy. (2.4)

In Figure 2.5, we present the results after applying Tikhonov regularisation to the image
deblurring experiment described in Section 2.1.1.

Regularisation methods have been widely used in recent decades and include approaches such
as approximate analytic inversion [110], iterative methods with early stopping [23], discretisa-
tion as regularisation [78, 67] and variational methods [109], including Tikhonov regularisation.
For a summary of regularisation methods, see e.g., [6, Section 2] and [77, Section 2].

2.3 The Bayesian approach

Another direction that renders the problem well-posed, and it is the approach we will utilise in
this thesis, is to consider the Bayesian inversion theory [112], a statistical approach that seeks
to recover the probability distribution of the unknown image x given the observed data y by
modelling all variables of interest (x, y and noise) as random ones. In this setting, one first
seeks to characterise the degree of knowledge of an image of interest x through a probability
distribution that relates the available observation y with x via a likelihood distribution. In this
thesis, we will assume this distribution has a probability density function (up to a normalisation
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(a) x∗
0.1 (b) x∗

0.01 (c) x∗
0.001

Figure 2.5: Image deblurring experiment: results after applying the Tikhonov regularisation
(2.4), using different values for the regularisation parameter β: (a) β = 10−1, (b) β = 10−2, (c)
β = 10−3.

constant) of the following form
p(y|x) ∝ e−fy(x), (2.5)

where fy(x) : Rd → R is convex and Lipschitz continuously differentiable with constant Lf ,
that is,

∀x1, x2 ∈ Rd, ∥∇fy(x1)−∇fy(x2)∥ ≤ Lf∥x1 − x2∥.

As we illustrated at the beginning of this section, the imaging experiments considered in
this thesis has the linear form y = Ax + η, where η ∼ N (0, σ2Im). In this case, the likelihood
distribution can be written as

p(y|x) ∝ exp

(
−∥y −Ax∥2

2σ2

)
.

The Bayesian approach allows to regularise the estimation problem by incorporating the
available knowledge of the unknown image x through the so-called prior distribution. In this
thesis, we will assume that these distributions will have the following form

p(x|β) ∝ e−βTg(x), (2.6)

where β ∈ (0,+∞)p is a vector of hyperparameters that controls the amount of enforced
regularity, g : Rd → Rp is a vector of statistics that includes all the prior information one wants
to include, and each (gi)i∈{1,...,p} : Rd → (−∞,∞] is proper, convex, lower semicontinuous, and
potentially non-smooth.

Regarding the prior models that have been successfully used in inverse problems, we will
now provide a brief explanation of the prior distributions that we will use for the problems
previously illustrated in this section.

2.3.1 Types of prior

As we mentioned before, the priors that interest us in this thesis are those that enjoy log-
concavity, which allows the application of efficient optimisation and sampling techniques. The
ones we will use in this thesis are explained below.

ℓ1 Prior

If the prior information one has from the image x seeking to estimate is that it contains small
and well-localised objects (for example, a tumour in an MRI scan of a brain), then impulse
prior models are the preferred approach. They are mainly applied to images with low average
amplitude with few outliers. A typical impulse prior to consider is the ℓ1 prior or Laplace
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distribution [28, 117], which is defined as

p(x|β) ∝ exp(−β∥x∥1)

Total variation Prior

There are some situations in which the image one wants to find contains discontinuities, i.e.,
it can have large jumps every now and then. The total variation density is useful in these
scenarios [106]. Let f : Ω → R be a function in L1(Ω), i.e., the space of integrable functions on
Ω ⊂ R2, the total variation of f is defined as

TV(f) = sup

{∫
Ω

f∇ · h dx : h ∈ C1
c (Ω,R2),

√
h21 + h22 ≤ 1

}
.

When f is smooth, the total variation of x can be defined as

TV(f) =

∫
Ω

∥∇f∥dx.

For numerical implementations, several total-variation seminorms have been proposed [29, 32].
In particular, if we assume that the image x can be represented as a two-dimensional matrix,
i.e., x ∈ RN×N where N ×N = d, the isotropic seminorm is given by

TViso(x) =
∑
i,j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2,

and the anisotropic version

TVaniso(x) =
∑
i,j

√
|xi+1,j − xi,j |2 +

√
|xi,j+1 − xi,j |2

=
∑
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |,

for i, j = 1, . . . , N . In this thesis we use the isotropic seminorm, therefore, the discrete total
variation density is then given by

p(x|β) ∝ exp(−βTViso(x)).

From now on we refer to TViso(x) as simply TV(x). These are the priors we are going to
use in our experiments, i.e., in the imaging inverse problems previously illustrated.

2.3.2 Bayes’ theorem and the posterior distribution

Having defined the prior and likelihood distributions we will work with, we can use Bayes’
theorem, to derive the posterior distribution p(x|y, β), given by

p(x|y, β) = p(y|x)p(x|β)∫
Rd p(y|x)p(x|β)dx

.

Our main focus is the computational aspects of calculating estimates from posterior distri-
butions which, taking into account (2.5) and (2.6), will have the following form

p(x|y, β) ∝ exp[−fy(x)− βTg(x)]. (2.7)

2.3.3 The different approaches in the Bayesian paradigm

Under the Bayesian framework, the typical approach in the imaging community is to exploit
the convexity properties of (2.7) and compute the so-called maximum a posteriori (MAP) point
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estimate [96], which can be formulated as the following optimisation problem

xMAP = argmax
x

p(x|y, β) = argmin
x

fy(x) + βTg(x),

and can be computed with efficient convex optimisation algorithms that exploit the log-concavity
of (2.7) and are able to deliver accurate solutions in reasonable computational times [30]. How-
ever, to perform more complex Bayesian analysis techniques such as Bayesian model selection,
model calibration and hypothesis testing [102], this commonly requires the computation of high
dimensional integrals of the form

h̄ =

∫
Rd

h(x)p(x|y, β)dx, (2.8)

which are typically intractable.
Several approaches have been proposed to compute numerically (2.8), such as variational

Bayesian inference [16], which approximates p(x|y, β) by selecting from a family of tractable
distributions the one that best fits the target distribution by the application of optimization
techniques. Despite being computationally fast, variational inference has weaker convergence
guarantees to the exact posterior distribution.

A technique that does possess more robust convergence properties is Monte Carlo integration
and, in particular, Markov chain Monte Carlo (MCMC) methods [103, 22]. MCMC methods
are used to generate correlated samples from target distributions that are not amenable to exact
sampling. The idea is to construct a time-homogeneous Markov chain from an irreducible and
aperiodic transition kernel K with invariant probability distribution µ that admits a density
π(x), and generates samples x1, x2, . . . using the kernel K (see [107] for details).

In this case, the corresponding Markov chain x1, x2, . . . is ergodic, and the following rela-
tionship holds

P

(
lim
n→∞

1

n

n∑
i=1

h(xi) =

∫
Rd

h(x)π(x)dx

)
= 1.

This implies that we can use the samples x1, x2, . . . to approximate integrals (i.e., expectations
w.r.t. the invariant distribution) in the same way as we use i.i.d. samples from classical Monte
Carlo methods.
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Chapter 3

Markov-chain Monte Carlo for
Bayesian inference

As we mentioned in the previous chapter, Markov chain Monte Carlo (MCMC) methods deal
with the problem of drawing extract samples from p(x|y, β) by generating correlated samples
that satisfy the ergodicity property so that they can be used to compute (2.8) with convergence
guarantees similar to those of classical Monte Carlo methods.

For several years, the main focus on MCMC methods has been on producing samples via
asymptotically exact MCMC methods [46, 55, 132, 12], that is, samples of the exact target
distribution µ. Although this is an ideal direction to calculate estimators in a very precise
way, it implies an intermediate Metropolis-Hastings (MH) correction step at each iteration that
deteriorates the performance of these exact sampling methods when the problem is defined in
very high dimensions, or the step-size of these methods must be adjusted to be very small to
have a desirable acceptance rate [55].

The latter has increased the interest in research on inexact MCMC methods [44, 33, 134,
108, 91, 34]. In this case, due to the lack of the MH correction step, the Markov chain targets
a different distribution that is normally close to the true target distribution, however, these
methods have demonstrated to produce estimators in more efficient computational times, paying
for a small amount of error or bias that can be controlled adapting the values of algorithmic
parameters, such as the step-size. In this chapter, we briefly discuss both approaches, reviewing
some of the most important exact and inexact MCMC methods.

3.1 Exact MCMC Methods

3.1.1 Metropolis-Hastings algorithm

This MCMC algorithm was presented in 1953 for the case of symmetrical proposal distributions
[89] and then extended for a more general case in 1970 [68]. It can be seen as the general
framework on which the MCMC methods we will describe in this section are based. The main
idea is to generate samples from a proposal distribution q(x, x′) that differs from the true
target density π(x) but is easier to generate samples from. The application of an appropriately
chosen MH step ensures that the target distribution π(x) is invariant for the corresponding
Markov chain, and so the samples are distributed according to π(x) when the chain reaches
stationarity1[103, Section 6.6]. This method is called the MH algorithm and is illustrated in
Algorithm 1.

3.1.2 Random-Walk Metropolis algorithm

One of the most common and easy-to-implement MH algorithms of the last decades is called
the Random-walk Metropolis (RWM) algorithm [89, 68]. This method consists on construct a

1It is important to emphasize that the stationary distribution is also a limiting distribution in the sense that
xn is distributed according to π(x) when n → ∞, that is, xn is asymptotically distributed according to π(x).
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Algorithm 1 MH Algorithm

Require: Initial sample x0, no. samples N , target π(x), proposal q(x, x′)
for n = 0 : N − 1 do

Draw x′prop ∼ q(xn, x
′)

Calculate

α(xn, x
′
prop) = min

(
1,
π(x′prop)q(x

′
prop, xn)

π(xn)q(xn, x′prop)

)
Draw u ∼ U([0, 1])
if u < α(xn, x

′
prop) then

Accept: Set xn+1 = x′prop
else

Reject: Set xn+1 = xn
end if

end for

proposal distribution based on a random walk model q(x, x′) = h(x− x′) where h : Rd → R+.
This scheme is illustrated in Algorithm 2, in which q(x, x′) ∝ exp(−0.5δ−2(x − x′)T(x − x′)),
this is a typical proposal choice since q(x, x′) = q(x′, x), allowing a more simplified structure of
the acceptance probability, i.e., the proposal distribution does not appear in α(x, x′).

Algorithm 2 Random-Walk Metropolis Algorithm

Require: Initial sample x0, no. samples N , target π(x), step-size δ
for n = 0 : N − 1 do

Draw ξ ∼ N (0, δ2Id)
Draw x′prop = xn + ξ
Calculate

α(xn, x
′
prop) = min

(
1,
π(x′prop)

π(xn)

)
Draw u ∼ U([0, 1])
if u < α(xn, x

′
prop) then

Accept: Set xn+1 = x′prop
else

Reject: Set xn+1 = xn
end if

end for

Notice that the acceptance ratio α(x, x′) presents a simplified form compared to Algorithm
1, thanks to the symmetry of q. The step-size δ in the latter algorithm is also called the scaling
parameter, as it is well known that, when it is sufficiently small, the algorithm will accept
the majority of proposed samples, but the progress of the chain will be slow; on the other
hand, when δ is very large, the algorithm will reject the majority of samples, also affecting the
performance of the algorithm.

Despite its simplicity and advances in its theoretical analysis, RWM remains a computa-
tionally expensive algorithm in high dimensions, mainly due to the lack of information about
the target distribution in the proposed samples, making its use impractical for imaging ap-
plications. This motivated the research community to study and propose more sophisticated
sampling schemes that enhance the proposal distribution and thus improve the sampling pro-
cess. The Metropolis-adjusted Langevin algorithm (MALA) and the Hamiltonian Monte Carlo
(HMC) algorithm are two examples of more sophisticated schemes that scale better in higher
dimensions, as we will see later.

3.1.3 Metropolis-Adjusted Langevin Algorithm

An obvious disadvantage of the RMW algorithm is that it does not contain any information
about the target density π in the proposed samples x′prop. One natural way to overcome the
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latter is to add some information on the target distribution in the proposal in such a way
that enforces to move to areas of large probability. This can be achieved by incorporating the
gradient of log π to the proposal distribution, i.e.,

q(x, x′) ∝ exp

(
− 1

4δ
∥x′ − x− δ∇ log π(x)∥2

)
. (3.1)

If we incorporate this proposal into Algorithm 1, the resulting sampling method is the
so-called Metropolis adjusted Langevin Algorithm (MALA), illustrated in Algorithm 3.

Algorithm 3 Metropolis adjusted Langevin Algorithm

Require: Initial sample x0, no. of samples N , step-size δ, functions π(x) and ∇ log π(x).
for n = 0 : N − 1 do

Draw ξ ∼ N (0, Id)
Set x′prop = xn + δ∇ log π(xn) +

√
2δξ

Calculate

α(xn, x
′
prop) = min

(
1,
π(x′prop)q(x

′
prop, xn)

π(xn)q(xn, x′prop)

)
Draw u ∼ U([0, 1])
if u < α(xn, x

′
prop) then

Accept: Set xn+1 = x′prop
else

Reject: Set xn+1 = xn
end if

end for

Note that q(x, x′) is not symmetric as in Algorithm 2 and therefore q(x, x′) needs to be
taken into account in the MH step. In addition, the choice of the proposal distribution (3.1)
comes from the context of stochastic differential equations (SDEs), which we will discuss in
Section 3.2.1.

3.1.4 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) method was first introduced more than seventy years
ago in the area of lattice field theory [40]. Since then, several works have been presented that
develop the theory, applications and variants of this MCMC method [76, 71, 19, 13, 18]. The
idea behind this successful algorithm is to simulate the Hamiltonian dynamics

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

, (3.2)

that is, the evolution of the position q and momentum p of a particle during some time t, with
Hamiltonian function defined as

H(q, p) = U(q) +K(p), (3.3)

where U(x) is called the potential energy and will be defined as − log π(x), i.e., the log of the
density of interest, and K(x) is called the kinetic energy which is usually defined as

K(p) = pTM−1p/2, (3.4)

but other kinetic energy functions can be used [12, Section 4.2]. The idea behind HMC is
that the so-called canonical density, defined as exp(−H(q, p)) is preserved by the Hamiltonian
dynamics due to the reversibility, conservation of energy and volume-preserving properties that
this Hamiltonian dynamics enjoy (see [107, Theorem 7]). Moreover, from this canonical density,
one can notice that the stochastic vectors q and p are independent, which allows defining a
Markov chain in the following way

• Draw pn ∼ N (0,M).
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• Find (qn+1, pn+1) by solving the Hamiltonian dynamics (3.2) with initial condition (qn, pn)
and Hamiltonian function (3.3) up to some time T .

By using this recursion, the resulting Markov chain qn, qn+1 (resp., xn, xn+1) has π(q) (resp.,
π(x)) as its invariant density and is reversible w.r.t. π [107, Theorem 8].

However, in most applications it is impossible to exactly solve (3.2) therefore, a numerical
scheme needs to be considered. A reversible algorithm that simulates this dynamics and pre-
serves volume is known as the leapfrog or Störmer-Verlet method [66]. Given an step-size τ , a
step performed by the leapfrog method from (qn, pn) to (qn+1, pn+1) is defined as

pn+1/2 = pn − τ

2
∇ log π(qn),

qn+1 = qn + τM−1pn+1/2,

pn+1 = pn+1/2 −
τ

2
∇ log π(qn+1).

Since it does not preserve energy, one needs to add an MH step in order to leave the target
distribution invariant. With all these ingredients, we now have all of the necessary information
to present the HMC method, which is illustrated in Algorithm 4.

Algorithm 4 Hamiltonian Monte Carlo Algorithm

Require: Initial value x0, no. of samples N , no. of leapfrog iterations L, step-size δ, functions
π(x) and ∇ log π(x).
Set q00 = x0
for n = 0 : N − 1 do

Draw p0n ∼ N (0,M)
for m = 0 : L− 1 do

Set p
m+1/2
n = pmn − 0.5δ∇ log π(qmn )

Set qm+1
n = qmn + δM−1p

m+1/2
n

Set pm+1
n = p

m+1/2
n − 0.5δ∇ log π(qm+1

n )
end for
Calculate

α(x, y) = min

{
1,

exp(−H(qLn , p
L
n))

exp(−H(q0n, p
0
n))

}
Draw u ∼ U([0, 1])
if u < α(x, y) then

Accept: Set xn+1 = qLn , q
0
n+1 = qLn

else
Reject: Set xn+1 = q0n, q

0
n+1 = q0n

end if
end for

3.2 Inexact MCMC Methods

The exact MCMC techniques mentioned above include an MH correction step at every iteration,
which can slow down the progress of the chain, particularly in high-dimensional applications
like imaging. This last aspect motivated the study of inexact MCMC methods that, despite
not targeting the true distribution and having a slightly higher asymptotic bias, have faster
convergence, lower initialization bias and lower estimation variance. Compared to exact MCMC
methods, this enables the generation of higher quality samples in a shorter computational time.
We will discuss in this section the inexact MCMC methods used in this thesis.

3.2.1 Unadjusted Langevin Algorithm

Recall from Section 3.1.3 that the proposal distribution (3.1) can be explained from the theory of
stochastic differential equations (SDEs). In this context, the (overdamped) Langevin diffusion,
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characterised by the following SDE

dXt = ∇ log π(Xt)dt+
√
2dWt , (3.5)

whereWt is a d-dimensional Brownian motion, has a unique strong solution and admits π(x) as
its unique invariant density, under mild assumptions on log π(x) [104, Theorem 2.1]. However,
it is usually not possible to solve (3.5) exactly, so a numerical approximation needs to be taken
into consideration. The simplest possible way to do so is to consider the Euler-Maruyama (EM)
scheme given by

Xn+1 = Xn + δ∇ log π(x) +
√
2δZn+1, (3.6)

where δ > 0 is a given step-size and (Zn+1)n≥0 is an i.i.d. sequence of d-dimensional standard
Gaussian random vectors. This numerical scheme targets an approximated distribution πδ(x)
that is close to π(x) [104, Section 1.4.1]. If we add a MH correction to target π, we have
Algorithm 3. Without any MH correction step, the resulting scheme is called unadjusted
Langevin algorithm (ULA) [44, 43] or Langevin Monte Carlo (LMC) [33, 42], illustrated in
Algorithm 5.

Algorithm 5 unadjusted Langevin Algorithm

Require: Initial value x1, no. of samples N , step-size δ, function ∇ log π(x).
for n = 2 : N do

Draw ξ ∼ N (0, δId)
Set xk = xk−1 + δ∇ log π(xk−1) +

√
2δξ

end for

Under some regularity assumptions, namely L-Lipschitz continuity of ∇ log π and δ < 1/L,
the Markov chain (Xn)n≥0 is ergodic with stationary distribution πδ(x) close to π [44]. Addi-
tionally, when π is log-concave, ULA inherits the favourable properties of (3.5) and converges to
πδ(x) geometrically fast with good convergence rates, offering an efficient Bayesian computation
methodology for high dimensional problems [44].

3.3 Performance & accuracy of MCMC methods

After defining some of the most popular exact & inexact MCMC methods in the literature, we
will briefly describe some approaches that we use in this thesis to evaluate the performance and
accuracy of the sampling schemes we will propose.

3.3.1 Asymptotic bias and variance

Recall that the goal of MCMC methods is to accurately approximate expectations (i.e., inte-
grals) of the form

Eπ(ϕ(x)) =

∫
Rd

ϕ(x)π(x)dx. (3.7)

Assuming that we have access to an ergodic Markov chain x1, x2, . . . with invariant density
π (in the case of exact MCMC methods) or πδ (in the case of inexact MCMC methods with
stepsize δ), we can approximate the latter expectation by calculating the following sum

ϕ̂n =
1

n

n∑
i=1

ϕ(xi).

One way to assess the accuracy of the estimator ϕ̂n is to compute its asymptotic mean squared
error (MSE). The latter can be expressed as

MSEϕ̂n→∞
=
(
Biasn→∞(ϕ̂n)

)2
+Varn→∞(ϕ̂n),
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that is, the combination of the asymptotic bias, given by

Biasn→∞(ϕ̂n) = lim
n→∞

1

n

n∑
i=1

ϕ(xi)−
∫
Rd

ϕ(x)π(x)dx,

and the asymptotic variance, given by

Varn→∞(ϕ̂n) = lim
n→∞

nVar(ϕ̂n).

Regarding the exact MCMC methods mentioned above, since their limiting invariant density
is the true target distribution π, their asymptotic bias vanishes and thus their asymptotic MSE
will be equal to their asymptotic variance, but they normally require a large number of iterations
to obtain a stable estimator.

In the case of inexact MCMC methods, such as the unadjusted Langevin algorithm, they
have an asymptotic bias associated with targeting a different density πδ(x) instead of π, which
can be reduced by decreasing δ, and vanishes as δ → 0. However, decreasing δ deteriorates
the convergence properties of the chain and amplifies the associated non-asymptotic bias and
variance. Therefore, to apply ULA to large problems in a computationally efficient way, it is
necessary to use values of δ that are close to the stability limit 1/L, to obtain a good trade-off
between bias and variance.

The investigation of efficient MCMC algorithmic parameters to have a good balance between
asymptotic bias and variance, and the development of new MCMC methods and techniques that
aim to reduce asymptotic bias/variance is an active area of research. See, e.g., [41, 10, 124, 84].

3.3.2 Kullback–Leibler divergence

Another way to measure the accuracy of MCMC methods is to compute the Kullback–Leibler
(KL) divergence [79] between the target distribution with density π and the approximated
distribution generated by n samples of an MCMC method with stepsize δ, whose density we
will call πn

δ . This is defined as

DKL(π ∥ πn
δ ) =

∫ +∞

−∞
π(x) log

(
π(x)

πn
δ (x)

)
dx.

Since the distribution πn
δ is computed from n samples, the latter expression is usually

computed numerically. For instance, one can use built-in functions that compute the relative
entropy between the target distribution and a numerical fitting of a distribution to the grouped
data, i.e., an estimate of the density function from the available Markov chain samples. See,
e.g., [58, Section 24.5].

3.3.3 Autocorrelation function

Since MCMC methods produce correlated samples, it is desirable to generate samples with
the lowest possible correlation between them, which can be seen as an indicator of how much
information the samples carry from the target distribution. A high correlation indicates that
the target distribution has not been explored enough and thus a large number of samples would
be needed, which can be computationally expensive.

One way to measure the latter is the computation of the autocorrelation function (ACF) at
lag τ [62, Section 3]. It measures the correlation between the univariate samples xi and xi+τ

from N samples generated by an MCMC method, and is defined as

rτ =

∑N−τ
i=1 (Xi − X̄)(Xi+τ − X̄)∑N

i=1(Xi − X̄)
,

where X̄ is the sample mean. We would then like rτ to decay to zero as quickly as possible as
τ increases. This is commonly presented in an ACF plot that illustrates this decay for different

25



values of τ . Since this is a univariate estimator, in the multivariate case one can study the
evolution of a particular component of the generated multidimensional samples.

3.3.4 Effective sample size (ESS)

A heuristic that also allows comparing the efficiency between MCMC methods is the effective
sample size (ESS) [8, Section 2.3], defined by

ESS =
N

1 + 2
∑∞

τ=1 rτ
,

where N is the total sample size and rτ is the autocorrelation at lag τ . In practice, the sum in
the denominator is truncated at lag k when rk is less than some threshold value close to 0 (e.g.,
0.05) [22, Section 15.5]. In a nutshell, the ESS is the number of independent samples with the
same estimation power as the N autocorrelated samples. This means that the closer the ESS
is to N , the better the quality of the MCMC samples.

3.4 Proximal MCMC methods

We are now ready to consider the class of models given by (2.7), which are not smooth. Un-
fortunately, ULA, MALA and HMC cannot be directly applied to such models, as they require
Lipschitz differentiability of log p(x|y, β). Proximal MCMC methods address this difficulty by
carefully constructing the following smooth approximation

pλ(x|y, β) = p(y|x)pλ(x|β)∫
Rd p(y|x)pλ(x|β)dx

∝ exp[−fy(x)− βTgλ(x)], (3.8)

where
gλ(x) = [gλ1 (x), . . . , g

λ
p (x)],

that is, each non-smooth term gi(x), i ∈ {1, . . . , p} is replaced by its Moreau-Yosida envelope2

gλi (x) = min
u∈Rd

{
gi(u) +

1

2λ
∥x− u∥2

}
, (3.9)

where gλi (x) → gi(x) as λ→ 0. This leads to the differentiable log-posterior with gradient given
by

∇ log pλ(x|y, β) =−∇fy(x)−∇(βTgλ(x)) ,

=−∇fy(x)−
1

λ

p∑
i=1

(
x− proxλβigi(x)

)
,

and Lipschitz constant L = Lf + p/λ where

proxλgi(x) = argmin
u∈Rd

{
gi(u) +

1

2λ
∥x− u∥2

}
.

As an illustration, Figure 3.1 shows the Moreau-Yosida envelope of the Laplace distribution
0.5 exp(−|x|) and the uniform distribution U[−1,1] using different values for λ. As can be seen,
the lower the value of λ, the better the approximation of the true distribution.

We have now a differentiable log-posterior distribution pλ(x|y, β) that satisfies all the reg-
ularity conditions required by ULA, MALA and HCM, and can be made arbitrarily close to
the original model p(x|y, β) by tuning a regularisation parameter λ > 0. It will define the
state-of-the-art sampling schemes that we will take as comparative MCMC methods that we

2If the calculation of the proximal operator of the sum of some elements of g is possible, it is not necessary
to replace each of these elements of the vector g with its corresponding Moreau-Yosida envelope. In addition, if
there is some gk(x), k ∈ {1, . . . , p} that is Lipschitz differentiable, its gradient can be computed directly.
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Figure 3.1: Plots for (a) Laplace and (b) uniform distribution in [−1, 1], and their Moreau-
Yosida approximations.

will present below, and will allow us to build and propose our novel and enhanced MCMC
methods in the following chapters.

3.4.1 Moreau-Yosida unadjusted Langevin algorithm

Given the smooth approximation pλ(x|y, β), we define the auxiliary Langevin SDE

dXt = ∇ log pλ(Xt|y, β)dt+
√
2dWt , (3.10)

and derive the MYULA Markov chain [45] by discretising this SDE by the EM method

Xn+1 = Xn − δ∇fy(Xn)−
δ

λ

p∑
i=1

(
Xn − proxλβigi(Xn)

)
+

√
2δZn+1, . (3.11)

The main benefit of the MYULA is that now since pλ(x|y, β) is smooth and preserves log-
concavity, the results from [44, 43] apply, hence providing an efficient method for application
in imaging problems. In addition, the asymptotic bias can be removed, if necessary, by com-
plementing MYULA with an MH step [95], which is useful for benchmarking purposes.

As mentioned previously, despite being relatively recent, proximal MCMC methods have
already been successfully applied to many large-scale inference problems related to imaging
sciences [25, 60, 126], and machine learning [128, 80].

3.4.2 Limitations of MYULA and proximal MALA methods

One of the main limitations of ULA, MALA and their proximal variants is that they are all
derived from the EM approximation (3.6) of the Langevin SDE. This approximation is mainly
used because it is computationally efficient in high dimensions, it is easy to implement, and it
can be rigorously theoretically analysed. However, the EM approximation is not particularly
suitable for problems that are ill-conditioned or ill-posed as its performance is very sensitive
to the anisotropy of the target density, which is a common feature of imaging problems. More
precisely, in order to be useful for Bayesian computation, the EM approximation of the Langevin
SDE (3.10) has to be numerically stable.

For MYULA, this requires using a step-size δ < 2/L with L = Lf + 1/λ, where we recall
that Lf is the Lipschitz constant of ∇fy and that λ controls the quality of the approximation
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pλ(x|y, β) of p(x|y, β). This restriction essentially guarantees that the chain moves slowly
enough to follow changes in ∇ log pλ(x|y, β) in a numerically stable manner, particularly along
directions of fast change. However, this is problematic when pλ(x|y, β) has some directions or
regions of the parameter space that change relatively very slowly, as the chain will struggle
to properly explore the solution space and will require a very large number of iterations to
converge. In imaging models, this typically arises when the likelihood p(y|x) has identifiability
issues (e.g, if it involves an observation operator A for which ATA is badly conditioned or rank
deficient), or if we seek to use a small value of λ to bring pλ(x|y, β) close to p(x|y, β).

To highlight this issue, we report below two simple illustrative experiments where MYULA
is applied to a two-dimensional Gaussian distribution. In this case, there is no non-smooth
term g and the step-size restriction is dictated by the Lipschitz constant of f , but the same
phenomenon arises in more general models. In the first experiment we consider µ1 = (0, 0) and
Σ1 = diag(1, 10−2) (i.e., Lf = 102); whereas in the second experiment we use µ2 = (0, 0) and
Σ2 = diag(1, 10−4) (i.e., Lf = 104). The results are presented in Figure 3.2. Notice that in
the first case MYULA explores the distribution very well, showing a good rate of decay in the
autocorrelation functions of both components. However, in the second case, MYULA exhibits
poor convergence properties as it struggles to explore the first component.
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(d) MYULA, N (µ2,Σ2)
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Figure 3.2: Two-dimensional Gaussian distribution: (a) 103 samples generated by MYULA
using the target distributionsN (µ1,Σ1) with δ = 2/(L+ℓ) = 1.98×10−2 where L = 1/σ2

11 = 100
and ℓ = 1/σ2

22 = 1; and (d) 5×103 samples generated by MYULA using the target distributions
N (µ2,Σ2) with δ = 2/(L + ℓ) = 1.99 × 10−4 where L = 1/σ2

11 = 104 and ℓ = 1/σ2
22 = 1.

Autocorrelation functions of the (b)-(e) first and (c)-(f) second component (i.e., x1 and x2)
of the samples generated by the ULA algorithm, having N (µ1,Σ1) and N (µ2,Σ2) as target
distributions, respectively.

This limitation of the EM approximation could be partially mitigated by preconditioning the
gradient ∇ log πλ by considering a Langevin SDE on an appropriate Riemannian manifold, as
recommended in [59], and in a spirit akin to natural gradient descent and Newton optimisation
methods. The preconditioning procedure proposed in [59] is very effective but too expensive
for imaging models because it requires evaluating quantities related to second and third-order
derivatives of log πλ and performing expensive matrix operations. Conversely, simple proce-
dures such as preconditioning with a pseudo-inverse of the Hessian matrix of the log-likelihood
function are computationally efficient but do not typically lead to significant improvements in
performance because they do not take into account the geometry of the log-prior. The devel-
opment of computationally efficient yet effective preconditioning strategies for imaging models
is an active research topic, see, e.g., [85, 86].
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Chapter 4

Proximal SK-ROCK MCMC
method

The results presented in this chapter appeared in the SIAM Journal on Imaging Sciences [97]
and are joint work with Marcelo Pereyra and Konstantinos C. Zygalakis.

4.1 Introduction

This chapter seeks to exploit recent developments in the numerical analysis of SDEs to signifi-
cantly improve the computational efficiency of proximal MCMC methodology. More precisely,
we propose to use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approxima-
tion of the Langevin diffusion process [2] that is significantly more computationally efficient than
the conventional Euler-Maruyama approximation used by existing proximal MCMC methods.
In particular, we present a new proximal MCMC method that applies this approximation to the
Moreau-Yosida regularised Langevin diffusion underpinning the MYULA algorithm, and show
both theoretically and empirically that this leads to dramatic improvements in convergence
speed and estimation accuracy.

This highly advanced Runge-Kutta stochastic integration scheme extends the deterministic
Chebyshev method [1] to SDEs, in order to approximate (3.8), instead of the basic EM dis-
cretisation scheme that underpins MYULA. Its implementation is straightforward as it only
requires knowledge of the gradient operator ∇ log pλ(x|y, β) given by (3.4), which is also used
in MYULA.

Furthermore, this sophisticated method performs s ∈ N∗ evaluations of ∇ log pλ(x|y, β) at
carefully chosen extrapolated points determined by Chebyshev polynomials, unlike MYULA,
which uses a single evaluation of ∇ log pλ(x|y, β) per iteration. In this regard, the resulting
computational benefit of this scheme is similar to the one of accelerated optimization methods
when compared to gradient descent. In fact, the deterministic Runge-Kutta-Chebyshev method
was recently shown to have similar theoretical convergence properties to Nesterov’s accelerated
optimisation algorithms in the case of strongly convex functions [49].

4.2 The Algorithm

The proposed proximal SK-ROCK method is presented in Algorithm 6 below, where Ts denotes
the Chebyshev polynomial of order s of the first kind, defined recursively by Tk+1 = 2xTk(x)−
Tk−1(x) with T0(x) = 1 and T1(x) = x. The two main parameters of the algorithm are the
number of stages s ∈ N∗ and the step-size δ ∈ (0, δmax

s ]. Notice that the range of admissible
values for δ is controlled by s: for any s ∈ N∗, the maximum allowed step-size is given by
δmax
s = ls/(Lf + 1/λ) with ls = [(s − 0.5)2(2 − 4/3η) − 1.5] and η = 0.05 [2]. Violating this
upper bound leads to a potentially explosive Markov chain. Also note that in the case of s = 1
the method reduces to MYULA.
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Algorithm 6 SK-ROCK

Require: : X0 ∈ Rd, λ > 0, n ∈ N, s ∈ {3, . . . , 15}, η = 0.05.
Compute ls = (s− 0.5)2(2− 4/3η)− 1.5
Compute

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′
s(ω0)

, µ1 =
ω1

ω0
, ν1 = sω1/2, k1 = sω1/ω0

Choose δ ∈ (0, δmax
s ], where δmax

s = ls/(Lf + 1/λ)
for i = 0 : n− 1 do

Set X̃0 = Xi

Sample ξi+1 ∼ N (0, 2δId)
ComputeX̃1 = X̃0 + µ1δ∇ log pλ(X̃0 + ν1ξi+1|y, β) + k1ξi+1

for j = 2 : s do
Compute µj = 2ω1Tj−1(ω0)/Tj(ω0), νj = 2ω0Tj−1(ω0)/Tj(ω0), kj = 1− νj ,

Compute X̃j = µjδ∇ log pλ(X̃j−1|, y, β) + νjX̃j−1 + kjX̃j−2

end for
Set Xi+1 = X̃s

end for
Output: Samples X1, . . . , Xn.

The values of δ and s are subject to standard bias-variance trade-offs. On the one hand, to
optimise the mixing properties of the algorithm one would like to choose δ as large as possible.
MYULA, based on the EM method, requires setting δ < δmax

1 = 1/(Lf + 1/λ) for stability,
but in SK-ROCK one can in principle take δ arbitrarily large by increasing the value of s.
However, this would also increase the asymptotic bias and the computational cost per iteration.
In our numerical experiments we found that a good trade-off in terms of bias, variance, and
computational cost per iteration was achieved by setting 3 < s < 15 and using a value of δ that
is close to the maximum allowed step-size δmax

s . As a general rule for imaging problems, we
recommend using s = 15 in problems that are strongly log-concave, and s = 10 otherwise.

To illustrate the benefits of using the proximal SK-ROCK method instead of MYULA, we
repeat the two Gaussian experiments reported in Figure 3.2 with Algorithm 6. The results are
shown in Figure 4.1, and where we have set the number of s optimally by using (4.8). Observe
that because the SK-ROCK method is allowed to use a larger step-size δ in a stable manner,
it produces, for the same computational cost (i.e., number of gradient evaluations), samples
that are significantly less correlated than MYULA with respect to the slow component. We
also observe in Figure 4.1 that this allows SK-ROCK to explore the target distribution more
accurately.

4.3 Mean-square stability analysis

We now discuss the mean-square stability properties of SK-ROCK and the EM method. In
particular, we consider the following test equation that is widely used in the numerical analysis
literature [69, 70] to benchmark SDE solvers

dX(t) = γX(t)dt+ µX(t)dW (t), X(0) = 1, (4.1)

where γ, µ ∈ R, which has the solution X(t) = exp[(γ − 1/2µ2)t + µW (t)]. It is easy to show
using Ito calculus that when 2γ + µ2 < 0

lim
t→∞

E(|X(t)|2) = 0.

We want to understand for what range of the step-size δ would a numerical discretisation Xn

of (4.1) behave in a similar manner as n → ∞, i.e. E(|Xn|2) → 0. In the case of EM one has
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(a) SK-ROCK, N (µ1,Σ1)
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(d) SK-ROCK, N (µ2,Σ2)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

(e) ACF, x1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

(f) ACF, x2

Figure 4.1: Two-dimensional Gaussian distribution: (a) 103/s samples generated by the SK-
ROCK algorithm (s = 2) using the target distribution N (µ1,Σ1) with δ = 4.82 × 10−2 and
(d) 5 × 103/s samples (s = 16) using the target distribution N (µ2,Σ2) with δ = 4.84 × 10−2.
Autocorrelation functions of the (b)-(e) first and (c)-(f) second component (i.e., x1 and x2) of
the samples generated by the SK-ROCK algorithm, having N (µ1,Σ1) and N (µ2,Σ2) as target
distributions, respectively.

that
Xn+1 = Xn + δγXn +

√
δµXnZn+1,

and hence

E(|Xn+1|2) = R(p, q)E(|Xn|2), R(p, q) = (1 + p)2 + q2, p = δγ, q =
√
δµ.

In order to have E(|Xn|2) → 0 one needs that R(p, q) < 1. We visualise the values of admissible
p, q for the EM method in Figure 4.2(a), where we can see that there is only a very small portion
of the true mean-square stability domain (2p+ q2 < 0) covered by it (anything on the left-hand
side of the dotted line in Figure 4.2(a)-(b) belongs to the true stability domain). This implies
that when one or both of the parameters γ, µ are large, a very small δ needs to be chosen to be
stable (for example when µ = 0 one recovers the stability condition δ < −2γ−1 for the Langevin
SDE). In the case of SK-ROCK, one has that

R(p, q) = R1(p)
2 +R2(p)

2q2,

where R1 and R2 are given by (4.4).
Similarly to the case of the EM method, we now plot the mean-square stability domain of

SK-ROCK in Figure 4.2(b). As we can see, a significantly larger portion of the true mean-square
stability domain is now covered when compared to the EM method. One can show, using the
properties of Chebyshev polynomials [2], that for SK-ROCK the coverage of the mean-square
stability domain increases quadratically in s; i.e., that if (p, q) ∈ {2p+ q2 < 0 ∩ p < C(η)s2}
then R(p, q) < 1 for the SK-ROCK method.

In contrast, if for comparison one would consider s-steps of the EM method, the correspond-
ing coverage of the mean-square stability domain would be linear in s. This means that for the
same number of gradient evaluations s, one can choose a much larger step-size δ for SK-ROCK
and still integrate equation (4.1) in a stable manner. The spikes observed in 4.2(b) at specific
values of p correspond to roots of the polynomial R2(p) defined in (4.4); these are determined
by the values of s and η, and by the roots of the Chebyshev polynomial of the second kind
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Figure 4.2: Mean-square stability domains for (a) EM and and (b) SK-ROCK (with s = 10)
in the p − q2 plane. The dashed line represents the upper boundary of the true mean-square
stability domain.

4.4 Computational Complexity

To the best of our knowledge, it is not possible to establish general complexity results for
Runge-Kutta-Chebyshev methods by using existing analysis techniques, and we are currently
investigating new bespoke techniques to study SK-ROCK. This is an important difference w.r.t.
the EM scheme used in MYULA, for which there are detailed non-asymptotic convergence re-
sults available that can be used to characterise its computational complexity [44]. Nevertheless,
it is possible to get an intuition for the computational complexity of SK-ROCK by theoreti-
cally analysing its convergence properties for a d-dimensional Gaussian target distribution with
density π(x) ∝ exp (−0.5x⊤Σ−1x), and Σ = diag(σ2

1 , ..., σ
2
d). More precisely, we study the con-

vergence of SK-ROCK in the 2-Wasserstein distance, as a function of the number of gradient
evaluations and the condition number κ = σ2

max/σ
2
min, and compare it with MYULA. This is

achieved by analysing in full generality the numerical solution of the Langevin SDE associated
with π, given by

dXt = −Σ−1Xtdt+
√
2dWt , (4.2)

by a one step numerical integrator, which yields (in general) a recurrence of the form

Xi
n+1 = R1(zi)X

i
n +

√
2δR2(zi)ξ

i
n+1, ξin+1 ∼ N(0, 1), (4.3)

where zi = −δ/σ2
i and X0 = (x10, ..., x

d
0)

T is a deterministic initial condition. For the EM
scheme used in MYULA we have R1(z) = 1+ z and R2(z) = 1, and for the SK-ROCK we have
that [2]

R1(z) =
Ts(ω0 + ω1z)

Ts(ω0)
, R2(z) =

Us−1(ω0 + ω1z)

Us−1(ω0)

(
1 +

ω1

2
z
)
, (4.4)
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where Ts, Us are Chebyshev polynomials of first and second kind respectively and

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′
s(ω0)

.

By using the fact that Gaussian distributions are closed under linear transformations, and
assuming that the initial condition X0 is deterministic, we derive the distribution of Xn for any
δ > 0 and obtain the following general result that holds for the EM (MYULA) method and for
SK-ROCK.

Proposition 1. Let π(x) ∝ exp (−0.5xTΣ−1x) with Σ = diag(σ2
1 , ..., σ

2
d), and let Qn be the

probability measure associated with n iterations of the generic Markov kernel (4.3). Then the
2-Wasserstein distance between π and Qn is given by

W2(π;Qn)
2 =

d∑
i=1

(
Dn(zi, x

i
0) +Bn(zi, σi)

)
(4.5)

where

Dn(x, u) = (R1(x))
2nu2, Bn(x, u) =

[
u−

√
2δR2(x)

(
1− (R1(x))

2n

1− (R1(x))2

)1/2
]2
.

In addition, the following bound holds

W2(π;Qn+1)
2 ≤W2(π; π̃)

2 + CW2(π̃, Qn)
2 (4.6)

where

π̃ = N
(
0, 2δ(R2(z))

[
1

1−R2
1(z)

])
,

is the numerical invariant measure and

C = max
1≤i≤d

R1(zi)
2. (4.7)

The bound (4.6) can now be used to compare the EM and the SK-ROCK method in terms
of how many gradient evaluations are required to achieve W2(π;Qn) < ε for some desired
accuracy level ε > 0. We see that the W 2

2 distance between π and Qn involves two terms. The
first term W2(π; π̃)

2 relates directly to the asymptotic bias of the method (recall that without
a Metropolis correction step, any generic approximation of (4.2) will have some asymptotic
bias because it will not exactly converge to π). The second term CW2(π̃, Qn)

2 related to the
convergence of the chain to the stationary distribution π̃, with the C controlling the convergence
rate. In imaging problems, the computational complexity is usually largely dominated by the
second term in (4.6) because of the dimensionality involved.

For the case of the EM (MYULA) method it is known [42] that, with a suitable choice of δ,
the number of gradient evaluations that one needs to take in order to achieve W2(π;Qn) < ε
is of order O(κ), where we recall that κ = σ2

max/σ
2
min is the condition number of Σ. For SK-

ROCK, the number of gradient evaluations depends on the choice of s and δ. Our focus is
on problems where κ is large, where the optimal performance is achieved by minimising C by
setting the number of internal stages s of each step to be

s =

[√
η

2
(κ− 1)

]
, (4.8)

with η = 0.05, and

δ =
ω0 − 1

ℓsω1
, ℓs =

1

σ2
max

, (4.9)

so that C ≈ (
√
κ−1)2/(

√
κ+1)2 (see [49] and Appendix B for details). In that case, and under

the assumption that W2(π, π̃) ≪ ϵ so that W2(π;Qn) is dominated by the term CW2(π̃, Qn)
2
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related to convergence to π̃, we observe that the number of gradient evaluations required to
achieve W2(π;Qn) < ε is of the order of O(

√
κ) instead of O(κ), similarly to the behaviour

of accelerated algorithms in optimization [92, 64]. These convergence results are illustrated in
Figure 4.3, where we plot the number of gradient evaluations required to achieveW2(π;Qn) < ε
as a function of the conditioning number κ for the EM method and for SK-ROCK, where π is
a 100-dimensional Gaussian distribution with mean zero and covariance Σ = diag(σ2

1 , ..., σ
2
d),

with decreasing diagonal elements uniformly spread between σ1 = 1 and σd = 1/κ.
One can also simplify the non-asymptotic W 2

2 results of Appendix A to obtain non-
asymptotic results for the estimation bias of the EM and SK-ROCK methods for the mean
of Gaussian target densities (this is a weaker analysis than convergence in W 2

2 ). As in the case
of the W 2

2 analysis, the number of gradient evaluations to attain a prescribed non-asymptotic
bias for the mean is of order O(

√
κ) for SK-ROCK, whereas it is of order O(κ) for the EM

method. Both methods are asymptotically unbiased for the mean for Gaussian models.
We emphasise at this point that there are situations where one would not observe any

acceleration by using SK-ROCK, namely situations in which a very accurate solution is required
and the bound (4.6) is dominated by the asymptotic bias term W2(π, π̃). In that case, instead
of using MYULA or SK-ROCK with a very small δ, we would recommend using the P-MALA
method described in [95], which combines an EM approximation with an MH correction.
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Figure 4.3: Wasserstein distance bounds, Gaussian analysis: Minimum number of gradient
evaluations of the EM and SK-ROCK methods in order to have W2(P ;Qn)

2 < ε2W2(P ;Q0)
2,

given different condition numbers κ.

4.5 Numerical experiments

In this section, we demonstrate the proposed SK-ROCK proximal MCMC methodology with a
range of numerical experiments related to image deblurring, tomographic reconstruction, and
hyperspectral unmixing, previously explained in Sections 2.1.1, 2.1.3 and 2.1.4, respectively.
We have selected these experiments to represent a wide variety of configurations in terms of
ill-posedness and ill-conditioning, strict and strong log-concavity, and dimensionality of y and
x. Following our previous recommendation, in the experiments related to image deblurring and
hyperspectral unmixing the model is strongly log-concave so we use s = 15, whereas for the
tomography experiment we use s = 10. We report comparisons with the MYULA method [45]
to highlight the benefits of using the SK-ROCK discretization as opposed to the conventional
EM discretization used in Langevin and Hamiltonian algorithms [98].

To make the comparisons fair, in all experiments we use the same number of gradient (and
proximal operator) evaluations for MYULA and SK-ROCK and compare their computational
efficiency in several ways (the efficiency of an MCMC method is not an absolute quantity as
it depends on the estimator considered). Because our aim is to illustrate the performance of
SK-ROCK in Bayesian imaging problems, here we use the MYULA and SK-ROCK samples to
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compute the following quantities:

1. The minimum mean square error solution given by the posterior mean E(x|y), which is a
classic image point estimator.

2. The marginal posterior variances or standard deviations for the image pixels, which pro-
vide an indication of the performance of the methods in uncertainty quantification tasks.

3. The effective sample size (ESS)1 of the fastest mixing component of the chain, calculated
after burn-in (i.e., when the chain reaches steady-state).

4. The ESS of the slowest mixing component of the chain, also calculated after burn-in
(these fast and slow components correspond to the one-dimensional subspaces where the
Markov chains achieve their highest and lowest convergence rates respectively, and that
we have identified via an estimate of the first and last eigenvectors of the samples posterior
covariance).

We choose to report ESS values because these are intuitive quantities that are directly
related to the variance of the Monte Carlo estimators, and hence provide an indication of the
accuracy of the methods, up to estimation bias2.

In addition to reporting estimates, we use autocorrelation plots to visually compare the
convergence properties of both methods (again, we report the autocorrelation function for the
fastest and the slowest components of the Markov chains). We also show the evolution of the
estimation MSE across iterations and display the estimates of the marginal (pixelwise) standard
deviations. The latter is useful for illustrating the differences in the performance of the methods,
as second-order moments are more difficult to estimate by Monte Carlo integration than the
posterior mean.

Notice that because the methods are compared with the same computational budget they do
not produce the same number of samples, since their complexity per iteration is different. More
precisely, if the MYULA chain has n-samples, then the SK-ROCK chain has only n/s samples,
which is considerably lower. However, experiments show that SK-ROCK usually delivers higher
ESS values because of its superior convergence properties. Similarly, to make the comparison
of autocorrelation plots fair with regards to computational complexity, in all autocorrelation
plots we apply a 1-in-s thinning to the MYULA chain to artificially boost its autocorrelation
function decay rate by a factor of s.

4.5.1 One dimensional distributions

We start our numerical experiments by studying two simple one-dimensional distributions,
namely the Laplace distribution and the uniform distribution in [−1, 1], for which we can also
perform computations exactly. Since both distributions are not Lipschitz differentiable we
employ the corresponding Moreau-Yosida approximation using λ = 10−5 to bring πλ very close
to π and deliver a good approximation. This implies that the largest step-size δ that can be used
for MYULA is 2×10−5, which is dramatically small. We set δ = 10−5 for MYULA and run the
corresponding chain for n = 15× 106 iterations to create a situation where MYULA struggles
to deliver a good approximation and that highlights the superior performance of SK-ROCK.

For SK-ROCK we use s = 15 and set δ as it is explained in Algorithm 6. Notice that we
choose the (regularised) Laplace and the uniform distributions to illustrate the performance
of the methods in two different scenarios: the regularised Laplace distribution is strongly log-
concave near the mode and only strictly log-concave in the tails, which is problematic for the
Langevin diffusion because the gradient remains constant as |x| grows, whereas the regularised
uniform distribution is flat over [−1, 1] and hence has most of its mass in regions where the
gradient is zero, and then strongly log-concave in the tails.

1Recall that ESS = n{1 + 2
∑

k ρ(k)}−1, where n is the total number of samples and
∑

k ρ(k) is the sum
of the K monotone sample auto-correlations which we estimated with the initial monotone sequence estimator
[56].

2Note that the computation of ESS values is well-posed because p(x|y) is log-concave. If p(x|y) were heavy-
tailed or multi-modal then we would need to consider robust efficiency indicators [122].
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Table 4.1: Values of the step-size δ, effective sample sizes (ESS) and KL-divergence of the EM
and SK-ROCK algorithms for the one-dimensional Laplace distribution.

Stages s Method Step-size δ ESS KL-Divergence Speed-up
- MYULA 1.0× 10−5 3.6× 101 4.8× 10−2 -

s = 10 SK-ROCK 1.7× 10−3 6.0× 102 1.4× 10−2 16.67
s = 15 SK-ROCK 4.0× 10−3 9.5× 102 1.0× 10−2 26.39

Figures 4.4 and 4.5 display the histogram approximations of the distributions obtained with
the two methods, as well as the autocorrelation functions of the generated Markov chains.
Observe that in both cases SK-ROCK significantly outperforms MYULA, which struggles to
deliver a good approximation due to the step-size limitation and the limited number of iter-
ations (this phenomenon is particularly clearly captured by the difference in decay speed in
the autocorrelation plots). These results are quantitatively summarised in Tables 4.1 and 4.2
respectively, where we highlight that SK-ROCK delivers an ESS that is over 25 times larger
than MYULA, while also achieving higher accuracy as measured by the Kullback-Leibler (KL)
divergence between the empirical distribution and πλ. For completeness, we also report the
results using SK-ROCK with s = 10.

(a) MYULA (b) SK-ROCK, s = 15
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Figure 4.4: One-dimensional Laplace distribution: Histograms computed with (a) 15 × 106

samples generated by MYULA and (b) 15 × 106/s samples generated by SK-ROCK from the
approximated Laplace distribution, using an approximation parameter λ = 10−5 and s = 15
for the SK-ROCK method. (c) Autocorrelation functions of the samples.
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Figure 4.5: One-dimensional uniform distribution: Histograms computed with (a) 15 × 106

samples generated by MYULA and (b) 15 × 106/s samples generated by SK-ROCK from the
approximated uniform distribution, using an approximation parameter λ = 10−5 and s = 15
for the SK-ROCK method. (c) Autocorrelation functions of the samples.

It is worth emphasising at this point that we could improve the ESS performance of both
methods by increasing the value of λ, at the expense of some additional bias. In the case of
the uniform distribution, this would lead to a considerable number of samples outside the true
support [−1, 1].
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Table 4.2: Values of the step-size δ, effective sample sizes (ESS) and KL-divergence of the EM
and SK-ROCK algorithms for the one-dimensional uniform distribution.

Stages s Method Step-size δ ESS KL-Divergence Speed-up
- MYULA 1.0× 10−5 1.7× 102 1.3× 10−2 -

s = 10 SK-ROCK 1.7× 10−3 3.4× 103 3.2× 10−2 20
s = 15 SK-ROCK 4.0× 10−3 4.9× 103 3.9× 10−2 28.82

4.5.2 Image deblurring with total-variation prior

We now consider a non-blind image deblurring problem, previously described in Section 2.1.1,
where we seek to recover a high-resolution image x ∈ Rd from a blurred and noisy observation
y = Ax + ξ, where A is a known blur operator and ξ ∼ N (0, σ2Id). Figure 2.1 presents an
experiment with the cameraman test image of size d = 256×256 pixels, depicted in Figure2.1(a).
Figure 2.1(b) shows an artificially blurred and noisy observation y, generated by using a 5× 5
uniform blur and σ = 0.58, related to a blurred signal-to-noise ratio of 40dB. This problem is
ill-conditioned i.e., A is nearly singular, thus yielding highly noise-sensitive solutions. To make
the estimation problem well-posed, we use a total-variation norm prior that promotes solutions
with spatial regularity. The resulting posterior distribution is given by

p(x|y) ∝ exp
(
−∥y −Ax∥2/2σ2 − βTV(x)

)
, (4.10)

where TV(x) represents the total-variation pseudo-norm, previously described in Section 2.3.1,
and σ, β ∈ R+ are model hyper-parameters that we assume fixed (in this experiment we use
β = 0.047, determined using the method of [123]).

We use MYULA and SK-ROCK to draw Monte Carlo samples from (4.10) using λ = L−1
f =

0.21. To make the comparison fair, we generate 103 samples using MYULA and 103/s samples
using SK-ROCK for s = 15. We then use the generated samples to compute two quantities:

1. The minimum mean square error (MMSE) estimator of x|y, given by the posterior mean.

2. The pixel-wise (marginal) posterior standard deviation, which provides an indication of
the level of confidence in each pixel value, as measured by the model.

The posterior standard deviation is useful to highlight features in the image that are difficult
to accurately determine; in image deblurring problems these are the exact locations of edges and
contours in the image. Notice that computing standard deviations require computing second-
order statistical moments, which is more difficult than estimating the posterior mean, and hence
requires a larger number of effective samples to produce stable estimates.

Figure 4.6 shows the MMSE estimator and the pixel-wise posterior standard deviation. Ob-
serve in these figures that while the estimates of the posterior mean obtained with MYULA
and SK-ROCK are visually similar, the estimates of the pixel-wise standard deviations obtained
with SK-ROCK are noticeably more accurate and in agreement with the results obtained by
sampling the true posterior with an asymptotically unbiased Metropolised algorithm, see [95,
Section 4.1]. In particular, the standard deviations estimated with SK-ROCK accurately cap-
ture the uncertainty in the location of the contours in the image, whereas MYULA produces
very noisy results as it struggles to estimate second-order moments because of the step-size lim-
itation and limited computation budget (with a sufficiently large number of iterations, MYULA
would produce similar results to SK-ROCK).

Moreover, to rigorously analyse the convergence properties of the two methods and compute
autocorrelation functions, we generated 107 samples with MYULA and 107/s samples using SK-
ROCK (s = 15). We then used these samples to determine the fastest and slowest components
of each chain3 and measured their autocorrelation functions. We also computed trace plots for

3The chain’s slowest (fastest) component was identified by computing the approximated singular value de-
composition of the chain’s covariance matrix and choosing on the samples the component with the largest
(smallest) singular value.
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Figure 4.6: Cameraman deblurring experiment: (a) Mean of 103 samples generated by MYULA
and (b) mean of 103/s samples generated by SK-ROCK (with s = 15). (c) Standard deviation
of the samples generated by MYULA and (d) SK-ROCK (with s = 15).

the chains by using T (x) = log πλ(x|y) as a scalar statistic, which is particularly interesting
because it determines the typical set of x|y [94]. These trace plots clearly illustrate how the
methods behave during their transient regime, and then how they behave once the chain has
converged to equilibrium (i.e., reached steady state).

Figure 4.7(a) shows the convergence of the Markov chains to the typical set {x : T (x) ≈
E[T (x)|y]}. Moreover, Figure 4.7(b) shows the last 105 samples of the chains (again with a
1-in-s thinning for MYULA). Additionally, we have included the summary statistic E(T (X))
calculated by a very long run of the P-MALA algorithm [95], which targets (4.10) exactly, in
order to study the bias of the methods4. We can see that, for this experiment, the bias of
SK-ROCK is slightly increased in comparison to MYULA, however, it has significantly better
mixing properties that result in better exploration of the typical set. Lastly, the superior
convergence properties of SK-ROCK are also clearly illustrated by the autocorrelation plots
of Figure 4.7(c), which show the autocorrelation functions for the slowest components of the
chains, and where again we observe a dramatic improvement in decay rate (we have again used
a 1-in-s thinning for MYULA for a fair comparison). Table 4.3 reports the associated ESS
values for this experiment, where we note that SK-ROCK with s = 15 outperforms MYULA
by a factor of 21.77 in terms of computational efficiency for the slowest component.

We conclude this experiment by comparing the two methods in terms of estimation of the
MSE against the true image. Figure 4.8 shows the evolution of the estimation error for the
MMSE solution, as estimated by MYULA and SK-ROCK, and as a function of the number
of gradient and proximal operator evaluations. Again, observe that the acceleration properties
of SK-ROCK lead to a dramatic improvement in convergence speed, and consequently to a
significantly more accurate computation of the MMSE estimator for a given computational
budget.

4The statistics T (x) = log p(x|y) is very useful for analysing the bias of high-dimensional log-concave distri-
butions because these concentrate sharply on the typical set T (x) ≈ E(T (X)) [94].
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Figure 4.7: Cameraman deblurring experiment: (a) Convergence to the typical set of the posterior
distribution (4.10) for the first 2 × 103 MYULA samples and the first 2 × 103/s SK-ROCK
(s = 15) samples. (b) Last 105 values of log π(x). (c) Autocorrelation function for the slowest
component.

Table 4.3: Cameraman experiment: Summary of the results after generating 107 samples with
MYULA and 107/s samples with SK-ROCK with s = 15. Computing time 35 hours per
method.

Method Step-size ESS ESS Speed-up Speed-up
δ slow com. fast com. slow com. fast com.

MYULA 0.106 2.88× 103 1.00× 106 - -
SK-ROCK (s = 10) 14.65 4.00× 104 2.63× 104 13.89 2.63× 10−2

SK-ROCK (s = 15) 34.30 6.27× 104 6.92× 104 21.77 6.92× 10−2
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Figure 4.8: Cameraman experiment: Mean squared error (MSE) between the mean of the algo-
rithms and the true image, using 15× 103 samples from MYULA and 15× 103/s samples from
SK-ROCK (s = 15), after burn-in.
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4.5.3 Hyperspectral Unmixing

We now present an application to hyperspectral unmixing, previously described in Section 2.1.4.
Here we consider the widely used linear mixing model y = Ax + w, where A = {a1, . . . , ak} ∈
Rm×k is a spectral library gathering the spectral responses of the materials, x ∈ Rk×d gathers
the abundance maps, and w ∼ N(0, σ2Im×d) is additive Gaussian noise. Moreover, following
[75], we expect x to be sparse since most image pixels contain only a subset of the materials.
Also, we expect materials to exhibit some degree of spatial coherence and regularity. In order
to promote solutions with these characteristics, we use the ℓ1-TV prior proposed in [75] for this
type of problem

p(x) ∝ exp{−β1∥x∥1 − β2TV(x)}1Rn
+
(x),

where β1 > 0 and β2 > 0 are hyper-parameters that we assume fixed (in this experiment we
use β1 = 25 and β2 = 185, determined using the method of [123]). The resulting posterior
distribution is given by

p(x|y) ∝ exp
[
−∥y −Ax∥2/2σ2 − β1∥x∥1 − β2TV(x)

]
1Rn

+
(x). (4.11)

Figure 2.4 presents an experiment with a synthetic dataset described in [75, Section IV-A] of
size n = 75×75 = 5625, with 5 materials, and noise amplitude σ = 8.4×10−4 related to a signal-
to-noise-ratio of 40dB. Figure 4.10(a) presents the evolution of the estimation MSE between the
true abundance maps and the posterior mean as estimated by MYULA and SK-ROCK (with
s = 15), and as a function of the number of gradient and proximal operator evaluations (using
λ = 7.08 × 10−7 which is in the order of L−1

f , as it is recommended in [45, Section 3.3]). As
in previous experiments, observe that the posterior means estimated with SK-ROCK converge
dramatically faster than the ones calculated with MYULA, clearly exhibiting the benefits of
the proposed methodology.
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Figure 4.9: Hyperspectral experiment: (a) Convergence to the typical set of the posterior
distribution (4.11) for the first 3 × 104 MYULA samples and the first 3 × 104/s SK-ROCK
(s = 15) samples. (b) Last 105 values of log π(x). (c) Autocorrelation function for the slowest
component.

Moreover, for illustration, Figures 4.10(b)-(e) respectively show the estimated abundance
maps for the fourth endmember for MYULA (5 × 105 samples) and SK-ROCK (5 × 105/s
samples, s = 15), as well as the pixel-wise (marginal) standard deviations for the abundances
of this material. Again, as in previous experiments, we notice that the estimates obtained with
SK-ROCK are noticeably more precise than the ones of MYULA, which would require a larger
number of iterations to accurately estimate these second-order statistical moments.

To further compare the convergence properties of the two methods we repeated the exper-
iment and generated 5 × 106 samples with MYULA and 5 × 106/s samples with SK-ROCK
for s = 15 to make the comparisons fair. Figure 4.9(a) presents trace plots for the two chains
during their transient regimes using T (x) = log p(x|y) as summary statistic, as a function of
the number of gradient and proximal operator evaluations; observe that SK-ROCK attains
the typical set of x|y significantly faster than MYULA, similarly to the previous experiments.
Figure 4.9(b) presents similar trace plots for the two chains after burn-in.

Additionally, as we did in the cameraman experiment, we have included the summary
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Figure 4.10: Hyperspectral experiment: (a) Mean squared error (MSE) between the mean
of the algorithms and the true image (fractional abundances of endmembers 1 to 5) measured
using 104 samples from MYULA (solid line) and 104/s samples from SK-ROCK (dash-dot line,
s = 15), in logarithmic scale. (b) Posterior mean as estimated with 105 samples generated with
MYULA and (c) 105/s samples generated by SK-ROCK (with s = 15). (d) Standard deviation
of the samples generated by MYULA and (e) SK-ROCK (with s = 15).
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Table 4.4: Hyperspectral experiment: Summary of the results after generating 5×106 samples
with MYULA and 5× 106/s samples with SK-ROCK. Computing time 88 hours per method.

Method Step-size ESS ESS Speed-up Speed-up
δ slow com. fast com. slow com. fast com.

MYULA 1.79× 10−9 1.50× 102 0.63× 104 - -
SK-ROCK (s = 10) 3.11× 10−7 2.90× 103 1.70× 104 19.33 2.69
SK-ROCK (s = 15) 7.28× 10−7 5.69× 103 3.63× 104 37.93 5.76

statistic E(T (X)) calculated by a very long run of the P-MALA algorithm, which targets (4.11)
exactly, in order to study the bias of the methods. As can be seen clearly, SK-ROCK presents
a lower bias than MYULA and also exhibits better mixing properties. The good convergence
properties of SK-ROCK can be clearly observed in the autocorrelation plots of Figure 4.9(c),
which correspond to the slowest components of the chains as determined by their covariance
structure, and where we have again applied the 1-in-15 thinning to the MYULA chain for
fairness of comparison. Table 4.4 reports the ESS values for this experiment. In particular,
observe that SK-ROCK outperforms MYULA by a factor of 37.9 in terms of ESS for the slowest
component of the chain, and by a factor of 5.76 for the fastest component.

4.5.4 Tomographic image reconstruction

We conclude this section with a tomographic image reconstruction experiment, previously de-
scribed in Section 2.1.3. We have selected this problem to illustrate the proposed methodology
in a setting where the posterior distribution is strictly log-concave. The lack of strong log-
concavity has a clear negative impact on the convergence properties of the continuous-time
Langevin SDE (3.5) [44], and also impacts the convergence properties of the MYULA and
SK-ROCK approximations.

In tomographic image reconstruction we seek to recover an image x ∈ Rd from an observation
y ∈ Cp related to x by a linear Fourier model y = AFx + ξ, where F is the discrete Fourier
transform operator on Cd, A ∈ Cp×d is a (sparse) tomographic subsampling mask and ξ ∼
N(0, σ2I2p). Typically d ≫ p, making the estimation problem strongly ill-posed. We address
this difficulty by using a total-variation prior to regularise the estimation problem and promote
solutions with certain spatial regularity properties. From Bayes’ theorem, the posterior p(x|y)
is given by:

p(x|y) ∝ exp
[
−∥y −AFx∥2/2σ2 − βTV(x)

]
, (4.12)

with hyper-parameters σ, β ∈ R+ assumed fixed (in this experiment we use β = 102).

Table 4.5: Tomography experiment: Summary of the results after generating 5 × 106 samples
with MYULA and 5× 106/s samples with SK-ROCK. Computing time 20 hours per method.

Method Step-size ESS ESS Speed-up Speed-up
δ slow com. fast com. slow com. fast com.

MYULA 1.67× 10−5 1.31× 104 1.64× 105 - -
SK-ROCK (s = 5) 5.02× 10−4 5.31× 104 2.56× 105 4.05 1.56
SK-ROCK (s = 10) 2.30× 10−3 2.65× 105 1.33× 105 20.23 0.81

Figure 2.3 presents an experiment with the Shepp-Logan phantom test image of size d =
128 × 128 pixels, which we use to generate a noisy observation y by measuring 15% of the
original Fourier coefficients, corrupted with additive Gaussian noise with σ = 10−2 (to improve
visibility, Figure 2.3(b) shows the amplitude of the Fourier coefficients in logarithmic scale,
unobserved coefficients are depicted in black).

Following on from this, we use MYULA and SK-ROCK with s = 10 to generate 104 and
103 samples respectively from p(x|y) with λ = 0.2 × 10−4 which is in the order of L−1

f , as it
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is recommended in [45, Section 3.3]. We then use these samples to compute two quantities:
1) the MMSE estimators - displayed in Figures 4.11(a)-(b); and 2) the (marginal) standard
deviations of the amplitude of the Fourier coefficients of x|y, depicted in Figures 4.11(c)-(d)
in logarithmic scale. Observe that, in this experiment, both methods deliver good and similar
results with the number of samples available, with MYULA producing slightly less accurate
standard deviation estimates. More interestingly, notice from Figures 4.11(c)-(d) that in this
tomographic experiment the uncertainty is concentrated in the unobserved medium frequencies,
whereas in the deblurring experiment uncertainty was predominant in the high frequencies.
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Figure 4.11: Tomography experiment: Posterior mean of x|y as estimated with (a) MYULA (104

samples) and (b) SK-ROCK (103 samples, s = 10). Standard deviations of the amplitude of
the Fourier coefficients of x|y as estimated with (c) MYULA (104 samples) and (d) SK-ROCK
(103 samples, s = 10).
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Figure 4.12: Tomography experiment: (a) Convergence to the typical set of the posterior
distribution (4.12) for the first 3 × 104 MYULA samples and the first 3 × 104/s SK-ROCK
(s = 10). (b) Last 105 values of log π(x) from MYULA and SK-ROCK (s = 10) chains. (c)
Autocorrelation function for the slowest component

Moreover, to analyse the convergence properties of the two methods we compute autocor-
relation functions by generating 5 × 106 samples with MYULA and 5 × 106/s samples using
SK-ROCK with s = 10. We use said samples to determine the fastest and slowest components
of each chain and measure their autocorrelation functions. Table 4.5 reports the associated
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ESS, which shows that the SK-ROCK outperform MYULA by a factor of 20.23 in terms of ESS
for the slowest component of the chain. These superior convergence properties can be clearly
observed in Figure 4.12(c), which presents the autocorrelation plots for the slowest components
of the chains. For completeness, Table 4.5 also reports the values obtained with SK-ROCK
with s = 5.

Finally, as in previous experiments, Figure 4.12(a) presents trace plots for the two chains
during their burn-in stages; we can see that SK-ROCK reaches the typical set of x|y significantly
faster than MYULA. Figure 4.12(b) shows the log π(x) trace of both methods after burn-in, and
similarly to the cameraman and hyperspectral experiments we have also included the entropy
E(T (X)) of the distribution calculated by a very long run of the P-MALA algorithm, which
targets (4.12) exactly. As can be seen, SK-ROCK presents a lower bias than MYULA.
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Chapter 5

When SK-ROCK meets the split
Gibbs sampler

The results presented in this Chapter are currently under review [99] and are joint work with
Marcelo Pereyra and Konstantinos C. Zygalakis.

5.1 Introduction

This chapter explores two recent and different approaches in order to accelerate the convergence
of proximal MCMC algorithms: the proximal stochastic Runge-Kutta-Chebyshev method (SK-
ROCK) [2, 97] introduced in the previous chapter, which carefully combines s gradient eval-
uations to achieve an s2-increase in the step-size, and the Split Gibbs Sampler (SGS) [125,
129], which is based on an augmentation and relaxation scheme that can significantly improve
convergence speed at the expense of some estimation bias.

Specifically, we investigate two natural questions: first, how SGS and SK-ROCK compare
methodologically and empirically, and second, whether the two methods can be combined in
order to yield even more efficient MCMC methods. We address these questions in the following
way:

1. Rather than viewing the model augmentation and relaxation strategy of [100, 125, 129] as
an approximation, we propose to regard the augmented model as a generalisation of the
original model. We show empirically that there is a range of relaxation values for which
the accuracy of the model improves. In this regime, relaxation leads to better convergence
properties and better accuracy. Beyond this regime, the accuracy of the relaxed model
deteriorates rapidly.

2. Given the critical role of the amount of relaxation, we build on [123] to propose an em-
pirical Bayesian method to automatically estimate the value of the relaxation parameter
by maximum marginal likelihood estimation.

3. We formally identify a relationship between SGS and MYULA by re-expressing SGS as a
discrete-time approximation of a Langevin stochastic differential equation (SDE) closely
related to MYULA.

4. Having connected SGS and MYULA at the level of the SDE, we propose two novel MCMC
methods for Bayesian imaging: 1) an integration of SGS and MYULA that improves on
both SGS and MYULA; and 2) an integration of SGS and SK-ROCK that outperform
SK-ROCK, the previously fastest method in the literature.

5.2 The split Gibbs sampler

A separate line of research seeks to address the limitation of MYULA by introducing an auxiliary
variable z ∈ Rd to operate on an augmented state-space (x, z) and relaxing the original model
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(2.7) by defining the following augmented posterior

p(x, z|y, β, ρ2) ∝ exp

[
−fy(x)− βTg(z)− 1

2ρ2
∥x− z∥2

]
, ρ2 > 0, (5.1)

where ρ2 controls the correlation between the variable of interest x and the auxiliary variable
z, and fy, g are the same as in Chapter 2. This approach was first introduced several decades
ago as a way to calculate maximum likelihood estimates from incomplete data [37], and as
an efficient method for sampling from posterior distributions [114] (see [47] for a review of
these techniques). In the current literature, this model was revisited by [100] in the context
of consensus Monte Carlo in distributed settings and applied to imagining inverse problems in
[125], where its similarities to the algorithmic structure of the Alternating Direction Method of
Multipliers (ADMM) optimization algorithm [20] were also discussed.

If we now consider the marginal posterior distribution

p(x|y, β, ρ2) =
∫
Rd

p(x, z|y, β, ρ2) dz, (5.2)

it is possible to show that it converges in total variation to the original posterior p(x|y, β) as
ρ2 → 0. From a computational point of view, as in the case of MYULA, because g is not
differentiable one needs to approximate p(x, z|y, β, ρ2) by

pλ(x, z|y, β, ρ2) ∝ exp

[
−fy(x)− βTgλ(z)− 1

2ρ2
∥x− z∥2

]
, ρ2 > 0. (5.3)

To sample (5.3), [125, 129] proposed a splitting strategy based on the Gibbs sampling, applied
to the following conditional distributions

p(x|y, z, ρ2) ∝ exp

[
−fy(x)−

1

2ρ2
∥x− z∥2

]
, (5.4)

pλ(z|x, β, ρ2) ∝ exp

[
−βTgλ(z)− 1

2ρ2
∥x− z∥2

]
. (5.5)

This method is known as the split Gibbs sampler (SGS). See Algorithm 7.

Algorithm 7 SGS

Require: : X0, Z0 ∈ Rd, λ, ρ2 > 0, n ∈ N.
for i = 0 : n− 1 do

Sample Xi+1 ∼ p
(
x|y, Zi, ρ

2
)
according to (5.4),

Compute Zi+1 = Zi− δ
∑p

k=1[Zi−proxλβkgk
(Zi)]/λ− δ(Zi−Xi+1)/ρ

2+
√
2δζi+1; where

ζi+1 ∼ N (0, Id),
end for
Output: Samples X1, . . . , Xn.

In the case where the likelihood is Gaussian one can exactly sample from (5.4) [57] (for a
review and comparison of existing Gaussian sampling approaches, see [127]). A main benefit of
this splitting approach is that the step-size one needs to set for the proximal MCMC method
used for sampling (5.5) will be independent of the Lipschitz constant associated with the like-
lihood distribution, and will only depend on the parameters λ and ρ2. This can lead to faster
sampling algorithms compared to MYULA for suitably chosen values of the parameter ρ2 [125]
but for a different posterior distribution.

5.3 Enhancing Bayesian imaging models by smoothing

As discussed previously, the augmented model (5.1) was originally proposed as a relaxation
of (2.7) that allows for a faster exploration of the target distribution, at the expense of some

46



additional bias when compared to the original model. One then might think that ρ2 = 0
represents the best model for inference (at the expense of higher computing cost). However, we
have found empirically that this is not the case.

As an illustration, Figure 5.1(a) shows the estimation mean-squared error (MSE) for a
Bayesian image deblurring problem (the details of this experiment will be explained in Section
5.5.1). The error is computed w.r.t. the posterior mean, as estimated by an adaptation of the
SK-ROCK method to target (5.3) (see Section 5.4.2 for details), using a value of β = 4.4×10−2

estimated by [123, Algorithm 1], and by using different values for ρ2. Recalling that increasing
ρ2 improves convergence speed, one can clearly identify a regime of small values of ρ2 for which
convergence speed improves without deterioration in estimation accuracy (in fact, there is a
mild improvement). Beyond this range, the estimation MSE deteriorates dramatically. This
suggests the need for a method to automatically set the value of ρ2.

We propose an empirical Bayesian method to estimate optimal values for β and ρ2 directly
from y by maximum marginal likelihood estimation (MMLE)

(β∗, ρ
2
∗) = argmax

β∈B,ρ2∈R

p(y|β, ρ2), (5.6)

where B ⊂ (0,+∞)p and R ⊂ (0,+∞) are compact convex sets. To solve (5.6) we modify
the stochastic approximation proximal gradient (SAPG) algorithm of [123]. Notice that by
maximising the model evidence, (5.6) seeks to select the best model to perform inference within
the class of posterior distributions parametrised by β ∈ B, ρ2 ∈ R [133].

5.3.1 Computing the optimal values for β and ρ2

We adopt the approach of [123] to solve (5.6) and estimate optimal values for β and ρ2 in (5.1).
The method [123] was proposed for models of the form (2.7), so we will now adapt it to the
augmented model (5.1).

We are interested in estimating the parameters β ∈ B, ρ2 ∈ R by MMLE (5.6), where
p(y|β, ρ2) is defined for (5.1) as

p(y|β, ρ2) =
∫
Rd

∫
Rd

p(y|x)p(x, z|β, ρ2)dxdz =
∫
Rd

∫
Rd

p(y|x)p(x|z, ρ2)p(z|β)dxdz,

with

p(y|x) = exp(−fy(x))∫
Rd exp(−fy(x))dx

, p(z|β) = exp(−βTg(z))∫
Rd exp(−βTg(z))dz

(5.7)

and

p(x|z, ρ2) = exp(−∥x− z∥2/2ρ2)∫
Rd exp(−∥x− z∥2/2ρ2)dx

=
exp(−∥x− z∥2/2ρ2)

(2πρ2)d/2
. (5.8)

If we had access to the gradients∇ρ2 log p(y|β, ρ2) and∇β log p(y|β, ρ2), then we could construct
an iterative algorithm that converges to the solution of (5.6) by using the projected gradient
algorithm [81]

ρ2n+1 = ΠR

[
ρ2n + γn∇ρ2 log p(y|βn, ρ2n)

]
βn+1 = ΠB

[
βn + γn∇β log p(y|βn, ρ2n)

]
,

where ΠR and ΠB are the projection onto R and B respectively, and (γn)n∈N is a sequence of
non-increasing step-sizes. However, due to the complexity of the model, ∇ρ2 log p(y|β, ρ2) and
∇β log p(y|β, ρ2) are intractable.

As shown in [123], one can construct carefully designed stochastic estimates of these gradi-
ents that satisfy the conditions for the solution to converge to (5.6). To build these stochastic
estimators, we are going to express the gradients as expectations by applying Fisher’s identity
[39, Proposition D.4] which we can then approximate using MCMC. We will see that in fact, one
MCMC sample will suffice to obtain an estimate of the gradient accurate enough to converge
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asymptotically to (5.6). More precisely, we have that

∇ρ2 log p(y|β, ρ2) =
∫
Rd

∫
Rd

p(x, z|y, β, ρ2)∇ρ2 log p(x, z, y|β, ρ2)dxdz,

and

∇β log p(y|β, ρ2) =
∫
Rd

∫
Rd

p(x, z|y, β, ρ2)∇β log p(x, z, y|β, ρ2)dxdz.

As p(x, z, y|β, ρ2) = p(y|x)p(x, z|β, ρ2) = p(y|x)p(x|z, ρ2)p(z|β), we have

∇ρ2 log p(y|β, ρ2) =
∫
Rd

∫
Rd

p(x, z|y, β, ρ2)∇ρ2 log p(x|z, ρ2)dxdz,

and

∇β log p(y|β, ρ2) =
∫
Rd

∫
Rd

p(x, z|y, β, ρ2)∇β log p(z|β)dxdz.

Replacing (5.8) in p(x|z, ρ2) we obtain

∇ρ2 log p(y|β, ρ2) = Aβ,ρ2(y)− d

2ρ2
,

where

Aβ,ρ2(y) = Ex,z|y,β,ρ2

[
∥x− z∥2

2(ρ2)2

]
=

∫
Rd

∫
Rd

p(x, z|y, β, ρ2)∥x− z∥2

2(ρ2)2
dxdz,

and similarly, replacing (5.7) in p(z|β) gives

∇β log p(y|β, ρ2) = −Bβ,ρ2(y)− Cβ,ρ2(y),

where

Bβ,ρ2(y) = Ex,z|y,β,ρ2 [g(z)] =

∫
Rd

∫
Rd

p(x, z|y, β, ρ2)g(z)dxdz,

Cβ,ρ2(y) = Ex,z|y,β,ρ2

[
∇β log

(∫
Rd

exp(−βTg(z))dz

)]
=

∫
Rd

∫
Rd

p(x, z|y, β, ρ2)∇β log

[∫
Rd

exp(−βTg(z))dz

]
dxdz.

Because of the complexity of the model, Aβ,ρ2(y) and Bβ,ρ2(y) are not available analytically
and need to be approximated by MCMC computation (e.g., by using the methods we develop
in Section 5.4). With respect to Cβ,ρ2(y), and more precisely, the integral between brackets, we
can follow a similar procedure as in [123, Section 3.2.1]. In particular, if we consider the case
where each gi(z) is αi positively homogeneous1, which is the case for many regularisers such as
ℓ1, ℓ2 or TV, we have that

∂ log p(y|β, ρ2)
∂β(i)

=
d

αiβ(i)
− Ex,z|y,β(i),ρ2 [gi(z)] .

(See [123] for more details and [123, Section 3.2] for the case of inhomogeneous regularisers).
Following on from this, and by using Monte Carlo approximations of Aβ,ρ2(y) and Bβ,ρ2(y),

we construct an SAPG algorithm [53, 123] to solve (5.6) and produce optimal estimates of β and
ρ2. This method is presented in Algorithm 8. We refer the reader to [36, 35] for details about
the convergence properties of this kind of SAPG algorithm. To illustrate Algorithm 8 in action,
Figure 5.1 shows the value of ρ2 estimated by the algorithm for the image deblurring problem.
Observe that the MMLE estimate is close to the value that produces the best estimation MSE
in this case. This is in agreement with the results reported in [123] for other problems.

1g(x) is α positively homogeneous if, for any x ∈ Rd and t > 0, g(tx) = tαg(x).
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Algorithm 8 SAPG algorithm for the augmented model (5.1)

1: Input: X0
0 , Z

0
0 ∈ Rd, β0, ρ

2
0, γ0, γ

′
0 ∈ R, λ > 0, m,n ∈ N.

2: for i = 0 : m− 1 do
3: if i > 0 then
4: Set X0

i = Xn−1
i−1 ,

5: end if
6: for j = 0 : n− 1 do

7: Sample X
(j+1)
i+1 , Z

(j+1)
i+1 according to Algorithm 9,

8: end for
9: for j = 1 : p do

10: Set β
(j)
i+1 = ΠB

[
β
(j)
i + γi+1

n

∑n
k=1

{
d

αjβ
(j)
i

− gj(Z
k
i+i)

}]
,

11: end for
12: Set ρ2i+1 = ΠR

[
ρ2i +

γ′
i+1

n

∑n
k=1

{
∥Xk

i+1 − Zk
i+1∥2/2(ρ2i )2 − d/(2ρ2i )

}]
,

13: end for
14: Output: β

(j)

m =
∑m−1

k=0 ωkβ
(j)
k /

∑m−1
k=0 ωk for j ∈ {1, . . . , p}, ρ2m =

∑m−1
k=0 ωkρ

2
k/
∑m−1

k=0 ωk.

5.4 Reinterpretation of SGS as noisy MYULA & new
MCMC methods

In this section, we proceed to show that the SGS algorithm 7 can be viewed as a noisy version
of MYULA. This link will be crucial in allowing us to write it as a noisy discretisation of an
SDE, which will help us to propose more efficient MCMC methods for sampling (5.1).

First, note that the marginal of z computed from (5.3) can be written as follows

pλ(z|y, β, ρ2) =
∫
Rd

pλ(x, z|y, β, ρ2) dx ∝ p(y|z, ρ2)pλ(z|β),

where

p(y|z, ρ2) ∝
∫
Rd

exp

[
−fy(x)−

1

2ρ2
∥x− z∥2

]
dx2, pλ(z|β) ∝ exp[−βTgλ(z)].

Applying the MYULA to pλ(z|y, β, ρ2), we have that

Zn+1 = Zn + δ∇z log p
λ(Zn|β) + δ∇z log p(y|Zn, ρ

2) +
√
2δζn+1, (5.9)

where (ζn+1)n≥0 is an i.i.d. sequence of d-dimensional standard Gaussian random vectors. Due
to the complexity of the model, it is difficult to compute ∇z log p(y|Zn, ρ

2), however, we can
express it as an expectation by using Fisher’s identity [39, Proposition D.4] as follows

∇z log p(y|z, ρ2) =
∫
Rd

p(x|y, z, ρ2)∇z log p(x, y|z, ρ2)dx

= Ex|y,z,ρ2

[
∇z log p(x, y|z, ρ2)

]
.

As p(x, y|z, ρ2) = p(y|x)p(x|z, ρ2), we have

∇z log p(x, y|z, ρ2) = Ex|y,z,ρ2

[
∇z log p(x|z, ρ2)

]
=

1

ρ2
Ex|y,z,ρ2 (x− z) .

2In the case where fy(x) is quadratic, p(y|z, ρ2) is Gaussian with eigenvalues in its covariance matrix shifted
by ρ2, when compared with the covariance of fy(x).
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(a) (b)

Figure 5.1: Image deblurring experiment: (a) MSE between the true image and the posterior
mean estimated using Algorithm 10, for some values of ρ2. In red, the optimal value of ρ2 that
minimises the MSE, and in green, the value of ρ2 found by Algorithm 8. (b) Iterations of SAPG
algorithm to estimate ρ2.

Using this expression in (5.9) we obtain

Zn+1 = Zn − δ∇zp
λ(Zn|β)−

δ

ρ2
Ex|y,z,ρ2 (Zn − x) +

√
2δζn+1, (5.10)

We are now ready to explicitly establish the connection to SGS. SGS stems from dealing with
the presence of the expectation in this algorithm by replacing it with a Monte Carlo empirical
average, i.e.,

Ex|y,z,ρ2 (Zn − x) ≈ Zn − 1

N

N∑
i=1

X(i), where X(i) ∼ p(x|y, Zn; ρ). (5.11)

More precisely, to recover SGS we take N = 1 and substitute in (5.10) to obtain

Zn+1 = Zn − δ∇zp
λ(Zn|β)−

δ

ρ2
(Zn −X(1)) +

√
2δζn+1. (5.12)

Since X(1) is an exact sample from p(x|y, Zn, ρ
2), (5.12) corresponds to the fourth line of

Algorithm 7.
This establishes that SGS is equivalent to a noisy version of MYULA that relies on one

sample from p(x|y, z, ρ2) to compute a stochastic estimate of the gradient ∇z log p(y|z, ρ2)
via (5.11). Using multiple samples from p(x|y, Zn; ρ) would improve the estimation of the
expectation (5.11) and hence the behaviour of the algorithm. Alternatively, in the experiments
considered in this thesis p(x|y, Zn; ρ) is Gaussian, and hence this expectation can be calculated
exactly. This is exploited in the MCMC methods proposed below.

5.4.1 Latent space MYULA

We established above that SGS is equivalent to MYULA targeting the marginal of z with an
inexact (i.e., stochastic) estimate of the gradient. Replacing this stochastic estimate with its
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exact value in Algorithm 7 produces the following recursion

Xi+1
grad = Ex|y,Zi,ρ2 [x],

Zi+1 = Zi −
δ

λ

p∑
k=1

[Zi − proxλβkgk
(Zi)]− δ(Zi −Xi+1

grad)/ρ
2 +

√
2δζi+1,

(5.13)

where ζi+1 ∼ N (0, Id).
We now discuss how to use samples {Zi}mi≥1 to compute expectations w.r.t. the marginal

of interest x|y, β, ρ2. More precisely, consider the computation of an expectation Ex|y,β,ρ2 [h(x)]

for some function h w.r.t. the posterior distribution pλ(x|y, β, ρ2) defined in (5.2) by using
(5.13). Formally,

Ex|y,β,ρ2 [h(x)] =

∫
Rd

h(x)

∫
Rd

p(x, z|y, β, ρ2) dz dx.

Using the fact that p(x, z|y, β, ρ2) = p(x|y, z, ρ2)p(z|β) we have that

Ex|y,β,ρ2 [h(x)] =

∫
Rd

∫
Rd

h(x)p(x|y, z, ρ2)p(z|β) dz dx

=

∫
Rd

∫
Rd

h(x)p(x|y, z, ρ2) dx p(z|β) dz

= Ez|β
[
Ex|y,z,ρ2 (h(x))

]
.

(5.14)

In cases where Ex|y,β,ρ2 [h(x)] is available analytically, we suggest using a Rao-Blackwellised
estimator of the form [103]

Ex|y,β,ρ2 [h(x)] ≈ 1

m

m∑
i=1

Ex|y,Zi,ρ2 [h(x)] .

The computation of Ex|y,Zi,ρ2 [h(x)] can be done as a postprocessing step, or alternatively
within the iterations of the sampler. If Ex|y,β,ρ2 [h(x)] is not available analytically, we would
draw samples from the conditional x|y, Zi, β, ρ

2 and apply a standard Monte Carlo estimator.
We are now ready to present our first new MCMC method, summarised in Algorithm 9

below. We henceforth refer to this method as latent space MYULA (ls-MYULA), since it
corresponds to MYULA applied to the marginal of the latent variable z.

Algorithm 9 ls-MYULA

1: Input: X0, Z0 ∈ Rd, λ, ρ > 0, m ∈ N.
2: for i = 0 : m− 1 do
3: Compute Xi+1

grad = Ex|y,Zi,ρ2 [x],

4: Compute Zi+1 = Zi−δ
∑p

k=1[Zi−proxλβkgk
(Zi)]/λ−δ(Zi−Xi+1

grad)/ρ
2+

√
2δζi+1; where

ζi+1 ∼ N (0, Id),
5: Compute ĥi+1 = Ex|y,Zi+1,ρ2 [h(x)],
6: end for
7: Output: an estimator of Ex|y,β,ρ2 [h(x)] given by {

∑m
k=1 ĥk}/m.

Remark 1. The underlying assumption in Algorithm 9 is that one can explicitly calculate
Ex|y,Zi,ρ2 [x] which, for example, is the case when the expectation represents the first moment of
a Gaussian distribution, which corresponds to the likelihood models we consider in our experi-
ments. In cases where Ex|y,Zi,ρ2 [x] is intractable, we recommend to replace the expectation by
its corresponding MCMC estimation, i.e.,

Ex|y,Zi,ρ2 [x] ≈ 1

M

M∑
i=1

Xi, where Xi ∼ p(x|y, Zi, ρ
2).
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5.4.2 Latent space SK-ROCK

In the same way that an exact MYULA discretization is more beneficial than the stochastic
MYULA discretization used in SGS, we can further improve results by using an exact SK-
ROCK discretization which, as we described in Chapter 4, has many important advantages
compared to MYULA. In particular, we present this method in Algorithm 10, and we will refer
to it as latent space SK-ROCK (ls-SK-ROCK). The main difference between this algorithm and
Algorithm 6 is that the conditional expectation Ex|y,Z̃j ,ρ2 [x] is computed on each internal stage
s.

Algorithm 10 ls-SK-ROCK

1: Input: X0, Z0 ∈ Rd, λ, ρ > 0, m, s ∈ N, η = 0.05.
2: Compute ls = (s− 0.5)2(2− 4/3η)− 1.5,
3: Compute ω0 = 1 + η/s2, ω1 = Ts(ω0)/T

′
s(ω0),

4: Compute µ1 = ω1/ω0, ν1 = sω1/2, k1 = sω1/ω0,
5: Choose δ ∈ (0, δmax

s ], where δmax
s = ls/(1/(ρ

2 + L−1
f ) + 1/λ),

6: for i = 0 : m− 1 do

7: Set X̃
0

grad = Xi
grad, Z̃0 = Zi,

8: Sample ξi+1 ∼ N (0, 2δId),
9: Compute X̃

1

grad = Ex|y,Z̃0+ν1ξi+1,ρ2 [x],

10: Compute Λ(Z̃0) =
∑p

k=1[Z̃0+ν1ξi+1−proxλβkgk
(Z̃0+ν1ξi+1)]/λ+(Z̃0+ν1ξi+1−X̃

1

grad)/ρ
2,

11: Compute Z̃1 = Z̃0 − µ1δΛ(Z̃0) + k21ξi+1,
12: for j = 2 : s do
13: Compute µj = 2ω1Tj−1(ω0)/Tj(ω0), νj = 2ω0Tj−1(ω0)/Tj(ω0), kj = 1− νj ,

14: Compute X̃
j

grad = Ex|y,Z̃j−1,ρ2 [x],

15: Compute Λ(Z̃j−1) =
∑p

k=1[Z̃j−1 − proxλβkgk
(Z̃j−1)]/λ+ (Z̃j−1 − X̃

j

grad)/ρ
2,

16: Compute Z̃j = −µjδΛ(Z̃j−1) + νjZ̃j−1 + kjZ̃j−2,
17: end for
18: Set Xi+1

grad = X̃
s

grad, Zi+1 = Z̃s, ĥi+1 = Ex|y,Zi+1,ρ2 [h(x)],
19: end for
20: Output: an estimator of Ex|y,β,ρ2 [h(x)] given by {

∑m
k=1 ĥk}/m.

5.4.3 Implementation guidelines

Setting λ

As the priors of the experiments performed in this work are non-differentiable, we will use
the Moreau-Yosida envelope defined in (3.9) with λ ∈ [L−1

f , 10L−1
f ]. We chose λ = L−1

f in

our numerical experiments, however, we have found numerically that values of λ = 5L−1
f or

λ = 10L−1
f lead to faster convergence at the cost of additional bias.

Setting γi, γ
′
i and n

With respect to Algorithm 8, it is suggested in [123] to set γi = C0i
−p and γ′i = C ′

0i
−p where

p ∈ [0.6, 0.9] (in the experiments performed in this thesis, we have set p = 0.8), C0 and C ′
0

starting with (β0d)
−1 and (ρ20d)

−1 respectively, and then readjusting it if necessary. With
respect to n, we have followed the recommendation in [123] and used a single sample (i.e.,
n = 1) on each iteration (we did not observe significant difference for larger values of n).
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Setting ωn

Following [123], we recommend setting ωn as follows

ωn =


0 if n < N0,

1 if N0 ≤ n ≤ N1,

γn otherwise,

where N0 is the number of initial iterations to be discarded (when n < N0, the values of ρ
2
n and

βn are still bouncing and not stabilized), n ∈ [N0, N1] corresponds to the averaging estimation
phase, in which the values of ρ2n and βn have stabilized and start converging, and n > N1 is
known as the refinement phase where we use decreasing weights to enhance the accuracy of the
estimator (see [123, Section 3.3.1] for details).

Setting a stopping criterion

It is recommended to supervise the evolution of |βm+1 − βm|/βm and |ρ2m+1 − ρ2m|/ρ2m in the
execution of Algorithm 8 until they reach a tolerance level ψ to stop the algorithm execution.
In our imaging experiments, we set ψ = 10−4 but we have observed that ψ = 10−3 is often
enough to reach an acceptable estimate of the hyper-parameters in small computational times.

Other implementation considerations

In the implementation of the SAPG method, it is important to update the step-size of the
MCMCmethod to sampleXi and Zi within each iteration of the SAPG scheme, as the maximum
step-size depends on the value of ρ2i .

Regarding the Lipschitz constant L one needs to compute the step-size for MYULA and SK-
ROCK algorithms, the model (3.8) has L = λ−1 + Lf . With respect to the augmented model
(5.2), the Lipschitz constant is La = λ−1 + (ρ2 + L−1

f )−1 which we use to implement SGS,
ls-MYULA and ls-SK-ROCK. Therefore, we set the step-size of the MCMC methods to 1/L
for MYULA, to 1/La for SGS and ls-MYULA,, and to δmax

s for SK-ROCK and ls-SK-ROCK,
where δmax

s can be found in Algorithms 6 and 10, respectively.

5.5 Numerical experiments

We now illustrate the improvement that can be obtained by sampling the augmented model
(5.1) using Algorithms 9 and 10 together with an optimal estimate of ρ2 using Algorithm
8. To evaluate the performance of the methods in a variety of situations, we perform two
imaging experiments related to image deblurring (whose model is strongly log-concave) and
image inpainting (whose model is weakly log-concave), previously explained in Sections 2.1.1
and 2.1.2, respectively, using the cameraman test image. We implement these algorithms as
described in the implementation guidelines (see Section 5.4.3).

For a fair comparison the results we show have been plotted as a function of the number
of gradient evaluations, i.e., the number of times ∇ log pλ(x|, y, β) and ∇z log p

λ(z|y, β, ρ2) are
computed in our algorithms3. The plots we show include the evolution of the MCMC sam-
ples in burn-in stage using the scalar statistic log p(Xn|y, β) for MYULA and SK-ROCK, and
log p(Xgrad

n |y, β) for SGS, ls-MYULA and ls-SK-ROCK. We have also plotted the progression
of the mean-squared error (MSE) between the posterior mean and the true image, when all
the algorithms have reached their steady state (i.e., after burn-in period), including the MAP
estimate defined in (2.3.3) and computed using a highly efficient optimization algorithm called
SALSA [4, 3] for the image deblurring and image inpainting experiments.

We also provide pixel-wise standard deviation plots as a way of quantifying the uncertainty
in the delivered solution. We have also computed standard deviation plots performing down-
sampling by averaging the samples by a factor of 2 × j where j = {1, 2, 4}, which allows us

3Each iteration of the MYULA, SGS and ls-MYULA requires one gradient evaluation, whereas SK-ROCK
and ls-SK-ROCK requires s evaluations on each iteration.
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to observe the uncertainty in image structures at different scales. Finally, we also show auto-
correlation plots of the slowest component of the samples produced by each of the methods4,
applying a 1-in-s thinning to the MYULA, SGS and ls-MYULA chains to equal the number
of gradient evaluations between the mentioned methods (one gradient evaluation per iteration)
and SK-ROCK/ls-SK-ROCK methods (s gradient evaluations per iteration). With this quan-
tity, we have also compute effective sample sizes (ESS)5 of the five algorithms discussed in this
chapter, where the sum is truncated at lag k when the lag-k autocorrelation reaches a value
less than 0.05.

For completeness, in Table 5.7 we have also provided computing times of all the experiments.
These results have been obtained on an Intel core i5-8350U@1.70GHz workstation running
MATLAB R2018a.

5.5.1 Image deblurring

To examine the performance of the MCMC methods in different scenarios, we consider the
deblurring problem explained in Section 2.1.1, but using two additional test images: boat and
man. In this case, the target posterior distributions are, as follows

p(x|y, β) ∝ exp
[
−∥y −Hx∥2/2σ2 − βTV(x)

]
(5.15)

p(x, z|y, β, ρ2) ∝ exp
[
−∥y −Hx∥2/2σ2 − βTV(z)− ∥x− z∥2/2ρ2

]
, (5.16)

Figures 5.2(a),(b) show the additional test images consider in this experiment, and Figures
5.2(c)-(d) show the corresponding observations y for each image. Recall that Figure 2.1(a) shows
the cameraman test image and Figure 2.1(b) its corresponding blurry and noisy observation y.

(a) boat, true image x (b) man, true image x

(c) boat, observation y (d) man, observation y

Figure 5.2: Image deblurring experiments: Test images x and their corresponding noisy and
blurred observations y.

We begin estimating optimal values for β and ρ2 for the given models implementing Al-
gorithm 8 setting γi = γ′i = 10 × i−0.8/d, β0 = 0.04, ρ20 = L−1

f = σ2 and X0 = Z0 = H⊺y.

4The chain’s slowest component was identified by computing the approximated eigenvalue decomposition of
the poster covariance matrix and projecting the samples onto the leading eigenvector.

5Recall that ESS = n{1 + 2
∑

k ρ(k)}−1, where n is the total number of samples and
∑

k ρ(k) is the sum of
the K monotone sample auto-correlations which we estimated with the initial monotone sequence estimator.
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The corresponding results for the parameters estimation are given in Table 5.1, together with
the Lipschitz constants L and La required to sample (5.15) and (5.16) respectively. We then
generate 5× 106 samples using MYULA and 5× 106/s samples using SK-ROCK (with s = 15)
from (5.15), and 5×106 samples using SGS and ls-MYULA and 5×106/s samples using ls-SK-
ROCK (with s = 15) from (5.16). The results of these three experiments are plotted in Figure
5.3. In particular, we note from the evolution of the MSE (when the chains have reached the
typical set of the target distributions) that ls-MYULA and ls-SK-ROCK outperform SGS, as
we are using an exact MYULA implementation rather than a noisy one, as shown in Section
5.4. We have also reported the step-size used by each method in Table 5.2.

Table 5.1: Values for β and ρ2 estimated using Algorithm 8 for (5.15) and (5.16) in the image
deblurring experiments, together with the corresponding Lipschitz constants L and La.

Experiment β ρ2 σ2 L = 1/λ+ 1/σ2 La = 1/λ+ (σ2 + ρ2)−1

cameraman 0.044 0.480 0.335 5.959 4.205
boat 0.048 0.244 0.170 11.749 8.290
man 0.048 0.265 0.185 10.804 7.624

Table 5.2: Image deblurring experiment: Summary of the values for the step-size δ for each of
the MCMC methods applied to the three imaging experiments: cameraman, boat and man.

MCMC method Cameraman Boat Man
MYULA 0.167 0.085 0.092
SK-ROCK (s = 15) 67.959 34.468 37.483
SGS 0.237 0.120 0.131
ls-MYULA 0.237 0.120 0.131
ls-SK-ROCK (s = 15) 96.294 48.858 53.120

We also plot the autocorrelation function of the slowest component from the chains of the
MCMC algorithms, this is shown in Figures 5.3(c),(f),(i) and, as can be seen, ls-SK-ROCK
presents the fastest decay. In addition, Table 5.3 shows the effective sample sizes (ESS) as-
sociated with these autocorrelation plots, and one can notice that ls-SK-ROCK reaches the
largest ESS. In addition, we also illustrated in Figure 5.4 the minimum mean-square estimator
(MMSE) of all the MCMC methods for all three deblurring experiments.

Table 5.3: Image deblurring experiments: Effective sample sizes of the slowest component,
after generating 15 × 103 samples using the five algorithms discussed in this work, and the
speed increase (i.e., sp. inc.) achieved by the algorithms w.r.t. MYULA.

MYULA SK-ROCK SGS ls-MYULA ls-SK-ROCK
ESS ESS Sp. inc. ESS Sp. inc. ESS Sp. inc. ESS Sp. inc.

Cam. 46 1175 25.54 49 1.07 54 1.17 1604 34.87
Man 23 804 34.96 38 1.65 47 2.04 1107 48.13
Boat 34 669 19.68 42 1.24 45 1.32 944 27.76

Finally, Figure 5.5 shows the marginal posterior standard deviation of the cameraman de-
blurring experiment at different scales. One can notice that edges show higher uncertainty,
which is expected due to the nature of the forward operator. As can be seen, ls-MYULA and,
in particular, ls-SK-ROCK outperform SGS in terms of delivering accurate (i.e., less noisy)
estimates, showing the benefit of using these algorithms to sample in a more efficient way the
augmented posterior distribution.
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5.5.2 Image inpainting

To conclude, we perform the image inpainting experiment described in Section 2.1.2. To test
the MCMC methods in different regimes, we will use the cameraman test image shown in Figure
2.1(a), and the boat andman test images illustrated in Figure 5.2(a)-(b) (the observation images
y are illustrated in Figures 2.2 and 5.6). For this experiment, we consider the following models

p(x|y, β) ∝ exp
[
−∥y −Ax∥2/2σ2 − βTV(x)

]
(5.17)

p(x, z|y, β, ρ2) ∝ exp
[
−∥y −Ax∥2/2σ2 − βTV(z)− ∥x− z∥2/2ρ2

]
, (5.18)

where fy(x) = ∥y−Ax∥2/2σ2, A ∈ Rm×d is a rectangular matrix obtained by taking a random
subset of rows from the identity matrix in dimension d, and g(x) = TV(x).

We first proceed to estimate optimal hyperparameters β and ρ2 for (5.17) and (5.18) using
Algorithm 8 setting γi = γ′i = 10× i−0.8/d, β0 = 0.5, ρ20 = L−1

f /2 = σ2/2 and X0 = Z0 = A⊺y.
The estimated parameter values can be seen in Table 5.4, together with the Lipschitz constants
L and La required to sample (5.17) and (5.18) respectively.

Table 5.4: Values for β and ρ2 estimated using Algorithm 8 for (5.17) and (5.18) in the image
inpainting experiments

Experiment β ρ2 σ2 L = 1/λ+ 1/σ2 La = 1/λ+ (σ2 + ρ2)−1

cameraman 0.058 0.65 0.388 5.146 3.530
boat 0.057 0.35 0.208 9.588 6.571
man 0.05 0.37 0.219 9.105 6.243

Having obtained our estimates from the SAGP algorithm for the values of the hyperparam-
eters, we proceed to generate 5× 106 MYULA samples and 5× 106/s SK-ROCK samples (with
s = 15) from (5.17) and 5 × 106 SGS and ls-MYULA samples, and 5 × 106/s ls-SK-ROCK
samples (with s = 15) from (5.18). The step-sizes for each method are reported in Table 5.5.

Table 5.5: Image inpainting experiment: Summary of the values for the step-size δ for each of
the MCMC methods applied to the three imaging experiments: cameraman, boat and man.

MCMC method Cameraman Boat Man
MYULA 0.194 0.104 0.109
SK-ROCK (s = 15) 78.698 42.238 44.470
SGS 0.283 0.152 0.160
ls-MYULA 0.283 0.152 0.160
ls-SK-ROCK (s = 15) 114.717 61.627 64.874

With the generated samples, we proceed to plot the results of these experiments in Figure
5.7. We first notice the acceleration that can be obtained from ls-SK-ROCK in the burn-in
stage, illustrated by the evolution of the scalar estimate log p(Xn|y, β) of the MCMC samples.
Then, we show the evolution of the mean-squared error (MSE) between the mean of the samples
and the true image x after burn-in and, as can be seen, ls-SK-ROCK is computationally efficient
in being the fastest method to reach the MMSE in all three experiments, even outperforming
the MAP estimate in terms of accuracy in all three experiments; moreover, the improvement
of ls-MYULA over SGS, in terms of accuracy is evidently similar to our previous results.

We also plot the autocorrelation function of the pixel values for the slowest component in
Figures 5.7(c),(f),(i) and, as can be seen, the ACF of the ls-SK-ROCK samples decays faster
than all the other MCMC methods. In addition, Table 5.6 shows the effective sample sizes (ESS)
associated with these autocorrelation plots, and one can notice that ls-SK-ROCK reaches the
largest ESS. We also illustrate in Figure 5.8 the MMSE of all the MCMC methods for all three
inpainting experiments and, as in previous numerical results, we can see in Figures 5.7(b),(e),(h)
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that ls-SK-ROCK is the fastest method in compute this estimate.

Table 5.6: Image inpainting experiments: Effective sample sizes of the slowest component, after
generating 15 × 103 samples using the five algorithms discussed in this work, and the speed
increase (i.e., sp. inc.) achieved by the algorithms w.r.t. MYULA.

MYULA SK-ROCK SGS ls-MYULA ls-SK-ROCK
ESS ESS Sp. inc. ESS Sp. inc. ESS Sp. inc. ESS Sp. inc.

Cam. 14 281 20.07 14 1 21 1.5 448 32
Man 8 163 20.37 9 1.13 8 1 255 31.88
Boat 5 113 22.6 8 1.6 5 1 133 26.6

Finally, Figure 5.9 presents uncertainty quantification plots by showing pixel-wise standard
deviation estimates for the cameraman inpainting experiment. In this case, the uncertainty
is concentrated on the unobserved pixels, which is expected given the nature of the inpaint-
ing problem. One can notice that ls-MYULA and ls-SK-ROCK are slightly less noisy than
SGS, showing the good performance of these algorithms in sampling the augmented posterior
distribution.

Table 5.7: Summary of the execution times (in seconds) to produce one sample (i.e., after one
iteration) on each of the MCMC algorithms implemented for each experiment.

Imaging MYULA SK-ROCK ls-MYULA ls-SK-ROCK SGS
Experiment (s=15) (s=15)
deblurring 3.8× 10−2 6.1× 10−1 4.3× 10−2 6.1× 10−1 4.7× 10−2

inpainting 4.1× 10−2 5.8× 10−1 3.8× 10−2 5.6× 10−1 4.7× 10−2
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Figure 5.3: Image deblurring experiments: (a),(d),(g) Convergence to the typical set of the
posterior distribution (5.15) and (5.16) for the first 105 MYULA, SGS and ls-MYULA samples,
and the first 105/s SK-ROCK and ls-SK-ROCK samples (s = 15). (b),(e),(h) MSE between
the mean of the algorithms and the true image, measured using 5 × 106 MYULA, SGS and
ls-MYULA samples, and 5×106/s SK-ROCK and ls-SK-ROCK samples (s = 15), after burn-in.
(c),(f),(i) Autocorrelation function for the values of the slowest component of the samples.
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(a) MYULA (b) SK-ROCK (c) SGS (d) ls-MYULA (e) ls-SK-ROCK

(f) MYULA (g) SK-ROCK (h) SGS (i) ls-MYULA (j) ls-SK-ROCK

(k) MYULA (l) SK-ROCK (m) SGS (n) ls-MYULA (o) ls-SK-ROCK

Figure 5.4: Image deblurring experiments: MMSE computed using 5× 106 MYULA, SGS and
ls-MYULA samples, and 5× 106/s SK-ROCK and ls-SK-ROCK samples, after burn-in.
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Figure 5.5: Image deblurring experiments - cameraman: pixel-wise standard deviation com-
puted using 104 MYULA, SGS and ls-MYULA samples with a 1-in-15 thinning, and 104 SK-
ROCK and ls-SK-ROCK samples with s = 15, using (a)-(e) the original sample size (256×256)
and with downsampling by a factor of (f)-(j) 2, (k)-(o) 4 and (p)-(t) 8.

(a) boat: observation y (b) man: observation y

Figure 5.6: Image inpainting experiments: noisy and incomplete observations y (pixels in black
represent unobserved components).
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Figure 5.7: Image inpainting experiments: (a),(d),(g) Convergence to the typical set of the
posterior distribution (5.17) and (5.18) for the first 105 MYULA, SGS and ls-MYULA samples,
and the first 105/s SK-ROCK and ls-SK-ROCK samples (s = 15). (b),(e),(h) MSE between
the mean of the algorithms and the true image, measured using 5 × 106 MYULA, SGS and
ls-MYULA samples, and 5×106/s SK-ROCK and ls-SK-ROCK samples (s = 15), after burn-in.
(c),(f),(i) Autocorrelation function for the slowest component of the samples.
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(a) MYULA (b) SK-ROCK (c) SGS (d) ls-MYULA (e) ls-SK-ROCK

(f) MYULA (g) SK-ROCK (h) SGS (i) ls-MYULA (j) ls-SK-ROCK

(k) MYULA (l) SK-ROCK (m) SGS (n) ls-MYULA (o) ls-SK-ROCK

Figure 5.8: MMSE for the image inpainting experiment.
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Figure 5.9: Image inpainting experiments - cameraman: pixel-wise standard deviation com-
puted using 104 MYULA, SGS and ls-MYULA samples with a 1-in-15 thinning, and 104 SK-
ROCK and ls-SK-ROCK samples with s = 15, using (a)-(e) the original sample size (256×256)
and with downsampling by a factor of (f)-(j) 2, (k)-(o) 4 and (p)-(t) 8.
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Chapter 6

Conclusions

This thesis presented new proximal MCMC methods to perform Bayesian computation in in-
verse problems related to imaging sciences. The explicit EM approximation struggles in prob-
lems that are ill-posed or ill-conditioned because of the corresponding severe step-size restric-
tions. These same issues arise in the case of gradient descent and proximal gradient optimisation
algorithms that also suffer from step-size restrictions.

In Chapter 4 we have addressed this issue proposing an explicit stochastic Runge-Kutta-
Chebyshev discretisation of the Moreau-Yosida regularised overdamped Langevin diffusion pro-
cess named SK-ROCK. The proposed method employs a significantly more advanced discrete
approximation that has better convergence properties in problems that are ill-posed and ill-
conditioned, compared to the conventional EM discrete approximation of the Langevin diffu-
sion. The SK-ROCK approximation used in this thesis achieves a similar acceleration quality
to accelerated proximal optimisation algorithms [9]. For Gaussian models, we prove rigorously
the acceleration of the Markov chains in the 2-Wasserstein distance as a function of the con-
dition number κ when moderate accuracy is required. The superior behaviour of this method
is further demonstrated with a range of numerical experiments, including non-blind image de-
blurring, tomographic reconstruction, and hyperspectral unmixing, with total-variation and
ℓ1 priors. The generated Markov chains exhibit faster mixing, achieve larger effective sample
sizes, and produce lower mean square estimation errors at an equal computational budget.
This allows, for example, to accurately estimate high order statistical moments and perform
uncertainty quantification analyses in a more computationally efficient way.

In Chapter 5, we presented a strategy to combine MYULA or proximal SK-ROCK with
augmentation and relaxation in the manner of SGS. This was achieved by first establishing
that SGS is equivalent to a noisy ULA scheme applied to the marginal distribution of the la-
tent variable z in an augmented Bayesian model x, z|y, β, ρ2. This then naturally led to two
new samplers that apply MYULA and SK-ROCK to the latent marginal distribution z|y, β, ρ2.
Probabilities and expectations w.r.t. the primal marginal x|y, β, ρ2 are then straightforwardly
computed by using a Rao-Blackwellised Monte Carlo estimator. Moreover, we also observed
empirically that there is a range of values for ρ2 for which convergence speed and model quality
improve (in the sense of the model evidence). Increasing ρ2 beyond this range leads to im-
provements in convergence speed at the expense of significant estimation bias. We, therefore,
proposed to adopt an empirical Bayesian approach and set ρ2, together with the regularisation
parameter β, by maximum marginal likelihood estimation from y. This was achieved by using a
SAPG scheme that converges in very few iterations. We illustrated the benefits of adopting the
proposed methodology with two experiments, image deblurring and image inpainting. The re-
sults showed that the new proximal SK-ROCK algorithm that benefits from augmentation and
relaxation outperforms the other methods from the state of the art in terms of computational
efficiency.

Furthermore, this thesis opens a series of interesting directions for future research. An
important perspective is to theoretically analyse the non-asymptotic convergence properties
of SK-ROCK for non-Gaussian log-concave models and derive bounds in total-variation and
Wasserstein metrics; this is highly technical and will require the development of new analysis
techniques. It would also be interesting to explore possible Metropolis-adjusted variants of
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the stochastic Runge-Kutta-Chebyshev and the latent-space methods discussed in this thesis.
Future studies may also address the exploration of other envelopes in the sampling methods
studied in this thesis, such as the forward-backward envelope, recently proposed in [50], together
with the empirical Bayesian computation algorithms reviewed in this Thesis [123, 36] in order
to investigate whether the accuracy of the MMLE is improved and, therefore, the estimation
of the hyperparameters and the relaxation parameter of the augmented distribution. Another
interesting direction is to extend the proposed augmented approach to plug-and-play priors
encoded by neural network denoisers [80], and on establishing non-asymptotic convergence
results for the latent-space methods.
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Appendix A

Wasserstein distance - Gaussian
process

We begin computing the distribution Qn of the n samples generated by the approximation (4.3).
We will work in the one-dimensional case but the results easily extend to higher dimensions,
as can be seen later. First, we can notice that the solution of (4.3) can be expressed by the
following recursive formula:

Xn = (R1(z))
nX0 +

√
2δ

n∑
i=1

(R1(z))
n−i(R2(z))ξi,

where X0 is the initial condition of the problem. Computing expectations on both sides of the
latter equation, we have:

E(Xn) = (R1(z))
nX0.

Then, we compute the variance as follows:

E(X2
n)− E(Xn)

2 = 2δ

n∑
i=1

(R1(z))
2(n−i)(R2(z))

2,

= 2δ(R1(z))
2n(R2(z))

2
n∑

i=1

1

(R1(z))2i
,

= 2δ(R1(z))
2n(R2(z))

2 1

(R1(z))2

[
1− 1

(R1(z))2n

1− 1
(R1(z))2

]
,

= 2δ(R2(z))
2

[
(R1(z))

2n − 1

(R1(z))2 − 1

]
,

thus, the approximated distribution Qn of the n-th sample produced by the numerical scheme
(4.3) is defined, as follows:

Qn = N
(
(R1(z))

nX0, 2δ(R2(z))
2

[
(R1(z))

2n − 1

(R1(z))2 − 1

])
.

We can now compute the Wasserstein distance between the two univariate Gaussian distribu-
tions P and Qn:

W2(P ;Qn)
2 = (R1(z))

2nX2
0 +

[
σ −

√
2δR2(z)

(
1− (R1(z))

2n

1− (R1(z))2

)1/2
]2
.

As we mentioned at the beginning of this Appendix, we can trivially extend the last result
for a d-dimensional Gaussian distribution i.e. let P ∼ N(0,Σ) where Σ = diag(σ2

1 , ..., σ
2
d) and
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X0 = (x10, ..., x
d
0)

T and obtain the following expression for the Wasserstein distance:

W2(P ;Qn)
2 =

d∑
i=1

(R1(zi))
2n(xi0)

2 +

d∑
i=1

[
σi −

√
2δR2(zi)

(
1− (R1(zi))

2n

1− (R1(zi))2

)1/2
]2
,

where zi = −δ/σ2
i . This concludes the proof.
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Appendix B

Explicit bound for the
Wasserstein distance

We begin applying the triangle inequality to W2(P ;Qn+1)
2 as follows:

W2(P ;Qn+1)
2 ≤W2(P ; Q̃)2 +W2(Q̃;Qn+1)

2, (B.1)

where Q̃ is the unique invariant distribution to which (4.3) converges when n → ∞ and it is
defined as:

Q̃ = N
(
0, 2δ(R2(z))

2

[
1

1− (R1(z))2

])
,

thus, we have that:

W2(Q̃;Qn+1)
2 =

d∑
i=1

R1(zi)
2n+2(xi0)

2 +

d∑
i=1

[(
2δR2(zi)

2

1−R1(zi)2

)1/2

−
√
2δR2(zi)

(
1−R1(zi)

2n+2

1−R1(zi)2

)1/2
]2
,

=

d∑
i=1

[
R1(zi)

2n+2(xi0)
2 +

2δR2(zi)
2

1−R1(zi)2

(√
1−

√
1−R1(zi)2n+2

)2]
.(B.2)

It is easy to prove the following property:

1−
√
1− x2n+2

1−
√
1− x2n

x2 ≤ x2, (B.3)

for x ∈ (0, 1). Thus, applying the latter in (B.2) we have:

W2(Q̃;Qn+1)
2 ≤

d∑
i=1

R1(zi)
2n+2(xi0)

2

+

d∑
i=1

2δR2(zi)
2

1−R1(zi)2

(
R1(zi)

2
[
1−

√
1−R1(zi)2n

])2
,

≤
d∑

i=1

[
R1(zi)

2n(xi0)
2

+
2δR2(zi)

2

1−R1(zi)2

(
1−

√
1−R1(zi)2n

)2]
R1(zi)

2,

≤ max
1≤i≤d

R1(zi)
2W2(Q̃;Qn)

2.
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Thus, (B.1) becomes:

W2(P ;Qn+1)
2 ≤W2(P ; Q̃)2 + max

1≤i≤d
R1(zi)

2W2(Q̃;Qn)
2.

Let:
C = max

1≤i≤d
R1(zi)

2,

applying (B.3) n+ 1 times, we finally have that:

W2(P ;Qn+1)
2 ≤W2(P ; Q̃)2 + Cn+1W2(Q̃;Q0)

2,

concluding the proof.
As an attempt to minimise the bound found in the latter expression, we will try to accelerate

the decay of the constant C composed byR1(z) in the stochastic ROCKmethods. This approach
follows closely the approach in [49]. In particular, in order to bound R1(z) by one, we need
that |ω0 + ω1z| ≤ 1, in other words we need that:

−1 ≤ ω0 − ω1
δ

σ2
i

≤ 1.

Let L := 1/σ2
min and ℓ := 1/σ2

max, so we have that:

−1 ≤ ω0 − ω1Lδ ≤ ω0 − ω1ℓδ ≤ 1,

which it is the same as:
−1 ≤ ω1ℓδ − ω0 ≤ ω1Lδ − ω0 ≤ 1.

Working with the first two members on the left-hand side of the latter inequality, we have that:

δ ≥ ω0 − 1

ℓω1
. (B.4)

We choose the smallest δ to have an efficient algorithm i.e., δ = (ω0 − 1)/ℓω1 and now working
with the last two members on the right-hand side of the previous inequality, we have that:

κ :=
L

ℓ
≤ ω0 + 1

ω0 − 1
= 1 +

2s2

η
,

where κ is the condition number of our Gaussian problem. We choose the smallest s to have
an efficient algorithm and the latter expression determines the parameter s as:

s =

[√
η

2
(κ− 1)

]
, (B.5)

where [x] is the notation for the integer rounding of real numbers.
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[64] O. Güler. “New Proximal Point Algorithms for Convex Minimization”. In: SIAM Journal
on Optimization 2.4 (1992), pp. 649–664.
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