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Abstract—There are usually multiple constraints in con-
strained multi-objective optimization. Those constraints reduce
the feasible area of the constrained multi-objective optimization
problems (CMOPs) and make it difficult for current multi-
objective optimization algorithms (CMOEAs) to obtain satis-
factory feasible solutions. In order to solve this problem, this
paper studies the relationship between constraints, then obtains
the priority between constraints according to the relationship
between the Pareto Front (PF) of the single constraint and
their common PF. Meanwhile, this paper proposes a multi-stage
CMOEA and applies this priority, which can save computing
resources while helping the algorithm converge. The proposed
algorithm completely abandons the feasibility in the early stage
to better explore the objective space, and obtains the priority
of constraints according to the relationship; Then the algorithm
evaluates a single constraint in the medium stage to further ex-
plore the objective space according to this priority, and abandons
the evaluation of some less-important constraints according to
the relationship to save the evaluation times; At the end stage of
the algorithm, the feasibility will be fully considered to improve
the quality of the solutions obtained in the first two stages,
and finally get the solutions with good convergence, feasibility,
and diversity. The results on five CMOP suites and three real-
world CMOPs show that the algorithm proposed in this paper
can have strong competitiveness in existing constrained multi-
objective optimization.

Index Terms—Constrained multi-objective optimization, Evo-
lutionary algorithm, Constraint-handling priority.

I. INTRODUCTION

Practical optimization problems in the real world include
multiple conflicting objective functions that need to be op-
timized simultaneously [1]. Such optimization problems are
usually called multi-objective optimization problems (MOPs)
[2]. Most real-world multi-objective optimization problems
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contain one or more constraints on their objective values or
decision variables. Such problems are called constrained multi-
objective optimization problems (CMOPs), such as pressure
vessel design [3], vibrating platform design [3], crash energy
management for high-speed train [4], and power distribution
system planning [5]. A CMOP can be defined as follows [6]:

min F (X) = (f1(X), f2(X), . . . , fm(X)),
subject to X ∈ Ω,

gi(X) ≤ 0, i = 1, . . . , p
hj(X) = 0, j = 1, . . . , q

(1)

where X = (x1, x2, . . . , xn) is an n-dimensional decision
variable vector from the decision space Ω; F (X) is an
objective function vector composed of m conflicting objective
functions; gi(X) are q inequality constraints and hi(X) are p
equality constraints.

For any two solutions Xa, Xb ∈ Ω, the solution Xa

Pareto dominates Xb if and only if fi(Xa) ≤ fi(Xb) for
each i ∈ {1, . . . ,m} and fj(Xa)<fj(Xb) for at least one
j ∈ {1, . . . ,m}, denoted as Xa ≺ Xb [7]. If there are no
mutually dominating solutions in a set, then the set is called
Pareto optimal set [8]. The mapping of all Pareto optimal
sets in the objective space called unconstrained Pareto Front
(PF), the mapping of all Pareto optimal sets that satisfy the
constraints in the objective space is called constrained PF.

The solution of each CMOP has the degree of violation of
each constraint. For the degree of violation of a solutuion,
cj(X) can be used to define the j-th constraint:

cj(X) =

{
max(0, gj(X)), j = 1, . . . , p
max(0, |hj(X)− δ|), j = p+ 1, . . . , p+ q

(2)
where δ is a small enough relaxation factor (usually taken
as 1e-6) to relax equality constraints [9]. The solution of a
CMOP usually adds the violation values of each constraint by
CV (X) to determine the overall violation of all constraints
[10].

CV (X) =

p+q∑
j=1

cj(X), (3)

Unlike MOPs, solving a CMOP considers not only con-
vergence and diversity but also feasibility. The challenges
brought by constraints to CMOP is a major difficulty in
constrained multi-objective optimization. Generally speaking,
the difficulty of solving a CMOP is positively related to the
number constraints. The intersection of the feasible regions
mapped by multiple constraints in the objective space forms
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the final feasible region. In the same CMOP, the feasible
region mapped by a single constraint in the objective space
is greater than or equal to the feasible region shared by this
constraint with other constraints, and the former is easier
to find the feasible solution than the latter. In addition, we
also find that some constraints are more critical than others
in CMOPs according to the relationship between the PF
of constraints. Based on this, this paper proposes a multi-
stage constrained multi-objective optimization evolutionary
algorithm (CMOEA) to solve CMOPs. The CMOEA proposed
in this paper will evaluate the impact of constraints on MOP
in an easy to difficult way, and in order to obtain the solution
as efficiently as possible, some less-important constraints will
not be evaluated. The main contributions of this paper are as
follows:

1) The relationship between constraints is discussed. Ac-
cording to this relationship, a constraint-handling pri-
ority and a method to determine the less-important
constraint(s) are proposed.

2) A multi-stage CMOEA called C3M (Constraint, Multi-
objective, Multi-stage, Multi-constraints) is proposed.
The proposed algorithm evaluates MOP itself for explo-
ration in the first stage. In the second stage, the algorithm
will evaluate the impact of a single constraint on MOP
to reduce the overall difficulty of CMOP. In this stage,
some less-important constraint(s) will not be evaluated
to save evaluation times. In the last stage, the algorithm
will evaluate the impact of all constraints on MOP to
obtain a final feasible solution with good diversity and
convergence.

The rest of this article is organized as follows: in Section
II, we review the existing constraint handling technologies
and explain the motivation of this paper. In Section III, we
introduce the C3M algorithm proposed in this paper and its
details. Section IV analyzes the performance of our C3M in
the CMOP test suites and real-world CMOPs and compares
the existing multi-stage CMOEAs. Section V summarizes this
paper.

II. RELATED WORKS AND MOTIVATION

A. Constraint Handling Techniques

After about 20 years of development, many constraint
handling techniques (CHTs) have been proposed [11].

The feasibility based CHT is the most widely used. The
most commonly used is Constraint Domination Principle
(CDP), which is defined as follows: if X1 ≺ X2, it is satisfied
with: CV (X1) = 0, CV (X2) > 0

CV (X1) = 0, CV (X2) = 0, and X1 ≺ X2

CV (X1) > 0, CV (X2) > 0, and CV (X1)<CV (X2)
(4)

The CDP was first proposed by Deb et al. in [12], It is simple,
does not need any parameters, and can be easily combined with
other CMOEAs. Though this method is simple and relatively
effective, it ignores the other two elements to solve CMOP -
convergence and diversity. Finally, it leads the population fall
into local optimization when facing complex CMOPs.

In order to overcome this, researchers try to find a bal-
ance among these three elements. The methods adopted by
researchers can be roughly divided into four categories: The
first is the ε based method [13] [14]. The solution with a
constraint violation value less than epsilon is regarded as
a fake feasible solution. Fan et al. improved the ε method
in [15], which will help the population overcome the large
infeasible region. The second category is the self-adaptive
penalty function method, which brings the constraint violation
value into the objective function. The key of this method is the
setting of penalty factors, which are often related to CMOPs
[16]. Therefore, researchers have designed a series of adaptive
penalty factors [17]. The multi-objective optimization-based
method is the third category, which optimizes the constraints
as a new objective function. A representative method is [18]
and [19]. The last category is the stochastic ranking method,
which was first proposed by Yao et al. [20]. This method
selects individuals with better objective values with a larger
probability, and selects individuals with better constraints
violation with a smaller probability. However, not all solutions
have a dominant relationship. Researchers have improved this
problem in many ways [21] [22]. These four categories have
the problems of parameter setting and increasing complexity,
although they are improved compared with CDP, they still
have difficulties in facing complex CMOPs.

To better balance feasibility, convergence, and diversity,
the most cutting-edge method is to use the hybrid method.
Researchers achieve it in two ways: the first way is to adopt
different strategies in different populations. In CCMO [11],
Tian et al. used a completely feasibility-based strategy in Pop1
to ensure feasibility while using a completely non-feasibility-
based strategy in Pop2 to ensure convergence and diversity.
This method has advantages in dealing with problems with
relatively close constrained PF and unconstrained PF, but it
is less helpful when they are far. Therefore, Zou et al. [23]
and Ming et al. [24] have proposed improvements to face the
situation. Li et al. also used two populations in CTAEA [25], in
which the convergence-oriented archive CA aims to optimize
constraints and objectives and push the population to the
Pareto front, while the diversity-oriented archive DA explores
underutilized by CA, including infeasible areas. Since DA
prefers solutions with better diversity rather than infeasible
solutions with better objective value, it is difficult to cross
the infeasible area. The second way is to adopt different
strategies in different stages. Tian et al. proposed a two-
stage CMOEA in CMOEA MS [26], when the proportion
of feasible solutions is less than λ, the population will give
the same priority to constraints and objective values; on the
contrary, the population gives priority to constraints. The value
of lambda will affect the performance, the fixed lambda value
is difficult to face different CMOPs. In the ToP [27], only a
single objective and all constraints are considered in the first
stage; then, in the second stage, all constraints and objectives
are considered to obtain the final solution. A single reference
vector will cause the gathering of solutions at the end of
stage 1, which is not conducive to exploring the feasible
region in stage 2. Fan et al. proposed the push and pull
search (PPS) [28] based on MOEA/D [29] framework, which
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helps the population explore the objective space by using
different ε value in different stages. This method focuses
on the information in the infeasible solution, thus ignoring
in feasible region. Fei et al. proposed a similar method in
[30], which uses the information in the infeasible region to
improve the final quality of solutions. Zhu et al. [31] also
used the ε method to help the population escape from the
local optimization caused by constraints, which is essentially
the utilization of information in infeasible reigon. Ma et al.
proposed a constraint-handling priority different from this
paper and applied to MSCMO [32]. In MSCMO, constraints
are added one after the other and handled in different stages of
evolution. This method may retain some infeasible solutions
when the number of evaluations is insufficient .

B. Motivation

(a) (b)

(c) (d)

Fig. 1. (a)-(c): Solutions obtained by NSGAII-CDP on constraint1-3 con-
straint on MW5 respectively. (d) Solutions obtained by NSGAII-CDP on all
constraints on MW5.

Real-world CMOPs usually contain multiple constraints.
Generally speaking, whether a CMOP is easy to solve depends
mainly on the number and difficulty of constraints. On the

premise that the difficulty of each constraint is the same, the
CMOPs with more constraints are more challenging to solve,
while CMOPs with only one constraint is relatively easy to
solve. The reason is that a single constraint is easier to meet
than multiple constraints.

For example, MW5 [33] is a CMOP with three constraints.
Figure 1(a) - 1(c) shows the solutions obtained by NSGAII-
CDP only handle a single constraint, and figure 1(d) shows
the results obtained by NSGAII-CDP handled all constraints.
We can see that the feasible region of MW5 is narrow
since the existence of multiple constraints, while a single
constraint is easy to satisfy. As a result, all optimal results
are obtained while NSGAII-CDP handles a single constraint,
but only partial optimal solutions are obtained when handling
all constraints.

Therefore, We can handle a single constraint to reduce the
difficulty when exploring. However, do we need to handle
all constraints? We might as well discuss the relationship
between constraints. Suppose constraintA and constraintB are
two different constraints in the same CMOP. From the PF
between constraints, there are three types.

1) Type A: The PF of constraintA partially (all) satisfies
constraintB, and the PF of constraintB partially (all)
satisfies constraintA. The final PF consists of both. In
this case, we can consider that the two constraints have
the same priority. For example, figure 2(a) shows type
A relationship.

2) Type B: The PF of constraintA partially (all) satisfies
constraintB. In contrast, the PF of constraintB com-
pletely does not satisfy constraintA, and its final PF is
all composed of the optimal solution set of constraintA.
In this case, only considering constraintA can obtain
partially (all) final feasible Pareto optimal solutions.
Therefore, in this case, constraintA is more critical than
constraintB. For example, figure 2(b) shows type B
relationship.

3) Type C: The PF of constraintA does not satisfy con-
straintB, the PF of constraintB does not satisfy con-
straintA, and the final PF is not composed of the Pareto
optimal solution sets of constraintA and constraintB. In
this case, the priority of constraintA and constraintB

f1

f2

PF of constraintA

PF of constraintB

 Common PF 

(a)

f1

f2

 Common PF 

PF of constraintB PF of constraintA

(b)

f1

f2

Unconstraint PF

PF of constraintB

PF of constraintA

Common PF

(c)

Fig. 2. Three relationships between constraints. (a) Type A. (b) Type B. (c) Type C. The blue region represents the feasible region of constraintA; The Yellow
region represents the feasible region of constraintB; The green region represents the common feasible region of constraintA and constraintB.
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is the same. For example, figure 2(c) shows type C
relationship.

Based on the above discussion, we use the following strate-
gies to deal with CMOPs:

1) First, we explore objective space in a simple-to-complex
way. The feasibility is completely abandoned in the
preliminary exploration, and only one constraint is eval-
uated at a time in further exploration.

2) Second, some constraints will not be evaluated to save
the evaluation times according to the relationship be-
tween constraints.

In this way, CMOPs with multiple constraints can be solved
more easily. The following section will introduce the flow and
details of the C3M proposed in this paper.

III. PROPOSED ALGORITHM

A. Procedure of C3M

Algorithm 1: Procedure of the proposed C3M
Input: N (population size), β (latest time to stage 3)
Output: Popualtion (final popualtion)

1 Now = 0;
2 arch ← An external archive set;
3 P ← RandomInitialization;
4 totalcon ← Number of constraints in CMOP;
5 for i ← 1to totalcon do
6 Pop[i] = P ;
7 E[i] = 0;

8 while termination criterion not fulfilled do
9 P ′ ← Select N parents from P ;

10 O ← Generate N offsprings basic on P ′;
11 Objk ← Sum of absolute values of objective values of k

generation in P ;
12 if Now == 0 then
13 P ← Environmental Selection(P ∪ O, No Con);
14 Pop[i] ← Environmental Selection(Pop[i] ∪ O, i);
15 arch ← Update external archive;
16 if is stable(Obj,P ,N ,M ) then
17 P ← RandomInitialization;
18 S ← Get priority according to Algorithm 3;
19 Now = S[1];

20 else if 0 <Now ≤ totalcon then
21 P ← Environmental Selection(P ∪ O, Now);
22 Pop[i] ← Environmental Selection(Pop[i] ∪ O, i);
23 arch ← Update external archive;
24 if is stable(Obj,P ,N ,M ) then
25 E[Now] = 1;
26 E ← Update less-important constraints according to

Algorithm 4;
27 if Have constraint(s) need to be evaluated then
28 P ← RandomInitialization;
29 Now ← Next unevaluated constraint in S;

30 else
31 P ← Environmental Selection(P ∪ arch ∪

Pop, All Con);
32 Now = totalcon+ 1

33 else
34 P ← Environmental Selection(P ∪ O, All Con);

35 if evaluated ≥ evaluation * β then
36 Now = totalcon +1;

37 return P ;

The general flow of the proposed C3M is presented in
Figure 3 and its pseudo-code is shown in Algorithm 1. For
ease of reading, we will introduce different parts of Algorithm
1 in different paragraphs.

Initialization: Lines 1-7 are the initialization of the al-
gorithm. Firstly, the algorithm will initialize the population
randomly and maintain a population array Pop for each
constraint. In order to make it easier for readers to understand,
Pop in the following refers to the entire population array,
while the ith element in the Pop contains N individuals (i.e.,
Pop[i] for ith constraint). These N individuals are the optimal
individuals obtained by environmental selection considering
only ith constraint. Pop only exists in the first two stages
and will not participate in reproduction and update themselves
only through environmental selection. Pop exists to determine
the priority of constraint and less-important constraint(s). The
purpose of the E array is whether it is necessary to evaluate the
ith constraint. If E[i] is positive, the algorithm will know that
the ith constraint is unnecessary to process. Now represents
the processing constraint of the current evaluation. If Now is
equal to 0, the algorithm is in stage 1, and all the constraints
are not considered during evaluation; When Now is between
1-totalcon, the algorithm will process the Nowth constraint.
At this time, the algorithm is in stage 2. When Now equals
totalcon+1, the algorithm is in stage 3, and all constraints are
considered in evaluating the population.

Reproduction: Lines 9-11 show the operation of population
reproduction. The mating selection used in this paper is binary
tournament selection, and the offspring generation method
used in this paper is shown in section IV-B. In line 19, the sum
of the absolute value of objective values of k-th generation of
the population is stored into Objk to judge whether the stage
will convert.

Stage1: Lines 12-19 describe the operation in stage 1. In
this stage, the P using environmental selection without con-
sidering any constraints updates Pop[i] through environmental
selection only considering ith constraint and updating the
external archive. The environment selection used in this paper
is similar to that used in NSGAII-CDP. They differ in how
CV (X) is calculated: When constraints are not considered,
CV (X) is always equal to 0; When the ith constraint is con-
sidered, the ci(X) is equals to CV (X); When all constraints
are considered, CV (X) is calculated by equation 3. In lines
16-19, the Algorithm 2 judges whether the algorithm can enter
stage 2. If the stage transition conditions are met. Then the
algorithm will reinitialize the P , decide the priority of the
constraints, put it into S, and set Now as the first element in
S. Then the algorithm will enter stage 2.

Stage2: Lines 20-32 describe the operations in stage 2.
In this stage, the P only considers the Nowth constraint
when making environment selection, updates Pop[i] through
environmental selection only considering ith constraint and
update external archive. In lines 24-32, the Algorithm 2 judges
whether the algorithm can enter the next stage (processing the
following constraint or entering stage 3). The algorithm first
updates E and then judges whether there have constraint(s)
to evaluate according to E. If there are still constraint(s) that
have not been evaluated, the algorithm will reinitialize the P ,
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Fig. 3. Flowchart of the proposed C3M

then continue to evaluate the remaining constraints according
to the priority in S; otherwise, it will enter stage 3.

Stage3: Line 34 are the operations in stage 3. At this time,
the C3M considers all constraints. It is worth mentioning that
to ensure that the population can enter stage 3 and obtain the
final feasible solution since stage 1 & 2 is only an exploration
of CMOPs, lines 35 and 36 specify the latest time to enter
stage 3, β is the proportion of entering stage 3 at the latest
(β = 0.7 in this paper, ). In the following subsection, we will
analyze and introduce more detail on C3M.

B. Analysis of proposed C3M

In this section, we show the detail of proposed C3M and
how it works.

Algorithm 2: is stable(Obj,P ,N ,M )
Input: Obj (sum of objective values of each

generation), P (population), N (number of
Population), M (number of objectives)

Output: result (whether the population meets the
conditions for entering the next stage)

1 result = 0;
2 FrontNo ← NDSort(P );
3 NC ← number of nondominant individual;
4 if NC == N then
5 λ ← accroding to 5;
6 if |Objk - Objk−1| ≤ λ then
7 result = 1

8 return result;

1) Stage transition conditions: The C3M proposed in this
paper contains multiple stages, including three major stages
and many minor stages in stage 2, but their conversion
conditions are the same. As shown in algorithm 2, when
all the solutions in P are nondominant solutions, and the
absolute value of the objective value of the two generations of
population objk and objk−1 is less or equal to λ, the population
can enter the next stage.

λ = 10M−5
objk
MN

(5)

As shown in 5, the λ used in this paper is self-adaptive.
It will adjust itself according to the population size N ,

problem scale, and the objective number M of the CMOP,
objk/(MN) is the average objective value of all individuals
in the current population in each dimension, 10m−5 represents
the magnification of this average value. When the dimension of
the problem rises, this magnification will also increase. Since
in an M -objective problem, the set of optimal solutions is in
an (M − 1)-dimensional hyperplane. However, the solution is
always a point in the M -objective problem. When M is larger,
the more possible positions of this solution in the (M − 1)-
dimensional hyperplane will be. The fixed λ may make it
challenging to meet the conditions since the scales, and M
between real-world CMOPs are usually huge.

In stage 1, the population will be in a stable state after
reaching the unconstrained PF, while in stage 2, the population
will be in a stable state after reaching a feasible region
boundary of single constraint, which means the P does not
need additional optimization, and the P has the conditions to
enter the next stage.

Algorithm 3: Get priority(Pop,totalcon)
Input: Pop (population of each constraint), totalcon

(number of constarints)
Output: S (The priority of processing constraints)

1 AllPop ← All individuals in Pop;
2 FrontNo ← NDSort(AllPop);
3 for i ← 1 to totalcon do
4 min[i] ← The minimum dominance level of

individuals in Pop[i] in FrontNo
5 S ← The index after the elements in min are arranged

in descending order.
6 return S;

2) Priority of constraints: Deciding the priority of con-
straint is a key component of the C3M. The constraint priority
decides through the Pop[i] maintained in stage 1, as shown in
algorithm 3. The algorithm will get all nondominated levels
of all solutions in Pop, obtain the best non-dominated level
for each Pop[i], arrange these individuals in descending order,
and output the index as the constraint priority.

As shown in the left side of figure 4, LIRCMOP7 comprises
three constraints. After the nondominated sorting of all the
populations in Pop[1], Pop[2] and Pop[3], the minimum non-
dominated level of all solutions in Pop[2] and Pop[3] are 1,
and the minimum non-dominated level in Pop[1] population
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is greater than 1. Therefore, 1st constraint is more important
than 2nd constraint and 3rd constraint. The final priority is
Constraint 1 >Constraint 2 = Constraint 3 The reason for this
is straightforward: for a feasible solution, it must meet all
constraints, so it must also meet the constraints farthest from
the ideal point. In this example, for LIRCMOP7, there is no
better solution than Pop[1]. In the region between the ideal
point and the Pop[1], there is no feasible solution for the 1st
constraint, but the final feasible solution must meet the 1st
constraint, so the 1st constraint should be evaluated first.

Algorithm 4: Unnec(Pop,E,totalcon,Now)
Input: Pop (population of each constraint), E

(constraints need to be processed), totalcon
(number of constarints), Now (the constraint
consider in this stage)

Output: E (constraints need to be processed)
1 AllPop ← All individuals in Pop[i];
2 FrontNo ← NDSort(AllPop);
3 Min domin ← The minimum dominance level of

individuals in Pop[Now] in FrontNo;
4 for i ← 1 to totalcon do
5 if i != Now then
6 Max domin ← The maximum dominance

level of individuals in Pop[i] in FrontNo;
7 if Max domin ≤ Min domin then
8 E[i] = 1;

9 return E;

3) Deciding the unnecessary constraints: When algorithm
1 goes through stage 2, whenever a constraint is processed,
it will determine whether the remaining constraints need
to be evaluated during stage transition to save unnecessary
evaluation times. The deciding of unnecessary constraints
through the Pop[i] maintained stage 2. Its pseudo-code is
shown in algorithm 4. Algorithm 4 first takes all the solutions
in Pop[i] for non-dominated sorting and finds the smallest
non-dominated level in the Pop[Now] (i.e., the level with
the best convergence in Pop[Now]), and find the level with
the largest non-dominated level in the Pop[i] to which other
constraints belong (i.e., the level with the worst convergence
in Pop[i]). If the worst level in Pop[i] is better than the best
individuals in the Pop[Now], then according to Section II-B,
We can think that it is in the Type B relationship of constraints,
so the constraint with better PF does not need to be evaluated.

As shown on the right side of Figure 4, MW12 is a CMOP
with two constraints. According to constraint-handling priority,
the first constraint is more priority than the second constraint.
Figure 4(b) shows the Pop[1] when the first constraint is
evaluated and the stage transition conditions are met, and
figure 4(d) shows the Pop[2]. At this time, the Pop[1] is
dominated by Pop[2] and meets the relationship of Type
B. Therefore, the second constraint is not necessary to be
evaluated. Besides, we can also see from figure 4(f) that the
existence of the second constraint makes the final feasible
region narrow and difficult to obtain the feasible solution,

and our strategy considering only a single constraint will
not be affected by this, which proves the superiority of our
motivation.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Left side: Feasible region of each constraint in LIRCMOP7 and its
Pop[i] after stage1. (a) First constraint of LIRCMOP7 (c) Second constraint
of LIRCMOP7 (e) Thrid constraint of LIRCMOP7.
Right side: Feasible region of each constraint in MW12 and its Pop[i] after
evaluating the first constraint, and its final feasible region. (b) First constraint
of MW12 (d) Second constraint of MW12 (f) Final feasible region of MW12.

4) Reinitialize: Reinitialization is also a crucial part of
C3M. It is mainly used at the beginning of stage 2 and each
substage in stage 2. In the type C relationship, the final PF
of the two constraints is not related to their respective PF but
in the middle of the feasible region of the two constraints.
Therefore, reinitialization can provide feasible solutions for
the population when it passes through the middle of these
crossed feasible regions. Reinitialization is also helpful for
single constraint CMOPs, which can help the population obtain
better diversity solutions and jump out of the local optimum.

5) Computational Complexity of C3M: Suppose N is the
number of populations, C is the number of constraints, D
is the number of decision vectors, and M is the objective
numbers. In this paper, we use the Pareto-based reproduc-
tion method, in which the complexity of mating selection
is O(N), the complexity of genetic operators is O(ND),
and the complexity of environment selection is O(MN2).
Although C3M is divided into three stages, C3M is the
same as the applied reproduction method’s mating selection
and genetic operators. Therefore, C3M is the same complex
as the reproduction methods applied to C3M in these two
operations. As the environmental selection, C3M will make
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C + 2 environmental selections in each generation in the first
stage, and in the second stage, each generation will make
less than C + 2 environmental selections. Note that this value
gradually decreases with the optimization process. In the final
stage, each generation will make one environmental selection
as the selected reproduction method. Therefore, the complexity
of the final environmental choice is O(CMN2). Therefore, the
complexity of the final environmental choice is O(CMN2).
Therefore, the algorithm proposed in this paper is slightly
worse than the applied reproduction method, which mainly
depends on the number of constraints C.

IV. EXPERIMENTAL STUDIES

All the experiments in this paper are based on PlatEMO2.9
[34]. The default parameters in the platform are used where
there is no particular explanation.

A. Benchmark Suites and real-world CMOPs

We used CDTLZ [35] test suite, MW [33] test suite,
DASCMOP [36] test suite, DOC [27] test suite and LIRCMOP
[15] test suite to test C3M. Their Populaiton size N , objective
number M , decision vector D and evaluation times FEs are
shown in table I.

TABLE I
PARAMETER SETTINGS FOR MW, LIRCMOP, DOC, DASCMOP AND

CDTLZ.

Problem N M D FEs Problem N M D FEs
MW1 100 2 15 200000 LIRCMOP1 100 2 10 300000
MW2 100 2 15 200000 LIRCMOP2 100 2 10 300000
MW3 100 2 15 200000 LIRCMOP3 100 2 10 300000
MW4 100 3 15 200000 LIRCMOP4 100 2 10 300000
MW5 100 2 15 200000 LIRCMOP5 100 2 10 300000
MW6 100 2 15 200000 LIRCMOP6 100 2 10 300000
MW7 100 2 15 200000 LIRCMOP7 100 2 10 300000
MW8 100 3 15 200000 LIRCMOP8 100 2 10 300000
MW9 100 2 15 200000 LIRCMOP9 100 2 10 300000

MW10 100 2 15 200000 LIRCMOP10 100 2 10 300000
MW11 100 2 15 200000 LIRCMOP11 100 2 10 300000
MW12 100 2 15 200000 LIRCMOP12 100 2 10 300000
MW13 100 2 15 200000 LIRCMOP13 100 3 10 300000
MW14 100 3 15 200000 LIRCMOP14 100 3 10 300000
DOC1 100 2 6 300000 DASCMOP1 100 2 15 300000
DOC2 100 2 16 300000 DASCMOP2 100 2 15 300000
DOC3 100 2 10 300000 DASCMOP3 100 2 15 300000
DOC4 100 2 8 300000 DASCMOP4 100 2 15 300000
DOC5 100 2 8 300000 DASCMOP5 100 2 15 300000
DOC6 100 2 11 300000 DASCMOP6 100 2 15 300000
DOC7 100 2 11 300000 DASCMOP7 100 3 15 300000
DOC8 100 3 10 300000 DASCMOP8 100 3 15 300000
DOC9 100 3 11 300000 DASCMOP9 100 3 15 300000

C1-DTLZ1 100 3 7 200000 DC1-DTLZ3 100 3 12 200000
C1-DTLZ3 100 3 12 200000 DC2-DTLZ1 100 3 7 200000
C2-DTLZ2 100 3 12 200000 DC2-DTLZ3 100 3 12 200000
C3-DTLZ4 100 3 12 200000 DC3-DTLZ1 100 3 7 200000

DC1-DTLZ1 100 3 7 200000 DC3-DTLZ3 100 3 12 200000

For real-world CMOPs, we use three real-world CMOPs
to test C3M and comparison algorithm. They are bulk carrier
design [37], pressure vessel design [3], and reactor network
design [38]; their parameter settings are shown in Table
II. The bulk carrier design problem is a CMOP with nine
inequality constraints. It aims to design a bulk carrier with
the smallest transportation consumption, the lightest hull, and
the largest cargo capacity. Pressure vessel design has two
inequality constraints and two equality constraints. It is to
design a cylindrical pressure vessel with both endsby semicir-
cular spherical heads, minimize the total cost (material cost,
forming and welding cost) and maximize the capacity. Reactor

network design is a CMOP with one inequality constraint
and four equality constraints. Because most of its constraints
are inequality constraints, it is the most difficult one of the
three real-world CMOPs in this paper. Reactor network design
aims to design a network containing two CSTR reactors.
The volume of these two CSTR reactors can be as small as
possible, and the concentration of products flowing out of the
second container can be as high as possible.

TABLE II
PARAMETER SETTINGS FOR REAL-WORLD CMOPS.

Problems N M D FEs

Bulk Carrier Design 100 3 6 300000
Pressure Vessel Design 100 2 2 300000

Reactor Network Design 100 2 6 300000

B. CMOEAs used for comparisons

We used five multi-stage CMOEAs and a classic CMOEA to
compair our C3M. The five multi-stage CMOEA is MSCMO
[32], PPS [28], CTAEA [25], ToP [27] and TiGE 2 [39]; The
classic CMOEA is NSGAII-CDP [12] since the C3M in this
paper is also based on Pareto domination. The differential
evolution (DE) [40] and polynomial mutation (PM) [41] are
used to reproduce for LIRCMOP, DOC, DASCMOP and real-
world CMOPs, while simulated binary crossover (SBX) [42]
and polynomial mutation (PM) are used to reproduce for the
rest problems. This is because using different operators will
perform differently on the same problem. [43] Therefore, we
have comprehensively selected the operator that performs best
on this problem. When the binary crossover of probability
simulation was set to 1, the probability of polynomial mutation
was set to 1 / D (D represents the number of decision
variables). The distribution index of crossover and mutation
was set to 20; CR differential evolution and F parameter
were set to 1 and 0.5, respectively. The parameter settings
in algorithms are the same as those in the original paper.

C. Performance Metrics

In order to evaluate the performance of each CMOEAs, we
use the Inverted General Distance (IGD) [44] to evaluate the
performance of each algorithm on the CMOP test suite since
the PF of the CMOP test suite is known. When we evaluate
the performance of each algorithm on the real-world CMOP,
we use the hypervolume(HV) [45] to evaluate them since the
PF of the real-world CMOP is unknown.

IGD is improved based on General Distance(GD) [46].
On the contrary to GD, IGD evaluates the diversity and
convergence of the algorithm by calculating the average value
of the nearest distance from the reference point of PF to the
solution in the obtained population. The smaller the value of
IGD, the better the diversity and convergence of the algorithm.

IGD(P,Q) =

∑
v∈P d(v,Q)

|P |
, (6)
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where P is the point set uniformly distributed on the real PF,
and |P | is the number of individuals of the point set distributed
on the real PF. Q is the optimal Pareto optimal solution set
obtained by the algorithm. D(v,Q) is the minimum Euclidean
distance from individual v to population Q in P .

Suppose R = (r1, r2,..., rm) is the vector in the objective that
can dominate the constraint PF (called the reference point).
HV measures the supervolume of the objective space bounded
by R and dominated by P :

HV = vol(
⋃
i∈P

[f1(i), r1]× · · · [fm(i), rm]), (7)

where vol(· · · ) represents a Lebesgue metric of Supervolume.
Similar to IGD, the HV index can also measure the diversity
and convergence of the constrained PF approximation. The
higher the HV value, the higher the approximation of P .

D. Experimental Results

Table III, Table IV and Table V shows the comparison of
IGD mean and standard deviation of 30 independent oper-
ations on CDTLZ&MW, DASCMOP&DOC and LIRCMOP
by our C3M respectively. The IGD value of each problem
was calculated according to the method recommended in [34],
which is based on about 10,000 reference points sampled on
the problem PF. We also used the Wilcoxon rank test [47]
with a significance level of 0.05 to analyze the results. Among
them ’+’, ’−’ and ’≈’ respectively showed that the results
of CMOEA were significantly better, significantly worse, and
statistically similar to the results of the proposed C3M.

1) Comparison on CDTLZ and MW test suite: Figure 5
shows the convergence profiles of IGD on MW12 of the fea-
sible solutions obtained by each algorithm. C3M can quickly
converge in the early stage, then obtain the solutions closer to
PF.

Table III lists the average and standard deviation of IGD
obtained by the proposed C3M and its comparison algorithm

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of function evaluations 10
5

0.02

0.04

0.06

0.08

0.1

0.12

IG
D

MW12

C3M

MSCMO

CTAEA

NSGAII

TiGE2

PPS

Fig. 5. Convergence profiles of feasible solutions of IGD values obtained by
C3M, MSCMO, CTAEA, NSGAII-CDP, TiGE2, and PPS on MW12, averaged
over 30 runs.

on 30 independent CDTLZ test suites and MW test suites.
The average IGD value of the C3M proposed in this paper is
in the leading position on 22 problems, and we can find that
the C3M is significantly better than MSCMO, PPS, CTAEA,
NSGAII-CDP, ToP and TiGE 2 on 19, 24, 20, 22, 22 and 24
problems respectively.

Not only in multi-constraint MOPs, C3M perform well in
single-constrained MOPs. The reason is that reinitialization
helps the population to improve diversity, so the population is
more likely to jump out of the local optimum caused by both
MOP and constraints.

Figure 7(c) shows the results with median IGD of each
algorithm in DC3 DTLZ1; we can see that our C3M and
MSCMO find the final PF of three segments and have good
convergence and diversity. Although PPS and CTAEA also
find the final PF of three segments, their diversity on PF is
poor; NSGAII-CDP, ToP, and TiGE 2 have poor convergence

TABLE III
MEAN AND STANDARD DEVIATION OF IGD VALUES ON CDTLA AND MW PROBLEMS. ’NAN’ INDICATES THAT NO FEASIBLE SOLUTION WAS FOUND.
’+’, ’−’, AND ’≈’ INDICATE THAT THE RESULT IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY SIMILAR TO THAT OBTAINED

BY C3M, RESPECTIVELY.

Problem C C3M MSCMO PPS CTAEA NSGAII ToP TiGE 2

C1 DTLZ1 1 1.9966e-2 (1.21e-4) 2.0100e-2 (1.79e-4) − 2.6331e-2 (8.07e-4) − 2.3334e-2 (1.68e-4) − 2.7325e-2 (1.34e-3) − 1.6567e-1 (1.74e-1) − 3.5892e-1 (8.11e-2) −
C1 DTLZ3 1 5.3271e-2 (3.79e-4) 5.3313e-2 (5.43e-4) ≈ 1.1343e+0 (2.75e+0) − 6.7755e-2 (8.15e-3) − 4.3116e+0 (4.04e+0) − 1.6936e+0 (3.23e+0) − 5.8344e+0 (3.42e+0) −
C2 DTLZ2 1 4.2446e-2 (4.50e-4) 4.2510e-2 (4.97e-4) ≈ 5.5456e-2 (1.78e-3) − 5.6709e-2 (1.46e-3) − 5.7047e-2 (1.73e-3) − 5.8888e-2 (3.09e-3) − 1.7819e-1 (1.48e-1) −
C3 DTLZ4 3 9.4516e-2 (1.48e-3) 9.5497e-2 (1.85e-3) ≈ 1.2589e-1 (3.99e-3) − 1.1231e-1 (1.89e-3) − 1.2751e-1 (4.60e-3) − 1.4247e-1 (6.64e-3) − 1.9113e-1 (1.58e-2) −

DC1 DTLZ1 1 1.1368e-2 (7.01e-5) 1.1439e-2 (7.47e-5) − 2.0315e-2 (1.03e-3) − 1.5395e-2 (2.84e-4) − 1.4795e-2 (5.64e-4) − 1.9045e-2 (4.37e-3) − 4.2994e-1 (8.33e-2) −
DC1 DTLZ3 1 1.1343e-1 (6.91e-4) 1.1424e-1 (9.70e-4) − 1.4627e-1 (5.93e-2) − 1.2992e-1 (4.06e-3) − 1.2834e-1 (3.01e-3) − 6.0315e-1 (8.49e-1) − 1.2109e+0 (3.84e-1) −
DC2 DTLZ1 2 1.9982e-2 (1.04e-4) 2.0138e-2 (1.25e-4) − 2.8219e-2 (7.21e-4) − 2.3390e-2 (1.95e-4) − NaN (NaN) NaN (NaN) 3.6846e-1 (9.12e-2) −
DC2 DTLZ3 2 1.8831e-1 (2.29e-1) 5.3049e-2 (4.45e-4) ≈ 1.9821e-1 (2.19e-1) − 6.3377e-2 (3.85e-4) + NaN (NaN) NaN (NaN) 1.0363e+0 (1.01e-2) −
DC3 DTLZ1 3 6.7842e-3 (4.48e-5) 1.2863e-2 (2.97e-2) − 2.7908e-2 (6.14e-2) − 9.6593e-3 (5.88e-4) − 1.2381e-1 (8.92e-2) − 7.4386e-1 (8.35e-1) − 9.1489e-1 (8.30e-1) −
DC3 DTLZ3 3 2.4634e-1 (1.80e-1) 3.0303e-1 (1.87e-1) − 6.4174e-1 (5.37e-1) − 1.7246e-1 (3.95e-3) + 1.4953e+0 (5.31e-1) − 5.8871e+0 (2.92e+0) − 2.8750e+0 (7.16e-1) −

MW1 1 1.6036e-3 (1.21e-5) 1.7986e-3 (9.91e-4) − 2.6461e-3 (9.48e-5) − 2.0162e-3 (8.74e-5) − 2.1389e-3 (1.00e-3) − 1.2064e-1 (1.15e-1) − 1.2755e-2 (3.00e-3) −
MW2 1 1.5447e-2 (7.87e-3) 2.1313e-2 (9.02e-3) − 1.4608e-1 (9.26e-2) − 1.8561e-2 (7.07e-3) ≈ 2.4831e-2 (9.72e-3) − 1.4421e-1 (1.06e-1) − 6.4951e-1 (1.03e-1) −
MW3 2 4.4785e-3 (1.70e-4) 4.6700e-3 (1.52e-4) − 6.4131e-3 (5.49e-4) − 4.7189e-3 (2.35e-4) − 5.7574e-3 (2.75e-4) − 5.2863e-1 (4.56e-1) − 2.3021e-2 (3.26e-3) −
MW4 1 4.0214e-2 (3.14e-4) 4.1002e-2 (1.85e-3) − 5.4640e-2 (1.88e-3) − 4.6731e-2 (3.34e-4) − 5.4905e-2 (2.51e-3) − 4.5109e-1 (3.14e-1) − 1.0526e-1 (3.45e-2) −
MW5 3 6.4878e-4 (8.49e-4) 1.5515e-3 (3.28e-3) − 3.0190e-1 (3.65e-1) − 8.9400e-3 (2.25e-3) − 3.9697e-1 (3.57e-1) − 5.3904e-1 (3.63e-1) − 3.5542e-2 (7.25e-3) −
MW6 1 9.1395e-3 (4.98e-3) 5.2849e-2 (1.41e-1) − 5.1663e-1 (3.53e-1) − 9.8187e-3 (6.42e-3) ≈ 3.2016e-2 (2.75e-2) − 6.5359e-1 (3.43e-1) − 1.7329e-1 (2.74e-1) −
MW7 2 4.0176e-3 (2.00e-4) 4.0427e-3 (2.20e-4) ≈ 5.7884e-3 (7.33e-4) − 6.1762e-3 (5.40e-4) − 6.4411e-2 (1.55e-1) − 2.9893e-2 (7.93e-2) − 4.6730e-2 (2.08e-2) −
MW8 1 4.3863e-2 (1.34e-3) 4.6848e-2 (6.69e-3) − 1.3875e-1 (5.23e-2) − 5.5336e-2 (3.65e-3) − 6.4375e-2 (2.10e-2) − 2.8223e-1 (2.95e-1) − 6.9381e-1 (8.04e-2) −
MW9 1 4.2245e-3 (3.00e-4) 4.6480e-3 (5.18e-4) − 1.0569e-2 (5.13e-3) − 8.1438e-3 (7.42e-4) − 6.7222e-3 (1.78e-3) − 6.6566e-1 (2.26e-1) − 1.9260e-1 (2.44e-1) −

MW10 3 8.8451e-3 (7.59e-3) 7.2197e-2 (1.49e-1) − 3.4383e-1 (2.15e-1) − 1.9931e-2 (2.61e-2) − 1.4188e-1 (1.54e-1) − 3.1792e-1 (2.24e-1) − 9.2009e-2 (1.09e-1) −
MW11 4 5.8504e-3 (7.77e-5) 3.2193e-2 (4.14e-2) − 7.5853e-3 (4.93e-4) − 1.2319e-2 (1.21e-3) − 1.9974e-1 (3.02e-1) − 3.2881e-1 (3.08e-1) − 3.5692e-2 (6.38e-3) −
MW12 2 4.5454e-3 (5.77e-5) 4.5798e-3 (7.43e-5) − 7.4448e-3 (1.70e-3) − 7.7027e-3 (5.16e-4) − 5.5968e-3 (2.31e-4) − 7.0290e-1 (3.07e-1) − 4.8015e-2 (5.63e-2) −
MW13 2 1.6751e-2 (1.28e-2) 8.3797e-2 (4.20e-2) − 4.8714e-1 (4.04e-1) − 3.9365e-2 (2.25e-2) − 1.8793e-1 (3.37e-1) − 4.1059e-1 (4.19e-1) − 1.4749e+0 (7.35e-1) −
MW14 1 9.6227e-2 (1.37e-3) 2.0938e-1 (3.66e-1) − 1.3709e-1 (2.28e-2) − 1.1121e-1 (4.03e-3) − 1.2293e-1 (6.18e-3) − 2.6084e-1 (1.63e-1) − 1.5865e-1 (9.73e-3) −
+/− / ≈ 0/19/5 0/24/0 2/20/2 0/22/0 0/22/0 0/24/0
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and do not approach the final PF.
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Fig. 6. The profiles of feasible rates obtained by C3M, MSCMO, CTAEA,
NSGAII-CDP, TiGE2, ToP, and PPS on MW5, averaged over 30 runs.

The PF of MW5 is discontinuous and only consists of
multiple points. Therefore, it is not easy to obtain a feasible
solution while ensuring convergence. As shown in Figure 6,
the proportion of feasible solutions of our algorithm and the
comparison algorithm in the operation process. Our algorithm,
NSGAII-CDP, and CTAEA can obtain a feasible solution in
early stage, while MSCMO and PPS fully bring the feasible
solutions at the last time. The solutions of ToP and TiGE 2
are not completely feasible.

Fig. 7(a) shows the performance of the result with median
IGD in each algorithm on MW13; MW13 has the character-
istics of a slender and narrow feasible region and easy to fall
into local optimum. From the diversity perspective, we can
see that C3M has wholly obtained all PF, while MSCMO,
CTAEA, and NSGAII-CDP have obtained three discontinuous
PF, but their final solutions are not entirely distributed on PF,
while PPS, ToP, and TiGE 2 have only obtained part of PF.
From the perspective of convergence, only C3M and CTAEA
have relatively good convergence, relatively close to PF.

2) Comparison on DASCMOP&DOCs: DASCMOP con-
sists of three types of constraints that have customizable
difficulty. Users can manually specify parameters according to

the required feasibility, convergence, and diversity difficulty.
In DASCMOP, We find that constraint 2 has relation B to all
other constraints, so C3M can quickly obtain a satisfactory
feasible solution when dealing with DASCMOP.

DOC is a challenging constraint test suite with constraints
in both the objective and decision space. There are three main
difficulties in this problem. First, the proportion of the final
feasible region is small, and it is difficult to find the approxi-
mate range of the feasible region related to the constrained
PF. Second, many evaluation times are required to obtain
solutions approaching the constrained PF after finding the
approximate feasible region. Third, some problems are prone
to local optima (such as DOC3). The relaxation of constraints
in the first two stages enables C3M to cope with the situation
where the feasible region is small, and reinitialization can also
cope with local optimization to a certain extent. In addition,
many constraints in the DOC problem have relationship B,
which C3M can utilize to save evaluation times in stage 2.
Therefore, C3M performs well in this test suite.

Table IV shows the performance of our C3M and other com-
pared algorithms on DASCMOP and DOC test suites. We can
see that C3M leads the average IGD value on 12 problems and
is significantly better than MSCMO, PPS, CTAEA, NSGAII-
CDP, ToP, and TiGE 2 on 8, 14, 14, 15, 16 and 18 problems
respectively.

As shown in Figure 7(d), We can see that C3M not only
approximates PF but also has the best diversity; MSCMO
also approximates PF, but its distribution is slightly inferior
to C3M; PPS, CTAEA, and NSGAII-CDP are approximate to
PF, but their diversity on PF is poor; ToP and TiGE 2 only a
few individuals approach PF, and the diversity is the worst.

Fig. 7(b) shows the performance of each algorithm on
DOC1. It can be seen that C3M, MSCMO, and top are close
to PF and have good diversity; PPS approximates PF, but not
wholly approximates PF; CTAEA, NSGAII-CDP, and TiGE 2
did not approach PF.

3) Comparison on LIRCMOPs: The LIRCMOP test suite
is mainly used to test the performance of algorithms in the
face of large infeasible regions. It contains 2-3 constraints.
Because the first stage of C3M does not consider constraints,

TABLE IV
MEAN AND STANDARD DEVIATION OF IGD VALUES ON DASCMOP, DOC PROBLEMS. ’NAN’ INDICATES THAT NO FEASIBLE SOLUTION WAS FOUND.
’+’, ’−’, AND ’≈’ INDICATE THAT THE RESULT IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY SIMILAR TO THAT OBTAINED

BY C3M, RESPECTIVELY.

Problem C C3M MSCMO PPS CTAEA NSGAII ToP TiGE 2

DASCMOP1 11 2.3892e-3 (5.10e-4) 3.0216e-3 (1.42e-3) ≈ 2.3292e-3 (9.20e-4) ≈ 6.3068e-2 (8.47e-2) − 4.1985e-1 (2.18e-1) − 6.4864e-2 (1.62e-1) ≈ 3.4212e-2 (2.74e-2) −
DASCMOP2 11 2.9398e-3 (6.95e-5) 2.9823e-3 (7.27e-5) − 3.9394e-3 (1.23e-4) − 1.0151e-2 (5.68e-3) − 1.3585e-1 (3.53e-2) − 2.7327e-2 (5.41e-2) − 3.0903e-2 (1.58e-2) −
DASCMOP3 11 1.8440e-2 (2.38e-3) 1.9169e-2 (1.27e-3) ≈ 1.9283e-2 (9.20e-5) ≈ 3.1075e-2 (9.05e-3) − 2.7457e-1 (5.83e-2) − 2.1113e-1 (1.46e-1) − 5.6374e-2 (5.45e-2) −
DASCMOP4 11 1.2557e-3 (1.07e-4) 1.1921e-3 (9.47e-5) + 8.4760e-3 (3.68e-2) − 1.0968e-2 (2.13e-3) − 5.5425e-2 (1.10e-1) − 8.2824e-1 (2.15e-1) − 9.1731e-2 (7.41e-2) −
DASCMOP5 11 3.0343e-3 (1.55e-4) 3.0769e-3 (1.72e-4) ≈ 4.0588e-3 (1.49e-4) − 7.2231e-3 (4.99e-4) − 3.5638e-3 (9.36e-5) − 7.2443e-1 (9.81e-2) − 9.6106e-2 (8.28e-2) −
DASCMOP6 11 1.7647e-2 (2.99e-3) 2.0611e-2 (6.01e-3) − 2.2590e-2 (2.26e-2) ≈ 2.3311e-2 (3.41e-3) − 5.7046e-2 (9.79e-2) ≈ 7.9451e-1 (1.32e-1) − 1.4234e-1 (1.09e-1) −
DASCMOP7 7 3.8939e-2 (3.23e-3) 4.9352e-2 (1.60e-2) − 6.2540e-2 (7.01e-3) − 5.7441e-2 (9.40e-3) − 4.8783e-2 (2.98e-3) − 8.3722e-1 (2.62e-1) − 2.7788e-1 (2.11e-1) −
DASCMOP8 7 4.8767e-2 (8.11e-3) 6.2360e-2 (2.30e-2) − 8.8851e-2 (1.09e-2) − 9.3247e-2 (1.27e-2) − 6.0896e-2 (2.85e-3) − 8.3965e-1 (2.44e-1) − 3.9314e-1 (1.81e-1) −
DASCMOP9 7 4.0725e-2 (1.01e-3) 4.0795e-2 (1.08e-3) ≈ 8.2867e-2 (4.38e-2) − 9.5401e-2 (6.55e-3) − 6.7934e-2 (4.63e-3) − 6.2105e-2 (3.60e-3) − 2.0189e-1 (7.35e-2) −

DOC1 7 5.1586e-3 (3.43e-4) 5.1666e-3 (4.13e-4) ≈ 6.1366e-2 (4.04e-2) − 5.0113e+2 (2.56e+2) − 2.2824e+0 (1.46e+0) − 5.8070e-3 (3.37e-4) − 2.9317e+0 (1.53e+0) −
DOC2 7 1.2979e-2 (1.14e-2) 6.3690e-3 (4.38e-3) + 4.2341e-1 (1.67e-1) − NaN (NaN) NaN (NaN) 4.7837e-1 (5.08e-2) − 1.4414e-2 (3.40e-3) −
DOC3 10 5.9689e+2 (3.93e+2) 1.9371e+2 (1.97e+2) + 2.2031e+2 (1.75e+2) + NaN (NaN) 7.2358e+2 (1.99e+2) − 6.8810e+1 (1.07e+2) + 7.6407e+2 (4.84e+2) −
DOC4 6 2.1242e-2 (5.38e-3) 2.5188e-2 (6.47e-3) − 3.0231e-1 (7.75e-2) − 2.2190e+2 (2.72e+2) − 1.2371e+0 (1.72e+0) − 7.3291e-2 (4.98e-2) − 9.0698e+0 (4.36e+0) −
DOC5 9 3.8962e-2 (6.20e-2) 8.7489e+0 (3.37e+1) − 7.2733e+1 (7.87e+1) − NaN (NaN) NaN (NaN) 3.8859e+1 (5.93e+1) − 4.4514e+1 (6.05e+1) −
DOC6 10 2.7418e-3 (1.54e-4) 3.1536e-3 (9.37e-4) − 4.8207e-1 (7.66e-2) − 5.7547e+1 (1.00e+2) − 2.4392e+0 (2.68e+0) − 2.8619e+0 (1.59e+0) − 8.9932e+0 (2.82e+0) −
DOC7 6 2.8044e-3 (7.60e-4) 2.3580e-3 (1.26e-4) + 5.2854e-1 (1.10e-1) − NaN (NaN) 6.1653e+0 (2.46e+0) − 2.2880e-1 (2.40e-1) − 1.6298e+0 (1.25e+0) −
DOC8 7 6.1969e-2 (3.07e-3) 6.2679e-2 (3.72e-3) ≈ 7.7593e+1 (3.13e+1) − 3.6186e+2 (1.55e+2) − 5.8966e+1 (5.99e+1) − 1.3858e+1 (7.77e+0) − 8.1622e+1 (2.14e+1) −
DOC9 14 7.5354e-2 (1.22e-2) 8.4572e-2 (1.24e-2) − 2.7260e-1 (2.02e-2) − 9.8499e-1 (3.47e-1) − 1.7119e-1 (7.73e-2) − 1.7368e-1 (3.36e-2) − 8.7195e-2 (2.13e-2) −
+/− / ≈ 4/8/6 1/14/3 0/14/0 0/15/1 1/16/1 0/18/0
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Fig. 7. Solutions with median IGD value among 30 runs obtained by C3M, MSCMO, PPS, CTAEA, NSGAII-CDP, ToP, and TiGE 2 on MW13, DOC1,
DC3 DTLZ1, and DASCMOP8, respectively. Where, each column identified by (a), (b), (c), and (d) represents the graph of the nondominated solutions of
the comparison experiment between C3M and the other algorithm. Blue circles represent the obtained solutions, and orange cross represent constraint PF.
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TABLE V
MEAN AND STANDARD DEVIATION OF IGD VALUES ON LIRCMOP PROBLEMS AND REAL-WORD CMOPS. ’NAN’ INDICATES THAT NO FEASIBLE
SOLUTION WAS FOUND. ’+’, ’−’, AND ’≈’ INDICATE THAT THE RESULT IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY

SIMILAR TO THAT OBTAINED BY C3M, RESPECTIVELY.

Problem C C3M MSCMO PPS CTAEA NSGAII ToP TiGE 2

LIRCMOP1 2 4.3986e-2 (4.18e-2) 1.8357e-2 (1.44e-2) + 7.5073e-3 (1.39e-3) + 1.9327e-1 (9.34e-2) − 2.0663e-1 (8.35e-2) − 1.2764e-1 (1.21e-1) − 4.0719e-2 (1.99e-2) ≈
LIRCMOP2 2 3.4528e-2 (2.82e-2) 1.1771e-2 (1.36e-2) + 5.9131e-3 (4.09e-4) + 5.5501e-2 (1.13e-2) − 1.5540e-1 (6.42e-2) − 7.6816e-2 (6.46e-2) − 3.2451e-2 (1.02e-2) ≈
LIRCMOP3 3 1.5573e-1 (5.56e-2) 5.5101e-2 (3.65e-2) + 7.8132e-3 (5.38e-3) + 1.9832e-1 (1.50e-1) ≈ 2.3769e-1 (9.20e-2) − 3.6098e-1 (6.70e-2) − 2.8716e-2 (1.50e-2) +
LIRCMOP4 3 1.5166e-1 (7.05e-2) 6.6288e-2 (5.16e-2) + 3.3364e-3 (2.54e-4) + 1.2986e-1 (5.46e-2) ≈ 2.2684e-1 (6.69e-2) − 3.1266e-1 (2.95e-2) − 3.6142e-2 (2.36e-2) +
LIRCMOP5 2 4.9316e-3 (1.92e-4) 4.9850e-3 (1.82e-4) ≈ 6.5742e-3 (6.81e-4) − 7.0247e-2 (1.63e-2) − 6.4944e-1 (5.15e-1) − 6.7428e-3 (4.37e-4) − 5.7894e-1 (9.26e-2) −
LIRCMOP6 2 5.0152e-3 (2.04e-4) 5.0219e-3 (1.81e-4) ≈ 7.8309e-3 (7.47e-4) − 1.4804e-1 (1.58e-1) − 3.4787e-1 (4.67e-1) − 1.6523e-2 (5.54e-2) − 6.0042e-1 (2.92e-2) −
LIRCMOP7 3 7.0314e-3 (2.20e-4) 7.0552e-3 (1.85e-4) ≈ 1.0904e-2 (1.04e-3) − 1.9908e-2 (5.60e-3) − 9.9038e-3 (2.59e-3) − 8.5331e-3 (3.06e-4) − 7.4770e-1 (4.43e-1) −
LIRCMOP8 3 7.0300e-3 (2.23e-4) 7.0800e-3 (1.73e-4) ≈ 1.0913e-2 (1.08e-3) − 1.6509e-2 (2.91e-3) − 2.1992e-2 (3.65e-2) − 2.3385e-2 (8.03e-2) − 1.0505e+0 (3.29e-1) −
LIRCMOP9 2 2.4608e-3 (3.98e-5) 2.4690e-3 (6.62e-5) ≈ 3.1711e-3 (1.28e-4) − 5.2635e-2 (2.35e-2) − 4.1994e-1 (1.01e-1) − 2.9012e-1 (1.57e-1) − 6.2572e-1 (9.45e-2) −
LIRCMOP10 2 4.1612e-3 (1.01e-4) 4.2269e-3 (1.24e-4) − 5.1554e-3 (2.21e-4) − 7.4999e-2 (7.47e-2) − 2.8954e-1 (1.01e-1) − 5.5306e-3 (2.26e-4) − 6.2778e-1 (1.61e-1) −
LIRCMOP11 2 2.3629e-3 (4.57e-5) 2.3665e-3 (4.89e-5) ≈ 2.4304e-3 (7.59e-5) − 1.1519e-1 (3.91e-2) − 1.2104e-1 (9.12e-2) − 1.4136e-1 (3.37e-2) − 4.3439e-1 (1.78e-1) −
LIRCMOP12 2 3.0026e-3 (1.13e-4) 3.0481e-3 (1.47e-4) ≈ 3.1170e-3 (7.32e-5) − 1.4681e-2 (4.46e-3) − 1.0378e-1 (8.57e-2) − 3.0856e-2 (5.09e-2) − 7.6258e-1 (5.30e-1) −
LIRCMOP13 2 1.0632e-1 (1.74e-3) 1.0657e-1 (1.78e-3) ≈ 1.2382e-1 (3.27e-3) − 1.0853e-1 (1.74e-3) − 1.1789e-1 (4.34e-3) − 1.2595e-1 (3.76e-3) − 8.1730e-1 (7.68e-2) −
LIRCMOP14 3 1.0016e-1 (1.14e-3) 1.0015e-1 (9.51e-4) ≈ 1.1743e-1 (2.45e-3) − 1.1122e-1 (1.02e-3) − 1.6105e-1 (2.12e-1) − 1.1947e-1 (3.12e-3) − 9.1662e-1 (1.78e-1) −

Bulk Carrier Design 9 4.0871e-1 (1.40e-3) 3.2351e-1 (6.54e-2) − 1.6285e-1 (3.51e-2) − 2.4525e-1 (3.98e-2) − 2.7054e-1 (2.78e-3) − 2.5736e-1 (3.36e-2) − 2.7637e-1 (6.22e-2) −
Pressure Vessel Design 4 6.0838e-1 (2.96e-4) 6.0812e-1 (3.92e-4) − 5.9497e-1 (2.15e-3) − 6.0682e-1 (1.16e-3) − 6.0535e-1 (6.89e-4) − 6.0800e-1 (3.21e-4) − 5.3694e-1 (3.54e-2) −

Reactor Network Design 5 8.9091e-1 (9.13e-2) NaN (NaN) 8.1685e-1 (3.97e-2) − NaN (NaN) 2.7940e-1 (1.33e-1) − 4.3282e-1 (2.24e-1) − 5.2943e-1 (2.56e-1) −
+/− / ≈ 4/3/9 4/13/0 0/14/2 0/17/0 0/17/0 2/13/2

it can well deal with the problem of the same or partial same
of unconstrained PF and constrained PF. When facing the
problem of unconstrained PF and constrained PF not being the
same, evaluating a single constraint can also help the algorithm
quickly reach the approximate position of constrained PF.
Stage 3 can further optimize the solutions obtained in the
first two stages. PPS performs best in LIRCMOP1-4 since the
feasible area of LIRCMOP1-4 is extremely narrow, and PPS
makes high use of infeasible information near the constraint
PF.

Table V shows the performance of C3M and its comparison
algorithm on the LIRCMOP test suite. It can be seen that
PPS has the best IGD on the LIRCMOP1-4 problem, and
on the remaining problems, although C3M is dominant in
the average IGD value, it is only slightly outperformance of
MSCMO. Compared with MSCMO, PPS, CTAEA, NSGAII-
CDP, ToP, and TiGE 2, our C3M has significant advantages
on 1,10,12,14,14 and 12 problems, respectively.

4) Comparison on Real-World CMOPs: Finally, we test our
C3M on the real-world test problem. The Table V show that
the HV of our C3M is significant outperformance on three
problems.

E. Further investigations of C3M
In this section, we use ablation experiments to verify the

effectiveness of the part of the proposed algorithm, so we
design three variants for the algorithm. The first variant is
used to verify the effectiveness of constraint-handling priority;
at the end of stage 1, the constraint-handling priority will
not be determined, but a random sequence is used as the
priority of constraints; The second variant is used to verify
the importance of giving up less-important constraints. When
this variant evaluates a single constraint, all constraints will be
evaluated until it reaches the threshold to force it into stage 3
(i.e., Algorithm 4 will not be executed.); The third variant is
used to verify the effectiveness of reinitialization, which does
not reinitialization when algorithm 1 from stage 1 to stage 2
and switching evaluation constraints on stage 2, but directly
uses its Pop[i].

Table VI shows the results of C3M and its three variants
on DASCMOP test suite. We can see that C3M obtained the

TABLE VI
MEAN AND STANDARD DEVIATION OF IGD VALUES ON DASCMOP

PROBLEMS. ’+’, ’−’, AND ’≈’ INDICATE THAT THE RESULT IS
SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY

SIMILAR TO THAT OBTAINED BY C3M RESPECTIVELY.

Problem C3M C3M1 C3M2 C3M3

DASCMOP1 2.3892e-3 (5.10e-4) 2.6924e-3 (9.55e-4) ≈ 3.4271e-3 (3.89e-3) ≈ 4.0248e-3 (4.31e-3) −
DASCMOP2 2.9398e-3 (6.95e-5) 2.9901e-3 (6.95e-5) − 3.1774e-3 (7.86e-5) − 3.0057e-3 (1.06e-4) −
DASCMOP3 1.8440e-2 (2.38e-3) 1.8933e-2 (1.76e-3) ≈ 1.9253e-2 (1.20e-3) − 1.9373e-2 (6.74e-5) ≈
DASCMOP4 1.2557e-3 (1.07e-4) 1.2690e-3 (2.19e-4) ≈ 1.8841e-3 (9.50e-4) − 1.1583e-3 (2.26e-5) +
DASCMOP5 3.0343e-3 (1.55e-4) 3.7113e-3 (8.39e-4) − 3.4299e-3 (2.80e-4) − 2.9679e-3 (1.14e-4) ≈
DASCMOP6 1.7647e-2 (2.99e-3) 1.9352e-2 (1.05e-3) ≈ 1.9305e-2 (1.22e-3) ≈ 1.9363e-2 (1.22e-3) ≈
DASCMOP7 3.8939e-2 (3.23e-3) 4.3542e-2 (6.03e-3) − 5.9675e-2 (9.01e-2) − 4.1139e-2 (3.79e-3) −
DASCMOP8 4.8767e-2 (8.11e-3) 5.3652e-2 (8.15e-3) − 6.3037e-2 (5.58e-2) − 4.7481e-2 (3.42e-3) ≈
DASCMOP9 4.0725e-2 (1.01e-3) 4.1097e-2 (1.18e-3) ≈ 4.4762e-2 (1.57e-2) − 4.0843e-2 (9.14e-4) ≈
+/− / ≈ 0/4/5 0/7/2 1/3/5

six best average values on DASCMOP. The average values
of C3M1 and C3M2 are not optimal, which are significantly
worse than C3M in four and seven problems respectively.
C3M3 has the advantage of average value in three problems,
but it is significantly worse than C3M in three problems
proving that our strategy is effective.

V. CONCLUSION

In this paper, we discuss the relationship between con-
straints and propose a constraint-handling priority strategy
based on the relationship between constraints; An adaptive
parameter is designed to detect whether the population reaches
the edge of constraints or unconstrained PF. We designed a
multi-stage CMOEA, which completely ignored the feasibility
in the early stage, considered part of the feasibility in the
middle stage, and all the feasibility in the last stage. The results
on five constraint test suites and three real-world CMOPs show
that our C3M is very competitive.

The C3M proposed in this paper is generally effective, but
we hope to study it further. 1) There is a small possibility
of miscalculating constraint-handling priority, so whether we
can find a way to reduce this possibility or whether we
can find a way to use existing prior knowledge to start the
algorithm directly from stage 2. 2) Can we further study the
relationship in motivation so that stage 2 does not evaluate
a single constraint but evaluates similar constraints to save
evaluation times further?
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