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Abstract

The ant colony optimization (ACO) is one efficient approach for solv-
ing the travelling salesman problem (TSP). Here, we propose a hybrid
algorithm based on state-adaptive slime mold model and fractional-
order ant system (SSMFAS) to address the TSP. The state-adaptive
slime mold (SM) model with two targeted auxiliary strategies emphasizes
some critical connections and balances the exploration and exploita-
tion ability of SSMFAS. The consideration of fractional-order calcu-
lus in the ant system (AS) takes full advantage of the neighboring
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information. The pheromone update rule of AS is modified to dynam-
ically integrate the flux information of SM. To understand the search
behavior of the proposed algorithm, some mathematical proofs of con-
vergence analysis are given. The experimental results validate the
efficiency of the hybridization and demonstrate that the proposed
algorithm has the competitive ability of finding the better solutions
on TSP instances compared with some state-of-the-art algorithms.

Keywords: Ant system (AS), slime mold (SM), fractional-order calculus,
travelling salesman problem (TSP), convergence proof

1 Introduction

The travelling salesman problem (TSP) is one of the most intensively studied
NP-hard [1] combinatorial optimization problems, which requires a shortest
path through all cities without repetition [2, 3]. Over the years, considerable
bio-inspired heuristic algorithms have been applied to address TSPs, e.g., the
ant colony optimization (ACO) [4, 5], the particle swarm optimization (PSO)
[6, 7], the artificial bee colony (ABC) algorithm [8], the firefly algorithm (FA)
[9], and earthworm optimization [10].

Particularly, the pioneering ACO algorithm, ant system (AS) [4], was orig-
inally developed to solve the TSP [5]. On this account, the TSP is used mostly
as a benchmark to test ACO variants. ACO is a swarm intelligence algorithm
which simulates the foraging behavior of ant colony [11]. With the character-
istics of positive feedback and information sharing among ants, it has become
one effective method for solving combinatorial optimization problems. A con-
siderable number of its variants have been designed to boost the performance,
including the popular Max-Min ant system (MMAS) [12] and the rank-based
ant system (ASrank) [13]. Meanwhile, the convergence proofs of AS and MMAS
was presented to explain the rationale behind the ACO theoretically [14].
Recently, two modified ACO algorithms based on fractional calculus have been
proposed [15, 16], which integrate the long-time memory property of fractional
calculus into updating pheromones from a different perspective.

Generally, higher convergence speed and lower risk of trapping into local
optima are the main targets of these extensions. In this context, how to make
a dynamic balance between the exploration and exploitation of a swarm,
has always been an important issue worthy of study and discussion. Consid-
ering the various advantages of different algorithms and search techniques,
researchers have proposed hybrid intelligence algorithms by combining multi-
ple methods. In [17], a parallel cooperative hybrid algorithm, PACO-3Opt, is
developed to address the TSP, where the main idea is generating solutions by
ACO in parallel, and then integrating the 3-Opt local search heuristic to mod-
ify these solutions. Another hybrid method called PSO-ACO-3Opt [18] utilizes
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PSO algorithm to adjust the parameters of ACO, and applies the 3-Opt tech-
nique to avoid premature convergence of ACO algorithm. These works show
the effectiveness of the hybridization experimentally. However, there remains
much room for improvement in accelerating convergence and jumping out of
local optimal solutions. Moreover, they have made no attempt to provide the
theoretical analysis of the convergence.

On the other hand, recently there have been increased interests in slime
mold (SM) model, due to its unique biological mechanism and the intelli-
gent behavior of network design and path finding. An SM is an amoeba-like
single-celled organism with a tubular network structure and flowing proto-
plasm, which can adaptively adjust its body shape to constructe a shortest
path [19]. During foraging, the tube network, which contains nutrients and
chemical signals that circulate throughout the organism, forms by connecting
the growing point to food sources. These tubes are disassembled and reorga-
nized according to external conditions, such as the quantity and position of
nutrient sources, the terrains, and the light intensity distribution. In this way,
the network structure of the organism is optimized to facilitate the efficient
access to available nutrients [20]. For instance, when an SM is placed in a maze
with two nutrient sources positioned at the entrance and exit, it modifies its
body shape dynamically to absorb nutrients efficiently, and eventually connect
the entrance and exit (a pair of food sources) with the shortest path [21]. Bio-
logical experiments have indicated that the simulation network constructed by
SM model is very similar to the real Tokyo, Mexico, and Greece railway net-
works in terms of transportation performance, robustness, and cost [22–24].
Therefore, a biologically inspired mathematical model of SM has been devel-
oped with the positive feedback characteristic, which means the tube diameter
increases with the increase of the protoplasm flux, and decreases otherwise
[25]. Thereafter, the SM model has been successfully applied to solve com-
binatorial optimization, including the knapsack problem [26], traffic network
optimization [27, 28], load-shedding problem [29], supply chain network design
[30, 31], etc.

This model attracts our attention because apparently, the path optimiza-
tion ability of SM model makes it a good candidate approach to solving the
TSP. We noticed that a recent research has presented a slime mold-ant colony
fusion algorithm (SMACFA) to deal with TSP, which uses SM model to deter-
mine the connections of some edges before ACO is implemented [32]. This
approach is more like the initialization process before ACO, which takes the
advantage of SM in shortest path construction. However, in this way, the
variety of path selection is limited, and the advantages of SM model are not
brought into full play.

The purpose of our work is to develop an effective approach to hybridize the
AS algorithm with the SM model to bring the ability of SM model of construct-
ing shortest paths into full play. To this end, a novel hybrid algorithm based
on state-adaptive SM model and fractional-order AS (SSMFAS) is developed
in this paper for addressing the TSP. Moreover, some convergence proofs are



Springer Nature 2021 LATEX template

4 Complex & Intelligent Systems

given to ensure the feasibility of the proposed hybrid algorithm theoretically.
The main contributions of this paper are summed up as follows.

1. In order to make the SM model more suited for solving the TSP cooperating
with the ant colony, we have developed a state-adaptive multi-entrance-exit
SM model where each pair of nodes is regarded as the entrance/exit of an
SM subsystem, equipped with two auxiliary strategies. The adaptive con-
ductivity strategy changes the contraction rate smoothly over iterations, so
that SM model shifts its state from exploration to exploitation to achieve
a dynamic balance between local and global optimization. The maximum-
minimum flux strategy is introduced to limit the flux through the tubes within
an appropriate range matching the pheromone in the AS.

2. A hybrid algorithm based on state-adaptive SM model and fractional-order
AS (SSMFAS) is proposed, where a fractional-order neighborhood probabil-
ity is used in the node transition of ants to take the information of the
neighborhood of candidate cities into account by fractional-order calculus,
and a modified pheromone update rule is proposed which adds the proto-
plasm flux through each pipe as the pheromone on the corresponding edge
dynamically to make the ant colony obtain information from the SM model.

3. The convergence properties of SSMFAS are analyzed in this paper. In simple
terms, firstly, it has been proved that the probability of SSMFAS in finding an
optimal path arbitrarily approaches to 1 given enough iterations. Secondly,
we have proved that the pheromone trails of the optimal edges increase over
iterations after the optimal solution is found, while the pheromone trails
of other edges decrease. In addition, the lower bound of the probability of
finding an optimal solution is given.

4. Abundant experiments have been conducted with promising results. Firstly,
ablation studies are implemented to validate the rationality of every mod-
ule of the hybridization as well as the proposed two auxiliary strategies.
Subsequently, comparisons with several state-of-the-art algorithms, includ-
ing ACO-based hybrid algorithms and other heuristic approaches, are made
to illustrate the effectiveness of SSMFAS.

The remainder of this paper is organized as follows. In Section 2, we briefly
introduce some algorithms and theories related to our work. The details of
SSMFAS are presented in Section 3. The theoretical convergence properties
and the proofs are given in Section 4. Section 5 demonstrates the simulation
results and the relevant analysis. Finally, Section 6 summarizes the conclusion.

2 Background

In this section, we first give the definition of TSP and the notations used in
the paper. Then we briefly introduce the framework of the AS algorithm, the
mathematical model of SM and the background knowledge related to fractional
calculus.
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2.1 Problem Definition and Notations

In a TSP, assume the number of cities is N ∈ N+ and the cities are labeled
as i = 1, 2, · · · , N . The distance between city i and city j is given as Lij . The
objective is to find the shortest route visiting each city once and returning to
the starting point. Therefore, each solution to the problem is a sequence with
length of N, i.e., C = (C1, C2, · · · , CN ). The cost function of the solution is
S = LC1C2

+ LC2C3
+ · · ·+ LCNC1

.
For the sake of the reader’s convenience, the mathematical notations used

in the paper are listed in Table 1.

Table 1: Summary of notations.

Notation Description Notation Description

N number of cities/nodes Qij flux through the edge (i, j)

M population of ants pi pressure at node i

M ′ number of elitist ants Dij conductivity of edge (i, j)

S length of the solution ω viscosity of the fluid

Lij length of edge (i, j) aij radius of pipe (i, j)

τij pheromone concentration on edge (i, j) I0 fixed total flux

ηij heuristic information on edge (i, j) γ contraction rate of tubes

α parameter determining pheromone influence ν fractional order

β parameter determining heuristic information influence µ parameter determining the influence of qij

Jm
i set of cities which have not been visited by ant m δ bound parameter

ρ evaporation rate of pheromone λ a control coefficient

Tmax the maximum number of iterations σ(t) parameter used to adjust the influence of protoplasm flux

2.2 Ant System Algorithm

Route construction and pheromone update are two critical steps of the AS
algorithm. The process of the AS is summarized as follows.

1) Initialization: The population of ants is set to M ∈ N+. Every ant is
placed at a random city as a start position. The initial value of pheromone on
each edge is set to τ0 > 0.

2) Route Construction: Each ant m (m = 1, 2, . . . ,M) in the current city i
selects the next visiting city j depending on a random proportion rule of the
transition probability, which is defined as

pmij =


[τij ]

α[ηij ]
β∑

u∈Jm
i

[τiu]α[ηiu]β
, if j ∈ Jm

i ,

0, otherwise,

(1)

where τij represents the pheromone concentration on edge (i, j), ηij is called
the heuristic information which is calculated as ηij = 1

Lij
, where Lij is the

length of edge (i, j), α and β are two preset parameters used to balance
the effects of heuristic information and the pheromone concentration, Jm

i

represents the set of cities which have not been visited by ant m.
Every ant keeps moving from one city to another guided by this probability

and records the visited cities until it has visited all the cities.
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3) Pheromone Update: At time (t+ 1), after each ant completing its tour,
the pheromone on edge (i, j) is updated as

τij(t+ 1) = (1− ρ) · τij(t) +
M∑

m=1

∆τmij (t), (2)

where ρ (0 < ρ < 1) denotes the evaporation rate of the pheromone, ∆τmij
represents the volume of pheromone released by ant m on edge (i, j), which is
calculated as

∆τmij (t) =

{
(Sm)

−1
, if (i, j) is visited by ant m,

0, otherwise,
(3)

where Sm is the length of solution constructed by ant m.
4) Repeat the above steps until the termination condition is met, and then

output the optimal solution.

2.3 Slime Mold Model

The SM model has a tube-liked network, which contains N nodes and N(N −
1)/2 edges connecting the nodes, indicating the cytoplasmic tubules between
the nodes. Each edge has a weight, denoted byQ, which means the flux through
the edge. Fig. 1 illustrates the path construction process of an SM network. As
shown in Fig. 1 (a), the classic SM model has only one growth point (entrance
node), V1, and one food source (exist node), V2. V3 to V5 are transition nodes.
The protoplasmic flux in the tube is similar to Hagen-Poiseuille flux [25, 33].
Therefore, the flux through tube (i, j), Qij , is formulated as

Qij = Dij ·
pi − pj
Lij

, (4)

where Lij is the length of edge (i, j), pi and pj denote the pressures at nodes
i and j, and Dij is used to describe the conductivity of edge (i, j), which is
determined by

Dij =
πa4ij
8ω

, (5)

where ω represents the viscosity of the fluid, and aij denotes the radius of pipe
(i, j).

Following the Kirchhoff’s law [34], the total flux should be conserved.
Therefore, the outflow and inflow of each internal node must be equal, except
for the start and end nodes. Let I0 be the fixed total flux from the entrance
to the exit in the entire network. This conservation law is modeled as
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(a) Initial structure (b) Final structure

Fig. 1: Penels (a) and (b) illustrates the path construction process of an SM
network with one pair of entrance/exist nodes. V1 and V2 are the entrance and
exist nodes, respectively. V3, V4 and V5 are transition nodes.

∑
i

Qij =
∑
i

Dij

Lij
(pi − pj) =


−I0, if j = entrance,

I0, if j = exit,

0, otherwise.

(6)

Given an initial conductivity D0 for every edge, and pexit = 0 as a fun-
damental pressure at the exit node, the linear equation system with sparse
symmetric matrix (6) can be solved for the pressure value at each node, as
well as the flux Qij through each edge.

The slime mold adapts itself when foraging in a way that high-flow pipes
are thickened, while low-flow pipes shrink and disappear. Since the length Lij

is a given constant, the adaptive characteristic of the model can be expressed
by the variation of conductivity Dij , modeled as

d

dt
Dij = f (|Qij |)− γDij , (7)

where f (|Qij |) is a monotonically increasing function with f (0) = 0, which
describes the positive effect of increased flow on conductivity, γ > 0 is the
contraction rate of tubes, which denotes the tubes contracts over time.

The discretized expression of (7) is expressed as

Dt+∆t
ij −Dt

ij

∆t
= f

(
|Qt

ij |
)
− γDt

ij , (8)

where ∆t represents a time interval which is typically considered as 1.
Therefore, (8) is rewritten as

Dt+1
ij = f

(
|Qt

ij |
)
+ (1− γ)Dt

ij . (9)

From (4) and (9), it is noteworthy that there is a positive feedback cycle
between the conductivity and the flux. That is, the conductivity of the edge,
Dij , increases when a larger amount of flux, Qij , passes through it, and this
is conducive to the increase of flux further.
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Under this mechanism, the network structure of the SM model in Fig.1 (a)
changes to the one in Fig.1 (b) after a few iterations, where some tubes are
disappeared (marked as the dotted lines), while some other tubes are thickened
and stabilized (highlighted with bold black lines).

2.4 Fractional Calculus

Fractional-order calculus is an extension of the integer calculus, where the
order extends from an integer to a real number. As a mathematical tool,
it has been investigated intensively and applied successfully in various areas
[35]. The most popular used definitions of fractional calculus are Grünwald-
Letnikov, Riemann-Liouville, Caputo, and Riesz[36–39]. In this work, we
employ Grünwald-Letnikov fractional form because it can be discretized. For
a differentiable function g(x) in the duration of [a, x], its Grünwald-Letnikov
fractional-order differential definition of order ν (ν > 0) is defined as

G−L
a Dν

xg (x) = lim
H→∞


(
x− a

H

)−ν

Γ (−ν)

H−1∑
l=0

Γ (l − ν)

Γ (l + 1)
g

[
x− l

(
x− a

H

)] , (10)

where G−L
a Dν

x denotes fractional differential operator, Γ(α) =
∫∞
0

e−xxα−1dx
is the Gamma function, x−a

H is the sampling step length.
Let ∆x = x−a

H . In the duration of [x−H∆x, x], (10) is simplified as

G−L
a Diffν

xg (x) = (∆x)−ν
H−1∑
l=0

Γ(l − ν)

Γ(−ν)Γ(l + 1)
g(x− l∆x)

= (∆x)−ν

[
g(x) +

H−1∑
l=1

Γ(l − ν)

Γ(−ν)Γ(l + 1)
g(x− l∆x)

]
,

(11)

when ν = 1, it is obvious that (11) can be revised as

G−L
a Diff1

xg (x) = (∆x)−1 [g(x)− g(x−∆x)] , (12)

where G−L
a Diff1

xg (x) is the first-order difference.
By comparing (11) with (12), we observe that the fractional-order difference

includes more history information, which is generally regarded as the property
of long-term memory.

3 Methodology

In this section, we elaborate on the proposed SSMFAS, including the improved
SM model and details of key procedures.
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Fig. 2 shows the overall procedure of the proposed SSMFAS. After the ini-
tialization, a state adaptive multi-entrance-exit SM model is developed, where
the positive feedback mechanism is used to update the flux and the conductiv-
ity. It consists of two strategies. The adaptive contraction strategy shifts the
state of SM from exploration to exploitation. The maximum-minimum flux
strategy limits the flux by the upper and lower bounds of AS algorithm, making
it accessible for linking with AS algorithm. For the ant colony part, when the
ants constructing solutions, the fractional-order neighborhood transition prob-
abilistic rule which uses the neighboring information is introduced. After that,
the flux of SM model is added to pheromone update rule as a part of adaptive
pheromone. This loop continues until the stopping criterion is satisfied.

Fig. 2: The flowchart of the proposed SSMFAS.

3.1 State Adaptive Multi-entrance-exit SM Model

We have introduced the classic single-entrance-exit SM model in Section 2.
However, it may not be suitable for solving the TSP directly since there is
no fixed pair of entrance/exit in the TSP [40]. Therefore, we propose a state
adaptive multi-entrance-exit SM model where each pair of nodes is considered
as a single-entrance-exit SM subsystem to address the TSP.
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Let the number of the nodes in the improved SM model be N , which
corresponds to the number of cities in AS. Accordingly, there are N(N − 1)/2
single-entrance-exit SM subsystems since each pair of nodes is considered as
the entrance/exit. Given the pressure at exit node as pexit = 0, the pressure at
any other node in the nth (n = 1, 2, · · · , N(N − 1)/2) subnetwork is derived
from

∑
i̸=j

Dn
ij

Lij

(
pni − pnj

)
=



−2I0
N(N − 1)

, for j = entrance,

2I0
N(N − 1)

, for j = exit,

0, otherwise,

(13)

where I0 denotes the total flux in the model, which is fixed during the
optimization process.

Then the flux qnij(t) through the tube (i, j) in the nth subsystem at time t
is computed as

qnij(t) =
Dn

ij(t)

Lij

(
pni (t)− pnj (t)

)
. (14)

The total flux Qij through the tube (i, j) is calculated by the sum of the
flux in each subsystem, expressed as

Qij =

N(N−1)/2∑
n=1

|qnij |. (15)

According to (9), the conductivity of tube (i, j) at time (t+ 1) in the nth
subnetwork is updated by:

Dn
ij(t+ 1) = f

(
|qnij(t)|

)
+ (1− γ)Dn

ij(t), (16)

where γ is the contraction rate of tubes and f(·) is a monotonically increasing
function.

In order to make the improved model more applicable to the TSP, instead
of using the two classical types of f(·) [25], we introduce a function as

f(|qnij(t)|) = µ · |qnij(t)|, (17)

where µ is a parameter which controls the influence of qij . Its value is optimized
by orthogonal experiments in Section 5.

3.1.1 Adaptive Contraction Strategy

Specifically, as the intention of integrating SM model with AS is to improve the
global searching and convergence ability, we introduce an adaptive strategy,
which changes the contraction rate of tubes, r, dynamically over iterations, to
make the SM model maintain a dynamic balance between convergence speed
and global searching ability.
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More specifically, at the beginning of the iteration when the global optimal
has not been found, the algorithm should be more sensitive to various solu-
tions, which is represented by a larger value of the contraction rate of tubes.
Subsequently, the contraction rate of tubes should decrease with the number
of iterations increasing, for the sake of accelerating the convergence of the
algorithm.

To achieve this goal, we propose a smooth decreasing function within a
range of (a, b), which is defined as

γ(t) = a

[
1− 1

a
a−b + (c · e)T ′−t

]
, (18)

where T ′ is an inflection point when the algorithm shifts from the period of
exploration to exploitation, and c is a coefficient to adjust the speed of the
transition.

The variation of the contraction rate γ(t) over iterations is plotted in Fig.
3, with a = 0.7, b = 0.2, and T ′ = Tmax

3 . It shows that the value of γ is higher
in the early search, which makes the conductivities of the tubes in SM sensitive
to the flow, leading to the piping connections changing rapidly. In this way,
the SM is in a more active state to look for various solutions at this stage. As
the number of iterations increases, the value of the contraction rate decreases,
which means that the conductivity changes slowly to form the optimal path
gradually. In other words, the SM changes from active state to stable state
over successive iterations.

Fig. 3: The variation of contraction rate γ over iterations.

3.1.2 Maximum-Minimum Flux Strategy

Furthermore, there is another important point need to be consider when we
try to combine the SM model with AS by using the flux of SM model as a
kind of pheromone. That is whether flux and pheromone, the two variables
belonging to different models, keep similar orders of magnitude.
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We notice that one simple but quite efficient mechanism of MMAS [12]
is limiting the values of pheromone to the maximum and minimum ranges.
Inspired by this, we consider an upper bound and a lower bound to limit the
flux through each tube to a suitable range. More specifically, in order to better
integrate with AS algorithm, the bounds should be related to the pheromone
in AS, which is set to

Qij(t) ∈ δ · [τmin, τmax], (19)

where τmin and τmax are the upper and lower bounds of the pheromone,
respectively, δ > 0 is the weight coefficient, which is set based on some trial
experiments in the algorithm.

The pseudo-code of the state adaptive multi-entrance-exit SM model is
outlined in Algorithm 1.

Algorithm 1 State Adaptive Multi-entrance-exit SM Model

Input: The length matrix L;
the maximum number of iterations Tmax;
the number of cites N ;

Output: The total flux Qij(t) at time t;
1: Initialize the conductivity matrix Dn

0 ; the flow of the entire network I0;
2: for t = 0 to Tmax do
3: for n = 1 to (N − 1) do
4: Calculate pn(t) at each node based on (13);
5: Obtain qnij(t) according to (14);
6: Update the conductivity Dn

ij using (16);
7: end for

Calculate Qij(t) using (15);
8: end for

3.2 Fractional-order Neighborhood Transition
Probability

In general ACO, an ant selects a movement using only the information between
two nodes, which brings about a higher risk of trapping into local optima, as
the best node for the next step is not always the best choice for the total path.
Recently, a fractional-order ant colony algorithm (FACA) [16] has been pro-
posed which calculates the probabilities of next few steps, and combines them
with fractional-order calculus to get a more predictable probability. Similarly,
another way of combined probability has been proposed in our previous work
[15]. However, these algorithms need to calculate the transition probabilities
of a few more nodes ahead of the current node. Therefore, the computational
complexity is multiplied by the number of steps that the algorithm counts in.
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To overcome this limitation, our goal is to take full account of the neighbor
information without increasing too much computational cost. Here, we pro-
pose a fractional-order neighborhood transition probability, which combines
the moving probability of the candidate node with those of its neighbor-
ing nodes to form a new transition probability. Specifically, when an ant m
(m = 1, 2, . . . ,M) is at the ith node, the transition probability to the jth node
at the tth iteration is defined as

νpmij (t) =


pmij (t) +

N ′−1∑
k=1

| Γ(k−ν)
Γ(−ν)Γ(k+1) |p

m
ink

(t)

N ′−1∑
k=0

| Γ(k−ν)
Γ(−ν)Γ(k+1) |

, if j ∈ Jm
i (t),

0, otherwise.

(20)

where ν is the fractional order, pmij (t) is calculated by (1), (N ′−1) is the number
of nodes considered in the neighborhood of the node j, nk means the unvisited
node which ranks k in descending order of Euclidean distance from node j,
the denominator part is used to normalize this combination of probabilities.

For the candidate node j, the proposed fractional-order neighborhood tran-
sition probability considers the information in the neighborhood of j. This
modification only needs the values of probabilities of the candidate cities for
city i, which have been calculated already. Furthermore, it is logically reason-

able that | Γ(k−v)
Γ(−v)Γ(k+1) | is a monotonically decreasing function of k, meaning

the effect of its information decreases as the distance from the neighbor node
to j increases.

3.3 Pheromone Update

When all ants have finished their loops at the tth iteration, the pheromone
trails are updated. The pheromone update rule of SSMFAS consists of two
parts: the pheromone trails left by ant colony and the protoplasm flux of the
SM model.

For the component of pheromone trails, similar to a rank based version of
the AS (ASrank) [13], only the pheromone trails of some elite ants with ranks
count. Firstly, we sort the solutions constructed by M ants at the tth iteration
in ascending order, written as

S1(t) ≤ S2(t) ≤ · · · ≤ SM (t). (21)

Then, only the M ′ (1 ≤ M ′ ≤ M) best ants are used to update the pheromone
trials and their effects are based on the ranks of their solutions. We use a non-
linear decreasing function with 1 as the largest weight instead of the smallest
used in ASrank, since the flux in SM model is also added as the pheromone in
this procedure.
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Algorithm 2 SSMFAS Algorithm

Input: The length Matrix L, maximum number of iterations Tmax;
Output: The best solution;
1: Set iteration t = 0;
2: Initialize the parameters;
3: Place ants in starting cities randomly;
4: while t ≤ Tmax do
5: Each ant completes the tour using fraction-order neighborhood transi-

tion probability (20);
6: Local optimization and solutions sorting;
7: Use Algorithm 1 to get Qij(t);
8: Update the pheromone on each edge according to (22);
9: t = t+ 1;

10: end while
11: Local optimization;
12: Return the best solution.

The pheromone update policy of SSMFAS is given by

τij(t+ 1) = (1− ρ)τij(t) +

M ′∑
m=1

e−λ(m−1) ·∆τmij (t) + σ(t)Qij(t), (22)

and
τmin ≤ τij ≤ τmax ∀τij , (23)

where M ′ (1 ≤ M ′ < M) is the number of chosen ants, λ denotes a control
coefficient which is set to 0.1 in the experiments, σ(t) is a control parameter
used to adjust the influence of protoplasm flux, which is defined as

σ(t) = 1− 1

1 + e
Tmax

4 −t
. (24)

Similar to (18), σ(t) is a decreasing function within the range of (0, 1), which
means the effect of SM model decreases with the number of iterations increas-
ing. The reason for this is that the addition of the flux of SM model changes
the pheromone distribution of the ant colony, and thus influences the edge
selections of ants. At the beginning of the iteration, the algorithm needs to
use the flux of SM model as part of information (pheromone) to guide ants to
find some good edges. However, when the path search in SM model converges
gradually, the algorithm reduces the effect of the flux to prevent excessive
pheromone at some edges which would make it difficult for ants to find other
solutions and thus fall into the local minimum. The adaptive hybridization of
the two intelligent algorithms is conducive to better solutions.

The general framework of SSMFAS is shown in Algorithm 2.
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4 Theoretical Convergence Proofs

We analyze the convergence properties of SSMFAS in this section from several
aspects, including the pheromone values and the probability of finding the
optimal solution.

Proposition 1 For SSMFAS, the pheromone value τij(t) on an arbitrary edge (i, j)
at any time t satisfies that

lim
t→∞

τij(t) ≤ τmax =
∆max

ρ
, (25)

where ∆max is the maximum value of pheromone (including flux) added to an
arbitrary edge, determined as

∆max =

M ′∑
m=1

e−λ(m−1)

Smin
+Qmax ≥ 0, (26)

where Smin is the theoretical shortest solution, Qmax is the upper bound of flux.

Proof Based on (22), the maximum pheromone value on edge (i, j) at time 1 is
derived as

τmax
ij (1) = (1− ρ)τij(0) + ∆max. (27)

Accordingly, the maximum pheromone value on edge (i, j) at time 2 is obtained by

τmax
ij (2) = (1− ρ)τij(1) + ∆max

= (1− ρ)2τij(0) + (1− ρ)∆max +∆max.
(28)

In the same manner, the maximum pheromone value on edge (i, j) at iteration t is
derived as

τmax
ij (t) = (1− ρ)tτij(0) +

t∑
i=1

(1− ρ)t−i∆max. (29)

As the pheromone evaporation rate, ρ, satisfies 0 < ρ < 1, based on the formula of
summation for geometric sequence, we obtain that

lim
t→∞

τmax
ij (t) = lim

t→∞
[(1− ρ)tτij(0) +

1− (1− ρ)t

ρ
∆max]

=
∆max

ρ
.

(30)

Thus, we have

lim
t→∞

τij(t) ≤ lim
t→∞

τmax
ij (t) =

∆max

ρ
. (31)

Thus, the proof is completed. □

Proposition 2 On the premise that an optimal solution Smin is found at the t∗th
iteration, for the pheromone value, τij(t), it holds that

lim
t→∞

τij(t) =
∆τmax

ρ
, (32)

where edge (i, j) ∈ Smin, ∆τmax = (Smin)
−1 is the maximum pheromone

concentration added by ants.
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Proof The pheromone updating expression (22) can be rewritten as

τij(t+ 1) = τ̃ij(t) + σ(t)Qij(t), (33)

where

τ̃ij(t) = (1− ρ)τij(t) +

M ′∑
m=1

e−λ(m−1) ·∆τmij (t). (34)

Thus, we have

lim
t→∞

τij(t) = lim
t→∞

τ̃ij(t− 1) + lim
t→∞

σ(t− 1)Qij(t− 1). (35)

It is concluded from (24) that

lim
t→∞

σ(t− 1) = 0. (36)

Since Qij(t− 1) has an upper bound according to (19). It holds that

lim
t→∞

σ(t− 1)Qij(t− 1) = 0. (37)

Next, we only need to prove lim
t→∞

τ̃ij(t− 1) = ∆τmax
ρ .

On the premise that an optimal solution Smin is found at the t∗th iteration, the
value of pheromone trail on each edge of the optimal path at the (t∗ +1)th iteration
is given as

τ̃ij(t
∗ + 1) = (1− ρ)τij(t

∗) + ∆τmax. (38)

It can be concluded from (38) that

τ̃ij(t
∗ + t) = (1− ρ)tτij(t

∗) +
t∑

i=1

(1− ρ)t−i∆τmax. (39)

Thus, by taking the limits of both sides of (39), we have

lim
t→∞

τ̃ij(t
∗ + t) = lim

t→∞
[(1− ρ)tτij(t

∗) +
t∑

i=1

(1− ρ)t−i∆τmax]

= lim
t→∞

[(1− ρ)tτij(t
∗) +

1− (1− ρ)t

ρ
∆τmax]

=
∆τmax

ρ
.

(40)

This then completes the proof. □

Theorem 1 Let P ∗(t) be the probability of SSMFAS finding an optimal route Smin

at least once in the first t steps. Supposing that t is sufficiently large, for an arbitrarily
small positive number 0 < ε < 1, it holds that

P ∗(t) ≥ 1− ε, (41)

and
lim
t→∞

P ∗(t) = 1. (42)
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Proof Since the pheromone concentration on each edge is bounded by τij(t) ∈
[τmin, τmax], the minimum value of the probability of choosing an optimal edge,
νpmin has a lower bound given by

νpmin ≥
pmin +

N ′−1∑
k=1

| Γ(k−ν)
Γ(−ν)Γ(k+1)

|pmin

N ′−1∑
k=1

| Γ(k−ν)
Γ(−ν)Γ(k+1)

|
, (43)

where pmin is reached theoretically when the pheromone values are τmin on the
optimal edges, and τmax on all the other edges, which is written as

pmin =
ταminη

β
min

ταminη
β
min + (N − 1)ταmaxη

β
max

. (44)

Accordingly, the probability of finding an optimal solution Smin is expressed as

(νpmin)
(N−1) > 0. (45)

Thus, the maximum probability of not finding the optimal solution Smin at the tth
iteration is expressed as

P̃ (t) = [1− (νpmin)
(N−1)]t. (46)

Therefore, the probability of SSMFAS searching out the optimal route Smin at least
once in the first t steps is given as

P ∗(t) ≥ 1− P̃ (t)

= 1− [1− (νpmin)
(N−1)]t.

(47)

On the premise that t is sufficiently large, we conclude that there exists an arbitrarily
small ε such that

P ∗(t) ≥ 1− ε. (48)

Also, we obtain that
lim
t→∞

P ∗(t) = 1. (49)

Therefore, the proof is completed. □

Theorem 2 For ∀t > t∗ + t0, where t0 = 1−ρ
ρ , it holds that

τij(t) > τkl(t), ∀(i, j) ∈ Smin and ∀(k, l) /∈ Smin. (50)

Proof Under the worst circumstance that the pheromone concentration is τij(t
∗) =

τmin on optimal edge (i, j) ∈ Smin, and τkl(t
∗) = τmax on non-optimal edge (k, l) /∈

Smin at time t∗, τij(t
∗ + t′) is expressed as

τij(t
∗ + t′) = (1− ρ)t

′
τij(t

∗) +
t′−1∑
i=0

(1− ρ)i∆max

= (1− ρ)t
′
τmin +

t′−1∑
i=0

(1− ρ)i∆max

> t′(1− ρ)t
′−1∆max,

(51)
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and τkl(t
∗ + t′) is given as

τkl(t
∗ + t′) = max

{
τmin, (1− ρ)t

′
τkl(t

∗)
}

= max
{
τmin, (1− ρ)t

′
τmax

}
.

(52)

Let τkl(t
∗ + t′) be (1 − ρ)t

′
τmax for our purpose here. Therefore, τij(t

∗ + t′) >
τkl(t

∗ + t′) holds when

t′(1− ρ)t
′−1∆max > (1− ρ)t

′
τmax, (53)

which is equal to

t′ >
τmax(1− ρ)

∆max
=

1− ρ

ρ
= t0. (54)

Therefore, the proof is completed. □

Proposition 3 After the optimal solution Smin has been discovered, the value of
pheromone τkl(t) on any non-optimal edge (k, l) /∈ Smin decreases as the number of
iterations increases. It holds that

lim
t→∞

τkl(t) = τmin. (55)

Proof After the t∗th iteration when the optimal path is found, the pheromone on
the non-optimal edges evaporates without addition. The pheromone on edge (k, l) at
the (t∗ + t′)th iteration is derived as

τkl(t
∗ + t′) = max

{
τmin, (1− ρ)t

′
τkl(t

′)
}
. (56)

Thus, when t → ∞, τkl(t) → τmin. □

Proposition 4 Supposing the optimal solution Smin is found at the t∗th iteration,
after (t∗ + t0) iterations, it holds that

τkl(t) = τmin ∀(k, l) /∈ Smin, (57)

where t ≥ t∗ + t0 and t0 =
ln(τmin)−ln(τmax)

ln(1−ρ)
.

Proof Now suppose that t′ is the first time such that

(1− ρ)t
′
τkl(t

′) ≤ τmin. (58)

It is derived that

t′ ≥ ln(τmin)− ln(τmax)

ln(1− ρ)
= t0. (59)

This then implements the proof. □

Corollary 1 Suppose that the first optimal solution Smin is found at the t∗th iter-
ation. For the probability of ant m constructing the optimal route Smin at the tth
iteration, P ∗

m(t) , it holds that

lim
t→∞

P ∗
m(t) ≥ C[1− f(τmax, τmin)], (60)

where C is a constant and f(·) is a function of τmax and τmin.
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Proof Known that
lim
t→∞

P ∗
m(t) = [ lim

t→∞
νp∗ij(t)]

N−1, (61)

where νp∗ij(t) is the transition probability for edge (i, j) ∈ Smin after the first optimal
solution Smin is found, determined by

νp∗ij(t) =
1

F

p∗ij(t) +
N ′−1∑
k=1

| Γ(k − ν)

Γ(−ν)Γ(k + 1)
|pink

(t)


≥ 1

F
p∗ij(t),

(62)

where F is a constant defined as

F =

N ′−1∑
k=1

| Γ(k − ν)

Γ(−ν)Γ(k + 1)
|, (63)

and p∗ij(t) satisfies that

lim
t→∞

p∗ij(t) =
ταmaxη

β
ij

ταmaxη
β
ij + (N − 1)ταminη

β
kl

. (64)

Accordingly, the probability of ant m finding the optimal solution Smin at the tth
iteration satisfies

lim
t→∞

P ∗
m(t) = [ lim

t→∞
νp∗ij(t)]

N−1

≥

 lim
t→∞

p∗ij(t)

F

N−1

≥
(

1

F

)N−1
 ταmaxη

β
ij

ταmaxη
β
ij + (N − 1)ταminη

β
kl

N−1

≥
(

1

F

)N−1
1 +

(N − 1)ταminη
β
kl

ταmaxη
β
ij

−(N−1)

.

(65)

Based on the binomial expansion theorem, we derive that

lim
t→∞

P ∗
m(t) ≥

(
1

F

)N−1
1−

(N − 1)2ταminη
β
kl

ταmaxη
β
ij

 . (66)

Clearly, this then results in the consequence, (66), by setting C =
(
1
F

)N−1
and

f(τmax, τmin) =
(N−1)2τα

minη
β
kl

τα
maxη

β
ij

. □

The proofs of the above four propositions, two theorems and one corollary
show the convergence properties of SSMFAS. Proposition 1 reveals that the
pheromone value on any edge has an upper bound. Proposition 2 proves that
after the optimal path has been discovered, the pheromone concentrations on
edges of the optimal route increase to the maximum with the increase of itera-
tions. Theorem 1 demonstrates that the probability of finding an optimal path
tends to 1 with the increase of iterations. Theorem 2 illustrates that finite
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times later after the optimal solution is discovered, the value of pheromone on
any edge of the optimal route keeps larger than that on any other edge. Propo-
sition 3 indicates that after the optimal path has been discovered, the value of
pheromone on the edge that does not belong to the optimal route approaches
the minimum value with the increasing number of iterations. Proposition 4
specifically declares that finite times later after the optimal solution is discov-
ered, the value of pheromone on the edge that does not belong to the optimal
route maintains the minimum. Corollary 1 exhibits that the probability of
finding an optimal solution has a lower bound.

5 Experiments

This section presents extensive experimental results of the proposed SSM-
FAS, as well as some advanced peer methods. The experimental setup is given
firstly. Then, the convergence curves of SSMFAS on different TSP instances are
drawn. Subsequently, the effectiveness of each component and strategy is ver-
ified by an ablation study. Finally, various comparisons have been conducted
with several advanced algorithms on small-scale TSP instances and larger-scale
TSP instances to demonstrate the competitive performance of SSMFAS.

5.1 Experimental Setup

All experiments have been implemented in MATLAB 2019a environment in
Window 10 on the PC equipped with an Intel Core i5 processor and 8GB of
RAM.

5.1.1 Evaluation Metrics

TSP instances obtained from TSPLIB of Heidelberg University1 are used in
the experiments. The number in each instance’s name represents the num-
ber of cities. Each algorithm is tested 20 runs for one instance with random
initialization, and each run includes 300 iterations.

The minimal, maximal and average solutions acquired from 20 runs are
recorded as the crucial indicators to evaluate the overall performance of
algorithms.

The standard deviation (SD) is adopted in parameter tuning to evaluate
the dispersion of the solutions, which is computed as

SD =

√√√√ 1

R

R∑
i=1

(Si − SAVE)
2
, (67)

where R (R = 20) is the number of runs, Si and SAVE are the solution in the
ith run and the average solution of 20 runs, respectively. SD is considered as

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 2: Orthogonal array L16(4
3).

ParaCom δ µ ν ParaCom δ µ ν

1 4 3 1 9 3 1 4

2 2 1 3 10 2 2 2

3 4 1 2 11 3 2 1

4 4 4 4 12 2 4 1

5 2 3 4 13 1 2 4

6 3 4 2 14 3 3 3

7 1 1 1 15 4 2 3

8 1 3 2 16 4 3 1

a measure of the robustness of algorithms since it is sensitive to data outliers.
The smaller SD indicates that the algorithm is more robust.

The relative error (ER) is used to reflect the reliability of the results, which
is defined as

ER =
SAVE − SMIN

SMIN
× 100%, (68)

where SAVE and SMIN are the average and minimal solutions of 20 runs,
respectively.

5.1.2 Parameter Settings

For SSMFAS, α, β and ρ are set to 1, 5 and 0.1, respectively, referring to
[41]. N ′ and M ′ are set to 8. The upper and lower bounds of pheromone are

computed by τmax =
M ′∑
m=1

| Γ(m−ν−1)
Γ(−ν)Γ(m) | 1

S∗ and τmin = 2τmax/N , respectively,

where S∗ is the approximate estimated shortest route length.
The fractional order, ν, the coefficient in conductivity update rule, µ, and

the weight coefficient in maximum-minimum flux strategy, δ, are searched to
get appropriate values, since the performance of SSMFAS is sensitive to them.
To determine an appropriate combination of values of these parameters, four
alternative values are tested for each parameter, i.e., ν ∈ {0.7, 0.8, 0.9, 1.0},
µ ∈ {0.3, 0.55, 0.8, 1.05}, and δ ∈ {0.25, 0.50, 0.75, 1.00}. Accordingly, a four-
level and three-factor orthogonal experimental design (OED) is utilized to
choose a good combination of values of the parameters.

Let La(b
c) represent the orthogonal array, where a is the number of tests

performed, b and c are the level and number of parameters, respectively. There-
fore, an orthogonal array L16(4

3) is procured, where 16 typical combinations
are shown in Table 2.

One small-sized TSP instance, eil51, is used for this experiment. The aver-
age solutions of 16 combinations are listed in Table 3, where the best solutions
are marked in bold font. We note that z1 − z4 represent the average of the
results from 20 runs employing some certain parameters with specific values.
For example, as δ = 1.00 is obtained by calculating (428.2 + 428.6 + 426.85 +
429.15)/4 = 428.2, the result 428.2 is placed in the corresponding position
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Table 3: Results of the OED.

ParaCom δ µ ν Ave

1 1.00 1.05 0.9 428.20

2 0.75 0.30 0.9 427.90

3 0.25 0.30 0.8 427.60

4 0.25 1.05 1.0 428.85

5 0.75 0.80 1.0 428.00

6 0.50 1.05 0.8 428.95

7 1.00 0.30 0.7 428.60

8 1.00 0.80 0.8 426.85

9 0.50 0.30 1.0 429.00

10 0.75 0.55 0.8 427.15

11 0.50 0.55 0.7 428.30

12 0.75 1.05 0.7 427.70

13 1.00 0.55 1.0 429.15

14 0.50 0.80 0.9 427.10

15 0.25 0.55 0.9 426.50

16 0.25 0.80 0.7 427.25

z1 428.2 428.28 427.96 /

z2 427.69 427.78 427.64 /

z3 428.34 427.30 427.43 /

z4 427.55 428.43 428.75 /

(z1, δ). From Table 3, it is clear that the best result is obtained when the
parameter combination is δ = 0.25, µ = 0.8, and ν = 0.9.

Then, the optimal combination obtained by orthogonality, {0.25, 0.80, 0.9},
is compared with the parameter combination that obtains the smallest average
result, {0.25, 0.55, 0.9}, on 5 TSP instances. The results are recorded in Table
4 where the best solutions are emphasized in bold font. It is obvious that the
combination of {0.25, 0.80, 0.9} wins on 4 of 5 instances. Therefore, we set
δ = 0.25, µ = 0.8, and ν = 0.9 in later experiments.

5.2 Convergence Property

The convergence curves of SSMFAS on 10 TSP instances are displayed in
Fig. 4. It can be seen that the minimum solutions are reached within 150
iterations for all instances, which verifies the convergence of the algorithm
experimentally.

5.3 Effectiveness of Hybridization

An ablation experiment is designed to prove the effectiveness of the hybridiza-
tion of AS, SM model and fractional-order difference components. Different
versions of SSMFAS is developed for comparison. By setting the fractional
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Table 4: Results of the additional
experiments.

Instance δ µ ν ave

eil51
0.25 0.80 0.9 426.8

0.25 0.55 0.9 426.5

eil76
0.25 0.80 0.9 542.1

0.25 0.55 0.9 539.8

st70
0.25 0.80 0.9 679.45

0.25 0.55 0.9 678.05

rat99
0.25 0.80 0.9 1218.65

0.25 0.55 0.9 1214.20

kroA100
0.25 0.80 0.9 21305.80

0.25 0.55 0.9 21309.75

order to ν = 1, SSMFAS degrades into an integer-order version, marked as
SSMAS. By setting the parameter to σ(t) = 0, SSMFAS degrades into a ver-
sion without SM model involved, marked as FAS. By setting both ν = 1 and
σ(t) = 0, SSMFAS degrades into a version without the fractional calculus and
SM model, marked as AS.

The average solutions as well as the best known solutions (BKS) are
reported in Table 5, where the best solutions are marked in bold font. SSMFAS
achieves the best solutions on all instances compared to other versions, which
verifies the success of hybridization in SSMFAS. Furthermore, the results also
show that both FAS and ASMAS perform better than AS, while there is no
significant difference between them.

On the other hand, Table 6 presents the computation time of AS, FAS,
SSMAS, and SSMFAS on different TSP instances. As can be seen from the
table, insertions of the fractional calculation and SM model make the calcu-
lation time longer. This may be due to the long-term memory character of
fractional-order difference is more computationally intensive, along with the
fact that parallel computation has not been adopted in SM module. This
limitation will be a major issue for future improvement.

5.4 Strategy Evaluation

Two strategies proposed in the paper, adaptive conductivity strategy and
maximum-minimum flux strategy, are evaluated separately to verify the effec-
tiveness. The results are summarized in Table 7, where SSMFAS0 represents
the version without two strategies, SSMFAS1 represents the version with the
adaptive conductivity strategy but without the maximum-minimum flux strat-
egy, and SSMFAS2 is the opposite version to SSMFAS1. The best results in
each case are emphasized in bold font.

From the data in Table 7, it is apparent that SSMFAS achieves the best
performances in terms of all evaluation metrics on the four TSP instances and
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(a) eil51 (b) berlin52 (c) st70

(d) eil76 (e) rat99 (f) kroA100

(g) eil101 (h) lin105 (i) ch150

(j) kroA200

Fig. 4: The values of solutions of SSMFAS on ten TSP instances over itera-
tions.

has significant advantages than the others. It validates that the two specifi-
cally designed strategies improve the optimization capability and robustness
of SSMFAS significantly.

Secondly, the respective positive effects of the two strategies are evaluated
by comparing SSMFAS1 and SSMFAS2 with SSMFAS0, respectively. SSMFAS1
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Table 5: The average solutions of AS, FAS, SSMAS, and SSMFAS on different
TSP instances.

Instance BKS AS FAS SSMAS SSMFAS

eil51 426 430.00 427.85 428.00 426.50

berlin52 7542 7556.2 7542.0 7542.0 7542.0

st70 675 679.05 679.10 678.65 678.05

eil76 538 546.55 541.50 542.60 539.45

rat99 1211 1219.10 1216.40 1215.25 1214.20

kroA100 21282 21349.30 21312.75 21315.25 21309.75

eil101 629 647.85 637.65 641.50 635.95

lin105 14379 14404.10 14398.10 14399.20 14390.50

ch150 6528 6570.80 6566.40 6563.55 6562.90

kroA200 29368 29558.75 29511.50 29527.20 29506.30

Table 6: The computation time (second) of
AS, FAS, SSMAS, and SSMFAS on different
TSP instances.

Instance AS FAS SSMAS SSMFAS

eil51 13.78 25.14 28.19 37.44

berlin52 15.09 24.63 26.29 35.43

st70 30.63 53.29 57.94 76.19

eil76 38.18 59.81 85.89 92.38

rat99 76.13 126.05 129.92 187.58

kroA100 78.45 126.23 132.87 201.32

eil101 83.25 128.4 136.64 209.86

lin105 90.39 151.62 169.14 225.57

ch150 259.89 443.75 473.6 649.9

kroA200 606.25 1030.02 1073.89 1504.68

is superior to SSMFAS0 in all TSP instances, which illustrates that the adap-
tive conductivity strategy has a positive impact on SSMFAS for solving TSPs.
The comparison between SSMFAS2 and SSMFAS0 draws a similar conclusion.

Therefore, the employment of the two auxiliary strategies is beneficial to
improve the performance of SSMFAS.

5.5 Comparison to Other ACO-based Hybrid Approaches

To further investigate the efficiency of SSMFAS, several advanced ACO-based
hybrid algorithms are used for comparison, including fractional-order ant
colony algorithm (FACA) [16], heterogenous adaptive ACO with 3-Opt local
search (HAACO) [41], parallel cooperative hybrid ACO with 3-Opt local search
[17], new hybrid PSO and ACO with 3-Opt [18], and two variants of MMAS
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Table 7: The performance of using or not using two strategies separately.

Instance Version Min Max Ave SD ER(%)

SSMFAS0 426 431 428.15 1.27 0.5047

SSMFAS1 426 430 427.60 1.04 0.3873

eil51 SSMFAS2 426 429 427.70 1.08 0.3991

SSMFAS 426 428 426.50 0.76 0.1174

SSMFAS0 538 548 542.05 3.19 0.7528

SSMFAS1 538 548 540.45 2.30 0.2695

eil76 SSMFAS2 538 545 541.30 2.25 0.6134

SSMFAS 538 544 539.45 1.67 0.2695

SSMFAS0 676 691 681.90 4.43 0.8728

SSMFAS1 675 685 680.00 3.39 0.7407

st70 SSMFAS2 676 684 680.05 2.65 0.5991

SSMFAS 675 682 678.05 2.19 0.4519

SSMFAS0 21282 21569 21371.45 91.17 0.4203

SSMFAS1 21282 21480 21346.25 67.50 0.3019

kroA100 SSMFAS2 21282 21379 21315.70 40.76 0.1583

SSMFAS 21282 21379 21309.75 38.77 0.1304

algorithm [41] which are the standard MMAS incorporated 3-Opt and greedy,
and only 3-Opt, respectively.

We note that like the proposed SSMFAS, the six compared algorithms also
include the 3-Opt local search procedure. The results of competitors are taken
from the corresponding references. For a fair comparison, we set the values of
the common parameters in our algorithm to be the same as those in [41]. Table
8 presents the common parameter settings of the algorithms. Other specific
parameters are set following the original setting.

Table 8: Common parameter settings.

Algorithm α β ρ Maximum Iteration

SSMFAS 1 5 0.1 300

FACA[16] 1 5 0.2 300

HAACO[41] 1 5 0.1 1000

PACO-3Opt[17] [0,2] [0,2] 0.1 1000

PSO-ACO-3Opt [18] [0,2] [0,2] 0.1 1000

MMAS1[41] 1 5 0.1 1000

MMAS2 [41] 1 5 0.1 1000

5.5.1 Performance Evaluation on Small-scale Problems

Firstly, SSMFAS are evaluated on 10 Small-scale TSP instances. Tables 9 and
10 present the minimal and average solutions of SSMFAS and other algorithms,
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Table 9: The minimal solutions and the corresponding ranks of different meth-
ods on 10 small-scale TSP instances.

Instance BKS SSMFAS FACA [16] HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18] MMAS1 [41] MMAS2 [41]

eil51 426
426 426 426 426 426 427 426

(3.5) (3.5) (3.5) (3.5) (3.5) (7) (3.5)

berlin52 7542
7542 7542 7542 7542 7542 7542 7542

(4) (4) (4) (4) (4) (4) (4)

st70 675
675 675 675 676 676 675 682

(2.5) (2.5) (2.5) (5.5) (5.5) (2.5) (7)

eil76 538
538 538 538 538 538 538 538

(4) (4) (4) (4) (4) (4) (4)

rat99 1211
1211 1211 1211 1213 1224 1212 1212

(2) (2) (2) (6) (7) (4.5) (4.5)

kroA100 21282
21282 21379 21282 21282 21301 21315 21379

(2) (6.5) (2) (2) (4) (5) (6.5)

eil101 629
629 629 630 629 631 631 631

(2) (2) (4) (2) (6) (6) (6)

lin105 14379
14379 14379 14379 14379 14379 14379 14379

(4) (4) (4) (4) (4) (4) (4)

ch150 6528
6528 6528 6566 6570 6538 6554 6566

(1.5) (1.5) (5.5) (7) (3) (4) (5.5)

kroA200 29368
29380 29464 29483 29533 29464 29485 29488

(1) (2.5) (4) (7) (2.5) (5) (6)

Average rank 2.65 3.25 3.55 4.5 4.35 4.6 5.1

Table 10: The average solutions and the corresponding ranks of different
methods on 10 small-scale TSP instances.

Instance BKS SSMFAS FACA [16] HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18] MMAS1 [41] MMAS2 [41]

eil51 426
426.5 427.4 427.5 426.35 426.45 429.4 428.5

(3) (4) (5) (1) (2) (7) (6)

berlin52 7542
7542 7542 7542 7542 7543.2 7542 7542

(3.5) (3.5) (3.5) (3.5) 7 (3.5) (3.5)

st70 675
676.65 680.1 676.5 677.85 678.2 683.8 685.2

(2) (5) (1) (3) (4) (6) (7)

eil76 538
539.45 541.0 542 539.85 538.3 542.8 543.5

(2) (4) (5) (3) (1) (6) (7)

rat99 1211
1213.0 1213.0 1214.1 1217.1 1227.4 1216.9 1219.4

(1.5) (1.5) (3) (5) (7) (4) (6)

kroA100 21282
21309.75 21379.0 21364.2 21326.8 21445.1 21528.3 21513.7

(1) (4) (3) (2) (5) (7) (6)

eil101 629
635.9 630.6 632.5 630.55 632.7 640.4 640.9

(5) (2) (3) (1) (4) (6) (7)

lin105 14379
14379 14392.4 14411.8 14393 14379.15 14429.2 14433

(1) (3) (5) (4) (2) (6) (7)

ch150 6528
6560.5 6537.0 6578.8 6601.4 6563.95 6603.9 6581

(2) (1) (4) (6) (3) (7) (5)

kroA200 29368
29506.3 29680.5 29633.2 29644.05 29646.05 29799.9 29760.3

(1) (5) (2) (3) (4) (7) (6)

Average rank 2.20 3.30 3.45 3.15 3.90 5.95 6.05
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respectively. For the purpose of analyzing the performance of the algorithms,
the ranks of the solutions are computed and listed in the parentheses in those
tables. We note that if any values are tied, we compute their average rank.
Furthermore, the average ranks of each algorithm on the 10 instances are also
computed and reported in the last lines of tables. The best solutions in each
case are written in bold and highlighted in gray, and the second-best results
are also written in bold font.

As shown in Table 9, the minimal solutions of SSMFAS on all TSP instances
are the shortest over seven algorithms. As a result, SSMFAS obtains the small-
est average rank of 2.65, and FACA with an average rank of 3.25 comes next.
And, perhaps more tellingly, in terms of the average solutions, Table 10 indi-
cates that SSMFAS outperforms other algorithms with an average rank of 2.20,
followed by PACO-3Opt with 3.15.

SSMFAS FACA HAACO PACO-3 PSO-A-3 MMAS1 MMAS2

Algorithm

1

2

3

4

5

6

7

R
a

n
k

Fig. 5: Box-plot of the ranks of average solutions of 7 algorithms. In each blue
box, the top line indicates the 75th percentile, the middle red line represents
the 50th percentile, and the bottom line indicates the 25th percentile. The
vertical dashed lines ending in a horizontal stroke are “whiskers” which mean
the upper and lower adjacent values. The red plus signs represent the outside
values.

Now we check whether the solutions constructed by these algorithms are
significantly different. A common statistical method, Analysis of Variance
(ANOVA) [42], is utilized to test if there is significant differences in these algo-
rithms. The null-hypothesis is tested and the generated p-value is 9.95e − 8,
which is less than the significance level of 0.1. Thus, the null-hypothesis is
rejected. The Wilcoxon signed-ranks test [43] is then used to verify the signifi-
cant improvement of the proposed SSMFAS in pairs. The results are reported
in Table 11. As can be seen, the generated p-values are all less than the sig-
nificance level of 0.1 except for FACA. This may due to the fact that the
two algorithms are tied on two instances. More specifically, Fig. 5 shows the
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shape of distribution of ranks in terms of average solution. The distribution
of SSMFAS is more concentrated with the smallest median, which clarifies the
effectiveness and robustness of the proposed SSMFAS.

Table 11: The p-values of the Wilcoxon signed-ranks test.

FACA [16] HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18] MMAS1 [41] MMAS2 [41]

p-value 0.3125 0.0547 0.0547 0.0840 0.0039 0.0039

win(+)/tie(≈) (≈) (+) (+) (+) (+) (+)

5.5.2 Performance Evaluation on larger-scale Problems

Furthermore, in order to illustrate the ability of the proposed SSMFAS to
handle large-scale TSPs, 11 lager-scale TSP instances from TSPLIB whose
numbers of cities are between 400 and 800 are used in this subsection.

Tables 12 and 13 present the minimal and average solutions of SSMFAS
and its competitors, respectively. The best solutions in each case is highlighted
in gray. It can be seen from the data in Table 12 that SSMFAS wins on 8 of
11 instances. From the average solutions in Table 13 we can see that SSMFAS
obtains the best results on 9 of 11 instances. The results demonstrate the
effectiveness of SSMFAS for solving larger-scale TSPs.

It is worth mentioning that the superiority of the proposed SSMFAS
becomes more obvious compared with the competitors when the problem size
becomes larger. This may illustrate the proposed SSMFAS has good robustness
and adaptability to large-scale problems.

Table 12: The minimal solutions of different methods on 11 larger-scale TSP
instances.

Instance BKS SSMFAS HAACO[41] PACO-3Opt [17] PSO-ACO-3Opt [18]

rd400 15281 15511 15603 15578 15594

fl417 11861 11933 11960 11972 11947

pr439 107217 108481 108730 108482 108530

pcb442 50778 51976 51780 51962 52131

d493 35002 35918 - 35735 35789

u574 36905 38094 - 37981 37818

rat575 6773 6871 - 7003 6987

p654 34643 34756 - 35045 35052

d657 48912 49561 - 50206 50291

u724 41910 42565 - 42764 43172

rat783 8806 8939 - 9111 9128

HAACO lacks results on some instances because it was only performed on the first four TSP
instances in [41]
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Table 13: The average solutions of different methods on 11 larger-scale TSP
instances.

Instance BKS SSMFAS HAACO[41] PACO-3Opt [17] PSO-ACO-3Opt [18]

rd400 15281 15530.5 15644.2 15613.9 15691.3

fl417 11861 11947.65 11979.5 11987.4 11980.4

pr439 107217 108535 108950.6 108702 108965.4

pcb442 50778 52171 52179.8 52202.4 52368.1

d493 35002 35971.4 - 35841 35973.8

u574 36905 38195.2 - 38030.7 38112.9

rat575 6773 6923 - 7012.4 7018.6

p654 34643 34779.1 - 35075 35098.2

d657 48912 49587.8 - 50277.5 50475.5

u724 41910 42580.67 - 43122.5 43300.3

rat783 8806 8950 - 9127.3 9138.1

HAACO lacks results on some instances because it was only performed on the first four TSP
instances in [41]

5.6 Comparison to Other Heuristic Approaches

In addition to ACO-based hybrid methods, some advanced heuristic methods
are involved in the comparison, including a discrete stochastic population-
based optimization algorithm (DJAYA) [44], an approach of improvement
heuristics based on 2-opt operators by deep reinforcement learning [45], and
an open source software for combinatorial optimization, Google OR-Tools [46],
which includes 2-opt and LKH (Lin-Kernighan-Helsgaun) [47] as improvement
heuristics [45, 48]. The results are reported on Table 14, where the best result
in each instance is highlighted in gray. We note that the results of SSMFAS
are the average solutions of 20 runs, and the results of competitors are taken
directly from the corresponding references.

Table 14: Performance of SSMFAS and other heuristic approaches on TSP
instances.

Instance BKS SSMFAS DJAYA [44] [45] OR-Tools [45]

eil51 426 426.5 440.15 427 439
berlin52 7542 7542 7580.3 7974 7944
st70 675 676.65 702.3 680 683
eil76 538 539.45 573.17 552 548
rat99 1211 1213 - 1388 1284

kroA100 21282 21309.75 21735.31 23751 21960
eil101 629 635.9 677.37 635 650
lin105 14379 14379 - 16156 15363
ch150 6528 6560.5 6638.63 6597 6733

kroA200 29368 29506.3 - 32522 29874
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As can be seen from Table 14, SSMFAS outperforms other approaches on
9 of 10 instances. It further verifies the superiority of the proposed SSMFAS
in addressing TSPs.

6 Conclusions

In this paper, we proposed a novel algorithm called SSMFAS combining a
state adaptive multi-entrance-exit SM model and a fractional-order based AS
algorithm for solving TSPs.

The adaptive conductivity strategy is developed to shift the state of SM
in different periods. The maximum-minimum flux strategy limits the upper
and lower bounds of the flux to match with the concentration of pheromone
of AS algorithm. Fractional-order neighborhood transition probability which
uses the neighbor information is introduced for path construction by ants to
improve the performance. Varying degrees of flux in SM model are added as
pheromone in the pheromone update process to provide more information.

The convergence properties of the SSMFAS have been verified. A multi-
tude of experiments are carried out on TSP instances. First, the effect of the
hybridization of AS, SM, and fractional-order calculus is verified. Then, the
effectiveness of two auxiliary strategies is demonstrated. At last, comparisons
with several state-of-the-art algorithms illustrate the competitive performance
of SSMFAS.

In the future work, we plan to optimize the combination of SM model and
AS algorithm, and improve the computation cost through some parallel strate-
gies, to address some dynamic multi-objective TSPs. More broadly, further
research could also be conducted to explore the potential of combining other
path planning methods and metaheuristic algorithms.

Statements and Declarations. The authors declare that they have no
known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments. This work was supported in part by the National Key
Research and Development Program of China under Grant 2019YFA0708700;
in part by the National Natural Science Foundation of China under Grant
62173345; in part by the Major Scientific and Technological Projects of China
National Petroleum Corporation (CNPC) under Grant ZD2019-183-008; in
part by the Fundamental Research Funds for the Central Universities under
Grant 22CX03002A; and in part by the Source Innovation Scientific and
Incubation Project of Qingdao, China under Grant 2020-88.

References

[1] Karp, R.M.: Reducibility Among Combinatorial Problems, pp.
85–103. Springer, Boston, MA (1972). https://doi.org/10.1007/
978-1-4684-2001-2 9. https://doi.org/10.1007/978-1-4684-2001-2 9

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9


Springer Nature 2021 LATEX template

32 Complex & Intelligent Systems

[2] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., USA (1979)

[3] Punnen, A.P.: The Traveling Salesman Problem: Applications, Formula-
tions and Variations, pp. 1–28. Springer, Boston, MA (2007). https://doi.
org/10.1007/0-306-48213-4 1. https://doi.org/10.1007/0-306-48213-4 1

[4] Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis,
Politecnico Di Milano, Italy (1992)
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