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Abstract: The aim of this study was to explore the proof of concept for using Raman spectroscopy as
a diagnostic platform in the setting of systemic lupus erythematosus (SLE). We sought to identify
unique Raman signatures in serum blood samples to successfully segregate SLE patients from healthy
controls (HC). In addition, a retrospective audit was undertaken to assess the clinical utility of
current testing platforms used to detect anti-double stranded DNA (dsDNA) antibodies (n = 600). We
examined 234 Raman spectra to investigate key variances between SLE patients (n = 8) and HC (n = 4).
Multi-variant analysis and classification model construction was achieved using principal component
analysis (PCA), PCA-linear discriminant analysis and partial least squares-discriminant analysis (PLS-
DA). We achieved the successful segregation of Raman spectra from SLE patients and healthy controls
(p-value < 0.0001). Classification models built using PLS-DA demonstrated outstanding performance
characteristics with 99% accuracy, 100% sensitivity and 99% specificity. Twelve statistically significant
(p-value < 0.001) wavenumbers were identified as potential diagnostic spectral markers. Molecular
assignments related to proteins and DNA demonstrated significant Raman intensity changes between
SLE and HC groups. These wavenumbers may serve as future biomarkers and offer further insight
into the pathogenesis of SLE. Our audit confirmed previously reported inconsistencies between
two key methodologies used to detect anti-dsDNA, highlighting the need for improved laboratory
testing for SLE. Raman spectroscopy has demonstrated powerful performance characteristics in this
proof-of-concept study, setting the foundations for future translation into the clinical setting.

Keywords: SLE; Raman spectroscopy; immunology; rheumatology; diagnostic; multivariate analysis;
biospectroscopy; dsDNA; biomarker; molecular; clinical

1. Introduction

Autoantibodies associated with systemic lupus erythematosus (SLE) are clinically
important and have been used historically in the diagnosis and monitoring of disease [1].
The detection of antinuclear antibodies (ANA) and anti-double stranded DNA (dsDNA)
antibodies have been included within the laboratory parameters for the classification of
SLE in the American College of Rheumatology (ACR) and the Systemic Lupus International
Collaborating Clinics (SLICC) criteria [1,2]. However, there are several points of contention
relating to the inclusion of these criterions in the classification of SLE. Importantly, ANA
are not considered disease-causing and are also present in up to 20% of normal healthy
individuals. A wide spectrum of molecular specificities encompass the umbrella term
ANA; homogenous ANA patterns directed against dsDNA and histone have the highest
sensitivity for SLE (93–95%) [3]. Despite its high clinical sensitivity, the presence of a dsDNA
antibody is not a unifying marker in the serological assessment of SLE. A critical review of
anti-dsDNA antibodies as a classification marker for SLE can be found by Rekvig [4].
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1.1. Current Laboratory Testing for SLE-Associated Autoantibodies

The average diagnostic delay for SLE in the UK is 6.4 years [5]. This is likely due to
the highly variable clinical and laboratory presentations of the disease. Moreover, within
the SLE patient population, current testing methods demonstrate inconsistencies between
results and clinical diagnosis, both between patients and between routine testing platforms
available for detection of anti-dsDNA antibodies.

A consideration of the differences between assays should be made when evaluat-
ing the value of immunological testing in SLE [6]. The two main methods commonly
used in routine clinical laboratories to detect anti-dsDNA antibodies are quantitative
enzyme-linked immunoassays (ELIA) and semi-quantitative Crithidia Luciliae indirect
immunofluorescence (CLIFT). Farr radioimmunoassay (RIA), a third method which has
historically been considered the ‘gold standard’ for dsDNA testing, is being phased out of
clinical laboratories and replaced with the above-mentioned non-radioactive assays [7].

Existing assays to detect anti-dsDNA antibodies differ in sensitivity, specificity and
antigenic substrate. Despite the introduction of a WHO International Standard for anti-
dsDNA (Wo/80) and subsequent WHO Reference Reagent (15/174), it has not been possible
to establish commutability between the available assays. This is likely due to variabilities in
the detection of low-affinity antibodies across assay platforms. The inconsistency between
assays increases the potential for the misinterpretation of laboratory results, delayed
diagnosis, and a profound negative impact on patient QOL. In light of this, current guidance
recommends confirmatory testing for dsDNA with a high specificity assay [8]. In the
present study, we have confirmed these findings through a retrospective audit examining
six hundred determinations for anti-dsDNA antibodies. We demonstrate that although
current testing pathways (ELIA± CLIFT) have high clinical importance, the inconsistencies
identified reinforce the need to develop a novel diagnostic platform for SLE.

1.2. Novel Testing Platforms for Clinical Laboratories

New discoveries and advances in technologies mean that we can explore new labora-
tory approaches for the investigation of complex disorders. However, the identification of
novel diagnostic biomarkers with sufficient diagnostic and prognostic accuracy for SLE has
not surpassed the performance of current methods [9]. In healthcare, there is an ongoing
drive to develop a low cost and simple-to-process analytical platform that can be routinely
accessible for patient testing both in the laboratory and at the bedside. One potential and
innovative candidate that could enable this is vibrational spectroscopy.

Vibrational spectroscopy is an umbrella term to describe the techniques used to
produce a unique spectral read-out, or molecular ‘fingerprint’ of a sample following excita-
tion with light. The unique molecular fingerprint of a sample relates to its biomolecular
constituents (i.e., proteins, lipids, nucleic acids, carbohydrates) and is generated from
the vibrations of the chemical bonds in these molecules. The molecular fingerprint of
a sample will change due to the presence of disease; therefore, vibrational spectroscopy is
a well-placed candidate for the study of pathological processes and development of a novel
diagnostic platform [10,11]. The most important optical techniques are infrared (IR) and
Raman spectroscopy; both of which are well established methods for studying sample
types such as biofluids, tissues and cell cultures.

Raman scattering, or inelastic scattering, is a low probability event (1 in 108) that
occurs when a sample is exposed to a monochromatic laser light source and undergoes
molecular polarizability changes [12–14]. A shift in the frequency of the incident light
occurs as molecules in the sample are excited, emitting photons to provide a quantifiable
signal, without causing any damage to the sample. As the signal intensity of the scattered
light is proportional to the concentration of a molecule within the sample, the overall
Raman spectrum generated from an unknown sample can provide information on both
its molecular constituents and the concentration of these present in the sample [15]. In
summary, this rapid, label-free and cost-effective technique can provide a surrogate read-
out to describe the metabolomic profile of a patient sample and has been successfully used
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across a wide area of clinical medicine, including complex disorders, such as Alzheimer’s
disease [16,17], multiple sclerosis [18], primary immune deficiency [19], autoantibody-
associated vasculitis [20,21], HIV/AIDS [22], diabetes [23] and carcinogenesis [24–28].
High diagnostic accuracy has been demonstrated for classification of numerous cancer
types and other biological applications [29–34].

Raman spectroscopy is a candidate to overcome the shortfalls with current labora-
tory methods and improve the diagnostic pathway for SLE. To date, Raman has limited
applications in autoimmunity [35–37] and remains a novel tool in the assessment of serum
anti-dsDNA antibody profiles in SLE patients. In our proof-of-concept study, we explore
the use of Raman spectroscopy to classify serum samples from SLE patients and healthy
controls. Our initial findings are encouraging for the development of a future diagnostic
test and could provide an important contribution to delineate the anti-dsDNA antibodies
profile in SLE patients.

2. Materials and Methods
2.1. Raman Spectroscopy Study
Sample Collection and Preparation

A total of 234 Raman spectra were examined (20 replicates per participant dependent
on sample volume) to investigate key variances between SLE patients (n = 8) and HC (n = 4).
As such, there were 154 SLE Raman spectra and 80 HC Raman spectra collected in total.
Surplus serum samples from eight SLE patients received at LTHTR Clinical Immunology
laboratory for routine testing were saved for Raman spectroscopy. Each of these patients
had been previously diagnosed with SLE, according to classification criteria [1,2]; therefore,
samples were not taken at the timepoint of initial diagnosis. Each sample represented
a different individual patient. Longitudinal testing was not undertaken as a part of this
study. Samples were anonymised and collated into subgroups 1–3 based on their dsDNA
antibody test results; 1—ELIA Negative (Neg), CLIFT not performed (N/A) (n = 2); 2—ELIA
Positive (Pos), CLIFT Neg (n = 2); 3—ELIA Pos, CLIFT Pos (n = 4) (Table 1). All SLE patients
were positive for anti-nuclear antibodies (ANA) by indirect immunofluorescence testing
on Hep-2 slides (Innova). To ensure double-blind analysis, a random number generator
was used to assign sample study IDs. Samples were gathered within 1 week of blood
collection, aliquoted into anonymised tubes and stored at −80 ◦C until processing. Control
samples consisted of four serum samples collected from healthy laboratory staff volunteers,
obtained following informed consent. Samples were anonymised from the time of collection,
assigned and labelled with only a unique random identification number. A record of ID
numbers used for healthy controls was documented with SLE patient samples for future
reference, omitting volunteer identifiers. All samples were stored at −80 ◦C until analysed,
first thawing at room temperature.

Table 1. Categories of SLE patients determined by autoantibody positivity combinations. Groups
1, 2 and 3 each composed of SLE patients with varying positivity for anti-nuclear and anti-dsDNA
antibodies. Group 1—‘ELIA Neg CLIFT N/A’, Group 2—‘ELIA Pos CLIFT Neg’, Group 3—‘ELIA
Pos CLIFT Pos’. Four healthy controls with no clinical indication of SLE or any other autoimmune
disease that were negative for ANA and dsDNA by ELIA and CLIFT were included as the healthy
control group (Group 0). ‘+’ = Positive, ‘-’ = Negative.

Group ANA ELIA dsDNA CLIFT Number of Samples Total Number of Spectra

Healthy
Controls—0 - - - 4 80

SLE—1 + - N/A 2 40
SLE—2 + + - 2 37
SLE—3 + + + 4 77
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2.2. Ethics Statement

The Health Research Authority Research Tool was used in the planning stages, which
determined that this project was not a piece of research that required ethical approval.
This project proposal was reviewed by the Centre for Health Research and Innovation on
behalf of Lancashire Teaching Hospitals NHS Trust (LTHTR) and was considered a service
evaluation not requiring ethical or governance review.

2.3. Spectral Acquisition

Samples were processed using Thermo ScientificTM DXRTM3 dispersive Raman Mi-
croscope aligned and calibrated for 532 nm laser wavelength using automated techniques,
as per the OMNIC user protocol. Optimal Raman parameters (532 nm laser wavelength,
10 mW laser power, ×10 objective, 20 s exposure time, 10 exposures, 512 background expo-
sures, 900 lines/mm grating, 50 µm pinhole spectrograph aperture, 1 µm spatial resolution
and 2 µm confocal depth) were selected and were inputted into OMNIC software prior
to spectra collection. An amount of 50 µL of serum was pipetted onto a 75 × 25 × 1 mm
calcium fluoride (CaF2) slide (Knight Optical). The microscope (1 micron sampling area)
was navigated around different parts of the homogenous sample to collect 10 different
spectral points. A total of 10 spectra were collected within an approximate 30 min before
the CaF2 slide was cleaned with alcohol disinfectant wipes (Medipal) and diH20 and dried.
A further 10 point spectra was subsequently collected with a fresh 50 µL of sample pipetted
onto the CaF2 slide. Each sample was processed, as per this process, one at a time collecting
in total 20 spectra per sample consecutively within 1 h. This resulted in a total acquisition
of 234 Raman spectra, 154 spectra collected from 8 individual SLE patients and 80 spectra
collected from 4 HCs. For 3 of the SLE patients it was not possible to acquire the full
20 replicates; a minimum number of 17 replicates were collected for each sample. Samples
were processed in a double-blinded manner, only identifiable by their unique random ID.
All samples were processed over six days.

2.4. Spectral Pre-Processing

Analysis of the spectral datasets was performed using the IRootLab toolbox (tre-
visanj.github.io/irootlab/; accessed on 6 April 2022), within MATLAB R2017a software
(MathWorks, Natick, MA, USA), unless stated otherwise. Pre-processing consisted of rubber-
band-like baseline correction and vector normalisation performed on raw spectral data.

2.5. Multivariate Analysis and Model Validation

As a means of supervised multivariate analysis, principal component analysis linear
discriminant analysis (PCA-LDA) was used as a classifier [38]. In addition to PCA-LDA,
supervised classification was also performed by partial least squares discriminant analysis
(PLS-DA), which is a classification technique based on a partial least squares (PLS) model
applied to the pre-processed data, reducing them to a few numbers of latent variables (LVs),
followed by a discriminant analysis classifier [39]. PLS-DA maximises the co-variance
between the spectral data and the sample category, where the samples are assigned to
classes based on a straight line that divides the classes’ space [39].

Classification was performed by measuring the PCA-LDA scores and by the pre-
dicted response of the PLS-DA model. PCA-LDA scores (Lik) are calculated based on the
following equation:

Lik =
(

xi −
–
xk

)T
Σ−1

pooled

(
xi −

–
xk

)
− 2 loge πk (1)

where xi are the PCA scores for sample i;
–
xk is the mean PCA scores for class k; Σpooled is

the pooled covariance matrix; and πk is the prior probability of class k [38].
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The PLS-DA predicted response (
^
y) is calculated based on Equation (2):

^
y = Xb (2)

where X is the pre-processed spectral data and b is a regression vector calculated through
a series of iterations using both spectral and class category information [40].

Relevant biomarker peaks were found using a cluster vector approach [41], which is
a method based on PCA that creates a “loadings-like” plot for the three PCs whose projec-
tions give the best cluster separation. This is performed by the sum of the three loading
vectors weighted by the median scores, and the resultant vector (cluster vector) shows the
weight for the most important wavenumbers responsible for class separation [41]. Addi-
tional statistical tests were performed on the PCA-LDA scores and on the absorbance inten-
sities for the main peaks identified by the cluster vector approach based on ANOVA, where
p-values were calculated for statistical significance at a 95% confidence level (p < 0.05).

A boxplot was generated for the PCA-LDA scores to facilitate the visualisation of
class separation.

Finally, the models were validated by Monte Carlo cross-validation performed with
1000 iterations and leaving 20% of samples out for validation. Monte Carlo is an exhaustive
type of cross-validation technique that performs a great number of iterations where, for
each iteration, 20% of the data are randomly left out for validation; thus, the classification
model is built with 80% of the data and predicted on the remaining 20% [42]. At the end,
the mean accuracy, sensitivity and specificity were reported for each model, as well as
the mean predicted response displayed in a form of confusion table. The accuracy (AC),
sensitivity (SENS) and specificity (SPEC) were calculated for each class as follows:

AC(%) =

(
TP + TN

TP + FP + TN + FN

)
× 100 (3)

SENS(%) =

(
TP

TP + FN

)
× 100 (4)

SPEC(%) =

(
TN

TN + FP

)
× 100 (5)

where TP stands for true positive, TN for true negative, FP for false positive and FN for
false negative [43].

2.6. Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients

A retrospective clinical audit was performed on 600 anti-dsDNA test requests over an
18-month period. Anti-dsDNA antibody results from enzyme-linked immunoassay (EliA;
Phadia/Thermo Fisher Scientific, Waltham, MA, USA), and Crithidia luciliae immunoflu-
orescence testing (CLIFT; Euroimmun, Lübeck, Germany) was gathered and analysed to
determine clinical sensitivities and specificities for the local population, including statis-
tical analysis (SPSS). Results of requests from primary and secondary care services at St
Helens and Knowsley Teaching Hospitals NHS Trust (STHK) and Southport and Ormskirk
NHS Trust were gathered. Only requests that had a positive connective tissue disease
(CTD) screen and/or a positive anti-nuclear antibody (ANA) result by HEp-2 IIF were
included. CTD screen and Hep-2 testing were performed by the Immunology department
at Whiston Hospital (St Helens and Knowsley Teaching Hospitals NHS Trust, Prescot, UK);
anti-dsDNA antibodies were performed by Lancashire & Lakeland Immunology Service at
Royal Preston Hospital (Lancashire Teaching Hospitals NHS Foundation Trust). Patient
identifiers were anonymised once all data were gathered prior to analysis.

2.7. Detection of Anti-dsDNA Antibodies

Samples included in the audit had ANA, including autoantibodies to U1RNP, SS-
A/Ro, SS-B/La, Centromere B, Scl-70, Jo-1, Fibrillarin, RNA Pol III, Rib-P, PM-Scl, PCNA,
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Mi-2, SmD, and dsDNA, tested by STHK immunology using ELIA connective tissue disease
screen (ThermoFisher Phadia250) and HEp-2 (Innova, Rome, Italy) IIF. Positive samples
were confirmed at LTHTR immunology by the same methods. Anti-dsDNA antibodies
were analysed by ELIA (ThermoFisher Phadia 250) at Preston immunology. Positive ELIA
dsDNA results were confirmed by IIF-detecting antibodies to Crithidia luciliae (Euroimmun).

2.8. Data Analysis

Data were exported from laboratory information management systems to Microsoft
Excel for analysis. Data comparisons were made using Microsoft Excel line, scatter and bar
graphs. SPSS (IBM) was used to compare datasets of anti-dsDNA antibody methods by
ELIA and CLIFT. Negative, weak positive, positive and strong positive CLIFT interpreta-
tions were assigned values of 0, 1, 2 and 3, respectively, and were compared with the ELIA
quantitation on the same sample.

Association between the 4 CLIFT interpretations and respective ELIA dsDNA results
were analysed using a Kruskal–Wallis test in SPSS. Associations of two CLIFT groups in
SLE patients at diagnosis were made with Mann–Whitney U Test in SPSS.

3. Results
3.1. PCA and PCA-LDA Clustering of Raman Spectra for Discrimination of SLE Patients from
Healthy Controls

The major aim of this proof-of-concept study was the discrimination of SLE patients
from HC in blood serum using Raman spectroscopy and multivariate analysis techniques.

Initial analysis examined spectra (20 replicates per participant dependent on sample
volume) for SLE patients (n = 8) versus HC (n = 4). As such, there were 154 SLE spectra
collected in total and 80 HC spectra. The total raw spectra (400–2500 cm−1) and average pre-
processed spectra cut to the fingerprint region (900–1800 cm−1) are shown in Figure 1a,b,
respectively. Rubber band baseline correction and vector normalisation produces spectra for
the crude visualisation of differences between the two groups. This recognised technique
corrects for experimental variation and improves the accuracy and interpretability of the
data whilst maintaining spectral integrity. As expected, there was a high degree of overlap
between the serum biofluid spectra generated for SLE patients and HCs, with prominent
signatures associated with proteins and lipids across the fingerprint region [44].

To identify the more subtle, important discriminatory spectral signatures between
disease groups, multivariate analysis and machine learning techniques must be subse-
quently applied to pre-processed spectra. For the further interrogation of variance between
the two classes, an exploratory (unsupervised) analysis using PCA was undertaken, fol-
lowed by a supervised method of class separation, PCA-LDA, to enable successful segrega-
tion of subjects into their respective groups. The 3D PCA scatterplot in Figure 1c shows
a reasonable separation of the SLE spectra from HC spectra across PC1, PC2 and PC3. Su-
perior class separation was achieved using PCA-LDA; scores plot in Figure 1d and box plot
in Figure 1e illustrate clear class separation and illustrate significant differences between
the SLE patient spectra and HCs (p < 0.0001). p-values calculated based on an ANOVA test.
In the SLE patient group, the mean PCA-LDA score was lower compared to the HC group,
with a larger spread of data observed within the SLE patient cohort (larger interquartile
range and standard deviation), compared to the HCs (Figure 1e). This would be in keeping
with the high degree of clinical and serological heterogeneity reported in SLE.

3.2. Key Discriminating Wavenumbers between SLE Patients and HC

Cross-validated PCA-LDA cluster vectors were generated to identify the 12 most
discriminatory peaks between the two classes (Figure 1f). The wavenumbers responsible
for class separation were: 1002 cm−1, 1070 cm−1, 1113 cm−1, 1155 cm−1, 1286 cm−1,
1346 cm−1, 1408 cm−1, 1452 cm−1, 1527 cm−1, 1596 cm−1, 1639 cm−1 and 1727 cm−1.
Tentative molecular assignments (Table 2) have been attributed to each wavenumber,
obtained from a literature review of Raman research studies performed in biological
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tissues [45], and from source data embedded within the Matlab toolbox ‘irootlab’ [45]. The
comparison of Raman peak intensities between SLE patients and HC were found to be
highly statistically significant at p < 0.001 for all 12 wavenumbers, calculated based on
an ANOVA test. Significant increases in Raman intensity were demonstrated in 11 of the
12 discriminating wavenumbers for SLE patients, compared to HCs, with a single peak at
1155 cm−1 demonstrating reduced Raman intensity within the SLE group (Figure 2).
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Figure 1. Raman spectral data for SLE patients (SLE) vs. healthy controls (HC) for serum sam-
ples. (a) All raw spectra curves of healthy controls (red) and SLE patients (blue). Whole region of
wavenumbers (400–3500 cm−1) against the absorbance intensity (a.u). (b) Average rubber band, vector
normalised pre-processed Raman spectra cut to biological fingerprint region (900–1800 cm−1). (c) The
3D PCA scatterplot. Pre-processed Raman data using PC1, PC2 and PC3. The 3D scatterplot shows
separation of healthy control (red) and SLE (blue). (d) PCA-LDA discriminant scores. Score plots
show clear separation of groups, healthy controls (red) and SLE patients (blue) (p-value < 0.0001).
(e) Box plot for healthy controls (HC) and SLE patients. Mean and IQRs illustrated in boxes; SDs
displayed in whiskers. (f) PCA-LDA cluster vector analysis. Cross-validated cluster vector anal-
ysis demonstrates discriminating peaks between healthy controls (red) and SLE patients (blue).
The top 12 discriminating peaks are labelled with their wavenumber. IQR—Interquartile range;
SD—Standard deviation.
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Table 2. Significant Raman peaks. The 12 most significant peaks detected by vector cluster analysis
in MATLAB of healthy controls and SLE patients. Arrows indicate Raman intensity increase (↑) or
decrease (↓) in SLE patients compared to HCs. Significance * (p < 0.001) ** (p < 0.0001).

Peaks
(Waves/cm)

Molecular Assignment
(Irootlab)

Molecular Assignment (Literature
Review)

Increased/Decreased
in SLE Significance Reference

1002 Protein Phosphorylation
(Stretching vibration) ring-breathing
Phenylalanine (collagen assignment),
protein

↑ ** [46,47]

1070 Protein Phosphorylation

Triglycerides (fatty acids)
(1070–1090) Symmetric
PO2—stretching of DNA (represents
more DNA in cell)

↑ ** [48,49]

1113 Protein Phosphorylation
Several bands of moderate intensity,
belonging to amide III and other
groups (proteins) (1100–1375 cm−1)

↑ ** [50]

1155 Protein Phosphorylation
C-C (and C-N) stretching of proteins
(also Carotenoids)
Glycogen

↓ ** [51–54]

1286 Protein Phosphorylation

Amide III (arising from coupling of
C-N stretching and N-H bonding; can
be mixed with vibrations of side
chains) (protein band) (1220–1300
cm−1)

↑ ** [55]

1346 Protein Phosphorylation
Several bands of moderate intensity,
belonging to amide III and other
groups (proteins) (1100–1375 cm−1)

↑ ** [50]

1408 Protein Phosphorylation ν(C=O)O− (amino acids, aspartic and
glutamic acid) (1400–1430 cm−1) ↑ * [56]

1452 Protein Phosphorylation

CH2 deformation (1437–1453 cm−1)
CH deformation (DNA/RNA and
proteins and lipids and
carbohydrates) (1420–1480)

↑ ** [57]

1527 Protein Phosphorylation C-C Carotenoid (1520–1538 cm−1) ↑ ** [58,59]
1596 Protein Phosphorylation COO− (1560–1600 cm−1) ↑ ** [60]

1639 Protein Phosphorylation

In-plane double end vibrations of
bases; the spectra in this region are
very sensitive to base-pairing
interactions and base-stacking effects;
i.e., effects of hydrogen bond
formation (1620–1750 cm−1)
Amide I (which is due mostly to the C
O stretching vibrations of the peptide
backbone; has been used the most for
structural studies due to its high
sensitivity to small changes in
molecular geometry and hydrogen
bonding of peptide group)

↑ ** [51,61,62]

1727 Protein Phosphorylation C=O (1716–1741 cm−1) ↑ ** [63]

3.3. SLE Patients Successfully Segregate from HC Using PCA-LDA and PLS-DA Classification
Models

Before model construction, 234 spectra (pre-processed; rubber band baseline correction
and vector normalisation) were assigned to the training set (80% of spectra), and the
validation set was generated based on a Monte Carlo cross-validation algorithm containing
20% of spectra randomly selected during 1000 iterations. The PCA-LDA model was built
with 10 PCs and the PLS-DA model built with six LVs. The training set was used for model
construction and the validation set for final model evaluation. Performance characteristics
(accuracy, sensitivity and specificity) were calculated based on the ability of the model to
correctly classify spectra in the test dataset. The accuracy represents the total number of
spectra correctly classified considering true and false negatives, the sensitivity represents
the portion of positives correctly classified, and the specificity represents the portion of
negatives correctly classified [64].



Diagnostics 2022, 12, 3158 9 of 21

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 22 
 

 

1527 Protein Phos-
phorylation 

C-C Carotenoid (1520–1538 cm−1) ↑ ** [58,59] 

1596 Protein Phos-
phorylation 

COO− (1560–1600 cm−1) ↑ ** [60] 

1639 
Protein Phos-
phorylation 

In-plane double end vibrations of bases; the spectra 
in this region are very sensitive to base-pairing inter-
actions and base-stacking effects; i.e., effects of hy-
drogen bond formation (1620–1750 cm−1) 
Amide I (which is due mostly to the C O stretching 
vibrations of the peptide backbone; has been used 
the most for structural studies due to its high sensi-
tivity to small changes in molecular geometry and 
hydrogen bonding of peptide group) 

↑ ** 
[51,61,62
] 

1727 
Protein Phos-
phorylation C=O (1716–1741 cm−1) ↑ ** [63] 

 
Figure 2. PCA-LDA discriminant scores for SLE-associated biomarkers. Raman intensity for each 
biomarker peak along with their p-value: healthy controls (o) and SLE patients (+). All peaks were 
found to be highly statistically significant at p < 0.001. p-value calculated based on an ANOVA test. 

3.3. SLE Patients Successfully Segregate from HC Using PCA-LDA and PLS-DA Classification 
Models 

Before model construction, 234 spectra (pre-processed; rubber band baseline correc-
tion and vector normalisation) were assigned to the training set (80% of spectra), and the 
validation set was generated based on a Monte Carlo cross-validation algorithm contain-
ing 20% of spectra randomly selected during 1000 iterations. The PCA-LDA model was 
built with 10 PCs and the PLS-DA model built with six LVs. The training set was used for 
model construction and the validation set for final model evaluation. Performance char-
acteristics (accuracy, sensitivity and specificity) were calculated based on the ability of the 
model to correctly classify spectra in the test dataset. The accuracy represents the total 
number of spectra correctly classified considering true and false negatives, the sensitivity 

Figure 2. PCA-LDA discriminant scores for SLE-associated biomarkers. Raman intensity for each
biomarker peak along with their p-value: healthy controls (o) and SLE patients (+). All peaks were
found to be highly statistically significant at p < 0.001. p-value calculated based on an ANOVA test.

The predicted response based on the constructed PLS-DA classification model illus-
trates outstanding segregation between the SLE patients and HC, Figure 3a. Of the total
154 SLE spectra and 80 HC spectra, there was a single spectrum in the HC group that was
incorrectly classified (Figure 3b) and shown in Figure 3a as a single blue circle between the
two group clusters. Figure 3c illustrates the model performance of the algorithms evalu-
ated. Superior results were obtained from the PLS-DA model, with 99% accuracy, 100%
sensitivity and 99% specificity. These metrics demonstrate an outstanding classification
rate for distinguishing between the two groups. The performance of the PCA-LDA model
also demonstrates excellent results with 92% accuracy, 88% sensitivity and 99% specificity.

3.4. PCA and PCA-LDA Clustering of Raman Spectra from Three SLE Subgroups and HCs

The eight SLE patient serum samples were further allocated into three subgroups
based on the results from antibody testing (ELIA dsDNA and CLIFT), ELIA Neg CLIFT
N/A (n = 2), ELIA Pos CLIFT Neg (n = 2) and ELIA Pos CLIFT Pos (n = 4). Raman spectra of
serum samples in each group was analysed alongside HCs (n = 4). Crude visualisation of the
pre-processed (rubber band baseline corrected, vector normalised) spectra illustrates a large
overlap between the spectral signatures of each group as expected, and as previously seen
for the Raman spectra of total SLE patients and HCs (Figure 4a). PCA analysis illustrates
some clustering and reasonable separation between the subgroups (Figure 4b); however,
as PCA is an unsupervised technique it does not have the power to clearly segregate the
spectra into their respective groups. Subsequent PCA-LDA clearly demonstrates class
separation (Figure 4c), with the discriminant scores calculated to show significant variation
between the four groups (p-value < 0.001) based on a MANOVA test.

3.5. SLE Patient Subgroups and HC Successfully Segregate Using PCA-LDA and PLS-DA
Classification Models

PCA-LDA and PLS-DA were applied to build classification models based on the
subgroups of patients. The training set was used for model construction and the validation
set for final model evaluation. Performance characteristics (accuracy, sensitivity, and
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specificity) were calculated based on the ability of the model to correctly classify spectra in
the test dataset. The accuracy represents the total number of spectra correctly classified
considering true and false negatives; the sensitivity represents the portion of positives
correctly classified into their respective classes, either the HC or SLE subgroups, ELIA
Neg CLIFT N/A (CLIFT N/A), ELIA Pos CLIFT Neg (CLIFT Neg), or ELIA Pos CLIFT
Pos (CLIFT Pos); and the specificity represents the portion of negatives correctly classified.
Before model construction, 234 spectra (pre-processed by rubber band baseline correction
and vector normalisation) were assigned to the training set (80% of spectra), and the
validation set was generated based on a Monte Carlo cross-validation algorithm containing
20% of spectra randomly selected during 1000 iterations. The PCA-LDA model was built
with 10 PCs and the PLS-DA model built with eight LVs.
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Figure 3. PCA-LDA and PLS-DA results for classification of SLE patients and HC using Raman
serum analysis. (a) PLS-DA classification model predicted response for SLE patients (red circles
represent 154 individual spectra for 8 patients) and HC (blue circles represent individual spectra
for 4 participants). (b) Cross-validation confusion table generated from individual spectra, 154 SLE
spectra (n = 8 patients) and 80 HC spectra (n = 4 participants). (c) Classification model performance
characteristics. Note: PCA-LDA model built with 10 PCs, and PLS-DA model built with 6 LVs.
Cross-validation: Monte Carlo leaving 20% of samples out with 1000 interactions. Pre-processing:
rubber band baseline correction and vector normalisation.

The predicted response based on the constructed PLS-DA classification model again
demonstrates outstanding segregation between the SLE subgroup patients and HC, Figure 5a.
Between the SLE subgroups, the separation is not as strong, with some overlap illustrated
between the groups, particularly for the CLIFT N/A patients and CLIFT Pos patients.
However, there is clear clustering of the spectra observed in their respective subgroups, with



Diagnostics 2022, 12, 3158 11 of 21

the CLIFT Neg patients forming the most discrete cluster. Of the total 154 SLE spectra and
80 HC spectra, there were 13 spectra that were incorrectly classified (Figure 5b); the incorrect
predicted responses mostly affect the CLIFT Pos spectra, shown as black dots in Figure 5a.
Figure 5c illustrates the model performance of the algorithms tested. Again, superior results
were obtained from the PLS-DA model, with 94% accuracy, 94% average sensitivity and
98% average specificity. These metrics demonstrate an outstanding classification rate for
distinguishing between the four groups. The performance of the PCA-LDA model also
demonstrates highly commendable results with 84% accuracy, 78% average sensitivity and
94% average specificity.
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Figure 4. Raman data for SLE subgroups and HCs. SLE subgroups based on serological laboratory
results (ELIA and CLIFT). ELIA Neg CLIFT N/A (n = 2; 40 individual spectra); ELIA Pos CLIFT
Neg (n = 2; 40 individual spectra); ELIA Pos CLIFT Pos (n = 4; 80 individual spectra); HC (n = 4; 80
individual spectra). (a) Average pre-processed (Rubber band baseline correction, vector normalisation)
Raman spectra cut to biological fingerprint region (900–1800 cm−1). (b) The 3D PCA scatterplot.
Pre-processed Raman data shows separation between groups using PC1, PC2 and PC3; HC—red,
and SLE subgroups, ELIA Neg CLIFT N/A—blue, ELIA Pos CLIFT Neg—green, ELIA Pos CLIFT
Pos—purple. (c) The 1D PCA-LDA scatterplot. PCA-LDA discriminant scores plot shows clear
separation between the groups (p-value < 0.001). HC—red, and SLE subgroups, ELIA Neg CLIFT
N/A—blue, ELIA Pos CLIFT Neg—green, ELIA Pos CLIFT Pos—purple. p-value calculated based on
a MANOVA test (p = 4.90 × 10−4).

3.6. Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients
3.6.1. Individual Sample Relationship between Results by ELIA dsDNA and CLIFT

A retrospective clinical audit was performed on 600 anti-dsDNA test requests over
an 18-month period. A total of 128 (21%) were positive for dsDNA antibodies by ELIA
methodology. As per the local laboratory testing protocol, all ELIA dsDNA positive
results (>10 IU/mL) were subsequently tested by IIF CLIFT methodology. Of the 128 with
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CLIFT performed, 101 (79%) were negative and 27 (21%) were positive. Of the 27 samples
positive by CLIFT, the interpretations included 7 weak positive (26%), 16 positive (59%)
and 4 strong positive (15%). Therefore, of the total 600 requests for anti-dsDNA antibodies,
only 27 samples (5%) were positive for anti-dsDNA antibodies by both ELIA and CLIFT
(Figure 6).

Figure 7a,b include data from all samples that were ELIA dsDNA positive (128) and
their accompanying CLIFT interpretation, regardless of diagnosis. The majority of the CLIFT-
negative group (n = 101) had ELIA dsDNA values focused towards the lower end of positive
(10 IU/mL); however, there were outliers, which reached up towards 200 IU/mL. Positive
CLIFT results (n = 27) appear in three distinct groups. One group was towards the lower
end of ELIA values, similar to CLIFT-negative samples. The weak positive CLIFTs also sit
within this population. A second cluster or CLIFT-positive samples appears mid-range of
positive ELIA values between 100–170 IU/mL. A further cluster of positive CLIFT samples
have the highest ELIA values at >379 IU/mL. Strong positive CLIFT samples generally have
higher-end ELIA values, greater than 250 IU/mL with one slightly lower at 70 IU/mL. These
findings indicate that whilst at the ‘negative’, ’weak positive’, and ‘strong positive’ CLIFT
interpretation there appears to be a relationship between quantitative ELIA values, there is
poor correlation between quantitative ELIA values in the CLIFT ‘positive’ group.
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Figure 5. Multivariate analysis of the fingerprint region for SLE subgroups and HCs. (a) PLS-DA
classification model predicted response for healthy controls (HC), ELIA Neg CLIFT N/A (CLIFT
N/A), ELIA Pos CLIFT Neg (CLIFT Neg), ELIA Pos CLIFT Pos (CLIFT Pos). (b) Cross-validation
confusion table generated from individual spectra; 154 SLE spectra (n = 8 patients) and 80 HC spectra
(n = 4 participants). (c) Classification model performance characteristics. Note: PCA-LDA model
built with 10 PCs, and PLS-DA model built with 8 LVs. Cross-validation: Monte Carlo leaving 20% of
samples out with 1000 interactions; C.—CLIFT. Pre-processing: rubber band baseline correction and
vector normalisation.



Diagnostics 2022, 12, 3158 13 of 21

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 22 
 

 

(c) 

Figure 5. Multivariate analysis of the fingerprint region for SLE subgroups and HCs. (a) PLS-DA 
classification model predicted response for healthy controls (HC), ELIA Neg CLIFT N/A (CLIFT 
N/A), ELIA Pos CLIFT Neg (CLIFT Neg), ELIA Pos CLIFT Pos (CLIFT Pos). (b) Cross-validation 
confusion table generated from individual spectra; 154 SLE spectra (n = 8 patients) and 80 HC spec-
tra (n = 4 participants). (c) Classification model performance characteristics. Note: PCA-LDA model 
built with 10 PCs, and PLS-DA model built with 8 LVs. Cross-validation: Monte Carlo leaving 20% 
of samples out with 1000 interactions; C.—CLIFT. Pre-processing: rubber band baseline correction 
and vector normalisation. 

3.6. Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients 
3.6.1. Individual Sample Relationship between Results by ELIA dsDNA and CLIFT 

A retrospective clinical audit was performed on 600 anti-dsDNA test requests over 
an 18-month period. A total of 128 (21%) were positive for dsDNA antibodies by ELIA 
methodology. As per the local laboratory testing protocol, all ELIA dsDNA positive re-
sults (>10 IU/mL) were subsequently tested by IIF CLIFT methodology. Of the 128 with 
CLIFT performed, 101 (79%) were negative and 27 (21%) were positive. Of the 27 samples 
positive by CLIFT, the interpretations included 7 weak positive (26%), 16 positive (59%) 
and 4 strong positive (15%). Therefore, of the total 600 requests for anti-dsDNA antibod-
ies, only 27 samples (5%) were positive for anti-dsDNA antibodies by both ELIA and CLIFT 
(Figure 6). 

 
Figure 6. Summary of results from audit of 600 sample requests for anti-dsDNA antibody testing. 

Figure 7a,b include data from all samples that were ELIA dsDNA positive (128) and 
their accompanying CLIFT interpretation, regardless of diagnosis. The majority of the 
CLIFT-negative group (n = 101) had ELIA dsDNA values focused towards the lower end 
of positive (10 IU/mL); however, there were outliers, which reached up towards 200 
IU/mL. Positive CLIFT results (n = 27) appear in three distinct groups. One group was 
towards the lower end of ELIA values, similar to CLIFT-negative samples. The weak pos-
itive CLIFTs also sit within this population. A second cluster or CLIFT-positive samples 
appears mid-range of positive ELIA values between 100–170 IU/mL. A further cluster of 
positive CLIFT samples have the highest ELIA values at >379 IU/mL. Strong positive 
CLIFT samples generally have higher-end ELIA values, greater than 250 IU/mL with one 
slightly lower at 70 IU/mL. These findings indicate that whilst at the ‘negative’, ’weak 

600 ELIA 
dsDNA 
results

472 negative 
CLIFT not 

performed

128 positive 
CLIFT 

performed

101 negative 
CLIFT

27 positive 
CLIFT

7 weak 
positive 

CLIFT
16 positive 

CLIFT
4 strong 
positive 

CLIFT

Figure 6. Summary of results from audit of 600 sample requests for anti-dsDNA antibody testing.

3.6.2. Clinical Diagnoses of Patients with Positive Anti-dsDNA Antibody Results

Figure 7c,d show the clinical diagnosis of patients with a range of anti-dsDNA antibody
results. In Figure 7c, the greatest number of SLE diagnoses were seen in patients positive
for anti-dsDNA antibodies by both ELIA and CLIFT, which accounted for 85% of results.
However, 11% of patients with dual positive (ELIA and CLIFT) did not have SLE. In
Figure 7d, 23% of patients with a single positive dsDNA result (by ELIA only) were
diagnosed with SLE. In summary, these results highlight the high clinical utility of dsDNA
antibodies in the diagnosis of SLE, particularly in patients with dual positivity by ELIA
and CLIFT. However, our findings highlight the need for an improved diagnostic pathway,
given that 11% of dual positive patients did not have SLE, and 23% of patients with a single
positive by ELIA and negative CLIFT had a clinical diagnosis of SLE.

3.6.3. Sensitivity, Specificity, Positive Predictive Value and Negative Predictive Value

Our audit confirmed the SLE testing pathway used locally was in keeping with
recommendations described in the guidelines, i.e., the presence of anti-dsDNA antibodies
were confirmed with a high specificity assay [8]. Our first line screening by ELIA dsDNA is
the more sensitive method with 81.0%, compared to CLIFT sensitivities of 67.7% (Table 3).
The confirmatory CLIFT was the more specific method with a 95.7% specificity, compared
to ELIA’s 83.7%. The positive predictive value (PPV) was higher for CLIFT than ELIA with
85.2% and 24.8%, respectively, whereas ELIA had a greater negative predictive value (NPV)
at 98.5%, compared to CLIFT’s 89.1%.

Table 3. Sensitivity, specificity, positive and negative predictive value of ELIA dsDNA and CLIFT
methods. PPV—Positive predictive value; NPV—Negative predictive value.

Method Sensitivity (%) Specificity (%) PPV NPV

ELIA dsDNA 81.0 83.7 24.8 98.5
CLIFT 67.7 95.7 85.2 89.1
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Figure 7. Relationship between quantitative ELIA dsDNA and CLIFT interpretations. (a) All ELIA
dsDNA values of individual samples grouped into their CLIFT interpretation groups. Groups consist
of negative (blue circle), weak positive (orange circle), positive (grey circle) and strong positive
(yellow circle). (b) Separations of weak positive, positive and strong positive CLIFT interpretations.
Trend of ELIA dsDNA value increases as interpretation increases from weak positive to strong
positive. (c) Clinical diagnosis of patients with positive anti-dsDNA antibody results by ELIA and
confirmed positive by CLIFT. A total of 85% of patients had an SLE diagnosis. A total of 4% had an
SLE overlap syndrome. A total of 11% of patients had other diagnoses, excluding SLE. (d) Clinical
diagnosis of patients positive for anti-dsDNA antibodies by ELIA but negative by CLIFT. A total of
23% of patients had an SLE diagnosis. A total of 7.5% of patients had SLE overlap syndromes. A total
of 70% of patients did not have an SLE diagnosis.
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4. Discussion

Using blood-based vibrational spectroscopy, we achieved results with significant clin-
ical relevance in the classification of patients with SLE from healthy controls (HC). We
also demonstrate that Raman spectroscopy could detect differences not only between SLE
patients and HCs but also between SLE subgroups categorised using combinations of sero-
logical results (dsDNA antibodies) obtained from two different laboratory methods (ELIA
and CLIFT). We achieved sensitivities and specificities of 100% and 99%, respectively, for
the segregation of SLE patients from HCs, and average sensitivities and specificities of 94%
and 98% for successful subgroup classification. These proof-of-concept findings highlight
the potential of Raman spectroscopy as an inexpensive tool for screening, diagnosis and
management of SLE.

Antibodies to SLE are clinically important and have been used historically in the
diagnosis and classification criteria for SLE [1]. The diagnostic criteria have broadened
from the early days of diagnosis, reflecting the complexity and clinical heterogeneity of the
disease. There are several SLE-associated antibodies, which have variable sensitivity and
specificity for SLE. Antibodies to double-stranded DNA (dsDNA) are considered a highly
specific (97.4%) marker for SLE and have a high frequency in disease (70–98%) [65,66].
Although considered virtually diagnostic, known problems with the assays used to detect
them are still evident and doubts have been raised about their significance in terms of
disease pathogenesis. Nevertheless, these tests remain widely used in the diagnosis,
and monitoring of SLE patients as an alternative testing platform has yet to become
routinely available.

In relation to problems with the assays, it is known across immunology laboratories
that the results for the detection of dsDNA from the two routinely used methodologies
(ELIA and CLIFT) are not always well correlated. We confirmed this finding in our retro-
spective audit, where only 21% of samples positive by ELIA were also positive by CLIFT,
of which 85% had a diagnosis of SLE. There is an unmet need for new laboratory methods
in the diagnosis and monitoring of SLE patients.

SLE is a multifactorial autoimmune disease with a wide range of clinical manifestations
and severity. There is also variability across serological test results and there remains a di-
agnostic delay of around 6.4 years, highlighting a need for improvement. Novel technology
could be the solution to improving the diagnostic testing for SLE, with Raman spectroscopy
being an inexpensive, well-placed methodology for the investigation of pathological disease.
Raman spectroscopy is a mode of vibrational spectroscopy that can provide molecular-
level information on all the biochemical components within a sample. Spectral bands are
molecule-specific; therefore, the unique spectrum generated allows the investigation of
functional groups, bonding types and molecular conformations [67]. As the biochemical
constituents of a sample will be influenced and altered by both health and disease, Raman
spectroscopy is a well-placed candidate for the investigation of pathological samples.

We found when examining the Raman spectra of all SLE patients (determined clini-
cally, independent of serology results for dsDNA) that there was outstanding segregation
between SLE patients and HC. The PLS-DA classification model demonstrated 99% accu-
racy, 100% sensitivity and 99% specificity, illustrating excellent correlation between spectral
features and SLE. The comparison of SLE and HC spectra following PCA-LDA cluster
vector analysis enabled the identification discriminatory peaks that clearly differentiate
between the two groups. The 12 most discriminatory peaks identified with high statistical
significance could serve as a panel of spectral markers indicative of disease. Using both the
PCA-LDA and PLS-DA chemometric techniques to predict response (SLE patient or HC),
there was a clear and significant (p value <0.0001) segregation between the two groups.
This indicates that the Raman spectra are significantly different between disease group and
controls, reflecting potential contributions of numerous disease-specific biomarkers present
in the serum. The evidence of within-group clustering was clear within the HCs, and,
albeit with a larger variance, also present within the SLE patient group. This finding was in
line with our expectations, based on the known clinical heterogeneity of SLE patients, and
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anticipated biochemical changes that could occur within the serum during active disease
states, compared to patients with clinically stable disease.

The aim of including subgroups of SLE patients defined by the results of the current
serological test was to examine whether Raman spectroscopy would similarly classify
them into discrete groups based on the total composition of biochemical components
present in the serum. If so, this would suggest that additional disease-specific biomarkers,
not just dsDNA antibodies, are responsible for the difference between the subgroups, or
alternatively, that the dsDNA antibodies in the serum are chemically or structurally altered
in the subgroups, resulting in spectral variations between the groups.

Of interest, when focusing on a single serological biomarker (dsDNA antibodies)
and subgrouping patients based on results obtained using two methods (negative by
ELIA/CLIFT, positive ELIA/negative CLIFT, and positive by both ELIA and CLIFT), the
segregation between SLE and HC spectra was not as clear. We observed overlapping
predicted responses in the PCA-LDA and PLS-DA classification models across the three
SLE subgroups, particularly evident in patients with a positive dsDNA antibody result
obtained by either ELIA alone, or by both ELIA and CLIFT together. This indicates that
the variable results obtained from dsDNA antibody testing methods did not correlate as
strongly with specific Raman spectral features. We observed reasonable clustering into the
discrete subgroups, but to a lesser degree than in the total SLE vs. HC analysis.

These findings, demonstrated by the lower accuracy, sensitivities and specificities
achieved within the PCA-LDA and PLS-DA classification models, indicate that there is not
the same clear correlation between the Raman spectra of SLE sub-group patients when
incorporating the dsDNA test results. As such, there must be variation in the assays that
detect the dsDNA antibodies, and it is important that the test platforms are not all capable
of detecting the same antibodies, i.e., are unable to detect biochemically or structurally
altered antibodies. To improve the current testing pathway for SLE patients, we require
a clear-cut, unequivocal means to identify SLE patients, and successfully segregate them
from HCs. The investigation of serum using Raman spectral features and classification
models may provide this improved diagnostic pathway.

To interpret Raman spectral differences in biomedical studies and assign molecular as-
sociations, which may contribute to disease-specific changes, researchers can use published
literature databases and libraries. Based on the molecular assignments attributed within
the irootlab toolbox [45], the 12 most significant spectral bands identified to contribute
to the discrimination between SLE patients and HC were associated with protein phos-
phorylation, a form of post-translational modification (PTM). We observed an increased
Raman intensity in 11 of the 12 peaks within the SLE patients group, which may signify
an increased rate of protein phosphorylation occurring in SLE patients, compared to HCs.

Proteins are synthesised by ribosomes through the translation of mRNA, most of which
subsequently undergo a modification known as PTM. The changes include physical and
chemical changes, which have an influence on the functional diversity, stability, and molec-
ular interactions of the protein. The common forms of PTM are trimming or proteolysis,
ubiquitination, and covalent modifications (i.e., phosphorylation, acetylation, hydroxy-
lation, and methylation). Other mechanisms of PTM include the addition of a complex
molecule (i.e., glycosylation), or the modification of amino acids (i.e., deamidation and
citrullination) [68]. PTMs can occur in both health and disease.

Under conditions of inflammation and cellular stress, the formation of reactive oxygen
species and the induction of enzymes can lead to an increase in the formation of PTMs [69].
These modifications are implicated in human diseases, such as autoimmunity, and occur
when the proteins our immune system previously classified as ‘self’ are recognised as
new ‘non-self’ proteins. This leads to a breakdown of tolerance, and the generation of
an autoimmune response within the body. The PTM, citrullination is widely implicated
in disease, as autoimmune responses against citrullinated proteins are generated. These
disorders include rheumatoid arthritis (RA), psoriasis, SLE, Alzheimer’s disease (AD),
multiple sclerosis (MS), and cancers [68]. In SLE, the mechanisms responsible for the loss
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of immune tolerance have yet to be fully elucidated [70]; however, epigenetic factors and
PTMs are becoming increasingly recognised in the pathogenesis of the disease [71]. In
the context of SLE, the PTM of histone proteins, the loss of tolerance and the initiation of
an autoimmune response are consistent features of the disease [72,73].

There have been considerable developments in the use of Raman spectroscopy in
the biomedical field since 2013; in addition, further publications of Raman wavenumber
libraries [67] have provided a useful reference for researchers when tentatively charac-
terising the molecular assignments of Raman peaks in biofluids, such as serum. In our
study, we identified eight key spectral peaks that contributed to the discrimination between
SLE patients and HC, which have molecular associations with proteins, and specifically,
hydrogen bond changes, amino acids, RNA and phosphorylation-associated vibrations
(1002, 1113, 1155, 1286, 1346, 1408, 1452 and 1639 cm−1). We hypothesise that the observed
peak intensity changes seen in the SLE patients may occur because of increased PTMs on
a wide variety of proteins present in the serum. These Raman peaks may provide a useful
biomarker for the measurement of PTMs in SLE, and thus a novel diagnostic platform for
diagnosis and monitoring of disease. Furthermore, Raman spectroscopy has the potential
to offer new insight into the molecular changes occurring in patients with SLE, compared
to healthy controls.

Further to our proposal of PTMs resulting in Raman peak differences between SLE
patients and HCs, we hypothesise that the PTM may affect dsDNA antibodies directly
and could result in these antibodies having different affinities in different patients or
disease phenotypes. This could have an impact both clinically and on the ability to detect
these antibodies with our current armoury of laboratory tests. These modifications could
also be impacted by drugs and treatment and, therefore, vary over time within the same
patient. As these PTMs patterns may be reflected in the Raman signatures obtained from
serum samples, this method could offer a highly detailed insight into patient status when
considering clinical phenotypes, disease progression and treatment response.

An increased Raman intensity of a peak at 1070 cm−1 was observed in SLE patients,
compared to HC. This peak has been attributed to symmetric PO2 stretching of DNA,
representing an increase in the amount of DNA present. Two further DNA-associated
peaks were identified in our study (1452 cm−1 and 1639 cm−1), which also demonstrated
increased Raman intensity in the SLE group, compared to HC. The higher level of DNA in
serum samples of SLE patients could result from the ineffective clearance of dying cells [74]
or the release of DNA from neutrophil extracellular traps, which have failed to be removed
effectively [75], both of which have been reported as pathological mechanisms in SLE.
The clinical utility of measuring cell-free circulating DNA (cf-DNA) has previously been
investigated in SLE patients [76]. Significantly increased levels of cf-DNA were identified
in SLE patients, compared to controls, and a significant reduction in levels was noticed
in response to therapy. This demonstrates a potential new disease marker and tool to
monitor the response to treatment in SLE using the molecular biology technique of real
time PCR to detect cf-DNA. Although this highly advanced technique is sensitive and
specific, disadvantages include the high cost, complexity of sample processing and the
number of components required to perform the test. Raman spectroscopy could provide
a fast, label-free test with minimal sample processing required. We suggest that DNA-
associated Raman peaks could be evaluated as an alternative technique to further explore
the clinical utility of this diagnostic and disease monitoring test.

As the tentative molecular assignments for FTIR and Raman spectroscopy wavenum-
ber libraries are continually evolving, it would be of great interest to collaborate with
research groups specialising in the field of SLE pathogenesis and the identification of
new biomarkers. Future work using a collaborative approach would aid the molecular
interpretation of key wavenumbers by aligning SLE-specific research findings from groups
investigating PTMs and novel markers, such as cf-DNA, with the spectral biomarkers
identified in our work. We have achieved the primary aim of this study in demonstrating
the proof of concept for using Raman spectroscopy in the setting of SLE. We further predict
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that future development and use of this technology could provide novel insights into aetio-
logical and molecular mechanisms, underpinning not only SLE but also a wide repertoire
of autoimmune rheumatological disorders.

5. Conclusions

Our work has echoed claims made by the literature and clinicians surrounding the
variable clinical utility of anti-dsDNA antibody testing in SLE. Our audit affirmed the
widely reported variability between results obtained by two routine testing platforms for
dsDNA antibodies. We saw a strong association between SLE and positive dsDNA anti-
body results when obtained by both platforms; however, false positivity remains an issue,
particularly with single platform ELIA positivity. Although there remains clinical utility
with current anti-dsDNA antibody methods, given the recognised shortcomings alongside
the clinical heterogeneity in SLE, there is scope for the development and standardisation of
dsDNA methods.

The feasibility study of a novel use of Raman spectroscopy in SLE delivered promising
results and a solid foundation for further research in this area. Multi-variant analysis
revealed Raman signature differences between serum samples from healthy controls and
SLE patients, highlighting detectable biological variance in SLE disease profiles. We also
developed classification models capable of successfully segregating SLE patients from
healthy controls, regardless of the dsDNA antibody result profile (negative, single- or dual-
positive). These encouraging findings provide a platform to develop a future diagnostic
test for SLE using Raman spectroscopy and multivariate analysis techniques.
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10. Bunaciu, A.A.; Aboul-Enein, H.Y.; Fleschin, Ş. Vibrational Spectroscopy in Clinical Analysis. Appl. Spectrosc. Rev. 2015, 50,
176–191. [CrossRef]

11. Naumann, D. Vibrational Spectroscopy in Microbiology and Medical Diagnostics. In Biomedical Vibrational Spectroscopy; Lasch, P.,
Kneipp, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–8. ISBN 978-0-470-28317-2.

12. Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.;
Martin-Hirsch, P.L.; et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687.
[CrossRef] [PubMed]

13. Movasaghi, Z.; Rehman, S.; Rehman, D.I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541.
[CrossRef]

14. Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res.
Lett. 2019, 14, 231. [CrossRef]

15. Byrne, H.J.; Sockalingum, G.D.; Stone, N. Chapter 4:Raman Microscopy: Complement or Competitor? In Biomedical Applications of
Synchrotron Infrared Microspectroscopy; Cambridge: Royal, Japan, 2010; pp. 105–143.

16. Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Snowden, J.S.; Saxon, J.A.; Richardson, A.M.T.; Jones, M.; Mann, D.M.A.;
Allsop, D.; Martin-Hirsch, P.L.; et al. Differential diagnosis of Alzheimer’s disease using spectrochemical analysis of blood. Proc.
Natl. Acad. Sci. USA 2017, 114, E7929–E7938. [CrossRef]

17. Peuchant, E.; Richard-Harston, S.; Bourdel-Marchasson, I.; Dartigues, J.-F.; Letenneur, L.; Barberger-Gateau, P.; Arnaud-
Dabernat, S.; Daniel, J.-Y. Infrared spectroscopy: A reagent-free method to distinguish Alzheimer’s disease patients from
normal-aging subjects. Transl. Res. 2008, 152, 103–112. [CrossRef] [PubMed]

18. Yonar, D.; Ocek, L.; Tiftikcioglu, B.I.; Zorlu, Y.; Severcan, F. Relapsing-Remitting Multiple Sclerosis diagnosis from cerebrospinal
fluids via Fourier transform infrared spectroscopy coupled with multivariate analysis. Sci. Rep. 2018, 8, 1025. [CrossRef]

19. Callery, E.L.; Morais, C.L.M.; Paraskevaidi, M.; Brusic, V.; Vijayadurai, P.; Anantharachagan, A.; Martin, F.L.; Rowbottom, A.W.
New approach to investigate Common Variable Immunodeficiency patients using spectrochemical analysis of blood. Sci. Rep.
2019, 9, 7239. [CrossRef]

20. Morris, A.D.; Morais, C.L.M.; Lima, K.M.G.; Freitas, D.L.D.; Brady, M.E.; Dhaygude, A.P.; Rowbottom, A.W.; Martin, F.L.
Distinguishing active from quiescent disease in ANCA-associated vasculitis using attenuated total reflection Fourier-transform
infrared spectroscopy. Sci. Rep. 2021, 11, 9981. [CrossRef]

21. Morris, A.D.; Rowbottom, A.W.; Martin, F.L.; Woywodt, A.; Dhaygude, A.P. Biomarkers in ANCA-Associated Vasculitis: Potential
Pitfalls and Future Prospects. Kidney360 2021, 2, 586–597. [CrossRef]

22. Sitole, L.; Steffens, F.; Krüger, T.P.J.; Meyer, D. Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems
Diagnostics in Global Health. OMICS 2014, 18, 513–523. [CrossRef]

23. Firdous, S.; Nawaz, M.; Ahmed, M.; Anwar, S.; Rehman, A.; Rashid, R.; Mahmood, A. Measurement of diabetic sugar concentra-
tion in human blood using Raman spectroscopy. Laser Phys. 2012, 22, 1090–1094. [CrossRef]

24. Backhaus, J.; Mueller, R.; Formanski, N.; Szlama, N.; Meerpohl, H.-G.; Eidt, M.; Bugert, P. Diagnosis of breast cancer with infrared
spectroscopy from serum samples. Vib. Spectrosc. 2010, 52, 173–177. [CrossRef]

25. Bunaciu, A.A.; Hoang, V.D.; Aboul-Enein, H.Y. Applications of FT-IR Spectrophotometry in Cancer Diagnostics. Crit. Rev. Anal.
Chem. 2015, 45, 156–165. [CrossRef] [PubMed]

26. Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Potential
of mid-infrared spectroscopy as a non-invasive diagnostic test in urine for endometrial or ovarian cancer. Analyst 2018, 143,
3156–3163. [CrossRef]

27. Wang, X.; Shen, X.; Sheng, D.; Chen, X.; Liu, X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy
persons. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 193–197. [CrossRef] [PubMed]

28. Abbas, S.; Simsek Ozek, N.; Emri, S.; Koksal, D.; Severcan, M.; Severcan, F. Diagnosis of malignant pleural mesothelioma from
pleural fluid by Fourier transform-infrared spectroscopy coupled with chemometrics. J. Biomed. Opt. 2018, 23, 105003. [CrossRef]
[PubMed]

http://doi.org/10.1111/cei.12296
http://www.ncbi.nlm.nih.gov/pubmed/24533624
http://doi.org/10.1177/0961203317749746
http://doi.org/10.1002/art.10381
http://doi.org/10.1038/ncprheum0398
http://doi.org/10.1136/annrheumdis-2013-203863
http://doi.org/10.1016/j.berh.2017.10.002
http://doi.org/10.1080/05704928.2014.955582
http://doi.org/10.1038/nprot.2016.036
http://www.ncbi.nlm.nih.gov/pubmed/26963630
http://doi.org/10.1080/05704920701551530
http://doi.org/10.1186/s11671-019-3039-2
http://doi.org/10.1073/pnas.1701517114
http://doi.org/10.1016/j.trsl.2008.05.009
http://www.ncbi.nlm.nih.gov/pubmed/18774539
http://doi.org/10.1038/s41598-018-19303-3
http://doi.org/10.1038/s41598-019-43196-5
http://doi.org/10.1038/s41598-021-89344-8
http://doi.org/10.34067/KID.0006432020
http://doi.org/10.1089/omi.2013.0157
http://doi.org/10.1134/S1054660X12060023
http://doi.org/10.1016/j.vibspec.2010.01.013
http://doi.org/10.1080/10408347.2014.904733
http://www.ncbi.nlm.nih.gov/pubmed/25558776
http://doi.org/10.1039/C8AN00027A
http://doi.org/10.1016/j.saa.2013.11.049
http://www.ncbi.nlm.nih.gov/pubmed/24316532
http://doi.org/10.1117/1.JBO.23.10.105003
http://www.ncbi.nlm.nih.gov/pubmed/30317725


Diagnostics 2022, 12, 3158 20 of 21

29. Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing
and understanding biofluid vibrational spectroscopy: A critical review. Chem. Soc. Rev. 2016, 45, 1803–1818. [CrossRef]

30. Hands, J.R.; Clemens, G.; Stables, R.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.P.; Jenkinson, M.D.; Lea, R.W.; Walker, C.;
et al. Brain tumour differentiation: Rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared
spectroscopy. J. Neurooncol. 2016, 127, 463–472. [CrossRef]

31. Khanmohammadi, M.; Garmarudi, A.B. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of
cancer. TrAC Trends Anal. Chem. 2011, 30, 864–874. [CrossRef]

32. Martin, F.L.; Kelly, J.G.; Llabjani, V.; Martin-Hirsch, P.L.; Patel, I.I.; Trevisan, J.; Fullwood, N.J.; Walsh, M.J. Distinguishing cell
types or populations based on the computational analysis of their infrared spectra. Nat. Protoc. 2010, 5, 1748–1760. [CrossRef]

33. Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR)
spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [CrossRef]

34. Theophilou, G.; Lima, G.K.M.; Martin-Hirsch, L.P.; Stringfellow, F.H.; Martin, L.F. ATR-FTIR spectroscopy coupled with
chemometric analysis discriminates normal, borderline and malignant ovarian tissue: Classifying subtypes of human cancer.
Analyst 2016, 141, 585–594. [CrossRef]

35. Morris, A.D.; Morais, C.L.M.; Lima, K.M.G.; Freitas, D.L.D.; Brady, M.E.; Dhaygude, A.P.; Rowbottom, A.W.; Martin, F.L. A
comparative analysis of different biofluids using Raman spectroscopy to determine disease activity in ANCA-associated vasculitis.
J. Biophotonics 2021, 14, e202000426. [CrossRef]

36. Carvalho, C.S.; Martin, A.A.; Santo, A.M.E.; Andrade, L.E.C.; Pinheiro, M.M.; Cardoso, M.A.G.; Raniero, L. A Rheumatoid
arthritis study using Raman spectroscopy. Theor. Chem. Acc. 2011, 130, 1211–1220. [CrossRef]

37. Hackshaw, K.V.; Aykas, D.P.; Sigurdson, G.T.; Plans, M.; Madiai, F.; Yu, L.; Buffington, C.A.T.; Giusti, M.M.; Rodriguez-Saona, L.
Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. J. Biol. Chem. 2019, 294, 2555–2568.
[CrossRef]

38. Morais, C.L.M.; Lima, K.M.G.; Morais, C.L.M.; Lima, K.M.G. Principal Component Analysis with Linear and Quadratic
Discriminant Analysis for Identification of Cancer Samples Based on Mass Spectrometry. J. Braz. Chem. Soc. 2018, 29, 472–481.
[CrossRef]

39. Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213–225.
[CrossRef]

40. De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263.
[CrossRef]

41. Martin, F.L.; German, M.J.; Wit, E.; Fearn, T.; Ragavan, N.; Pollock, H.M. Identifying Variables Responsible for Clustering in
Discriminant Analysis of Data from Infrared Microspectroscopy of a Biological Sample. J. Comput. Biol. 2007, 14, 1176–1184.
[CrossRef]

42. Xu, Q.-S.; Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [CrossRef]
43. Morais, C.L.M.; Lima, K.M.G.; Singh, M.; Martin, F.L. Tutorial: Multivariate classification for vibrational spectroscopy in biological

samples. Nature Protocols 2020, 15, 2143–2162. [CrossRef] [PubMed]
44. Cameron, J.M.; Bruno, C.; Parachalil, D.R.; Baker, M.J.; Bonnier, F.; Butler, H.J.; Byrne, H.J. Chapter 10—Vibrational spectroscopic

analysis and quantification of proteins in human blood plasma and serum. In Vibrational Spectroscopy in Protein Research; Ozaki, Y.,
Baranska, M., Lednev, I.K., Wood, B.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 269–314. ISBN 978-0-12-818610-7.

45. Trevisan, J.; Angelov, P.P.; Scott, A.D.; Carmichael, P.L.; Martin, F.L. IRootLab: A free and open-source MATLAB toolbox for
vibrational biospectroscopy data analysis. Bioinformatics 2013, 29, 1095–1097. [CrossRef] [PubMed]

46. Cheng, W.-T.; Liu, M.-T.; Liu, H.-N.; Lin, S.-Y. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma.
Microsc. Res. Tech. 2005, 68, 75–79. [CrossRef] [PubMed]

47. Malini, R.; Venkatakrishna, K.; Kurien, J.; Pai, K.M.; Rao, L.; Kartha, V.B.; Krishna, C.M. Discrimination of normal, inflammatory,
premalignant, and malignant oral tissue: A Raman spectroscopy study. Biopolymers 2006, 81, 179–193. [CrossRef]

48. Chiriboga, L.; Xie, P.; Yee, H.; Vigorita, V.; Zarou, D.; Zakim, D.; Diem, M. Infrared spectroscopy of human tissue. I. Differentiation
and maturation of epithelial cells in the human cervix. Biospectroscopy 1998, 4, 47–53. [CrossRef]

49. Silveira, L.; Sathaiah, S.; Zângaro, R.A.; Pacheco, M.T.T.; Chavantes, M.C.; Pasqualucci, C.A.G. Correlation between near-infrared
Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries. Lasers Surg Med. 2002, 30,
290–297. [CrossRef]

50. Jyothi Lakshmi, R.; Kartha, V.B.; Murali Krishna, C.; Solomon, R.J.G.; Ullas, G.; Uma Devi, P. Tissue Raman spectroscopy for the
study of radiation damage: Brain irradiation of mice. Radiat Res. 2002, 157, 175–182. [CrossRef]

51. Dukor, R.K. Vibrational Spectroscopy in the Detection of Cancer. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 2006; ISBN 978-0-470-02732-5.

52. Keller, B.; Cseresnyes, Z.; Stumpf, I.; Wehr, C.; Fliegauf, M.; Bulashevska, A.; Usadel, S.; Grimbacher, B.; Rizzi, M.; Eibel, H.; et al.
Disturbed canonical nuclear factor of κ light chain signaling in B cells of patients with common variable immunodeficiency. J.
Allergy Clin. Immunol. 2017, 139, 220–231.e8. [CrossRef]

53. Ronen, S.M.; Stier, A.; Degani, H. NMR studies of the lipid metabolism of T47D human breast cancer spheroids. FEBS Lett. 1990,
266, 147–149. [CrossRef]

http://doi.org/10.1039/C5CS00585J
http://doi.org/10.1007/s11060-016-2060-x
http://doi.org/10.1016/j.trac.2011.02.009
http://doi.org/10.1038/nprot.2010.133
http://doi.org/10.1080/05704928.2016.1230863
http://doi.org/10.1039/C5AN00939A
http://doi.org/10.1002/jbio.202000426
http://doi.org/10.1007/s00214-011-0905-0
http://doi.org/10.1074/jbc.RA118.005816
http://doi.org/10.21577/0103-5053.20170159
http://doi.org/10.1002/cem.2609
http://doi.org/10.1016/0169-7439(93)85002-X
http://doi.org/10.1089/cmb.2007.0057
http://doi.org/10.1016/S0169-7439(00)00122-2
http://doi.org/10.1038/s41596-020-0322-8
http://www.ncbi.nlm.nih.gov/pubmed/32555465
http://doi.org/10.1093/bioinformatics/btt084
http://www.ncbi.nlm.nih.gov/pubmed/23422340
http://doi.org/10.1002/jemt.20229
http://www.ncbi.nlm.nih.gov/pubmed/16228983
http://doi.org/10.1002/bip.20398
http://doi.org/10.1002/(SICI)1520-6343(1998)4:1&lt;47::AID-BSPY5&gt;3.0.CO;2-P
http://doi.org/10.1002/lsm.10053
http://doi.org/10.1667/0033-7587(2002)157[0175:TRSFTS]2.0.CO;2
http://doi.org/10.1016/j.jaci.2016.04.043
http://doi.org/10.1016/0014-5793(90)81526-T


Diagnostics 2022, 12, 3158 21 of 21

54. Stone, N.; Kendall, C.; Shepherd, N.; Crow, P.; Barr, H. Near-infrared Raman spectroscopy for the classification of epithelial
pre-cancers and cancers. J. Raman Spectrosc. 2002, 33, 564–573. [CrossRef]

55. Gniadecka, M.; Wulf, H.C.; Nymark Mortensen, N.; Faurskov Nielsen, O.; Christensen, D.H. Diagnosis of Basal Cell Carcinoma
by Raman Spectroscopy. J. Raman Spectrosc. 1997, 28, 125–129. [CrossRef]

56. Shetty, G.; Kendall, C.; Shepherd, N.; Stone, N.; Barr, H. Raman spectroscopy: Elucidation of biochemical changes in carcinogenesis
of oesophagus. Br. J. Cancer 2006, 94, 1460–1464. [CrossRef]

57. Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled
carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410–1415. [CrossRef] [PubMed]

58. González-Solís, J.L.; Rodríguez-López, J.; Martínez-Espinosa, J.C.; Frausto-Reyes, C.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A.C.;
Vargas-Rodríguez, H.; Martínez-Cano, E. Detection of Cervical Cancer Analyzing Blood Samples with Raman Spectroscopy and
Multivariate Analysis. AIP Conf. Proc. 2010, 1226, 91–95. [CrossRef]

59. Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss.
2004, 126, 141–157. [CrossRef]

60. Shaw, R.A.; Mantsch, H.H. Vibrational biospectroscopy: From plants to animals to humans. A historical perspective. J. Mol.
Struct. 1999, 480–481, 1–13. [CrossRef]

61. Chan, J.W.; Taylor, D.S.; Zwerdling, T.; Lane, S.M.; Ihara, K.; Huser, T. Micro-Raman spectroscopy detects individual neoplastic
and normal hematopoietic cells. Biophys. J. 2006, 90, 648–656. [CrossRef] [PubMed]

62. Sigurdsson, S.; Philipsen, P.A.; Hansen, L.K.; Larsen, J.; Gniadecka, M.; Wulf, H.C. Detection of skin cancer by classification of
Raman spectra. IEEE Trans. Biomed. Eng. 2004, 51, 1784–1793. [CrossRef]

63. Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol. Biomol.
Spectrosc. 2005, 61, 1529–1535. [CrossRef]

64. Morais, C.L.M.; Lima, K.M.G. Comparing unfolded and two-dimensional discriminant analysis and support vector machines for
classification of EEM data. Chemom. Intell. Lab. Syst. 2017, 170, 1–12. [CrossRef]

65. Isenberg, D.A.; Manson, J.J.; Ehrenstein, M.R.; Rahman, A. Fifty years of anti-ds DNA antibodies: Are we approaching journey’s
end? Rheumatology 2007, 46, 1052–1056. [CrossRef]

66. Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus.
Nat. Rev. Rheumatol. 2016, 12, 716–730. [CrossRef] [PubMed]

67. Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50,
46–111. [CrossRef]

68. Alghamdi, M.; Alasmari, D.; Assiri, A.; Mattar, E.; Aljaddawi, A.A.; Alattas, S.G.; Redwan, E.M. An Overview of the Intrinsic
Role of Citrullination in Autoimmune Disorders. J. Immunol. Res. 2019, 2019, 7592851. [CrossRef] [PubMed]

69. Monahan, R.C.; van den Beukel, M.D.; Borggreven, N.V.; Fronczek, R.; Huizinga, T.W.J.; Kloppenburg, M.; Steup-Beekman, G.M.;
Trouw, L.A. Autoantibodies against specific post-translationally modified proteins are present in patients with lupus and associate
with major neuropsychiatric manifestations. RMD Open 2022, 8, e002079. [CrossRef]

70. Wu, H.; Zhao, M.; Tan, L.; Lu, Q. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation.
Autoimmun. Rev. 2016, 15, 684–689. [CrossRef]

71. Navarro Quiroz, E.; Chavez-Estrada, V.; Macias-Ochoa, K.; Ayala-Navarro, M.F.; Flores-Aguilar, A.S.; Morales-Navarrete, F.; de
la Cruz Lopez, F.; Gomez Escorcia, L.; Musso, C.G.; Aroca Martinez, G.; et al. Epigenetic Mechanisms and Posttranslational
Modifications in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2019, 20, 5679. [CrossRef]

72. Coit, P.; Jeffries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-
wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve
CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. [CrossRef]

73. Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunos-
timulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74.
[CrossRef]

74. Munoz, L.E.; Gaipl, U.S.; Franz, S.; Sheriff, A.; Voll, R.E.; Kalden, J.R.; Herrmann, M. SLE—A disease of clearance deficiency?
Rheumatology 2005, 44, 1101–1107. [CrossRef]

75. Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A.
Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107,
9813–9818. [CrossRef] [PubMed]

76. Hendy, O.M.; Motalib, T.A.; El Shafie, M.A.; Khalaf, F.A.; Kotb, S.E.; Khalil, A.; Ali, S.R. Circulating cell free DNA as a predictor of
systemic lupus erythematosus severity and monitoring of therapy. Egypt. J. Med. Hum. Genet. 2016, 17, 79–85. [CrossRef]

http://doi.org/10.1002/jrs.882
http://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3&lt;125::AID-JRS65&gt;3.0.CO;2-
http://doi.org/10.1038/sj.bjc.6603102
http://doi.org/10.1073/pnas.0707654105
http://www.ncbi.nlm.nih.gov/pubmed/18230737
http://doi.org/10.1063/1.3453792
http://doi.org/10.1039/b304992b
http://doi.org/10.1016/S0022-2860(98)00648-6
http://doi.org/10.1529/biophysj.105.066761
http://www.ncbi.nlm.nih.gov/pubmed/16239327
http://doi.org/10.1109/TBME.2004.831538
http://doi.org/10.1016/j.saa.2004.11.017
http://doi.org/10.1016/j.chemolab.2017.09.001
http://doi.org/10.1093/rheumatology/kem112
http://doi.org/10.1038/nrrheum.2016.186
http://www.ncbi.nlm.nih.gov/pubmed/27872476
http://doi.org/10.1080/05704928.2014.923902
http://doi.org/10.1155/2019/7592851
http://www.ncbi.nlm.nih.gov/pubmed/31886309
http://doi.org/10.1136/rmdopen-2021-002079
http://doi.org/10.1016/j.autrev.2016.03.002
http://doi.org/10.3390/ijms20225679
http://doi.org/10.1016/j.jaut.2013.04.003
http://doi.org/10.1111/cei.12359
http://doi.org/10.1093/rheumatology/keh693
http://doi.org/10.1073/pnas.0909927107
http://www.ncbi.nlm.nih.gov/pubmed/20439745
http://doi.org/10.1016/j.ejmhg.2015.07.001

	Introduction 
	Current Laboratory Testing for SLE-Associated Autoantibodies 
	Novel Testing Platforms for Clinical Laboratories 

	Materials and Methods 
	Raman Spectroscopy Study 
	Ethics Statement 
	Spectral Acquisition 
	Spectral Pre-Processing 
	Multivariate Analysis and Model Validation 
	Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients 
	Detection of Anti-dsDNA Antibodies 
	Data Analysis 

	Results 
	PCA and PCA-LDA Clustering of Raman Spectra for Discrimination of SLE Patients from Healthy Controls 
	Key Discriminating Wavenumbers between SLE Patients and HC 
	SLE Patients Successfully Segregate from HC Using PCA-LDA and PLS-DA Classification Models 
	PCA and PCA-LDA Clustering of Raman Spectra from Three SLE Subgroups and HCs 
	SLE Patient Subgroups and HC Successfully Segregate Using PCA-LDA and PLS-DA Classification Models 
	Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients 
	Individual Sample Relationship between Results by ELIA dsDNA and CLIFT 
	Clinical Diagnoses of Patients with Positive Anti-dsDNA Antibody Results 
	Sensitivity, Specificity, Positive Predictive Value and Negative Predictive Value 


	Discussion 
	Conclusions 
	References

