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Abstract
In psychology, linear discriminant analysis (LDA) is the method of choice for
two-group classification tasks based on questionnaire data. In this study, we
present a comparison of LDA with several supervised learning algorithms. In
particular, we examine to what extent the predictive performance of LDA relies
on the multivariate normality assumption. As nonparametric alternatives, the
linear support vector machine (SVM), classification and regression tree (CART),
random forest (RF), probabilistic neural network (PNN), and the ensemble 𝑘

conditional nearest neighbor (E𝑘CNN) algorithms are applied. Predictive perfor-
mance is determinedusingmeasures of overall performance, discrimination, and
calibration, and is compared in two reference data sets as well as in a simulation
study. The reference data are Likert-type data, and comprise 5 and 10 predictor
variables, respectively. Simulations are based on the reference data and are done
for a balanced and an unbalanced scenario in each case. In order to compare
the algorithms’ performance, data are simulated frommultivariate distributions
with differing degrees of nonnormality. Results differ depending on the specific
performance measure. The main finding is that LDA is always outperformed by
RF in the bimodal data with respect to overall performance. Discriminative abil-
ity of theRF algorithm is often higher compared to LDA, but itsmodel calibration
is usually worse. Still LDA mostly ranges second in cases it is outperformed by
another algorithm, or the differences are only marginal. In consequence, we still
recommend LDA for this type of application.
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2 GRAF et al.

1 INTRODUCTION

In psychology and social sciences, linear discriminant analysis (LDA) is a widely applied method for predicting the
probability of an individual to be allocated to a specific group (Boedeker & Kearns, 2019; Shayan et al., 2015; Sherry, 2006).
LDA is an extension of Fisher’s discriminant analysis (FDA, Fisher, 1936), a multivariate method for finding a linear

combination of continuous attributes best separating two classes. While FDA is a descriptive method used to assess the
discriminative ability of the variables, LDA is used for class prediction.
LDA is a parametric method requiring the estimation of two parameters, namely, the class means, and the covariance

matrix. As such, it is subject to the small sample size problem (Fukunaga, 1990), that is, only applicable in low-dimensional
settings,where the number of attributes is smaller than the sample size, since otherwise the covariancematrixmay become
singular (Chen et al., 2000). LDA furthermore assumes multivariate normality of the data as well as homogeneity of the
covariance matrix across the classes. These assumptions are rarely fulfilled by psychological data sets and hard to verify
for small sample sizes (Delacre et al., 2017; Rausch & Kelley, 2009).
Nonparametric machine learning algorithmsmay be preferable when distributional assumptions are not tenable, or the

number of features exceeds the number of observations (Malley et al., 2012). These algorithms do not make any assump-
tions regarding the data but require optimization of one or several hyperparameters. We compared the performance of
LDA to multiple nonparametric supervised learning algorithms, which are suitable for binary classification, and for esti-
mation of individual class probabilities. Versions of these algorithms have already previously been applied in psychological
research: support vector machine (SVM, Garcia-Chimeno et al., 2015; Liu & Cheng, 2017), classification and regression
tree (CART, Hill et al., 2017; Pagan et al., 2005), random forest (RF, Ammerman et al., 2018; Fife & D’Onofrio, 2021; Wallert
et al., 2018), 𝑘-nearest neighbor (𝑘-NN, Islam et al., 2018; Noh et al., 2012), and probabilistic neural network (PNN, Carson
et al., 1999).
Previous research on the application of LDAunder nonnormality of the data has shown that it may nevertheless provide

stable estimates. This may be due to its good bias–variance trade-off (Hastie et al., 2009): LDA assumes linearly separable
classes, and while a linear decision boundary may introduce bias, it may provide better generalizability due to lower
variance than a (highly) irregular nonlinear decision boundary. Also, the performance of LDAmay only slightly be affected
if the measuring range of the nonnormally distributed variables is limited to a narrow interval (Lachenbruch et al., 1973)
as in case of Likert-type data.
Despite this awareness, an insecurity about appropriate methods for nonnormal data remains present in the applied

sciences, including psychology. Some authors state that inferences about posterior probabilities of group membership
inferred using LDA can be quite misleading, especially in case of more severe deviations from normality (McLachlan,
1992; Rausch & Kelley, 2009).
Thus,we conducted a neutral comparison study following recommended guidelines for benchmarking studies byWeber

et al. (2019). The paper is organized as follows. In Section 2, we briefly review the supervised classification algorithms
applied in our simulation studies and describe the specific approaches we use. In Section 3, we describe the simulation
setup and the reference data sets. The results are described in Section 4. Finally, we close with some concluding remarks
in Section 5.

2 SUPERVISED CLASSIFICATION ALGORITHMS

In our simulation study, we focus on the case of binary classification.
The training data set 𝐗 ∈ ℝ𝑛×𝑝 contains 𝑛 observations 𝐱 ∈ ℝ𝑝, where 𝑝 is the number of variables, also referred to as

features, covariates, or dimensionality of the data set. The class label 𝑦 ∈ {0, 1} of each observation in the training data
set is known, and the subset 𝐗𝑖 ∈ ℝ𝑛𝑖×𝑝 contains the 𝑛𝑖 observations of group 𝑖 ∈ {0, 1}, where

∑1

𝑖=0
𝑛𝑖 = 𝑛. The goal of

supervised learning algorithms is to create an allocation rule from the training data𝐗 in order to classify new observations
with unknown class labels. The performance of the algorithms can be determined from a separate test data set. We will
give a brief review of the included algorithms and describe the specific approaches we use.
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GRAF et al. 3

2.1 Linear discriminant analysis

We consider LDA as implemented in the MASS package (Venables & Ripley, 2002), and used by researchers in psychol-
ogy and social sciences. The package uses FDA (Fisher, 1936) for discrimination and its extension, LDA (Rao, 1973),
for classification.
FDA finds the linear combination f(𝐱) = 𝑤1𝑥1 +⋯+ 𝑤𝑝𝑥𝑝 = 𝐰𝑇𝐱, which minimizes the amount of overlap between

two classes. The absolute value of the weights𝐰 ∈ ℝ𝑝 corresponds to the variables’ importance, thus implying an order.
According to Fisher, the weight vector𝐰 shall maximize the ratio between the separation of the class means 𝝁𝑖, 𝑖 ∈ {0, 1}

and the within-class covariance 𝚺, that is:

max
𝐰∈ℝ𝑝

𝐰≠0

|𝐰𝑇(𝝁0 − 𝝁1)|
(𝐰𝑇𝚺𝐰)1∕2

. (1)

This is obtained by choosing𝐰∗ = 𝑐 𝚺−1(𝝁0 − 𝝁1), where 𝑐 ≠ 0 is an arbitrary constant (Flury, 1997).
FDAdoes not depend onmultivariate normally distributed data, but the covariancematrices of both groups are assumed

to be equal and nonsingular, that is, 𝚺0 = 𝚺1 = 𝚺 with |𝚺| ≠ 0. For 𝑛0 + 𝑛1 < 𝑝 + 2, 𝚺 is always singular, meaning that
LDA requires a sufficiently large data set. The unknown parameters are substituted by their sample estimates (Johnson
&Wichern, 2007), that is,

�̂� =
𝑛0 − 1

(𝑛0 − 1) + (𝑛1 − 1)
𝐒0 +

𝑛1 − 1

(𝑛0 − 1) + (𝑛1 − 1)
𝐒1,

where 𝐒𝑖 =
1

𝑛𝑖 − 1

𝑛𝑖∑
𝑗=1

(𝐱𝑖𝑗 − �̄�𝑖)(𝐱𝑖𝑗 − �̄�𝑖)
𝑇 and �̂�𝑖 = �̄�𝑖 =

1

𝑛𝑖

𝑛𝑖∑
𝑗=1

𝐱𝑖𝑗.

(2)

Here, 𝑗 is the index for a particular observation from class 𝑖.
The extension of FDA to LDA (Rao, 1973) assumes that the data of each class follow a 𝑝-variate normal distribution,

that is, 𝐗𝑖 ∼ 𝑝(𝝁𝑖, 𝚺) with probability density function

f𝑖(𝐱) = (2𝜋)−𝑝∕2|𝚺|−1∕2 exp{−1∕2(𝐱 − 𝝁𝑖)
𝑇𝚺−1(𝐱 − 𝝁𝑖)}. (3)

An observation 𝐱 ∈ ℝ𝑝 is assigned to class 𝑖 if 𝜋𝑖f𝑖(𝐱) ≥ 𝜋𝑞f𝑞(𝐱) for all 𝑞 ≠ 𝑖 (Rao, 1973), where 𝜋𝑖 is the prior probability
of class 𝑖. Accordingly, the LDA classification rule is (Johnson &Wichern, 2007):

(𝝁0 − 𝝁1)
𝑇𝚺−1𝐱 −

1

2
(𝝁0 − 𝝁1)

𝑇𝚺−1(𝝁0 + 𝝁1) − log(𝜋1∕𝜋0)

{
< 0 class 1,
>0 class 0. (4)

The posterior probabilities of class membership are computed as (Flury, 1997):

�̂�(class = 𝑖|𝐱) = f𝑖(𝐱)𝜋𝑖

1∑
𝑞=0

f𝑞(𝐱)𝜋𝑞

. (5)

2.2 Support vector machine

Linear SVM also provides feature weights whose absolute value corresponds to the feature importance (Guyon et al.,
2002). In contrast to LDA, which uses the entire training data to find the discriminant function, it only uses a small
subset, the support vectors, to find the optimal separating hyperplane. The binary class labels are denoted by 𝑦 ∈ {−1,+1}

in the context of SVM. Based on Mercer’s theorem, SVM uses positive-definite kernel functions (Mercer, 1909; Vapnik,
1982) to transform the original data into a potentially higher-dimensional feature space, in which the data become linearly
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4 GRAF et al.

separable. Using nonlinear kernel functionswill result in a nonlinear separating hyperplane in the original space. Variable
weights become hard to interpret since they refer to this higher dimension.
The kernel function of the linear SVM is defined as the inner product of two samples 𝐱𝑗1 and 𝐱𝑗2 :

f ∶ ℝ𝑝 × ℝ𝑝 → ℝ, f(𝐱𝑗1 , 𝐱𝑗2) = ⟨𝐱𝑗1 , 𝐱𝑗2⟩ = 𝐱𝑇
𝑗1
𝐱𝑗2 , 𝑗1, 𝑗2 = 1,… , 𝑛. (6)

Here, we apply the linear soft-margin SVM (Cortes & Vapnik, 1995), a modification of the original algorithm (Vapnik,
1982) designed for linearly separable classes. It allows the classes to overlap depending on the value of the regularization
parameter 𝐶.
SVM uses convex quadratic programming (QP). The linear separating hyperplane can be defined by a weight vector

𝐰 ∈ ℝ𝑝 and an intercept 𝑏 (primal form):

min
𝐰,𝑏

1

2
‖𝐰‖22 + 𝐶

∑𝑛

𝑗=1
𝜉𝑗

s.t.𝑦𝑗(𝐰𝑇𝐱𝑗 + 𝑏) ≥ 1 − 𝜉𝑗 and 𝜉𝑗 ≥ 0 ∀𝑗 = 1,… , 𝑛,
(7)

where the value of 1‖𝐰‖ gives the width of the margin. The margin is the distance between the hyperplane and the data
samples lying closest to it, the support vectors. The regularization parameter 𝐶 is a tuning parameter. For the linearly
separable case, 𝐶 = ∞ (Hastie et al., 2009). The slack variables 𝜉𝑗 represent the errors (Cortes & Vapnik, 1995).
The corresponding dual form of the QP maximizes the Lagrange multipliers 𝜶:

max
𝜶

𝑛∑
𝑗=1

𝛼𝑗 −
1

2

𝑛∑
𝑗1=1

𝑛∑
𝑗2=1

𝛼𝑗1𝛼𝑗2𝑦𝑗1𝑦𝑗2 f(𝐱𝑗1 , 𝐱𝑗2)

s.t. 0 ≤ 𝛼𝑗 ≤ 𝐶 and
𝑛∑

𝑗=1

𝛼𝑗𝑦𝑗 = 0 ∀𝑗 = 1,… , 𝑛.

(8)

The dual form allows to directly identify the support vectors since their Lagrange multipliers 𝛼𝑗 are different from zero
and its solution can be computed more efficiently.
The variable weights 𝐰 of the linear soft-margin SVM can be computed from the optimal solution 𝜶∗ (Hastie et al.,

2004):

𝐰∗ = 𝐶

𝑛∑
𝑗=1

𝛼∗
𝑗
𝑦𝑗𝐱𝑗. (9)

The posterior probabilities of class membership are computed using the modified approximation algorithm by Platt (Lin
et al., 2007; Platt, 2000).
We use the SSVMP algorithm (Sentelle, 2013), a modification of the SVMpath algorithm (Hastie et al., 2004) to find the

optimal regularization parameter 𝐶. It optimizes the inverse of the regularization parameter, 𝜆 = 1∕𝐶, and uses that only
the Lagrange multipliers 𝛼𝑗 of the support vectors, the samples on the margin, vary. It starts with a high value of 𝜆, such
that all samples are located inside the margin (except of the support vectors). It then successively determines the samples
leaving the margin based on the values of 𝛼𝑗 and updates the linear decision boundary. A sequence of strictly decreasing
values 𝜆 is obtained. The algorithm terminates when there are no samples left inside the margin or the next value of 𝜆
would be zero.

2.3 Ensemble 𝒌 conditional nearest neighbor

The 𝑘 conditional nearest neighbor (𝑘CNN) algorithm by Gweon (2019) is an extension of the 𝑘-NN algorithm by Fix
and Hodges (1951), where 𝑘 is the hyperparameter for the number of neighbors that shall be inspected to classify a new
sample.
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GRAF et al. 5

The algorithm computes the distance between a new sample and all samples of the training data. Although its perfor-
mance depends on the choice of the distance measure (Abu Alfeilat et al., 2019), usually Euclidean distance is used. The
parameter 𝑘 is sometimes suggested to be set equal to the square root of the number of training observations (Lantz, 2013),
but the optimal choice of 𝑘 largely depends on the data. We tuned the parameter 𝑘 using grid search, that is, comparing
the misclassification error for a range of values of 𝑘 around the suggested value using cross-validation in the training data
(Bergstra & Bengio, 2012; Ghawi & Pfeffer, 2019).
Unlike LDA and linear SVM, the 𝑘-NN algorithm (and its extension 𝑘CNN by Gweon et al., 2019) does not produce

coefficients of the attributes, so the impact of the features on classification cannot be examined (Hastie et al., 2009).
Unlike the original version, the 𝑘CNN algorithm computes the posterior probabilities of class membership. The posterior
probabilities are necessary to compute the classification indices we use to compare the performance. They are computed
by (Gweon et al., 2019):

�̂�𝑘(class = 𝑖|𝐱) =
𝑘

𝑛𝑉𝑘|𝑖
1∑

𝑞=0

𝑘

𝑛𝑉𝑘|𝑞
=

𝑑(𝐱, 𝐱𝑘|𝑖)−𝑝
1∑

𝑞=0
𝑑(𝐱, 𝐱𝑘|𝑞)−𝑝

(10)

and converge in probability to the true posterior for 𝑛 → ∞. Here, 𝑑(𝐱, 𝐱𝑘|𝑖) = |𝐱 − 𝐱𝑘|𝑖| is the Euclidean distance between
a new sample (𝐱) and its 𝑘th nearest neighbour of class 𝑖 (𝐱𝑘|𝑖), 𝑉𝑘|𝑖 represents the volume of a hypersphere with center 𝐱
and radius 𝑑(𝐱, 𝐱𝑘|𝑖), and 𝑝 the dimensionality of the data.
The algorithm assigns a new sample to the class with the highest posterior probability. The class predictions vary con-

siderably depending on the parameter value 𝑘. Therefore, we use the ensemble 𝑘CNN (E𝑘CNN) algorithm byGweon et al.
(2019), which estimates the posterior probabilities �̂�𝑢(class = 𝑖|𝐱) for each value 𝑢 = 1, .., 𝑘 and assigns a new observation
to the class with the highest average

argmax
𝑖∈{0,1}

�̂�𝑘(class = 𝑖|𝐱) = argmax
𝑖∈{0,1}

1

𝑘

𝑘∑
𝑢=1

�̂�𝑢(class = 𝑖|𝐱) (11)

to improve predictive performance. We use the R code of the E𝑘CNN algorithm available on GitHub (Gweon, 2018).

2.4 Classification and regression tree

The CART algorithm by Breiman et al. (1984) creates binary decision trees using forward selection and recursive binary
splitting in order to minimize dissimilarity of the observations in each node with respect to their class labels 𝑦 (in case of
classification). Starting with the entire data set in the root node, the tree can be grown until each terminal node contains
only samples belonging to the same class, but usually a prepruning, or a postpruning strategy is specified to achieve better
generalizability in new data. Postpruning is more computationally intensive, but usually gives a more reliable model than
prepruning (Trabelsi et al., 2007).
We applied postpruning using the minimum-error cost-complexity pruning strategy, which minimizes the cost-

complexity measure

𝑅𝛾(𝑇) = 𝑅(𝑇) + 𝛾|𝑇| (12)

regarding all subtrees 𝑇 < 𝑇𝛾=0 (𝑇𝛾=0 corresponds to the fully grown tree) for a given cost-complexity parameter 𝛾. The
symbols |𝑇| and 𝑅(𝑇) indicate the number of terminal nodes, and the misclassification rate of subtree 𝑇 (Hastie et al.,
2009).
There is no universally good choice for setting 𝛾 (Cichosz, 2015). We use the recommended approach of choosing 𝛾 cor-

responding to theminimum 𝑘-fold cross-validatedmisclassification error, where 𝑘 = 10 is a conventional choice (Cichosz,
2015; Hastie et al., 2009). We consider all values in the interval [0,0.025] with step size 0.0001 for 𝛾, which includes the
default value of 0.01 in the rpart package (Therneau et al., 2019) in R. The CART algorithm determines the best splitting
value for each variable 1,. . . ,𝑝 and subsequently chooses the best splitting variable by minimizing an impurity measure
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6 GRAF et al.

for each node 𝑚 in tree 𝑇. We use the Gini impurity index 𝐺𝑚. It takes the value zero for a split resulting in perfect
discrimination between the classes and takes the maximum 0.5 in case of highest impurity. It is defined as:

𝐺𝑚 =

1∑
𝑖=0

�̂�𝑚𝑖(1 − �̂�𝑚𝑖), (13)

where �̂�𝑚𝑖 is the (prior) probability of class 𝑖.
The posterior probability of class membership is the portion of samples in the terminal node belonging to the respective

class. Variable importance is computed by considering the reduction of the Gini impurity index of the splitting variables.
Disadvantages of the CART algorithm are its sensitivity to small changes in the data set, and the tendency of the Gini

importance measure to select variables with many potential splitting values as splitting variables, even if they are random
noise (Strobl et al., 2006).

2.5 Random forest

The likely chance of overfitting in the training data when using fully-grown trees can be reduced by combining several
arbitrarily complex trees using the random subspace method, that is, by randomly partitioning the feature space used
for growing each tree. With an increasing number of trees, the predictive accuracy increases (Ho, 1995). Breiman’s RF
algorithm (Breiman, 2001) combines Ho’s random subspace method with random subsampling of the training data (with
replacement) to further reduce the variance of single tree predictions and to further decorrelate the trees. Class predictions
aremade according to themajority vote of the ensemble of trees. Themost important tuning parameters are the number of
trees and the number of features amongwhich the split variable in a tree is chosen.We also considered the sample fraction
used for growing a single tree, and minimum node size of the terminal nodes, although the algorithm also performs well
without extensive hyperparameter tuning (Boehmke & Greenwell, 2019). Hyperparameter tuning is done by using full
grid search. In contrast to the CART algorithm, no test data are needed since the out-of-bag data, the sample fraction not
used for growing the tree, are used for assessing the model performance. Variable importance in RFs for classification can
be evaluated by the Mean Decrease Impurity:

Imp(𝑋𝑙) =
1

𝑛𝑇

∑
𝑡∈𝑇∶𝑣(𝑠𝑡)=𝑋𝑙

𝑝(𝑡)Δ𝑧(𝑠𝑡, 𝑡). (14)

The decrease in an impurity measure Δ𝑧(𝑠𝑡, 𝑡) for a variable 𝑋𝑙 (𝑙 ∈ {1, … , 𝑝}) is summed up over all nodes 𝑡, for which
it is the splitting variable 𝑣(𝑠𝑡), weighted by the proportion of samples in 𝑡, that is, 𝑝(𝑡) = 𝑛𝑡

𝑛
(Breiman, 2001; Louppe

et al., 2013). The Gini impurity measure can be used, with the same potential drawbacks as for the CART algorithm. The
posterior probability of class membership equals the fraction of trees that vote for the considered class (Olson & Wyner,
2018).

2.6 Probabilistic neural network

PNNs by Specht (1966) are four-layer neural networks. Unlike neural networks, their estimates are asymptotically Bayes
optimal, they do not require extensive training times, and the only parameter that needs to be optimized is the smoothing
parameter 𝜎.
The input layer contains the elements of the input vector. In the pattern layer, the input vector is compared to each

vector from the training data set X by computing nonparameteric Parzen estimators (Parzen, 1962) of the class-specific
probability density functions

f̂𝑖(𝐱) =
1

(2𝜋)𝑝∕2𝜎𝑝
1

𝑛𝑖

𝑛𝑖∑
𝑗=1

exp

{
−
(𝐱 − 𝐱𝑖𝑗)

𝑇(𝐱 − 𝐱𝑖𝑗)

2𝜎2

}
, (15)
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GRAF et al. 7

where 𝑛𝑖 indicates the number of samples in class 𝑖, and 𝐱𝑖𝑗 the 𝑗th sample of class 𝑖 (Specht, 1990). In the summation layer,
the average of all 𝑓𝑖(𝐱) per class are computed. In the output layer, the vector 𝐱 is assigned to class 𝑖 with the maximum
value of 𝑓𝑖(𝐱).
Finding a good smoothing bandwidth 𝜎 for the Parzen estimator is critical, although the misclassification rate does not

change considerably with small changes in 𝜎 (Specht, 1990). A value too small results in noisy estimations and a value
too high in an oversmoothed probability density estimation. The Parzen estimator is known to not adapt well to the local
probability density with increasing data dimensionality. This is already the case for a dimensionality higher than 2 or 3
(Boltz et al., 2007, 2009). The optimal value for 𝜎 is determined by cross-validation.
Posterior probabilities of class membership are computed as (Specht, 1990):

�̂�(class = 𝑖|𝐱) = f𝑖(𝐱)𝜋𝑖

1∑
𝑞=0

f𝑞(𝐱)𝜋𝑞

. (16)

Variable importance (per class) is determined by computing the Sobol indices, which is a global sensitivity analysis for
scalar outputs (Sobol, 1993).

3 METHOD COMPARISON STUDY

In order to compare the above-mentioned methods with respect to their performance on psychological data, we con-
ducted a method comparison study. Our simulations are based on two data sets from psychology which we will describe
in the following.

3.1 Reference data sets

Two reference data sets with differing numbers of variables are used. Both contain Likert-type data. In each case, binary
classification is considered (𝑦 ∈ {0, 1}). Data are simulated for an unbalanced (𝑛0 = 50, 𝑛1 = 100) and a balanced scenario
(𝑛0 = 𝑛1 = 500) in both cases.
Data set 1 (Zeldovich, 2019) is a self-report questionnaire on the “Big Five” personality traits completed by 1109 persons

(𝑛0 = 535 men, 𝑛1 = 574 women). It uses a 21-item abbreviated version of the Big Five Inventory (BFI-K) by Rammstedt
and John (2005) through which the traits extraversion, agreeableness, openness to experience, conscientiousness, and
neuroticismare examined on a five-point Likert scale (1=disagree a lot, 5= agree a lot). Answers to questions regarding the
same trait are summarized in a score, on which the simulations are based. In this simulation, male participants represent
group 0, and female participants represent group 1.
Data set 2 (Ma et al., 2015a, 2015b) contains ratings of 597 neutral-expression photographs of persons from diverse racial

backgrounds. The 1087 raters (who also come from diverse racial backgrounds) rated these photographs with respect to
15 characteristics on a seven-point Likert scale (1 = not at all, 7 = extremely). In this simulation, Black models represent
group 0 (𝑛0 = 197), and White models represent group 1 (𝑛1 = 183). In order to remove multicollinearity, a threshold of
0.6 is applied to the pairwise Pearson correlation coefficients (Dancey & Reidy, 2007), and as a result, the traits “afraid,”
“masculine,” “trustworthy,” “threatening,” and “angry” are dropped from the analysis.
In both data sets, the two groups are not distinctively separated from each other. The Euclidean distance between class

means is 0.548 in data set 1, and 0.472 in data set 2. The boxplots in Figure 1 show the variables’ distribution.

3.2 Data-generating scenarios

The methods’ performance is compared in data sets generated from various multivariate distributions, differing in their
degree of deviation from multivariate normality. Data-generating scenarios comprise data simulations from the multi-
variate normal, multivariate skewnormal, multivariate lognormal, multivariate Gamma distribution, and of correlated
ordinal and of correlated bimodal variables, respectively. This may help to assess how performance of LDA is affected by
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8 GRAF et al.
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F IGURE 1 Boxplots showing the variables’ distribution in reference data sets 1 (left) and 2 (right).

TABLE 1 Parameterizations of the multivariate distributions.

Distribution Parameterization
Class 0 Class 1

Multivariate normal (1) 𝝁0, 𝚺 𝝁1, 𝚺

Multivariate normal (2),
increased 𝑑(𝝁0, 𝝁1) 𝝁0, 𝚺 𝝁1 + 1𝑝, 𝚺

Multivariate skewnormal 𝝁0, 𝚺, 𝝀 𝝁1, 𝚺, 𝝀

Multivariate lognormal 𝝁0, 𝚺 𝝁1, 𝚺

Multivariate Gamma 𝐚0, 𝐛0, 𝐑 𝐚1, 𝐛1, 𝐑

Correlated ordinal variables 𝐩𝑜𝑟𝑑
0,𝑙

, 𝐑𝑜𝑟𝑑 𝐩𝑜𝑟𝑑
1,𝑙

, 𝐑𝑜𝑟𝑑 (𝑙 = 1, … , 𝑝)

Correlated bimodal variables (𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)0,𝑙 , 𝐑 (𝜇𝑏𝑖, 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)1,𝑙 , 𝐑 (𝑙 = 1, … , 𝑝)

nonnormality. Table 1 shows the parameterizations of the multivariate distributions. As a control, multivariate normally
distributed data using a larger distance between the class means are also analyzed. More detailed information about these
distributions can be found in the Supplementary Material S.1. Distributional parameters are inferred from the reference
data sets.
The parameters 𝝁0, 𝝁1 ∈ ℝ𝑝 symbolize the class mean of class 0 and 1, respectively. The covariance matrix and Pearson

correlation matrix are given by 𝚺 ∈ ℝ𝑝×𝑝 and𝐑 ∈ ℝ𝑝×𝑝, respectively. The skewnormal distribution additionally includes
the skewness parameter 𝝀 ∈ ℝ𝑝. The skewness of the skewnormal distribution is bounded (Ngunkeng, 2013). Mardia’s
measure of multivariate skewness (Franceschini & Loperfido, 2019; Mardia, 1970) is used to determine an 𝝀 resulting in a
high level of skewness. For this, the values 𝝀 ∈ {0𝑝, 1𝑝, … , 15𝑝, 1000𝑝, 10, 000𝑝, 100, 000𝑝} are tried. The Gamma distribu-
tion is defined by a shape parameter 𝐚𝑖 ∈ ℝ𝑝 and a scale parameter 𝐛𝑖 ∈ ℝ𝑝, obtained from the reference data using the
method of moments.
Simulation of correlated ordinal variables is done according to the mean mapping method by Kaiser et al. (2011). It

requires the marginal probabilities of each variable (𝐩𝑜𝑟𝑑
0,𝑙

or 𝐩𝑜𝑟𝑑
1,𝑙

, 𝑙 = 1, … , 𝑝 for group 0 and 1, respectively) and the
Kendall correlation matrix of the data rounded to full integers (𝐑𝑜𝑟𝑑) as input parameters. The marginal probabilities
must be different from zero, which is satisfied for all variables in data set 1. In data set 2, all variables have at least one
empty category after rounding the scores in the original data sets to integer values. A small amount of values (one to four
) are randomly added and the same amount of values are subtracted from the two most frequent categories in order to
allow simulation of correlated ordinal variables for data set 2. Correlated bimodal variables are obtained by simulation of
marginal distributions from bimodal skew-symmetric normal distributions (Hassan&El-Bassiouni, 2016) and subsequent
combination via aGaussian copula using the correlationmatrix𝐑. The parameters of the bimodal skew-symmetric normal
distributions (location parameter 𝜇𝑏𝑖 , scale parameter 𝜎𝑏𝑖 , the second location parameter 𝜈𝑏𝑖 , and bimodality parameter
𝜏𝑏𝑖) are not estimated from the data, since they are not noticeably bimodal. Instead, combinations of parameter values are
chosen such that the majority of values (97%) lie within the interval range of the original data.
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GRAF et al. 9

The traits in data set 1 are considered in the following order: extraversion (𝑥1), agreeableness (𝑥2),
conscientiousness (𝑥3), neuroticism (𝑥4), and openness to experience (𝑥5). The parameter values for simulations based

on data set 1 are shown in Table S1 (supplementary material S.2.).
The traits in data set 2 are considered in the order: attractive (𝑥1), babyfaced (𝑥2), disgusted (𝑥3), dominant (𝑥4), feminine

(𝑥5), happy (𝑥6), prototypic (𝑥7), sad (𝑥8), surprised (𝑥9), and unusual (𝑥10). The parameter values for simulations based
on data set 2 are shown in Table S2 (supplementary material S.2.).

3.3 Simulation study approach

All simulations and analyses are conducted using the R statistical software (R Core Team, 2021) version 4.1.2 on a Linux
system. In order to compare the performance of the classification algorithms, Monte Carlo simulations are performed.
Four simulation scenarios are considered—two for each reference data set—by choosing two different sets of sample sizes
(𝑛0 = 50, 𝑛1 = 100, and 𝑛0 = 𝑛1 = 500) common for this type of psychological data. For each simulation scenario, 2000
data sets are simulated using the parameters inferred from the respective reference data set.
We use the implementations of the classification algorithms as available in the following R packages or from the fol-

lowing websites, respectively: MASS (Venables & Ripley, 2002) for LDA, kernlab (Karatzoglou et al., 2004) for the linear
soft-margin SVM, rpart (Therneau et al., 2019) for the CART algorithm, ranger (Wright & Ziegler, 2017) for the RF
algorithm, the E𝑘CNN algorithm by Gweon (2018), and yap (Liu, 2020) for the PNN.
Data are simulated using the following R packages or approaches, respectively: MASS (Venables & Ripley, 2002) for the

multivariate normal distribution, exponential values of the multivariate normally distributed data for the multivariate
lognormal distribution, fMultivar (Wuertz et al., 2020) for the multivariate skewnormal distribution, lcmix (Dvorkin,
2019) for the multivariate Gamma distribution, and orddata (Leisch et al., 2010) for the correlated ordinal variables, and
gamlssbssn (Hossain et al., 2017) and copula (Hofert et al., 2022) for the correlated bimodal variables.
Data sets are split into training and test data sets in a ratio of 7:3. Data are preprocessed by standardization since SVM

and E𝑘CNN rely on the Euclidean distance.
Hyperparameter training for the nonparametric classification algorithms is done as follows. For the SVM, the the simple

SVM path (SSVMP) algorithm by Sentelle (2013) available as MATLAB code (Sentelle et al., 2016) is used to determine the
optimal regularization parameter 𝐶. For this purpose, the code is rewritten in R. For the CART algorithm, we use 10-fold
cross-validation to find the optimal cost-complexity parameter value used for postpruning of the fully grown trees. The
default value of 0.01 from the function rpart.control (Therneau et al., 2019) is included in the search interval. Hastie
et al. (2009) and Cichosz (2015) recommend the value 𝑘 = 10 for 𝑘-fold cross-validation. For the RF algorithm, we use
full grid search of different combinations of values for the number of trees, number of variables considered for splitting
the nodes in a tree (𝑚𝑡𝑟𝑦), the sample fraction used to build a tree, and the minimum size of leaf nodes. We follow the
recommendations of Boehmke and Greenwell (2019) with respect to the mentioned default values and the number of
considered values. For the E𝑘CNN algorithm, we conduct 10-fold cross-validation to obtain the optimal parameter 𝑘 and
include the recommended default, the square root of the number of training samples (Lantz, 2013), in the search interval.
For the PNN algorithm, we use the function pnn.search_logl from the R package yap (Liu, 2020) using fivefold cross-
validation, since the recommended default value is set to 4 in this function and the small changes in 𝜎 do not affect the
method’s performance (Specht, 1990). It finds the optimal smoothing parameter 𝜎 based on cross-entropy.
The algorithms’ performance is compared using different performancemeasures, which can be categorized into overall

performance measures, measures of discrimination and measures of calibration (Steyerberg et al., 2010). Measures of
overall performance capture both, aspects of discrimination and calibration. They consider the difference between the
true class labels and the estimated posterior probabilities (𝐵-, and 𝑄 index). Discrimination relates to the algorithm’s
ability to separate observations of both classes. While sensitivity, specificity, the Youden index, and predictive accuracy
only take the accuracy of the class predictions into account, the𝐶 indexmeasures the concordance between the algorithm’s
estimated posterior probabilities and the observed class labels. The 𝐶 index can be interpreted as the probability that a
sample from class 1 will have a higher predicted posterior probability than a sample from class 0, that is, it measures the
algorithm’s ability to rank observations from high to low probability of belonging to class 1, but it does not measure the
accuracy of these predictions unlike measures of calibration. The 𝐶 index equals the area under the Receiver Operating
Characteristic (ROC) curve when applying all possible classification thresholds (Pencina & D’Agostino, 2019). Measures
of calibration compare the true and estimated posterior probabilities, where the (unknown) true posterior probabilities
are approximated by the respective portion of samples in subsets of the original data (Hosmer–Lemeshow test).
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10 GRAF et al.

TABLE 2 Mardia measure of multivariate skewness (𝑏1,𝑝), value of the corresponding 𝜒2 test statistic with respective 𝑝-value for the
reference data sets.

Data set 𝒃𝟏,𝒑 Test statistic 𝒑-Value
1 0.944 175 1.9E−20
2 20.305 1286 5.9E−150

Definitions of the 𝐶, 𝐵, and 𝑄 index are given below. The remaining performance measures are described in
supplementary material S.3.
For conducting the Hosmer–Lemeshow test, the R function hoslem.test from the R package
ResourceSelection (Lele et al., 2019) is applied.

3.4 𝑪, 𝑩, and 𝑸 index

As a measure of discrimination, the 𝐶 index (Goodman & Kruskal, 1954) is considered.

𝐶 =

𝑛∑
𝑗1=1
𝑦𝑗1=0

𝑛∑
𝑗2=1
𝑦𝑗2=1

{𝟙(�̂�𝑗2>�̂�𝑗1 )
+

1

2
𝟙(�̂�𝑗2=�̂�𝑗1 )

}∕(𝑛0𝑛1) where �̂� = �̂�(class = 1|𝐱). (17)

It compares the posterior probabilities �̂�𝑗2 of each observation with the true class label 𝑦𝑗2 = 1 to the posterior
probabilities �̂�𝑗1 of each observation with the true class label 𝑦𝑗1 = 0.
The 𝐵, and the 𝑄 index are considered as measures of overall performance, which measure both, aspects of

discrimination as well as calibration.
The 𝐵 and𝑄 indices (Greenberg & Sen, 1985) take the deviation between the true class label and the estimated posterior

probability into account.

𝐵 = 1 −

𝑛∑
𝑗=1

(�̂�𝑗 − 𝑦𝑗)
2∕𝑛,

𝑄 =

𝑛∑
𝑗=1

[1 + log2{�̂�
𝑦𝑗
𝑗
(1 − �̂�𝑗)

(1−𝑦𝑗)}]∕𝑛. (18)

The 𝑄 index is not defined if there are any posterior probabilities �̂�𝑗 in the data set equal to zero or one, respectively.
More information about the performance measures can be found in supplementary material S.3.

4 RESULTS

In this section, wewill first analyze the algorithms’ performance on the reference data sets and then summarize the results
of the simulation study.

4.1 Analysis of reference data sets

Simulations are based on two reference data sets, comprising 5 and 10 continuous predictor variables, respectively, and a
binary outcome variable. Both data sets comprise scores of Likert-type data from psychological questionnaires, measured
on a five-point and seven-point Likert scale, respectively. Data of both data sets deviate significantly from multivariate
normality with respect to the Mardia measure of multivariate skewness (Mardia, 1970). The results are shown in Table 2.
To quantify the uncertainty of the performance measures in the reference data sets, we follow the procedure proposed

byWahl et al. (2016) using 1000 bootstrap runs. More precisely, the 0.632+ bootstrap estimate (Efron & Tibshirani, 1997) is
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GRAF et al. 11
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F IGURE 2 ROC curves of the algorithms when applied to reference data sets 1 (left) and 2 (right), illustrating the algorithms’
discriminative performance based on the degree of similarity between true and predicted class labels.

computed and its confidence interval derived from the empirical distribution ofweights assigned to each bootstrap sample.
These weights are the difference between the algorithm’s estimated performance obtained by training the model and
evaluating its performance in the same data sets, once using the original data and once the bootstrap sample, respectively.
For the ROC curves in Figure 2, the 0.632+ bootstrap estimates of sensitivity and specificity are used.
As a measure of calibration, the Hosmer–Lemeshow test is computed in each of the bootstrap data sets (Huang et al.,

2020). The number of 𝑝-values indicating a miscalibrated (𝑝 < 0.05), neither well calibrated nor grossly miscalibrated
(𝑝 ∈ (0.05, 0.1]), or appropriate model (𝑝 > 0.1) are shown in Table 3. Missing values for the Hosmer–Lemeshow test
occur, since the R function hoslem.test fails to obtain cutoffs in case the quantiles are not unique. The𝑄 index computes
the logarithmof the product of the posterior probabilities of both classes. It therefore fails in case the posterior probabilities
are 0 or 1, respectively. TheROC curves in Figure 2 suggest that the discriminative ability of LDAand the linear soft-margin
SVM, the only other linear classifier, are similar. The PNN algorithm tends to assign unknown samples to the larger class
in the training data (for data set 1). The reason can be that the Parzen estimator is known to not adapt well to the local
probability density with a data dimensionality higher than 2 or 3 (Boltz et al., 2007, 2009). The discriminative ability of the
RF algorithm seems to be higher compared to LDA, but the estimates’ uncertainty cannot be assessed from these plots.
Table 3 shows the averaged estimated performance measures of the algorithms. For both data sets, the overall perfor-

mance (𝐵 index) of none of the algorithms can be said to be better than the one of LDA, since the CART and RF algorithms
tend to have a higher variability than LDA and the other algorithms. The results of the CART algorithm usually have the
highest variability. It is known that it is prone to biased estimates of the posterior probabilities (Strobl et al., 2006). The
averaged performance measures suggest a better performance of the RF algorithm compared to LDA but its confidence
intervals are always wider and its models are the worst calibrated among all of the considered classification algorithms.
A worse than random performance cannot be ruled out for the RF algorithm considering the confidence intervals of
the overall performance measures (𝐵 and 𝑄 index). The LDA results are more stable and mostly indicate a better than
random performance.

4.2 Results of the simulation study

The complete simulation results can be found in the supplementary material S.4.
Since the lognormal distribution and the correlated bimodal variables differmost from themultivariate normal distribu-

tion with respect to theMardiameasure of multivariate skewness (Mardia, 1970) and the nonparametric Kullback–Leibler
divergence (Boltz et al., 2007) as shown in Table 4, only these results are presented here.
Figures 3 and 4 show the summary ROC curves for the unbalanced and balanced scenario, respectively, for the sim-

ulations based on data set 1. The mean of the estimated logit-transformed sensitivity and logit-transformed specificity
together with the confidence region are shown as black dots and circles. Figure 3 suggests that only the RF algorithm
performs better than LDA in nonnormally distributed data in the unbalanced simulation scenario. All algorithms have a
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12 GRAF et al.

TABLE 3 Performance measures (95% confidence interval) of the supervised classification algorithms when applied to the reference
data. Results of the Hosmer–Lemeshow test are given as the portion of 𝑝-values which are <0.05/ ∈ [0.05,0.1)/ ≥ 0.1. In case, the 𝑄 index or
Hosmer–Lemeshow test cannot be computed for all 1000 bootstrap data sets, the number of included data sets (𝑛) is given.

LDA SVM CART RF E𝒌CNN PNN
Data set 1
Overall performance

B index 0.779 0.779 0.907 0.792 0.773 0.756
(0.769, 0.788) (0.768, 0.787) (0.695, 1.0) (0.667, 0.894) (0.746, 0.783) (0.753, 0.758)

Q index 0.087 0.087 NA 0.114 0.069 0.018
(0.054, 0.113) (0.054, 0.113) (−0.344, 0.477) (-0.015, 0.099) (0.008, 0.022)

(𝑛 = 0) (𝑛 = 85)
Discrimination

C indexa 0.7 0.7 0.574 0.762 0.705 0.698
(0.667, 0.729) (0.667, 0.73) (0.283, 0.864) (0.505, 0.986) (0.634, 0.736) (0.663, 0.725)

Sensitivity 0.689 0.694 0.606 0.746 0.728 0.901
(0.637, 0.764) (0.642, 0.777) (0.36, 0.841) (0.537, 0.892) (0.649, 0.751) (0.846, 1.0)

Specificity 0.606 0.598 0.547 0.679 0.563 0.244
(0.529, 0.678) (0.502, 0.663) (0.166, 0.915) (0.414, 0.873) (0.425, 0.569) (0.0, 0.445)

Youden index 0.296 0.292 0.153 0.429 0.298 0.145
(0.236, 0.359) (0.227, 0.351) (0.0, 0.762) (0.0, 0.799) (0.144, 0.334) (0.0, 0.291)

Predictive accuracy 0.649 0.647 0.577 0.716 0.651 0.58
(0.62, 0.68) (0.614, 0.675) (0.266, 0.879) (0.493, 0.901) (0.577, 0.671) (0.502, 0.627)

Calibration
0.192/ 0.19/ 0.3/ 0.502/ 0.305/ 0.999/

Hosmer–Lemeshow 0.106/ 0.107/ 0.007/ 0.106/ 0.142/ 0.001
test 0.702 0.703 0.693 0.392 0.553 0

Data set 2
Overall performance

B index 0.781 0.78 0.874 0.803 0.767 0.755
(0.757, 0.792) (0.756, 0.793) (0.656, 1.0) (0.673, 0.894) (0.729, 0.772) (0.747, 0.756)

Q index 0.081 0.086 NA 0.166 0.05 0.013
(−0.005, 0.117) (0.001, 0.125) (−0.3, 0.468) (-0.082, 0.066) (-0.013, 0.015)

(𝑛 = 0) (𝑛 = 981)
Discrimination

C indexa 0.717 0.712 0.581 0.784 0.677 0.668
(0.661, 0.754) (0.655, 0.747) (0.265, 0.863) (0.521, 0.999) (0.643, 0.691) (0.606, 0.674)

Sensitivity 0.633 0.631 0.569 0.736 0.558 0.384
(0.522, 0.729) (0.535, 0.779) (0.252, 0.816) (0.492, 0.865) (0.482, 0.687) (0.0, 0.766)

Specificity 0.685 0.68 0.594 0.772 0.688 0.777
(0.584, 0.783) (0.552, 0.774) (0.259, 0.873) (0.544, 0.9) (0.615, 0.771) (0.66, 1.0)

Youden index 0.318 0.312 0.17 0.508 0.254 0.152
(0.195, 0.399) (0.202, 0.407) (0.0, 0.701) (0.08, 0.82) (0.175, 0.353) (0, 0.417)

Predictive accuracy 0.659 0.656 0.581 0.755 0.626 0.569
(0.593, 0.698) (0.6, 0.7) (0.255, 0.847) (0.538, 0.913) (0.586, 0.671) (0.501, 0.656)

Calibration
0.387/ 0.236/ 0.232/ 0.89/ 0.156/ 0.449/

Hosmer–Lemeshow 0.111/ 0.085/ 0.007/ 0.057/ 0.08/ 0.161
test 0.502 0.679 0.76 0.053 0.764 0.39

(𝑛 = 981)
aThe 𝐶 index is based on rank correlation between predicted posterior probabilities and true class labels. The remaining measures of discrimination only consider
the similarity between predicted and true class labels.
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GRAF et al. 13

TABLE 4 Mardia measure of multivariate skewness (𝑏1,𝑝) with the number of significant test results given in parentheses, and
nonparametric multivariate Kullback–Leibler (KL) divergence of the continuous distributions for the unbalanced simulation scenario
(𝑛0 = 50, 𝑛1 = 100). The results represent the mean values over 2000 simulated data sets.

Data set 1 Data set 2
Distribution 𝒃𝟏,𝒑 KL 𝒃𝟏,𝒑 KL
𝑝(𝝁𝑖, 𝚺) (1) 3.7 (48) −0.14 23.1 (10) −0.24
 𝑝(𝝁𝑖, 𝚺) 29.8 (2000) −0.16 66.6 (2000) −0.31
 𝑝(𝝁𝑖, 𝚺, 𝜶) 4.4 (206) 0.02 23.7 (14) 0.0
Γ𝑝(𝐚𝑖, 𝐛𝑖, 𝐑) 4.8 (323) −0.05 26.0 (165) −0.07
Bimod𝑝((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 4.9 (342) 0.88 24.9 (31) 7.3

Specificity

S
en

si
tiv

ity

F IGURE 3 Summary ROC curves showing the algorithms’ discriminative performance based on the degree of similarity between true
and predicted class labels: multivariate normally (left) and multivariate lognormally (middle) distributed data and for correlated bimodal
variables (right) simulated based on reference data set 1 (𝑛0 = 50, 𝑛1 = 100). The black dots and circles represent the mean of the estimated
logit-transformed sensitivity and logit-transformed specificity with their corresponding confidence region.
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F IGURE 4 Summary ROC curves showing the algorithms’ discriminative performance based on the degree of similarity between true
and predicted class labels: multivariate normally (left) and multivariate lognormally (middle) distributed data and for correlated bimodal
variables (right) simulated based on reference data set 1 (𝑛0 = 𝑛1 = 500). The black dots and circles represent the mean of the estimated
logit-transformed sensitivity and logit-transformed specificity with their corresponding confidence region.

rather low sensitivity. They assign new samples predominantly to the larger class from the training data. The performance
of the PNN algorithm suffers most from bimodally distributed variables, probably because the more irregular pattern in
the data distribution cannot be adequately estimated by the Parzen estimator. Most importantly, the performance of LDA
does not decrease in the nonnormally distributed data.
Figure 4 suggests that the performance of the algorithms is almost equal for larger (and equal) sample sizes, which is

comparable to the results for data set 2 (Figure S4). Therefore, we will only refer to the performance measures for the
unbalanced simulation scenario in the following.
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14 GRAF et al.

Tables 5 and 6 show the estimates of some of the performance measures for the unbalanced simulation scenarios based
on data sets 1 and 2, respectively. Full results are given in Tables S3 and S5. The results which hint at a better performance
of an algorithm than LDA are printed in bold, but the variance in the results does not always allow for a clear decision.
The RF algorithm often outperforms LDA in the lognormal and bimodal data (and also ordinal data). The SVM algorithm
also performs slightly better for various simulations of nonnormal distributions based on data set 2 (10 variables, Tables 6
and S5), but not so in data set 1 (five variables, Tables 5 and S3). The low ability of the Parzen estimator to adapt well to
multivariate data distributions becomes evident in the sensitivity and specificity estimates of the PNN algorithm. For the
unbalanced simulation scenarios and both data sets, its sensitivity is (almost) 1 and its specificity (almost) 0, independent
of the data distribution. It assigns (almost) all test samples to the larger class from the training data (Tables S3 and S5). The
Sobol sensitivity indices could not be computed for one sample in a particular data set in the unbalanced data simulation
scenario based on reference data set 2 for the lognormal data (Table 6).
According to the Hosmer–Lemeshow test, the CART and RF models suffer from miscalibration in simulations based

on data set 1 (Table 5), but less in data set 2 (Table 6). For 10 compared to 5 variables in data set 2, a higher number of LDA
models become miscalibrated.

DISCUSSION

In this paper, we compared several supervised learning approaches in a neutral simulation study following the recom-
mendations provided by Weber et al. (2019) and Morris et al. (2019). All of the methods under comparison have been
developed previously and the authors of this study were neutral with respect to the considered methods and the poten-
tial results of the study. In particular, hyperparameter training was done according to the available recommendations to
ensure the best possible result for each algorithm. A variety of performance measures was chosen to gain an objective
view of the methods’ performance. As noted by Niessl et al. (2021) for the context of benchmarking studies, the choice of
performance measures can influence the ranking of the proposed methods. We chose performance measures from three
categories as described by Steyerberg et al. (2010) through which overall performance, accuracy, and calibration of the
model predictions were assessed.
One issue that we came across in our study is the handling of missing data with regard to the performance measures.

The 𝑄 index cannot be computed in case posterior probabilities of zero or one occur for at least one sample in the data
set. The Hosmer–Lemeshow test cannot be computed if the quantiles for deriving the cutoffs are not unique. We dropped
these data sets from the results and reported the number of simulated data sets, for which the corresponding measure
could be calculated. A more sophisticated handling of the missing values might change the results. However, to the best
of our knowledge, there is no guidance available on how to handlemissing performance values, see also Niessl et al. (2021)
for a related discussion.
Our simulation settings were motivated by real-world data examples from psychology and parameters for the simula-

tions were estimated based on these data examples. To further increase generalizability of the results, we considered two
different sets of motivating data with differing numbers of variables.
We conducted both, extensive simulation studies as well as an analysis of two real-world data sets for a comprehensive

comparison. The simulated data have the advantage that the true parameters, such as the underlying distributions and the
distance between the groups, are known. On the other hand, they might not adequately reflect some important properties
of the real-world data. Therefore, we considered both approaches in order to get a better understanding and obtain a fairer
comparison between the methods.
Our study has several limitations. First, we only considered two real-world data examples. This is due to the fact that

obtaining data still is a major problem despite data-sharing initiatives. Second, simulation studies can, by nature, only
ever cover a limited number of scenarios. In adherence with current guidelines (Morris et al., 2019), we motivated the
choice of parameters based on real data. Nonetheless and also because of the first limitation, it remains a small subset of
possible scenarios and generalization of our results should be done with caution.
A special focus was on nonnormal data distributions with the aim to investigate the limitations of LDA, when its basic

assumptions are violated. In accordance with previous considerations (Hastie et al., 2009), we found that LDA is rather
robust against violations of the normality assumption in the settings considered in our study. Based on our results, only
the RF can be considered a relevant competitor to LDA. It outperformed LDA with respect to several performance mea-
sures in highly skewed or bimodal data, but its models suffer more often from miscalibration. Also, the distribution of
the reference data was not in fact bimodal. Since LDA is less computationally expensive, easier to conduct, and more
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GRAF et al. 15

TABLE 5 Performance measures for the simulation of unbalanced data (𝑛0 = 50, 𝑛1 = 100) based on data set 1. Table entries indicate the
respective mean (SE) of 2000 simulated data sets. The number of analyzed data sets (𝑛) is additionally given, in case the performance measure
could not be computed for all data sets. Results of the Hosmer–Lemeshow test are given as the proportion of 𝑝-values <0.05/ ∈ [0.05,0.1)/
≥ 0.1. Results which may indicate a better performance compared to LDA are shown in bold.

LDA SVM CART RF EkCNN PNN
Overall performance
B index

5(𝝁𝑖, 𝚺) (1) 0.792 0.789 0.619 0.783 0.781 0.783
(0.025) (0.017) (0.071) (0.015) (0.013) (0.003)

 5(𝝁𝑖, 𝚺) 0.788 0.781 0.619 0.783 0.775 0.78
(0.018) (0.011) (0.071) (0.015) (0.015) (0.004)

Bimod5((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.825 0.822 0.72 0.846 0.811 0.791
(0.03) (0.024) (0.069) (0.015) (0.016) (0.005)

Discrimination
C indexa

5(𝝁𝑖, 𝚺) (1) 0.672 0.639 0.539 0.624 0.615 0.659
(0.088) (0.127) (0.087) (0.063) (0.093) (0.089)

 5(𝝁𝑖, 𝚺) 0.643 0.593 0.539 0.625 0.584 0.634
(0.09) (0.139) (0.087) (0.064) (0.098) (0.092)

Bimod5((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.783 0.779 0.66 0.824 0.767 0.776
(0.072) (0.078) (0.09) (0.037) (0.078) (0.074)

Youden index
5(𝝁𝑖, 𝚺) (1) 0.189 0.13 0.144 0.236 0.121 0

(0.126) (0.139) (0.105) (0.089) (0.097) (0)
 5(𝝁𝑖, 𝚺) 0.107 0.063 0.143 0.237 0.128 0.002

(0.103) (0.118) (0.105) (0.091) (0.104) (0.011)
Bimod5((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.361 0.361 0.341 0.525 0.297 0

(0.147) (0.152) (0.155) (0.071) (0.145) (0.004)
Predictive accuracy

5(𝝁𝑖, 𝚺) (1) 0.683 0.678 0.602 0.707 0.662 0.667
(0.058) (0.049) (0.07) (0.03) (0.053) (0)

 5(𝝁𝑖, 𝚺) 0.671 0.665 0.601 0.706 0.651 0.666
(0.045) (0.036) (0.07) (0.031) (0.059) (0.005)

Bimod5((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.741 0.741 0.71 0.813 0.729 0.667
(0.061) (0.061) (0.07) (0.027) (0.058) (0.001)

Calibration
Hosmer–Lemeshow test

5(𝝁𝑖, 𝚺) (1) 0.214/ 0.124/ 0.729/ 0.689/ 0.074/ 0.14/
0.1/ 0.1/ 0/ 0.084/ 0.069/ 0.122/
0.686/ 0.775/ 0.271 0.228 0.857 0.739

(𝑛 = 1593)
 5(𝝁𝑖, 𝚺) 0.168/ 0.155/ 0.733/ 0.701/ 0.096/ 0.11/

0.095/ 0.116/ 0/ 0.086/ 0.093/ 0.107/
0.738 0.729 0.267 0.213 0.811 0.782

(𝑛 = 1589) (𝑛 = 1999)
Bimod5((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.271/ 0.116/ 0.682/ 0.295/ 0.062/ 0.352/

0.065/ 0.088/ 0.001/ 0.111/ 0.084/ 0.19/
0.664 0.796 0.317 0.594 0.855 0.458

(𝑛 = 1570) (𝑛 = 1959)
aThe 𝐶 index is based on rank correlation between predicted posterior probabilities and true class labels. The remaining measures of discrimination only consider
the similarity between predicted and true class labels.
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16 GRAF et al.

TABLE 6 Performance measures for the simulation of unbalanced data (𝑛0 = 50, 𝑛1 = 100) based on data set 2. Table entries indicate the
respective mean (SE) of 2000 simulated data sets. The number of analyzed data sets (𝑛) is additionally given, in case the performance measure
could not be computed for all data sets. Results of the Hosmer–Lemeshow test are given as the proportion of 𝑝-values < 0.05/ ∈ [0.05,0.1)/
≥ 0.1. Results which may indicate a better performance compared to LDA are shown in bold.

LDA SVM CART RF EkCNN PNN
Overall performance
B index

10(𝝁𝑖, 𝚺) (1) 0.793 0.795 0.606 0.786 0.781 0.783
(0.032) (0.017) (0.071) (0.013) (0.016) (0.004)

 10(𝝁𝑖, 𝚺) 0.78 0.786 0.607 0.786 0.781 0.781
(0.031) (0.014) (0.071) (0.013) (0.018) (0.007)

(𝑛=1999)
Bimod10((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.807 0.807 0.672 0.828 0.797 0.79

(0.034) (0.02) (0.071) (0.015) (0.017) (0.006)
Discrimination
C indexa

10(𝝁𝑖, 𝚺) (1) 0.693 0.676 0.539 0.62 0.599 0.631
(0.086) (0.107) (0.085) (0.067) (0.096) (0.094)

 10(𝝁𝑖, 𝚺) 0.646 0.622 0.54 0.619 0.594 0.616
(0.092) (0.123) (0.085) (0.067) (0.098) (0.097)

(𝑛=1999)
Bimod10((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.739 0.73 0.61 0.781 0.682 0.725

(0.081) (0.089) (0.087) (0.044) (0.089) (0.084)
Youden index

10(𝝁𝑖, 𝚺) (1) 0.238 0.227 0.144 0.215 0.103 0
(0.137) (0.142) (0.109) (0.092) (0.089) (0.001)

 10(𝝁𝑖, 𝚺) 0.17 0.155 0.144 0.215 0.099 0.011
(0.118) (0.121) (0.109) (0.092) (0.087) (0.025)

Bimod10((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.307 0.297 0.253 0.433 0.162 0.001
(0.147) (0.149) (0.144) (0.082) (0.114) (0.006)

Predictive accuracy
10(𝝁𝑖, 𝚺) (1) 0.689 0.686 0.599 0.71 0.661 0.667

(0.062) (0.062) (0.071) (0.028) (0.049) (0)
 10(𝝁𝑖, 𝚺) 0.674 0.673 0.6 0.71 0.662 0.667

(0.058) (0.056) (0.071) (0.028) (0.047) (0.011)
Bimod10((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.713 0.709 0.666 0.785 0.687 0.667

(0.065) (0.065) (0.071) (0.029) (0.051) (0.002)
Calibration
Hosmer–Lemeshow test

10(𝝁𝑖, 𝚺) (1) 0.4/ 0.105/ 0.574/ 0.433/ 0.086/ 0.096/
0.095/ 0.083/ 0/ 0.117/ 0.082/ 0.102/
0.504 0.812 0.426 0.45 0.832 0.802

(𝑛=1717)
 10(𝝁𝑖, 𝚺) 0.416/ 0.114/ 0.581/ 0.438/ 0.142/ 0.104/

0.098/ 0.114/ 0/ 0.112/ 0.093/ 0.108/
0.486 0.796 0.419 0.45 0.765 0.788

(𝑛 = 1707) (𝑛 = 1999
Bimod10((𝜇𝑏𝑖 , 𝜎𝑏𝑖 , 𝜈𝑏𝑖 , 𝜏𝑏𝑖)𝑖,𝑙 , 𝐑) 0.428/ 0.097/ 0.601/ 0.207/ 0.06/ 0.21/

0.086/ 0.079/ 0/ 0.14/ 0.068/ 0.134/
0.486 0.824 0.399 0.653 0.871 0.657

(𝑛 = 1710)
aThe 𝐶 index is based on rank correlation between predicted posterior probabilities and true class labels. The remaining measures of discrimination
only consider the similarity between predicted and true class labels.
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GRAF et al. 17

established in the field, our study provides reassurance for applied researchers in the following sense: Even if there are
scenarios where LDA is outperformed with respect to some performance measures, the differences between the methods
are marginal (except for the situations described above). Thus, it seems reasonable to apply LDA even if violations of the
normality assumption are suspected. Nevertheless, nonparametric classification algorithms may also work well and have
been applied to psychological data (Ammerman et al., 2018; Carson et al., 1999; Fife & D’Onofrio, 2021; Garcia-Chimeno
et al., 2015; Hill et al., 2017; Islam et al., 2018; Liu & Cheng, 2017; Noh et al., 2012; Pagan et al., 2005; Wallert et al., 2018).
Finally, we compare our results to previous research findings from studies which compared the performance of LDA

and nonparametric supervised classification algorithms.
Lee and Jun (2008) compared several supervised classification algorithms, including LDA, CART, SVMwith nonlinear

kernels and the 𝑘-NN algortihm, based on 14 data sets from the University of California, Irvine (UCI) repository. The
number of variables (median = 14.5 compared to 5 and 10 variables in the current study) and total sample sizes (median
= 807 compared to 1109 and 380 in the current study) differed a bit from our reference data sets. They found that LDA
outperformed CART and 𝑘-NN in themajority of cases. The SVM algorithm better discriminated between the classes than
LDA using the cross-validated misclassification error. Feldesman (2002) compared the performance of LDA and CART in
a four-class classification problem with 10 predictor variables. Using 10-fold cross-validated predictive accuracy, he found
that results of the LDA and CART algorithms were relatively similar, with LDA performing slightly better. Finch et al.
(2014) examined misclassification rates of several algorithms for inhomogeneous class sizes, and found that CART per-
formed better than LDA. Holden et al. (2011) compared the performance of LDA and CART, among others, in simulations
with four independent variables. They considered varying distributional parameters and relationships between the inde-
pendent and dependent variables. They found that CART almost always outperformed LDA. They used a single covariance
structure, exhibiting high multicollinearity among some variables. LDA is not suitable in case of high correlation among
the predictor variables.
In summary, the good performance of LDA has also been found in other method comparison studies, but in which only

the discriminative ability of the algorithms was considered.
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