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Abstract
Background and Objectives
Disease-modifying therapeutic trials for genetic frontotemporal dementia (FTD) are underway,
but sensitive cognitive outcomemeasures are lacking. The aim of this study was to identify such
cognitive tests in early stage FTD by investigating cognitive decline in a large cohort of genetic
FTD pathogenic variant carriers and by investigating whether gene-specific differences are
moderated by disease stage (asymptomatic, prodromal, and symptomatic).

Methods
C9orf72, GRN, and MAPT pathogenic variant carriers as well as controls underwent a yearly
neuropsychological assessment covering 8 cognitive domains as part of the Genetic FTD
Initiative, a prospective multicenter cohort study. Pathogenic variant carriers were stratified
according to disease stage using the global Clinical Dementia Rating (CDR) plus National
Alzheimer’s Coordinating Center (NACC) FTLD score (0, 0.5, or ≥1). Linear mixed-effects
models were used to investigate differences between genetic groups and disease stages as well as
the 3-way interaction between time, genetic group, and disease stage.

Results
A total of 207 C9orf72, 206 GRN, and 86 MAPT pathogenic variant carriers and 255
controls were included. C9orf72 pathogenic variant carriers performed lower on attention,
executive function, and verbal fluency from CDR plus NACC FTLD 0 onwards, with
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Neurologiques, Université Laval, Québec; Sunnybrook Health Sciences Centre (M.M.), Sunnybrook Research Institute and Tanz Centre for Research in Neurodegenerative Diseases
(M.C.T.), University of Toronto, Ontario, Canada; Department of Geriatric Medicine (C.G.), Karolinska University Hospital-Huddinge, Stockholm, Sweden; Centro Dino Ferrari (D.G.),
University of Milan; Fondazione IRCCS Ca’ Granda (D.G.), Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy; Department of Clinical Neurosciences (J.B.R.), University
of Cambridge, UK; Department of Clinical Neurological Sciences (E.F.), University of Western Ontario, London, Canada; Department of Neurodegenerative Diseases (M.S.), Hertie-
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relatively minimal decline over time regardless of the CDR plus NACC FTLD score (i.e., disease progression). The
cognitive profile in MAPT pathogenic variant carriers was characterized by lower memory performance at CDR plus
NACC FTLD 0.5, with decline over time in language from the CDR plus NACC FTLD 0.5 stage onwards, and executive
dysfunction rapidly developing at CDR plus NACC FTLD ≥1. GRN pathogenic variant carriers declined on verbal fluency
and visuoconstruction in the CDR plus NACC FTLD 0.5 stage, with progressive decline in other cognitive domains
starting at CDR plus NACC FTLD ≥1.

Discussion
Weconfirmed cognitive decline in the asymptomatic and prodromal stage of genetic FTD. Specifically, tests for attention, executive
function, language, andmemory showed clear differences between genetic groups and controls at baseline, but the speed of change
over time differed depending on genetic group and disease stage. This confirms the value of neuropsychological assessment in
tracking clinical onset and progression and could inform clinical trials in selecting sensitive end points for measuring treatment
effects as well as characterizing the best time window for starting treatment.

Frontotemporal dementia (FTD) is a common cause of de-
mentia, often presenting at a young age, with devastating effects
on daily living.1 The typical cause of FTD is neurodegeneration
of the frontal and temporal lobes resulting in behavioral dis-
turbances (behavioral variant FTD [bvFTD]) or language
impairment (primary progressive aphasia [PPA]).2,3 FTD is
highly heritable and is autosomal dominantly inherited in up to
;30% of cases. The most common causes are pathogenic
variants in the microtubule-associated protein tau (MAPT),
progranulin (GRN), or chromosome 9 open reading frame 72
(C9orf72) genes.4 Deficits in executive function, language, and
social cognition are often predominant, but may vary in severity
and progression due to the heterogeneous nature of the
disease.1-3,5

Research into genetic FTD has shown that disease pathology
emerges years before symptom onset.6-13 Initiating disease-
modifying interventions at this early stage of the disease may
have the most profound effect because neuronal loss is min-
imal and cognitive functions are preserved.14 It is therefore
important to identify sensitive clinical instruments that can
signal disease onset and track disease progression. Identifying
such instruments for this early stage of the disease is also
important because they can be used as clinical end points in
therapeutic trials.

Gene-specific cognitive decline during the presymptomatic period
has been demonstrated by both cross-sectional and longitudinal
studies.6,10,15-26 For example, previous reports have shown decline
in memory,17,19,20,26 language,17,20,23 and social cognition17,19,20 in
MAPT pathogenic variant carriers, decline in attention15,16,19,20

and executive function15,16,18,20 in GRN pathogenic variant car-
riers, and a decline in social cognition in C9orf72 pathogenic
variant carriers.22,24,25 However, other studies on genetic FTD
failed to find these results.13,21,26,27

Most studies investigating cognitive decline in presymptomatic
genetic FTD have had a small sample size, a limited number of
yearly follow-ups, or did not include all 3 major causes of genetic
FTD. Furthermore, most studies split their sample of pathogenic
variant carriers either according to the artificial boundary of
presymptomatic vs symptomatic or according to estimated years
to symptomatic onset. As a result, none of the studies fully
highlights the complexity of the disease trajectory.28

Larger international cohort studies with longer follow-up time
are crucial to identify cognitive markers that signify disease
onset at the earliest stage and can measure changes during
disease progression. In addition, clinical instruments for dis-
ease severity, such as the Clinical Dementia Rating scale plus
National Alzheimer’s Coordinating Center frontotemporal
lobar degeneration module,29 could stratify pathogenic vari-
ant carriers and provide valuable insight into cognitive decline
during the different stages of the disease per genetic group.

This study aims to investigate longitudinal cognitive decline in
genetic FTD pathogenic variant carriers. We performed a
5-year follow-up study in which we investigated baseline and
longitudinal differences on neuropsychological test perfor-
mance between C9orf72, GRN, andMAPT pathogenic variant
carriers and control participants and stratified pathogenic var-
iant carriers according to the CDR NACC FTLD global score.

Glossary
bvFTD = behavioral variant frontotemporal dementia; C9orf72 = chromosome 9 open reading frame 72; CDR plus NACC
FTLD = Clinical Dementia Rating (CDR) scale plus National Alzheimer’s Coordinating Center (NACC) frontotemporal lobar
degeneration;D-KEFS =Delis-Kaplan Executive Function System; FCSRT = Free and Cued Selective Reminding Test; FTD =
frontotemporal dementia;GENFI = Genetic FTD Initiative;GRN = progranulin;MAPT = microtubule-associated protein tau;
MMSE =Mini-Mental State Examination; PPA = primary progressive aphasia; TMT = Trail-Making Test;WMS-R =Wechsler
Memory Scale–Revised.
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Methods
Participants
Data were included from the fifth Genetic FTD Initiative
(GENFI) data freeze, in which participants from confirmed
genetic FTD families were recruited in 24 centers across
Europe and Canada between January 30, 2012, and May 31,
2019. Pathogenic variant carriers were included in this study if
they performed at least 1 or more neuropsychological as-
sessments. A total of 207 C9orf72, 206 GRN, and 86 MAPT
pathogenic variant carriers and 255 pathogenic variant nega-
tive family members (who served as control group) were
included. A total of 109 C9orf72, 112 GRN, and 60 MAPT
pathogenic variant carriers and 154 controls had completed at
least 1 follow-up visit (Table 1). Pathogenic variant carriers
were divided into 3 categories based on the CDR plus NACC
FTLD global score at baseline: 0, 0.5, or ≥1. Of those with a
CDR plus NACC FTLD global score of ≥1, 51 C9orf72, 27
GRN, and 21 MAPT pathogenic variant carriers met di-
agnostic criteria for bvFTD,2 16 GRN and 3 C9orf72 patho-
genic variant carriers met criteria for PPA,3 and 8 C9orf72
pathogenic variant carriers met criteria for FTD with amyo-
trophic lateral sclerosis.30 Ten percent of C9orf72, 8% of
GRN, and 8% ofMAPT pathogenic variant carriers progressed
from CDR category 0 to 0.5, and 4% of C9orf72, 2% of GRN,
and 4% ofMAPT pathogenic variant carriers progressed to ≥1.
Six percent of C9orf72, 16% of GRN, and 20% of MAPT
pathogenic variant carriers progressed fromCDR category 0.5
to ≥1 (eTable 1, links.lww.com/WNL/B987).

Standard Protocol Approvals, Registrations,
and Patient Consents
All GENFI sites had local ethical approval for the study and all
participants gave written informed consent.

Procedures
Participants underwent a yearly standardized clinical assess-
ment including the CDR plus NACC FTLD and a compre-
hensive neuropsychological test battery covering attention
and processing speed (Wechsler Memory Scale–Revised
[WMS-R] digit span forward31; Trail-Making Test [TMT]
part A32; Wechsler Adult Intelligence Scale–Revised Digit
Symbol test31; Delis-Kaplan Executive Function System [D-
KEFS] Color-Word Interference Test color and word nam-
ing33), executive function (WMS-R Digit span backward31;
TMT part B32; D-KEFS Color-Word Interference Test ink
naming33), language (modified Camel and Cactus Test23;
Boston Naming Test [short 30-item version]31), verbal flu-
ency (category fluency31; phonemic fluency34), memory
encoding (Free and Cued Selective Reminding Test
[FCSRT] immediate free and total recall26), memory recall
(FCSRT delayed free and total recall; Benson Complex Fig-
ure recall), social cognition (Facial Emotion Recognition
Test24), and visuoconstruction (Benson Complex Figure
copy). Previous studies have shown that verbal fluency can
involve both language and executive function processes and
therefore we included it as a separate domain.35,36 Mini-

Mental State Examination (MMSE)37 measured global cog-
nitive functioning.

Statistical Analysis
Statistical analyses were performed using Stata version 14.2 and
R version 4.0.4. We compared continuous demographic data
between groups with 2-way analyses of variance and a χ2 test for
sex. The significance level was set at p < 0.05 (2-tailed) across all
comparisons.

All neuropsychological datawere standardized to z scores (i.e., raw
score−mean score controls at baseline/SDcontrols at baseline). z
scores for tests with reaction times (i.e., TMTandD-KEFSColor-
Word Interference Test) were inversed so that lower z scores
indicate worse performance. Cognitive domains were calculated
by averaging the mean z scores of the neuropsychological tests in
that domain. Only the FCSRT total recall was included in the
memory domains, as the free recall scores are a part of the total
recall scores. The memory, social cognition, and visuocon-
struction domains are represented by only 1 test.

As this is a prospective cohort study, not all pathogenic variant
carriers had completed all study visits, which resulted in missing
data. We used linear mixed-effects models for each cognitive
domain to examine whether differences existed betweenC9orf72,
GRN, and MAPT pathogenic variant carriers and controls in
cognitive decline since baseline. This type of model allows for the
analysis of longitudinal data with unbalanced time points and
missing data.38 Age and years of education were included in all
models as covariates. In each model, a different cognitive out-
come was used as the dependent variable and we specified the
following fixed effects: time since baseline in years, gene group,
CDR category at baseline, age at baseline, years of education, the
2-way interactions between time and group, time and CDR
category, and gene group and CDR category, and the 3-way
interaction between time, group, andCDRcategory.We included
random intercepts for participants who were nested within
families, but not random slopes as this did not improve model fit.
A natural cubic splines model did not improve model fit. We
performed post hoc pairwise comparisons in intercepts and
slopes between genetic groups within CDR categories. Results
are shown as a difference between pathogenic variant group and
the control group or a different pathogenic variant group if stated.

Table 1 Number of Participants at Each Yearly Follow-up

Year

1 2 3 4 5

C9orf72 207 109 105 34 0

GRN 206 112 72 31 3

MAPT 86 60 40 11 1

Controls 255 154 105 34 1

Abbreviations: C9orf72 = chromosome 9 open reading frame 72; GRN =
progranulin; MAPT = microtubule-associated protein tau.

Neurology.org/N Neurology | Volume 99, Number 3 | July 19, 2022 e283

http://links.lww.com/WNL/B987
http://neurology.org/n


β indicates an estimated difference in z score at baseline; β1
indicates a difference in change over time (slope). An example of
the model and its outputs is shown in eAppendix 1 (links.lww.
com/WNL/B987).

Data Availability
Anonymized data not published within this article will be made
available upon reasonable request from any qualified investigator.

Results
Demographics
There were more female participants in CDR categories 0 and
0.5 and more male participants in CDR category ≥1 for
C9orf72 (χ2[2] = 9.8, p = 0.007) andMAPT (χ2[2] = 6.6, p =
0.036) pathogenic variant carriers (Table 2). We found dif-
ferences in age at baseline between gene groups (F3,744 = 5.6,
p < 0.001) and between CDR categories (F2,744 = 91.4, p <
0.001) (Table 2). Post hoc pairwise comparisons revealed that
C9orf72 and GRN pathogenic variant carriers were older than
MAPT pathogenic variant carriers (all p ≤ 0.02) and controls
(all p < 0.001) and each CDR category represented older
pathogenic variant carriers than the categories with a lower

CDR category (all p ≤ 0.008). We found differences between
CDR categories in years of education at baseline (F2,744 = 8.8,
p < 0.001), with CDR category ≥1 having had fewer years of
education than the other categories (all p < 0.03) (Table 2).
There was an interaction effect between gene group and CDR
category on MMSE at baseline (F4,742 = 4.3, p = 0.002). Post
hoc simple main effects illustrated a difference in MMSE at
baseline between CDR categories in all 3 gene groups and a
difference in MMSE at baseline between gene groups in CDR
category ≥1. Descriptive and neuropsychological data at
baseline are reported in Table 2 and eTable 2 (links.lww.com/
WNL/B987).

Baseline and longitudinal results for each cognitive domain
are discussed in the following sections (Tables 2 and 3,
Figures 1 and 2, and summarized in Figure 3).

Attention
We found strong evidence for differences in the attention
domain between CDR categories (χ2[2] = 23.2, p < 0.001)
and between gene groups (χ2[3] = 26.0, p < 0.001) at base-
line. C9orf72 (β = −2.2, SE 0.14, p < 0.001), GRN (β = −2.2,
SE 0.16, p < 0.001), andMAPT (β = −1.1, SE 0.21, p < 0.001)

Table 2 Demographics and Neuropsychological Data per Genetic Group and CDR plus NACC FTLD Global Score
Category at Baseline

C9orf72 GRN MAPT Controls

Demographic data

CDRplusNACCFTLDcategory 0 0.5 ≥1 0 0.5 ≥1 0 0.5 ≥1 0

N 109 32 66 129 31 46 48 14 24 255

Sex ratio, F:M 64:45 20:12 24:42 84:45 16:15 23:23 29:19 10:4 8:16 145:110

Age, y 44.0
(11.6)

47.7
(10.7)

62.2 (8.9) 45.9
(12.2)

51.8
(13.2)

63.6 (7.9) 39.3
(10.5)

45.7
(12.6)

57.3
(10.2)

45.3
(12.8)

Education, y 14.3 (3.0) 14.3 (2.6) 13.2 (3.7) 14.7 (3.4) 14.0 (4.0) 11.9 (3.3) 14.4 (3.4) 13.5 (2.4) 13.7 (3.9) 14.4 (3.3)

MMSE 28.9 (3.1) 28.8 (2.0) 23.7 (6.1) 29.0 (3.9) 27.8 (5.8) 20.2 (7.6) 29.5 (0.8) 28.2 (2.3) 23.7 (6.7) 29.2 (2.2)

CDR plus NACC FTLD sum
of boxes

0.0 (0.0) 1.1 (0.8) 10.9 (5.5) 0.0 (0.0) 1.0 (0.8) 9.2 (5.8) 0.0 (0.0) 1.1 (0.8) 9.3 (5.5) 0.0 (0.1)

Neuropsychological data

Language −0.2 (1.0) −0.3 (1.3) −3.1 (2.7) 0.1 (0.6) −0.5 (1.4) −3.1 (2.4) −0.1 (0.8) −0.7 (1.2) −4.1 (3.3) —

Attention −0.3 (0.8) −0.3 (1.0) −2.7 (1.7) −0.0 (0.6) −0.4 (1.2) −2.9 (2.0) 0.2 (0.7) −0.1 (0.9) −1.5 (1.4) —

Verbal fluency −0.2 (0.8) −0.3 (0.9) −2.0 (0.9) 0.1 (0.8) −0.1 (0.9) −1.8 (1.0) 0.1 (0.8) 0.1 (1.0) −1.4 (1.2) —

Executive function −0.4 (1.1) −0.4 (1.2) −3.3 (1.9) −0.0 (0.7) −0.6 (1.9) −3.5 (2.1) 0.1 (0.8) −0.2 (0.9) −1.9 (1.8) —

Memory: immediate recall −0.5 (1.8) −0.8 (2.3) −3.3 (4.0) 0.1 (0.7) −0.7 (2.3) −5.7 (5.5) 0.0 (1.1) −0.9 (2.6) −5.2 (4.0) —

Memory: delayed recall −0.3 (0.9) −0.1 (1.2) −2.6 (2.6) −0.0 (0.7) −0.5 (1.6) −3.3 (3.4) −0.1 (1.1) −0.8 (2.3) −4.3 (3.0) —

Social cognition −0.1 (1.0) −0.7 (1.3) −3.1 (2.2) 0.1 (1.1) −0.7 (1.4) −2.8 (1.9) 0.1 (0.8) −0.5 (1.2) −2.2 (2.1) —

Visuoconstruction −0.1 (1.2) −0.2 (1.6) −2.3 (2.9) 0.2 (0.8) 0.2 (1.0) −1.9 (3.2) −0.2 (0.9) −0.2 (0.9) −1.3 (2.7) —

Abbreviations: C9orf72 = chromosome 9 open reading frame 72; CDR plus NACC FTLD = Clinical Dementia Rating scale plus National Alzheimer’s Coordinating
Center Frontotemporal Lobar Degeneration; GRN = progranulin; MAPT = microtubule-associated protein tau; MMSE = Mini-Mental State Examination.
Values are represented as mean z score compared with controls (SD) unless otherwise specified.
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Table 3 Slopes and CIs Stratified by Genetic Group and CDR Plus NACC FTLD Global Score for Each Cognitive Domain

CDR plus NACC FTLD

0 0.5 ≥1

β 95% CI β 95% CI β 95% CI

C9orf72

Language 0.02 −0.09 to 0.14 −0.03 −0.37 to 0.32 −0.50 −0.70 to −0.30

Attention −0.03 −0.10 to 0.05 0.07 −0.15 to 0.29 −0.24 −0.36 to −0.11

Verbal fluency −0.01 −0.07 to 0.04 0.03 −0.14 to 0.19 −0.13 −0.22 to −0.04

Executive function −0.07 −0.16 to 0.02 −0.04 −0.31 to 0.23 −0.03 −0.20 to 0.14

Memory: immediate recall 0.26 0.11 to 0.40 0.45 0.06 to 0.84 −0.01 −0.25 to 0.24

Memory: delayed recall 0.14 0.05 to 0.23 0.14 −0.09 to 0.37 0.00 −0.16 to 0.16

Social cognition 0.06 −0.06 to 0.17 0.14 −0.15 to 0.43 0.20 0.00 to 0.40

Visuoconstruction −0.07 −0.25 to 0.11 −0.13 −0.58 to 0.32 0.02 −0.25 to 0.28

GRN

Language 0.05 −0.04 to 0.14 −0.08 −0.39 to 0.23 −1.24 −1.51 to −0.97

Attention 0.02 −0.04 to 0.07 −0.03 −0.22 to 0.17 −0.34 −0.52 to −0.16

Verbal fluency 0.00 0.04 to 0.05 −0.18 −0.33 to −0.03 −0.15 −0.28 to −0.02

Executive function −0.01 −0.08 to 0.06 0.09 −0.16 to 0.33 −0.09 −0.32 to 0.15

Memory: immediate recall 0.06 −0.05 to 0.17 0.17 −0.17 to 0.52 −0.24 −0.64 to 0.17

Memory: delayed recall 0.05 −0.02 to 0.12 −0.03 −0.24 to 0.18 −0.06 −0.32 to 0.20

Social cognition 0.09 0.00 to 0.18 0.11 −0.16 to 0.39 −0.47 −0.70 to −0.23

Visuoconstruction −0.09 −0.23 to 0.05 −0.45 −0.88 to −0.02 −0.13 −0.48 to 0.23

MAPT

Language 0.08 −0.06 to 0.22 −0.43 −0.76 to −0.10 −0.39 −0.67 to −0.10

Attention −0.01 −0.09 to 0.08 −0.08 −0.28 to 0.13 −0.21 −0.39 to −0.04

Verbal fluency 0.00 −0.07 to 0.07 0.05 −0.10 to 0.21 −0.09 −0.23 to 0.04

Executive function 0.07 −0.04 to 0.17 0.14 −0.12 to 0.41 −0.55 −0.77 to −0.33

Memory: immediate recall 0.02 −0.15 to 0.18 0.19 −0.20 to 0.57 −0.06 −0.46 to 0.34

Memory: delayed recall 0.03 −0.07 to 0.13 0.07 −0.16 to 0.31 −0.16 −0.41 to 0.09

Social cognition 0.08 −0.05 to 0.21 0.20 −0.12 to 0.52 −0.13 −0.37 to 0.12

Visuoconstruction 0.04 −0.17 to 0.25 0.11 −0.36 to 0.58 0.20 −0.17 to 0.58

Controls β 95% CI

Language 0.06 −0.02 to 0.13

Attention 0.05 0.00 to 0.10

Verbal fluency 0.02 −0.02 to 0.05

Executive function 0.02 −0.03 to 0.08

Memory: immediate recall 0.00 −0.11 to 0.22

Memory: delayed recall 0.05 −0.01 to 0.10

Social cognition 0.04 −0.03 to 0.12

Visuoconstruction 0.13 0.04 to 0.12

Abbreviations: C9orf72 = chromosome9 open reading frame 72; CDR plus NACC FTLD = Clinical Dementia Rating scale plus National Alzheimer’s Coordinating
Center Frontotemporal Lobar Degeneration; GRN = progranulin; MAPT = microtubule-associated protein tau.
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pathogenic variant carriers with CDR category ≥1 all per-
formed worse than controls, with both C9orf72 (β = −1.1, SE
0.23, p < 0.001) and GRN (β = −1.2, SE 0.25, p < 0.001)
pathogenic variant carriers performing worse than MAPT
pathogenic variant carriers. C9orf72 pathogenic variant car-
riers with CDR category 0 also performed worse at baseline
thanGRN (β = −0.3, SE 0.13, p = 0.010) andMAPT (β = −0.4,
SE 0.16, p = 0.030) pathogenic variant carriers and controls
(β = −0.4, SE 0.11, p < 0.001; Figure 1A). In addition, we
found an interaction effect between time and gene group
(χ2[3] = 37.1, p < 0.001). All gene groups with CDR category
≥1 declined over time compared with controls (C9orf72:
β1 = −0.3, SE 0.07, p < 0.001; GRN: β1 = −0.4, SE 0.10,
p < 0.001; MAPT: β1 = −0.3, SE 0.09, p = 0.004). There was
some weak evidence that C9orf72 pathogenic variant carriers
with CDR category 0 declined over time compared with
controls (β1 = −0.4, SE 0.11, p = 0.086; Figure 1A).

Executive Function
We found strong evidence for differences on the executive
function domain between CDR categories (χ2[2] = 27.2, p <
0.001) and between gene groups (χ2[3] = 23.3, p < 0.001) at
baseline. A similar profile was seen in all gene groups with
CDR category ≥1 performing worse at baseline than controls
(C9orf72: β = −3.1, SE 0.25, p < 0.001; GRN: β = −3.2, SE
0.23, p < 0.001; MAPT: β = −1.7, SE 0.29, p < 0.001), and
C9orf72 (β = −1.0, SE 0.32, p = 0.003) andGRN (β = −1.1, SE
0.35, p = 0.002) pathogenic variant carriers performing worse
than MAPT pathogenic variant carriers (Figure 1B). C9orf72
pathogenic variant carriers with CDR category 0 also per-
formed worse than GRN (β = −0.4, SE 0.17, p = 0.016) and
MAPT (β = −0.6, SE 0.23, p = 0.012) pathogenic variant
carriers, and controls (β = −0.5, SE 0.15, p < 0.001) and GRN
pathogenic variant carriers with CDR category 0.5 performed
worse than controls (β = −0.7, SE 0.25, p = 0.006). We found
interaction effects between time and gene group (χ2[3] =
24.7, p < 0.001), time and CDR category (χ2[2] = 25.8, p <
0.001), and time, gene group, and CDR category (χ2[4] =
18.6, p = 0.001).MAPT pathogenic variant carriers with CDR
category ≥1 demonstrated steeper decline over time than
C9orf72 (β1 = −0.5, SE 0.14, p = 0.002) and GRN pathogenic
variant carriers (β1 = −0.5, SE 0.17, p = 0.005) and controls
(β1 = −0.6, SE 0.12, p < 0.001) (Figure 1B).

Language
Language differed between CDR categories (χ2[2] = 96.7,
p < 0.001) and between gene groups (χ2[3] = 21.5, p < 0.001)
at baseline. Again, all gene groups with CDR category ≥1
performed worse than controls (C9orf72: β = −3.2, SE 0.28,
p < 0.001;GRN: β = −2.9, SE 0.31, p < 0.001;MAPT: β = −5.0,
SE 0.41, p < 0.001) at baseline, but in this case MAPT
pathogenic variant carriers performed worse than C9orf72
(β = −1.7, SE 0.34, p = 0.002) and GRN (β = −1.3, SE 0.33,
p = 0.009) pathogenic variant carriers (Figure 1C).We also found
interaction effects between time and gene group (χ2[3] = 104.8,
p < 0.001), time andCDR category (χ2[2] = 14.0, p= 0.001), and
time, gene group, and CDR category (χ2[4] = 25.5, p < 0.001).

MAPT pathogenic variant carriers with CDR category 0.5
(β1 = −0.5, SE 0.17, p= 004) or≥1 (β1 = −0.5, SE 0.15, p= 0.003)
as well as C9orf72 (β1 = −0.6, SE 0.11, p < 0.001) and GRN
(β1 = −1.3, SE 0.14, p < 0.001) pathogenic variant carriers with
CDR category ≥1 declined over time compared with controls.
In CDR category ≥1, GRN pathogenic variant carriers dem-
onstrated steeper decline over time thanC9orf72 (β1 = −0.7, SE
0.17, p < 0.001) and MAPT (β1 = −0.9, SE 0.20, p < 0.001)
pathogenic variant carriers (Figure 1C).

Verbal Fluency
For verbal fluency, we found strong evidence for differences be-
tween CDR categories (χ2[2] = 40.0, p < 0.001) at baseline. All
gene groups with CDR category ≥1 performed worse than con-
trols (C9orf72: β = −1.8, SE 0.12, p < 0.001; GRN: β = −1.6, SE
0.14, p<0.001;MAPT: β = −1.3, SE 0.18, p<0.001), withC9orf72
performing worse than MAPT pathogenic variant carriers (β =
−0.5, SE 0.19, p = 0.018; Figure 1D). In CDR category 0, C9orf72
pathogenic variant carriers performed worse than controls (β =
−0.3, SE 0.09, p = 0.003) and GRN pathogenic variant carriers
(β = −0.3, SE 0.11, p = 0.002). We found an interaction effect
between time and gene group (χ2[3] = 14.5, p < 0.002).
C9orf72 pathogenic variant carriers with CDR category ≥1
(β1 = −0.2, SE 0.05, p = 0.004) and GRN pathogenic variant
carriers with CDR categories 0.5 (β1 = −0.2, SE 0.08, p =
0.013) and ≥1 (β1 = −0.2, SE 0.07, p = 0.015) declined over
time compared with controls (Figure 1D).

Memory: Immediate Recall
For immediate recall, we found strong evidence for differ-
ences between CDR categories (χ2[2] = 51.4, p < 0.001) and
between gene groups (χ2[3] = 40.2, p < 0.001) at baseline.
All gene groups with CDR category ≥1 performed worse
than controls (C9orf72: β = −2.7, SE 0.32, p < 0.001; GRN:
β = −5.5, SE 0.40, p < 0.001; MAPT: β = −4.3, SE 0.51,
p < 0.001), with MAPT performing worse than C9orf72
pathogenic variant carriers (β = −1.7, SE 0.56, p = 0.003) and
GRN pathogenic variant carriers performing worse than
C9orf72 (β = −3.0, SE 0.47, p < 0.001) andMAPT pathogenic
variant carriers (β = −1.2, SE 0.62, p = 0.032; Figure 2A).

Memory: Delayed Recall
For delayed recall, we also found evidence for differences be-
tween CDR categories (χ2[2] = 36.9, p < 0.001) and between
gene groups (χ2[3] = 10.4, p = 0.015) at baseline. Again, all gene
groups with CDR category ≥1 performed worse than controls
(C9orf72: β = −2.0, SE 0.21, p < 0.001; GRN: β = −2.8, SE 0.27,
p < 0.001; MAPT: β = −2.7, SE 0.35, p < 0.001), with GRN
(β = −0.9, SE 0.32, p = 0.007) andMAPT (β = −0.8, SE 0.38, p =
0.033) performing worse than C9orf72 pathogenic variant car-
riers. MAPT pathogenic variant carriers with CDR category 0.5
(β = −0.8, SE 0.36, p = 0.021) performed worse than controls
and C9orf72 pathogenic variant carriers (β = −0.9, SE 0.42, p =
0.023). There was some weak evidence indicating that MAPT
pathogenic variant carriers with CDR category 0 performed
worse than controls (β = −0.4, SE 0.21, p = 0.081; Figure 2B).
None of the groups declined significantly over time.
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Social Cognition
We found strong evidence for differences between CDR cate-
gories (χ2[2] = 35.7, p<0.001) at baseline on social cognition. All
gene groups with CDR category ≥1 performed worse than
controls (C9orf72: β = −2.6, SE 0.19, p < 0.001; GRN: β = −2.3,
SE 0.23, p < 0.001; MAPT: β = −1.9, SE 0.28, p < 0.001), with
GRN performing worse than MAPT pathogenic variant carriers
(β = −0.7, SE 0.33, p = 0.033; Figure 2C). C9orf72 (β = −0.7, SE
0.24, p = 0.001) and GRN (β = −0.7, SE 0.25, p = 0.001)
pathogenic variant carriers withCDRcategory 0.5 also performed
worse at baseline than controls. We found interaction effects
between time and gene group (χ2[3] = 21.3, p < 0.001) and time,
CDR category, and gene group (χ2[4] = 16.3, p < 0.003). GRN
pathogenic variant carriers with CDR category ≥1 showed
steeper decline over time compared with controls (β1 = −0.5, SE

0.13, p < 0.001), C9orf72 (β1 = −0.7, SE 0.16, p < 0.001), and
MAPT (β1 = −0.3, SE 0.17, p = 0.049) pathogenic variant carriers
and MAPT pathogenic variant carriers with CDR category ≥1
showed steeper decline over time compared to C9orf72 patho-
genic variant carriers (β1 = −0.3, SE 0.16, p = 0.047; Figure 2C).

Visuoconstruction
We found differences between gene groups on visuocon-
struction (χ2[3] = 11.0, p = 0.012) at baseline. All gene groups
with CDR category ≥1 performed worse than controls
(C9orf72: β = −2.0, SE 0.22, p < 0.001; GRN: β = −1.6, SE
0.26, p < 0.001; MAPT: β = −0.9, SE 0.32, p = 0.004), with
C9orf72 (β = −1.2, SE 0.33, p = 0.002) andGRN (β = −1.0, SE
0.36, p = 0.008) performing worse than MAPT pathogenic
variant carriers. GRN pathogenic variant carriers with CDR

Figure 1 Linear Mixed Effects Models Displaying Longitudinal Trajectories in Composite Domain Z Score Stratified by the
CDR Plus NACC FTLD for C9orf72, GRN, and MAPT Pathogenic Variant Carriers and Healthy Controls

Models are displayed per cognitive domain: (A) attention, (B) executive function, (C) language, and (D) verbal fluency. C9orf72 = chromosome 9 open reading
frame 72; CDR = Clinical Dementia Rating scale plus National Alzheimer’s Coordinating Center Frontotemporal Lobar Degeneration; GRN = progranulin;
MAPT = microtubule-associated protein tau.
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category 0.5 (β1 = −0.5, SE 0.23, p = 0.050) showed steeper
decline over time than controls (Figure 2D).

Discussion
This study demonstrated gene-specific baseline differences and
decline over a 5-year time period in a large cohort of genetic
FTD pathogenic variant carriers that was moderated by the
CDR plus NACC FTLD global score. C9orf72 pathogenic
variant carriers performed lower on attention, executive func-
tion, and verbal fluency from CDR plus NACC FTLD 0 on-
wards, with relatively minimal decline over time compared with
other genetic groups regardless of the CDR plus NACC FTLD
score (i.e., disease progression). The cognitive profile inMAPT
pathogenic variant carriers was characterized by early impaired

memory (already at CDR plus NACC FTLD 0.5), with lan-
guage decline starting at CDR plus NACC FTLD 0.5, and
executive dysfunction developing rapidly at CDR plus NACC
FTLD ≥1. GRN pathogenic variant carriers showed no differ-
ences or decline compared with controls at CDR plus NACC
FTLD 0, but verbal fluency and visuoconstruction started to
decline at CDR plus NACC FTLD 0.5. GRN pathogenic var-
iant carriers showed the most rapid decline compared with the
other groups in language and social cognition from CDR plus
NACC FTLD ≥1 onwards. The results from this study confirm
cognitive decline in the asymptomatic and prodromal stages of
genetic FTD and hold potential for upcoming therapeutic trials
by identifying (1) the most sensitive cognitive measures to
track disease progression and treatment effects and (2) the
speed of change over time, thereby providing insight into the
best time window to start disease-modifying treatment.

Figure 2 Linear Mixed Effects Models Displaying Longitudinal Trajectories in Composite Domain Z Score Stratified by the
CDR Plus NACC FTLD for C9orf72, GRN, and MAPT Pathogenic Variant Carriers and Healthy Controls

Models are displayed per cognitive domain: (A)memory–immediate recall, (B)memory–delayed recall, (C) social cognition, and (D) visuoconstruction. C9orf72
= chromosome 9 open reading frame 72; CDR = Clinical Dementia Rating scale plus National Alzheimer’s Coordinating Center Frontotemporal Lobar
Degeneration; GRN = progranulin; MAPT = microtubule-associated protein tau.

e288 Neurology | Volume 99, Number 3 | July 19, 2022 Neurology.org/N

http://neurology.org/n


Asymptomatic C9orf72 pathogenic variant carriers performed
worse at baseline than controls on attention/mental pro-
cessing speed, executive function, and verbal fluency. In the
prodromal stage, social cognition was also lower at baseline,
whereas at the fully symptomatic stage, all cognitive domains
were lower at baseline. There was no decline over time in the
asymptomatic stage or prodromal stage, but attention/mental
processing speed, language, and verbal fluency declined over
time in the symptomatic stage, although less rapidly than in
other gene groups. The other cognitive domains remained
relatively stable, and there were signs of possible practice
effects for memory and social cognition. This is largely in line
with previous studies demonstrating widespread cognitive
impairment in C9orf72 pathogenic variant carriers with rela-
tively minimal decline over time.5,39,40 It is further corrobo-
rated by the fact that the neurodegenerative process
associated with the C9orf72 pathogenic variant is widespread,
with neurodegeneration in the frontal and temporal cortices
but also in more posterior cortical, subcortical, and cerebellar
regions.39,41 This group performed lowest compared with the
other groups on a wide range of neuropsychological tests,
specifically tests for attention/mental processing speed and
executive function, at the asymptomatic stage. Although these

performances were not at an “impaired” level (i.e., z score
≤−2), these deficits might represent the earliest signs of
neurodegeneration with very slow decline over time. Alter-
natively, the lack of decline over time in all 3 disease stages
raises the intriguing possibility that these deficits are not
merely preclinical signs of FTD as a result of early neuro-
degeneration, but might be indicative of a neuro-
developmental disorder in C9orf72, which at a certain age is
superimposed by additional neurodegeneration. This hy-
pothesis has been suggested by several previous studies that
found gray and white matter deficits and connectivity dis-
ruption as well as psychiatric conditions and cognitive deficits
many years before the estimated age at symptom onset
without evidence of disease progression over time.42,43 Future
studies should focus on ascertaining early-life radiologic and
clinical assessments to test this hypothesis.

In MAPT pathogenic variant carriers, there was a trend to-
wards lower memory performance than in controls at baseline
in the asymptomatic stage, which became significant at the
prodromal stage. All cognitive domains were lower than in
controls at baseline in the symptomatic stage. There was no
decline over time in the asymptomatic stage, but language

Figure 3 Summary of Cross-Sectional and Longitudinal Differences Between Each Genetic Group and Controls

(A) Cross-sectional differences. (B) Longitudinal differences.
C9orf72 = chromosome 9 open reading frame 72; CDR =
Clinical Dementia Rating scale plus National Alzheimer’s
Coordinating Center Frontotemporal Lobar Degeneration;
GRN = progranulin; MAPT = microtubule-associated protein
tau.
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declined from the prodromal stage onwards. In addition,
attention/mental processing speed, executive function, and
social cognition declined progressively during the symptom-
atic stage. These results confirm that the first changes for this
group occur in cognitive functions that are strongly associated
with the temporal lobe, an area that already shows early de-
generation in presymptomatic MAPT pathogenic variant
carriers.6 Several previous studies have demonstrated that
episodic memory impairment is a distinct feature in MAPT-
related FTD, even in presymptomatic pathogenic variant
carriers.19,20,26 Strikingly, we demonstrated lower memory
performance in prodromal pathogenic variant carriers but
with practice effects over time that disappeared at the fully
symptomatic stage only. A likely explanation for these practice
effects is that the same items for memory tests were used at all
time points, stressing the need for the use of tests that have
multiple versions with different stimuli in longitudinal cohort
studies. The lower performance and decline seen in the lan-
guage domain was largely driven by the Boston Naming Test,
a test that strongly depends on the semantic memory sys-
tem.44 This is unsurprising given that semantic memory is
strongly associated with the anteromedial temporal lobe, an
area known to deteriorate early and progressively in MAPT-
associated FTD.26 Deficits in semantic memory have been
described as a key symptom in MAPT pathogenic variant
carriers in a more progressed disease stage,5 but our results
illustrate that the first changes occur at a much earlier stage,
suggesting that semantic tests might be a good candidate to
serve as a sensitive end point in upcoming therapeutic trials of
MAPT-associated FTD.Only at a later progressed stage, when
atrophy spreads from the temporal to frontal areas of the
brain, does impairment in cognitive functions that are typi-
cally associated with bvFTD develop, such as executive
function and social cognition.22,45

There were no cross-sectional differences between asymp-
tomatic GRN pathogenic variant carriers and controls at
baseline and there was no decline over time in this stage. In
the prodromal stage, pathogenic variant carriers performed
worse than controls on executive function and social cogni-
tion, and they declined over time on verbal fluency and
visuoconstruction. All cognitive domains were lower than in
controls at baseline in the symptomatic stage, and they
showed progressive decline over time on attention/mental
processing speed, verbal fluency, language, and social cogni-
tion. This is in line with previous studies showing minimal
changes in gray and white matter but also cognition in pre-
symptomatic GRN pathogenic variant carriers, often with fast
progressive decline after symptom onset.5,20 Although in our
study no change over time was detected in the asymptomatic
stage, GRN pathogenic variant carriers performed worse on
executive function and social cognitive tasks at the prodromal
stage, suggesting some decline between these stages. Possible
explanations could be that the asymptomatic pathogenic
variant carriers were too far from symptom onset or that the
time window between these stages where these changes occur
is relatively short. Interestingly, verbal fluency declined

progressively in the prodromal period, indicating an early
deficit in specifically verbal fluency. This could be interpreted
as an early sign of pathogenic variant carriers developing
nonfluent variant PPA, a clinical phenotype that is often seen
inGRN pathogenic variant carriers.41 However, verbal fluency
measures are also known to strongly depend on executive
function,36 a cognitive domain known to deteriorate in
bvFTD.45 Surprisingly, visuoconstruction also declined in the
prodromal stage, whereas this is considered to be relatively
spared in FTD.2 However, most visuoconstructive tasks also
strongly depend on executive functions such as planning,
organizing, and keeping overview.46 It seems, therefore, more
likely that these tasks were influenced by impaired executive
function rather than a pure impairment in language and
visuoconstruction per se.

This is the first study to longitudinally investigate a large
cohort of all 3 major causes of genetic FTD over a 5-year
period. A major strength of this study is the use of the CDR
plus NACC FTLD to stratify pathogenic variant carriers from
asymptomatic to prodromal and fully symptomatic (i.e., 0, 0.5,
≥1). Most previous studies have stratified pathogenic variant
carriers as either presymptomatic or symptomatic according
to whether they fulfilled diagnostic criteria for FTD syn-
dromes, but this does not fully grasp the clinical trajectory of
FTD. The cognitive profile between the presymptomatic and
symptomatic phase has not been well-characterized. Some
other studies have used estimated years to symptom onset
based on mean family age at onset, but a recent article dem-
onstrated that the correlations between age at symptom onset
and mean family age at symptom onset were weak for C9orf72
and GRN pathogenic variant carriers, indicating that this
might not be a reliable proxy.28 By stratifying according to
CDR plus NACC FTLD, we have provided insight into
cognitive decline during different disease stages.

There are limitations to this study. First, the sample size at the
CDR plus NACC FTLD 0.5 stage was smaller than the other
stages, which probably influenced the statistical power in this
specific group. Second, due to ongoing recruitment within
GENFI, participants varied in the number of completed visits,
resulting in missing data at later time points. Therefore, we
analyzed the data with linear mixed-effects models, as these
models allow for unbalanced time points and missing data.38

We could not use a nonlinear mixed effects model (e.g.,
natural cubic splines) due to the limited number of follow-up
visits. However, similar to what has been performed in studies
of familial AD,47 nonlinear models might be more suitable for
the analysis of clinical progression in FTD. Future studies
with longer follow-up should therefore investigate the use of
nonlinear models in analyzing clinical disease progression in
FTD. Third, we did not take progression over time on the
CDR plus NACC FTLD into account, but stratified groups
according to their global score at baseline. Future research
should investigate the cognitive trajectories of progressors
compared with nonprogressors on the CDR plus NACC
FTLD more in depth. Individual trajectories demonstrated
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high variability between individuals in each group. A possible
explanation for this interindividual variability could be that
some individuals with a CDR plus NACC FTLD global score
of 0 might be closer to symptom onset than others. Similarly,
individuals with a CDR plus NACC FTLD score of 0.5 or ≥1
at baseline might vary in time since progression to that CDR
category (i.e., individuals who had a global score of 0.5 for
several years at inclusion will likely progress faster than indi-
viduals who progressed to a score of 0.5 more recently).
Validation in other cohorts such as ALLFTD or DINAD is
warranted. Fourth, practice effects were strikingly visible for
the FCSRT and Facial Emotion Recognition Test, stressing
the need for different test versions in the former, but more
sensitive tasks for emotion recognition (e.g., the use of
morphed facial expressions22) and social cognition in general.
Lastly, in the interpretation of memory–immediate recall,
social cognition, and visuoconstruction results, it should be
taken into account that they were represented by only a single
cognitive test, and those individual tests might not be a rep-
resentation of the entire cognitive domain.

We provide evidence for gene-specific cognitive decline in the
prodromal stage of genetic FTD. Specifically, tests for
attention/mental processing speed, executive function, lan-
guage, and memory showed clear differences between gene
groups and controls at baseline, but the speed and nature of
change over time differed depending on (1) the gene group
and (2) the CDR plus NACC FTLD global score. These
results confirm the value of neuropsychological assessment in
tracking disease progression and could inform upcoming
clinical trials in selecting sensitive end points for measuring
treatment effects as well as in characterizing the best time
window for starting treatment.
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